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Abstract—Next-generation wireless networks envision ubiqui-
tous access and computational capabilities by seamlessly integrat-
ing aerial and terrestrial networks. Digital twin (DT) technology
emerges as a proactive and cost-effective approach for resource-
limited networks. Mobile edge computing (MEC) is pivotal in
facilitating mobile offloading, particularly under the demand-
ing constraints of ultra-reliable and low-latency communication
(URLLC). This study proposes an advanced bisection sampling-
based stochastic solution enhancement (BSSE) algorithm to min-
imize the system’s overall energy-time cost by jointly optimizing
task offloading and resource allocation strategies. The formulated
problem is a mixed-integer nonlinear programming problem
due to its inherently combinatorial linkage with task-offloading
decisions and strong correlation with resource allocation. The
proposed algorithm operates iteratively through the following
steps: 1) narrowing the search space through a one-climb
policy, 2) developing a closed-form solution for optimal CPU
frequency and transmit power, and 3) implementing randomized
task offloading, which updates it in the direction of reducing
objective value. The scalability of the proposed algorithm is also
analyzed for a two-device model, which is subsequently extended
to multiple devices. Comparative analysis against benchmark
schemes reveals that our approach reduces total energy-time cost
by 15.35% to 33.12% when weighting parameter ∂λ

k2
is increased

from 0.1 to 0.3, respectively.

Index Terms—URLLC, Task Dependency Aware, Edge Net-
work, Resource Allocation, and Digital Twins.

I. INTRODUCTION

RECENT advancements in telecommunications and mod-
ern computing infrastructures have facilitated the provi-

sion of computation-intensive and time-sensitive applications
[1]. The exponential increase in mobile device usage has led
to the emergence of ultra-reliable and low-latency communi-
cation (URLLC), a technology striving to achieve a minimum
delay of 1 millisecond and a high reliability of 99.999999%
[2]. URLLC offers significant potential in supporting real-time
operations, such as virtual reality, vehicular edge computing,
and industrial automation [3]. Therefore, the integration of
URLLC with other emerging technologies, including mobile
edge computing (MEC), and digital twin (DT) is pivotal
in accommodating a diverse range of mobile applications,
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encompassing industry 4.0, smart cities, and intelligent trans-
portation systems [4]. However, its practical implementation
causes intriguing and challenging concerns due to the complex
relationship between reliability and end-to-end delay in next-
generation wireless networks [5].

The rapid evolution of internet of things (IoTs) has fa-
cilitated the cost-effective connection of billions of wireless
devices, introducing a new era of connectivity. However, IoT
devices’ limited battery life and computational power have
emerged as a significant barrier, particularly in supporting
computation-intensive applications within future-generation
wireless networks [6]. These constraints are primarily at-
tributed to concerns regarding production costs and strin-
gent size restrictions. Aerial base stations assisted mobile
edge computing (ABS-MEC) presents a promising solution
to overcome these challenges, e.g., offering support for time-
sensitive applications and computation-intensive services, en-
compassing a broad spectrum of IoT applications, i.e., from
security to actuation and monitoring IoT systems. The primary
goal is to optimize offloading decisions and minimize energy
consumption (EC) of connected devices [7].

Mobile edge computing (MEC) represents an emerging,
cost-effective paradigm that leverages computational and stor-
age capabilities to support devices with limited resources
[8]. Task offloading is the most significant feature of MEC,
which enables resource-constrained IoT devices to offload
their computation-intensive tasks to high-performance edge
servers (ESs), either binary or partially. In binary offloading,
each task is processed locally or offloaded to the ES. In con-
trast, each task is partitioned and executed locally and at the ES
[9]. Our research primarily focuses on binary offloading within
the context of finite blocklength (FBL), frequently employed
in IoT systems to process tasks that cannot be partitioned. This
approach is instrumental in fulfilling the escalating quality of
service demands in edge networks, particularly in the context
of resource allocation [10].

An innovative technology that has recently gained substan-
tial prominence is the DT [11]. This innovative technology
creates a virtual replica of physical systems, enabling the
simulation of optimal solutions before real-time implementa-
tion. Its application significantly enhances system performance
while minimizing downtime [12]. Consequently, various stud-
ies have extensively investigated and analyzed the fusion of
DT technology with the URLLC edge network based on MEC
to improve the performance and reliability of communication
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systems [13]. In [14], the authors investigate the challenges
of task offloading on the ES, incorporating the concepts of
DT, blockchain, and channel state information (CSI) to boost
network performance. The study presented in [15] proposed
an ABS-based DT-assisted offloading solution, which jointly
optimizes offloading factors, transmit power, and processing
rate to minimize the overall delay. An iterative algorithm is
introduced in [16], focusing on optimizing computing and
communication parameters within a DT-based edge network.
This algorithm aims explicitly to reduce latency for industrial
IoTs operating under URLLC constraints.

A lower-bound methodology for maximizing data rate using
massive multiple input multiple outputs (MIMO) is proposed
for uplink URLLC, as detailed in [17]. This optimization is
achieved by jointly fine-tuning the payload and pilot transmis-
sion strategies for zero-facing and maximum ratio combining
designs. Reference [18] addresses the challenge of resource
optimization in URLLC, employing a game theoretic approach
to enhance the offloading factor within a multi-agent edge
network [19]. A distributed solution to optimize the average
response time for computational offloading is presented in
[20]. The study is extended to a distributed framework that
solves the NP-hard energy efficiency problem, leveraging
parallel processing [21].

Channel characteristics are also crucial in the next genera-
tion of wireless networks. Therefore, it is not always recom-
mended to completely offload computational tasks to the ES
because it may lead the network towards a low offloading data
rate due to the possibility of deep fading [22]. An illustrative
example is an adaptive search algorithm, which minimizes
EC through joint optimization of offloading factors, resource
allocation, and user association [23]. Similarly, the authors in
[24] investigate resource allocation and task offloading from
an economic perspective to enhance computing efficiency.
The research in [25] focuses on developing optimal binary
offloading policies for single-user tasks, later extended to
multi-user scenarios in subsequent studies [26]. This concept
is further applied to multiple independent tasks, in the system
where a single user offloads its task to different ESs [27], and
multiple users offload their tasks to a single ES [28].

Tasks executed by different IoT devices usually correlate
[29]- [30]. This interdependence significantly influences deci-
sions related to offloading and resource allocation in an inte-
grated aerial terrestrial edge network [31]–[33]. For instance,
in poor channel conditions, a device might need to offload
its tasks to an ABS-assisted edge server urgently required
by another device. This exchange of computation outcomes
incurs extra energy and time. Due to this strong coupling and
combinatorial nature of the problem, identifying an optimal
solution is challenging. It is noted that previous research has
explored a variety of approaches to similar issues [15]–[17].
However, this work addresses the context of DT-aided edge
computing for URLLC. In this domain, the task dependencies
among interconnected wireless devices have not been suffi-
ciently explored [31]–[35]. To the best of our knowledge,
the current research initiates a pioneering examination of task
dependency among devices within the context of DT-aided
edge computing for URLLC. The key contributions of this

work are outlined as follows:
• We have formalized a mixed-integer non-linear program-

ming (MINLP) problem within a DT-enabled integrated
aerial-terrestrial network, taking into account the inter-
dependencies among tasks in a novel manner. Owing to
its inherently combinatorial linkage with task-offloading
decisions and strong correlation with resource allocation,
this problem poses significant computational challenges.
Therefore, we introduce an enhanced bisection sampling-
based stochastic solution enhancement (BSSE) algorithm
that aims to minimize the system’s energy-time cost
iteratively, offering a solution that closely matches the
performance of the most effective existing scheme.

• To efficiently narrow the search space, we have fol-
lowed ‘one-climb policy’, where a device offloads its
data to the edge server at the optimum time only once.
The proposed algorithm is specifically tailored to jointly
optimize transmit power, CPU frequency, and the task
offloading policy; thereby minimizing the weighted sum
of the devices’ energy consumption and task execution
time. We derived a closed-form solution for calculating
the optimal CPU frequency and transmit power for given
offloading decisions. Then, an inequality condition is
formulated to manage dependent tasks efficiently. The
proposed algorithm commences with a random task of-
floading configuration and iteratively updates it to reduce
the system’s energy-time cost.

