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Abstract

This thesis thoroughly explores the integration of statistical and rein-

forcement learning techniques, aiming to provide fresh perspectives and

solutions for enhancing the current state-of-the-art methods considering

the capabilities of autonomous agents to perform learning, planning

and estimation in an online manner in a single and multi-agent systems

context. We aim to address a critical demand in the field, steering

away from the prevailing dependence on the application of intensive

computational resources and large amounts of data as a requirement to

achieve peak performance in our context. Our primary focus centres on

studying and refining solutions in the “online planning under uncertainty”

research area. We have ventured beyond the boundaries of existing

literature, pushing our proposals to more complex and challenging

problems. As concrete contributions, we introduce three new algorithms:

IB-POMCP, an online planning algorithm which uses information entropy

to augment a single agent’s decision making capabilities; OEATE, a

type and parameter estimation method to handle coordination with

multiple unknown teammates in cooperative environments; and BAE, a

method capable of detecting adverserial agents disguised as teammates

in cooperative environments on-the-fly. Our proposals contribute to

the evolution of autonomous systems and are supported by empirical

and theoretical results. We demonstrate that our new perspectives for

ii



agents’ reasoning processes can present generic and extendable solutions

to diverse scenarios and problems. Finally, during the PhD journey, we

have developed and presented to the research community a new framework

designed to aggregate relevant baselines and benchmarks for multi-agent

systems: the AdLeap-MAS. AdLeap-MAS framework stands out as a novel

tool centred on the implementation and simulation of ad-hoc reasoning

domains for multi-agent, collaborative, and adversarial contexts. The

framework aims to facilitate the execution of experiments and the re-use

existing codes across different environments. We provide a user-friendly

environment that not only extends the frontiers of our research but also

serves as a valuable resource for the research community.
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Chapter 1

Introduction

1.1 Autonomous Agents and the Advancement of

Artificial Intelligence

Autonomous agents have become recurrent and prevalent in contemporary society,

shouldering critical responsibilities to streamline and minimise our efforts required

for routine daily activities and intricate procedures that would otherwise demand

extensive time and dedication. For example, it is easy to find robots organising and

managing packages in big companies’ warehouses in order to facilitate the distribution

and dispatch of products. Considering the context of the exponential growth of online

sales in recent years, this application has become indispensable especially because

maintaining quality and efficiency in the delivery service is intrinsically related to

the quality and efficiency of the autonomous system in handling all orders made.

Note that the significance of this process goes beyond attending just to the personal

interests of people. Besides delivering products for our homes and private usage, it

considers attending to other companies and supplying materials to other markets

which are also essential to the community via the distribution of essential goods.

This example illustrates just one instance in which autonomous agents play a

crucial role in our society. The application of autonomous agents extends far beyond,
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encompassing more intricate challenges and systems, where they can be employed in

large crop fields as precision pulverisation agents to enhance agricultural practices,

in big companies as robust security surveillance mechanism to ensure the protection

of valuable assets, and within our homes, where they serve as smart devices, brewing

our coffee and illuminating the rooms to assist us in our morning wake-up routine.

The term “autonomous agent”, or simply “agent”, lacks a precise definition due to

its diversity in forms and functions, which can range from simple programs composed

of a small number of rules embedded in small chips to large and complex computing

systems controlling multiple components to achieve a final objective [18]. However,

it is important to note that, although this discussion considers the complexities

related to agents’ hardware and software implementations, the main feature of these

agents is their capability to make decisions and take actions that interact with the

environment, modifying the current state of the world – that’s why we often refer to

autonomous agents as “decision-making” agents, emphasising their acting capability.

Consequently, decision-making agents are increasingly used to solve complex

problems under uncertainty in nontrivial systems [55], mainly through the

development and application of Artificial Intelligence (AI). In these challenging

scenarios, agents often play together as a team and follow specific coordination

and communication protocols to enable the collection and exchange of valuable

information to acchieve a final objective. However, employing these methods is

challenging due to environmental and technological constraints. For example, there

are circumstances where communication channels are unreliable, and agents cannot

fully trust them to send or receive information. Therefore, based on available

information, such agents must be capable of evaluating potential decisions to build a

robust plan that either accomplishes the tasks or leads it to states that minimise

uncertainty, making the accomplishment of the objective easier.

As aforementioned, in order to enable agents’ “automaticity” and “decision-

making” capabilities, most autonomous agent applications consider the development

and implementation of AI algorithms which perform planning and learning.
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Historically, the proposal of autonomous agents emerged as a result of research

in the field of AI [18]. At that time, agents were modelled and implemented based on

complex architectures with the aspiration to model human behaviour. The argument

was that robots do not necessarily have to apply precise calculations or complex

models to behave efficiently and to appear intelligent, they actually need to select

the optimal features for sensors and mechanic components to control their response

and achieve their objectives, mimicking a defined human behaviour [22].

In recent years, innovations in terms of software applications for autonomous

agents, hence, the development of AI, intended to enable decision-making but it does

not necessarily try to mimic human behaviour [18, 94]. Actually, the community

has found that agents can perform better if we remove the constraints posted when

trying to mimic humans. Although there are still existing limitations considering

the available hardware capabilities, the development of novel AI techniques is now

focusing on developing intelligent components that can be embedded into complex

systems that not necessarily are cyber-physical systems (CPS). The virtualisation of

agents enabled the evolution of AI as a mathematical and statistical tool that can be

applied to any generic problem which fits the world model used by the method.

Under this perspective and for the purpose of this thesis, we consider that agents

are primarily represented by their software. In other words, we assume that agents

must still have the capability to make decisions and modify the environment based

on the available information but it does not necessarily fit a specific CPS, instead,

we are aiming to provide generic solutions in AI as a mathematical and statistical

tool for real or virtual agents. This perspective deliberately highlights the software

component of agents and advancements in AI – while we acknowledge the significance

of hardware, we steer our study away from a detailed examination of this component.

Consequently, our focus lies on the study of agents’ reasoning capabilities, i.e.,

their ability to retrieve information, process it and make decisions, instead of how

to generate cyber-physical responses from our method. The central point in this

discussion is to understand that our agent is a “decision-making agent”.
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1.2 Making Decisions while Handling Uncertainty

Beyond understanding what agents are and how AI is connected to its development in

society, it is important to understand the problems it often faces. As we mentioned,

most applications require agents to be capable of evaluating potential decisions

while handling uncertainty. A particular situation that can illustrate the above

context and the existence of uncertainty in decision-making domains is: Consider

a hazardous environment, such as an area affected by a natural disaster. In this

scenario, addressing the problem may require the deployment of multiple agents,

including robots or drones, from various parties with the shared goal of swiftly

resolving the crisis. Consequently, each agent must be capable of performing a quick

reasoning process to identify critical locations where they can provide support and

save lives. If no clear target is found, they must rapidly formulate a plan based on

their current knowledge and observable information to find an area needing assistance

from their current position. However, it is important to note that constructing and

testing communication, coordination, or policy protocols for all the diverse agents in

the environment can become unfeasible within the time constraints of the problem,

where delays can penalise lives and makes the other tasks accomplishment difficult.

The aforementioned scenario characterises a “partially observable problem”, a

relevant and recurrent subject in the literature [5, 15, 43]. Such problems describe

scenarios where agents must plan actions without access to a complete model of the

world’s state. In essence, agents need to make decisions in the face of uncertainty

in the environment. But what does “uncertainty” refer to? In the decision-making

context, uncertainty encompasses any feature or information that might impact the

action-planning procedure but is partially or entirely unavailable to the agent during

its reasoning process. For example, in our hazardous environment, two types of

uncertainty can be identified: the first related to the environment, where the agent

can possess information about the region (e.g., a map of the affected area), and

understand the procedure to be carried out when identifying a critical spot but it

lacks information about the specific locations of these spots. The second related to
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its teammates, where the agent is aware of the collaboration context, it assumes

that every agent has a common objective but lacks comprehensive information

about its teammates’ parameters (e.g., vision capabilities and cooperation policies).

Note that other levels of uncertainty can emerge in this scenario. For example,

an agent can be uncertain about its own actions due to external factors, which

may influence the execution of its action (e.g., intending to turn 90 degrees but,

due to external conditions, managing only to perform a 60-degree turn). While we

acknowledge the existence of these potential additional layers of uncertainty that

may be associated with the problem, this thesis will focus specifically on the two

aforementioned types of uncertainty – related to the environment and interactions

with teammates. Nevertheless, we believe that our developed techniques are robust

enough to address these various forms of uncertainty. This confidence stems from

the fact that our approach is founded on generic MDP-based models, supported by

both theoretical insights and empirical evidence gathered throughout our research.

In summary, making decisions while handling uncertainty is challenging because

agents must find a way to gain knowledge indirectly from the information available

in the environment and must be capable of applying it to their planning process. For

this purpose, online planning solutions have become a powerful tool in the literature.

The idea is the following: every time an agent makes an observation of the world, it

gains information that can be used to improve its internal planning process.

A popular and relevant family of algorithms in the literature that enables online

planning and leverages the gathered information to improve decision-making is the

Monte-Carlo Tree Search (MCTS) family. The MCTS algorithms perform decision-

making by conducting multiple sequential simulations within a “tree” structured

framework, which enables the systematic exploration and evaluation of actions within

the problem space with the objective to decide the best action to take in the real

world — a process which is often referred to as the “search” process of a tree. The

paradigm that guides the search is based on the exploration and exploitation trade-off

idea, which defines that the better we explore the space of possibilities, the better we
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can exploit the rewards in it — hence, the better we can accomplish our objective. At

each step in the environment, these methods confront their simulated world against

the real world and continuously refine their understanding of the problem, hence,

improving their reasoning and planning capabilities on-the-fly.

Based on this, some works in the literature suggest improvements to traditional

planning processes, handling the lack of prior information, by using the approximation

of the world’s dynamic models [54, 80], embedding supportive planning methods

within the tree [5, 15], extracting non-explicit information from the observations

[10, 54], enhancing the method’s inner calculations [1, 32, 77] or employing neural

networks-based techniques to improve the search quality [61, 108].

While these strategies, considering the environmental uncertainty, can often

improve the search quality within a defined simulation horizon by using extensions

of traditional partially observable models and enabling the integration of additional

knowledge into planning, they demand the application of significantly more

computational resources to perform the task (e.g., time and memory). Moreover,

they may face challenges when essential knowledge, such as conditional observation

probabilities or a explicit transition function, is unavailable to agents beforehand.

Similarly, addressing uncertainty related to teammates poses its own set of challenges.

Although some knowledge about the model of agents in the environment may be

available, such as template types from reasoning or a range of possible parameters,

optimising cooperation and task accomplishment in an online planning scenario lacks

a straightforward solution, requiring agents to be capable of estimating some features

to improve the search quality – note that estimating features also present some

burdens in terms of spending resources.

In this thesis, we will provide novel solutions based primarily on the integration

and modification of some of these methods from the literature within different

online planning frameworks, hence, presenting a new perspective for incorporating

information and knowledge into agents considering these partially observable scenarios
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and concerning the existence of environmental and teammates’ uncertainty in the

problem. We will use a new statistical perspective on these frameworks in order

to achieve our objective, approaching these problems with convergence guarantees

in probability by exploiting the information gain inherited from online planning

methods, mainly referring to Monte-Carlo-based algorithms, which will be introduced

and explained in Chapter 2.2. Moreover, we will present these solutions always

looking for improving performance without requiring significantly more resources

to run our approach. Directly, this thesis presents lightweight methods capable of

handling partially observable problems in an online manner.

1.3 Reinforcement Learning: Developing Reward-

guided Planning Methods

Having grasped the significance of decision-making and how this process is affected

by the uncertainty of the environment, let us delve into the investigation of some

strategies within the literature that are designed to develop and enhance decision-

making capabilities under partial observability into autonomous agents.

One particularly important and recurrent strategy in the state of the art is

categorised by the application of Reinforcement Learning (RL). RL models not only

can handle the intricacies posed by uncertain environments but also stand out as a

pivotal approach that empowers agents to learn, adapt, and optimise their decisions

through ongoing interactions with the dynamics in their surroundings. Moreover,

most of the current RL solutions are built over a versatile framework that aligns

seamlessly with the autonomous agent’s quest to navigate complex, unpredictable

scenarios, stating a paradigm that considers agents making sequential decisions over

time, with the goal of maximising a cumulative reward signal – which we denominate

here as the reward-guided planning paradigm of RL algorithms.

Under this paradigm, the agent, as a conscious entity, learns from its experiences
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by receiving feedback in the form of rewards or penalties and adjusting its strategies

accordingly. This learning mechanism, inspired by behavioural psychology, enables

agents to discern optimal courses of action within the context of uncertain and

dynamic environments. However, the question that might arise is: what happens

when there is no reward signal available to perform learning?

This question raises a fundamental academic challenge which is one of the principal

topics developed in this thesis, where we try to address this significant limitation

of traditional RL algorithms in handling sparse reward scenarios. As mentioned

earlier, we will be studying and analysing the planning efficiency considering mainly

Monte-Carlo-based algorithms. Considering the partial observability feature of our

problem, a commonly suggested algorithm to address these problems is the Partially

Observable Monte-Carlo Planning (POMCP) [93] which is a RL algorithm capable

of performing planning in an online manner while handling uncertainty [10, 99, 109].

However, several state-of-the-art solutions that rely on POMCP often struggle when

rewards are delivered sparsely in time or outside their reasoning horizon. For example,

in the given example of hazardous environments, there may be no clear target to

spot from the current observation and/or estimated map so far, which culminates in

the absence of reward in planning, hence, penalising planning’s quality.

Straightforwardly, we introduce a novel perspective over this context that

transforms the reward-guided planning paradigm into what we denominate as

information-guided planning paradigm. Our proposal is to use the information

found during the collection of observations to guide the agents in planning when

no rewards are available to differentiate potential strategies. IB-POCMP [27] is our

main contribution related to this topic, which performs information-guided planning

by valuing the observations set entropy and including it in the reasoning process. It

will be properly introduced and presented in detail in Chapter 4.
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1.4 Teamwork and Decentralised Execution

In light of the established understanding of autonomous agents as problem solvers in

society, another crucial aspect to explore is the existent potential of applying multiple

agents to solve problems in our context as a team. This approach of organising

agents to act together to achieve a common final objective defines what is called in

the literature a cooperative Multi-Agent System (MAS). Although it introduces a

new layer of complexity to the problem, mainly related to the challenges of modelling

each agent to act in the world, the collaborative synergy derived from autonomous

agents working together allows the amalgamation of diverse strengths that often

surpass the individual capabilities of a single agent, even if it is well-trained and

well-designed for the problem.

These cooperative efficacy gains are even clearer when we confront our single-

agent solutions against a MAS in problems that demand a spectrum of expertise

or involve large-scale operational endeavours. Just as an example, let’s consider

our disaster scenario. In a single-agent approach, a lone robot handles tasks like

mapping, locating survivors, and providing medical aid to all possible spots in the

environment. On the other hand, building a MAS can ensure the efficient distribution

of responsibilities, optimising task completion.

Considering the design of MAS solutions, teamwork models have shown great

potential to navigate complex applications and facilitate the construction of knowledge

among agents who share both the environment and a common objective. However, the

effective application of these models often hinges on the formulation of a well-crafted

decentralisation strategy for coordination and cooperation.

In essence, the development of decentralised systems involves the distribution of

the decision-making procedure across multiple agents, each equipped with distinct

capabilities and information sources. On the other hand, this feature fosters the

independence between agents’ decision-making processes, affecting the coordination
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and collaboration quality. In scenarios such as our hazardous environment, the

deployment of multiple agents, like robots or drones, becomes more effective when

decision-making is decentralised.

This approach enables agents to autonomously assess critical situations and

formulate immediate and precise responses based on their individual knowledge. On

the other hand, considering a centralised mechanism to allocate tasks efficiently to

each agent may prove challenging to implement, or it might even be proved infeasible

due to technological or environmental constraints. In large-scale problems, these

constraints could easily derail a centralised solution, ranging from the absence of

reliable communication channels that covers the action area to the condition of

massive computational power to manage and direct each possible procedure and task

for numerous agents in the environment.

Decentralisation, while recognising the challenges posed by uncertain environ-

ments, allows agents to adapt dynamically to changing conditions without solely

relying on a central authority. It enhances the flexibility and responsiveness of

autonomous agents, yet it introduces complexities in coordination and cooperation

among diverse agents with potentially differing objectives, as discussed earlier.

Besides that, decentralisation is still a powerful strategy in developing robust solutions

for decision-making under uncertainty, fostering adaptability and resilience in the

face of dynamic and unpredictable environments.

As a result, this thesis contributes to enhancing the decentralised execution

of agents facing uncertainty about their teammates’ capabilities and roles. We

introduce two distinct solutions for addressing each aspect: The first solution is

OEATE [28], an online estimation algorithm capable of approximating the type

and parameters of unknown teammates following a task-based strategy and without

relying on prior training. The second solution is BAE [29], which is also an online

estimation algorithm, but its focus lies on the identification of adversarial agents

among a team of unknown agents. We will properly introduce and present more

detail about both methods in Chapter 5 and Chapter 6, respectively.
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1.5 Our Research Questions and Contributions

In this thesis, we aim to provide fresh solutions and a comprehensive study that

surrounds the following research questions posted for the big field of AI:

• Q1) Considering the aspects of planning under uncertainty, how can

we handle the lack of information without spending significantly

more resources, such as time and memory?

For the first question, this PhD thesis aims to present new solutions for planning

under uncertainty that are capable of aggregating knowledge in an online manner,

without requiring prior training or the application of exhaustive strategies to find

a solution. Directly, we propose smart applications of computing together with

statistics which are well-designed to perform in a lightweight fashion, i.e., extracting

information quickly and without using large amounts of data. Our solutions are

close to the emerging big field of Data Science and follow what we denominate as an

information-guided paradigm of planning (introduced in Chapter 4).

• Q2) Considering the current reward-guided paradigm in RL solutions,

how can we solve problems with sparse rewards?

Our method that directly answers this is Information-based Partially Observable

Monte-Carlo Planning (IB-POMCP), which is introduced in detail in Chapter 4

and represents a published Full Paper in NeurIPS 2023 [27]. IB-POMCP is an online

planning algorithm that uses a novel information framework to boost the decision-

making process under partial observability even when no rewards are available in

the reasoning horizon. Our framework refines the traditional UCB1 action selection

strategy by implementing our proposed Information-guided UCB (I-UCB) function,

which is capable of leveraging entropy and estimating information gain, using both

real-world and internally generated observations to identify promising states in the

search process that leads the agent to quickly accomplish its objective. Its application

together with our new particle filter reinvigoration strategy, which considers the
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current system’s entropy to calibrate the reinvigoration, indicates that this approach

may lead the agent to act hybridly when solving a partially observable problem by

better weighing the exploration, exploitation, and information levels within the tree.

• Q3) Considering multi-agent systems working under uncertainty, how

can we surpass the limitations imposed by performing teamwork

with unknown teammates?

In order to tackle this question, we present Online Estimators for Ad-hoc Task

Execution (OEATE), a work which is published as a Journal Paper in JAAMAS’22

[26], a Full Paper in AAMAS’23 [28] and we present it details in Chapter 5.

OEATE is a novel algorithm for estimating teammates‘ types and parameters in

decentralised task execution. Our algorithm is light-weighted, running estimations

from scratch at every single run, instead of employing pre-trained models, or carrying

knowledge between executions. OEATE uses a genetic algorithm-inspired approach

to improve the estimation quality and the performance of the whole team due to

better coordination and cooperation between all agents. Under some assumptions,

we show theoretically that our algorithm converges to a perfect estimation when the

number of tasks to be performed gets larger. OEATE can obtain a lower error in

parameter and type estimations in comparison with the state-of-the-art, leading to

significantly better performance under different settings and while facing distinct

challenges, such as planning in large scenarios, collaborating with a large number of

unknown teammates and estimating types and parameters with wrong templates.

• Q4) Considering the emerging discussion about adversarial agents in

decision-making systems, how can we handle it without harming the

algorithm planning capabilities?

Finally, to address this specific and relevant situation in the literature, we propose

Bayesian Adversary Estimation (BAE), which represents a Full Paper at AAMAS’24

[29] and is properly introduced in Chapter 6. BAE is a novel algorithm capable of
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identifying an impostor agent among the team. In our context, an impostor agent

is a smart agent acting as an “adversary”, i.e., while teammates try to enhance

task completion, the impostor endeavours to hinder performance, disrupt objective

achievement by blocking paths or fake its real intention. BAE performs an online

impostor deduction by performing estimations solely using the observations collected

while acting in the environment and simulating potential outcomes in its reasoning

process. We propose the application of what we denominate as the Q-valued Bayesian

Estimation (QvBE) approach, which considers approximate latent information about

the environment (e.g., agents’ transition function) using Q-value estimations. Our

approach focus on using a Monte-Carlo Tree Search (MCTS) based method; however,

we emphasise that it can be extended to any online planning algorithm that estimates

Q-values. We propose the embedding of our the QvBE approach inside an Adversarial-

MCTS (A-MCTS), which performs planning from scratch and estimates its own

actions considering the existence of an adversary. The Q-table found at the end of

the search process is used to estimate the impostor among the team.

1.6 Additional Contribution: AdLeap-MAS

Having in mind all the discussion about developing autonomous agent solutions,

their virtualisation and their test in synthetic scenarios, this PhD thesis lists as a

side but relevant contribution to the community the development of an open-source

MAS simulator for the development and evaluation of solutions for planning.

We propose Adaptative Learning and Planning Multi-Agent Simulator (AdLeap-

MAS) [25], a novel framework focused on simulating ad-hoc reasoning problems, where

potential types/policies for other agents are estimated, and sampled during an online

decision-making process. We offer base classes for implementing new problems and

algorithms, besides ready-to-use common benchmarks found in the literature. This

proposal supports the execution of reactive algorithms, neural networks, estimation

methods, reinforcement learning and online planning applications over full and partial
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observability, only requiring the connection of algorithms to the ad-hoc reasoning

model. In this way, our contributions with AdLeap-MAS can be summarised as: (i)

First simulator that allows a quick switch of learning and planning algorithms across

different ad-hoc reasoning scenarios; (ii) AdLeap-MAS enables the execution of

multiple reasoning agents that run independently inside the framework and according

to the domain settings; (iii) Our architecture guarantees information security while

running scenarios under partial observability, i.e., agents do not have access to any

forbidden information; (iv) AdLeap-MAS offer a standard set of baselines algorithms

and benchmark problems to allow fair and quick experiments.

We refer the reader to our GitHub1 or Appendix A for more information.

1.7 Thesis Content

This thesis is organised into six (6) additional chapters following the introduction.

In Chapter 2, we provide essential background material necessary for understanding

the rationale behind each newly proposed method designed to address our defined

research questions. Chapter 3 examines pertinent literature, both contributing to

and challenging the discussions developed in this thesis. From Chapters 4 to 6, we

delve into a detailed exploration of the proposed methods developed during this PhD

journey. Each chapter offers an in-depth examination of the methodology, theoretical

and empirical evaluations, discussions on limitations, and conclusive remarks for the

respective method. Upon navigating through all method-focused chapters, Chapter

7 serves as the culmination of this thesis, presenting the final considerations over

our results, a comprehensive discussion about our limitations and the outline of

potential future works. Additionally, supplementary material in the Appendix is

referenced throughout the text to ensure a good reading experience. At the end of

this document, we list all references cited in this thesis.

1AdLeap-MAS’s GitHub page: https://github.com/lsmcolab/adleap-mas/
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Chapter 2

Background

In this chapter, we provide the essential background information necessary for

understanding the contributions and discussions presented in this thesis.

We start introducing all Markovian models in Section 2.1 employed to represent

environmental features tailored to the requirements of each contribution made in

this thesis. These models include the full observable Markovian model, discussed

in Section 2.1.1, the partially observable model, presented in Section 2.1.2, and the

multi-agent representation in a Markovian context in Sections 2.1.3 and 2.1.4.

Following this, we introduce the tree-search planning methods used in our research

in Section 2.2. We begin by presenting and discussing the traditional MCTS algorithm

in Section 2.2.1. Subsequently, we introduce the partially observable version of MCTS,

the POMCP, in Section 2.2.2. Finally, we present the single-agent and adversarial

versions of these approaches tailored for an ad-hoc teamwork context in Sections

2.2.3 and 2.2.4, respectively.

In Section 2.3, we provide the necessary material to comprehend the information

analysis employed in this work and how it can enhance an agent’s planning capabilities.

Consequently, in Section 2.3.1, we discuss the application and representation of

information value through Shannon’s entropy perspective and, in Section 2.3.2, we

delve into the details and application of Bayesian Inference approaches to enhance

an agent’s decision-making process.
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Finally, Section 2.4 concludes the Background section by introducing two essential

estimation methods from the state-of-the-art. These methods are utilized in the

experiments presented in Chapters 5 and 6. Specifically, we present the AGA and

ABU algorithms, proposed by Albrecht and Stone (2017) [5], and discuss their major

features, enabling readers to differentiate our approaches from the relevant literature.

2.1 Markovian World Representation

Markovian models have been recurrently used as a powerful tool to tackle and design

different problems for planning and estimation problems [5, 94]. The Markovian

framework models the world as a stochastic process in a discrete-time flow while

maintaining the Markov properties [87], i.e., at any given time, the next state is only

dependent on the current state and is independent of the past. This feature makes

the model efficient and lightweight since we can work with less data in order to find

solutions to complex problems. Moreover, Markovian models are generic and can be

extendable to different scenarios, considering full or partial observability, single or

multiple agents and even competitive or cooperative scenarios.

In this thesis, we employ different Markovian models to address each afore-

mentioned problem adequately. Consequently, in this section, we will provide the

necessary background to facilitate the understanding of our methodologies. In

summary, our solutions implement the following models:

• In Chapter 4, where we delve into IB-POMCP, we will be using an extended

version of the Markov Decision Process (MDP) model tailored for partially

observable problems, known as Partially Observable MDP (POMDP). We

opted to use the POMDP model because, besides enabling the modelling of

observations and uncertainty in the environment, the POMCP framework is

traditionally designed over this model [93].

• In Chapter 5, for the implementation of OEATE, we propose the usage of both

the MDP and POMDP models depending on the target problem. However,
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2.1. Markovian World Representation

although our method is applied in a multi-agent context, we will adapt both

models to represent the other agents (teammates) as part of the environment.

This design is inspired by prior works [2, 91] and fits OEATE’s unique teamwork

context. This adaptation eliminates the need to model each team member

individually, streamlining the planning and estimation process.

• Finally, in Chapter 6, which focuses on BAE’s presentation, we will employ an

extended version of MDP designed for multiple agents, known as Multi-agent

MDP (MMDP). In contrast to OEATE, BAE treats the impostor agent as a

strategic entity while categorising other teammates as non-strategic agents,

hence, modelling them as part of the environment. This adaptation enhances

the track of the potential adversary during reasoning by directly modelling its

action in the planning process (i.e., BAE’s tree search process).

We start this section by introducing the MDP model (Section 2.1.1) since it

represents the central model from which we extend and present the others. In Section

2.1.2, we present the POMDP model as the extension of the introduced MDP model

for partially observable contexts. In Section 2.1.3, we present the MDP and the

POMDP model for multi-agent environments but under a single-agent perspective.

Finally, in Section 2.1.4, we introduce the Multi-agent MDP (MMDP) model, which

is capable of accommodating the multi-agent context while modelling more than one

perspective in the Markovian model’s target environment.

2.1.1 Markov Decision Problems

The Markov Decision Process (MDP) is a mathematical framework to model

stochastic processes in a discrete-time flow. A MDP consists of a set of states

s ∈ S, a set of actions a ∈ A, a reward function R(s, a, s′), and a transition function

T . Consequently, it can be represented by the 4-tuple:

MDP = (S,A,R, T ) (2.1)
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Chapter 2. Background

A state s in the set of states S is a representation of the world from the intelligent

agent perspective. On the other hand, an action a in the set of actions A is responsible

for linking one state to another, defining what is called a “state transition”. The states

transitions are modelled by the transition function T , which defines the probabilities

of reaching another state s′, given a state s and an action a. Mathematically, it can

be described as T (s, a, s′) = P (s′|s, a) or T : S×A× S→ [0, 1]. Moreover, actions

are responsible for generating rewards for the agent considering its advancement

towards the final objective of the problem. The MDP model enables this evaluation

through its reward function R, which is responsible for delivering rewards to the

agent. Mathematically, it is defined as R(s, a, s′) = R or R : S × A × S → R.

The reward function represents the main component of MDPs used to train RL

models since, through this component, we can approximate the value of taking an

action from our current state intending to advance in the problem – and that is why

handling the absence of rewards is a relevant topic in the community and it is one of

the object of study in this thesis.

2.1.2 Partially Observable Markov Decision Problems

The Partially Observable MDP (POMDP) represents the extended version of the

MDP model for problems in which the agent cannot directly access the current

state – defining what is denominated as a “partially observable scenario” or “partial

observability”. In this context, instead of receiving complete information about the

world while reasoning, agents receive an observation z ∈ Z which represents the

visible information from its current state and single perspective.

Similar to the MDP, the POMDP model consists of a set of states s ∈ S, a set of

actions a ∈ A, a reward function R and a transition function T , however, it also

includes an observation set Z, an observation function Z and a set of information or

history h ∈ H. Consequently, it can be represented by the 7-tuple:

POMDP = (S,A,R, T ,Z,Z,H) (2.2)
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2.1. Markovian World Representation

The observations are delivered to agents following an observation function Z and

its probabilities Zas,z = P (zt+1 = z | st+1 = s; at = a) or Z : S ×A × Z → [0, 1].

The belief function B(h) is a distribution over the state space S, which describes the

conditional probability of being in a particular state b ∈ S given the current history h,

B(h, b) = P (st = b | ht), where the history h ∈ H is a sequence of action-observation

pairs ht = {a0, z0, . . . , at, zt} from the time 0 (start of the process) to the current

timestamp t. The set of all possible information is denoted as H. The decision

process follows a policy π(h, a) = P (at+1 = a|ht), while choosing actions. The

optimal policy for a problem to decide the best actions is represented by π∗.

2.1.3 Multi-agents as part of the environment

From the provided definitions for both the MDP and POMDP models, it is possible

to note that these Markovian models are conventionally utilised to design single-

agent problems with a specific objective. However, the application of these models

can be extended to encompass Multi-Agent Systems (MAS). As an efficient and

lightweight approach to model MAS problems within an MDP or POMDP framework,

we consider that there is a central or main agent, denoted as ϕ, which treats the

existence of all other agents, denoted as ω ∈ Ω (teammates), as components of the

environment. That is, all ω in Ω are modelled as part of the environment with their

actions indirectly affecting the next state and the obtained reward. Therefore, they

are abstracted in the transition function.

In this context, the ϕ actively makes decisions and takes actions in a deterministic

manner, while the remaining agents ω ∈ Ω contribute to the environment in a

stochastic manner. In other words, ϕ can only decide its own actions and has no

control over other environment components (e.g., actions of agents in the set Ω) –

the next state depends on the actions of all agents, however, ϕ is unsure about the

non-strategic agents’ next action. This approach avoids the need to model every

agent’s actions as parameters for the transition, reward function, and observation,

yet it still accommodates their impact on the environment as a probabilistic event.
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We consider that given a state s, an agent ω ∈ Ω has a (unknown) probability

distribution (pdf) across a set of actions A, which is given by ω’s internal algorithm.

This pdf is going to affect the probability of the next state. Therefore, we can say

that the uncertainty in the Markovian model comes from the randomness of the

actions of the ω agents, besides any additional stochasticity of the environment.

Moreover, this model allows us to employ single-agent online planning techniques

like UCT Monte Carlo Tree Search [58] while performing a tree search process. We

will present the details of its application in Section 2.2.3.

2.1.4 Multi-Agent Markov Decision Problem

While addressing the MAS scenario by modelling it as a single-agent Markovian

problem proves to be a viable approach, this model might not be universally suitable

for all scenarios. As previously mentioned, employing single-agent MDP or POMDP

modelling serves as an effective and lightweight solution for our intended investigation.

However, in certain instances, avoiding the design of other agents’ actions can have

a significant impact on algorithm performance, consequently affecting its ability to

achieve objectives. For instance, in an adversarial deduction context, modelling of

potential adversaries’ actions impacts the algorithm’s capacity to accurately estimate

the optimal action in response to adversarial strategies.

Under this context, we focus on the application and implementation of a more

complex Markovian-based model together with RL algorithms to handle the proposed

problem. Hence, we propose and describe the application of a Multi-agent Markov

Decision Process (MMDP) [19]. This model considers that M = |ϕ ∪Ω| agents are

sharing the same environment and compounding the team Λ. The MMDP model

contains a finite set of states s ∈ S with transition probability T and expected reward

equals to R(s,J) depending on the joint-actions of all agents J = {a1, ..., aM}, where

each action is defined in the action space a ∈ A. Therefore, the MMDP model is

represented by the 6-tuple:
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2.2. Tree-Search Methods

MMDP = (S,A,J, T ,R,Λ) (2.3)

We use the MMDP to represent the problems studied and proposed for BAE

(Chapter 6). Since it describes an adversarial context, we assume there is an impostor

agent ψ which is disguised as a non-strategic agent among the team and tries to

minimise the team’s performance by acting in the environment. Therefore, in order

to enable the traditional MMDP to consider a potential adversarial agent in the

environment, we assume that ψ ∈ Ω and propose its representation by a 7-tuple:

MMDPψ = (S,A,J, T ,R,Λ, ψ) (2.4)

We highlight that, in our adversarial deduction context, ϕ and ψ are strategic

agents, while all other agents ω are non-strategic [107]. That is, both ϕ and ψ are

capable of modelling other agents in their reasoning process, while the other ω agents

do not model teammates and typically follow fixed rules for planning. The details

about the implementation of all agents and their decision-making process will be

presented in Chapter 6, where we formalise the problem and evaluate our results.

2.2 Tree-Search Methods

The application of tree-search-based algorithms to tackle complex problems continues

to offer relevant solutions in the literature by incorporating heuristics, leveraging

complex spaces, and building hybrid models that combine their systematic exploration

and exploration of the environment with the strengths of other approaches [7, 71, 73,

113]. Widely applied in AI contexts, especially when considering the proposal of RL

solutions, their popularity stems from their versatility in modelling the world and

their ability to perform planning and estimation in an online manner.

From the current state-of-the-art, MCTS-based methods stand out as relevant

and effective algorithms for decision-making in complex and uncertain environments.

Renowned for their simulation-based approach, these algorithms excel in games with
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large state spaces, exemplified by their success in applications like the proposal

of POMCP [93] and AlphaGo [94]. These algorithms adeptly balance exploration

and exploitation, making them adaptable to unknown environments and suitable

for real-time decision-making. These features demonstrate that these methods are

scalable and effective enough to tackle this thesis’s context.

Aiming to guarantee the optimisation of our solutions, we employ different tree-

search methods tailored to each of our proposals, as demonstrated in our approach

to Markovian models. In this section, we will introduce and provide the necessary

background to facilitate the understanding and implementation of our methodologies.

In summary, our solutions implement the following MCTS-based methods:

• For IB-POMCP (Chapter 4), we will use the Partially Observable Monte-Carlo

Planning (POMCP) algorithm, proposed by Silver and Veness (2010) [93]. We

opted to use this method due to the aforementioned benefits and because it

can easily model observations of the scenario in its planning procedure.

• For OEATE (Chapter 5), we propose the usage of both, the full observable

and the partially observable Monte-Carlo tree search algorithms, MCTS and

POMCP respectively. Each algorithm will be applied according to the target

problem and intends to enhance our estimation method capability and the

team’s performance. However, we highlight here that we will be using the

single-agent model to tackle this problem.

• Finally, for BAE (Chapter 6), we employ a different MCTS-solution which

is focused on multiple agents under an adversarial context: the Adversarial

MCTS (A-MCTS) algorithm, which is an adapted version of traditional the

2-player MCTS’s structure [23] for our adversarial context. This algorithm

directly models the adversary in the nodes of the tree in order to improve the

reasoning capabilities of MCTS against adversaries in the environment.

This section commences by introducing the traditional MCTS algorithm (Section

2.2.1), which can be easily comprehended with the fundamental knowledge about tree
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structures and their applications in decision-making [87]. In Section 2.2.2, we present

the Partially Observable Monte-Carlo Planning (POMCP) algorithm, proposed by

Silver and Veness (2010) [93], showcasing its role as an extension of the generic MCTS

tailored for scenarios involving partial observability. In Section 2.2.3, we present the

construction of our MCTS solution for MAS from a single-agent perspective, which

models non-strategic agents as part of the environment. Finally, in Section 2.2.4, we

introduce the A-MCTS algorithm, adept at accommodating multi-agent contexts

and incorporating multiple perspectives within a unified tree search process.

2.2.1 Monte Carlo Tree-Search

MCTS algorithms aim to determine the optimal action a∗ for a given state s by

simulating the world steps within a tree structure. The MCTS’s tree structure T

considers the existence of state nodes connected through actions, as illustrated in

Figure 2.1. Each node in the tree is represented by (s, V , N ), i.e., a 3-tuple with a

state s, a value V(s, a), and a visitation count N (s, a) for each action a ∈ A. The

value of the node represents the expected cumulative reward for the simulated states.