• The scalability of the proposed model is analyzed by
varying the number of IoT devices with the sequential
number of tasks, i.e., from a simplified two-device frame-
work to multiple devices, incorporating different interme-
diate tasks. The trade-off between the system’s energy-
time cost is also analyzed to validate the effectiveness of
our approach.

• Although the proposed algorithm can manage a diverse
range of tasks, the computational complexity of our
proposed approach is significantly lower than benchmark
schemes. We have also compared our BSSE approach
against three sophisticated benchmark schemes: the bi-
section algorithm [29], the one-climb policy-based Gibbs
sampling algorithm [29], and the exhaustive search al-
gorithm. A comparative analysis with the bisection algo-
rithm reveals that our approach reduces the total energy-
time cost by 15.35% to 33.12% when the weighting
parameter ∂λk2 is increased from 0.1 to 0.3, respectively.

The remaining paper is organized as: Section II contains the
system model. Section III provides the problem formulation.
Section IV explains the proposed solution, later extended to
a multi-device scenario in Section V. Simulation results are
given in Section VI. The paper is concluded in Section VII.

II. SYSTEM MODEL

A. Implementation of DT in Edge Network for URLLC

Fig. 1 illustrates a DT-enabled edge computing network
including two layers. The physical layer includes IoT devices
and ABSs acting as access points (capable of working as ES,
i.e., executing back-haul processing to mitigate the constraints
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Fig. 1. Digital twin-enabled integrated aerial-terrestrial edge network denoting a two-device framework with an intermediate task node mt

of limited storage and computing resources). The devices
are connected via URLLC links to ensure stringent high-
reliability and low-latency communication requirements in
mission-critical applications. Each access point is assumed to
be integrated with a multi-processor architecture with a fixed
service rate. This configuration allows every access point to
process a predetermined number of tasks simultaneously. The
DT layer is a virtual replica of the physical layer, facilitating
real-time monitoring of the physical system’s operations.

B. Architecture of MEC based on URLLC

We consider a set of ABSs denoted by a ∈ A =
{a1, a2, ..., |A|}. Each ABS serves a distinct non-overlapping
region within its coverage area. It is assumed that each
ABS has completed its deployment and networking planning
beforehand. Within these coverage areas, we consider different
numbers of IoT devices represented by the set k ∈ K =
{k1, k2, ..., kj , ..., |K|}. A binary variable is introduced to
represent the connection between the device and ABS, i.e.,

πk,a =


1, if there is an association between the (a)-th

ABS and the (k)-th IoT device
0, otherwise

(1)
For easy understanding, the number of IoT devices within
each serving ABS is limited to two, i.e., IoT devices
k1 and k2, exhibiting limited mobility. We have extended
the proposed model to accommodate multi-user scenarios
in Section (V). The sequential order of tasks to be per-
formed by each respective device is denoted by the set
l ∈ L = {l0, l1, l2, ..., |L|, |L|+1} and the set m ∈ M =
{m0,m1,m2, ..., |M|, |M|+1}. Two auxiliary nodes l0 and m0

are allocated as the starting points for the tasks assigned
to each IoT device. Meanwhile, additional two nodes |L|+1
and |M|+1 are designated as termination points for the tasks
assigned to each IoT device k1 and k2, respectively. We

assume a framework of task dependency among IoT devices,
where the intermediary task t ∈ {t1, t2, ..., |M|} of IoT device
k2 requires the output from the final task of device k1. All tasks
must be started and completed on the same device, e.g., the IoT
device must execute two additional tasks locally. However, the
remaining |L+M| tasks may be processed locally or remotely.

It is reasonable to consider that the network under consider-
ation is resource-constrained with limited bandwidth (W). The
bandwidth is equally distributed among orthogonal subcarriers,
represented by the set s ∈ S = {s1, s2, ..., |S|}, where
W =

∑
s∈S

ws. We define a binary variable for subcarrier

allocation, where ϕs,k = 1 indicates successful subcarrier
allocation; otherwise, ϕs,k = 0. In numerous power-efficient
IoT structures, the rate required to offload the task is often
minimal and generally necessitates only a narrow bandwidth;
e.g., a narrow-band IoT system utilizing a 10 MHz bandwidth
can accommodate over fifty IoT devices through orthogonal
transmission. Consequently, every device is assigned an or-
thogonal subcarrier, having equal bandwidth. Our assumption
to offload the task to an ES only once minimizes the proba-
bility of offloading all the data simultaneously.

C. Task Offloading Model in Edge Network

We represent the task i originating from the kth device
as a tuple Ti,k = (δi,k, αi,k, βi,k), where i ∈ (l,m) and
k ∈ (k1, k2). In this context, δi,k specifies the computing
resource requirement (cycles) necessary to execute the task,
αi,k indicates the input size of the task, and βi,k represents
the output size of the task (bits). The computing resource
requirement for auxiliary nodes corresponding to each IoT
device is zero. Additionally for the given device k1, the input
of task l is equal to the output of the preceding task l−1, i.e.,
αl,k1 = βl−1,k1 . For IoT device k2, it is assumed that

αm,k2 =

{
βm−1,k2 + β|L|,k1 if m = t,

βm−1,k2 Otherwise.
(2)
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It is important to mention that the initial node is characterized
by an input value of αi,k = 0, and the final node by an output
value of βi,k = 0,∀k ∈ K. To determine the feasibility of task
offloading, we introduce a computational offloading decision
variable, where φi,k = 1 means task i is processed at the
edge; otherwise, φi,k = 0. Our analysis operates under non-
causal channel information, implying that the access point has
full access to the CSI while downloading or offloading tasks.
These assumptions are critical in optimal offloading decisions.

D. DT Model

The DT of the ABS-assisted MEC within the URLLC edge
network is articulated as follows [16].

DT =
{
(K, K̃), (A, Ã)

}
. (3)

The replica of the physical system is defined as K̃ and Ã. The
following equation represents the DT for the kth device.

DTi,k =
(
f loi,k, f̂

lo
i,k

)
. (4)

The actual processing rate of the DT layer replicates the
behavior of the physical IoT device is denoted by f loi,k. Any
deviation from the performance of the corresponding physical
device is given by f̂ loi,k [34]. The DT model for the ath ABS
is articulated as follows.

DTa =
(
fesa , f̂

es
a

)
. (5)

The actual processing rate at which the physical ABS dis-
tributes the computing power of ES is denoted by fesa , and
any deviation from the performance of the corresponding
physical device is indicated by f̂esa . It helps to minimize the
processing latency gap at the DT layer by facilitating the
adjustment of computing resource allocation. After gathering
real-time data from the physical system, the digital services
within the DT layer perform visualization and analysis to
streamline and optimize decision-making, thereby enhancing
system performance.

E. Communication Model

When device k offloads its task i to the access point a, the
signal to interference plus noise ratio (SINR) is determined
by the expression ϱes,si,k =

(
πk,aϕs,kφi,kp

s
i,k∥h

s
i,k∥

2

σ̄2+σi,k

)
, where psi,k

denotes the transmission power required for offloading task i
by device k at subcarrier s, σ̄2 represents the spectral noise
density, and σi,k indicates the interference power caused by
the neighbor IoT devices. The wireless channel between the
kth device and ath ABS on the given subcarrier is represented
by hsi,k and can be modeled as hsi,k =

√
gsi,kh̃

s
i,k, where h̃si,k

describes the small-scale fading with zero mean and uniform
variance and gsi,k = PLa,k+ η

LoSρLoSa,k + ηNLoSρNLoSa,k is the
large-scale channel co-efficient, where ρLoS and ρNLoS are
the additional loss for the line of sight (LoS) and non-light of
sight (NLos) respectively. The pathloss between the given ABS

and IoT device is computed by PLa,k = 10 log
(

4πfcda,k

c

)2
,

where da,k is the Euclidean distance between the ABS a and
(a, k)-th IoT device, fc is the carrier frequency, and c is

the speed of light. The probability for LoS is computed by
ρLoSa,k = 1

1+exp

[
−b
(
arctan

(
ha

da,k

)
−ν
)] at height ha, and fixed

environmental factors b and ν. The probability for NLoS is
given by ρNLoSa,k = 1− ρLoSa,k [35]. If the device k offloads the
task i to the ES, then the uplink data rate is given by

res,si,k = ws log2

(
1 + ϱes,si,k

)
− ws

√
vsi,k
bi,k

Q−1(ϵi,k)

ln 2
,

where, i ∈ {l,m}, k ∈ {k1, k2}.
(6)

The bandwidth allocated to the given subcarrier s is denoted
by ws, the channel dispersion is computed using vsi,k =

1 −
(
1 + ϱes,si,k

)−2

, and the blocklength is denoted by vari-
able bi,k. The Gaussian Q-function is defined as Q(x) =
1
2π

∫∞
x

exp(− t
2

2 ) dt [36]. The transmission time required for
offloading the task i from device k to the access point is
expressed as ηes,si,k =

βi−1,k

res,si,k
,where i ∈ {l,m}, k ∈ {k1, k2}.

Assuming task i for device k is downloaded from the access
point, the signal-to-noise ratio (SNR) is given by ϱdl,si,k =(
πk,aϕs,kφi,kpa∥hs

i,k∥
2

σ̄2+σi,k

)
, where pa denotes the transmission

power of the access point. The downlink data rate of task
i for device k from the ES is given by

rdl,si,k = ws log2

(
1 + ϱdl,si,k

)
− ws

√
vsi,k
bi,k

Q−1(ϵi,k)

ln 2
,

where, i ∈ {l,m}, k ∈ {k1, k2}.
(7)

The channel dispersion for this link is computed by vsi,k =

1 − (1 + ϱdl,si,k )−2, and the time required for the downlink
transmission is computed as ηdl,si,k =

βi−1,k

rdl,si,k

,where i ∈
{l,m}, k ∈ {k1, k2}.

F. Computational Model

1) Local Computing: The time required for local compu-
tation of task i on device k using the actual processing rate is
expressed as [16].

ηlo,si,k =
δi,k
f loi,k

, i ∈ {l,m}, k ∈ {k1, k2}. (8)

Assuming the deviation between the physical value and its DT
representation is predetermined [16], the latency gap for task
i on device k is given by

∆ηlo,si,k =
δi,kf̂

lo
k

f lok

(
f loi,k − f̂ loi,k

) , i ∈ {l,m}, k ∈ {k1, k2}. (9)

Consequently, the total local computation time for task i on
device k is computed as

ηlc,si,k = ηlo,si,k +∆ηlo,si,k , i ∈ {l,m}, k ∈ {k1, k2}. (10)

2) Edge Computing: The anticipated execution time for
task i on device k when processed at the ES is given by

η̃es,si,k =
δi,k
fesi,k

, i ∈ {l,m}, k ∈ {k1, k2}, (11)
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where fesi,k denotes the fixed frequency of the CPU at the ES.
The latency gap between the real value and its DT is given by

∆ηes,si,k =
δi,kf̂

es
i,k

fesi,k

(
fesi,k − f̂esi,k

) , i ∈ {l,m}, k ∈ {k1, k2}. (12)

G. Latency Model

The end-to-end latency within the network is given by

ηtot,si,k = ηlc,si,k + ηes,si,k +

ηec,si,k︷ ︸︸ ︷
η̃es,si,k +∆ηes,si,k . (13)

H. Energy Consumption Model

The local EC required for computing task i is calculated as
follows [29].

ξlo,si,k = µ
(δi,k)

3(
ηlo,si,k

)2 ≈ µδi,k (f loi,k − f̂ loi,k)2 ,
where, i ∈ {l,m}, k ∈ {k1, k2},

(14)

where µ represents the switched capacitance coefficient of the
IoT device [16]. Let us define f(x) = σ2

(
2(

x
ws

) − 1
)

, we
get using (6) as

psi,k =
1

∥hsi,k∥2
f

(
βi−1,k

ηes,si,k

)
, i ∈ {l,m}, k ∈ {k1, k2}. (15)

Equation (15) shows the transmit power depends on channel
conditions and data requirements. For example, an increase
in the distance leads to a higher pathloss; therefore, it re-
quires more transmission power to offload tasks effectively
or to maintain a constant level of received signal power. The
transmission energy required to offload task i at the access
point is computed as

ξes,si,k = psi,kη
es,s
i,k =

ηes,si,k

∥hsi,k∥2f
(
βi−1,k

ηes,si,k

)
where, i ∈ {l,m}, k ∈ {k1, k2}.

(16)

The total EC is computed as

ξtot,si,k = ξlo,si,k + ξes,si,k . (17)

I. Task Dependency Use Cases

The task dependency between two IoT devices can be one
of the following four cases.

• Case I: When both IoT devices k1 and k2 offload the tasks
|L| and t at the edge, i.e., φ|L|,k1 = 1 and φt,k2 = 1, then
there is no need to offload the task or download the task.

• Case II: When device k1 offloads task |L| at the edge
and device k2 computes task t locally, i.e., φ|L|,k1 = 1
and φt,k2 = 0, the resultant data from task |L| is
transmitted to the IoT device k2 after the completion of
its computational processing at the edge node.

• Case III: When devices k2 offloads task t at the edge and
device k1 computes task |L| locally, i.e., φt,k2 = 1 and

φ|L|,k1 = 0, the IoT device k1 needs to offload the results
before the computation of task t at the edge node.

• Case IV: When both IoT devices k1 and k2 execute tasks
|L| and t to locally, i.e., φ|L|,k1 = 0 and φt,k2 = 0, device
k1 first offloads its output to the edge (EDGE acting as a
RELAY), then edge forwards it information to IoT device
k2. Therefore, the offloading transmission time is com-
puted as ηes,s|L|+1,k1

=
β|L|,k1

res,s|L|+1,k1

, where res,s|L|+1,k1
denotes

the corresponding offloading data rate. The offloading EC
is given by ξes,s|L|+1,k1

=
(
ps|L|+1,k1

× ηes,s|L|+1,k1

)
, where

ps|L|+1,k1
represents the offloading transmission power.

The downlink transmission time is computed as ηdl,st′,k2
=

β|L|,k1

rdl,st,k2

, where rdl,st,k2
is the corresponding downlink rate.

III. PROBLEM FORMULATION

The computational time required by IoT device k1 involves
local processing time and at the ES, which is given by

λtcomk1 =

|L|∑
l=1

[ local︷ ︸︸ ︷
(1− φl,k1)η

lo,s
l,k1

+

edge︷ ︸︸ ︷
φl,k1 η̃

es,s
l,k1

]
. (18)

The total computational delay for IoT device k1 on offloading
or downloading the task to/from the ES is given by

λtransk1 =

|L|+1∑
l=1

[ offloading︷ ︸︸ ︷
φl,k1(1− φl−1,k1)η

es,s
l,k1

+

downloading︷ ︸︸ ︷
(1− φl,k1)φl−1,k1η

dl,s
l,k1

]
.

(19)

Transmission delay is zero when both tasks are processed
on the same IoT device, i.e., φl−1,k1 = φl,k1 . Conversely,
a delay occurs during the offloading process if φl−1,k1 = 0
and φl,k1 = 1. Similarly, there is a downloading delay when
φl−1,k1 = 1 and φl,k1 = 0. Therefore, the total execution time
for device k1 is computed as λtotk1 = λtcomk1

+λtransk1
. The total

EC of IoT device k1 is the cumulative sum of the EC of |L|
tasks and the EC required for offloading the output of the final
result if executed locally. The total EC is expressed as follows.