The number of visits to the state s is represented by N (s) =
∑

a∈AN (s, a).

Each state in the search tree is viewed as a multi-armed bandit taking actions

usually chosen by Upper Confidence Bound (UCB1). UCB1 is a well-known algorithm

that tries to increase the value of less-explored actions by attaching a bonus inversely

proportional to the number of times each action is tried, following:

UCB1(s, a) := V(s, a) + c

√
log(N (s))

N (s, a)
(2.5)

The scalar c is the exploration constant responsible for weighting the exploration

value, given by
√

log(N (s))
N (s,a)

, within the UCB1 function. If it is close to 0, the algorithm

will act greedily, following only the exploitation value calculated in V(s, a). We can

fit this constant to the target problem by considering the desired balance between

exploiting close and future rewards.
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Figure 2.1: Illustration of MCTS’s tree structure. Each node represents a state s.

Some states are specified in the figure to highlight this difference. Each node is

connected to another via an action A = {a1, a2}. N represents the number of visits

and V the current value estimated to each specific node. Each box at the bottom of

the figure presents the reward r found in the last node.

Note that the V(s, a), presented in equation 2.5, is updated at each visit to the

node, following the update function V(s, a) := V(s, a)+ (R(s,a)−V(s,a))
N (s,a)

. The visit count

is also updated at each iteration to the node, following N (s, a) := N (s, a) + 1. With

these updates in hand, we found the following result: with a correct definition of

c, the V(s, a) function converges in probability to its optimal value V∗(s, a), which

can be mathematically represented by V(s, a)
p−→ V∗(s, a) [93]. In other words, if the

standard updates, as defined above, are followed and a suitable value for c is found,

then the V(s, a) values converge to the true (optimal) values V∗(s, a) for the given

state s and action a. The idea behind this result is that, with an infinite number of

iterations over a node, the variations in the value of V(s, a) will approximate 0 and,

hence, the UCB1 can choose the “best” action according to the “estimated optimal
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policy”. This is an important result, which motivates our work and supports further

discussions of our contribution. Besides that, in this thesis, we focus on UCB1 but

acknowledge the existence of different options in the literature as action selection

methods, such as the Thompson-Sampling and PUCT [9, 94].

Now, let us outline the traditional MCTS algorithm. The MCTS algorithm starts

with the initialisation of the tree T, where we create the root as a simple node

(s, V, N ). Initially, s is the current state of the world, V(s) = 0 and N (s) = 0,

since we did not visit the node yet. Subsequently, our search process starts. It is an

iterative process where the agent performs multiple rounds of reasoning, simulating

steps in the world to evaluate which is the best sequence of actions that solves the

problem. This strategy requires a Monte-Carlo simulator G, which can sample the

next state s′ and its reward r given a state-action pair. Every time the agent chooses

an action and simulates it within the tree, a new node is created and added to the

tree – a process often referred to as the “tree expansion process”. In general lines,

the search is categorised by two procedures: the simulation and the rollout.

The simulation process is responsible for expanding the tree from an already

existing node. During the process, the UCB1 is responsible for selecting the actions

that will expand the tree, which will be the action with the highest value according

to Equation 2.5. In other words, the action a which is used to expand a node s

is obtained from a = arg max
a′∈A

UCB1(s, a′). However, If some action a′ was never

chosen, then it will be preferably chosen instead of the action a with the highest

UCB1 value. This approach guarantees that each action is tried at least once before

expanding the tree further into promising branches. At the end of each simulation,

all rewards are back-propagated to the root and the nodes’ values are updated. This

process is known as reward back-propagation.

The rollout process, on the other hand, is responsible for expanding the tree

from a non-existing node, hence, creating it. Overall, it works similarly to the

simulation process but it does not create new nodes. The idea of the rollout process

is to estimate an initial value (better than 0) for the new nodes created in the tree,
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increasing the possibility of differentiating actions and, consequently, improving the

planning process. Besides that, the rollout process does not rely on the calculations

of UCB1, it applies a pre-defined rollout policy πrollout, which will guide the rollout

simulations. At the end of each rollout, all rewards are back-propagated from the

created node to the root, updating the values in the process.

The usual stop conditions for the simulation and the rollout processes are the

maximum depth and the end of the problem (when, while performing the search, the

agent reaches a terminal state). If any of these conditions are reached, the reward

back-propagation starts, even if no reward is found, following the equation:

V(s)← V(s) +
R− V(s)

N (s)
(2.6)

The R in the right-hand of the equation is the back-propagated reward, which

aggregates the instant reward r and future rewards R′ in a single value through

R← r+ γR′. The instant reward r is the reward collected by the agent when acting

at its current time and state. On the other hand, the historical rewards R′ are the

rewards collected in the future. In order to differentiate the rewards collected close

to the present and far in the future, it is proposed the application of a historical

discount factor γ to balance the values during the back-propagation.

After finishing the search process, i.e., finishing the multiple rounds of reasoning

within the tree about possible paths to take, the best action is selected to be performed

in the real world based on the estimated rewards, following:

abest = arg max
a∈A

V(s, a) (2.7)

After taking the best action, the current state and the root of the MCTS are

updated to the current step in the execution. Then, the MCTS search process

restarts. Algorithm 1 presents the pseudo-code for the MCTS implementation.

Finally, we highlight here that the above explanation and introduction of our

MCTS planning process considers the suggestion from the literature about the

application of the the UCT-H [111], an enhanced version of UCT [58], to augment the
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Algorithm 1 MCTS’s Planning

1: procedure Search(s)

2: while Timeout() is False do

3: Simulate(s, 0)

4: return argmax
a∈A

V(s, a)

1: procedure Expand Node(s)

2: for a ∈ A do

3: T(sa)← (T (s, a), 0, 0)

1: procedure Rollout(s, d)

2: if d < depthmax then

3: return 0

4: a ∼ πrollout(s, ·)

5: (s′, r) ∼ G(s, a)

6: return r + γRollout(s′, d+ 1, γ)

1: procedure Simulate(s, d)

2: if d < depthmax then

3: return 0

4: else if is terminal(s) then

5: return 0

6: if s /∈ T then

7: Expand Node(s)

8: return Rollout(s, d)

9: a← argmax
a∈A

UCB1(s, a)

10: (s′, r) ∼ G(s, a)

11: R← r + γSimulate(s′, d+ 1)

12: N (s)← N (s) + 1

13: N (s′)← N (s′) + 1

14: V(s)← V(s) + R−V(s)
N (s)

15: return R

MCTS capabilities in exploring and exploiting the search space of an ad-hoc teamwork

problem. Briefly, both the UCT and UCT-H algorithms are tree search methods that

follow a similar search procedure to the MCTS explained above. Therefore, both

methods are planning algorithms that employ the UCB1 equation while expanding a

tree structure in search of the best action to take to solve the problem. The UCT

considers the creation of a new node for every possible next state s′ from s by taking

action a and evaluates each one separately. On the other hand, UCT-H extends

the UCT proposal by considering the creation of a single node from s, a, which

represents and evaluates all possible next states s′ together in this single node. This

approach can summarize all potential outcomes from an action into a single node,

saving memory and boosting the value estimation for actions while sacrificing the

exact representation of a state for a node. For the ad-hoc teamwork context, this

abstract representation of a state is beneficial because representing all possible states

considering the actions of all agents in a team inflates the size of the state space

27



Chapter 2. Background

significantly, making it challenging to take an action even when considering one step

in the world. Therefore, considering these characteristics, we employed the UCT-H

in the MCTS implementation for this thesis.

2.2.2 Partially Observable Monte Carlo Tree-Search

POMCP is an extension of MCTS for partially observable problems that commonly

apply a POMDP model together with the Partially Observable UCT (PO-UCT) to

evaluate the world and build the tree [93]. The structure of this tree (illustrated

in Figure 2.2) considers the existence of action and observation nodes, which make

the agent aware of the uncertainty in the scenario. Each node is represented by a

4-tuple (h, V(h), N (h), Fh), where h is the history of the node, V(h) is the value of

the node h, N (h) is the visit count of the node h and Fh is the unweighted particle

filter of the node h used to approximate the belief state at each node h.

Analogously to the MCTS procedure, the algorithm commonly uses the UCB1

function to select actions during the search process and is divided into the simulation

and rollout stages, requiring then a Monte-Carlo simulator G, which can sample a

state s′, reward r and observation z given a state-action pair. However, both the

simulation and rollout are developed using states sampled from the particle filter.

In detail, the POMCP algorithm starts with the initialisation of the tree T

by creating the root (h, V(h), N (h), Fh) with V(h) = 0, N (h) = 0 and Fh = ∅.

Subsequently, we initialise the particle filter of our root node Fh, generating k possible

states from which we can simulate the agents’ actions and search for a solution to the

target problem. Initially, the beliefs are generated through a uniform distribution U

but, if some prior knowledge about the problem’s belief state distribution is available,

a refined distribution can be used instead.

The search process is iterative, as in the MCTS’s search procedure. Differently

from MCTS, we need to sample a state from our current belief (approximated by

the particle filter) to perform multiple rounds of reasoning. While choosing actions,

POMCP will usually employ the UCB1 function and perform a similar simulation
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Figure 2.2: Illustration of POMCP’s tree structure. The red circles indicate action

nodes and the blue circles indicate observation nodes. Action nodes are connected

to obsevations nodes through actions and observation nodes are connected action

nodes through observations. B represents the belief state set of the root node (each

number represent a possible state). N represents the number of visits and V the

current value estimated to each specific node. Each box at the bottom of the figure

presents the reward r found in the last node.

and rollout process to MCTS. At the end of each simulation or rollout, it performs

the reward back-propagation. However, when finishing a simulation, the current state

s used in the simulation for the node h will be added to the particle filter Fh of the

node. This strategy maintains and updates the belief’s estimation at all levels in the

tree. When we finish the search, we select the best action based on the estimated

rewards (Equation 2.7) of each node to determine the most promising path to follow

in the real environment.

After taking an action and receiving a new real observation from the environment,
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we restart the POMCP algorithm. However, the initial steps are slightly changed

to maintain the knowledge and update the current information, i.e., perform online

planning. Unlike the first iteration, we now update the root node by traversing the tree

based on the action taken and the most recent observation from the environment and,

we update the particle filter of our root node by reinvigorating our belief, generating

new states using the uniform distribution while maintaining promising states for

simulation. Then, after performing these updates, we restart the search and repeat

the whole process. Algorithm 2 illustrates the POMCP’s implementation.

Algorithm 2 POMCP’s Planning

1: procedure Search(hr)

2: while Timeout() is False do

3: if Fr = ∅ then s ∼ Uz
4: else s ∼ Fr

5: Simulate(s, hr, 0)

6: return argmax
a∈A

V(ha)

1: procedure Expand Node(h)

2: for a ∈ A do

3: T(ha)← (ha, Vinit(ha), Ninit(ha), ∅)

1: procedure Rollout(s, h, d)

2: if d < depthmax then return 0

3: a ∼ πrollout(h, ·)

4: (s′, z, r) ∼ G(s, a)

5: return r + γRollout(s′, haz, d+ 1)

1: procedure Simulate(s, h, d)

2: if d < depthmax then

3: return 0

4: else if is terminal(s) then

5: return 0

6: if h /∈ T then

7: Expand Node(h)

8: return Rollout(s, h, d)

9: a← argmax
a∈A

UCB1(h, a)

10: (s′, z, r) ∼ G(s, a)

11: R← r + γSimulate(s′, haz, d+ 1)

12: Fh ← Fh ∪ {s}

13: N (h)← N (h) + 1

14: N (ha)← N (ha) + 1

15: V(ha)← V(ha) + R−V(ha)
N (ha)

16: return R

2.2.3 Single-agent Model Approach for Ad-hoc Teamwork

As we discussed above, for the OEATE’s methodology [28] (which will be presented in

details in Chapter 5), we will be using a single-agent Markovian model to represent the

world. We consider that, given a state s, a non-strategic agent ω ∈ Ω has an unknown
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pdf across a set of actions defined by its internal features. This pdf is going to affect

the probability of the next state because it defines each agent’s transition function.

Therefore, we can say that the uncertainty in the Markovian model comes from the

randomness of the actions of the ω agents, besides any additional stochasticity of the

environment. Additionally, two main features define an agent’s pdf: its type θ ∈ Θ

and its parameters p. In general lines, the type θ of an agent is a policy function πθ

that, given a state s and a vector of parameters p, returns the actions probabilities

for the agent. Mathematically, it can be described by πθ(s, a,p) = [0, 1].

Considering the application of this model in a Monte-Carlo tree search-based

algorithm, at each node transition, ϕ samples ω agents’ actions from their (estimated)

pdfs across types and parameters. The current outcome from the pdfs will determine

the next state s′ for the next node in the tree. Note that the agents’ types and

parameters are not observable, but in our MDP model, that is not directly considered.

Estimated types and parameters are used during online planning, creating an

estimated transition function. The actual decisions made by the non-strategic

agents are observable in real-world transitions without any direct information about

type and parameters (i.e., information exchange between agents).

As mentioned earlier, in the OEATE’s task-based ad-hoc team, ϕ attempts to

help the team get the highest possible reward. For this reason, ϕ needs to find the

optimal value function, which maximises the expected sum of discounted rewards

E[
∑∞

j=0 γ
jrt+j], where t is the current time, rt+j is the reward ϕ receives at j steps

in the future, γ ∈ (0, 1] is a discount factor. Also, we consider that we obtain the

rewards by solving the tasks τ ∈ T. That is, we define ϕ’s reward as
∑
r(τ), where

r(τ) is the reward obtained after the task τ completion. Note that the sum of rewards

is not only across the tasks completed by ϕ, but all tasks completed by any set of

agents in a given state. Furthermore, there might be some tasks in the system that

cannot be completed without cooperation between the agents, so the number of

required agents for finishing a task τ depends on each specific task and the set of

agents that are jointly trying to complete it.
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2.2.4 Adversarial Tree-search-based Approach

The A-MCTS, as the traditional MCTS, aims to find the optimal action a∗ for

a given state s and agent by simulating the world steps within a tree structure.

However, besides considering the perspective of the main agent ϕ, which is running

the algorithm and reasoning about the world, it also considers the perspective

of an adversary ψ taking actions and expanding the tree similarly to the main

agent. Overall, the A-MCTS adapts the traditional 2-player MCTS idea, while using

its architecture, to enable the representation and simulation of different potential

adversaries taking actions in our adversarial context and defined environment [23].

In our model, each node in the A-MCTS’s tree Tψ is represented by (s, V , N ,

ϕ, ψ), i.e., a tuple with a state s, a value V(s, a), a visitation count N (s, a)

for each action a ∈ A, the agent ϕ which will define the perspective of the main

agent’s actions simulation within the tree and the ψ, which will define the adversarial

perspective in the tree search process. As for the traditional MCTS, the value of

the node represents the expected cumulative reward for the simulated states and the

number of visits to a state s is represented by N (s) =
∑

a∈AN (s, a).

The inclusion of these two different perspectives in the tree differentiates

the MCTS from the A-MCTS approach by the definition of a minimisation and

maximisation (min-max) search process in the tree; with ϕ trying to maximise the

performance of the team and ψ agent trying to minimise performance by disrupting

the coordination of the team. In terms of tree structure, the A-MCTS is similar

to the MCTS, where every node is connected by action to the next ones, but it

presents a similar alternation of nodes as in the POMCP’s tree. However, instead of

alternating action and observation nodes, it alternates ϕ and ψ nodes.

As explained in Section 2.2.1, while performing simulations within an A-MCTS,

each state in the search tree is also viewed as a multi-armed bandit. In a traditional

maximisation problem, UCB1 tries to increase the value of less-explored actions

by attaching a bonus inversely proportional to the number of times each action is

tried (Equation 2.5). Analogously, while solving a minimisation problem, the UCB1
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function considers the subtraction of the exploration value to correctly balance the

exploration and exploitation levels, as the following:

UCB1min(s, a) := V(s, a)− c

√
log(N (s))

N (s, a)
(2.8)

Algorithm-wise, the A-MCTS follows the same procedure explained for the

MCTS (Section 2.2.1), considering the initialisation of the tree, a search process with

simulations and rollouts and, the selection of the best action before restarting the

process. However, while performing the tree expansion, it considers the sequence of

actions taken by ϕ and ψ to find the best path that maximises or minimises reward

collection. Therefore, the path in the tree is the succession of action pairs taken by

ϕ and ψ instead of a sequence of actions taken only by the ϕ agent, such as in the

MCTS. Mathematically, the sequence can be represented by {aϕ0a
ψ
0 , a

ϕ
1a

ψ
1 , ..., a

ϕ
Da

ψ
D},

where D represents the max depth of the tree.

2.3 Information Analysis

Having the ability to analyse available information delivered by the environment

stands as a relevant feature for agents performing decision-making in partially

observable scenarios. This capacity becomes particularly significant because it offers

plenty of opportunities to enhance an agent’s performance, even when no clear path

is available to achieve it. When we discuss the application of information analysis,

our focus lies on the implementation of external or auxiliary methods integrated into

online planning algorithms to support reasoning, mainly through the development

of statistical approaches. In essence, this aligns with several works in the current

state-of-the-art of computing, which focus on the Data Science development to

provide valuable contributions to the community.

Therefore, this section is dedicated to a detailed exploration of the statistical

approaches employed in this thesis, with a specific emphasis on enhancing online

planning under uncertainty. We commence by introducing an entropy analysis
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technique, presenting the application and development of Shannon’s Entropy solutions

(Section 2.3.1), a key component in the IB-POMCP proposal. Subsequently, we

present an estimation technique employed in BAE – the Bayesian inference approach

(Section 2.3.2). Notably, OEATE is not present in this section, as its approach

considers the application of a Genetic Algorithm-inspired approach, which we

adapted to aggregate information and navigate the scenarios with uncertainty, mainly

regarding the estimation of types and parameters for unknown teammates.

2.3.1 Shannon’s Entropy

The calculation of entropy in scenarios with uncertainty stands out as a powerful

approach because it can provide a quantifiable measure to asses the randomness

level in a decision-making process. In general lines, we can say that entropy can

measure the “surprise” or “ambiguity” present in an environment. By quantifying

uncertainty, calculating entropy enables decision-makers and algorithms to prioritise

actions, allocate resources, and make informed choices in situations where clarity is

elusive, hence, it can contribute significantly to the enhancement of performance in

complex and dynamic environments. A traditional approach to measure uncertainty

in stochastic processes is using the Shannon’s Entropy equation [97], described by:

H(X) = −
n∑
i=1

P (xi) log(P (xi)), (2.9)

where X is a discrete random variable and xi are the possible outcomes from X.

Again, the core idea of this approach is to find a reliable measure for “information”,

that is, to calculate the degree of surprise of an event given the available space of

possibilities. If an event often occurs, the information inside the event is likely not

“novel”. Hence, there is no “surprise” when it occurs. On the other hand, if an event

rarely occurs, the “surprise” is greater. Comparing both situations, we can follow

events with higher surprise to explore the space of possibilities, and safely follow

events with lower surprise to exploit the environment, hence, we can adapt an agent’s

behaviour according to the entropy of the current state.
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For IB-POMCP, we adapt Shannon’s Entropy to retrieve information for the

POMDP model’s observation space and show that it is possible to surpass the

limitation of traditional reward-guided planning methods and perform an efficient

decision-making process even when no reward is available in the reasoning horizon.

All details about our modifications and implementation is presented in Chapter 4.

2.3.2 Bayesian Inference

Bayesian inference is a powerful tool that has shown diverse benefits when applied

together with decision-making processes. By calculating and updating the probability

of a hypothetical event, this statistical tool can approximate the uncertainty of the

environment as more evidence or information becomes available, perfectly fitting

online planning solutions. However, unlike traditional approaches, which solely

rely on observed data, Bayesian inference incorporates prior knowledge or beliefs

about a situation, allowing the building of a more flexible and robust analysis of the

uncertainty. Mathematically, it is represented by the equation:

P (A|B) =
P (B|A)P (A)

P (B)
(2.10)

In the equation, A represents the hypothesis and B is the observation or evidence

from the model. Hence, P (A) is the prior probability, P (B) the marginal likelihood,

P (B|A) the likelihood of observing B given A, and P (A|B) our posterior probability.

In this thesis, we suggest its application together with our adversarial estimation

solution, BAE (Chapter 6). We develop its application to estimate the probability of

an agent being an adversary (hypothesis), given the action performed by it in the

real world (evidence). By adapting our tree search process together with the idea

of roles in a Multi-Agent Reinforcement Learning (MARL) system, modelled as an

MMDP, we enable the estimation of teammates’ and adversaries’ intentions.
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2.4 Estimation Methods

In the literature, several different methods are proposed for the estimation or

approximation of latent features of unknown agents in collaborative environments.

As discussed before, learning these features and approximating their behaviour

can enhance an ad-hoc agent capability to coordinate and cooperate with potential

teammates. Therefore, in this section, we introduce two different type and parameters

estimation methods used as baselines in this thesis: AGA and ABU. Both algorithms

will be evaluated under different experimental settings in Chapter 5 and 6, where we

introduce OEATE and BAE, respectively.

• Algorithms Outline – The Approximate Gradient Ascent (AGA), and the

Approximate Bayesian Update (ABU) estimation methods are introduced by Albrecht

and Stone (2017) [5]. In that work, the probability of taking the action atω at time step

t, for agent ω, is defined as P(atω|H t
ω,Θi,p), where H t

ω = (s0i , ..., s
t
i) is the ω agent’s

history of observations at time step t, Θi is a type in Θ, and p is the parameter

vector which is estimated for type Θi. For the estimation methods, a function f is

defined as f(p) = P(at−1
ω |H t−1

ω ,Θi,p) where f(p) represents the probability of the

agents’ previous action at−1
ω , given the history of observations of agent ω in previous

time step, H t−1
ω , type Θi, and its corresponding parameter vector p. After estimating

the parameter p for agent ω for the selected type Θi, the probability of having type

Θi is updated following:

P(Θi|H t
ω) ∝ P(at−1

ω |H t−1
ω ,Θi,p)× P(Θi|H t−1

ω ) (2.11)

Iteratively, they showed that both methods are capable of approximate the type

and parameters and improve the performance in the ad-hoc teamwork context.

• AGA – The main idea of this method is to update the estimated parameters of

an agent ω by following the gradient of a type’s action probabilities based on its

36



2.4. Estimation Methods

parameter values. Algorithm 3 provides a summary of this method.

Algorithm 3 Approximate Gradient Ascent

1: procedure AGA Estimation(pt−1, d)

2: Collect samples D = (p(l), f(p(l)))

3: Fit polynomial f̂ of degree d to D

4: Compute gradient ∇f̂(pt−1) and step size λt

5: Update estimate pt

First of all, the method collects samples (p(l), f(p(l))), and stores them in a set

D (Line 2). The method for collection could be, for example, using a uniform grid

over the parameter space that includes the boundary points. After collecting a set

of samples, the algorithm, in Line 3, fits a polynomial f̂ of some specified degree d

according to the collected samples. By fitting f̂ , the gradient ∇f̂ with some suitably

chosen step size λt is calculated in the next Line 4. At the end, in Line 5, the

estimated parameter is updated as presented in Equation 2.12.

pt = pt−1 + λt∇f̂(pt−1) (2.12)

These steps describe AGA to estimate the agent’s parameters and type iteratively.

For further details, we recommend reading Albrecht and Stone (2017) [5].

• ABU – In this method, rather than using f̂ to perform gradient-based updates,

Albrecht and Stone use f̂ to perform Bayesian updates that retain information from

past updates. Hence, in addition to the belief P(Θi|H t
ω), agent ϕ now also has a

belief P(p|H t
ω,Θi) to quantify the relative likelihood of parameter values p, for agent

ω, when considering type Θi. This new belief is represented as a polynomial of the

same degree d as f̂ . Algorithm 4 provides a summary of the ABU method.
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Algorithm 4 Approximate Bayesian

1: procedure ABU Estimation(p)

2: Fit f̂ to f as in Algorithm 3

3: Compute polynomial product ĝ = f̂ · P(p|H t−1
ω , θi)

4: Collect samples D = (p(l), ĝ(p(l)))

5: Fit new polynomial ĥ of degree d to D

6: Compute integral I =
∫ pmax

pmin ĥ(p)dp

7: Set new belief P(p|H t
ω, θi) = ĥ/I

8: Extract estimate pt from P(p|H t
ω, θi)

After fitting f̂ (Line 2), the polynomial convolution of P(p|H t−1
ω ,Θi) and f̂ results

in a polynomial ĝ of degree greater than d (Line 3). Afterwards, in Line 4, a set of

sample points is collected from the convolution ĝ in the same way that is done in

Approximate Gradient Ascent, and a new polynomial ĥ of degree d is fitted to the

collected set in Line 5. Finally, the integral of ĥ under the parameter space, and

the division of ĥ by the integral is calculated, to obtain the new belief P(p|H t
ω,Θi).

This new belief can then be used to obtain a parameter estimation, e.g., by finding

the maximum of the polynomial or by sampling from the polynomial. For further

details, we also recommend reading Albrecht and Stone (2017) [5].
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Related Works

In this chapter, we will carry out a comprehensive discussion about the state-of-the-

art contributions and how different approaches have inspired this thesis and research

projects. Intending to facilitate understanding and readability, we organised the

chapter into sections and related contributions by groups. Each section categorises

the major idea of each group and summarises the main strategy of those.

In Section 3.1, we review pertinent proposals in the literature for online planning

under uncertainty, which considers the presentation of latent function approximation

methods (Section 3.1.1), algorithms employing belief-dependent approaches for value

approximation (Section 3.1.2), time-constrained planning algorithms (Section 3.1.3),

entropy-based methods (Section 3.1.4), a discussion surrounding information-based

sampling approaches (Section 3.1.5) and alternative options for online planning

algorithms under partial observability, beyond POMCP (Section 3.1.6).

Moving on to Section 3.2, we delve into significant contributions from the teamwork

and ad-hoc teamwork literature relevant to this thesis. This includes discussions

on type-based parameter estimation algorithms for handling unknown teammates

(Section 3.2.1), the application of complex models for learning environmental features,

such as the transition function (Section 3.2.2), the development of task-oriented

approaches to solving distributed task problems (Section 3.2.3), the representation

of ad-hoc teamwork problems in a MRTA model (Section 3.2.4), and the application
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of genetic algorithm strategies for type and parameter estimation (Section 3.2.5).

Finally, to conclude this chapter in Section 3.3, we address the Adversarial

Identification problem and explore existing state-of-the-art solutions. We start

the discussion with the application of task-based algorithms and teamwork models

extended for the adversarial context and detection problem (3.3.1). Subsequently,

we delve into the application of neural network solutions for the identification of

adversaries in the environment (Section 3.3.2).

3.1 Online Planning under Uncertainty

In the current state-of-the-art, POMCP [93] remains a relevant solution for problems

that require the application of intelligent agents to perform online planning and

handle uncertainty at the same time. Due to its adaptability and problem-solving

capability across the most diverse domains, POMCP is still inspiring different works

in the literature and presenting fresh solutions for the community [7, 71, 73, 113].

However, many of these proposals are tailored to specific problems, leaving room for

improvement, especially when handling sparse reward scenarios.

One cause of this constraint is the recurrent “reward-guided paradigm” in these

methods’ planning. Most of the current solutions focus on planning solely through

the collection of rewards to value actions. Consequently, if no reward is available

within the planning horizon, making decisions becomes challenging and expensive.

The Upper Confidence Bound (UCB1) [63] is a relevant algorithm in the literature

for evaluating and selecting actions in online planning solutions and is recurrently

used inside Monte-Carlo decision-making frameworks [51, 86, 96]. This method,

besides being useful, is still attached to the aforementioned “reward-guided paradigm”

of planning. Note that, there are also other action selection methods available in

the literature, such as the Thompson Sampling method [9] and the PUCT algorithm

[94], and they also still present the same constraint.

In this thesis, we propose a novel approach that is capable of addressing this
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gap by shifting POMCP and UCB1’s reward-guided planning approach to our

“information-guided planning strategy”. Our new approach can leverage observation

space entropy (information) and guide the agent to promising spots from where it

easily solves such scenarios. IB-POMCP, together with our novel I-UCB function,

present our advancement in this area, besides introducing a new perspective to

the community in terms of developing online planning algorithms under partial

observability. Moreover, our solution is lightweight and generic to tackle Partially

Observable Markov Decision Problems (POMDPs). Our proposed I-UCB, differently

from PUCT (AlphaGo) [94] for example, well-fits partially observable scenarios

while enhancing POMCP planning capabilities through an entropy-based perspective,

without relying on pre-trained models or a large amount of data.

3.1.1 Latent function approximation

One common strategy suggested by the literature to solve online planning problems

while handling uncertainty is through the application of methods capable of

approximating the latent world functions to handle the lack of knowledge [42, 45, 62,

96]. Katt, Oliehoek, and Amato (2019) [56], for example, propose the FBA-POMDP,

a framework that can learn a compact model of the world’s dynamics of POMDPs.

Through the planning process, they develop a belief tracking method based on the

likelihood of belief that improves POMDP’s simulation quality, hence, the planning

quality and algorithm performance. However, these approaches are directly bounded

by the belief in space dimensionality, which can grow exponentially and hence require

exponentially more resources as the complexity of the problem increases [55].

We propose the extraction of information using only the observations received

from the simulations and the real world, improving the reasoning without requiring

significantly more resources. In simpler terms, we intentionally designed our reasoning

process to leverage the information gain generated from both simulated world

scenarios in the agent’s mind and real-world observations. By the application of

a statistical approach, we could retain the information value without demanding
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additional data or previous training. Differently from the above solutions, our

calculations are also well-designed to fit the online planning procedure, updating its

value at each iteration without spending significantly more time.

3.1.2 Belief-dependent approaches

Some studies suggest the application of belief-dependent POMDP models to improve

POMCP’s reasoning capabilities [8, 65]. Under certain assumptions, these models

have shown great efficiency when solving problems with large action and observation

spaces, since they are capable of boosting the decision-making process’s quality

through the approximation of belief-depended rewards to value actions for the agent

during its planning and reasoning procedure.

A recent proposal that shows great advancement in this field is ρ-POMCP [99],

an efficient online planner that boosts the POMCP’s search process by estimating

belief-dependent rewards. This method proposes the propagation of more than one

state during the simulation and the estimation of a single belief reward at the end of

the process. This strategy has shown great capability in handling partially observable

scenarios, mainly through the enhancement of the quality in estimating the true state

of the problem. However, ρ-POMCP relies on explicit access to the observation and

transition function to calculate its belief rewards. The application of these functions

also leads the algorithm to struggle while reasoning under time constraints.

In order to handle time-constrained problems, they propose TB ρ-POMCP [99].

This version of ρ-POMCP requires the definition of a time budget (TB) to run,

which will define the maximum time available for the algorithm to reason about

the problem before choosing the best action. Although it solves the time constraint

problem, it greatly penalises the algorithm’s efficacy in planning the best action.

Therefore, in this thesis, we show that it is possible to improve planning using

less information and without significant impact on the reasoning time. Our solution,

IB-POMCP, can perform planning faster and better than different baselines in

several benchmarks without requiring knowledge about the observation and transition
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functions to reason about the problem. This approach makes our solution generic since

retrieving these world’s functions can be challenging or even impossible depending

on the target domains of analysis.

3.1.3 Time-constrained planning

Considering the above discussion, time-constrained problems are prevalent in the

literature and often applied for the evaluation of online planning algorithms. In

real-time strategy (RTS) games, a commonly suggested approach to tackle these

problems considers the usage of macro and micro predefined coordination scripts

to support the decision-making and handle multiple levels of coordination [74, 112].

Although solutions in RTS handle several levels of coordination, these methods still

require the development of precise behavioural templates and complex policies to

enable an efficient action planning procedure.

Note that, besides making decisions about the actions, RTS’s methods also define

a hierarchy to execute the plan considering the entire world state (i.e., macro and

micro-states of the problem). This hierarchical model also appears in multi-agent

swarm research, where they avoid developing a complex planning process to save

time while estimating unknown features of the environment and reasoning about

multiple levels of execution. Pelcner et al. (2020) [81], for example, suggest the

application of a Flat Monte Carlo approach to achieve this objective.

In this thesis, we propose solutions where the execution of efficient planning under

partial observability is possible from scratch for every problem without penalising the

planning quality. That is, we do not require pre-training or the creation of auxiliary

policy models to execute our reasoning process. IB-POMCP and BAE, for example,

only require the definition of the Markovian model in order to start planning. On

the other hand, OEATE requires templates to perform type estimation, however,

we show that our approach is capable of improving planning even in the absence of

good templates to approximate the agents’ behaviour.
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3.1.4 Entropy-based methods

Regarding the entropy application, Xiao et al. (2019) [108] propose the MENTS

algorithm that augments the MCTS process using a maximum entropy policy

optimisation, evaluating each search node by softmax values back-propagated from

simulation. In a similar line of work and as a different version of MENTS, Kozakowski,

Pacek, and Miloś (2022) [61] propose the ANTS algorithm which proposes an adaptive

structure to the learning and planning process combining it with the maximum entropy

paradigm for tree-search approaches. Moreover, to better perform the optimisation,

ANTS suggests the application of Q-networks to initialise leaves and a pseudo reward

shaping technique to handle the inflation and differences of backpropagated rewards

in a first visit to a state. This technique mitigates the possibility of the planner to

start deepening the same, single path, because it keeps receiving high values along it.

Both of these works under fully observable models and suggest the employment

of entropy as a regulariser to augment the standard expected reward objective as

in an optimisation problem. MENTS and ANTS, while running their optimisation,

assume that their model provides the knowledge about the maximum number of

steps at each episode, information which leads the algorithm to avoid the sparsity

problem since it enables the agent to reason about the complete problem and the

possible plans (sequence of actions) at every episode.

Trivially different from them, in the proposal of IB-POMCP (Chapter 4), we

study the problem from the perspective of partially observable models. Instead of

looking at the problem as a reward optimisation problem, we propose to augment

the planning process by including the entropy value into consideration. In other

words, we quantify the value of observations (delivered by a POMDP model) and

add its value to the tree search process, avoiding working on the space of rewards

and latent functions. Our adopted perspective also avoids problems related to the

sparsity of rewards in the environment but relies on less information.

We also assume strong constraints to the model. Besides the partial observability,

the agent must reason considering a limited number of steps (lower than the necessary
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to solve the problem) and a limited number of times (in terms of the number of

simulations performed during the search process). Additionally, we assume that

every execution of the problem is performed from scratch and no knowledge is

carried between executions, therefore, using trained networks or shaped initialisation

surpasses our defined constraints.

3.1.5 Information-based Sampling Approaches

There is another line of research that aims at refining decision-making processes which

explores the optimisation of agents’ action selection approaches using entropy-based

strategies, but for single-period problems, i.e., one action problems [49, 68, 104].

Russo and Roy (2014) [88] introduced the Information-Directed Sampling (IDS)

method, which represents an action selection approach that leverages the mutual

information between the true optimal action and the next observation in order to

minimise the regret in single-period optimization problems. While IDS shares certain

similarities with our proposed I-UCB approach, particularly in the application of

an entropy-based technique for action selection, there are some key points that

differentiates it from our work

For example, IDS requires a reliable approximation of transition function in order

to optimise the action selection process. This requirement already distinguishes our

work from IDS’s proposal, since we assume that such knowledge may not be readily

available to the agent before problem execution and/or can not be efficiently estimated

during execution time. IDS utilises this knowledge to approximate the expected

regret of its decision-making process within a finite time and subsequently optimise

the search for the best action, a strategy akin to that proposed by Katt, Oliehoek,

and Amato (2019) [56], albeit focusing on the action space as the optimisation target

instead of the reward function. In contrast, I-UCB enhances the decision-making

process without requiring any additional information about the problem besides the

POMDP model.

Furthermore, while IDS shows some potential in its application to various problems
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due to its generalised problem formulation for different multi-armed bandit settings,

its adaptation to sequential decision-making problems may necessitate fine empirical

and theoretical adjustments, particularly concerning the management of information

for its execution under partial observability’s constraints. What we mean is, although

IDS aims to minimise the expected regret over a finite simulation horizon for generic

problems, performing the optimisation of its policy in sequential decision-making

problems can be proved unreliable due to the size and nature of the belief state

space in these domains, which can be non-stationary, and due to the aggregation of

uncertainty across multiple steps, which can significantly increase the necessary time

of making a decision. I-UCB was specifically designed to address these challenges

within reasonable simulation and time horizons. Intead of directly modelling a

latent function to be optimised in order to improve decision-making, IB-POMCP

performs the approximation using its online sampling technique, which can handle

the non-stationarity of the environment besides maintain the performance working

under time constraints (i.e., small time windows to reason).

Finally, we recognise IDS as an important work, which can also contribute to

improvements in IB-POMCP itself, and as a potential benchmark for evaluating the

efficiency of our proposal in future works. However, since our current focus lies in

studying sequential decision-making problems rather than single-period problems, and

adapting IDS to our context would involve revisiting the method’s implementation

besides its mathematical model, we opted not to include it in our study (Chapter 4).

3.1.6 Other options to POMCP

Finally, although we focus on improving POMCP-based methods, our contributions

can also benefit other algorithms, such as DESPOT-based solutions [110].