ξk1 =

EC of the |L| tasks︷ ︸︸ ︷
|L|∑
l=1

[
(1− φl,k1)ξ

lo,s
l,k1

+ φl,k1(1− φl−1,k1)ξ
es,s
l,k1

]
+

EC while offloading final result, if φ|L|,k1
=0︷ ︸︸ ︷

(1− φ|L|,k1)ξ
es,s
|L|+1,k1

.

(20)

It is worth mentioning that the energy required to offload a
given task, denoted by ξes,sl,k1

occurs only when φl,k1 = 1
and φl−1,k1 = 0. Similarly, the total EC for IoT device k2
is computed as follows.

ξk2 =

|M|∑
m=1

[
(1− φm,k2)ξ

lo,s
m,k2

+ φm,k2(1− φm−1,k2)ξ
es,s
m,k2

]
.

(21)
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ξholdk1 =

Total amount of time for |L| tasks︷ ︸︸ ︷
|L|∑
l=1

[
(1− φl,k1)η

lo,s
l,k1

+ φl,k1(η̃
es,s
l,k1

+ ηes,sl,k1
) + φl−1,k1η

dl,s
l,k1
− φl−1,k1φl,k1(η

dl,s
l,k1

+ ηes,sl,k1
)
]

+

Transmission time of the output of |L| tasks by IoT device k1︷ ︸︸ ︷
(1− φ|L|,k1)η

es,s
|L|+1,k1

+ (1− φt,k2)η
dl,s
t′,k2

.

(22)

ξhold
k2 =

Total execution time for first |t|−1 tasks︷ ︸︸ ︷
|t|−1∑
m=1

[
(1− φm,k2)η

lo,s
m,k2

+ φm,k2(η̃
es,s
m,k2

+ ηes,s
m,k2

) + φm−1,k2η
dl,s
m,k2

− φm−1,k2φm,k2(η
dl,s
m,k2

+ ηes,s
m,k2

)
]

+

Transmission time to offload task |t|, i.e., φt−1,k2
=0, φt,k2

=1 or to download output for |t|−1 task to device k2, i.e., φt−1,k2
=1, φt,k2

=0︷ ︸︸ ︷
φt,k2η

es,s
t,k2

+ φt−1,k2η
dl,s
t,k2
− φt−1,k2φt,k2(η

dl,s
t,k2

+ ηes,s
t,k2

).

(23)

ξk2 = ξhold +

|M|∑
m=t

[
(1− φm,k2)η

lo,s
m,k2

+ φm,k2(η̃
es,s
m,k2

)
]

+

|M|+1∑
m=t+1

[
φm,k2η

es,s
m,k2

+ φm−1,k2η
dl,s
m,k2

− φm−1,k2φm,k2(η
dl,s
m,k2

+ ηes,s
m,k2

)
]
.

(24)

For execution time for IoT device k2, we consider the waiting
time to reach the final output of the IoT device k1 to IoT
device k2. It consists of the total execution time to compute
|L| computational tasks from IoT device k1 and transmission
time to offload the final output of the device k1 (refer to Fig.
1) is given in (22). The time required for IoT device k2, until
the output of the task |t|−1 is ready is expressed in (23).
Utilizing (22) and (23), the total time required before the tth

task of device k2 is ready to execute is given by ξhold =
max

{
ξholdk1

, ξholdk2

}
. The total execution time of device k2 is

formulated by adding ξhold and the time required to complete
the tasks from t to |M| is given in (24).

This study aims to reduce the energy-time cost for URLLC
edge networks. Such a reduction is achieved by optimizing
the offloading policy and allocating the resources, e.g., trans-
mission power to offload the task and CPU frequency. Let
0 ≤ ∂ξk1 ≤ 1 and 0 ≤ ∂λk1 ≤ 1 are the weighting factors for the
EC and execution time of the given device k1. In this context,
if we have ∂ξk1 + ∂λk1 = 1 then ∂ξk1 = 1− ∂λk1 . Following real-
time requirements, each IoT device can select weights (higher
or lower) to fulfill user-oriented needs. So, the energy-time
cost for the device k1 is given by ζk1 = ∂ξk1ξk1 +∂

λ
k1
λtotk1 . Let

0 ≤ ∂ξk2 ≤ 1 and 0 ≤ ∂λk2 ≤ 1 are the weighting factors for the
EC and execution time of the given device k2. In this context,
if we have ∂ξk2 + ∂λk2 = 1 then ∂ξk2 = 1 − ∂λk2 . The energy-
time cost for the device k2 is given by ζk2 = ∂ξk2ξk2+∂

λ
k2
λtotk2 .

We assume φφφ ∆
={φi,k}∀i,k, p ∆

={pi,k}∀i,k, and fff∆
={f loi,k}∀i,k

as the set constraints of computational offloading decision,
transmit power, and CPU frequency. respectively. Therefore,

the problem is formulated below.

(P1) min
φ,p,fφ,p,fφ,p,f

∑
k∈K

ζk

s.t. C1 : pi,k ≤ pmax,∀i, k
C2 : f loi,k ≤ f lomax,∀i, k
C3 : fesi,k ≤ fesmax,∀i, k
C4 :

∑
k∈K

πk,a ≤ χmax,∀i, k

C5 : λtotk ≤ λmax
k ,∀k

C6 : ξk ≤ ξmax
k ,∀k

C7 : rdl,si,k ≥ rmin,∀i, k
C8 : φi,k ∈ (0, 1),∀i, k
C9 : 0 ≤ i ≤ tk, 1 ≤ k ≤ 2.

(25)

The constraints are described as follows: constraint C1 denotes
the upper limit of transmission power, denoted by pmax.
Constraint C2 limits the maximum CPU frequency of the
specified device to f lomax. Constraint C3 restricts the compu-
tational resources to fesmax. Constraint C4 restricts the number
of IoT devices that each ES can serve at χmax. Constraint C5

sets the maximum latency threshold at λmax
k . Constraint C6

specifies the maximum energy threshold as ξmax
k . Constraint

C7 establishes the minimum rate requirement, represented as
rmin. Constraint C8 characterizes the computational offloading
decision. Constraint C9 details the number of tasks executed
on kth device.

IV. PROPOSED SOLUTION

The problem outlined is a MINLP combinatory optimization
problem, which is computationally intractable. It is due to the
combinatorial nature of binary variable φφφ and strong coupling
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with other continuous optimization variables, e.g., transmit
power and CPU frequency. This problem is challenging to
solve directly using an exhaustive search, especially in a
dense network. It is important to note that there is a direct
relationship between CPU frequency and local computational
time as indicated in (8). Similarly, there is a direct relationship
between power and transmission time while offloading as in-
dicated in (15). Therefore, optimizing the problem concerning
the power and CPU frequency is equivalent to optimizing
it over the time allocation variables, i.e., {ηlo,si,k }, {η

es,s
i,k },

respectively. This inequality implies that if we understand
how the time allocation variables can be optimized, we can
infer the optimal power and CPU frequency, simplifying
the original problem. By introducing a temporary variable
ξt = max

{
ξholdk1

+ ξholdk2

}
, we equivalently transform (25) to

(P2) min
φφφ,{ηlo,si,k },{ηes,si,k },ξt

∑
k∈K

ζk

s.t. C1 − C9

C10 : ξt ≥ ξholdk1
, ξt ≥ ξholdk2

,

C11 : ηlo,si,k ≥
δi,k
f lo

max
,

C12 : ηes,si,k ≥
βi−1,k

res,si,k
,

where psi,k = pmax.
(26)

Constraint C10 establishes an upper bound for ξt. This equa-
tion implies that if we have computed the optimal solution{
φφφ∗, {ηlo,si,k }∗, {η

es,s
i,k }∗

}
of (26), then we can easily com-

pute power and CPU frequency in (25). The problem (26)
is non-convex due to the combinatorial nature of binary
variable φφφ. For given φφφ, the remaining optimization over(
{ηlo,si,k }, {η

es,s
i,k }, ξt

)
becomes a convex problem.

A. Optimal Transmit Power and local CPU Frequency for
Given φφφ

We solve the above problem for the given offloading deci-
sions to compute a closed-form solution of optimal transmit
power and local CPU frequency. We approximate the objective
function as an unbounded optimization problem by utilizing
the concept of partial Lagrangian subject to constraint C10.

Lp

(
{ηlo,si,k }, {η

es,s
i,k }, ξt, µk1 , µk2

)
=

ζk1 + ζk2 + µk1(ξ
hold
k1 − ξt) + µk2(ξ

hold
k2 − ξt),

(27)

where µk1 ≥ 0 and µk2 ≥ 0 are the Lagrange multipliers
computed to satisfy all remaining constraints. If µoptk1

and
µoptk2

represent the optimal values for Lagrangian’s multiplier,
we derive the analytical expressions to compute the optimal
power and CPU frequencies for both IoT devices as in [29].
To analyze device k1, the derivative of (27) with respect to
ηlo,si,k1

is computed as follows.

L
′

p =
∂Lp

∂ηlo,si,k1

,∀i, k, (28)

∂Lp

∂ηlo,si,k1

= ∂λk1 −
2µ∂ξk1(δi,k1)

3

(ηlo,si,k1
)3

+ µk1 ,∀i, k, (29)

where the above derivation indicates that it is a non-decreasing
function for ηlo,si,k1

∈
[
δi,k1

f lo
max
,+∞

)
. Hence, if the first derivative

is positive, then we have f lo,opti,k1
= f lomax. Otherwise,

µk1 + ∂λk1 =
2µ∂ξk1(δi,k1)

3

(ηlo,si,k1
)3

,∀i, (30)

(ηlo,si,k1
)3 =

2µ∂ξk1(δi,k1)
3

µk1 + ∂λk1
,∀i, (31)

ηlo,si,k1
= δi,k1

(
2µ∂ξk1

µk1 + ∂λk1

) 1
3

,∀i. (32)

f lo,opti,k1
⇒ δi,k1

ηlo,si,k1

=

(
µoptk1

+ ∂λk1

2µ∂ξk1

) 1
3

,∀i. (33)

The optimal CPU frequencies are equivalent to the frequencies
computed as follows. If (φi,k)∀i,k = 0 and i ∈ l then

f lo,opti,k1
= min

 3

√√√√µoptk1
+ ∂λk1

2µ∂ξk1

, f lomax

 , (34)

for IoT device k1. If i ∈ {1, 2, ..., |t|−1} then

f lo,opti,k2
= min

 3

√√√√ µoptk2

2µ∂ξk2

, f lomax

 , (35)

for IoT device k2. Otherwise, for i ∈ {|t|, ..., |M|}, we have

f lo,opti,k2
= min

 3

√√√√ ∂λk2
2µ∂ξk2

, f lomax

 . (36)

Hence, we have the following observations:
• The optimal CPU frequencies for all similar tasks are

identical. Specifically for device k1, i ∈ {1, 2, ..., |L|}.
For device k2, the relevant tasks are either i ∈
{1, 2, ..., |t|−1} or i ∈ {|t|, ..., |M|}, regardless of channel
conditions.

• When the value of ∂λk1 or µoptk1
is higher, the optimal

strategy shifts towards accelerating local computations.
Conversely, if ∂ξk1 is higher, the optimal strategy shifts
involve conserving energy with a lower optimal CPU
frequency.

• The value of µoptk2
does not affect the optimal CPU

frequency for tasks where i ∈ {|t|, ..., |M|}. Otherwise,
the optimal CPU frequency increases proportionally with
the value of the Lagrange multiplier.

The optimal power for IoT device k1 is calculated by
computing the derivative of the problem (27) with respect to
ηes,si,k1

, when i ≤ |M|, which is given by

∂L
′

p

∂ηes,s
i,k1

= ∂λk1+

∂ξk1

[
1

∥hsi,k1∥
2
f

(
βi−1,k1

ηes,s
i,k1

)
+

ηes,s
i,k1

∥hsi,k1∥
2
f ′

(
βi−1,k1

ηes,s
i,k1

)]
+ µk1 ,

(37)
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∂L
′

p

∂ηes,si,k1

= ∂λk1 + ∂ξk1[
σ̄2

∥hsi,k1∥
2
2

(
βi−1,k1
wsη

es,s
i,k1

)(
1− βi−1,k1

wsη
es,s
i,k1

ln 2

)
− σ̄2

∥hsi,k1∥
2

]
+ µk1 .

(38)

It is worth mentioning that the above function is an increasing
function. To check the curvature, the second order derivative
for the problem (27) concerning ηes,si,k1

is given by

∂L
′′

p

∂(ηes,si,k1
)2

=

∂ξk1

[
σ̄2

∥hsi,k1∥
2

(βi−1,k1)
2

(ws)2(η
es,s
i,k1

)3
2

(
βi−1,k1
wsη

es,s
i,k1

)
(ln 2)2

]
+ µk1 > 0,

(39)

which shows that the function is concave-up and non-
decreasing for ηes,si,k1

∈
[
βi−1,k1

res,si,k1

,+∞
)

, where where psi,k1 =

pmax. Therefore, we have
∂L

′
p

∂ηes,si,k1

∈
[
βi−1,k1

res,si,k1

, ∂λk1 + µk1

]
if

∂L
′
p

∂ηes,si,k1

> 0, when psi,k1 = pmax. The optimal transmit powers
are equivalent to the powers computed below. If (φi,k)∀i,k =
1, the optimal power for device k1 is given in (40). where
ω(ψ1) and ω(ψ2) denote special inverse functions. These
functions are defined as the inverse of the given function
y = f(x) = xex, where x is expressed as x = ω(y). The
computation of threshold values is performed as follows. For
i ∈
{
1, ..., |L|

}
:

υthresholdi,k1 =
σ̄2

pmax

[
ν1

ω(−ν1e−ν1)
− 1

]
,

where ν1 = 1 +

(
∂λk1 + µoptk1

∂ξk1pmax

)
.

(41)

For i = |L|+1:

υthresholdi,k1 =
σ̄2

pmax

[ ν2
ω(−ν2e−ν2)

− 1
]
,

where ν2 = 1 +

(
µoptk1

∂ξk1pmax

)
.

(42)

We compute the optimal power for the IoT device k2 in (43).
where ω(ψ3) and ω(ψ4) represent special functions, as defined

above. We compute the threshold values as follows. For i ∈{
1, ..., |t|

}
:

υthresholdi,k2 =
σ̄2

pmax

[
ν3

ω(−ν3e−ν3)
− 1

]
,

where ν3 = 1 +

(
µoptk2

∂ξk2pmax

)
.

(44)

For i = {|t|+1, ..., |M|}:

υthresholdi,k2 =
σ̄2

pmax

[
ν4

ω(−ν4e−ν4)
− 1

]
,

where ν4 = 1 +

(
∂λk2

∂ξk2pmax

)
.

(45)

Hence, we have the following observations:

• The channel gain ∥hsi,k1∥
2 is inversely proportional to the

optimal transmit power when ∥hsi,k1∥
2 > υthreshold

i,k1
.

• The transmission power has been set to the maximum
power, i.e., ps,opti,k1

= pmax when ∥hsi,k1∥
2 < υthresholdi,k1

.
• When the maximum transmit power pmax increases, it

leads to a decrease in the squared magnitude of the
channel gain hsi,k1 , indicating that the device is adapting
to meet the conditions of a weaker channel.

B. Bisection Method for Given φφφ to Obtain Optimal Power p
and Frequency f

We can state that ξholdk1
≤ ξholdk2

and µoptk2
holds at the

optimum of (26). It can be proved through contradiction.
Assume that

{
ηlo,si,k , η̃

es,s
i,k

}
are the optimal solutions with

ξholdk1
> ξholdk2

. According to Karush Kuhn Tucker (KKT)
conditions µkopt1

(ξholdk1
− ξt) = 0, and µkopt2

(ξholdk2
− ξt) = 0.