Different from POMCP, DESPOT’s main focus is on filtering a large observation

space to plan using a sparse approximation of the problem, hence, a smaller reasoning

space. However, the algorithm still struggles in large action spaces, and/or sparse

reward scenarios where the optimal policy could be long (i.e., requiring many steps
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to be modelled). Our proposal addresses POMDPs featuring sparse rewards in an

efficient manner while running the search process from scratch.

3.2 Teamwork and Ad-hoc Teamwork Literature

The literature introduces ad-hoc teamwork as a remarkable approach to model MAS

[95, 2]. This approach presents the opportunity to achieve the objectives of multiple

agents in a collaborative manner that surpasses the requirement of designing a

communication channel for information exchange between the agents, building an

application that does not relies on prior coordination protocols or the collection

of previous data for trainning. Furthermore, these models enable the creation

of algorithms capable of acting in an online fashion, dynamically adapting their

behaviour according to the environment and current teammates.

3.2.1 Type-based parameter estimation

Type-based reasoning and parameters learning algorithms have also shown great

capabilities in solving complex decision-making problems using fine-grained models,

which evaluate the observations and estimate each agent’s type and parameters to

perform an online planning procedure [3, 4, 12, 14, 15]. These lines of work propose

the approximation of agents’ behaviour to a set of potential types in order to improve

the ad-hoc agents’ decision-making capabilities. Moreover, they also allow a quick

online estimation of agents’ strategies without requiring an expensive training process

for learning their policies from scratch. However, if a set of potential types and the

parameter space cannot be defined through domain knowledge, they would have to

be learned from previous interactions [15].

Albrecht and Stone (2017) [5], in particular, introduced the AGA and ABU

algorithms for type-based reasoning of teammates parameters in an on-line manner,

which are the main inspirations for this work. Both methods sample sets of

parameters (from a defined parameter space) to perform estimations via gradient
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ascent and Bayesian updates, respectively. However, by focusing on decentralised

task execution in ad-hoc teams, our novel method surpasses their parameter and

type estimations when the number of teammates gets larger or more tasks are

accomplished, consequently leading to better team performance. We have extended

their work with OEATE, enabling the execution in partially observable environments,

and BAE, handling unknown templates and adversaries.

On the other hand, Hayashi et al. (2020) [48], propose an enhanced particle

reinvigorating process that leverages prior experiences encoded in a recurrent neural

network (RNN), acting into a partial observable scenario in their ad-hoc team.

However, they need thousands of previous experiences for training the RNN, while

still requiring knowledge of the potential types. In this thesis, all our approaches

can start from scratch at every single run without requiring pre-training.

Concerning problems with partial observability, POMCP is usually employed

for online planning [93]. However, it was originally designed for a discrete state

space, making it harder to apply POMCP for (continuous) parameter estimation.

We apply POMCP in combination with our algorithm OEATE, which enables the

decision-making on partial observable scenarios and improves the POMCP search

space, given the OEATE’s estimation of the agents’ parameters. We also evaluate

experimentally the performance of POMCP for our problem without the embedding

of parameter estimation algorithms.

3.2.2 Complex models application

Guez, Silver, and Dayan (2013) [46] proposed a Bayesian MCTS that tries to directly

learn a transition function by sampling different potential MDP models and evaluating

it while planning under uncertainty. Our planning approach in OEATE (inspired by

Albrecht and Stone (2017) [5] and Barrett et al. (2013) [14]) is similar, as we sample

different agent models from our estimations. However, instead of directly working on

the complex transition function space, we learn agents’ types and parameters, which

would then translate to a certain transition probability for the current state.

48



3.2. Teamwork and Ad-hoc Teamwork Literature

Rabinowitz et al. (2018) [83] introduce a “Machine Theory of Mind” - or purely

the Theory of Mind (ToM) approach –, where neural networks are trained in general

populations to learn agent types, and the current agent behaviour is then estimated in

an on-line manner. Similarly to learning policies from scratch, however, their general

models require thousands (even millions) of observations to be trained. Besides, they

used a small 11× 11 grid in their experiments, while we scaled all the way to 45× 45

to estimate the behaviour of several unknown and distinct teammates. On the other

hand, if a set of potential types is not given by domain knowledge, then their work

serves as another example of how types could be learned.

A different approach that enables the learning of teammates’ models and reasoning

about their behaviour in planning is given by I-POMDP-based models [44, 36, 50,

30]. However, they are computationally expensive, assuming all agents are learning

about others recursively and considering agents that receive individual rewards

(processing estimations individually). All our proposed methods in this thesis

represent lightweight solutions that do not require a large amount of data, memory

or an exhaustive time to run.

Eck et al. (2020) [38] addressed this problem and recently proposed a scalable

approach using the I-POMDP-Lite Framework in order to consider large open agent

systems. In their approach, an agent considers a large population by modelling a

representative set of neighbours. They focus on estimating how many agents perform

a particular action, hence their approach is not applicable to the task-based problems

that we consider in this work. Additionally, although they present a scalable approach

in terms of team size, they still consider only small 3× 3 scenarios. In this thesis, we

show scalability regarding the team size, the dimensions of the map and the numbers

of simultaneous tasks in the scenario for OEATE and BAE.

Rahman et al. (2020) [84] also handle open agent problems and propose the

application of a Graph Neural Network (GNN) for estimating agents behaviours.

Similarly to other neural network-based models, it needs a large amount of training,

and their results are limited to a 10 × 10 grid world with 5 agents. Their agent
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parametrisation is also more limited, with only 3 possible levels in the level-based

foraging domain, which is directly given as input for each agent (instead of learned).

Overall, regarding mainly the proposal and development of OEATE and BAE,

we propose lighter MDP/POMDP models, focused on decentralised task execution,

with a single team reward, that allows us to tackle problems with a larger number of

agents, and tasks in bigger scenarios in the partially observable domain. Also, we

build a model for every single member of the team. On the other hand, open agent

systems are not in the scope of our work, and we consider fixed team sizes.

3.2.3 Task-oriented approaches

Decentralised task execution problems in ad-hoc teamwork are one of the key ideas

of this thesis. Chen et al. (2019) [31] present a related approach, where they focus

on estimating tasks of teammates, instead of learning their model. While related,

they focus on task inference in a model-free approach, considering that each task

must be performed by one agent, and the ad-hoc agent goal changes to identifying

tasks that are not yet allocated. Our work, on the other hand, combines task-based

inference with model-based approaches and allows for tasks to require an arbitrary

number of agents. Additionally, their experiments are on small 10× 10 grids and

consider a lower number of agents than us under this configuration.

There are also works that attempt to identify the task being executed by a team

[72]; or an agent’s strategy for solving a repetitive task, enabling the learner to

perform collaborative actions [102]. Our work, however, is fundamentally different,

since we focus on a set of (known) tasks which must be completed by the team.

Another approach suggested in the literature for task-based problem optimisation

is the Multi-Agent Markov Decision Problem (MMDP) models [33, 34]. These

models allow agents to decide their target task autonomously and are focused on

estimating teammates’ policies directly at specific times in the problem execution.

Given knowledge of the MMDP model, those approaches compute the best response

policy (at the current time) for the other agents and use those models while planning.
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However, they do not consider learning a probability distribution over potential types

and estimating agents’ parameters like in our approach. OEATE is capable of using

a set of potential types and space of parameters to learn the probabilities of each

type-parameter set up for each teammate in an online fashion.

Concerning task allocation, MDP-based models are commonly applied [75, 76]

in the ad-hoc teamwork context. For instance, it can be framed as a multi-agent

team decision problem [89], where a global planner calculates local policies for each

agent. Auction-based approaches are also common, assigning tasks based on bids

received from each agent [70]. These approaches, however, require pre-programmed

coordination strategies, while we employ online learning and planning for ad-hoc

teamwork in decentralised task execution, enabling agents to choose their tasks

without relying on previous knowledge of the other team members, and without

requiring an allocation by centralised planners/controllers.

3.2.4 MRTA model for ad-hoc teamwork

Multi-Robot Task Allocation (MRTA) models also represent an alternative approach

to solving problems in the ad-hoc teamwork context [66, 106]. Intending to maximise

the collective completion of tasks, these models employ decentralised task execution

strategies that work in an online manner without a central learning agent. Each

agent develops its own strategy based on the received observations. Similarly to

our proposal, MRTA models implement a task-based perspective to deliver solutions

where agents know and seek tasks distributed in an environment while reasoning.

However, MRTA models assume knowledge about the teammates’ types and the tasks

that they are pursuing. Furthermore, this assumption holds because they consider

this information to be available in the environment, where agents can get it through

observation (e.g., agents choosing tasks of different colours) or reliable communication

channels for information exchange between the agents. As we mentioned earlier, there

are circumstances where communication channels are unreliable, and agents cannot

fully trust them to send or receive information. OEATE predicts their teammates’
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targets while learning their types and parameters, besides handling problems where

these assumptions are not secured. BAE is also capable of estimating the true

adversary without relying on communication channels.

3.2.5 Genetic algorithms’ inspiration for OEATE

OEATE is inspired by Genetic Algorithms (GA) [52] since our main idea is to keep

a set of estimators, generating new ones either randomly or using information from

previously selected estimators. However, GAs evaluate all individuals simultaneously

at each generation, and usually, they are selected to stay in the new population or for

elimination according to its fitness function. Our estimators, on the other hand, are

evaluated per agent at every task completion, and survive according to the success

rate. The proportion of survived estimators are then used for type estimation, and

new ones are generated using a similar approach to the usual GA mutation/crossover.

Moreover, we choose the application of GA concepts in the works considering our

empirical and theoretical results. As an empirical result, the employment of the GA

approach showed better results in comparison with the Bayesian Updates (considering

the performance of AGA and ABU against OEATE). As a theoretical result, our

solution does not depend on finite-dimensional representations for parameter-action

relationships and can provide a more robust way to explore the whole parameter

space by using multiple estimators, which mutate to form even better estimators.

3.3 Adversarial Identification among a Team

The estimation of the latent features of the environment, including features from other

agents sharing the same scenario, presents noteworthy contributions to the Artificial

Intelligence (AI) community [2, 48]. Overall, these solutions improve coordination by

boosting the intelligent agent’s knowledge of their teammates and the surrounding

world, as discussed in Section 3.2. However, they typically fail when their models for

types and world representation do not adequately fit the target problem, especially

52



3.3. Adversarial Identification among a Team

when facing agents running strategic models (such as an adversary). Note that,

when we say “strategic”, we refer to models where agents are capable of modelling

other agents in their reasoning process while “non-strategic” agents do not model

teammates and typically follow fixed rules for planning [107].

3.3.1 Task-based algorithms and teamwork models in the

adversarial detection context

AGA and ABU base their estimation on sampling and testing a set of parameters that

approximate the type probabilities for each agent in the environment [5] using gradient

ascent or bayesian updates for estimation, respectively. However, these methods

are constrained by the quality of their templates (which are usually reactive model

templates working in limited parameter spaces) because they apply this type-based

approach to handle the problem. If there is no good template to estimate an agent’s

behaviour (e.g. an adversary), the method might fail. Note that, this limitation also

affects our proposal, OEATE (Chapter 5), which runs a similar approach to AGA and

ABU under the task-oriented teamwork model. Noticing this constraint, we develop

our research further and propose BAE with a new approach for estimating adversaries

without relying on template models, coined Q-valued Bayesian Estimation (QvBE).

We suggest the application of this approach inside BAE, requiring only the MDP

model to identify adversaries and, consequently, improve planning.

Another method developed from a previous version of OEATE, the Online

Estimation Ad-hoc Teamwork Allocation (OEATA) algorithm [91], is OEATA with

Adversary (OEATA-A), which is a task-oriented estimation method that not only

considers type and parameter estimation using predefined templates but also focuses

on identifying “adversarial” agents within a team [90]. While the paper reports

promising results, it presents three crucial problems: (i) Its adversarial detection

strategy does not directly impact or improve the ad-hoc agent’s planning process

because it represents a parallel process to planning, (ii) It often misclassifies idle

or less capable agents as adversaries due to its task-oriented estimation approach,
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i.e., agents that rarely accomplish tasks are classified as adversaries, even if their

intention is to benefit the team, and; (iii) OEATA-A relies on hard assumptions

to ensure its estimation method works in ad-hoc estimation scenarios, for example,

assuming that every template will fail to estimate the actions of adversarial agents

in the team. In order to avoid these problems, we propose an algorithm capable

of integrating planning and estimation results in order to improve performance in

an online manner and based on its current world knowledge. We show empirically

that BAE is capable of correctly spotting the impostor among the teammates, if it

exists, without relying on hard assumptions about the teammates and under different

teamwork settings.

3.3.2 Neural network solutions for adversary detection

Detecting adversaries is also relevant when researching neural network solutions [67,

57]. In these works, a common strategy is to use action distribution information

to validate the integrity of their decision-making and prediction processes. They

proposed this validation using training data and previous knowledge about the

features of their adversaries. Hence, if there is a lack of knowledge or training data

for retrieving a robust set for validation, these methods may fail. Our method can run

estimations from scratch; therefore, it does not rely on previous data or information.

Furthermore, we use the action distribution for adversarial estimation, but we do not

require a comparison to previously known templates. In particular, BAE detects the

adversary by considering the difference between each agent’s adversarial probability

across its teammates.

Kopparapu et al. (2022) [60] propose the “Hidden Agenda” game, inspired by

the popular multiplayer deduction game “Among Us”. This N-player reinforcement

learning (RL) environment pits Crewmates against Impostors. Crewmates aim

to complete tasks as quickly as possible, while Impostors aim to prevent them

from achieving this objective. Crewmates are unaware of others’ roles, whereas

Impostors possess full knowledge. Prior solutions for this game leverage robust
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RL neural networks to enable task completion, adversary deduction, and accurate

voting. However, the solution’s efficacy depends on the quality of the training

data. Unfortunately, the “Hidden Agenda” game is not publicly available for the

community. However, our Level-based Foraging environment is similar to the game

in terms of action and observation space size, besides the adversarial behaviour. The

main difference is the existence of a voting phase where the agents actively vote to

expel an agent from the scenario — an ability out of this research’s focus —, besides

our assumption that agents have no prior information or data and must learn only

with the data available while making decisions on the fly. Since our objective is

to provide a solution that can find good actions despite the presence of a hidden

adversary, we do not perform experiments on the “Hidden Agenda”.

Carminati et al. (2023) [24] have initiated the formal study of hidden-role games

(for example, the Mafia/Werewolf family games, Avalon and Hidden Agenda) from

a game-theoretic perspective. Mathematically, they define a notion of equilibrium

and computation efficiency of algorithms in these games. Empirically, they show

how their mathematical fit real-world instances of Avalon and show solutions that

consider the application of a parallelised version of the PCFR+ algorithm [39] and

the implementation of a simplex algorithm. These solutions, despite providing

good mathematical guarantees and reliable estimation for equilibrium, require the

application of large computational resources in order to solve the problem (CPU

compute cluster with 64 CPUs and 480 GB RAM). Our proposal solves our proposed

hidden-role problem, implemented in a Level-based Foraging Environment, with

fewer mathematical guarantees but using significantly fewer computational resources

to solve it. Moreover, we focus on providing an online planning solution while they

propose an equilibrium solution.
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Information-based Partially

Observable Monte-Carlo Planning

In this chapter, we present the technical details of IB-POMCP, our proposed online

planning algorithm to handle partially observable scenarios with sparse rewards.

This work was published at NeurIPS 2023 in the paper titled “Information-guided

Planning: An Online Approach for Partially Observable Problems” [27].

4.1 Introduction

Decision-making agents are increasingly being used under uncertainty in nontrivial

systems [55]. Based on the available information, such agents must evaluate potential

decisions in the current environment to build a robust plan that either accomplishes

the task or leads to a better situation. Consider, for instance, a scenario in which

drones are deployed to rescue people in a hazardous environment. Drones need to

quickly identify critical locations where they can offer support and save lives. If

no clear target is found, they must rapidly formulate a plan based on their current

knowledge and observable information to find an area in need of assistance from

their current position.

The above context describes a partial observability problem that is recurrent in
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the literature [5, 15, 43]. The Partially Observable Monte-Carlo Planning (POMCP)

[93] algorithm is commonly suggested as a method to address these problems because

it enables agents to perform planning in an online manner while handling uncertainty

[10, 99, 109]. However, several state-of-the-art solutions that rely on POMCP often

struggle when rewards are delivered sparsely in time or outside their reasoning

horizon. For example, in foraging, there may be no clear target to spot from the

current observation and/or estimated map so far. Here, we find a fundamental

academic challenge: How can we improve agent performance when rewards are

delivered sparsely in time or out of their reasoning horizon?

Every time an agent retrives an observation from the world, it gains information

that can be used to improve its internal planning process. Based on this, some

works of the state-of-the-art suggest the improvement of traditional planning process

by handling the lack of prior information using the approximation of the world’s

dynamic models [54, 80], embedding supportive planning methods within the tree [5,

15], extracting non-explicit information from the observations [10, 54], enhancing the

method’s inner calculations [1, 32, 77] or employing neural networks-based techniques

to improve the search quality [61, 108].

Overall, these strategies can improve search quality within a defined simulation

horizon by using extensions of traditional partially observable models and enabling

the integration of additional knowledge into planning. However, such knowledge may

not be available to agents beforehand (e.g., conditional observation probabilities),

or may demand significantly more computational resources to perform the task

(e.g., time and memory). While it is important to note that incorporating more

knowledge benefits efficiency in terms of performance, it does not resolve challenges

in sparse-reward scenarios, as most of the solutions remain reward-driven.

Hence, we present Information-based POMCP (IB-POMCP), an online planning

algorithm that uses a novel information framework to boost the decision-making

process under partial observability even when no rewards are available in the reasoning

horizon. Our framework refines the traditional UCB1 action selection strategy by
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implementing our proposed Information-guided UCB (I-UCB) function, which is

capable of leveraging entropy and estimating information gain, using observations

delivered from both the real-world and from the simulations within the tree to identify

promising states in the search process that leads the agent to quickly accomplish

its objective. Its application together with our new particle filter reinvigoration

strategy, which considers the current system’s entropy to calibrate the reinvigoration,

indicates that this approach may lead the agent to act hybridly when solving a

partially observable problem by better weighing the exploration, exploitation, and

information levels within the tree. We ran experiments across five benchmarks and

compared them with state-of-the-art baselines, obtaining significantly higher average

rewards (up to 10 times) while performing faster reasoning (up to 93%).

4.2 Information-based Partially Observable Monte

Carlo Planning

In this section, we present IB-POMCP, describing its details while discussing our

rationale. We follow a similar presentation to Silver and Veness (2010) [93].

4.2.1 Algorithm Outline

IB-POMCP is a tree search algorithm designed for solving partially observable

problems, which performs what we denominate as an information-guided planning,

and enable better decision-making when dealing with uncertainty. It builds upon

the POMCP algorithm but modifies its traditional procedure by incorporating into

the PO-UCT algorithm our novel I-UCB function.

Our algorithm starts with the (i) initialisation of our tree structure, where we

create our root and calculate the probability of stepping into this node given our

current knowledge. Since the initial knowledge about the problem is assumed to be

none, we can not calculate this probability, hence, we initialise it as 0. Subsequently,
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we (ii) initialise the particle filter of our root node, generating possible states from

which we can simulate the agents’ actions and search for a solution to the target

problem. Initially, the beliefs are generated through a uniform distribution.

Our search process is iterative, as commonly found in the literature [5, 93, 111],

where we sample a state from our current belief to perform multiple rounds of

simulation. However, unlike the typical approach, we propose the implementation

of an adaptive exploration coefficient and of our novel I-UCB function instead of

the usual UCB1. Therefore, at every iteration of our search (before starting a

simulation), we first perform our (iii) exploration coefficient adaptation, adjusting

it using the entropy (level of information) estimated over the set of observations

collected through the simulations. Then, with the updated coefficient in hands,

we start our (iv) simulation with the I-UCB function. While choosing actions, our

proposal searches for solutions and takes actions based on observations’ entropy

besides the collection of rewards. At the end of each simulation, we re-update the

exploration coefficient based on the information gained during the path traversal.

When we finish the search, we (v) select the best action based on the estimated

rewards, entropy, and the number of visits of each action’s node to determine the

most promising path to follow in the real environment.

After taking an action and receiving a new real observation from the environment,

we restart the IB-POMCP algorithm. However, the initial steps are slightly changed

to maintain the knowledge and update the current information, i.e., perform online

planning. Unlike the first iteration, we now (i) update the root node by traversing the

tree based on the action taken and the most recent observation from the environment.

Consequently, we recalculate the probability of stepping into the new root node using

the information available in the tree. With the probability in our hands, we now

(ii) update the particle filter of our root node by reinvigorating our belief, generating

new states using the uniform distribution while maintaining promising states for

simulation. Then, after performing these updates, we restart the search and repeat

the whole process. Now, let us discuss these steps in detail.
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4.2.2 Root Initialisation and Update

This step, represented by (i) in the algorithm outline, is responsible for maintaining

the tree structure T coherent with the world and the information gained while

performing online planning. Consider r as the tree T’s root node, hr as the history

of the root r (our current history), a as the action taken by the agent in the real

world and z as the most recent observation received from the real world (after the

agent’s action). As in POMCP, this step considers three possible procedures:

• Initialisation: if the tree T does not exist, we initialise the tree by creating a

root node r using the current history hr, else;

• Update: if T exists and the nodes hra and hraz also exist, we walk in the

existing tree, traversing the nodes that correspond to the actions taken by the

agent a and the most recent world observation z, and update the root, i.e., the

node hraz becomes the new r, hence, hr = hraz, else;

• Re-initialisation: if T exists but, node hra or hraz does not exist, the tree is

re-initialised. That is, we create a new node (h,V(h),N (h),Fh) with h as the

current history, V(h) = 0, N (h) = 0 and Fh is empty. Afterwards, we assign

this new node as our new root r of T, which means that all other simulations

already made in the agent’s head are discarded and we restart the algorithm.

In contrast to POMCP, we estimate the current probability P (z|hra), in this

step, when finding the observation z after taking the action a considering our history

hr. Overall, we aim to use this probability to enhance the Particle Filter Update

(see step (ii)) procedure by weighting its diversification and reinvigoration levels

according to the agent’s uncertainty when stepping into the new root – which would

be the same as calculating the agent’s “surprise” on finding the received observation

in the real world after taking the chosen action. However, we consider that a compact

representation of transition T or observation probabilities Z may not be available for

complex problems. Hence, we propose the approximation of this probability using the
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knowledge within our particle filter Fr (without requiring a POMDP explicit model)

by P (z|hra) ≈ P̃ (z|hra) = N (hraz)
N (hra)

, where N (hraz) and N (hra) are the number of

visits of node hraz and hra, respectively (the new root node and its parent). For

clarity, we use a different representation for P̃ to indicate when we are using an

estimated probability function in the calculations instead of the true probability

P . If hr is empty or no new root node is found, P̃ (z|hra) = 0. Note also that

N (haz) ≤ N (ha),∀h ∈ T and, consequently, N (haz)/N (ha) ∈ [0, 1].

4.2.3 Particle Filter Initialisation and Update

This process, represented by (ii) in the algorithm outline, is responsible for initialising

the particle filter of the root node Fr (if it is empty or does not exist) or performing

the particle reinvigoration process based on the probability P̃ (z|hra) calculated in

the Root Update process (Section 4.2.2, step (i)).

Directly, the initialisation is made through the sampling of k particles (which

generate the observation z) from the uniform distribution Uz. On the other hand, the

update considers the P̃ (z|hra) as the weight that balances the particle reinvigorating

process over Fr. The idea is to diversify (or boost) the new root’s particle filter as

a reliable approximation of the belief state function. If the probability of stepping

into this new root is high, i.e., P̃ (z|hra) is high, we assume that the particles in

the new root’s particle filter will well approximate the real world, since through the

simulations we recurrently found the observation z after taking the action a from the

last root node h. In contrast, when this probability is low, we diversify the new root’s

particle filter Fr by uniformly generating particles that may better represent the real

world using Uz instead of Fr. Consequently, coherent with the above rationale, we

reinvigorate the new root’s particle filter Fr by maintaining ⌊kP̃ (z|hra)⌋ particles

sampled from itself, i.e., Fhaz, and sampling new ⌈k(1− P̃ (z|hra))⌉ particles from

the uniform distribution Uz. This update on the new root’s particle filter may

offer a better start for the algorithm when performing the search process since the

sampling of belief states may consider an enhanced set of particles through our
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uncertainty-guided reinvigoration process. Algorithm 5 presents the pseudo-code for

implementation of our proposed IB-POMCP’s particle filter reinvigoration strategy.

We kindly refer the reader to Section 4.5 for further discussion about the novelty

about this proposed enhancement and how it affects other components of IB-POMCP.

Algorithm 5 Particle Filter Update. The starred lines (with a light grey

background) highlight the differences between POMCP and our proposal, IB-POMCP.

Union considers repetition here.

1: procedure ParticleFilterUpdate(Fr, P̃ (z|ha), k)

2: B̂← Fr, Fr ← {} ▷ B̂ is a copy of Fr

*3: while |Fr| < P̃ (z|ha)k do

*4: b ∼ B̂, Fr ← Fr ∪ b ▷ Adding P̃ (z|ha)k particles to the new Fr

*5: while |Fr| < k do

*6: b ∼ Uz, Fr ← Fr ∪ b ▷ Adding (1− P̃ (z|ha))k particles to the new Fr

*7: return Fr

4.2.4 Updating the Tree Exploration Coefficient

To explain how we update our tree exploration coefficient, we first introduce the (a)

adaptation made to the traditional exploration coefficient, then we present our (b)

modified entropy function, which is used in the update, we explain how to calculate

it and, in the end, we show our (c) strategy to normalise the entropy in the online

planning context. This step is represented by (iii) in our algorithm outline.

(a) Exploration Coefficient Adaptation – Before the actual tree simulation

process, IB-POMCP first adjusts the value of our tree’s exploration parameter based

on the estimated entropy for the current system (the tree) in the root level r with

history hr. Directly, our approach considers the replacement of the traditional UCB1’s

c constant (Equation 2.5) by the function (1− α(hr)) ∈ [0, 1], which we define as:
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4.2. Information-based Partially Observable Monte Carlo Planning

α(hr) :=
e ln(N (hr))

N (hr)

∑N (hr)
i=1 Hi(hr)

N (hr) max
N (hr)
i=1 Hi(hr)

(4.1)

Our insight is to use α to augment the current uncertainty level in the tree’s

search policy. On the left-hand side of the multiplication, we design a function that

represents the chance of finding new information by exploring a node, which decreases

as the number of visits to the node increases. e is the Euler’s constant, which will be

used as our amortisation factor for ln(N (hr))/N (hr). Applying both together, we can

describe a function that slowly decreases and maintains, in the infinity and under some

assumptions, theoretical guarantees for belief approximation (see Section 4.3). The

right-hand side of the multiplication expresses the “general surprise trend”, which is

calculated through the division between the actual cumulative entropy
∑N (hr)

i=1 Hi(hr)

and the estimated maximum cumulative entropy N (hr) max
N (hr)
i=1 Hi(hr), which is the

multiplication of the total number of visits to the node and the maximum entropy.

By multiplying both sides of the equation, we can estimate the current uncertainty of

our system, in this case, of our tree. In addition to improving reasoning, we discard

the need for prior knowledge about the problem of adjusting and fixing the tree

constant c. Note that we adjust α(hr) for each traversal on the tree, i.e., for each

simulation we perform from the root r to some leaf in the tree.

(b) Entropy Calculation – We adapt Shannon’s Entropy (Equation 2.9) to

measure the level of information in the IB-POMCP’s search process based on the

collection of observations of our agent while performing Simulations (see step (iv)),

which is designed as H(h) = −
∑

z∈Z̃h
Ph(z) ln(Ph(z)), where Ph(z) is the probability

of finding the observation z ∈ Z̃h by simulating actions from the node with history h.

We use Z̃h, which is an estimated set of observations for node h, in the calculation of

the entropy because we consider that a compact representation of the full observations

space Z (the true observation set for the problem) may not be available. Therefore,

in order to build Z̃h as a reliable estimation of Z, we collect all the observations

found during all traversals within the tree and save them first as the multiset Z̃mh –
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avoiding losing information, e.g., the frequency of the observations – and then we

translate it as the set Z̃h when necessary.

Therefore, each node has its own estimated multiset of observation Z̃mh . Every

time we visit a node h, we update the Z̃mh using the collected observation information,

which is saved and back-propagated as Z̃mt . On the other hand, Z̃mt is the multiset

that saves the observations from a single traversal starting from the node at the

tree level t to the maximum length of the path D. Therefore, each node h has

its own multiset that saves all possible observations to be found by performing

a simulation from it. Formally, we can define Z̃mh =
⋃N (h)
i=1 Z̃mt,i, where Z̃mt,i is the

back-propagated Z̃mt at i-th visit to the node, and Z̃mt,i = Z̃mt+1,i ∪ zt,∀t = 0, 1, ..., D.

Note that Z̃mt,i = ∅,∀t > D. Let’s put it as an example:

Consider h = h0 as the root node, D = 3 and a single traversal in the tree. Under

the back-propagation perspective, we start our update from the last node visited,

related to Z̃mt+3. Following our definition, Z̃mt+3 = {zt+3} and, since it is a leaf node,

only zt+3 will be included in Z̃mh3 as a new possible observation to be found from node

h3. Now, in Z̃mt+2, we will add the zt+2 to our back-propagation multiset Z̃mt+3 and,

consequently, we will add {zt+3, zt+2} to Z̃mh2 . We repeat this process until we reach

h0, where we include all found observations Z̃mt = Z̃mt+1 ∪ z0 = {z3, z2, z1, z0} to the

root multiset Z̃mh . Figure 4.1 illustrates this example and our proposed observation

back-propagation procedure. Figures 4.1a and 4.1d present a high-level perspective

of the process, showing only the observation nodes to facilitate visualisation. Figures

4.1b and 4.1c present a closer perspective of the process as a one-step execution. The

red particles are states and the blue ones are observations.

With Z̃mh in hands, we now can approximate Ph(z) by calculating the frequency

of the observation z in Z̃mh , following Ph(z) ≈ P̃h(z) = 1
|Z̃m

h |

∑
z′∈Z̃m

h
1{z′=z} and define

our final entropy function as H(h) = −
∑

z∈Z̃h
P̃h(z) ln(P̃h(z)). Note, however, that

we perform the entropy summation across elements using the set of observations Z̃h

instead of the multiset Z̃mh , preventing the inclusion of the same element multiple

times in the calculation. Besides that, since IB-POMCP plans in an online manner
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h3
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st+1
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st+2
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at+2, zt+3

(a) Simulation procedure from

a high-level perspective

...

Fh
h0

a1

Fha1z1

h1
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Fha1z′

s

s′, z1, r

(b) One-step

simulation

...

Z̃mh2
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Z̃mh3
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Fh2a1z′′

Z̃m
t+3 = {z3}

Z̃m
t+2 = Z̃m
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(c) One-step back-

propagation (BP)

Z̃mt+3 = {zt+3}

Z̃mt+2 = Z̃mt+3 ∪ zt+2

Z̃mt+1 = Z̃mt+2 ∪ zt+1

Z̃mt = Z̃mt+1 ∪ zt h0

h1

h2

h3

(d) BP through the observation

nodes of the tree

Figure 4.1: Illustration of IB-POMCP’s search process. The red circles represent

states stored in the particle filter of a node. The blue circles represent observations

stored in the observation set of a node. In the simulation step, we add states to

the particle filter of nodes in the path. In the back-propagation step, we add the

observations to each node in the path.
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and the Z̃mh is updated at each visit to the node, we propose the estimation of our

tree’s entropy using the update-equation:

HN (h)(h) := HN (h)−1(h) +
(H(h)−HN (h)−1(h))

N (h)
(4.2)

where N (h) is the number of visits to the node h, H(h) is the above defined entropy

calculation, and Hi(h), i = 1, 2...,N (h) is the estimated entropy at the visit i. Note

that, by following this final definition for the entropy, we can also calculate α

(Equation 4.1) and update it in an online fashion.

(c) Entropy Normalisation – Another issue that arises is that, since we may not

have access to the true observation distribution in advance, our current approach

will result in entropy calculations that are not standardised under the same image

function. This problem occurs because the size of the set Z̃ grows every time an

observation never found before is delivered by the environment. As a consequence,

the maximum value for the entropy also grows, and nodes that receive a higher

number of different observations will calculate higher values for H(h), which can

create bias by including these overestimated values in the decision-making process.

Therefore, we propose its normalisation a posteriori, following: Ĥ(h) :=
HN (h)(h)

max
N (h)
j=1 Hj(h)

,

where Hj(h) represents the entropy calculated at the j-th visit to the node h. This

approach guarantees Ĥ(h) ∈ [0, 1],∀h, i.e., for all nodes. Moreover, H(h) = 1 when

N (h) = 0 by definition, since when there is no information, the uncertainty is

maximised, hence, the entropy is also maximised.

4.2.5 Simulation

After adjusting our α function, we start the simulation process (step (iv)). While

expanding the tree, we propose a modified version of UCB1 to guide the tree search

process based on the information level of each node, the I-UCB function:

I-UCB(h, a, α) := V(ha) + (1− α)
√

ln(N (h))/N (ha) + αĤ(ha) (4.3)
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Our proposal intends to guide the expansion and planning process based on

entropy updates that occur within the tree, defining what we denote as the

information-guided planning process. In this type of planning, a trade-off between

exploration and exploitation still exists, but now we also bring information value

to the discussion. Our main novelty here moves past the traditional idea, where

the more we explore, the better we can exploit the rewards, thereby improving the

agent’s performance. Instead, we expand the discussion and enhance the algorithm

capabilities by introducing an information-gain perspective to the tree-planning

process using entropy calculations.

Intuitively, our action selection function considers that (a) if the system

uncertainty is high (hence, α value is high), we weight the action selection based

on the advantage of information gain (which may expand the tree in depth), trying

to decrease the entropy value and accumulate knowledge, or; (b) if the system

uncertainty is low (hence, α value is low), we weight the action selection in the

advantage of the exploration gain (which may expand the tree in breadth), trying

to increase the entropy value and increase the number of possibilities to reason

over. Therefore, I-UCB performs adaptive planning that also depends on the system

entropy, besides the upper confidence estimations.

Another direct advantage of I-UCB application instead of UCB1 is that our

method rarely fails to deliver an action justified by metrics, that is, it rarely delivers

a randomly chosen action as the best one. Usually, this issue arises in problems

where rewards are sparsely distributed over a long horizon of actions, which can lead

to several ties in the Q-values (e.g., at zero). Proposing a solution that works under

these conditions requires (a) to increase the reasoning horizon, which usually leads to

the expenditure of significantly more computational resources, or (b) the capability

to handle it within the available reasoning horizon, which is a non-trivial task. IB-

POMCP solves this problem by following a non-trivial solution considering (a) the

inclusion of a novel metric for evaluation – the system entropy, which frequently is
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non-zero since the observation distribution is diverse and; (b) the adaptive value

of alpha, which often promotes an action branch to find (at least) a non-zero value

(reward or entropy) or to be frequently visited during the reasoning process.

4.2.6 Best action selection

We decide the best action by calculating abest = argmax
a∈A

(1 − α)V(ha) + αĤ(ha)

(step (v)). If there is a tie, we break it using the number of visits for each possible

node. If it persists, we run a random policy to select the “best” action. Because of

the proposed entropy calculation (and in contrast to POMCP), IB-POMCP has the

ability to choose actions even without experiencing non-zero rewards while planning.

4.2.7 Algorithm and Pratical Enhancement

Algorithm/Pseudo-code – Intending to highlight the difference between POMCP

and IB-POMCP, we present the complete pseudocode of our proposal in Algorithm

6. Additionally, IB-POMCP’s code is publicly available on GitHub1.

Pratical Enhancement – Lastely, considering the above discussion on adapting

and inserting α inside I-UCB, we consider scaling α value to be within an interval

[q, 1− q] ⊂ [0, 1], 0 < q < 0.5, as a practical enhancement. This strategy allows our

method to avoid ignoring part of the I-UCB result by multiplying one term by zero.

This step will not be considered in the theoretical analysis.

4.3 Theoretical Analysis

In this section, we offer a comprehensive theoretical analysis of our proposed method,

IB-POMCP. Therefore, we analyse, theoretically, IB-POMCP’s capability to plan

optimally in partially observable finite horizon problems and ϵ-optimally for partially

observable infinite horizon problems.

1IB-POMCP’s GitHub: https://github.com/lsmcolab/ib-pomcp/
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Algorithm 6 IB-POMCP’s Planning. The starred lines in a light grey background

highlight the difference between POMCP and our proposal. We suggest the reader

to Silver and Veness (2010) [93] for further details. γ is the historical discount factor,

depthmax is the maximum depth for the tree, and zh represents the last observation

found (associated with node h).