Given that µoptk1
> 0 and µoptk2

= 0, it follows from Eq.
(33) and (40) that the optimal CPU frequency f lo,opti,k1

and
ps,opti,k1

are finite. This implies that
{
(ηlo,si,k1

)∗, (η̃es,si,k1
)∗
}

are also
finite for each task, resulting in a finite ξholdk1

. However, when
µoptk2

= 0, we will have the optimal value (ηlo,si,k2
)∗ ⇒∞, i.e.,

for i ∈ {1, 2, 3, .., |t|−1} from f lo,opti,k2
. Similarly, it follows

from Eq. (43) that optimal value (η̃es,si,k2
)
∗ ⇒ ∞, i.e., for

i ∈ {1, 2, 3, .., |t|}, resulting in infinite ξholdk1
. This contradicts

our initial assumption that ξholdk1
> ξholdk2

. Hence, we have



if i ∈
{
1, . . . , |L|

}
, ps,opti,k1

=


pmax, if ∥hsi,k1∥

2 < υthreshold
i,k1

,
σ̄2

∥hs
i,k1

∥2

[
ψ1

ω(ψ1e−1) − 1
]
, otherwise,

where ψ1 =

[
∥hs

i,k1
∥2(∂λ

k1
+µopt

k1
)

∂ξ
k1
σ̄2

]
− 1,

if i = |L|+ 1, . . . , |M|, ps,opti,k1
=


pmax, if ∥hsi,k1∥

2 < υthreshold
i,k1

,
σ̄2

∥hs
i,k1

∥2

[
ψ2

ω(ψ2e−1) − 1
]
, otherwise,

where ψ2 =

[
∥hs

i,k1
∥2µopt

k1

∂ξ
k1
σ̄2

]
− 1,

(40)
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Algorithm 1 Bisection Method to Compute Optimal Power
and Local Frequency

1: Input: φφφ, precision factor ϵ = 0.001.
2: Output: Optimal fff and ppp
3: Initialize ℘

′

ub ← ∂λk2 , ℘
′

lb ← 0
4: if

(
ξholdk1

− ξholdk2

)
|℘′=℘

′
lb
< 0 then

5: Set ℘′ = ℘
′

lb, µk1 = ℘′, µk2 = ∂λk2 − ℘
′

6: Compute fff using (33)-(36) and ppp using (40)-(43)
7: else
8: while

(
ξholdk1

− ξholdk2

)
< ϵ do

9: ℘′ =
(
℘

′

ub + ℘
′

lb

)
/2

10: Set µk1 = ℘′, µk2 = ∂λk2 − ℘
′

11: Compute fff using (33)-(36) and ppp using (40)-(43)
12: if

(
ξholdk1

− ξholdk2

)
< 0 then

13: Set ℘
′

ub ← ℘′

14: else
15: Set ℘

′

lb ← ℘′

16: end if
17: end while
18: end if

ξholdk1
≤ ξholdk2

, and max(ξholdk1
, ξholdk2

) = ξholdk2
. Therefore, the

optimization problem (28) is simplified as below.

(P3) min
φ,p,fφ,p,fφ,p,f

∑
k∈K

ζk

s.t. C1 − C9

C13 : ξholdk1
≤ ξholdk2

.

(46)

Similarly, the Lagrangian for the problem defined in Eq. (46)
subject to constraint C13 is given by

Lp2 (p, f , ℘′) = ζk1 + ζk2 + ℘′(ξholdk1 − ξholdk2 ), (47)

whereas ℘′ ≥ 0 represents the Lagrange multiplier that
satisfies all remaining constraints. Various iterative solutions
can be applied to solve Eq. (47), but we apply KKT conditions
[29]. The details are omitted here. Algorithm (1) presents
the bisection search method to compute optimal power and
frequency. This algorithm accepts the matrix φφφ and a precision
factor ϵ as inputs and yields the optimal values of fff and ppp as
outputs. In line 3, the upper and lower bounds are initialized.
Then, the inequality constrained C13 is checked, and the values
for Lagrange multipliers are updated in line 5. Initial values for
frequency and power are computed in line 6. The loop then
iterates until the condition

(
ξholdk1

− ξholdk2

)
< ϵ is satisfied,

Algorithm 2 BSSE Algorithm for Optimal offloading
1: Input: Maximum iterations (imax), Number of task of

each device (tk)∀k∈{k1,k2}.
2: Output: Matrix φφφ
3: Set t← 0, ζk1 ←∞, and ζk2 ←∞
4: We initialize φφφ randomly either with the value 0 or 1
5: while Convergence or t < imax do
6: Set i← 0
7: while i < tk1 do
8: Set flag ← True
9: j ← 0

10: while j < tk2 do
11: if flag == False then
12: break
13: end if
14: φ

′ ← φφφ
15: Update (φφφ, i, j)← Swap φφφ[i, k1] and φφφ[j, k2]
16: Compute fff and ppp using Algorithm (1)
17: if

(
ζnew
k1

+ ζnew
k2

)
≤ (ζk1 + ζk2) then

18: Set ζk1 ← ζnew
k1

19: Set ζk2 ← ζnew
k2

20: flag ← False
21: else
22: φφφ← φ

′

23: end if
24: Set j ← j + 1
25: end while
26: Set i← i+ 1
27: end while
28: Set t← t+ 1
29: end while

as outlined in lines 8-17. The ℘
′

value is updated in line 9
during this iteration. Line 11 involves computing the optimal
frequency and power. Importantly, from lines 12 to 16, if the
difference ξholdk1

and ξholdk2
< 0 results in a negative value, the

algorithm updates the upper bound of the variable, designated
as ℘

′

ub. Conversely, the algorithm converges towards the lower
bound variable, ℘

′

lb. The overall complexity of the Algorithm
(1) is O(L+M).

C. Optimizing Offloading Decision φφφ using Given p and f
The optimal offloading scheme adheres to the one climb

policy [29], implying that there will be at most one instance



if i ∈
{
1, . . . , |t|

}
, ps,opti,k2

=


pmax, if ∥hsi,k2∥

2 < υthreshold
i,k2

,

ps,opti,k2
= σ̄2

∥hs
i,k2

∥2

[
ψ3

ω(ψ3e−1) − 1
]
, otherwise,

where ψ3 =

[
∥hs

i,k2
∥2µopt

k2

∂ξ
k2
σ̄2

]
− 1,

if i = {|t|+ 1, . . . , |M|}, ps,opti,k2
=


pmax, if ∥hsi,k2∥

2 < υthreshold
i,k2

,

ps,opti,k2
= σ̄2

∥hs
i,k2

∥2

[
ψ4

ω(ψ4e−1) − 1
]
, otherwise,

where ψ4 =

[
∥hs

i,k2
∥2∂λ

k2

∂ξ
k2
σ̄2

]
− 1,

(43)
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Fig. 2. Task dependent computational model incorporating outputs from multiple devices.

where φi,k = 1 and φi−1,k = 0. An approximate optimal
offloading solution utilizing local and bisection search tech-
niques is proposed in Algorithm (2). Initially, we set the
maximum iteration count to zero, and the energy-time cost
for both IoT devices to infinity denoted as ζk1 = ζk2 = ∞
in line 3. Afterward, the proposed algorithm initiates with a
random offloading scheme and progressively refines it towards
minimizing the overall energy-time cost, as detailed in lines
5 to 29. The process includes swapping φφφ[i, k1] and φφφ[j, k2]
within the matrix φφφ and updating the tuple (φφφ, i, j) in line
14 and 15. Line 16 invokes the bisection algorithm, which
computes optimal frequency and power using equations (33),
(36), (40), and (43), respectively. The outcomes of the bisec-
tion search are then evaluated and compared with previously
optimized energy-time cost values, as shown in lines 17-23.
If
(
ζnew
k1

+ ζnew
k2

)
≤ (ζk1 + ζk2) is true, then ζk1 ← ζnew

k1
and

ζk2 ← ζnew
k2

; otherwise, the matrix φφφ reverts to φ
′
. This process

iterates until the solution convergences at optimized values.

D. Complexity Analysis
The first benchmark is the naive search algorithm corre-

sponding to the complexity of O
(
16L+M), as it considers

each possible case for both devices with L and M tasks,
i.e., 24 binary decisions. It algorithm becomes increasingly
inefficient with a more significant number of tasks, espe-
cially when |L|≈ 10 and |M|≈ 10. To mitigate this, we
effectively narrow the search space for both devices, i.e.,(

(L+1)L
2 + 1

)(
(M+1)M

2 + 1
)

. This includes the scenario
where the device is unable to offload data during the entire
duration of the execution. This approach yields an optimal
offloading scheme with a complexity of O

(
L2M2

)
. However,

its efficiency diminishes for large values, precisely when
|L|> 100 and |M|> 100. Upon examining the pseudo-code
provided, it becomes evident that the overall complexity of
the BSSE algorithm is O (LM), significantly lesser than the
benchmarks. Therefore, the proposed algorithmic solution is
regarded as near-optimal, approximating the performance of
the optimal offloading scheme.

V. MULTI-DEVICE SCENARIO

In Fig. 2, we extend the proposed model to support multiple
devices. In this scenario, the inputs for an intermediate task t

on IoT device k2 require the final task outputs from all other
|K|−1 devices. For example, for IoT device k2, we define
αt,k2 = β|t|−1,k2 +

∑
k∈K,kj ̸=k2

βJkj
,kj , where Jkj denotes the

sequential number of tasks needs to execute on device kj . The
first terms on the right side of the equation represent the output
from the previous task |t|−1. Meanwhile, the summation term
adds up the outputs of the final tasks from all other devices
(excluding k2), which are required for the intermediate task
t. The waiting time for the output of the Jkj -th task to reach
IoT device k2 is calculated in (48). The waiting time needed
before the joint task can be executed is determined by the total
waiting time ξhold = max

{
ξholdk1

, ξholdk2
, ..., ξhold|kj | , ..., ξ

hold
|K|

}
.

Therefore, the problem (26) is reformulated as below.

(P4) min
φφφ,{ηlo,s

i,kj
},{ηes,s

i,kj
},ξt

∑
k∈K

ζk

subject to
C1 − C9

C10 : ξt ≥ ξhold
k1 , ξt ≥ ξhold

k2 , . . . , ξt ≥ ξhold
kj , . . . , ξt ≥ ξhold

|K| ,

C11 : ηlo,s
i,kj
≥

δi,kj

f lo
i,kj
− f̂ lo

i,kj

,

where f lo
i,kj = f lo,max

i,kj
,

C12 : ηes,s
i,kj
≥
βi−1,kj

res,s
i,kj

,

where ps
i,kj = pmax.

(49)
We assume that the ES is equipped with cr processor cores,
where each core is exclusively assigned to the execution of
an individual task operating at a constant frequency of fesmax.
Therefore, if Jmax represents the upper limit on the number of
tasks that can be processed simultaneously on the ES, the total
count of cores must be adequate to meet this requirement, e.g.,
Jmax ≤ cr.

VI. SIMULATION AND RESULTS

A. Simulations Parameters

Regarding communication considerations, the IoT devices
are uniformly distributed within the coverage area of the serv-
ing ABS, encompassing a radius ranging from 10 to 30 meters.
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TABLE I
SIMULATION PARAMETERS.

Parameters Values
Effective switched capacitance µ [29] 10−26

Bandwidth W [29] 2 MHz
Intermediate task t [29] 4
Peak transmit power of each IoT device pmax 200 mW
Tasks for device (k1 and k2) (L,M) [29] (3, 5)
Power of ABS (pa)a∈A [36] 1 W
Noise power σ2 [29] 10−10 W
ES speed fes

max [29] 1010 Cycles/s
Error probability ϵi,k [36] 10−3

Maximum delay requirement λmax
k [16] 2 Seconds

Maximum EC requirement ξmax
k [16] 1 Joule

Minimum data rate requirement rmin [16] 2 Bits/s
Peak computational frequency of device f lo

max [16] 108 Cycles/s
Maximum IoT devices served by each ES χmax [16] 6
Distances of the respective devices(dk1

, dk2
) (15, 15) Meters

Blocklength value (bi,k)k∈{k1,K2} [36] 100

Deviation between real value of ES speed f̂es
i,k [29] 2 %

Computing workload for device k1 {δi,k1
} [29] [65.5,40.3,96.6]

(Mcycles)
Output data size for device k1 {αi,k1

} [29] [1500,1000,1600,
1000, 0] Kbytes

Computing workload for device k2 {δi,k2
} [29] [70.8,95.3,86.4,

18.6,158.6]
(Mcycles)

Output data size for device k2 {αi,k2
} [29] [2000,1500,1000,

[1400,1000],1500,
1000, 0] Kbytes

The computing requirements for the corresponding IoT devices
are represented by the values {δi,k1} = [65.5, 40.3, 96.6]
(Mcycles) and {δi,k2} = [70.8, 95.3, 86.4, 18.6, 158.6] (Mcy-
cles). The total power budget for the MEC-enabled ABS under
consideration is set at (pa)a∈A = 1 W. Each IoT device’s
maximum transmit power is capped at pmax = 200 mW. It
is assumed that the input of the fourth task at IoT device k2
depends upon the final task outputs from the other IoT devices.
Assuming fesi,k > f lomax, the peak computational frequency for
each IoT device and the processing speed of each ES are
established at f lomax = 108 Cycles/s and fesmax = 1010 Cycles/s,
respectively. The FBL is set at 100, and the computing
efficiency parameter for each device is defined as µ = 10−26

[29].
The system bandwidth is set at W = 2 MHz, while the

noise spectral density is specified as σ2 = 10−10 Watts.
The proportion of the anticipated processing rate is a pre-
configured value, and its selection is based on established
computing models and standard practices in wireless network-

ing [15]. For the URLLC, the decoding error probability is
defined as ϵi,k = 10−3. The maximum EC is limited at
ξmax
k = 0.5 Joule. The experimental scenario is simulated

using single ABS A = 1 along with multiple IoT devices
K = {1, 2} unless explicitly stated otherwise. The analytical
assessment considers a maximum latency of 1 millisecond.
The minimum time required to transmit a unit blocklength is
0.01 milliseconds, as indicated in reference [36]. The altitude
of the serving ABs is fixed at 50 Meters. The pathloss models
employed are detailed in [15]. The details of the simulation
parameters are provided in Table I.

B. Performance Comparison

In Fig. 3, we study the correlation between devices. Specif-
ically, we analyze the trade-off between total execution time
and energy for each IoT device by varying the ∂λk2 . For
given ∂λk1 , an increase in ∂λk2 results in increased EC while
simultaneously resulting reducing the total execution time.
This trade-off is also observable for IoT device k1. The trade-
off curve for IoT device k1 converges to a critical point
at ∂λk1 = 0.4. This convergence indicates that beyond this
value, the optimal execution time and energy of IoT device
k1 remains constant despite increases in ∂λk2 . The underlying
rationale behind this phenomenon can be attributed to the
fact that with an increase in ∂λk1 , the device k1 operates in a
dual capacity, i.e., assisting IoT device k2 while concurrently
minimizing its processing delay.

In Fig. 4, we illustrate the correlation between the devices
and analyze the proposed scenario in depth. Specifically, the
effect of the intermediate task t on the computational delay
is explored. We observe that the waiting time for device k1
increases with an increase in t when ∂λk1 is kept small, i.e.,
∂λk1 = 0.05 or 0.3. In contrast, the waiting time for device
k2 decreases. This is because device k1 needs to complete
all three tasks to meet the finish time for the first t tasks
of device k2, especially for smaller values of t, i.e., when
t = 1 or 2. Meanwhile, device k2 only needs to slow
down its computations to get the final output from device k1.
Generally, this results in larger λtotk1 and smaller λtotk2 with
increasing t. When ∂λk1 is further increased, i.e., ∂λk1 = 0.5,
computations for both devices become independent and are
optimized separately, instead of minimizing its computational
delay to meet the stringent requirements of t task at device
k2. Therefore, there is no change in the computational delay
for both devices when t increases from 1 to 5.