1: procedure Search(hr)

2: while Timeout() is False do

3: if Fr = ∅ then s ∼ Uz
4: else s ∼ Fr

*5: α := e ln(N (hr))
N (hr)

∑N(hr)
i=1 Hi(hr)

N (hr)
N(hr)
max
i=1

Hi(hr)

*6: Simulate(s, hr, 0, α)

*7: return argmax
a∈A

(1− α)V(ha) + αĤ(ha)

1: procedure Expand Node(h)

2: for a ∈ A do

3: T(ha)← (ha, Vinit(ha), Ninit(ha), ∅)

1: procedure Rollout(s, h, d, γ)

2: if d < depthmax then return 0

3: a ∼ πrollout(h, ·)

4: (s′, z, r) ∼ G(s, a)

5: return r + γRollout(s′, haz, d+ 1)

1: procedure Simulate(s, h, d, α)

2: if d < depthmax then

*3: return 0, {zh}

4: if h /∈ T then ▷ If node is not in the tree

5: Expand Node(h)

*6: return Rollout(s, h, d), {z}

*7: a← argmax
a∈A

I-UCB(h, a, α)

8: (s′, z, r) ∼ G(s, a)

*9: r′, Z̃mt+1 ← Simulate(s′, haz, d+ 1, α)

10: Fh ← Fh ∪ {s}

11: N (h)← N (h) + 1

12: N (ha)← N (ha) + 1

13: V(ha)← V(ha) + R−V(ha)
N (ha)

*14: Hi(h) := Hi−1(h) +
(Hi(h)−Hi−1(h))

N (h)

*15: R← r + γ r′

*16: Z̃mh ← Z̃mh ∪ Z̃mt+1

*17: return R, Z̃mt+1 ∪ z
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▶ Before delving into IB-POCMP’s planning analysis, we need the following definition

and assumption for the proof:

Definition 4.1 An estimated V̂(s) is said to be ϵ−optimal if |V̂(s)−V∗(s)| ≤ ϵ. From

the literature, actions taken from the result of ϵ-optimal value function estimations

are known as ϵ-optimal actions.

Assumption 4.1 Given a generic POMDP represented by the 7-tuple:

(S,A,R, T ,Z,Z,H),

the R is bounded and there exists a positive maximum reward value rmax ∈ R.

▶ Under this simple assumption and to establish the IB-POMCP’s planning

capabilities, we must examine our action selection procedure, specifically through the

application of I-UCB. Consequently, we first analyse how the α coefficient behaves

and impacts the IB-POMCP’s search process:

Lemma 4.1 α(h) ∈ [0, 1] converges to 0 as the number of visits N (h) approach the

infinity. Mathematically, limN (h)→∞ α(h) = 0.

Proof: Considers our equation for a root node with history h:

α(h) =
e ln(N (h))

N (h)

∑N (h)
i=1 Hi(h)

N (h)
N (h)
max
i=1
Hi(h)

We state that, as the number of visits to a root node N (h) approaches infinity, α(h)

converges to zero. This proof is trivial since the second term of our equation is∑N (h)
i=1 Hi(h)

N (h)
N (h)
max
i=1

Hi(h)
< 1,∀N (h) = 1, 2, 3, ..., and the first term e ln(N (h))

N (h)
→ 0,N (h) → ∞.

Therefore:

limN (h)→∞ α(h) = limN (h)→∞
e ln(N (h))

N (h)

∑N (h)
i=1 Hi(h)

N (h)
N (h)
max
i=1

Hi(h)
= 0 ■

0 < 1
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▶ Now, we introduce Lemma 2, which will be used as a key result that supports

Theorem 1. In other words, we will use Lemma 2’s proof to reach a contradiction

later in order to prove Theorem 1.

Lemma 4.2 Assume an action ai that is taken a finite number of times and aj that

is taken infinitely during IB-POMCP’s search for any node h. There ∃ t′′ > t′ such

that I-UCBt′′(hai) ≥ I-UCBt′′(haj), where t
′ is a finite iteration number after which

ai is never taken.

Proof: Let us assume that there exists an iteration time t that is greater

than t′ where ai is never taken again for simulation. Consider the expression

I-UCBt(hai)− I-UCBt(haj), which is equal to:

I-UCBt(hai)− I-UCBt(haj) =

[
Vt(hai)− Vt(haj)

]
+

(1− αt(h))
√

ln(Nt(h))

[
1√
Nt(hai)

− 1√
Nt(haj)

]
+αt(h)

[
Ĥt(haj)− Ĥt(hai)

]

Trivially, ( 1√
Nt(hai)

− 1√
Nt(haj)

)→ 1√
Nt′ (hai)

as Nt(haj)→∞, since 1√
Nt(haj)

→ 0 and

Nt(hai) will be constant under our assumption. Note also that 1√
Nt(hai)

− 1√
Nt(haj)

is increasing and will become positive at some time t∗ when Nt∗(haj) > Nt∗(hai).

After then (i.e. t > t∗), the term
√

ln(Nt(h))( 1√
Nt(hai)

− 1√
Nt(haj)

) will diverge to ∞

as t→∞, ln(Nt(h))→∞. Further, note that, in a single time step, the maximum

difference in rewards is bounded by rmax, therefore:

Vt(hai)− Vt(haj) ≥ −
∞∑
k=0

γkrmax =
−rmax
1− γ

This is because |Vt(hai)− Vt(haj)| ≤ rmax

1−γ , as shown in Theorem 3 and this implies

that −rmax

1−γ ≤ Vt(hai) − Vt(haj) ≤
rmax

1−γ . Moreover, we find that αt(h)(Ĥt(haj) −

Ĥt(hai)) ≥ −1 as 0 ≤ αt(h) ≤ 1 and 0 ≤ Ĥt(h) ≤ 1. Therefore, ∃t′′ where

I-UCBt′′(hai)− I-UCBt′′(haj) ≥ 0. ■
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Theorem 4.1 For any non-empty history h ̸= ∅ ∈ H and ∀a ∈ A, as N (h)→∞,

N (ha) → ∞, we have that all states b in B(h, b) which P (s = b | h) > 0 will be

visited infinitely many times.

Proof: Let us assume that not all actions are taken infinitely many times. There

must exist at least one action ai ∈ A that is taken a finite number of times and,

hence, ∃ t′ after which the action ai will never be taken. Now, consider any action

aj that is taken infinitely many times as N (h) → ∞. In Lemma 2, we show that

∃ t′′ > t′ such that:

I-UCBt′′(hai) > I-UCBt′′(haj)

We know that the second term in I-UCB grows faster for ai than aj , as seen from

the I-UCB function, since 1
Nt(hai)

is constant for t > t′. Consequently, we reach a

conclusion that ai is chosen over aj again after t′. This further means that for all

actions ak’s, we can find a such a finite time instant after which ai is preferred over

ak. Therefore, at some point, the action ai has to be chosen over all others. This is

a contradiction to our original claim. Therefore, all action a ∈ A are taken infinitely

many times and, hence, all states will be visited infinitely many times. ■

▶ Using the previous results, we can show the convergence for a finite horizon:

Theorem 4.2 IB-POMCP’s nodes converge to the optimal value for a fixed horizon

D as the number of search iterations goes to infinite (i.e., N (hr)→∞).

Proof: We adapt the proof from the UCT convergence in Shah, Xie, and Xu

(2020) [92] and POMCP convergence in Silver and Veness (2010) [93]. We induct

over the depth of the tree, starting from the leaf up to the root. From Theorem

1, the leaf nodes will have an unbiased estimation of the expected reward rah =

Eb∈B(h)(R(b, a)), ∀a ∈ A. Note that we are using rah as the expected reward given a

h, which is different from an immediate reward rab = R(b, a) given a state b. Similarly,

any state at level D − 1 has a simple UCB-like problem since each state is visited

infinitely many times and the one-step rewards have an unbiased estimation. In
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detail, consider the leaves at level |h| = D, as N (hr) → ∞ ⇒ N (h) → ∞, α → 0,

and in the absence of children’s entropy H(ha) (as it is the leaf node and has no

children), rah converges unbiasedly ∀ h ∈ H, a ∈ A. Consequently, V(h) → V∗(h)

since it is a single decision process, akin to multi-armed bandits. Now, we assume

convergence for all levels from the leaves up to |h′| = |h| + 1, and as we know

rah =
∑

s∈S P (st = b|h)rab . As we know, the value function satisfies:

V∗(h) = max
a∈A

[
rah + γ

∑
P (ht+1 = h′|htat = ha)V∗(h′)

]
From our hypothesis, the V∗(h′) must converge and moreover, through the sampling

process, the value function must converge for level |h| [93] . Consequently, by

backward induction, the whole tree’s values must converge.■

▶ We now move on to the infinite horizon case. Consider V∗(hr) as the optimal value

function for the root r and V∗
D(hr) as the optimal value function for the root r for a

finite horizon D. We find that:

Theorem 4.3 Given any ϵ > 0, there is a finite horizon D for the problem, such

that |V∗(hr)− V∗
D(hr)| ≤ ϵ, where hr represents the root of the tree.

Proof: Consider π∗ and π∗
D to be the optimal policies for the infinite and finite

horizon problem, respectively. Also, assume that ϵ is an arbitrary, positive real

number. Now, let the value functions for these problems be V∗(hr) and V∗
D(hr). For

the root r, we can find that:

|V∗(hr)− V∗
D(hr)| ≤

∞∑
k=0

γkrmax =
γD

1− γ
rmax ≤ ϵ

since we can calculate D = logγ
ϵ(1−γ)
rmax

, we can also ensure that the relation holds. ■

▶ Given the previous results, we can prove the following for the convergence in the

infinite horizon:
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Corollary 4.1 IB-POMCP converges to ϵ−optimal actions at the root (hr) in a

γ-discounted infinite horizon scenario.

Proof: From Theorem 6, we can always find a depth D such that the value

function of the finite-horizon problem is arbitrarily close to the infinite-horizon

problem. From Theorem 5, we know that we can converge to the optimal value in

a finite horizon POMDP. Therefore, since α→ 0 as N (hr)→∞, IB-POMCP will

converge to ϵ−optimal actions by choosing D appropriately. ■

4.4 Results

4.4.1 Evaluation Settings

Benchmarks – We define five well-known domains as our benchmarks. The Tiger

problem is a well-known standard problem [99]. For the Maze, we based our design

on Thomas, Hutin, and Buffet (2020) [99]. For the RockSample problem, we designed

our own scenarios but based the implementation on Thomas, Hutin, and Buffet

(2020) [99]. For Tag and LaserTag, we used the scenarios proposed by Ye et al. (2017)

[110]. For Foraging [5], we proposed our own configurations for each scenario.

• The Tiger (T0) problem is a classical benchmark where an agent must choose

between two doors: one hides a treasure; the other, a tiger. The objective is to find

out which door hides the treasure. The agent can decide which door to open or wait

and listen to the tiger (with a certain probability of mishearing it behind one of the

doors) before making the final decision.

The agent has a 15% probability of mishearing the tiger. A maximum of 20

actions are allowed per experiment. Choosing the right door gives the agent a reward

of +0.1, the wrong door −1, and the listening action penalises the agent with a −0.01

reward. Thus, each agent could try to listen to the tiger 19 times before making the

final decision to open either the left or right door.
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• The Maze (M0-M3) environment [99] is an Active Self-Localisation Problem

where an agent navigates through a toroidal grid and tries to localise its own position

by collecting information from the environment. The reward is based on the entropy

of the current belief. There is a 15% chance to miss observe the colour of the cell.

The belief follows a Bayesian Update process. Figure 4.2 illustrates the scenarios.

(M0) Maze Cross: This is a 5× 5 scenario in which black cells are positioned to

ease the agent’s localisation problem, ressembling a cross in the toroidal world.

Figure 4.2a illustrates the scenario’s configuration.

(M1) Maze Holes: This is an 8× 8 scenario, which requires the agent to reason one

step in advance to search for the missing black cell in this regular configuration.

Figure 4.2b illustrates the scenario.

(M2) Maze Dots: This is a 6× 6 scenario, identical to Maze Hole except that black

cells are in fewer number and separated by several white cells. Figure 4.2c

illustrates the scenario.

(M3) Maze Grid-X: This is a 3× 3 scenario presenting a pattern of triangles in

the grid for the self-localisation: an upper white triangle and a bottom black

triangle. Figure 4.2c illustrates the scenario.

• The RockSample (R0-R3) problem [99] considers a rover exploring an unknown

planet. The rover’s objective is to earn rewards by both sampling rocks in the

environment and leaving the planet with the samples. While the positions of

the rover and the rocks are known, not all rocks hold scientific value, which are

referred to as “good” rocks. Given the cost associated with rock sampling, the

rover is equipped with a noisy long-range sensor, enabling it to assess a rock’s

potential scientific value before deciding whether to approach and sample it. The

environment is a grid map of size N × N with k rocks. The POMDP model

for RockSample(N, k) follows: The state space is a combination of k + 1 features,
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(a) Maze Cross. (b) Maze Holes.

(c) Maze Dots. (d) Maze Grid-X.

Figure 4.2: Maze environment scenario’s configuration.

where Positions represent the rover’s location {(1, 1), (1, 2), ..., (N,N)}, and k binary

features, RockTypei, indicating whether each rock is “Good” or “Bad”. There is a

terminal state (portal) at the top-right corner of the map. The rover has a choice

of k+ 5 actions: {North, South, East,West, Sample, Check1, ..., Checkk}. The first

four are deterministic single-step motion actions. The Sample action involves

sampling the rock at the rover’s current location. If the rock is determined to be

“Good”, the rover receives a reward of +1, and the rock transitions to “Bad”, signifying

no further benefit from sampling. If the rock is “Bad”, a penalty of −1 is delivered

to the agent. Moving into the exit portal yields a reward of +0.0001. All other

actions have no associated cost or reward. Each Checki action employs the rover’s

long-range sensor to observe Rocki, yielding a noisy observation of either “Good” or

76



4.4. Results

“Bad”. The noise in the long-range sensor reading is influenced by the efficiency η,

which decreases exponentially as a function of Euclidean distance from the target,

following η = exp(−0.2 EuclideanDistance(rover, Rocki)). Initially, every rock is

assumed to have an equal probability of being “Good” or “Bad”. Figure 4.3 shows

the four scenario configurations used.

(R0) RockSample22: This scenario is set on a 5x5 grid, featuring 2 good rocks

and 2 bad rocks. The rover initiates its mission from the middle of these rocks

and must locate each specific good rock among the bad rocks. Figure 4.3a

illustrates the scenario’s configuration.

(R1) RockSample40: In this 5x5 scenario, there are 4 good rocks initially placed

in the environment, with no bad rocks present. In contrast to RockSample22,

the rover’s goal here is to collect more rewards as there are more good rocks

available. The rover starts its journey from the centre of these rocks. Figure

4.3b illustrates the scenario’s configuration.

(R2) RockSample44: This 10x10 scenario features 4 good rocks and 4 bad rocks.

The rover’s starting point is the bottom-left corner of the map. Similar to

RockSample22 but on a larger scale, the rover’s challenge is to locate each

specific good rock among the bad rocks to optimize its reward. Figure 4.3c

illustrates the scenario’s configuration.

(R3) RockSample17: In this 10x10 scenario, there’s only 1 good rock and 7 bad

rocks, and the rover begins its journey in the bottom-left corner of the map.

Unlike RockSample44, the expectation here is for the rover to collect fewer

rewards. However, if the rover finds the only good rock available, it can

significantly improve its performance in terms of reward collection. Figure 4.3c

illustrates the scenario’s configuration.
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(a) RockSample22. (b) RockSample40.

(c) RockSample44. (d) RockSample17.

Figure 4.3: RockSample environment scenario’s configuration.

• The Tag/LaserTag (LT0-LT1) [110], where an agent is trying to find and tag a

target opponent agent that intentionally moves away.

In the Tag scenario (Figure 4.4a), the agent’s primary objective is to locate and

tag a target that actively moves away. Both the agent and the target navigate within

a grid featuring 29 possible positions. While the agent is aware of its own location,

it can only observe the target’s position when they occupy the same spot. The

agent has the option to either stay in its current position or move to any of the four

adjacent positions, incurring a cost of −0.1 for each move. Additionally, it can opt

to execute the tag action, wherein it receives a reward of +1 for a successful tag but

receives a penalty of −1 if it fails to tag the target.
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On the other hand, the LaserTag (Figure 4.4b) is an augmented version of Tag,

where an agent is acting in a 7x11 grid world containing randomly placed obstacles.

The agent’s behaviour and that of its opponent align with the rules established

in Tag. However, in LaserTag, there’s a key distinction: the agent possesses prior

knowledge of its initial location. Additionally, the agent is equipped with a laser

system capable of providing distance estimations (in cells’ units) in 8 directions. The

laser readings are generated from a normal distribution centred around the agent’s

true distance from the nearest obstacle in each direction, with a standard deviation

of 2.5 units. These readings are then discretised into whole units, resulting in an

observation comprising a set of 8 integers.

Figure 4.4 illustrates the scenarios.

(a) Tag.

(b) LaserTag.

Figure 4.4: Tag and LaserTag scenarios’ configuration.
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• The Foraging (F0-F4) problem is a common problem used for evaluating online

planning algorithms [5, 15]. This domain presents an agent that must collect boxes

displaced in a rectangular grid-world. The problem is defined over partial observability

and the agent does not know how the tasks are distributed. The problem ends when

the agent collects all boxes. A reward of +1 is delivered to the agent every time

a box is collected. The radius and the angle of vision (integer numbers) for the

agents are, respectively, 20% of the diagonal dimension in the environment in cells’

unit and 90o – for example, if we have a 10× 10 environment, so our vision radius

will be radius = 0.2
√
x2dim + y2dim = 0.2

√
100 + 100 = 0.2

√
200 = 2. Additionally,

agents have memory, i.e., after seeing (in the real world) a state or position, they will

sample the next possible world configuration considering this information. Moreover,

obstacles block the agent’s vision. Figure 4.5 illustrates the scenarios.

(F0) The Corridor – This is a simple (20, 2) scenario, where the agent starts in

the left part of a corridor with a box at its side and another at the end of the

corridor. The idea here is to test the agent’s capability to find isolated reward

spots. Figure 4.5a illustrates the scenario.

(F1) U-Shaped – A complex version of The Corridor, the U-shaped is a 15× 15

scenario, where the agent starts at the tip of a U-shaped corridor with a box

at the beginning, one in the middle and another at the end. The idea here is

to test the agent’s capability to perform simple planning, but facing sparse

rewards collection. Figure 4.5b illustrates the scenario.

(F2) U-Obstacles – A complex 20× 10 scenario, where the agent needs to collect

the boxes distributed in a room, but U-shaped walls block its vision. This

scenario is commonly used to study local minima issues that emerge in robotic

navigation problems [69]. The idea here is to test the agent’s capability to

perform planning with sparse reward collections, and the vision is blocked by

obstacles. Figure 4.5c illustrates the scenario.
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(F3) The Warehouse – Our largest in terms of dimensions, 20× 20. The agent’s

objective is to locate specific reward spots (groups of boxes). These reward

clusters are situated at considerable distances from one another. Consequently,

the agent cannot observe multiple reward clusters from a single position, making

planning more challenging. Figure 4.5d illustrates the scenario.

(F4) The Office – Our most complex 15× 10 scenario, where the agent needs to

collect the boxes distributed in an office. The idea here is to test the agent’s

capability to perform complex planning when tasks are distributed in different

rooms and its vision is blocked by walls. The agent needs to enter each room

to finish the problem. Figure 4.5e illustrates the scenario.

All environments were implemented using AdLeap-MAS, our developed simulator

(see Appendix A). Each run was performed in a single node of a high-performance

cluster containing 16 cores of Intel Ivy Bridge processors and 64 GB RAM.

Baselines – In this thesis, we compare IB-POMCP against 3 relevant methods from

the state-of-the art:

(i) POMCP proposed by [93], since it is a relevant state-of-art proposal and

represents the basis of this work;

(ii) ρ-POMCP proposed by [99], representing our main competitor in terms of

using information theory to perform the online planning procedure, and;

(iii) TB ρ-POMCP [99], as a faster alternative to ρ-POMCP that employs an

explicit POMDP model.

Metrics – Two different evaluation metrics were used for the analysis:

(i) the average reward (R) across the experiment’s mean reward, and;

(ii) the average planning time (t) spent by the agent to plan the next actions.
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(a) The Corridor.

(b) U-shaped.

(c) U-Obstacles.

(d) The Warehouse.

(e) The Office.

Figure 4.5: Foraging environment scenario’s configuration.

82



4.4. Results

Mean results were calculated across 50 executions. Every experiment ran

independently; thus, no knowledge was carried from one execution to another. The

calculated errors (±Err) represent the 95% confidence interval of a two-sample t-test.

In other words, we label the result as “significant” if it is statistically significant

considering ρ ≤ 0.05 unless otherwise stated. Note that our results and baselines are

separated into two categories:

(i) Quick Planning: grouping methods that perform the decision-making process

within a reasonable time window, and;

(ii) Long Planning: presenting the ρ-POMCP’s results (without time constraints).

We separated them to make their understanding easier.

Hyperparameters – We used a single hyperparameter set for all Monte-Carlo Tree

Search-based methods:

• Historical weight/Discount factor: γ = 0.95

• Maximum depth for the tree: 20

• Maximum number of simulations: 250 (per search)

The value for γ was determined based on the literature [93, 111, 99]. The maximum

depth and the maximum number of simulations were selected with the intention of

constraining the problem’s execution by limiting the reasoning horizon.

For ρ-POMCP and TB ρ-POMCP specific hyperparameters, based on the best

setting found in Thomas, Hutin, and Buffet (2020) [99], we consider:

• Small bag size: |B| = 10

• TB ρ-POMCP runs within the same time window of IB-POMCP’s average

planning time.

Finally, we applied q = 0.2 for the IB-POMCP’s experiments, hence α ∈ [0.2, 0.8].
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4.4.2 Benchmarks study

All results are presented in Table 4.1 and 4.2, where Table 4.1 presents the summarised

results for the average reward and Table 4.2 for the average planning time.

In the text, we highlight the pros and cons of our method, analysing its limitations

while discussing the outcome for each baseline in each benchmark study.

Table 4.1: Average reward result for the baselines in benchmark problems. The bold

highlighted values in the Quick Planning category highlight the best result for the

respective problem and metric with statistical significance across all Quick Planning

baselines. The rewards order are ×10−2, except for the Foraging scenarios (F0-4).

Quick Planning Long Planning

Problem
POMCP TB ρ-POMCP IB-POMCP ρ-POMCP

R± Err R± Err R± Err R± Err

Tiger (T0) −4.25± 0.80 −0.16± 0.03 −0.52± 0.15 −0.21± 0.03

MazeCross (M0) 1.11± 0.08 1.12± 0.07 1.23± 0.04 1.19± 0.07

MazeHoles (M1) 1.56± 0.50 1.32± 0.46 3.80± 0.86 2.34± 0.44

MazeDots (M2) 1.20± 0.28 0.79± 0.15 2.99± 0.85 1.25± 0.20

MazeGridX (M3) 2.80± 0.60 0.99± 0.15 0.96± 0.02 1.37± 0.30

RockSample22 (R0) 0.6± 0.1 0.3± 0.1 0.7± 0.1 0.3± 0.1

RockSample40 (R1) 1.2± 0.1 1.1± 0.2 1.6± 0.1 1.0± 0.1

RockSample44 (R2) 0.7± 0.1 0.6± 0.1 0.9± 0.2 0.4± 0.2

RockSample17 (R3) −0.4± 0.2 −0.6± 0.2 0.0± 0.1 −0.9± 0.2

Tag (LT0) −4.7± 0.9 −6.5± 0.9 −3.6± 0.7 −6.5± 1.0

LaserTag (LT1) −9.0± 0.6 −8.6± 0.9 −9.2± 0.6 −9.6± 5.1

TheCorridor (F0) 4.29± 0.51 4.36± 0.38 6.89± 0.28 5.15± 0.18

U-shaped (F1) 0.70± 0.34 0.53± 0.03 5.10± 0.14 5.30± 0.31

U-obstacles (F2) 1.17± 0.34 1.67± 0.23 5.50± 0.34 3.75± 0.45

Warehouse (F3) 5.20± 0.45 4.42± 1.03 10.73± 0.41 8.99± 0.96

TheOffice (F4) 0.43± 0.21 0.72± 0.14 2.34± 0.27 1.61± 0.17
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Table 4.2: Average time result for the baselines in benchmark problems. The bold

highlighted values in the Quick Planning category highlight the best result for the

respective problem and metric with statistical significance across all Quick Planning

baselines. The time is expressed in seconds.

Quick Planning Long Planning

Problem

POMCP TB ρ-POMCP IB-POMCP ρ-POMCP

t± Err t± Err t± Err t± Err

(sec) (sec) (sec) (sec)

Tiger (T0) 0.09± 0.01 0.20± 0.00 0.11± 0.01 1.45± 0.04

MazeCross (M0) 2.47± 0.02 3.00± 0.00 2.43± 0.01 28.16± 0.68

MazeHoles (M1) 3.72± 0.03 4.00± 0.00 3.60± 0.04 48.41± 2.82

MazeDots (M2) 2.59± 0.02 3.00± 0.00 2.53± 0.02 36.71± 1.39

MazeGridX (M3) 1.86± 0.02 2.00± 0.00 1.82± 0.01 19.79± 0.32

RockSample22 (R0) 2.08± 0.03 5.00± 0.00 2.33± 0.04 2.70± 0.43

RockSample40 (R1) 2.08± 0.03 5.00± 0.00 2.40± 0.04 2.77± 0.32

RockSample44 (R2) 4.67± 0.09 5.00± 0.00 5.10± 0.06 23.18± 3.10

RockSample17 (R3) 4.72± 0.09 5.00± 0.00 5.11± 0.06 25.49± 3.28

Tag (LT0) 1.22± 0.20 3.00± 0.00 0.86± 0.14 11.23± 1.52

LaserTag (LT1) 4.72± 0.09 3.00± 0.00 5.11± 0.06 19.41± 1.02

TheCorridor (F0) 0.96± 0.06 1.00± 0.00 0.87± 0.10 8.18± 0.71

U-shaped (F1) 3.67± 0.02 3.00± 0.00 2.99± 0.19 37.36± 1.29

U-obstacles (F2) 1.90± 0.03 2.00± 0.00 1.88± 0.08 15.44± 0.37

Warehouse (F3) 3.02± 0.11 3.00± 0.00 2.91± 0.25 20.40± 0.67

TheOffice (F4) 1.90± 0.03 2.00± 0.00 1.88± 0.08 15.44± 0.37

In the Tiger domain, TB ρ-POMCP presents the best average reward among

the Quick Planning methods (ρ < 0.01). IB-POMCP still significantly outperforms

POMCP in terms of reward collection (ρ < 0.01). For this specific problem, since

the action “listen” generates variation in the entropy, IB-POMCP keeps performing

it repeatedly until other action value outcomes the “listen” value in the best action

selection procedure (Section 4.2, step (v)), a circumstance which leads our method
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to reduce its average reward collection. Hence, when facing problems where seeking

spots of high uncertainty produces small penalties, IB-POMCP may collect penalties

until it significantly decreases the uncertainty and chooses another path.

In the Maze domain, we observe that IB-POMCP presents a significantly better

average reward in 3 out of 4 proposed scenarios (ρ ≤ 0.015), except for M3, for

which POMCP presents a better result. Note that reducing uncertainty leads to

increasing reward; i.e. the faster an agent can access areas with high uncertainty,

the higher its received reward. IB-POMCP’s results match our expectations (given

the developed rationale throughout our methodology) since we build it to, besides

tracking the rewards available in the scenario, often seek paths that lead to spots

with high entropy in order to decrease uncertainty, what increases reward in this

scenario. In terms of time, we present significantly faster reasoning in all the Maze’s

scenarios (ρ < 0.01). Investigating why IB-POMCP runs faster than POMCP, we

found that our information-guided planning leads the algorithm to perform more

transitions during the rollout phase than while performing the simulation inside our

actual search tree, with a rate #rollout
#simulation

= 1.61, whereas POMCP presents a rate of

1.28. Because rollout transitions run faster than simulation transitions inside the

tree, we can save time by performing them frequently.

In the Rock Sample problem, we can see that IB-POMCP shows a significant

improvement in terms of reward collection (ρ ≤ 0.02) in 3 out of 4 scenarios – except

for the simplest scenario RockSample22 (R0), which presents a p-value of ρ ≤ 0.11. In

terms of reasoning time, POMCP is slightly faster than all Quick Planning methods

in 3 out of 4 scenarios (ρ ≤ 0.01), except for RockSample17 (R3).

In Tag, IB-POMCP presents significant improvement in terms of reward collection

and reasoning time against all baselines (ρ ≤ 0.04). As in the Maze, we believe that

IB-POMCP is faster because it simulates transitions in rollouts more often (in a ratio

of #rollout
#simulation

= 1.7 against 1.61 for POMCP). In LaserTag, we have a tie between all

methods, with no statistically significant difference spotted across metrics (ρ ≥ 0.32

for reward collection and ρ ≥ 0.06 for reasoning time).
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Finally, in the Foraging domain, our proposed method significantly outperformed

all the baselines (ρ < 0.01). The Foraging problem represents our most complex

scenario and empirically shows how IB-POMCP can overcome the necessity of

adjusting the reasoning horizon to perform planning in settings that deliver rewards

sparsely. The only reward available in these scenarios comes from the collection

of tasks. Consequently, while attempting to solve a task, the number of actions

that the agent needs to plan and execute in sequence may approach or exceed the

reasoning horizon size. In this case, the probability of experiencing this reward is

low, and algorithms that only follow the reward in planning will rarely obtain it in

their simulations; hence, they fail to plan effectively.

Overall, we experimentally demonstrated that our novel proposed method can

significantly improve the performance of our agent and its planning capabilities

without penalising the reasoning time. We also demonstrated that our proposal can

improve the decision-making process by using only the information generated during

the tree search process and, in contrast to ρ-POMCP, without relying on the explicit

representation of latent functions (e.g., the observation function).

4.4.3 Ablation study

To evaluate the impact of our proposed modifications and enhancements, we

performed an ablation study over our method. We consider 2 different variations of

IB-POMCP that partially implement its key points in this experiment:

(a) Information-guided Particle Reinvigoration POMCP (IPR-POMCP),

which implements the modifications to the particle filter reinvigoration process

(explained in Section 4.2.2 and 4.2.3, steps (i) and (ii), respectively); and

(b) Information-guided UCB POMCP (I-UCB POMCP), which implements

the proposed modifications to the search and simulation process (explained in

Section 4.2.4 and 4.2.5, steps (iii) and (iv), respectively).
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We consider 4 different scenarios to run our experiments, which are Tiger (T0),

MazeDots (M2), U-obstacles (F2) and TheOffice (F4). The results are depicted in

Figure 4.6. Both additional methods proposed for the study are available in our

GitHub2 repository together with the complete code of this work.

(a) Tiger (T0)
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(b) MazeDots (M2)
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(c) U-obstacles (F2)
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(d) TheOffice (F4)
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Figure 4.6: Ablation study of IB-POMCP in four different scenarios.

By analysing the graphs, it is clear that the I-UCB and implementation of an

information-guided particle reinvigoration process for the Tiger, Maze, and Foraging

problems directly enhance the reasoning capabilities of our planning method, which

is translated here in terms of reward collection. For the Tiger and Foraging problems,

2IB-POMCP’s GitHub page: https://github.com/lsmcolab/ib-pomcp/
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4.5. Further Details and Discussion

diversifying the set of particles (I-UCB POMCP) alone presents improvements for

POMCP; however, it has less impact than including entropy in the search process

(IPR-POMCP). On the other hand, in the Maze environment, both approaches

present similar improvements for the POMCP algorithm. However, when combined,

they significantly improved upon the baseline results. Our intuition behind these

results is that the IPR-POMCP proposal is responsible for delivering a better set

of particles and a better initial estimation of the current state to the agent before

simulating actions, whereas I-UCB continually guides and affects the planning process

from the beginning of the simulations until the decision of the best action.

4.5 Further Details and Discussion

We save some space here with the intention of assuring the reader’s understanding

of the novelty that lies on our particle filter update proposal. Our method employs

a dynamic threshold derived from the dynamic value of P̃ (z|ha) (or specifically,

1 − P̃ (z|ha) that determines the ratio of uniform samples in the reinvigorated

particle filter). Unlike some traditional approaches which use a fixed value for

that threshold, or some other state-of-the-art contributions, which mostly rely on

additional knowledge and expensive calculations [55, 40, 48], IB-POMCP does not

need an explicit true distribution of observations, transition function or training data

in this process by using our proposed P̃ (z|hra) probability.

It is important to note that the action selection process within the planning phase

has a direct impact on the P̃ (z|hra) value. Therefore, the strategy used to choose

actions for simulation during planning will affect the particle filter, since it affects

the dynamic threshold P̃ (z|hra). Hence, note that the I-UCB equation used in the

search tree also has an impact on belief tracking.

Our suggested algorithm to investigate the impact of this proposal (Ablation

study in Section 4.4.3), IPR-POMCP, employs our dynamic threshold and shows

significant improvement to the conventional POMCP, which follows a standard
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particle reinvigoration paradigm (with a fixed parameter for reinvigoration). Hence,

just using the dynamic threshold P̃ (z|hra) improves results. Furthermore, the ablation

study indicates that combining the dynamic threshold with the I-UCB equation yields

even more favourable results and that using solely the I-UCB equation without the

dynamic threshold (IUCB-POMCP baseline) results in worse outcomes than the full

IB-POMCP approach. Hence, both the dynamic threshold and the I-UCB equation

are important to improve results, and their simultaneous application produces even

greater enhancements than when employed individually.

What is perhaps still left open is whether the I-UCB equation leads to better

P̃ (z|hra) values than the UCB equation. Since our approach takes the estimated

entropy into consideration for action selection we believe that I-UCB may lead to

better threshold values. However, further research is still necessary on this subject

to provide a complete theoretical analysis and prove this impact.

For example, in cases where a node possesses high entropy and no reward in the

reasoning horizon, the I-UCB equation could prioritise visiting it more often than

the UCB equation would, increasing the P̃ (z|hra) value for that particular node

(note that it will not imply in worse probability estimation because the entropy is

based on the estimation of observations and the particle filter gives the probabilities

of states). The high entropy indicates that the node accommodates a more diverse

set of particles in the particle filter and hence sampling particles from a uniform

distribution during particle reinvigoration (to increase diversity) becomes less useful.

Hence, the implications of the I-UCB equation appear favourable as it leads to

fewer particle samples from the uniform distribution in this case (as we use the

ratio 1 - P̃ (z|hra)). On the other hand, if a node has low entropy, the particle filter

may easily get biased to a small set of states. In this case, I-UCB would lead to a

higher number of particles sampled from the uniform distribution than the UCB

equation in the particle reinvigoration, since it would have a lower P̃ (z|hra) value in

I-UCB. Therefore, we believe that I-UCB should be better than UCB for defining

the dynamic threshold P̃ (z|hra), and hence better in belief tracking.
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4.6 Chapter Conclusion

In this chapter, we presented Information-based POMCP (IB-POMCP), a novel

algorithm for planning under uncertainty that is capable of aggregating information

entropy into a decision-making algorithm using our modified version of the UCB

function, I-UCB. We present the theoretical properties for convergence under certain

assumptions, which are supported by empirical results collected in five different

domains. Overall, we increase the reward collection by up to 10 times in comparison

with TB ρ-POMCP in the U-shaped scenario (F1), in addition to reducing the

reasoning time by up to 93% compared to ρ-POMCP in the MazeHoles (M1) scenario.

We also kindly refer the reader to Chapter 7.2.1 for a more comprehensive discussion

about IB-POMCP’s contributions for this thesis’ purposes.
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Chapter 5

Online Estimators for Ad-hoc Task

Execution

In this chapter, we present the technical details of OEATE, our proposed type

and parameter estimation method, which runs together with an online planning

algorithm and intends to improve performance in teamwork context. This work was

published as a journal at AAMAS 2022 and as a short paper in AAMAS 2023, titled

as “On-line Estimators for Ad-hoc Teask Execution: Learning Types and Parameters

of Teammates for Effective Teamwork” [26, 28].

5.1 Introduction

Autonomous agents are usually designed to pursue a specific strategy and accomplish

a single or set of tasks. Intending to improve their performance, these agents often

follow specified coordination and communication protocols to enable the collection of

valuable information from the environment components or even from other reliable

agents. However, employing these methods is challenging due to environmental and

technological constraints. There are circumstances where communication channels

are unreliable, and agents cannot fully trust them to send or receive information.

Moreover, particular situations require the design of agents from various parties
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aiming to solve a problem urgently, but constructing and testing communication

and coordination protocols for all different agents can be unfeasible given the time

constraints. For example, consider a natural disaster or a hazardous situation where

institutions may urgently ship robots from different parts of the world for handling

the problem. In these scenarios, avoiding delays and unnecessary funding usage

would save lives and mitigate the caused damages.

One possible solution is to offer a centralised mechanism to allocate tasks to each

agent in the environment in an efficient manner. However, we may face scenarios

where there is no centralised mechanism available to manage the agents’ actions.

Considering large scale problems, it is even easier to imagine situations where

environmental or time constraints also derail this solution. Hence, agents need to

decide, autonomously, which task to pursue [17] – defining what we will denominate

a decentralised execution scenario. The decentralised execution is quite natural in

ad-hoc teamwork, as we cannot assume that other agents follow the same centralised

controller. Therefore, allowing agents to reason about the surrounding environment

and create partnerships with other agents can support the accomplishment of missions

that are hard to deal with individually, reducing the necessary time to achieve all

tasks and minimising the costs related to the process.