ξhold|kj | =

Total amount of time for Jkj
task︷ ︸︸ ︷

Jkj∑
j=1

[
(1− φj,kj )η

lo,s
j,kj

+ φj,kj (η̃
es,s
j,kj

+ ηes,sj,kj
) + φj−1,kjη

dl,s
j,kj
− φj−1,kjφj,kj (η

dl,s
j,kj

+ ηes,sj,kj
)
]

+

Transmission time of the output of |J| tasks by IoT device kj︷ ︸︸ ︷(
1− φJkj

,kj

)
ηes,sJkj

+1,kj
+ (1− φt,k2)

βJkj
,kj

rdl,st,k2

.

(48)
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IoT device when ∂λ
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Recall that in IoT device k, the weight are related by the
formula ∂ξk = 1−∂λk . The system’s energy-time cost objective
value, varying with ∂λk2 is analyzed in Fig. 5. We employ
two benchmarks against our proposed scheme to ensure a
fair comparison. Our proposed BSSE algorithm is a modified
version of the bisection algorithm, as referenced in [29]. It
follows the same steps as defined in [29], except for line 3 in
Algorithm (2), which is used to set the offloading factor to a
random offloading scheme, and then update it to minimize the
total energy-time cost objective. As anticipated, an increase
in ∂λk2 leads to a higher energy-time cost of the system.
Compared to the baseline algorithm in [29], our proposed
BSSE algorithm is more efficient in terms of the energy-
time cost of the system. The solutions obtained from the
benchmark algorithm and those generated by the proposed
BSSE algorithm have a significant difference. Furthermore,
both the benchmark and the proposed algorithms satisfy the
one-climb policy, i.e., (0 followed by 1) can appear only
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Fig. 6. Overall energy-time cost versus value of d1, when d2 = 10 meters.

once. This finding underscores the potential of the proposed
BSSE algorithm as a highly advantageous alternative to the
benchmark algorithms, particularly in identifying the optimal
offloading scheme in the counterparts.

In Fig. 6, we illustrate the impact of the increasing value
of dk1 on the overall energy-time cost of the system, where
the distance of IoT device k2 is fixed at dk2 = 10 meters. The
values of {δi,k1} and {δi,k2} are uniformly distributed between
10 and 200 Mcycles. The average performance of twenty
independent iterations has been computed to plot this figure.
It can be seen that the overall energy-time cost value increases
with the distance of IoT device k2 for all four schemes. As
mentioned in Section II-I, this increase is attributed to the sys-
tem’s reliance on local computing. In this case, the IoT device
k1 needs to offload the output of the final task to the ES, which
then forwards this information to IoT device k2, resulting in
a higher energy-time cost. Numerically, the energy-time cost
of the proposed BSSE is slightly higher than the brute-force
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Fig. 8. Proposed task dependency model for a multi-device case study with
k = 4.

algorithm, though the difference is not substantial. Moreover,
the effectiveness of the proposed BSSE algorithm surpasses
that of both bisection algorithm [29] and Gibbs sampling
algorithm [29], i.e., around 89.39% to 138.96% lower and
around 33.61% to 45.28% lower, respectively. This highlights
the benefits of employing a strategy that optimizes resource
allocation and offloading decisions for both IoT devices.

In Fig. 7, we further study the impact of different case
studies (task dependency models) on system performance, con-
sidering various topological call graphs (|L|, |M |, |t|). Each
IoT device is constrained to a distance of 10 meters, where
pk1 = pk2 = 0.2 W, ∂λk1 = 0, and ∂λk2 = 0.5. We initially
examined scenarios involving three and four tasks on each
device, with task four on device k2 requiring the final output
from device k1. Subsequently, we varied the number of tasks
and the position of the intermediate node to observe how
this inter-device dependency influences the overall energy-
time cost of the network at the optimal configuration. It is

observed that the proposed BSSE algorithm achieves lower
computational cost than the bisection algorithm and performs
comparably to the brute-force algorithm. The effectiveness
of the proposed algorithm can also be seen from its stable
increase in energy-time cost value. Specifically, when we
extend the call graph, the brute-force algorithm shows an
exponential rise in the complexity growth. In contrast, the
bisection algorithm solves it in polynomial time but with a
higher energy-time cost of the system. However, the BSSE
algorithm maintains lower fluctuations and stable increases.
For instance, with the call graph (|L|, |M|, |t|) = (3, 5, 4),
the optimal solution computed by bisection algorithm involves
4095 calls, yielding φl,k1 = {0 1 1} and φm,k2 = {1 1 0 1 1}
with an energy-time cost of ζk1 + ζk2 = 0.13. In contrast,
the proposed BSSE algorithm requires only five bisection
algorithm calls to find a near-optimal solution, with φl,k1 =
{1 0 1} and φm,k2 = {0 0 1 1 1}, resulting in an energy-
time cost of ζk1 + ζk2 = 0.28. Hence, the proposed algorithm
is not only less computationally intensive but also achieves a
41.67% lower energy-time cost objective value compared to
the benchmark bisection algorithm [29].

In Fig. 8, we extend the analysis of the overall energy-
time cost of the proposed task dependency model to
a multi-user case for all three schemes. The IoT de-
vices are uniformly distributed at distances ranging from
10 to 30 meters. We assume the following computa-
tional requirements {δi,k3} = [50.5, 45.3, 86.6] (Mcy-
cles) and {αi,k3} = [1400, 1200, 1500, 1300] (Mcycles) for
IoT device 3, {δi,k4} = [65.5, 50.3, 75.6] (Mcycles) and
{αi,k4} = [1500, 1400, 1000, 1500] (Mcycles) for IoT device
4, {δi,k5} = [55.5, 42.3, 90.6] (Mcycles) and {αi,k5} =
[1600, 1500, 1300, 1700] (Mcycles) for IoT device 5, and
{δi,k6} = [58.5, 47.3, 82.6] (Mcycles) and {αi,k6} =
[1200, 1300, 1600, 1600] (Mcycles) for IoT device 6. The input
required for the fourth task at IoT device k2 requires the
final task output from all other |K|−1 devices. It is worth
noting that the BSSE algorithm exhibits superior performance
compared to the baseline algorithm, as referenced in [29].
More precisely, the total energy-time cost metric of the system
exhibits a rise in the curve, increasing from 0.7758 to 2.4160
when we increase the number of IoT devices from 2 to 6.
This observed pattern depicts the intensified interdependence
of tasks among the devices, yielding more substantial system
performance improvements.

VII. CONCLUSION AND FUTURE WORK

This study examines how task dependencies among IoT
devices affect task offloading and resource allocation deci-
sions. It does so by digitizing real-time edge networks and
integrating aerial terrestrial networks. The presented problem
is characterized as a mixed-integer non-linear programming
problem. It becomes computationally intractable due to its
inherently combinatorial linkage with task-offloading deci-
sions and strong correlation with resource allocation. We
propose a joint optimization approach that optimizes transmit
power, CPU frequency, and task offloading policy to minimize
the energy-time cost. Our proposed scheme can accommo-
date various tasks, sometimes exceeding one hundred. We
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observe that the system’s energy-time cost closely approxi-
mates that of the brute-force algorithm, which delivers the
optimal solution. A notable discovery is that our proposed
BSSE algorithm demonstrates approximately equal energy-
time cost for both devices, i.e., ζk1 ∼ ζk2 , then brute-force
algorithm where ζk1 > ζk2 . This similarity is advantageous
as it ensures equitable energy-time costs for IoT devices,
irrespective of their task loads, leading to significant cost
savings for devices handling more tasks. Furthermore, the
BSSE algorithm achieves convergence in just five iterations
using the bisection method, a stark improvement over the
brute-force algorithm’s requirement of 4096 iterations. Our
simulation results corroborate the effectiveness of the proposed
algorithm compared to benchmark approaches. Future research
will explore the potential of artificial intelligence in devising
optimal offloading decisions that can swiftly adapt to changing
channel conditions.
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