For many relevant domains, these decentralised execution problems can be

modelled focusing on the set of tasks that need to be accomplished in a distributed

fashion (e.g., victims to be rescued from a hazard, letters to be quickly delivered to

different locations, etc). Note this kind of design presents a task-based perspective

to solve the problem, where agents must reason about their teammates’ targets to

improve the coordination, hence the team’s performance. In this way, the agents

must approximate the teammates’ behaviours (or their main features) in order to

deliver this improvement while solving the problem.

As our first goal, we will address the problem where agents are supposed to

complete several tasks cooperatively in an environment where there is no prior

information, reliable communication channel or standard coordination protocol to
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support the problem completion. We will denominate this ad-hoc team situation as

a Task-based Ad-hoc Teamwork problem, a decentralised distributed system where

agents decide their tasks autonomously, without previous knowledge of each other,

in an environment full of uncertainties.

Instead of developing algorithms that are able to learn any possible policy from

scratch, a common approach in the ad-hoc teamwork literature is to consider a set

of possible agent types and parameters, thereby reducing the problem of estimating

those [4, 5, 12]. This approach is more applicable, as it does not require a large

number of observations, thus allows the learning and acting to happen simultaneously

in an on-line fashion, i.e., in a single execution. Types could be built based on previous

experiences [14, 15] or derived from the domain [3]. Moreover, the introduction of

parameters for each type allows more fine-grained models [4]. However, previous

works that learn types and parameters in ad-hoc teamwork are not specifically

designed for decentralised task execution, missing an opportunity to obtain better

performances in these relevant MAS scenarios.

Other lines of work focus on neural network-based models and learn the policies

of other agents after thousands (even millions) of observations [48, 83]. These

applications, however, would be costly, especially when domains get larger and more

complicated. Similarly, I-POMDP based models [30, 36, 44, 50] could be applied

for reasoning about the model of other agents, but its application is non-trivial

considering larger problems. On the other hand, some approaches in the literature

have also tested task-based designs, inferring about agents pursuing tasks to predict

their behaviour [31]. Although we share some similarities, they have not yet handled

learning types and parameters of agents in ad-hoc teamwork systems where multiple

agents may need to cooperate to complete common tasks.

Therefore, as our main contribution, we present Online Estimators for Ad-hoc

Task Execution (OEATE), a novel algorithm for estimating teammates types and

parameters in decentralised task execution. Our algorithm is light-weighted, running

estimations from scratch at every single run, instead of employing pre-trained models,
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or carrying knowledge between executions. Under some assumptions, we show

theoretically that our algorithm converges to a perfect estimation when the number

of tasks to be performed gets larger. Additionally, we run experiments for two

collaborative domains: (ii) a level-based foraging domain, where agents collaborate

to collect “heavy” boxes together, and; (ii) a capture the prey domain, where agents

must collaborate to surround preys and capture them. We also tested the performance

of our method in full and partial observable scenarios. We show that we can obtain a

lower error in parameter and type estimations in comparison with the state-of-the-art,

leading to significantly better performance in task execution for some of the studied

cases. We also run a range of different scenarios, considering situations where the

number of agents, scenario sizes, and the number of items gets larger. Furthermore,

we evaluate the impact of increasing the number of possible types. Finally, we run

experiments where our ad-hoc agent does not have the true type of the other agents

in its pool of possible agent types. In such challenging situations, our parameter

estimation outstands the competitors and, our type estimation and performance is

similar or better than the state-of-the-art in several cases considering the results’

confidence interval.

5.2 The Task-based Ad-hoc Teamwork Problem

Before delving into OEATE, we introduce our Task-based Ad-hoc Teamwork model

implemented in our solution. We extend the discussion presented in the Background

(Chapter 2) but now focusing on OEATE’s model and our specific problem.

Ad-hoc teamwork defines domains where agents intend to cooperate with their

teammates and coordinate their actions to reach common goals. Moreover, agents

in the domains do not have any prior communication or coordination protocols

to enable the exchange of information between them, so learning and reasoning

about the current context are mandatory to improve the team’s performance as

a unit. However, if agents are aware of some potential pre-existing standards for
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coordination and communication, they can try to learn their teammates features [15].

As a result of such intelligent coordination in the ad-hoc teams, they can improve

their decision-making process and hence, accomplish shared goals more efficiently.

This fundamental model can be extended to fit distinct problems and scenarios.

In OEATE, we extend the Ad-hoc Teamwork model to a Task-based Teamwork

Model, enabling a better representation of our world as presented in previous state-

of-the-art works [2, 14, 111]. In this model, one learning agent ϕ, acts in the same

environment as a set of non-learning agents ω ∈ Ω, ϕ /∈ Ω. In the ad-hoc team

ϕ∪Ω, the objective of ϕ (as the learning agent) is to maximise the performance (e.g.,

increase the number of tasks accomplished or decrease the necessary time to finish

them all). However, all non-learning agents’ models are unknown to ϕ, and there is

no communication channel available. Hence, ϕ must estimate and understand their

models as time progresses, by observing the scenario. In other words, the learning

agent must improve its decision-making process by approximating the teammates’

behaviour in an on-line manner and facing a lack of information.

Besides, there is a set of tasks T which all agents in the team endeavour to

accomplish autonomously. A task τ ∈ T may require multiple agents to perform it

successfully and multiple time steps to be completed. For instance, in a foraging

problem, a heavy item may require two or more robots to be collected, and the robots

would need to move towards the task location to accomplish it, taking multiple time

steps to move from their initial position.

The learning agent ϕ must minimise the time to accomplish all tasks. Hence,

playing this role requires the support of a method that integrates the estimation

and the decision-making process while performing and improving the planning. On

the other hand, all non-learning agents aim to finish the tasks in the environment

autonomously. However, choosing and completing a task τ by any ω is dependent on

its internal algorithm and its capabilities. Nonetheless, ω’s algorithm can be one of

the potential algorithms defined in the system, which might be learned from previous

interactions with other agents [14].
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Therefore, following the model of non-Learning agents defined in previous works

[4, 111], there is a set of potential algorithms, which compose a set of possible types

Θ for all ω ∈ Ω. The assumption is that all these algorithms make decisions based

on a vector of parameters. Hence, the types are all parameterised, which affects

agents’ behaviour and actions. Considering the existence of these types’ parameters

allows ϕ to use more fine-grained models when handling new unknown agents.

According to these assumptions, each ω ∈ Ω will be represented by a tuple (θ,

p), where θ ∈ Θ is ω’s type and p represents its parameters, which is a vector

p =< p1, p2, ..., pn >. Also, each element pi in the vector p is defined in a fixed range

[pmini , pmaxi ] [4]. So, the whole parameter space can be represented as p ⊂ Rn. These

parameters can be the abilities and skills of an agent. For instance, a robot can be

quite different depending on its hardware – for a robot, it can be vision radius, the

maximum battery level or the maximum velocity. The parameters could also be

hyper-parameters of the algorithm itself. Consequently, each ω ∈ Ω, based on its

type θ and parameters p, will choose a target task. The process of choosing a new

task can happen at any time and any state, depending on the agents’ parameters

and type. We denominate these decision states as Choose Target States s ∈ S.

In the Task-based Ad-hoc Teamwork context, a precise estimation of tasks also

depends on estimating the Choose Target State. Our method presents a solution

to this problem by considering an information-based perspective, which does its

evaluation by giving different weights to the information derived from observations

made by the agent ϕ, instead of directly estimating the choose target state.

5.3 The Markovian Extension for Task-based Ad-

hoc Teamwork Problems

Before introducing our Markovian model applied to OEATE, we need to understand

what is a Stochastic Bayesian Game (SBG) and its importance for the ad-hoc

teamwork context. Overall, a SGB describes a well-suited solution towards the
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representation of ad-hoc teamwork problems that combine the Bayesian games with

the concept of stochastic games and provide a descriptive model to the context [14,

72]. In this section, we will define an SBG-based model for our specific setting. We

refer the reader to Melo and Sardinha (2016) [72] for a more generic formulation.

Our model consists of a discrete state space S, a set of players (ϕ ∪Ω), a state

transition function T and a type distribution ∆. Each agent ω ∈ Ω has a type θi ∈ Θ

and a parameter space p. Each parameter is a vector p =< p1, p2 . . . pn > and each

pi ∈ [pmini , pmaxi ], for all agents. The set [pmin1 , pmax1 ]× · · · × [pminn , pmaxn ] = p ⊂ Rn is

the parameter space for each agent. Each type could have a different parameter space,

but we define a single parameter space here for simplicity of notation. Furthermore,

we assume that the types of the agents are fixed throughout the process (a pure and

static type distribution). Moreover, each player is associated with a set of actions,

an individual payoff function and a strategy. Considering that at each time step,

agents ωi ∈ Ω are fixed tuples (θi,pi), where θi ∈ Θ and pi ∈ p, we extend the SBG

model in order to describe the following situation:

Problem: Consider a set of players ϕ ∪ Ω that share the same

environment. Each player acts according to its type θi, parameters

pi and own strategy πi. They do not know the others’ types or

parameters. At each time step t, given the state st and a joint action

at = (atϕ, a
t
1, a

t
2, ..., a

t
|Ω|), the game transitions accordingly to the transition

probability T and each player receives an individual payoff ri until the end

of the game. How can we maximise the overall payoff in this situation?

Therefore, by using the SBG model, we can represent our problem and the necessary

components in it. However, we consider in this work a fully cooperative problem,

under the point of view of agent ϕ. Hence, within the task-based ad-hoc teamwork

context, we want to model the problem employing a single-player abstraction under

ϕ’s point of view. Using a Markov Decision Process Model (MDP), we can abstract

all the environment components as part of the state (including teammates in Ω),

as explained in Section 2.2.3. This approach enables the aggregation of individual
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rewards from the SBG model into a single global reward and allows us to use

single-player Monte Carlo Tree Search techniques, as previous works did [81, 111, 2].

The OEATE’s MDP consists of a mathematical framework to model stochastic

processes in a discrete time flow, as presented in Section 2.1.1. Although there are

multiple agents and perspectives in the team, we will define the model considering

the point of view of an agent ϕ and apply a single agent MDP model, as in previous

works [81, 2, 111] that represent other agents as part of the environment.

All ω in Ω are modelled as the environment, as their actions indirectly affect the

next state and the obtained reward. Therefore, they are abstracted in the transition

function. That is, in the actual problem, the next state depends on the actions of

all agents, however, ϕ is unsure about the non-learning agents next action. For this

reason, we consider that given a state s, an agent ω ∈ Ω has a (unknown) probability

distribution (pdf) across a set of actions Aω, which is given by ω’s internal algorithm

(θ, p). This pdf is going to affect the probability of the next state. Therefore, we

can say that the uncertainty in the MDP model comes from the randomness of the

actions of the ω agents, besides any additional stochasticity of the environment.

This model allows us to employ single-agent on-line planning techniques, like

UCT Monte Carlo Tree Search [58]. In the tree search process, the pdf of each

agent defines the transition function. At each node transition, ϕ samples ω agents’

actions from their (estimated) pdfs, and that will determine the next state s′ for the

next node. However, in traditional UCT Monte Carlo Tree Search, the search tree

increases exponentially with the number of agents. Hence, we use a history-based

version of UCT Monte Carlo Tree Search called UCT-H, which employs a more

compact representation than the original algorithm, and helps to trace the tree in

larger teams in a faster fashion [111]. We refer the reader to our background material

(at the end of Section 2.2.1) for more details about UCT-H.

As mentioned earlier, in this task-based ad-hoc team, ϕ attempts to help the team

to get the highest possible reward. For this reason, ϕ needs to find the optimal value

function, which maximises the expected sum of discounted rewards E[
∑∞

j=0 γ
jrt+j],
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where t is the current time, rt+j is the reward ϕ receives at j steps in the future,

γ ∈ (0, 1] is a discount factor. Also, we consider that we obtain the rewards by

solving the tasks τ ∈ T. That is, we define ϕ’s reward as
∑
r(τ), where r(τ) is the

reward obtained after the task τ completion. Note that the sum of rewards is not

only across the tasks completed by ϕ, but all tasks completed by any set of agents in

a given state. Furthermore, there might be some tasks in the system that cannot

be completed without cooperation between the agents, so the number of required

agents for finishing a task τ depends on each specific task and the set of agents that

are jointly trying to complete it.

Note that the agents’ types and parameters are actually not observable, but in

our MDP model that is not directly considered also. Estimated types and parameters

are used during on-line planning, creating an estimated transition function. The

actual decisions made by the non-learning agents are observable in the real world

transitions without any direct information about type and parameters. More details

are available in the next section.

5.4 The Estimation Problem

Considering the problem described by the MDP model in Section 5.3 and its details

presented in Section 2.1.1, we will describe the general workflow of an estimation

process and discuss how we integrated planning and estimation in this work.

• Estimations process – Initially, since agent ϕ does not have information about

each agent ω’s true type θ∗ and true parameters p∗, it will not know how they

may behave at each state, hence, must reason about all possibilities for type and

parameters from distribution ∆. So, ϕ must consider, for each ω ∈ Ω, an uniform

distribution for initialising the probability of having each type θ ∈ Θ, as well as

randomly initialising each parameter in the parameter vector p based on their

corresponding value ranges. However, given some domain knowledge, it could be

sampled from a different distribution both for types and for parameters.
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After each estimation iteration, we expect that ϕ will have a better estimation for

θ and p of each non-learning agent in order to improve its decision-making and the

team’s performance. Hence, ϕ must learn a probability for each type, and for each

type, it must present a corresponding estimated parameter vector. In further steps,

as agent ϕ observes the behaviour of all ω ∈ Ω and notices their actions and the

tasks that they accomplish, it keeps updating all the estimated parameter vectors p,

and the probability of each type P(θ)ω, based on the current state. The way these

estimations are updated depends on which on-line learning algorithm is employed.

This described process aims to improve the quality of ϕ’s decision-making based

on the quality of the result delivered by the estimation method. Therefore, we will

perform experiments using three different methods from the literature for type and

parameter estimation: Approximate Gradient Ascent (AGA), Approximate Bayesian

Update (ABU) [4] and POMCP [93], which are explained in detail in Section 2.4.

Moreover, these methods will represent our baselines for comparison against our novel

algorithm, denominated Online Estimators for Ad-hoc Task Execution (OEATE),

for parameter and type estimation in decentralised task execution, which will be

described in detail in Section 5.6.

A question that may arise here is whether IB-POMCP could serve as a planning

and estimation method, thus acting as a baseline for OEATE. The short answer

is yes; IB-POMCP could indeed be utilized as a baseline for OEATE if adapted

accordingly. Similar to the adaptation we will discuss for POMCP in Section 5.5, it is

feasible to leverage IB-POMCP for estimating types and parameters in this context.

However, the mere act of adapting POMCP for estimation within this task-oriented

domain already hints at the potential of IB-POMCP, comparing their performance

to proper task-based estimation methods. Therefore, while we acknowledge this

possibility, we opt to conduct experiments solely using the POMCP adaptation.

• Planning and Estimations – The current estimated models of the non-learning

agents are used for on-line planning, allowing agent ϕ to estimate its best actions.

In this work, we employ UCT-H for agent ϕ’s decision-making. UCT-H is similar

101



Chapter 5. Online Estimators for Ad-hoc Task Execution

to UCT, but using a history-based compact representation. This modification was

shown to be better in ad-hoc teamwork problems [111]. Therefore, as in previous

works [4, 111], we sample a type θ ∈ Θ for each non-learning agent from the estimated

type probabilities each time we re-visit the root node during the tree search process.

We use the newly estimated parameters p for the corresponding agent and sampled

type, which will impact the estimated transition function, as described in our MDP

model. Consequently, the higher the quality of the type and parameter estimations,

the better will be the result of the tree search process. As a result, agent ϕ makes a

decision concerning which action to take.

Note that the actual ω agents may be using different algorithms than the ones

available in our set of types Θ. Nonetheless, agent ϕ would still be able to estimate

the best type θ and parameters p to approximate agent ω’s behaviour. Additionally,

ω agents may or may not run algorithms that explicitly model the problem as

decentralised task execution or over a task-based perspective. However, using the

single-agent MDP, we only need agent ϕ to be able to model the problem as such.

5.5 POMCP as an Estimation Method

Although in the MDP model agent ϕ has full observation of the environment, it

cannot observe the type and parameters of its teammates. Therefore, we can

employ POMCP [93], a state-of-the-art on-line planning algorithm for POMDPs [53].

POMCP stores a particle filter at each node of a Monte Carlo Search Tree. In this

case, like the environment, apart from the types and parameters of the other agents,

is fully observable, the particles are defined as different combinations of the types

and parameters for all agents in Ω. I.e., [(θ4,p1), (θ2,p2), ..., (θ1,pn)], where each

(θ,p) corresponds to one non-learning agent.

In the very first root, when the particles are created, we randomly assign types

and parameters for each agent at each particle. Therefore, at every iteration, we

sample a particle from the particle filter of the root, and hence change the estimated
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type and parameters of the agents. As in the POMCP algorithm, the root gets

updated once a real action is taken, and a real observation is received. Therefore, for

having a type probability P(θ)ω for a certain agent ω, we calculate the frequency that

the type θ is assigned to ω in the current root’s particle filter. Additionally, for the

parameter estimation, we will consider the average across the particle filter (for each

type and agent combination). For further explanations, we recommend revisiting our

Beckground (Section 2.2.2) or the reading of Silver and Veness (2010)’s work [93].

5.6 Online Estimators for Ad-hoc Task Execution

In this section, we introduce our novel algorithm, Online Estimators for Ad-hoc Task

Execution (OEATE), which helps the ad-hoc agent ϕ to learn the parameters and

types of non-learning teammates autonomously. The main idea of the algorithm is to

observe each non-learning agent (ω ∈ Ω) and record all tasks (τ ∈ T) that any one

of the agents accomplishes, in order to compare them with the predictions of sets

of estimators. In OEATE, there are some fundamental concepts applied during the

process of estimating parameters and types. Therefore, we introduce the concepts

first and, then, explain the algorithm in detail.

5.6.1 OEATE Fundamentals

• Sets of Estimators – In OEATE, there are sets of estimators Eθ
ω for each type

θ and each agent ω that the agent ϕ reasons about (Figure 5.1). Moreover, each

set Eθ
ω has a fixed number of N estimators e ∈ Eθ

ω. Therefore, the total number of

sets of estimators for all agents are |Ω| × |Θ|. Figure 5.1 presents this idea, relating

agent, types and estimators.

An estimator e of Eθ
ω is a tuple: {pe, ce, fe, τe}, where:

• pe is the vector of estimated parameters for ω, and each element of the

parameter vector is defined in the corresponding element range.
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ω

θ1

Eθ1
ω

θ2

Eθ2
ω

θn

Eθn
ω

Figure 5.1: Illustration of OEATE’s set of estimators. Note that, for each ω agent

there is a set of estimators Eθ
ω for each type.

• ce holds the success score of each estimator e in predicting tasks.

• fe holds the failures score of each estimator e in predicting tasks.

• τe is the task that ω would try to complete, assuming type θ and parameters

pe. By having estimated parameters pe and type θ, we assume it is easy to

predict ω’s target task at any state.

Note that when we say it is easy to predict ω’s target task at any state, given a vector

of parameters pe and a type θ, it is due to our assumption that our ad-hoc agent

operates under full observability and the templates utilised to simulate teammates

in the environment are parameterised. Consequently, we can accurately discern the

information other agents possess and predict their target task with ease. However, in

scenarios where these characteristics do not hold, this assumption may be unreliable.

The success and failure scores (ce and fe, respectively) will be further explained the

in the Evaluation step of OEATE presentation.

All estimators are initialised in the beginning of the process and evaluated

whenever a task is done (by the ω agent alone or cooperatively). The estimators

that are not being able to make good predictions after some trials are removed and

replaced by estimators that are created using successful ones, or purely random, in a

fashion inspired by GA [52].
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• Bags of successful parameters – Given the vector of parameters pe =<

p1, p2, ..., pn >, if any estimator e succeeds in task prediction, we keep each element

of the parameter vector pe in bags of successful parameters to use them in the future

during new parameter vector creation. Accordingly, there is a bag of parameters Bθ
ω

for each type θ ∈ Θ as there is a estimator set Eθ
ω for each type. These bags are not

erased between iterations, hence, their size may increase at each iteration. There is

no limit size for the bags. We will provide more details in Section 5.6.2. Figure 5.2

presents this idea, relating agent, types and estimators to the addition of estimators

in the bags.

ω

θ1

Eθ1
ω

Eθ2
ω

θ2 θn

...

pe1
pe2
pe3
pe4
pe5

Bθ2
ω

pe1
pe2
pe5

Bθ1
ω

Figure 5.2: Illustration of OEATE’s bag of successful paramters. For each ω agent

and each possible type θ ∈ Θ, there is a bag of successful estimators. Successful

estimator are copied to the bag of estimators of their respective type, in order to later

generate new combinations of their elements. The check (green) indicates success in

predicting the task and the cross (red) indicates failure.

• Choose Target State – In the presented task-based ad-hoc teamwork context,

besides estimation of type and parameter for each non-learning agent (ω ∈ Ω), ϕ

must be able to estimate the Choose Target State (se) of each ω. The Choose Target
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State of an ω agent can be any s ∈ S or, in other words, a non-learning agent ω can

choose a new task τ ∈ T to pursue at any time t or state s. This can happen in many

situations, for example, when ω notices that its target does not exist anymore (if it

was completed by other agents), it would choose a new target, and the Choose Target

State would not be the same state as when the last task was done by ω. Hence, a

task-based estimation algorithm must be able to identify these moments where a

possible task decision happened, to correctly predict the target.

Example – For a better understanding of our method’s fundamentals, we will

present a simple example. Let us consider a foraging domain [5, 111], in which there

is a set of agents in a grid-world environment as well as some items. Agents in this

domain are supposed to collect items located in the environment.

We show a simple scenario in Figure 5.3, in which there are two non-learning

agents ω1, ω2, one learning agent ϕ, and four items which are in two sizes. As in

all foraging problems, each task is defined as collecting a particular item, so in this

scenario there are four tasks τ i. In addition, we have two types θ1 and θ2, and two

parameters (p1, p2), where p1, p2 ∈ [0, 1].

To keep the example simple, we consider that only p1 affects ω1’s decision-making

at each state, and its behaviour follows the rules:

• If θ1, and p1 ≥ 0.5, then ω1 goes towards small and furthest item (τ 3).

• If θ1, and p1 < 0.5, then ω1 goes towards small and closest item (τ 1).

• If θ2, ∀p1 ∈ [0, 1], ω1 goes towards big and closest item (τ 2).

Therefore, in the example scenario, there are four sets of estimators, two for each

ω agent : Eθ1
ω1

, Eθ2
ω1

, Eθ1
ω2

, Eθ2
ω2

. We assume that the total number of estimators in

each set is 5 (N = 5). Furthermore, we maintain 4 bags of estimators : Bθ1
ω1

, Bθ2
ω1

,

Bθ1
ω2

, Bθ2
ω2

. We assume that the true type of agent ω1 is θ1, and the true parameter

vector is (0.2, 0.5). At this point, we will focus on the set of estimators for agent ω1.

Moreover, we will continue to use this example to explain further details of OEATE.
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ω1

ω2

τ 1τ 1τ 1

τ 0τ 0τ 0 τ 3τ 3τ 3

τ 2τ 2τ 2

ϕ

(a) Current state where ϕ must reason

about ω agents’ behaviour (teammates).

ω1

ω2

θ1 and

p < 0.5

θ1 and

p < 0.5

θ1 and

p < 0.5 τ 1τ 1τ 1

θ1 and

p ≥ 0.5

θ1 and

p ≥ 0.5

θ1 and

p ≥ 0.5

τ 0τ 0τ 0 τ 3τ 3τ 3

θ2 and

∀p
θ2 and

∀p
θ2 and

∀p

τ 2τ 2τ 2

ϕ

(b) ϕ reasoning about ω agents’ be-

haviour. In the illustration, ϕ considers

three possible decisions for the agent ω1.

Figure 5.3: Example of ϕ thinking about ω ’ behaviour, when performing foraging.

5.6.2 Process of Estimation

After presenting the fundamental elements of OEATE, we will explain how we define

the process of estimating the parameters and type for each non-learning agent.

Simultaneously, we will also demonstrate how OEATE evolves in various steps, using

our above example. The algorithm is divided into five steps, which is executed for

all agents in Ω at every iteration:

(i) Initialisation: responsible for initialising the estimator set and the bags of

successful estimators for each agent ω ∈ Ω.

(ii) Evaluation: step where OEATE will increase the failure or the success score of

each estimator, for all initialised estimator sets, based on the correct prediction

of the ω’s target task. If the estimator successfully predicts the task, it will be

added to its respective bag. Otherwise, it will be up for elimination.

(iii) Generation: step where our method replaces the estimators removed in the

evaluation process for new ones.
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(iv) Estimation: process of calculating the types’ probabilities and expected

parameters’ value for each existing estimators set. The calculation is based on

the success rate of each set.

(v) Update: responsible for analysing the integrity of each estimator e and its

respective chosen target τe given the current world state. If it finds some

inconsistency, a new prediction is made considering ω’s perspective.

5.6.2.1 Initialisation

At the very first step, for each identified teammate in the environment, we initialise

its estimation set and the bag for each possible type. Therefore, ϕ needs to create N

estimators for each type θ ∈ Θ and each ω ∈ Ω. If there is a lack of prior information,

the parameter vectors pe of each estimator can be initialised with a random value

from the uniform distribution U , in each parameter’s range. Since each estimator

has a certain type θ and a certain parameter vector pe, it allows ϕ to estimate ω’s

task choosing process. A task will be estimated and assigned to τe when, in a given

state s ∈ S at the time t, the prediction return a valid task. In the case where there

is no valid task at the state s and time t, τe receives “None” and will be updated in

later iterations (process carried out by the Update step – Section 5.6.2.5). Finally,

both ce and fe are initialised to zero.

The Algorithm 7 illustrates the initialisation process.

• Initialisation Example – Returning back to our example, in Initialisation step,

we start by creating random estimators, as shown in Table 5.1.

To make the example simple, we define the state as only the position of agent

ω1. Therefore, we set each se (Choose Target State) with the initial position of ω1,

which is (3, 4), and then we create the parameter vectors pe by randomly sampling

from the uniform distribution, which should be done separately for both p1 and p2.

Agent ϕ simulates ω1’s task decision-making process for each estimator in the sets
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Algorithm 7 OEATE Initialisation Process

1: procedure Initialisation(Ω,Θ,N ,pranges, s
t)

2: EstimatorSets← ∅

3: EstimatorBags← ∅

4: for each ω ∈ Ω do

5: for each θ ∈ Θ do

6: EstimatorSets← EstimatorSets ∪ Eθ
ω

7: while |Eθ
ω| < N do

8: pe ← Ue(pmin,pmax, θ) ▷ Generating the estimator

9: from uniform distribution U

10: ce, fe ← 0, 0

11: se ← st

12: τe ← predictω(st, θ,pe)

13: Eθ
ω ← Eθ

ω ∪ e

Eθ1
ω1

and Eθ2
ω1

, and obtains the corresponding target task τe based on the type and

parameter of each estimator. In addition, all fe and ce will be initialised as zero. All

initial estimators for both sets are shown in Table 5.1.

pe(p1, p2) se τe ce fe

(0.4, 0.6) (3, 4) τ 1 0 0

(0.5, 0.3) (3, 4) τ 3 0 0

(0.6, 0.2) (3, 4) τ 3 0 0

(0.2, 0.5) (3, 4) τ 1 0 0

(0.9, 0.8) (3, 4) τ 3 0 0

(a) Initial estimators for type θ1

pe(p1, p2) se τe ce fe

(0.1, 0.3) (3, 4) τ 2 0 0

(0.8, 0.7) (3, 4) τ 2 0 0

(0.3, 0.5) (3, 4) τ 2 0 0

(0.6, 0.9) (3, 4) τ 2 0 0

(0.2, 0.1) (3, 4) τ 2 0 0

(b) Initial estimators for type θ2

Table 5.1: OEATE’s Initialisation example. Estimator sets Eθ1
ω1

and Eθ2
ω1

obtained

from the Initialisation step.
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5.6.2.2 Evaluation

The evaluation of all sets of estimators Eθ
ω for a certain agent ω starts when it

completes a task τω. The objective of this step is to find the estimators that

could estimate ω’s just completed real task τω correctly. Therefore, we present the

Algorithm 8 to facilitate the understanding of the evaluation process.

Algorithm 8 OEATE Evaluating Estimators

1: procedure Evaluation(τω, ω, st)

2: for each θ ∈ Θ do

3: for each e ∈ Eθ
ω do

4: if τω = τe then

5: Bθ
ω ← Bθ

ω ∪ pe ▷ Parameters are added with repetition.

6: ce ← ce + score(e)

7: else

8: fe ← fe + score(e);

9: if ce/(ce + fe) < ξ then ▷ Checking if estimator success rate > ξ

10: Eθ
ω ← Eθ

ω \ e ▷ Removing e from Eθ
ω

11: else

12: se ← st

13: τe ← predictω(st, θ,pe) ▷ Assigning new task

14: to survived estimators

As there are sets of estimators for each type θ ∈ Θ, then for every e in Eθ
ω, we

check if the τe (estimated task by assuming pe to be ω’s parameters with type θ)

is equal to τω (the real completed task). If they are equal, we consider them as

successful parameters and save the pe vector in the respective bag Bθ
ω (Line 5). The

union between bag and parameter, which is applied in the equation, means that new

parameters would be added to the bag with repetition, and if a parameter succeeds

many times, it will appear in the bag with the same numbers of successes, so the

chance of selecting it would be higher.

110



5.6. Online Estimators for Ad-hoc Task Execution

If the estimated task τe is equal to the real task τω, we will increase the ce following

ce ← ce + score(e). The score(e) value denotes the information-level score for the

prediction made by estimator e. The information-level score is used to represent

the weighting given to certain task completions over others. For example: If a task

prediction occurs many steps before the task completion, it was likely made by a

correct estimator than by random chance. Furthermore, this function can be tweaked

in a domain-specific way.

If the estimated task τe is not equal to the real task τω, we will increase the fe

score following fe ← fe + score(e). Note from the algorithm that we will only remove

an estimator e if its success rate is lower than ξ (Line 9). We define the threshold ξ as

a success threshold aiming to improve our estimator set, by removing the estimators

that do not make good predictions and keeping the ones that do (more detail in the

Generation explanation – Section 5.6.2.3).

Note that, by using this approach, any generated estimator e has a chance to be

eliminated at the first iteration of estimation. Hence, some estimators, which may

potentially approximate well the actual parameters, can be removed after performing

their first estimation wrongly, ∀ξ ∈ [0, 1]. However, even if these particles fail at the

beginning of the estimation, other estimators may also likely fail in the subsequent

iterations of OEATE, enabling the regeneration of the removed potentially correct

estimator through the bags or by sampling it again from the uniform distribution.

As we will show in Section 6.3, OEATE estimates the correct parameter for all agents

as the number of completed tasks grows and under some assumptions. Finally, the

Choose target State (se) of the successful estimators is updated and a new task (τe)

is predicted using the type and parameters of the estimator. The evaluation process

ends and the removed estimators will be replaced by new ones in the Generation.

• Evaluation Example – From the previous example, after the initialisation, the

agents move towards their respective targets. Based on the true type and parameters

of the agent ω1, after some iterations, the agent (ω1) gets the item that corresponds
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to the task τ 1. For this example, and throughout our experimentation, we will use

the number of steps required between predicting the task and completing the next

task as the score (information-level) for the estimator for that prediction. Let us

assume that the number of steps required by the agent ω1 is 4 (3 for moving and 1

for completing). From Figure 5.4, the agent ω1’s new position will be (6,4). We will

use this value as the score for the estimators. Note that here, since all estimators

chose the task at the same time, they will get the same score.

Whenever a task is done by an agent, the process of evaluation will start. Now,

we carry out the next step of our process. In Evaluation, all estimators of the two

sets Eθ1
ω1

, Eθ2
ω1

will be evaluated. If the task τ of any estimator e equals to τ 1, then

its success counter ce increases by score(e), otherwise it remains the same. Also, in

failing cases, the counter of failures fe increases by score(e). The updated values of

the estimators are shown in Table 5.2.

pe(p1, p2) se τe ce fe
ce

ce+fe

(0.4, 0.6) (3, 4) τ 1 4 0 1

(0.5, 0.3) (3, 4) τ 3 0 4 0

(0.6, 0.2) (3, 4) τ 3 0 4 0

(0.2, 0.5) (3, 4) τ 1 4 0 1

(0.9, 0.8) (3, 4) τ 3 0 4 0

(a) Estimators for type θ1

pe(p1, p2) se τe ce fe
ce

ce+fe

(0.1, 0.3) (3, 4) τ 2 0 4 0

(0.8, 0.7) (3, 4) τ 2 0 4 0

(0.3, 0.5) (3, 4) τ 2 0 4 0

(0.6, 0.9) (3, 4) τ 2 0 4 0

(0.2, 0.1) (3, 4) τ 2 0 4 0

(b) Estimators for type θ2

Table 5.2: Evaluation example. Estimator sets Eθ1
ω1

, Eθ2
ω1

after updating ce and fe.

If we suppose that the threshold for removing estimators is equal to 0.5 (ξ = 0.5),

then we will have two surviving estimators ( ce
ce+fe

≥ ξ) at Eθ1
ω1

and none in Eθ2
ω1

.

Hence, the bag for θ1 are: Bθ1
ω1

= {(0.4, 0.6), (0.2, 0.5)} and the bag for θ2 is empty.

Further, the new Choose Target State will be (6,4), which is used to find the new

task (τe) for the surviving estimators. The new estimator sets are represented in

Table 5.3 and, the new choose target state is illustrated by Figure 5.4.
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pe(p1, p2) se τe ce fe
ce

ce+fe

(0.4, 0.6) (6, 4) τ 3 4 0 1

(0.2, 0.5) (6, 4) τ 3 4 0 1

−− −− −− − − −

−− −− −− − − −

−− −− −− − − −

(a) Estimators for type θ1

pe(p1, p2) se τe ce fe
ce

ce+fe

−− −− −− − − −

−− −− −− − − −

−− −− −− − − −

−− −− −− − − −

−− −− −− − − −

(b) Estimators for type θ2

Table 5.3: Evaluation example. Estimator sets Eθ1
ω1

, Eθ2
ω1

after Evaluation step.

ω1

ω2

θ1 and

p < 0.5

θ1 and

p < 0.5

θ1 and

p < 0.5

θ1 and

p ≥ 0.5

θ1 and

p ≥ 0.5

θ1 and

p ≥ 0.5

τ 0τ 0τ 0 τ 3τ 3τ 3

θ2 andθ2 andθ2 and

∀p∀p∀p

τ 2τ 2τ 2

ϕ

Figure 5.4: New Choose Target state after ω1 completing τ 1. At this step, ω1 will

try to find a new task to pursue.

5.6.2.3 Generation

The generation process of new estimators occurs after every evaluation process and

only over the removed estimators. In this step, the objective is to generate new

estimators, in order to maintain the size of the Eθ
ω = N .
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Unlike the Initialisation step, we do not only create random parameters for new

estimators, but generate a proportion of them using previously successful parameters

from the bags Bθ
ω. Therefore, we will be able to use a new combination of parameters

from estimators that had successful predictions at least one time in previous steps.

Moreover, as the number of copies of the parameter p in the bag Bθ
ω is equivalent

to the number of successes of the same parameter in previous steps, the chance of

sampling very successful parameters will increase according to its success rate.

The idea of using successful estimators to generate part of the new estimators is

related to the Genetic Algorithm (GA) principles. Until now, the described process

shares several similarities with the GA idea, such as the generation of a sample

population for further evaluation and feature improvement. Furthermore, we are

concerned about boosting our estimation process (based on the estimator sampling

and evaluation), so we require a reasonable way to generate new estimators that can

improve our estimation quality. Therefore, inspired by GAs mutation and cross-over

process, we implement a GA-inspired process that supports our generation method.

Therefore, after the elimination of estimators for which the probability of making

a correct prediction is lower than the threshold ξ, we will generate new estimators

for our population following the mutation rate of m, where part of our population

is generated randomly following a uniform distribution U , and the rest following a

process inspired by the cross-over, using our bags of successful parameters. With

some domain knowledge, different distributions could be used. Figure 5.5 illustrates

how the estimator set changes during this described process and indicates the portion

of particles generated using the bags or randomly.

The generation process using the bags can be seen in Algorithm 9 Line 10-13 .

There, a new estimator is created by sampling n different parameters (with repetition)

from the target bag, and then choosing their i-th parameters. Hence, essentially if

the parameter of new estimator (enew) is penew =< p1, p2, . . . , pn >, then pi is chosen

by sampling psampled ∼ Bθ
ω and then taking the i-th parameter from it (pi,sampled).

Algorithm 9 summarises this generation procedure.
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Algorithm 9 Generating new estimators in OEATE

1: procedure Generation(ω,Ω,Θ,m,N ,n removed,st)

2: n mutations← m ∗ n removed ▷ Calculating the number of

3: mutations to perform.

4: for each θ ∈ Θ do

5: while n removed > 0 do

6: enew ← new Estimator() ▷ Initialising the new estimator.

7: if n mutations > 0 then ▷ Generating a estimator from

8: the mutation process

9: penew ← Ue(pmin,pmax, θ)

10: n mutations = n mutations− 1

11: else ▷ Generating an estimator using

12: the bags

13: for i = 0; i < n parameters; i = i+ 1 do

14: psampled ∼ Bθ
ω ▷ Sampling a parameter

15: from the bag

16: pi,enew ← pi,sampled ▷ Assigning the i-th parameter

17: of psampled to penew

18: n removed = n removed− 1

19: senew ← st

20: τenew ← predictω(st, θ,penew)

21: Eθ
ω ← Eθ

ω ∪ enew
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(c) Estimation set modifications during the evaluation and generation process.

Figure 5.5: Estimation set modifications from the evaluation to the end of generation

process. Figures (a) and (b) present the modifications after the evaluation and after

the generation, respectively. Figure (c) presents the entire modification process.

After performing all the generations, we continue to fill the estimator set with

uniform generated parameters. Once the estimator set is full (i.e., |Eθ
ω| = N),

the current state is assigned as Choose Target State (senew) of every new estimator.

Afterwards, a task (τenew) is predicted for each new estimator and the process finishes.

• Generation Example – Supposing m = 1
3

as mutation rate, then (1 −
1
3
) × (5 − 2) = 2 new estimators are generated by randomly sampling from the
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bags, while 1
3
× (5 − 2) = 1 estimator is generated randomly from the uniform

distribution. Therefore, we may create new estimators with the following parameters:

(0.4, 0.5); (0.2, 0.6); (0.8, 0.7), where the last vector is fully random. For Eθ2
ω1

, as all

estimators were removed and the corresponding bags are empty, the whole set Eθ2
ω1

will be generated using the uniform distribution as in the initialisation process. After

this, the current state (6,4) , is assigned as the Choose Target State for each new

estimator and a task is predicted.

All new estimators and updated values are shown in Table 5.4.

pe(p1, p2) se τe ce fe
ce

ce+fe

(0.4, 0.6) (6, 4) τ 3 4 0 1

(0.2, 0.5) (6, 4) τ 3 4 0 1

(0.4, 0.5) (6, 4) τ 3 0 0 0

(0.2, 0.6) (6, 4) τ 3 0 0 0

(0.8, 0.7) (6, 4) τ 0 0 0 0

(a) Estimators for type θ1

pe(p1, p2) se τe ce fe
ce

ce+fe

(0.1, 0.3) (6, 4) τ 2 0 0 0

(0.8, 0.7) (6, 4) τ 2 0 0 0

(0.3, 0.5) (6, 4) τ 2 0 0 0

(0.6, 0.9) (6, 4) τ 2 0 0 0

(0.2, 0.1) (6, 4) τ 2 0 0 0

(b) Estimators for type θ2

Table 5.4: Generation example. Estimator sets Eθ1
ω1

and Eθ2
ω1

sets after the Generation.

5.6.2.4 Estimation

At each iteration after doing evaluation and generation, it is required to estimate a

parameter and type for each ω ∈ Ω to improve the decision-making. First, based

on the current sets of estimators, we calculate the probability distribution over the

possible types. For calculating the probability of agent ω having type θ, P(θ)ω, we

use the success score ce of all estimators of the corresponding type θ. For each ω ∈ Ω,

we add up the success rates ce of all estimators in Eθ
ω of each type θ, that is:

kθω =
∑
e∈Eθ

ω

ce, ∀θ ∈ Θ
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It means that we want to find out which set of estimators is the most successful in

estimating correctly the tasks that the corresponding non-learning agent completed.

In the next step we normalise the calculated kθω, to convert it to a probability

estimation, following:

P(θ)ω =


kθω∑

θ′∈Θ kθ′ω

∑
θ′∈Θ k

θ′
ω > 0

1
N

else

During the simulations, OEATE will sample estimations from the current

estimation sets. In detail, for each agent ω, we will sample a type θ based on P (θ)ω

and sample an estimator from ω’s estimator set of that type (Eθ
ω), using the weights

given by ce of the estimators. In this way, once a type (θ) is selected, the probability

of selection of each estimator e ∈ Eθ
ω is equals to ce/k

θ
ω . If kθω = 0, we sample the

estimator uniformly from Eθ
ω. Otherwise, we perform the weighted sampling.

Using this strategy, OEATE can improve the reasoning horizon and diversify the

simulations. Differently from AGA and ABU that presents only a single estimation

per iteration, we present a set of the (current) best found estimators for planning

and decision-making.

• Estimation Example – Now, we do the Estimation step in our example to have a

probability distribution over types, and one parameter vector per type of ω1. At this

step, in order to find the probability of being either θ1 or θ2, we apply the Equation

5.6.2.4. By considering the ce of all estimators, we have that:

kθ1 = 8, kθ2 = 0,

Hence, to calculate the probability of each type, we use the Equation 5.6.2.4.

Accordingly, the probabilities are:

P′(θ1) =
8

8 + 0
= 1,P′(θ2) =

0

8 + 0
= 0,

which means that the probability of being θ1 is the higher one.
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Now, for the sampling process, we sample a type using the previously calculated

distribution. Let’s say that we sample θ1. Now, from this type, we also sample

an estimator, using the ratio ce/k
θ1 as the probability of each estimator in Eθ1

ω1
.

Concretely, we get:

P((0.4, 0.6)|θ1) =
4

8
,P((0.2, 0.5)|θ1) =

4

8

while the other estimators have probability 0. So, we use these probabilities to sample

an estimator, let’s say (0.4,0.6). Therefore, type θ1 and the parameters (0.4, 0.6) will

be our estimated type and parameter for the current estimation step.

During the planning phase in the root of the MCTS (for the learning agent ϕ

perspective), the OEATE will sample the simulating type and parameter respecting

the probabilities calculated above. Moreover, to calculate the error of the estimation

of our method, we use the mean square error (MSE) between the true parameter

and the expected parameter of the true type (θ∗). The expected parameter of a type

(θ) and agent ω is calculated as:

pexp =
∑
e∈Eθ

ω

ce
kθω

pe

5.6.2.5 Update

As mentioned earlier, there are possible issues that might arise in our estimation

process, they occur:

(i) when a certain task τ is accomplished by any of the team members (including

agent ϕ), and some other non-learning agent was targeting to achieve it, or;

(ii) when a certain non-learning agent is not able to choose a task to target (e.g.,

cannot see or find any available (or valid) task within its vision area considering

possible parameters limitations, such as vision radius and angle).

If some non-learning agent ω faces one of these problems, it will keep trying to

find a task to pursue. Hence, from the perspective of the learning agent ϕ, OEATE
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must handle this problem updating its teammates’ targets. Otherwise, it might

incorrect evaluate the available estimators given the outdated prediction.

Algorithm 10 Updating the OEATE Estimators

1: procedure Update(st,Ω,Θ)

2: for each ω ∈ Ω do

3: for each θ ∈ Θ do

4: for each e ∈ Eθ
ω do

5: if no task or valid task was assigned to τe then ▷ Agent cannot

6: find or see a valid task

7: τe = predictω(st, θ,pe) ▷ Predicting a task

8: se ← st

9: else if τe was completed by other agent then ▷ Task completed

10: by other agent

11: τe = predictω(st, θ,pe) ▷ Predicting a task

12: se ← st ▷ Note that τe can be ∅.

Therefore, the OEATE’s Update process exists to guarantee the estimator set

integrity for future evaluation. At each iteration, the update step will analyse the

integrity of each estimator e and its respective chosen target τe given the current

world state. If it finds some inconsistency, it will simulate the estimator’s task

selection for the next states, considering ω’s perspective. The process is carried out

in each successive state until it returns a new valid target for the indecisive estimator.

The Algorithm 10 presents the described update routine.

• Update Example – In the update step, we look at our estimators from Table

5.4 and check whether the conditions for update (from Algorithm 10 ) are met.

Evidently, for our case,we see that every estimator has a valid task assigned to it

and therefore, nothing will happen in the update step.
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5.7 OEATE with Partial Observability

Assuming full visibility for the learning agent is a strong presupposition and it rarely

occurs in a real application (due to data or technology limitations). Thus, towards a

more realistic application, we considered scenarios where agent ϕ is working with

limited visibility of the environment. Therefore, we formalise our problem as a single

agent POMDP model, which will allow us to adapt POMCP [93] with our OEATE, as

explained in Section 2.2.3. In this section, we will outline the main changes compared

to our previous MDP model (presented in the Background, Section 2.1.1, and adapted

to our ad-hoc context in Section5.3) and how we designed our POMCP-based solution

for distributed task execution problems into an ad-hoc teamwork context.

5.7.1 POMDP model

Our POMDP model considers one agent ϕ acting in the same environment as a

set of non-learning agents (ω ∈ Ω), and ϕ tries to maximise the team performance

without any initial knowledge about ω agents’ types and parameters. We consider

the same set of states S, action A, transition T and reward function R defined

previously. Additionally, ϕ’s objective is still to maximise the expected sum of

discounted rewards. However, now ϕ has a set of observations O that defines its

current state. Every action a produces an observation o ∈ O, which is the visible

environment in agent ϕ’s point of view (all of the environment within the visibility

region, in the state s′ reached after taking action a). We assume ϕ can perfectly

observe the environment within the visibility region, but it cannot observe anything

outside the visibility region. Hence, our POMDP model works within a observation

function which is deterministic instead of stochastic – so, all values denote empty

square, agent or task. True types and parameters are not observable.

The state cannot be observed directly by ϕ, so it builds a history H instead. H

consists of a set of collected information ht from the initial timestamp t = 0 until the

current time. Each ht is an action and observation pair ao, representing the action a
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taken at time t, and the corresponding observation o that was received. The current

agent history will define its belief state, which is a probability distribution across all

possible states. Therefore, ϕ must find the optimal action for each belief state.

This formalisation enables the extension of our planning model, from a full

observable context using MCTS to a partially observable context for POMCP

application. This transition to a POMCP application is a straightforward process,

however, we make further modifications to guarantee the on-line estimation and

planning features, which OEATE presents.

5.7.2 POMCP modification

POMCP [93] is an extension of UCT for problems with partial observability. The

algorithm uses an unweighted particle filter to approximate the belief state at each

node in the UCT tree and requires a simulator, which is able to sample a state s′,

reward r and observation o, given a state and action pair. Each time we traverse the

tree, a state is sampled from the particle filter of the root. Given an action a, the

simulator samples the next state s′ and the observation o. The pair ao defines the

next node n in the search tree, and for the current iteration, the state of the node

will be assumed to be s′. This sampled state s′ is added to node n’s particle filter,

and the process repeats recursively down the tree.

However, we do not know the true transition and reward functions, since they

depend on the pdfs of the non-learning agents (ω ∈ Ω). Therefore, we employ the

same strategy as previously: at each time we go through the search tree, we sample

a type for each agent from the estimated type probabilities and use the parameters

that correspond to the sampled type. These remain fixed for the whole traversal

until we re-visit the root node for the next iteration. Note that these sampled types

and parameters are also going to be used in the POMCP simulator, when we sample

a next state, a reward and an observation after choosing an action in a certain node.

As mentioned previously, POMCP has been modified before to sample transition

functions [45]. Here, however, we are employing a technique that is commonly used
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in UCT (for MDPs) in ad-hoc teamwork [5, 14], but now in a partially observable

scenario, which allows us to work on the type/parameter space instead of directly on

the complex transition function space. In this way, we can then employ OEATE for

the type and parameter estimation.

The same OEATE algorithm described in Section 5.6 can handle the cases where

any agent ω ∈ Ω is outside the agent ϕ’s visibility region. In order to do so, it samples

a particle from the POMCP root, which corresponds to sampling a state from the

belief state. That allows us to have complete (estimated) states when predicting tasks

for ω agents. States that are considered more likely will be sampled with a higher

probability for the OEATE algorithm following the POMCP belief state filtering

probabilities. However, we assume in our implementation (and in all algorithms we

compare against) that agent ϕ knows when an agent ω has completed a task τ , even

if it is outside our visibility region. That is, agent ϕ would know exactly which task

was completed by a certain agent. That would require in a real application some

global signal of task completion (e.g., boxes with radio transmitters).

5.8 Theoretical Analysis

In this section, we analyse, theoretically, OEATE’s capability to optimally estimate

types and parameters while performing online planning. We show that as the number

of tasks goes to infinite, under full observability, OEATE perfectly identifies the type

and parameters of all agents ω, given some assumptions. Our analysis follows:

▶ First, since each of our updates are related to completing the tasks, this analysis

assumes that the agents are able to finish the tasks in the environment. Additionally,

we consider that parameters have a finite number of decimal places. This is a light

assumption, as any real number x can be closely approximated by a number x′ with

finite precision, without much impact in a real application (e.g., any computer has

a finite precision). Hence, as each element pi in the parameter vector is in a fixed
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range, there is a finite number of possible values for it. To simplify the exposition,

we consider ψ possible values per element (in general they can have different sizes).

Let n be the dimension of the parameter space. Additionally, let p∗ be the correct

parameter, and θ∗ be the correct type, of a certain agent ω. We define θ− ̸= θ∗, and

p− ̸= p∗, representing wrong types and parameters, respectively. We will also use

tuples (p, θ) to represent a pair of parameter and type.

Assumption 5.1 Any (p, θ−), and any (p−, θ∗) has a lower probability of making

a correct task estimation than (p∗, θ∗), and the correct parameter-type pair (p∗, θ∗)

will also be able to have the correct Choose Target State (se).

▶ This assumption is light under our defined domain because if a certain pair

(p, θ−) or (p−, θ∗) has a higher probability of making correct task predictions, then

it should indeed be the one used for planning, and could be considered as the correct

type-parameter pair. We consider this asumption to be reasonable given our defined

scenario of investigation, where the environment is fully observable, the templates

used to simulate the teammates are parameterised, and the teammates’ policies

are mostly deterministic, as presented in our problem formulation and discussed

throughout our methodology (Sections 5.4 and 5.6, respectively). For more stochastic

or uncertain decision-making scenarios, this assumption would need to be supported

by more sophisticated techniques from theoretical statistics in order to hold more

generally.

Assumption 5.2 Any (p, θ−), and any (p−, θ∗) will not succeed infinitely often.

That is, as |T| → ∞ there will be cases where it successfully predicts the task, but the

number of cases is limited by a finite constant c.

Assumption 5.3 The assumption has 2 parts: (i) a correct value p∗i in any position

i may still predict the task wrongly (since other vector positions may be wrong), but

it will eventually predict at least one task correctly in at most t trials, where t is a

constant; (ii) a wrong value p−i in any position i may still predict the task correctly

124



5.8. Theoretical Analysis

(since other vector positions may be correct), but that would happen at most b times

for each bag, across all wrong values. Therefore, b≪ ψ.

▶ This assumption is needed to distinguish our method from a random search. If

one of the vector positions i is correct, p will not fail infinitely, even though other

elements may be incorrect. That is valid in many applications (considering our

defined domain), as in some cases only one element is enough to make a correct

prediction. For example, if a task was nearby, for almost any vision radius it would be

predicted as the next one if the vision angle were correct. On the other hand, wrong

values will not always succeed. That is also true in many applications: although

by the argument above, wrong values may make correct predictions, but these are

a limited number of cases in the real world. Eventually, all tasks nearby will be

completed, and a correct vision radius estimation becomes more important to make

correct predictions. Usually, ψ would be large (e.g., they may approximate real

numbers), so we would have b≪ ψ. Additionally, we will consider the case with lack

of previous knowledge, so parameters and types will be initially sampled from the

uniform distribution. As before, we denote by P(θ) the estimated probability of a

certain agent having type θ, but we drop the subscript ω for clarity.

Theorem 5.1 OEATE estimates the correct parameter for all agents as |T| → ∞.

Hence, P(θ∗)→ 1.

Proof: Since wrong parameters-type pairs will not succeed infinitely often, we

always will generate new estimators with a random pe. As we sample from the

uniform distribution, p∗ will be sampled with probability 1/ψn > 0. Hence, eventually

it will be generated as |T| → ∞. As the generation defines a Bernoulli experiment,

from the geometric distribution, we expect ψn trials.

Therefore, eventually, there will be an estimator with the correct parameter

vector p∗. Furthermore, since (p∗, θ∗) has the highest probability of making correct

predictions (Assumption 5.1), it has the lowest probability of reaching the failure

threshold ξ. Hence, as |T| → ∞, there will be more estimators (p∗, θ∗), than any
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other estimator. Further, any (p−, θ∗) will eventually reach the failure threshold, and

will eventually be discarded, since it succeeds at most c times by Assumption 5.2.

Therefore, by considering our method of sampling an estimator from the estimator

sets, we will correctly estimate p∗ when assuming type θ∗. Hence, when |T| → ∞

the sampled estimator from Eθ∗
ω will be p∗.

Further, when we consider the Assumption 5.2, then the probability of the correct

type P(θ∗) → 1. That is, we have that ce → ∞ in the set Eθ∗
ω . Hence, kθ

∗
ω → ∞,

while ce < c for θ− (by assumption). Therefore:

P(θ∗) =
kθ

∗
ω∑

θ′∈Θ k
θ′
ω

→ 1,

while P(θ−)→ 0, as |T| → ∞. ■

▶ This ensures that the as |T| → ∞, the sampled type is θ∗. Moreover, we saw in

Theorem 5.1 that a random search from the mutation proportion takes ψn trials in

expectation. OEATE, however, finds p∗ much quicker than that, since a proportion of

estimators are sampled from the corresponding bags Bθ,i
ω . In the following proposition,

we will prove that OEATE will indeed find p∗ and under Assumption 5.1, p∗ would

have highest probability of not being removed from the estimator set and will continue

to add it’s own parameters back to the bag, thereby further increasing the probability

of sampling those parameters at each mutation.

Proposition 5.1 OEATE finds p∗ in O(n× ψ × (b + 1)n).

Proof: Consider Assumption 5.3, we know that at some time, we must encounter

a parameter value pi. Sampling the correct value for element pi would take ψ trials

in expectation. Once a correct value is sampled, it will be added to Bθ∗
ω if it makes

at least one correct task prediction. It may still make incorrect predictions because

of wrong values in other elements, and it would be removed (from the estimator set)

if it reaches the failure threshold ξ. However, for a constant number of trials t× ψ,

it would be added to Bθ∗
ω . Similarly, sampling the correct value for all n dimensions
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at least one time would take n× ψ trials in expectation, and in at most t× n× ψ

trials Bθ∗
ω would have at least one estimator each with the correct value in position

i. The bags store repeated values, but in the worst case, there is only one correct

example at each Bθ∗
ω , leading to at least 1/(b + 1) probability to sample the correct

value from the bag. Hence, given the bag sampling operation, we would find p∗ with

at most t× n× ψ × (b + 1)n trials in expectation. Hence, the complexity is close

to O(ψ), instead of O(ψn) as the random search. Moreover, note that this is true

because b≪ ψ. ■

Considerations – In Assumption 1, the choose target state (se) of an estimator is

dependent only on the previous predicted tasks and the main agent’s observation.

Therefore, in a fully observable case, the true parameters have the highest probability

of having the correct choose target state . Furthermore, we leave the proof for

partially observable cases as future work.

Time Complexity – It is worth noting that the actual time taken by the algorithm

is dependent on (b + 1)n . So, as an example, if b = 10≪ ψ = 100 , then if n = 3 ,

(b + 1)n = 1000≫ ψ = 100 . However, when we are write the time complexity, we

are focusing on how the algorithm will scale with larger search space (i.e., higher ψ).

Further, since ψ is the precision of parameters, it is likely to be a large value.

▶ For instance, if there are 3 elements in parameter vector (p), if range of each

element (pi) is [0,1] and we want our answer to be accurate up to only 3 places of

decimal, then ψ = 103 .

5.9 Study Benchmarks

5.9.1 Level-based Foraging Domain

The level-based foraging domain is a common problem for evaluating ad-hoc teamwork

[3, 5, 111]. In this domain, a set of agents collaborate to collect items displaced in

a rectangular grid-world environment in a minimum amount of time (Figure 5.6).
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Additionally, items have a certain weight, and agents have a certain skill level, which

defines how much weight they can carry. Hence, agents may need to collaborate

to pick up a particularly item. Further, we assume that tasks are spawning in the

environment during the execution.

Differently from Albrecht and Stone (2017) [5], and Yourdshahi et al. (2018) [111],

this approach enables a continuous level of information in the scenario, which ϕ must

analyse and reason about to improve the team’s performance. The performance

here will regard the number of completed tasks in the environment instead of the

necessary time to complete all tasks. Concretely, we define the number of tasks

that can be in the environment simultaneously. If some agent (or group of agents)

accomplishes a task, we spawn a new one for each completion at that execution time.

In this way, we manage to maintain a fixed number of tasks in the environment,

hence the same problem level from the beginning to the end.

Finally, we defined this problem over full and partial observability, which Figure

5.6 illustrates possible scenarios configuration.

• Agent’s Parameters – Each agent has a visibility region and can only choose

items as a target if they are in its visibility cone. Therefore, to know which items

are in the visibility area of each agent, we need to have the View Angle and the

maximum View Radius of the agents. Additionally, each agent has a Skill Level

which defines its ability to collect items. Also, each item has a certain weight, so

each agent can collect items that have a weight below their Skill Level or equal to it.

Based on what we described above, each agent can be defined by three parameters:

• l, which specifies the Skill Level and l ∈ [0.5, 1];

• a, which is referring to View Angle. The actual angle of the visibility cone is

given by the formula a ∗ 2π. Additionally, it is assumed that a ∈ [0.5, 1];

• r, which is referring to the View Radius of the agent. The actual View Radius

is given by r
√
w2 + h2, where w and h are the width and height of the grid.
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(a) Level-based foraging domain. The

number next to the boxes indicate their

weight, and the one next to agents

indicate their skill levels. The coloured

area represents the vision area of ω agents.

ϕ has full visibility of the environment.
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(b) Level-based foraging domain. The

number next to the boxes indicate their

weight, and the one next to agents

indicate their skill levels. The coloured

area represents the vision area of ω

agents. ϕ has partial visibility of the

environment.

Figure 5.6: Possible problem scenarios in the defined Level-based Foraging Domain.

Also, the range of the radius is r ∈ [0.5, 1].

All of these parameters are applicable to all ω ∈ Ω. Agent ϕ has the parameter

Skill Level when it has either full or partial observability, but the View Angle and

View Radius parameters are only applicable when it has partial observability.
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• Agent’s Types – Concerning types of non-learning agents, we took inspiration

from [5], type definitions in the foraging domain. They considered four possible

types for the agents in Ω: two “leader” types, which choose items in the environment

to move towards, and two “follower” types, which attempt to go towards the same

items as other agents, in order to help them load items. However, “follower” agents

may also choose other agents as target, while in our work we handle agents that

choose tasks as target. Therefore, we only consider “leader” agents in our work.

Hence, based on agent ω’s type and parameter values, a target item will be selected,

and the agent’s internal state (memory) will be set to the position of that target.

Afterwards, the agent will move towards the target using the A∗ algorithm [47]. Here

is the detail for how the different types choose their targets:

• L1: if there are items visible, return the furthest item; else, return ∅.

• L2: if there are items visible, return the item with highest sum of coordinates;

else, ∅.

• L3: if there are items visible, return the closest item; else, return ∅.

• L4: if there are items visible, return the item with lowest sum of coordinates;

else, ∅.

• L5: if there are items visible, return the first item found (considering the

orientation: west to east, north to south); else, ∅.

• L6: if there are items visible, return an random item; else ∅.

• Actions – Each agent has five possible actions: North, South, East, West, Load.

The first four actions will move the agent towards the selected direction if the

destination cell is empty and it is inside the grid. The fifth action, Load, helps the

agent to load its target item. The only time that an agent can collect an item is

when the item is next to the agent, and the agent is facing it. Also, for loading the
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item, the Skill Level of the agent should be equal to or higher than the items’ weight.

If the agent does not have enough Skill Level to collect the item, then a group of

agents can do the job if the sum of the Skill Levels of the agents that surround the

target is greater than or equal the item’s weight. Therefore, the item can be “loaded”

by a set of agents or just one agent. In the situation when the agent does not have

enough ability to collect the target item, it will standstill in the same place when

issuing the Load action. In the case of collecting an item, the team of agents receives

a reward and it will be removed from the grid.

• Foraging Process –: First of all, we describe the process of foraging and choosing

a target for agents ω in Algorithm 11 in order to facilitate the understanding.

In the very first step as ω has not chosen any target, the Mem, which holds the

target item, is initialised to ∅. In Line 9, the VisibleItems routine is called, which gets

the agent ω’s parameters, View Angle and View Radius, and returns a set containing

the visible items. In Line 10, the ChooseTarget routine gets the Skill Level and Type

of the ω agent, and the list of visible items, returned from VisibleItems routine as

input. The output of this routine is the target item that agent ω should go towards.

In Line 14, there might be cases where agent ω is not able to find any target task.

Hence, all actions get equal probabilities and consequently, it will perform actions

uniformly randomly until it is able to choose a task.

This is an algorithm’s template that we assume non-learning agents are following.

We use the same template in our simulations, but in practice agents, ω could follow

different algorithms. Hence, in the results section, we will also evaluate the case

where the agents do not follow the same algorithm as in our template.

5.9.2 Capture the Prey Domain

Intending to evaluate the present range of applicability of our proposal over different

domains, we further perform experiments in the Capture-the-Prey domain.

This domain is presented as a discrete, rectangular grid-world as in Section 5.9.1.
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Algorithm 11 Foraging

1: procedure MoveOmega (SkillLevel, V iewRadius, V iewAngle, Type)

2: if item in Mem is collected then

3: Mem← ∅ ▷ Memory to keep target

4: Loc← location of ω;

5: Dest← ∅

6: if Mem ̸= ∅ then

7: Dest←Mem

8: else ▷ Choose new target

9: I ← VisibleItems(Loc, V iewRadius, V iewAngle)

10: Targ ← ChooseTarget (SkillLevel, Type, I)

11: if Targ ̸= ∅ then

12: Dest← Targ

13: Mem← Dest

14: if Dest = ∅ then

15: Assign probability 0.2 to each action

16: else

17: if Loc is next to Dest then

18: Assign probability 0.96 to Load action

19: else

20: Use A∗ to find path from Loc to Dest

21: Assign probability 0.96 to first move action in path

22: Add probability 0.01 to each move action

23: Return pdf over actions
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It is a variant of the Pursuit Domain described in [12, 14]. There are several “preys”

in the environment, which represents the objectives that the Ad-hoc Team must

pursue, similar to the “tasks” from our Level-based Foraging environment. However,

the preys are also non-learning agents, which are running a reactive algorithm and

trying to escape from being captured – defining decentralised tasks, which are moving

in the scenario. Each prey can also be identified by a numeric index given to it. The

ad-hoc team is composed of non-learning agents ω ∈ Ω and a learning agent ϕ. They

must surround the prey and capture it, which means to block the movement of the

prey on all discrete four sides: North, South, East and West. It can be done only by

agents, or with the support of walls and/or by other preys. Note that surrounding is

mandatory, hence the agents must collaborate in the most efficient way in order to

improve their performance. The tasks are re-spawning in this environment as well.

Figure 5.7 illustrates the problem.

1

2

3

4

ϕ

ω1

ω2

ω3

Figure 5.7: Possible problem scenario in the defined Capture the Prey Domain. The

agent with red details is the learning agent ϕ. The agents with blue details are the

non-learning agents ω ∈ Ω. The grey agents are the prey.

Agent’s Parameters – The parameter of each agent is the same as earlier, but

there is no longer a Skill Level parameter since the completion condition is not

related to task parameters. In this way, the ω agents still have a visibility region to

see and choose targets, which follows:
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• a, which is referring to View Angle. The actual angle of the visibility cone is

given by the formula a ∗ 2π. Additionally, it is assumed that a ∈ [0.5, 1];

• r, which is referring to the View Radius of the agent. The actual View Radius

is given by r
√
w2 + h2, where w and h are the width and height of the grid.

Also, the range of the radius is r ∈ [0.5, 1].

• Agent’s Types – Concerning types of non-learning agents, we created 2 main

types to run the experiments:

• C1: the spatial type of the set, which chooses the furthest visible prey to

pursue, if there are visible preys in its vision area; else, return ∅.

• C2: the index-based type, which chooses preys with an even identification, if

there are visible preys in its vision area; else, return ∅.

• Actions – Each agent has 5 actions : North, South, East, West, Block . The first

four actions will move the agent towards the selected direction if the destination cell

is empty or it is inside the grid. The Block is the action that actually captures the

prey, where the agent stands at its position blocking the passage of prey. Notice that

there is no Load action, as the completion of the task ( or “Capturing the Prey” ) is

done by the surrounding. So the agent must block one passage of the prey, trying to

create a capture situation.

Unlike in level-foraging, the tasks are no longer stationary. At each step, the

tasks also move randomly to one of the empty squares next to them. If no such free

space exists and, at least, one agent is surrounding the task, it gets captured. So,

each task can be completed by at least 1 agent, depending on the location of the

task and the whole state configuration (such as other agents positions, other preys

positions and map borders).

• Capturing Process – Directly, the process of choosing actions and targets remains

similar to the process defined for Foraging by Algorithm 11.
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5.10 Results

5.10.1 Evaluation Settings

• Baselines – We will compare our novel algorithm (OEATE) against two state-

of-the-art parameter estimation approaches in ad-hoc teamwork: AGA and ABU

[5] (both presented in Section 2.4). As we mentioned before, we sample sets of

parameters (for a gradient ascent step or a Bayesian estimation), which is similar

to set of estimators in the OEATE for estimating parameters and types. Therefore,

for better comparison against them, we use the same set size as estimator sets (N).

Note that [5], also introduced an approach called Exact Global Optimisation (EGO).

We do not include it in our experiments since it is significantly slower than the

ABU/AGA, without outperforming them in terms of prediction.

Additionally, we compare our approach against the proposed POMCP-based

method (also presented in Section 2.4) for type and parameter estimations. As

described, in estimation with POMCP, we assume that the agent ϕ can see the

whole environment, however, the teammates’ type and parameters are not observable.

Hence, agent ϕ applies POMCP’s particle filter for estimation. We use N ×|Ω|× |Θ|

particles, matching the total number of estimators in our approach (since we have

N per agent, for each type).

• Experiments configuration – We executed random scenarios in Level-based

Foraging and Capture the Prey domains (Section 5.9.1 and 5.9.2, respectively)

for a different number of distributed tasks, agents and environment size for all

aforementioned estimation methods. The experiment finishes by reaching 200

iterations. Every run was repeated 20 times, and we plot the average results

and the confidence interval (ρ = 0.05). Therefore, when we say that a result is

significant, we mean statistically significant considering ρ ≤ 0.05, according to the

result of a Kruskal-Wallis test. In detail, as a first test, we applied the Kruskal-Wallis

to determine whether a statistically significant difference exists between all the
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algorithms considered; afterwards, we evaluated each pair of algorithms using a

Wilcoxon Rank Sum Test (with Bonferroni correction) to determine which ones were

different from the others. Following these steps, we could accurately calculate the

confidence interval in the results obtained by each approach, thus finding which one

is significantly better than the others. We avoid presenting every p-value to improve

the readability of the work. So, we maintain our focus on presenting the p-values

that are meaningful for our analysis and avoid reporting the p-value for results

where there is clearly no significance (i.e., ρ ≥ 0.05). Note that error bars and

coloured regions indicate the confidence interval at a 95% confidence level, not the

standard deviation, supporting the confidence visualisation.

For each scenario, we assume one of the four estimation methods ABU, AGA,

POMCP and OEATE to be agent ϕ’s estimation method. We kept a history of

estimated parameters and types for all iterations of each run and calculated the errors

by having true parameters and true types in hand. Then, we evaluate the mean

absolute error (as in Equation 5.6.2.4) for the parameters, and 1−P(θ∗) for type; and

what we show in the plots is the average error across all parameters. Additionally,

since we are aggregating several results, we calculate and plot the average error.

In this way, we first fix the number of possible types as 2 (L1, L2 and C1, C2

for Level-based Foraging and Capture the Prey domains, respectively), and later we

show the impact of increasing the number of types. Type and parameters of agents

in Ω are chosen uniformly randomly. At the Level-based Foraging environment, the

skill level for agent ϕ is also randomly selected. Every parameter pi ∈ p is a value

within the minimum-maximum interval [pmini , pmaxi ] = [0.5, 1.0].

Every task is created in random positions, but we exclude the scenario’s borders

and free the adjacent tiles. That allows agents to set up their positions to perform

the load action from any direction (i.e., North, South, East, West), making it always

possible for 4 to simultaneously load an item, which guarantees that all tasks are

solvable. For the Capture the Prey environment, this guarantee is not secured since

the tasks are moving.
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• Estimation methods configuration – In our experiments, we used the following

configuration for parameters values of OEATE:

• the number of estimators N equals to 100;

• the threshold for removing estimators ξ equals to 0.5, and;

• mutation rate m equals to 0.2.

• “information-level” score (score(e)) is taken as the number of steps between

assigning the Choose Target state and completing the task.

We apply the same configuration for all baselines (AGA, ABU and POMCP) and

through every experiment performed. For UCT-H [111], we run 100 iterations per

time step, and the maximum depth is kept as 100.

5.10.2 Level-based Foraging Results

Before showing the aggregated results, we will first show an example of the parameter

and type error estimation across successive iterations. Consider the experiment with

|Ω| = 7, a scenario with dimension equals to 30× 30 and 30 tasks distributed in the

environment. Figure 5.8 shows this result.

As we can see in Figure 5.8 (a), our parameter estimation error is consistently

significantly lower than the other algorithms from the second iteration, and it (almost)

monotonically decreases as the number of iterations increases. AGA, ABU, and

POMCP, on the other hand, do not show any sign of converging to a low error as

the number of iterations increases. We can also see that our type estimation quickly

overcomes the other algorithms in the mean, becoming significantly better after some

iterations, as more and more tasks are completed.
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Figure 5.8: Parameter and type estimation errors for |Ω| = 7, dimension 30 × 30

and |T| = 30

Multiple numbers of items – We now show the results for different numbers of

items. Therefore, we fixed the scenario size as 30 × 30 and the number of agents

ω to 7 (|Ω| = 7). Then, we run experiments for a varying number of items in the

environment (20, 40, 60, 80). Figure 5.9 shows the result plots.

As we can see in the figure, OEATE has consistently lower error than the other

algorithms in terms of parameters estimation. Considering the type estimation,

OEATE presents significantly better results for 20, 40 and 80 tasks. We also see

that the number of accomplished tasks is very similar, which means that there is no

significant difference between the results.

It is interesting to see that our parameter error drops for a very large number

of items (80), as OEATE gets a larger number of observations. We can also note

that the algorithm scales well to the number of items, and our performance actually

improves in the mean with more than 20 items. This happens because OEATE gets

observations more often for a larger number of items in the environment.

Multiple numbers of agents – After comparing with multiple numbers of items,

we run experiments for different numbers of agents. Here, we fix the number of items

to 30 and the scenario size to 30 × 30. Then, we run experiments for a different

number of agents (5, 7, 10, 12, 15) and the plots are shown in Figure 5.10.

Again, for different numbers of agents, OEATE can present a lower or similar
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Figure 5.9: Results for a varying number of tasks with full observability.

error than the other algorithms, both in parameter and type estimation. Moreover,

we can see that the performance of the team by having a learning agent ϕ (which

runs OEATE) is also better than others with the increasing number of teammates.

Regarding parameters and type errors, OEATE is significantly better than AGA, ABU

and POMCP in almost all cases, except for type error with 15 agents where OEATE

is very similar to AGA, respectively. Interestingly, we can see in this case that, even

being slightly worse than AGA, OEATE can improve the coordination and complete

a higher number of tasks than the baselines. Additionally, the experiment with 15

agents presents the higher difference between the estimation methods performance,

where OEATE is clearly the best one.

Multiple scenario sizes – After comparing multiple numbers of items and agents,

we run experiments for different scenario sizes to study our scalability to harder

problems. For that, we fix the number of items to 30 and the number of ω agents to
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Figure 5.10: Results for a varying number of agents with full observability.

7 (|Ω| = 7). Then, we run experiments for a varying scenario size (20× 20, 25× 25,

30× 30, 35× 35, 45× 45) and the plots are shown in Figure 5.11.

As we can see, OEATE has consistently lower error than the other algorithms,

both in terms of parameters and type estimation. In fact, OEATE is significantly

better than AGA, ABU and POMCP in terms of type and parameters error for all

scenario sizes, with ρ < 0.001. Additionally, in Figure 5.11 (c) we see that there is

no significant difference between task completion of the methods. Overall, OEATE

seems to maintain good estimation even with the increasing of scenario dimension.

Partial observability experiment – Here, agent ϕ has partial observability of the

environment and employs the POMCP modification for handling that, as described in

Section 5.7.2. In these experiments, the number of ω agents is 7 and the environment

size is 30× 30, but the variation of items is 20, 40, 60, 80. The radius of ϕ’s view is

15 and the angle is 180°.
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Figure 5.11: Results for various environment sizes in full observability.

Note that AGA/ABU results for partial observability are not shown in Albrecht

and Stone (2017) [5], and thus are presented by us for the first time. Hence, in the

cases presented here, by OEATE, AGA and ABU, we mean the modified POMCP

version, following the approach described in Section 5.7.2; and by POMCP we mean

the POMCP-based estimation, as before, which does not embed the ad-hoc teamwork

algorithms for type and parameter estimation.

We show our results for partially observable scenarios in Figure 5.12. Again, we

obtain significantly lower parameter error than previous approaches (Figure 5.12 (a)).

In the case of type error (Figure 5.12 (b)), OEATE presents worst type estimation

than the competitors, except POMCP. However, they are not significantly better

than OEATE. For 20 items, AGA and ABU present ρ > 0.2. For 40 and 60, AGA

and ABU present ρ > 0.09. Finally, for 80 items AGA and ABU present ρ > 0.35. In

Figure 5.12 (c), we see that we obtain similar performance to the previous approaches

in 40 and 60 items.
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OEATE represents a task-based solution that depends on the prediction of tasks

for unknown teammates for any possible state of the problem. The difficulty in

estimating types over partial observability is a result of the lack of precision on

reasoning about the part of the map that is not visible. Our proposed modification

for POMCP could enable the estimation of parameters and types over partial

observability. However, as the problem presents a high level of uncertainty, the

belief states need not approximate the actual states of the world, hence OEATE

could not perform a good evaluation of its estimators and improve the prediction.

Therefore, finding a manner of refining the POMCP belief state approximation can

adapt OEATE to handle this new layer of uncertainty that can improve the results

as we found for full observability.
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Figure 5.12: Results for a varying number of items in partially observable problems.

Experiments with larger numbers of types – Besides trying to estimate two

types (L1 and L2), we also want to push the uncertainty level of the problem

running experiments for a larger number of potential types (|Θ|). In this way, we
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run experiments with four types: L1, L2, L3 and L4. Figure 5.13 shows the results.

Results displayed in Figure 5.13 (a) demonstrates parameters error, where we are

significantly better than all other methods for all number of items with ρ ≤ 0.011.

From Figure 5.13 (b), OEATE outperforms AGA and ABU only with 20 and 60

items in the environment. AGA and ABU are better than OEATE for 40 and 80

items respectively. In the performance, as we can see in Figure 5.13 (c), there is no

significant difference between the methods. After studying the four different types

case for the ω agents, we experiment with six potential types (L1, L2, L3, L4, L5, L6).

The results are shown in Figure 5.14.
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Figure 5.13: Results for a varying number of items, with randomly selected types

among 4 types.

Considering parameters error, OEATE is significantly better than the competitors

ρ ≤ 0.0005. Taking type error into account, we are better in all number of items

with ρ ≤ 0.06, except for 40 items, where we are significantly better than POMCP,

but against AGA and ABU, we are worst with ρ ≤ 0.92 and ρ ≤ 0.34, respectively.
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Figure 5.14: Results for a varying number of items, with randomly selected types

among 6 types.

For performance, OEATE decreases monotonically as the number of tasks increases.

Overall, OEATE presents a better result performing estimation with fewer types.

Its parameter estimation is significantly better for all studied cases. However, when it

is facing a higher number of possible templates for types, its type estimation quality

decreases and its performance is still similar to the competitors.

Wrong types – We also study our method’s behaviour when the agent ϕ does

not have full knowledge of the possible types of its teammates. That is, we run

experiments where all agents in Ω have a type which is not in Θ. In these experiments,

we assume that agent ϕ is only aware of type L1 and L2, but we assign L3 and L4

to the ω agents as their type (sampled uniformly randomly). We ran experiments

with 7 agents and fixed the size of the scenario to 30× 30, with various numbers of

items (20, 40, 60, 80). We can see our results for performance in Figure 5.15.
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As the figure illustrates, without knowing the potential types for teammates,

OEATE only outperform the competitors with 80 items, except POMCP. Surprisingly,

POMCP shows the better performance in the group. We believe that, without the

knowledge of the possible types and considering the difficulty associated with the

problem, acting greedily can show better results in such cases.
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Figure 5.15: Performance of the ad-hoc team for a varying number of items without

having information of correct potential teammates types.

5.10.3 Capture the Prey Results

As mentioned before, we run experiments into the Capture the Prey domain.

Considering the same settings defined for Level-based Foraging, we define the

experiment with |Ω| = 7, a scenario with dimension equals to 30 × 30 and the

set of tasks distributed in the environment (20,40,60,80) as the main result from the

set of experiments. Figure 5.16 shows these data plot.

As we can see, OEATE still presenting a significantly lower parameter error in

comparison with the competitors. Even though showing worse results compared to

AGA and ABU in type estimation, OEATE seems to be able to decrease its error

with the increasing number of tasks, while AGA and ABU seem to converge after

considering 60 tasks (preys) in the scenario. Additionally, the performance of all

methods is very similar in the capture environment.

The defined Capture the Prey domain defines a hard problem to tackle. Improving

the team’s performance relates to choosing actions that will facilitate the preys
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Figure 5.16: Parameter errors, type estimation errors, and performance for a varying

number of items in the Capture the Prey domain.

capture. We believe that OEATE can present better results against AGA and ABU

over an adaptation of the POMCP for adversarial contexts, where OEATE will be

able to reason about the preys, and hence increase the number of tasks accomplished

and the type estimation (based on this characteristic).

Overall result – Intending to directly present the conclusions found after performing

the complete set of defined experiments and also provide support for further analysis of

this research, we present our compiled results of this section regarding the experiments

for the Level-based Foraging and Capture the Prey Environments (Table 5.5).
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Figure Experimental

Setup

Analysis

Level-Based Foraging Environment

8 Expected

behaviour

OEATE shows an almost monotonic decreasing

trend in both type and parameter error. Overall,

OEATE could significantly outperform the

baselines (ρ ≤ 0.025 for parameter estimation

and ρ ≤ 0.048) in some of the tested scenarios and

this result corroborates to the developed theoretical

analysis (Section 5.8).

9 Results for an in-

creasing number

of tasks in the

environment

OEATE presents a slight improvement on

parameter estimation with the increasing

number of tasks. On the other hand, there is

no observable effect of the increasing number of

tasks for type estimation. Overall, considering

the defined task-based perspective, we show that

OEATE can significantly outperform the

baselines parameter and type estimation

(both with ρ ≤ 0.002) for scenarios where key

observations (distributed tasks completion) are

more often available.

10 Results for an in-

creasing number

of agents (team-

mates) in the en-

vironment

The increasing number of agents present no relevant

impact for OEATE’s parameter estimation. How-

ever, OEATE shows better mean performance

with the increasing number of teammates.

Overall, OEATE can outperform the baselines

with the increasing number of teammates
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(with significance of ρ ≤ 0.039 for some cases)

in the environment since the number of tasks

completed, in a distributed manner, increases.

11 Results for an

increasing envi-

ronment size

The increasing environment size presents no clear

trend for parameter or type estimation. Since

the number of distributed tasks in the environment

is fixed, the number of tasks completed within

the defined time-frame for the experiments (200

iterations) gets lower with the increasing size.

Overall, we show that OEATE is

still outperforming the baselines (ρ ≤ 0.041)

in parameter and type estimation), regarding type

and parameter error, even susceptible to the lower

frequency of task completion.

12 Results for par-

tial observability

Over partial observability and considering an

increasing number of tasks, OEATE presents

significantly better parameter estimation

(ρ ≤ 10−5) than the previous approaches. On

the other hand, OEATE shows higher type

estimation error (but, with ρ ≥ 0.35).

Overall, even facing the impacts of the partial

observable environment, OEATE presents similar

performance than the previous approaches.

13, 14 Results for an

increasing num-

ber of potential

types for team-

mates

The increasing number of potential types for

the agents in the environment presents no

clear impact in OEATE’s parameter and type

estimation. On the other hand, OEATE is still

outperforming the baselines for most of the

cases (considering an ρ ≤ 0.11). Overall, OEATE
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presents a precise estimation even facing the

more complex problem such as this experiment

suggests.

15 Results for

wrong potential

types

OEATE presents a comparable performance

to AGA, ABU and POMCP (ρ > 0.98).

With the lack of a better set of potential, the

parameter and type estimation shows no impact

on the performance. Overall, we can see that,

considering the defined types, the set of potential

types impacts directly the final outcome and

can must be representative to enable a problem

performance improvement.

Capture the Prey Environment

16 Results of

increasing

number of preys

(tasks)

At the capture the prey environment, there is no

clear trend for parameter estimation. On the

other hand, the type estimation decreases with

the increasing number of preys in the map. Overall,

the complexity of this problems leads to a lower

number of key observations for OEATE to perform

the estimation, which justifies the higher type

estimation error, but OEATE is still presenting

similar performance and lower parameter

estimation (ρ < 0.0007).

Table 5.5: Summary of our experiments and results.

Ablation Study – As an interesting piece for the readers, we carried out an ablation

study. The intention of this experiment is to show how our internal method choices

impact the method outcome. We defined 4 different configurations for the OEATE

considering their impact on the quality of the estimation:
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• OEATE : representing the full version of our proposal;

• OEATE (No Score): representing the version that does not apply the score

approach of our final proposal, removing the weighting of decisions made in

different choose target states and facing different levels of uncertainty;

• OEATE (Uniform Scored): representing the version that does not perform the

process of generating new estimators from the bag. Hence, we removed the

bag from our proposal and adapt it to work only with the uniform replacement

of estimators, and;

• OEATE (Uniform): representing the version that does not apply the score

approach of our final proposal and does not perform the bag generation process,

categorising the simplest version of our proposal.

Additionally, considers the experiment with |Ω| = 7, a scenario with dimension

equals to 30× 30 and 30 tasks distributed in a Level-based Foraging environment (2

types were used in this experiment). Figure 5.17 shows this result.

Regarding the parameter estimation, as the figure shows, we can see that OEATE

performs the estimation similarly for all configurations, but the main impact is

regarding the starting point of the estimation method. Using each defined strategy

leads OEATE, after few iterations performing the estimation process, to correct the

parameter values. Differently, from the process carried out by simpler versions of our

proposal, OEATE showed to be capable of fixing its estimation in this ablation study.

We attribute this improvement to the weighting of estimators during the sampling

due to the scoring and bag approach.

On the other hand, the improvement in the results related to the type estimation

is even higher. The full version of OEATE presents a significantly better result in

comparison with the simpler versions. Interestingly, the second better result found in

this ablation study comes from the simplest OEATE configuration. Both, the scored

and the uniform scored versions presents higher type error than the uniform one. At

this point, we attribute the improvement to the fact that scores of the estimators
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help in improving the sampling and maintenance of good estimators in the estimation

set. Without recovering estimators from the bag, the scoring can only lead to the

trivial game of guessing the correct parameter (hence the type) randomly. Therefore,

OEATE represents a fine solution, which combines two unsuccessful tools to obtain

a powerful estimation capability.
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Figure 5.17: Ablation Study for parameter and type estimation errors considering

|Ω| = 7, dimension 30× 30 and |T| = 30 in the Level-based Foraging domain.

5.11 Chapter Conclusion

In this chapter, we presented Online Estimators for Ad-hoc Task Execution

(OEATE), a new algorithm for estimating types and parameters of teammates,

specifically designed for problems where there is a set of tasks to be completed

in a scenario. By focusing on decentralised task execution, we are able to obtain

lower error in parameter and type estimation than previous works, which leads

to better overall performance. We also studied the convergence of our algorithm

theoretically and found empirical results that support our findings. This work opens

the path to diverse studies regarding the improvement of ad-hoc teams through a

task-based perspective and using an information-oriented approach. We also kindly

refer the reader to Chapter 7.2.2 for a more comprehensive discussion about OEATE’s

contributions for this thesis’ purposes.
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Bayesian Adversary Estimation

In this chapter, we present the technical details of BAE, our proposed estimation

method capable of identifying an adversarial agent (impostor) disguised as a teammate

in a cooperative environment. This work was published as a conference paper at

AAMAS 2024, titled as “It Is Among Us: Identifying Adversaries in Ad-hoc Domains

Using Q-valued Bayesian Estimations” [29].

6.1 Introduction

Ad-hoc Teamwork models represent a relevant tool in MAS for addressing problems

with distributed tasks in environments with unknown teammates [13, 100]. For

example, it is common to encounter situations in which multiple agents are shipped

together to collaborate and quickly resolve a common objective without receiving

proper training to perform coordination beforehand [11]. Hence, enabling agents to

estimate their teammates’ capabilities might be necessary to guarantee performance.

The advancement of coordination is intrinsically linked to agents’ ability to

comprehend their teammates’ strategies and predict their behaviour in the common

scenario [83, 2, 48, 26]. Consequently, these studies assume that agents might not

adhere to pre-established rules, leading to diverse behaviours inside the team, but

all agents are looking to accomplish the same objective [15, 5]. Now, the relevant
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question that arises is: What happens if there is an impostor among us?

An impostor, in our context, is an intelligent agent acting as an “explicit

adversary”. While other agents try to enhance task completion by improving

coordination, the impostor endeavours to hinder the team’s performance, disrupting

objective achievement by blocking paths or faking its real intention to the team.

Several multi-player games have explored this problem denominated as “Deduction”

or “Hidden Roles” Games [60]. Examples are Among Us and Deceit, which present

hypothetical situations where “agents” need to collaborate in order to win the

game but there is an “impostor” (adversarial agent) trying to sabotage the team.

We can also see the occurrence of similar situations in the real world: (i) in the

robotic manufacturing context, an adversary robot can slow down or stop an entire

production line by making the wrong moves or “being lazy on purpose”; (ii) in robot

rescuing missions, an impostor may attempt to infiltrate and sabotage the operation

by damaging rescue units, and; (iii) in autonomous vehicles applications, if a single

car gets hijacked, it can throw the traffic system into chaos, besides putting other

vehicles and people at risk.

Inspired by this context, some research lines are focusing on developing algorithms

capable of performing planning and the deduction of adversarial agents in an online

manner [90, 60]. Note that, performing online planning with deduction is crucial in

these collaborative MAS contexts because it enables agents to adapt their actions in

real time, improving coordination with teammates and reducing the adversarial harm

to the overall performance. However, most of them usually fall on hard assumptions

to run their algorithms or rely on estimation methods that are expensive to train,

besides requiring previous knowledge about the target world and adversary model to

guarantee good performance.

Therefore, we present Bayesian Adversary Estimation (BAE), a novel algorithm

capable of identifying an impostor agent among the team in an online manner by

performing estimations solely using the observations collected while acting in the

environment and simulating potential outcomes. We propose the application of
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what we denominate as the Q-valued Bayesian Estimation (QvBE) approach, which

considers approximating latent information about the environment using Q-value

estimations. In other words, our approximation strategy considers evaluating action

values by using information that is not directly available in the observable world.

QvBE does it by approximating agents’ probability distribution function (pdf) using

Q-value estimations. We focus on developing our approach using a Monte-Carlo Tree

Search (MCTS) based method; however, we emphasise that it can be extended to

any online planning algorithm that estimates Q-values. The main idea behind our

proposal is to embed the QvBE approach inside an Adversarial-MCTS (A-MCTS),

which performs planning from scratch and estimates its own actions considering the

existence of an adversary. The Q-table found at the end of the search process is used

to estimate the impostor among the team.

Our approach can run alone and together with different state-of-the-art estimation

algorithms to improve coordination while deducting the impostor. Our experiments

were performed in the “Level-based Foraging Environment”, which is a popular

ad-hoc domain to test planning and estimation methods [2, 26]. We demonstrate

that our method is capable of improving the accuracy in detecting the impostor agent

without significantly penalising the reasoning time or computational resource usage.

Across all tested scenarios, we show that BAE can improve impostor identification in

comparison with state-of-the-art baselines without relying on prior knowledge about

teammates or pre-training data.

6.2 Problem Formalisation and Background

• Problem Description We consider the problem where an intelligent (strategic)

agent ϕ is in a teamwork context, collaborating with a set of non-strategic agents

ω ∈ Ω but one of these non-strategic agents is an impostor ψ, i.e., a strategic agent

trying to disturb the accomplishment of the objectives by the team. Note that a
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strategic agent is an agent that runs an algorithm for planning and is capable of

modelling other agents in its reasoning process, while non-strategic agents do not

model other agents in their reasoning process [107]. The main goal of the team is

to accomplish a common and shared objective in the environment. Hence, ϕ is the

ad-hoc agent that is trying to maximise the performance of the team and it must

figure out which agent is ψ to improve coordination.

The model used by the ad-hoc agent ϕ considers that there are |Ω| agents, apart

from itself, which assumes |Ω\ψ| agents as non-strategic agents and ψ as an intelligent

(strategic) agent. On the other hand, the impostor ψ’s model also considers that

there are |ϕ ∪Ω \ ψ| agents (apart from itself), but all of them are non-strategic

agents, including ϕ. In summary, ϕ runs an adversarial reasoning method, considering

the optimisation of its own actions and the estimation of the impostor actions to

maximise the overall performance, while ψ runs a direct minimisation algorithm,

optimising its own action to reduce the overall performance.

• Formal Model In this study, we focus on the application and implementation of

Markovian-based models together with RL algorithms to handle the stated problem.

Hence, we describe it as a Multi-agent Markov Decision Process (MMDP) [19], with

M = |ϕ ∪Ω| agents sharing the same environment and comprising the team Λ. The

MMDP model contains a finite set of states s ∈ S with transition probability T

and expected reward equal to R(s,J) depending on the joint-actions of all agents

J = {a1, ..., aM}, where each action is defined in the action space ai ∈ A. Therefore,

given an MMDP, we want to estimate the actions that maximise the expected reward

that all agents will receive as the system progresses through time.

• Planning Algorithm We use the defined MMDP (Chapter 2.1.4) to implement

our proposed planning algorithm from the family of the MCTS algorithms. We choose

this state-of-the-art method considering its capabilities of performing online planning

and estimation, besides running it from scratch at every execution as presented in
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other works in the literature [2, 91]. However, we highlight here that our solution

can be extended to any online planning algorithm capable of estimating Q-values.

The MCTS algorithm aims to find the optimal action a∗ for a given state s and

agent by simulating the world steps within a tree structure. In order to perform MCTS

planning, the literature suggests the application of UCT or UCT-H algorithms [58,

91]. In our model, each node in the Monte-Carlo tree T is represented by (s, V , N ,

ϕ), i.e., a tuple with a state s, a value V(s, a), a visitation count N (s, a) for

each action a ∈ A and the agent ϕ which will define the perspective of simulation

within the tree. We define this agent perspective ϕ because it enables us to run

a single-agent MDP model while performing the tree search procedure, hence, the

MCTS will estimate values and simulate the actions and world transitions considering

ϕ as the ad-hoc agent and the other agents ω ∈ Ω as part of the environment. The

value of the node represents the expected cumulative reward for the simulated states.

The number of visits to the state s is represented by N (s) =
∑

a∈AN (s, a).

In the adversarial reasoning case, the node in the MCTS will be represented by

the tuple (s, V , N , ϕ, ψ) where the ψ agent will define the impostor perspective

in the min-max MCTS process – with ϕ being the max and ψ the min part of the

tree simulation. The tree represented by this tuple will be an adversarial tree Tψ

and we denominate this MCTS process as an Adversarial-MCTS (A-MCTS). The

actual difference between the MCTS and A-MCTS approaches is highlighted in the

simulation process presented below.

• Simulations While performing simulations within an MCTS, each state in the

search tree is viewed as a multi-armed bandit taking actions chosen by the Upper

Confidence Bound (UCB1) algorithm. In a traditional maximisation problem, UCB1

tries to increase the value of less-explored actions by attaching a bonus inversely

proportional to the number of times each action is tried, following UCB1(s, a) :=

V(s, a) + c
√

log(N (s))
N (s,a)

. The constant scalar c is the exploration constant, which is

responsible for weighting the exploration value
√

log(N (s))
N (s,a)

. We can fit this constant

156



6.2. Problem Formalisation and Background

to the target problem by considering the desired balance, exploiting close and future

rewards. Analogously, while solving a minimisation problem, the UCB1 function

considers the subtraction of the exploration value UCB1(s, a) := V(s, a)−c
√

log(N (s))
N (s,a)

,

in order to correctly balance the exploration and exploitation levels within the tree.

Now, algorithm-wise, the simulation process is categorised by the expansion of

the tree considering possible paths or succession of nodes that a sequence of actions

can lead to in the problem’s world. In this case, the simulation only considers the

perspective of the ad-hoc agent ϕ, simulating its actions, and the other agents Ω

as part of the environment. Hence, a path in the tree is the succession of actions

at taken by ϕ that aims to find the best sequence {a0, a1, ..., aD} that maximises or

minimises its reward collection.

On the other hand, the A-MCTS simulation process is also categorised by the

expansion of the tree considering the possible paths in the world. However, it

considers the sequence of actions taken by ϕ and ψ to find the best path that

maximises or minimises reward collection. Therefore, the path in the tree is the

succession of action pairs {aϕ0a
ψ
0 , a

ϕ
1a

ψ
1 , ..., a

ϕ
Da

ψ
D} taken by ϕ and ψ. Note that this

characteristic leads the tree to present an architecture that always alternates between

an ϕ node to an ψ node and vice-versa.

• Estimation Strategy Bayesian inference is a powerful tool for updating the

probability of a hypothesis when more evidence or information becomes available.

Mathematically, it is represented by the equation P (A|B) = P (B|A)P (A)
P (B)

, where A

is the hypothesis and B is the observation or evidence from the model. Hence,

P (A) is the prior probability, P (B) the marginal likelihood, P (B|A) the likelihood of

observing B given A, and P (A|B) our posterior probability. In this thesis, we will

develop this Bayesian application to estimate the probability of an agent being an

adversary (hypothesis), given the action performed by it in the real world (evidence).

We precisely adapt the tree search process together with the idea of roles in a MARL

system to estimate teammates and adversaries.
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6.3 Online planning using Q-valued Bayesian

Estimations

In this section, we present Bayesian Adversary E stimation (BAE), a novel lightweight

estimation method capable of identifying adversarial agents in an online manner.

BAE performs planning in the context we denote as Ad-hoc Reasoning context, which

is described by ad-hoc teamwork problems with adversaries. In this section, we

present our methodology behind BAE, explaining its implementation step by step as

we discuss the main contributions.

6.3.1 Initialisation

From the perspective of our intelligent agent ϕ, we initialise the probability of being

an adversary for every agent ω ∈ Ω sharing the environment with ϕ. By default, we

set a uniform distribution UΩ as the initial probability distribution across agents Ω.

Therefore, BAE assumes an equal probability for all agents to be the impostor among

the team equal to P (ω = ψ) = 1
|Ω| ,∀ω ∈ Ω. If there is any additional information

about the target problem, it is possible to adjust this initial distribution to the

knowledge available accordingly. Note that the described step defines the probability

distribution function (pdf) that will be used for sampling potential adversaries at

each traversal in the tree.

• Initialisation Example Let’s assume that ϕ is playing together with three other

agents, i.e. |Ω| = 3. ϕ knows there is an impostor in the team, but has no hint

about who it is. Therefore, the ad-hoc agent ϕ initialises its tree search structure

and the probability of each agent ω ∈ Ω to be the impostor following the uniform

distribution UΩ. Figure 6.1 illustrates this initialisation process.

After initialisation, we begin the search process with the A-MCTS, where ϕ

reasons about its best action considering different potential impostor agents ψ in the

environment.
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Impostor
Probability

ω1

[0.33]

ω2

[0.33]

ω3 = ψ

[0.33]

Figure 6.1: BAE’s initialisation process in an environment with 3 other agents where

one is an impostor and two are non-strategic teammates.

6.3.2 Search and Q-table Extraction

The search process proposed here follows the same high-level procedure defined in

the literature to run the A-MCTS approach and estimate Q-values for each action of

the ad-hoc and adversarial agents. In general, we can describe the search process as

the expansion of a tree structure that ends with the back-propagation of the found

values through traversal in the tree. Figure 6.2 depicts the effect of this process.

Root

Impostor

Ad-hoc

Ad-hoc

(a) Initial tree

structure.

(b) Tree expansion

(simulation).

V

V
V

V

(c) Tree back-

propagation.

Figure 6.2: A high-level view of the tree search process. The arrows with dotted lines

represent the existence of further paths in the tree not included in the illustration.

Whenever we initiate a traversal within the tree or a simulation process (Figure

6.2a), our objective is to expand the initial tree structure, thereby identifying new

promising paths within the tree that solve our problem (Figure 6.2b). Each path

or branch within the tree corresponds to a specific sequence of actions that our

agent simulates to predict a possible outcome. Every time we finish a simulation
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on the tree, we update the value of all nodes encountered along the path through

the process denominated as back-propagation (Figure 6.2c). These estimated and

back-propagated values determine the best action for the ad-hoc agent considering

the existence of the potential adversary in the environment.

When running a single-adversary A-MCTS search process with a previously known

adversary, it considers the perspective of an ad-hoc ϕ and an adversarial agent ψ to

perform the simulations within the tree. In our case, when running a single-adversary

A-MCTS search process with different potential adversaries in the environment, we

propose calculating the expected Q-values via sampling within the tree. We refer

to this approach as “Expected Q-value MCTS” (EQ-MCTS) and consider that an

agent ω is sampled to be simulated as an impostor every time we start a simulation

procedure. We consider the current estimated adversarial pdf across agents to weigh

impostor sampling.

Since the simulation procedure is performed multiple times, the result of successive

simulations, considering each sampled adversary at each traversal in the tree, will

estimate the Q-values for each action in the adversary nodes that represent the

expected value for all potential impostors across all actions. Because our MMDP

considers the perspective of an impostor agent ψ, we also consider spatial features

while simulating actions and transitioning between states, i.e., all agents’ positions

and actions in the environment. At the end of the search process, we can decide

the best action for the ad-hoc agent to take in the real world and hence extract

the Q-table for the adversary after stepping into the adversarial node that succeeds

the best action. The below example intends to clarify and illustrate the adversary

Q-table extraction process.

• Q-table Extraction Example Let us consider the tree shown in Figure 6.2a.

Each time we perform the expansion (Figure 6.2b), we consider the perspective of ϕ

to take an action in the blue nodes, and the perspective of a sampled agent ψ as our

adversary taking actions in the red nodes. Therefore, note that ϕ is fixed through
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the search, and ψ is resampled every time for each simulation.

Once we find a stop condition in the simulation (e.g., reach the maximum depth

of the tree, or find a terminal state), we back-propagate all rewards found through

the traversal in the tree to the root node (Figure 6.2c). These rewards update each

node’s Q-table values. From the root, we can select the best action for our ad-hoc

agent ϕ, and from the next node stepping on the tree, considering ϕ’s best action,

we can extract the adversary Q-table.

Q-table
(Ad-hoc)
LEFT 0.78234
RIGHT 0.3456

(a) Tree structure.

Q-table
(Adversary)

RIGHT 0.3210
LEFT 0.89111

(b) Adversary.

Figure 6.3: The selection of the best action and the extraction of the Q-table for the

ad-hoc ϕ and the adversary ψ agents.

Figure 6.3 demonstrates this situation, highlighting the node from which the

Q-table is extracted. From the Q-table of the ad-hoc agent (Figure 6.3a), we can

pick the “LEFT” action as the best one for our ϕ agent, since it maximises the value

of the game. Stepping to the left node, we find the adversary node from which we

extract the impostor’s Q-table and the best action to minimise rewards (i.e., action

“RIGHT”). Note that we will step into the right node to update the tree because

we cannot confirm the real action of the adversary (since we do not know the true

adversary) but we estimated that the “RIGHT” action is the best option to minimise

the overall value.
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6.3.3 Q-table Translation and our Bayesian Update

After performing the Q-table extraction, we translate the final Q-table values from

the adversary’s perspective (i.e., the adversarial “root” in the tree search process)

into probabilities to be used in a Bayesian update process. As previously mentioned,

we consider the probability of an agent being an adversary as our hypothesis, and the

action performed by it in the real world aω as our evidence in the inference process.

Therefore, we can rewrite the Bayesian equation as such:

P (ω = ψ|aω) =
P (aω|ω = ψ)P (ω = ψ)

P (aω)
(6.1)

The prior probability P (ω = ψ) in the equation is the initialised value at the very

first iteration, which will be replaced by the updated value for the next iteration. On

the other hand, our likelihood P (aω|ω = ψ) is the normalised value of the estimated

Q-value for the action aω extracted from the final Q-table from the search process,

following the equation:

P (aω|ω = ψ) =
rmax −Q(aω)∑

a′∈A(rmax −Q(a′))
(6.2)

Note that we consider the difference between rmax and Q(aω), where rmax is the

maximum reward value threshold possible for the problem. We use it because we

want lower-valued actions to increase the probability of agents being adversaries since

the impostor’s behaviour wants to minimise the team’s performance. For simplicity,

we normalise all the results a posteriori across the probabilities which will sum up to

1. Therefore, we will only consider the upper part of Equation 6.1, i.e., considering

P (aω) ∝ 1.

• Q-table Translation and Bayesian Update Example With the adversary Q-

tables in hand, we now transform its values into probabilities, i.e., the final estimated

value will be translated into the probability of an adversary taking the action using

the P (aω|ω = ψ) equation. Let us consider rmax = 1 and the Q-tables presented in

Figure 6.3. We can update the impostor probabilities following:
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P (aω|ω = ψ) =
1−Q(aω)∑
a′∈A 1−Q(a′)

Therefore, we have that
∑

a′∈A 1−Q(a′) = 0.7879, therefore P (a = R|ω = ψ) =

1−0.3210
0.7879

≈ 0.86 and P (a = L|ω = ψ) = 1−0.89111
(0.3210+0.89111)

≈ 0.14. Following the rationale

and performing this procedure, we can already apply the result in Equation 6.1 and

update the probability of each agent being the impostor in our problem. Let us

assume the following actions were observed for each agent in the environment: aω1 =

“L”, aω2 = “L”, and aω3 = “R”. The result of our Bayesian Update follows the steps

shown in Figure 6.4. After successive iterations using this update approach, BAE

correctly estimates the impostor among the team without penalising the execution

time or relying on extra resources.

ω1

Prior Impostor
Probability

[0.33] [0.33] [0.33]

Bayesian Update [0.14 ∗ 0.33] [0.14 ∗ 0.33] [0.86 ∗ 0.33]

Updated Result [0.05] [0.05] [0.28]

Normalised
Result

[0.13] [0.13] [0.74]

ω2 ω3 = ψ

Figure 6.4: An illustration of BAE’s update.

6.3.4 Algorithm Outline

After presenting our complete methodology and each step of BAE, Algorithm 12

provides the pseudo-code for the implementation of our proposal.
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Algorithm 12 Bayesian Adversary Estimation. Pψ is the vector of probabilities

P (ωi = ψ) = pωi
ψ ; Qϕ is the Q-table for the ad-hoc agent; Qψ is the Q-table for the

adversary agent, and; Pω,ψ is the vector of probabilities P (ai|ω = ψ) = paiω,ψ.

1: procedure BAE(Pψ
ω)

2: # 1. Initialising adversary’s probabilities

3: if Pψ
ω = ∅ then

4: Pψ
ω ← Initialisation(Ω)

5: # 2. Performing the search process

6: # and extracting the Q-tables

7: abest, Qϕ, Qψ ← Search(ϕ) ▷ A-MCTS

8: # 3. Translating the ψ Q-values

9: # into probabilities

10: Pψ
a ← QtableTranslation(Qψ)

11: # 4. Updating the adversary’s

12: # probabilities

13: Pψ
ω ← Update(Pψ

ω ,P
ψ
a )

14: # 5. Returning planning and estimation

15: # results

16: return abest, P
ψ
ω

1: procedure Initialisation(Ω)

2: # 1. Uniform initialisation

3: N ← |Ω|, Pinit ← [pψω0
, pψω1

, ..., pψωN−1
]

4: for ωi ∈ Ω do

5: pψωi
← 1

N

6: return Pinit

1: procedure QtableTranslation(Qψ)

2: # 1. Transforming Q-values into

3: # probabilities

4: M ← |A|, Pψ
a = [pψa0 , p

ψ
a1 , ..., p

ψ
aM−1

]

5: for ai ∈ A do

6: pψai ←
rmax−Q(ai)

[
∑

a′∈A rmax−Q(a′)] ▷ Eq. 6.2

7:

8: return Pψ
a

1: procedure Update(Pψ
ω ,P

ψ
a )

2: # 1. Updating adversary probabilities

3: for ωi ∈ Ω do

4: pprior = pψωi

5: plikelihood = pψaωi

6:

7: pψωi
← plikelihood ∗ pprior ▷ Eq. 6.1

8:

9: # 2. Normalising the result

10: β ←
∑M
i=0 p

ψ
ωi

11: for ωi ∈ Ω do

12: pψωi
← pψωi

/β

13:

14: return Pψ
ω
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6.4 Evaluation Settings

• Simulation Environment – We performed experiments and collected data in

the Level-Based Foraging (LBF) environment [2, 26]. The environment and all

benchmark scenarios were implemented in AdLeap-MAS [25] (Appendix A), an

open-source multi-agent simulator for ad-hoc reasoning. Our code can be found

publically available on GitHub1.

• Benchmarks – The LBF environment is commonly used in the literature to test

online planning algorithms and estimation methods [2, 26]. In this scenario, agents

are placed in a 2D grid world, where they can navigate and attempt to collect boxes

distributed in the environment. However, the collection of a box is successful only if

the sum of the levels of the agents involved in loading it is equal to or higher than the

box’s weight (or level). In addition to the level, each agent has a certain vision radius

and angle as parameters. Considering this ad-hoc environment, agents must estimate

their teammates’ parameters to improve performance. In this study, we disguised

an adversarial agent among the team which attempts to minimise performance (by

disturbing the box collection). We defined 4 different scenarios as benchmarks:

(LBF.a) The first one is a “small scenario” (Figure 6.5). It is a 5× 5 environment

where the ad-hoc agent ϕ must estimate between two agents which one is the

impostor (a total of 3 agents), and there is only one individualistic task available for

accomplishment in the environment. An individualistic task is a task that any agent

can accomplish without cooperating with others.

Each agent has a type and parameters associated with it, which follows the

information presented in Table 6.1. Each task is also associated with a weight, which

follows the information presented in Table 6.2.

1BAE’s GitHub repository: https://github.com/lsmcolab/bae-adversary-detection
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(LBF.b) Our second scenario is a “medium scenario” (Figure 6.6) that extends our

first scenario by increasing the dimensions of the environment from 5× 5 to 9× 9,

and the number of tasks from 1 to 5. We kept the total number of agents at 3.

Each agent has a type and parameters associated with it, which follows the

information presented in Table 6.3. Each task is also associated with a weight, which

follows the information presented in Table 6.4.

(LBF.c) Our third scenario, in Figure 6.7, develops our second scenario by increasing

the number of agents from 3 to 5, adding 2 new non-strategic agents as potential

impostors. We denominate this scenario setting as the “big scenario”.

Each agent has a type and parameters associated with it, which follows the

information presented in Table 6.5. Each task is also associated with a weight, which

follows the information presented in Table 6.6.

(LBF.d) Our last scenario uses the big scenario configuration (Figure 6.7); however,

we extend this benchmark by requiring agents to cooperate between themselves

to accomplish some tasks. Hence, tasks are mostly cooperative, rather than

individualistic, in contrast with the LBF.c scenario.

Each agent has a type and parameters associated with it, which follows the

information presented in Table 6.7. Each task is also associated with a weight, which

follows the information presented in Table 6.8.

Table 6.1: Agents’ details in the small scenario (LBF.a).

Agent True Parameters

Index (color) Type [Radius, Angle,Level]

A (red) ϕ [1.0, 1.0, 1.0]

1 (grey) l1 [1.0, 1.0, 1.0]

X (blue) ψ [1.0, 1.0, 1.0]
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Table 6.2: Task’ details in the small scenario (LBF.a).

Task Position (5, 5)

Weight 1.0

Figure 6.5: Small scenario spatial configuration (LBF.a).

Table 6.3: Agents’ details in the medium scenario (LBF.b).

Agent True Parameters

Index (color) Type [Radius, Angle,Level]

A (red) ϕ [1.0, 1.0, 1.0]

1 (grey) l1 [1.0, 1.0, 1.0]

X (blue) ψ [1.0, 1.0, 1.0]

Table 6.4: Tasks’ details in the medium scenario (LBF.b).

Task Position (3, 3) (7, 7) (7, 3) (3, 7) (5, 5)

Weight 0.5 0.5 0.5 0.5 0.5
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Figure 6.6: Medium scenario spatial configuration (LBF.b).

Figure 6.7: Spatial configuration for the big scenario (LBF.c) and the cooperative

scenario (LBF.d).
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Table 6.5: Agents’ details in the big scenario (LBF.c).

Agent True Parameters

Index (color) Type [Radius, Angle,Level]

A (red) ϕ [1.0, 1.0, 1.0]

1 (grey) l1 [1.0, 1.0, 1.0]

2 (grey) l2 [1.0, 1.0, 1.0]

3 (grey) l3 [1.0, 1.0, 1.0]

X (blue) ψ [1.0, 1.0, 1.0]

Table 6.6: Tasks’ details in the big scenario (LBF.c).

Task Position (3, 3) (7, 7) (7, 3) (3, 7) (5, 5)

Weight 0.5 0.5 0.5 0.5 0.5

Table 6.7: Agents’ details in the cooperative scenario (LBF.d).

Agent True Parameters

Index (color) Type [Radius, Angle,Level]

A (red) ϕ [1.0, 1.0, 0.1]

1 (grey) l1 [1.0, 1.0, 0.3]

2 (grey) l2 [1.0, 1.0, 0.4]

3 (grey) l3 [1.0, 1.0, 0.5]

X (blue) ψ [1.0, 1.0, 0.6]

Table 6.8: Tasks’ details in the cooperative scenario (LBF.d).

Task Position (3, 3) (7, 7) (7, 3) (3, 7) (5, 5)

Weight 0.5 0.5 0.5 0.5 0.5
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• Experimental Setup We propose two different setups to test the capabilities of

BAE and our defined baselines.

• Adversarial Detection: In this setup, we focus on evaluating the capability

for detecting the true adversary, i.e., identifying the impostor agent among the

team. To do so, we consider that the ad-hoc agent has full knowledge of their

teammates’ types and parameter values.

• Ad-hoc Adversarial Detection: In this setup, we focus on evaluating the

impact of running ad-hoc teamwork algorithms at the same time we run our

adversarial detection approach, BAE. Therefore, we consider that the ad-hoc

agent has no knowledge of its teammates’ types or their parameter values.

• Baselines We propose the following three methods as our baselines for Adversarial

Detection, divided into two groups:

• Type-based methods – which are AGA and ABU [2], estimation methods

based on gradient ascent and bayesian updates, respectively.

• Adversarial detection method – OEATA-A [90] an ad-hoc teamwork

algorithm capable of running the OEATA estimation algorithm together with

the detection of adversaries.

We do not perform the analysis and experiments using purely OEATA or OEATE

because they represent task-oriented solutions and, since the impostor agent in our

experimental settings does not accomplish tasks (aiming to decrease the performance

of the team), cannot perform the estimation of the adversarial agent. We refer the

reader to the Related Work (Chapter 3) for further details regarding each baseline

presented here. Our baseline implementations can be found on GitHub.

As aforementioned, we want to test the impact of running an ad-hoc teamwork

algorithm at the same time we run BAE’s adversarial detection in the Ad-hoc

Adversarial Detection setting. Therefore, we propose two new estimation methods

for this analysis:
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• AGA-BAE and ABU-BAE are adaptations that consider the embedding of

our proposed method into AGA and ABU algorithms, respectively. They use

ad-hoc teamwork methods to perform type and parameter estimations while

applying BAE’s detection strategy to identify adversaries in the environment.

• Adversarial Detection using Type-based baselines To enable a fair

comparison between BAE and the type-based approaches, we generated a simple

adversarial behavioural template, denoted ψ̃, and added it to the knowledge of these

methods. Under this experiment configuration, the type-based agent will approximate

the probability of an agent being the adversary across N templates (which matches

the number of teammates in the environment), where N − 1 templates are non-

strategic templates and one is the created impostor template. After performing the

estimation across templates, we normalise the probability of being the adversary

across agents and then use it as the adversarial detection metric.

Table 6.9 presents the real and template types used in each scenario to run the

type-based methods, AGA and ABU.

Table 6.9: Real and template types per scenario for the Adversarial Detection

experimental setup. Note that each type in the “Real Types” column refers to the

true type of each agent in the scenario, and all types in the “Template Types” column

will be used to approximate each agent’s behaviour.

N agents Real Types Template Types

Small scenario 2 [l1, ψ] [l6, ψ̃]

Normal scenario 2 [l3, ψ] [l6, ψ̃]

Individualistic 4 [l1, l2, l3, ψ] [l4, l5, l6, ψ̃]

Cooperative 4 [l1, l2, l3, ψ] [l4, l5, l6, ψ̃]

We refer the reader to Chapter 5.9.1 for further details about the types used as

templates, which are proposed together with OEATE.
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• Impostor Template We created the impostor template ψ̃ as a simple Q-learning

adversarial model, where, for each benchmark scenario, we ran 200 episodes and

saved the estimated Q-values for each state. We ran the same minimisation MCTS

implemented to run the true impostor ψ. For each search process, we performed

1000 iterations of simulations, each with a maximum depth of 25.

Whilst simulating an agent running ψ̃, we sample the action, given a state s, by

first transforming the estimated Q-values into probabilities and sampling a random

action from this distribution.

• Metrics and Analysis We use the following metrics:

• Average impostor probability P (ωψ = ψ), which is the average estimated

probability of the true adversary being the adversary.

• Average planning time (t), which is the average time spent by the ad-hoc agent

to plan its actions and perform estimations.

Mean results are calculated across 50 executions. Every experiment runs

independently, so no knowledge is carried from one execution to another. The

calculated errors (±Err) represent the confidence interval of a two-sample t-test with

99% of confidence; we label a result as “significant” if it is statistically significant

considering ρ ≤ 0.01 unless otherwise stated.

• Hyper-parameters Discount factor for future rewards γ = 0.95; maximum depth

for the tree is 25; Maximum of simulations equals to 250 per search.

• Hardware and System information Each experiment run was performed in a

single node of a high-performance cluster, containing 16 Intel Ivy Bridge cores with

64GB of RAM.
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6.5 Empirical Results and Discussion

In this section, we present the main results found in our experimental dataset. We

begin our empirical analysis with the results for the Adversarial Detection Setting, in

Section 6.5.1. Afterwards, we move to the the Ad-hoc Adversarial Detection Setting

evaluation, in Section 6.5.2 In the end, we present further plots that support the

visualisation of the numerical results presented through this section, in Section 6.5.3.

6.5.1 Adversarial Detection

Figure 6.8 shows the performance of BAE in detecting the impostor among the

team members, while Table 6.10 presents a summary of our results including the

performance of our baselines.

Table 6.10: Summarised results for each adversary detection approach. The

highlighted values indicate when a method presents statistical significance in its

results among all competitors.

LBF.a LBF.b LBF.c LBF.d

P (ωψ = ψ) t (sec) P (ωψ = ψ) t (sec) P (ωψ = ψ) t (sec) P (ωψ = ψ) t (sec)

BAE 0.76± 0.06 2.15± 0.40 0.61± 0.06 6.08± 0.60 0.35± 0.02 10.45± 1.45 0.31± 0.04 13.73± 1.10

AGA 0.53± 0.10 2.79± 0.63 0.51± 0.09 5.50± 0.56 0.25± 0.07 9.44± 1.24 0.27± 0.07 10.63± 1.17

ABU 0.52± 0.11 2.83± 0.63 0.51± 0.11 5.54± 0.55 0.27± 0.08 9.48± 1.21 0.27± 0.09 10.11± 1.13

OEATA-A 0.50± 0.00 9.98± 1.23 0.50± 0.00 19.11± 2.07 0.25± 0.00 74.96± 29.96 0.25± 0.00 75.52± 26.81

From Figure 6.8, it is evident that BAE successfully detects the impostor agent

across all scenarios with statistical significance. However, although BAE did not

attain a maximum confidence level of P (ωψ = ψ) = 1, it was able to effectively

distinguish, in probability, the agent most likely to be the impostor.

We now turn our attention to the summary of the results given in Table 6.10.

Numerically, we observe that BAE consistently outperforms its baselines in detecting

adversaries across all scenarios, with the sole exception being the Medium scenario

(LBF.b), against which the p-value stands at p ≥ 0.23. In addition, it is important

to state that in the Big scenario (LBF.c), a significant difference between BAE and
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(a) Small scenario (LBF.a).
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(b) Normal scenario (LBF.b).
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(c) Individualistic (LBF.c).
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(d) Cooperative (LBF.d).

Figure 6.8: BAE’s impostor probability across iteration per agent for each defined

scenario in the LBF environment.

AGA is only observed when considering a p-value p < 0.06.

This enhancement of performance can be attributed to BAE’s improved capability

to discern the agents’ objectives by abstracting their actions while considering the

current knowledge available in real time. In contrast to the type-based baselines,

BAE exhibits the ability to swiftly identify variations in agent behaviour by relying on

its rationale, defined by its planning strategy, together with the conducted simulation

processes.

While we acknowledge that enhancing the complexity of the template for

approximating adversarial behaviour could potentially boost the performance of

type-based methods, it remains a fair comparison because BAE performs adversarial
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detection from scratch and does not rely on previously known templates.

In OEATA-A’s case, we attribute our better performance to the fact that we

do not rely on hard assumptions to update our knowledge. Two main assumptions

lead OEATA-A to fail in estimating the impostor: (i) all templates for non-strategic

agents must fail (after an update) in estimating the correct task to approximate

the “suspicious agent” (i.e., the success counter of all estimators must be equal to 0

to increase the suspicious probability), and (ii) the update of an agent’s estimators

only occurs after the competition of a task. However, the impostor agent in our

experimental settings does not complete tasks since it wants to minimise the team’s

reward collection. Therefore, OEATA-A fails in these assumptions and, hence, never

updates its probability for suspicious agents.

In terms of time efficiency, BAE demonstrates an enhanced ability to detect

adversaries without significantly increasing its necessary time to perform the decision-

making process. In the small scenario (LBF.a), we can see that BAE significantly

outperforms AGA, ABU, and OEATA-A in terms of reasoning time. In the LBF.b

and LBF.c scenarios, BAE exhibits a slightly higher average reasoning time, but

this difference lacks statistical significance, as indicated by p-values p > 0.6 when

compared to all tested baselines. However, in the LBF.d scenario, BAE does show

a higher reasoning time compared to its baselines. We attribute this increase in

reasoning time to BAE’s simulation of cooperation between agents at deeper levels

of the search tree. Its ability to better approximate adversarial agents results in

a preference for exploring branches of the tree where our ad-hoc agent handles

potential outcomes for a specific adversary agent. Instead of performing more

simulation steps during the rollout phase, we conjecture that BAE often performs

more simulation steps inside the existent tree because of its confidence in identifying

the true adversary, i.e., as the confidence about who is the true impostor increases,

the probability of exploring new paths in the tree decreases. Note that, OEATA-A

requires significantly more time to run than other baselines due to its estimation

approach, which requires the generation and evaluation of a large amount of estimators
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one by one to successfully perform estimations.

Overall, our method demonstrated success in detecting impostor agents across

three out of four scenarios with statistical significance, all while maintaining efficiency

in terms of time. We highlight that BAE achieved these results without relying on

pre-defined templates and by conducting adversary detection from scratch.

6.5.2 Ad-hoc Adversary Detection

For this experimental configuration, Table 6.11 provides a summary of our results.

Table 6.11: Summarised results for the Ad-hoc Adversary Detection experimental

setup. The highlighted values indicate instances when AGA-BAE improves AGA’s

results and when ABU-BAE improves ABU’s results with statistical significance.

LBF.a LBF.b LBF.c LBF.d

P (ωψ = ψ) t (sec) P (ωψ = ψ) t (sec) P (ωψ = ψ) t (sec) P (ωψ = ψ) t (sec)

AGA-BAE 0.58± 0.09 2.79± 0.62 0.56± 0.08 5.20± 0.55 0.29± 0.04 8.92± 1.20 0.28± 0.03 8.94± 1.00

ABU-BAE 0.57± 0.10 2.82± 0.62 0.58± 0.08 5.29± 0.54 0.27± 0.03 9.28± 1.21 0.30± 0.03 8.61± 1.06

Upon comparing the results in Table 6.10 to those in Table 6.11, we see that

BAE demonstrates a significant enhancement in the performance of AGA and ABU

methods with regard to adversary detection performance. This improvement was

observed across all scenarios for both presented solutions, AGA-BAE and ABU-BAE,

with the exception of ABU and ABU-BAE in the Big scenario (LBF.c), where the

p-value was notably high at p = 0.99, and AGA and AGA-BAE in the Cooperative

scenario (LBF.d), where p = 0.15.

As for reasoning time, AGA-BAE consistently achieves estimations significantly

faster than AGA across three out of the four scenarios, with all p-values below 0.01.

The only exception was the Small scenario (LBF.a), where p = 0.98. On the other

hand, ABU-BAE exhibits notably faster estimation times than ABU in two out of

four scenarios, with p-values under the 0.01 threshold. The Small (LBF.a) and Big

(LBF.c) scenarios stand out as exceptions, with p-values of p = 0.81 and p = 0.19,

respectively.
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Overall, we summarise that the proposed approach significantly enhances the

performance of type-based estimation methods in detecting adversarial agents within

an environment while avoiding the need to create a reliable template type for

impostors or train the method using historical data. Additionally, BAE proved

capable of reducing the time required for estimation for both baselines, an attribute

that can be beneficial in certain scenarios and applications.

6.5.3 Additional Plots for Results Visualisation

In this section, we provide additional materials to support the reader with the

visualisation of our results presented in Table 6.10 and 6.11.

Therefore, we first present AGA’s estimations of impostor type probabilities

through a line plot in Figure 6.9 followed by ABU’s impostor type probabilities,

in a similar representation, in Figure 6.10. These plots present the algorithms’

performance in estimation across various templates and particularly for the true

impostor. Subsequently, we turn our attention to the line plots to analyse the

performance of AGA and ABU when running together with BAE. Specifically, Figures

6.11 and 6.12 delineate the outcomes for AGA-BAE and ABU-BAE, respectively.

These results considers the algorithms’ estimations across agents (teammates),

including the true adversary.

Analysing Figures 6.9 and 6.10, we can see that both algorithms encounter

challenges in accurately differentiating the true impostor as the adversarial agent in

the environment. Notably, there is a lack of statistical significance in the probabilities

associated with different potential impostor types during these estimations.

On the other hand, when we analyse the AGA and ABU versions running with

BAE, in Figures 6.11 and 6.12, a noticeable improvement emerges compared to

their standalone applications. In different parts of the execution, the algorithms

demonstrate statistical significance in differentiating the true impostor as the

adversarial agent in the environment. Remarkably, ABU-BAE exhibits superior

deductive capabilities in identifying the adversary, concluding the execution of the
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problem by designating agent ω4 as the true impostor among teammtes in 3 out of 4

scenarios (ρ < 0.05), whereas AGA-BAE achieves statistical significance in only 1

out of 4 scenarios.
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(a) Small scenario (LBF.a).
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(b) Normal scenario (LBF.b).
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(c) Individualistic (LBF.c).
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(d) Cooperative (LBF.d).

Figure 6.9: AGA’s impostor probability across iteration per template type for each

defined scenario in the LBF environment.
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(a) Small scenario (LBF.a).
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(b) Normal scenario (LBF.b).
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(c) Individualistic (LBF.c).
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Figure 6.10: ABU’s impostor probability across iteration per template type for each

defined scenario in the LBF environment.
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(a) Small scenario (LBF.a).
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(b) Normal scenario (LBF.b).
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(c) Individualistic (LBF.c).
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(d) Cooperative (LBF.d).

Figure 6.11: AGA-BAE’s impostor probability across iteration per agent for each

defined scenario in the LBF environment.
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(a) Small scenario (LBF.a).
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(b) Normal scenario (LBF.b).
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(c) Individualistic (LBF.c).
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Figure 6.12: ABU-BAE’s impostor probability across iteration per agent for each

defined scenario in the LBF environment.

6.6 Chapter Conclusion

BAE is a novel algorithm for online planning and estimation in ad-hoc reasoning

domains, where agents share the same environment but have no information about

their teammates’ type, parameters and true intentions. We show that our method

is capable of efficiently identifying an impostor agent across four different scenarios

without relying on pre-trained models or previously available data.
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Conclusions

7.1 PhD Outline

In this PhD thesis, we have systematically explored different approaches and

strategies to handle uncertainty in partially observable scenarios. By conducting

a comprehensive analysis of both contemporary state-of-the-art methodologies and

classical literature, we have introduced a spectrum of solutions for online planning

and online estimation across a diverse application context.

Our contributions lie in the formulation of innovative algorithms that combine

statistical and reinforcement learning techniques in a precise manner. The integration

of these methodologies has shown great benefit for the optimization of autonomous

processes as a powerful tool, enhancing the algorithms’ adaptability and efficiency

in the face of dynamic and uncertain environments. Notably, our approaches could

also alleviate the prevalent dependency on extensive computational resources and

massive amounts of data to achieve good performance. We have ventured beyond

the boundaries of existing literature, pushing our proposals to more complex and

challenging problems. Since the beginning, we have focused on providing smart,

practical, and accessible solutions for the implementation of efficient autonomous

agents in terms of learning, planning, and estimation capabilities.
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“Autonomous agents are prevalent and recurrent in our society, playing

an important role in optimizing and improving people’s quality of life.

Hence, it must be accessible and efficient for everyone.”

The central theme highlighted in this thesis can be described through the following

rationale and sequence of events:

We started by examining the challenges faced by a single agent navigating an

environment full of uncertainties. Under this perspective, we have explored various

approaches to enhance decision-making processes featuring the constraints stated

by the partial observability. Throughout our investigation, we identified a notable

limitation in existing literature hindering performance improvement: the prevalent

reward-guided paradigm embedded within reinforcement learning solutions. Facing

the uncertainty and reasoning about how to surpass the barriers imposed by this

paradigm, we proposed an innovative approach capable of extracting valuable insights

from environmental observations and informed problem reasoning. Considering the

recurrent integration of Markovian models with reinforcement learning solutions,

our approach could enhance the performance of a single agent acting in a partially

observable scenario without relying on additional resources, such as computational

power or time. Besides that, our solution shows versatility and generality in its

application, showcasing its potential in handling various contexts and modifying

different frameworks. This adaptability opens avenues for the creation of methods

adhering to alternative planning paradigms. As a consequence of this advancement,

we introduced the concept of the “information-guided planning paradigm,” wherein

planning capabilities evolve not solely from rewards but also from the systematic

collection of information from the environment. A concrete manifestation of this

contribution’s significance is the proposal of IB-POMCP, whose novelty and impact

will be summarized in Section 7.2.1.
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“Measuring information instead of rewards to enable and develop

efficient planning has demonstrated promising progress in overcoming

the barriers related to the scarcity of data or computational resources.”

After presenting a solution to the aforementioned problem from a single-agent

perspective, a natural question arises: how can we address similar challenges within a

multi-agent scenario? Upon delving into this context, we observed that the primary

barriers in multi-agent systems were not exclusively tied to uncertainties in the

environment. Instead, these challenges predominantly stemmed from uncertainties

related to fostering effective collaboration and coordination among agents. As

demonstrated throughout this thesis, various scenarios present challenges when it

is required to understand how each teammate reasons about the world and plans

its actions toward cooperation. Revisiting the literature, we identified that current

teamwork models and planning solutions in this context could benefit from the

information gained through observations retrieved from the world. This strategy

resembles the single-agent solution but now is applied to reduce uncertainty related to

potential teammates instead of the pure environment. Consequently, we proposed a

novel approach that integrates reinforcement learning, type and parameter estimation,

and genetic algorithms as a potent tool to enhance planning, coordination, and

cooperation in an environment with unknown teammates. Through this strategy, we

effectively addressed these challenges without requiring the estimation of true models

for our teammates, thus conserving computational resources without compromising

performance. The concrete contribution related to this outcome is the proposed

OEATE, whose novelty and impact will be summarized in Section 7.2.2.

“When cooperating, we do not need to delve into our teammates’ minds;

we need to find effective ways to understand them and adapt ourselves.”
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At the culmination of this journey, after developing an agent capable of navigating

scenarios with uncertainty from both the environment and its teammates’ behavior,

a final question emerged: What if someone assumes the role of an adversary,

attempting to deceive our planning and operate beyond the bounds of our accumulated

knowledge? While it may be hard to acknowledge, the presence of malicious

applications capable of undermining an agent’s planning capabilities cannot be

ignored. This thesis illustrates scenarios where autonomous agents mandatorily rely

on their mutual trust to successfully complete tasks and achieve common objectives.

However, under our assumptions, being aware of potential impostors within the

system can prevent damage to both the system itself and those surrounding it. As a

recent topic in the literature, the multi-agent systems community is starting to further

explore these scenarios with disguised adversaries, lacking relevant solutions in the

context. From our exploration of the literature, we noticed that, akin to our previous

application of information knowledge, it might be plausible to identify adversarial

agents operating within a teamwork context using a similar strategy. Through

the blended perspective of computing and statistics, we discovered that extracting

information from observations and comparing it with observable actions of other

agents could help identify potential impostors. The consequence of this investigation

was the proposal of a novel approach capable of aggregating knowledge by observing

the environment and the actions of other agents to discern their intentions and

roles in the system without relying on true models or previous knowledge. By

systematically evaluating the impact of each action for potential adversarial agents

in the environment, we could effectively identify impostors within the team. The

concrete contribution of this project is the proposal of BAE, whose novelty and

impact will be summarized in Section 7.2.3.

“Intelligence is ineffective if we cannot comprehend the diversity of the

world around us; the same for the robots.”
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In light of the comprehensive discussion above, this conclusion section aims

to revisit some details of our contributions, underscoring their significance for the

community in different aspects.

First, in Section 7.2, we present a brief but refreshing summary of our contributions

to support this concluding discussion. In Section 7.3, we discuss in detail all the actual

and potential limitations for each of our proposed methods. This detailed exploration

provides transparency regarding the constraints and challenges associated with our

approaches. Finally, in Section 7.4, we extrapolate potential paths for future research,

building upon the insights gained from both the achievements and shortcomings of

this thesis. The thesis ends with the appendix and references sections.

7.2 Contributions

This thesis analyzed and developed solutions in online planning under partial

observability, considering unknown features of the environment and potential other

agents (teammates) in the environment. Our primary focus centered on Monte Carlo-

based methods, applied to both single and multi-agent scenarios, and we extended

their application to diverse and complex settings for empirical and theoretical

evaluations.

In essence, this thesis aimed to assess how an autonomous agent can effectively

manage various levels of uncertainty by aggregating information during the planning

and decision-making processes in an online manner. Our findings demonstrate that

employing different strategies enables the aggregation of information and extraction

of knowledge about the problem not accessible prior to its execution. Furthermore,

we illustrate that our solutions can execute and complete tasks without significantly

increasing resource usage, challenging the prevailing belief in the literature that

suggests an extensive amount of data is necessary to train and solve complex problems.

In summary, the primary contributions of this thesis that are both relevant and

novel within the community and our research area include:
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• A novel perspective on applying information to enhance online planning methods

facing uncertainty;

• Innovative models for the application of statistical approaches and learning

methods that do not require significantly increased resources to solve problems;

and

• A novel framework capable of unifying and implementing all the aforementioned

methods and scenarios discussed for research and evaluation purposes.

To provide a more in-depth analysis of each contribution, we save space in the

following sections to discuss each method individually, offering a comprehensive

examination of the advancements developed during this thesis.

7.2.1 IB-POMCP

As the first contribution presented in this thesis, we proposed Information-based

POMCP (IB-POMCP), a novel algorithm for planning under uncertainty that is

capable of aggregating information entropy into a decision-making algorithm using

our modified version of the UCB function, I-UCB. Our information-guided planning

approach leads the agent to surpass recurrent limitations imposed by the traditional

reward-guided planning paradigm presented in the state-of-the-art literature.

IB-POMCP is a direct answer to two research questions introduced in this thesis:

• Considering the aspects of planning under uncertainty, how can we handle

the lack of information without penalizing time or spending significantly more

resources?”, and;

• Considering the current reward-guided paradigm in RL solutions, how can we

solve problems with sparse rewards?”

We handled the lack of information by proposing a new paradigm for planning, the

“information-guided planning paradigm”, which can evaluate and plan actions based
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not solely on the reward collection but also on an entropy analysis procedure over

the set of collected observations. The collected observations by each action enable

the calculation of entropy, hence, the gain of information for each action and possible

path ahead. We use this value to improve the reasoning quality, even when no reward

is available. In addition, IB-POMCP presents theoretical properties for convergence

under certain assumptions, which are supported by empirical results collected in five

different domains and several different scenarios. Overall, our proposal could increase

the reward collection by up to 10 times in comparison with the state-of-the-art

method, TB ρ-POMCP (U-shaped, F1), in addition to reducing the reasoning time

by up to 93% compared to ρ-POMCP (MazeHoles).

7.2.2 OEATE

As the second contribution proposed in this thesis, we presented Online Estimators

for Ad-hoc Task Execution (OEATE), a new algorithm for estimating types and

parameters of teammates, specifically designed for problems where there is a set of

tasks to be completed in a scenario. By focusing on decentralized task execution,

we are able to enhance the capabilities of state-of-the-art methods presented in the

literature, obtaining lower error in parameter and type estimation than previous

works, which leads to better overall performance.

Besides being lightweight (addressing the first research question of this thesis),

OEATE focuses on delivering a solution that replies specifically to the question:

• “Considering multi-agent systems working under uncertainty, how can we sur-

pass the limitations posed by performing teamwork with unknown teammates?”

Our answer considers a blend of applications between online planning, online

learning, feature estimation, and genetic algorithms. We developed this study

theoretically and empirically, showing that OEATE converges to zero error as the

number of tasks increases (under some assumptions) in a wide range of situations

(e.g., scaling number of items, number of agents, scenario sizes, and number of types
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in our experiments). OEATE could outperform the previous works with statistical

significance in some of these cases. This work opens the path to diverse studies

regarding the improvement of ad-hoc teams through a task-based perspective and

using an information-oriented approach.

7.2.3 BAE

As the last concrete contribution of this thesis, we present Bayesian Adversary

Estimation (BAE), a novel algorithm for online planning and estimation while

handling an ad-hoc reasoning domain, where agents share the same environment but

have no information about their teammates’ type, parameters, and true intentions.

We show that our method is capable of efficiently identifying an impostor agent

across four different scenarios without relying on pre-trained models or previously

available data.

This proposal aims to answer the last research question of this thesis:

• “Considering the emerging discussion about adversaries in decision-making

systems, how can we handle it without penalizing the algorithm planning

capabilities?”

Straightforwardly, we propose the application of what we denominate as the

Q-valued Bayesian Estimation (QvBE) approach, which considers evaluating action

values using information that is not directly available by observing the world –

such as the probability distribution function of teammates’ actions using the Q-

values estimated during the reasoning process. Although we focused on proposing a

solution based on Monte-Carlo Tree Search methods, we emphasize that it can be

extended to any online planning algorithm that estimates Q-values. The main idea

behind our proposal is to embed the QvBE approach inside an Adversarial-MCTS,

which performs planning from scratch and estimates its own actions considering the

existence of an adversary. The Q-table found at the end of the search process is used

to estimate the impostor among the team.
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7.3 Limitations

7.3.1 IB-POMCP

While our proposed approach for IB-POMCP, which involves the integration of

an information-guided planning strategy through the application of our innovative

I-UCB function, exhibits certain limitations in specific contexts where a reduction in

uncertainty may adversely affect performance.

Consider a hypothetical scenario where agents, aiming to enhance performance,

must undertake risky actions to achieve their objectives. In such a case, IB-POMCP

may fail to improve performance depending on the underlying model design of the

planning algorithm. For example, if the model suggests that accumulating knowledge

is advantageous, yet the value for information gain consistently surpasses the value

obtained through collecting rewards with high uncertainty, IB-POMCP may tend

to prioritize knowledge aggregation over taking risky actions. Consequently, it will

avoid accomplishing tasks in favor of reducing uncertainty.

Another constraint emerges from the characteristics of our spaces inside the

decision-making model. The first limitation can occur when the observation space is

too limited to differentiate actions based on entropy values. From a similar perspective

but in the opposite direction, in cases where the action space is excessively large,

IB-POMCP would necessitate a higher number of simulations to distinguish actions

by analyzing potential observations in the environment. However, it is crucial to note

that, for both cases, the performance of IB-POMCP remains bounded by the efficacy

of traditional reward-guided planning algorithms, where it may exhibit comparable

or superior performance.
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7.3.2 OEATE

One of the key strengths of OEATE lies in its flexibility, allowing teammates

to operate with different problem representations and employ diverse algorithms

without explicit agreement in task selection. OEATE successfully models and views

each agent from a task-based perspective, enabling effective estimation even when

teammates operate with distinct paradigms or task representations. However, from

this perspective, a notable limitation arises when dealing with a “lazy agent”, which

presents challenges in approximating template models to its behavior. The task-

based ad-hoc teamwork model assumes that all agents within a team will actively

contribute to the accomplishment of tasks for the team’s benefit at some point in

time. Consequently, if the agent is “lazy” or even an impostor in the team, OEATE

might fail to estimate its types and parameters correctly due to the lack of proactivity

from the agent. Note that this situation is different from our case of study with

wrong templates. There, an agent is still completing tasks, but the correct template

for estimation is not available.

In scenarios involving partial observability, our algorithm still relies on knowledge

regarding which agents completed specific tasks, even beyond our controlled agent

visibility region. If the algorithm fails to obtain this information, it might inaccurately

estimate the agent’s potential type and parameters. Again, due to the assumptions

imposed by the task-based ad-hoc model, OEATE is constrained to these situations.

Finally, an important implication, which highlights another limitation of our study,

is: improving the knowledge of the ad-hoc agent about non-learning teammate types

did not always lead to an improvement in performance. This observation suggests that

traditional benchmark problems may not be ideal for evaluating methods emphasizing

accurate modeling of neighbor types, particularly in scenarios involving individualistic

agents brought together for planning without direct cooperation towards a common

objective. It is crucial to note that our approach’s performance would be constrained

to the efficacy of the planning method it employs in such scenarios.
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7.3.3 BAE

Although BAE is lightweight and efficient in estimating potential impostors in a

teamwork environment, it still shows some limitations in its developed strategy.

Our empirical findings highlight certain limitations in BAE’s estimations related

to the action space size. If there are not enough actions to differentiate non-adversarial

and adversarial agents, our method may take significantly more time to accurately

update the impostor probability among teammates. The underlying rationale is that

if all agents within the environment are often performing the same actions (even

considering the spatial difference between them, i.e., their position), the absence of

distinctive actions will prevent the identification of adversaries. The same can happen

when there is a large number of agents in the scenario if agents rarely take actions

that differentiate their objective or intention from other agents. We acknowledge

that this setting somewhat benefits the adversarial agent, which makes the problem

challenging for any estimation method including BAE. Hence, it is possible that

under different and more challenging settings for the adversary, BAE may yield

different results regarding this limitation, which also raises the question: how quickly

can an impostor be detected by BAE after engaging in suspicious behavior?

Moreover, similar to OEATE and contrary to expectations, augmenting knowledge

about teammates’ roles and their true objectives in the scenario does not consistently

result in improvements for team performance. Particularly in an adversarial

context, there may be cases where attempting to identify and mitigate the

impact of an adversary in the environment can negatively impact task completion.

Sometimes, if this information was overlooked during the planning phase, the benefits

would be greater in terms of performance. In other words, the adaptability in

planning, stemming from extensive knowledge, sometimes disrupts agent reasoning by

introducing multiple layers of complexity in the planning process. Finding a balance

between these aspects is imperative to consistently achieve optimal performance

when implementing BAE and other estimation methods; but sometimes, information

to find this balance is faulty or nonexistent.
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7.4 Future Works

7.4.1 IB-POMCP

Exploring potential avenues for future research inspired by IB-POMCP’s proposal

involves considering its extension to multi-agent systems with uncertainty. While

this thesis has delved into challenges related to estimating types and parameters for

teammates sharing an environment, a crucial aspect remains unexplored – how the

performance of information-guided planning influences coordination among agents in

cooperative scenarios. Managing multiple layers of uncertainty simultaneously poses

challenges but offers advantages across various applications.

For instance, extending IB-POMCP to calculate uncertainty while deliberating a

chosen path and considering uncertainties related to the decision-making of other

agents could empower the ad-hoc agent to tailor strategies based on confidence levels

in its estimations about non-learning agents. This, in turn, holds the potential for

performance improvements.

Another direction for extension involves adapting the information-guided planning

paradigm to address scenarios where increasing uncertainty is desirable, rather than

decreasing it. Our current approach predominantly focuses on problems where

decreasing uncertainty benefits the decision-making capabilities of our ad-hoc agent.

However, as pointed out in the previous section, there are problems where this

perspective in planning can disrupt the process. Expanding IB-POMCP’s framework

to handle increasing uncertainty would be essential for defining a comprehensive and

versatile reasoning process, enabling the application of our approach to a broader

range of problems.

Finally, evaluating IB-POMCP’s capacity to handle large action spaces and small

observation spaces would contribute to refining our proposal. Our current suspicion

is that the algorithm might be constrained by the characteristics of the POMDP

model. Exploring alternative statistical methods, beyond our proposed Shannon

Entropy application, may also empower IB-POMCP to transcend these constraints
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and establish a more robust planning process. However, the feasibility of applying

more complex entropy calculation methods should be considered in terms of resource

requirements, keeping in mind the trade-off between performance and the necessary

computational power to achieve this. Under this perspective, we suggest exploring the

adaptation of traditional statistical calculations to an online planning and learning

perspective (as we proposed), introducing a lightweight yet effective approach.

7.4.2 OEATE

OEATE’s future works encompass the generalization of its applications beyond the

current capabilities of the ad-hoc teamwork model employed in its estimation process,

expanding its capabilities to different real-world contexts.

For instance, addressing the partial observability limitation discussed in the

preceding section necessitates further exploration to refine the estimation process

when information is lacking for agents beyond the ad-hoc agent vision region. In

real-world scenarios, potential solutions may involve incorporating external hardware

to detect agents and tasks outside the line of sight. Alternatively, calibrating the

method to synergize with communication channels, relying on trusted agents to

exchange messages and continuously estimate types and parameters, could enhance

performance across various problems. However, eliminating these assumptions from

”task-based ad-hoc teamwork” under partial observability emerges as an intriguing

and challenging avenue for future research.

Another pertinent direction for future work on OEATE involves developing

planning capabilities that account for potential variations in the roles of teammates,

as proposed in BAE, which considers adversarial agents in the team. The initial

findings presented by Shafipour and Fallah (2021) [90] with the OEATA-A proposal,

utilizing a prior version of OEATE (OEATA [91]), demonstrate the potential of this

avenue for advancement. However, numerous aspects need refinement to present a

superior strategy compared to OEATA-A (whose limitations were discussed in our

related works) and BAE.
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7.4.3 BAE

Discussing future developments for BAE involves refining its sensitivity to spatial

features during the simulation of potential and multiple adversaries at the same time.

As preliminary results, we have conducted tests and assessments on an alternative

version of BAE. One of them was labeled the Multi-Tree MCTS BAE. This variant

involves simulating each potential impostor within distinct adversarial trees, all at

once. In contrast to EQ-MCTS, the version presented in this thesis, this approach

eliminates the necessity to aggregate multiple estimated Q-values from different

impostors during the tree search process for adversary identification.

Our rationale behind this approach was to isolate each potential adversary within

its own tree, concentrating exclusively on their spatial and temporal characteristics,

with the expectation of potentially enhancing results, albeit at the expense of

increased computational resources. However, despite running more simulations

across different trees, no significant improvement in outcomes was observed. We

posit that refining the model and devising a more effective strategy for aggregating

Q-values, considering the spatial configuration of the target agent’s actions, could

lead to improvements in adversarial detection results. Our limitations discussion

gives insights into the cause and how to solve these problems, incentivizing the

development of future works in this line of research.

195



Appendix A

AdLeap-MAS: An Open-Source

Multi-Agent Simulator for Ad-hoc

Reasoning

A.1 Introduction

Autonomous systems play notable roles in contemporary society. They perform vital

daily tasks, provide several critical services, and collectively constitute a significant

proportion of digital systems. The increasing number of devices sharing the same

environment present a set of more complex problems that require the proposal of

new intelligence methods capable of solving tasks, learning about each other and

handling uncertainties in an online-fashion.

A typical approach presented by the state-of-art is to assign multiple intelligent

agents to solve a common objective, defining a Multi-Agent System (MAS) context.

Within this domain, ad-hoc teamwork modelling has been a successful approach

to coordinate task accomplishment of autonomous systems [95, 102, 111]. This

allows agents to cooperate with previously unknown teammates over full or partial

observability of an environment, leading the agents to reason and learn about each

other and the environment in a decentralised-fashion [2, 46, 81, 91].
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In such scenarios, some features are critical for agents to act in the environment.

Besides being able to interact with the scenario, it is commonly necessary that

they present the capability to make decisions in an online manner while handling

uncertainties to efficiently solve problems in the environment. It considers, for

example, the application of estimation algorithms to approximate knowledge about

the world and about the role potential teammates are playing. Consequently, these

domains usually involve a tight combination of on-line learning, on-line planning and

on-line estimation algorithms in order to solve a problem. We refer this context as

an Ad-hoc reasoning context.

When proposing solutions in this complex domain, it is extremely beneficial to

thoroughly evaluate how a system reacts to its environment through simulations,

which helps avoid significant investment in equipment and deployment costs. Hence,

simulators have being crucial for the progress of Ad-hoc reasoning research by

facilitating reliable and reproducible experiments to test new concepts, strategies,

and algorithms [59].

Regarding the community interested in ad-hoc reasoning solutions (e.g., ad-hoc

teamwork, opponent modelling, online planning, latent features estimatimation, etc),

every research team seems to be implementing scenarios using their own self-built

simulators [6, 20, 35, 78, 79, 85, 98, 105, 91], missing the opportunity to propose

a common and trustworthy platform that addresses the community necessities to

develop research and propose new solutions.

Therefore, we propose the open-source Adaptive Learning and Planning Multi-

agent Simulator (AdLeap-MAS), a novel framework focused on simulating ad-hoc

reasoning domains and aiding the evaluation of on-line learning and planning

methods for individualistic, cooperative and adversarial Ad-hoc contexts. Through a

component-based architecture, this proposal aims to minimise the implementation

cost that precedes domain evaluation; including designing the environment,

component settings, and benchmarks definition. AdLeap-MAS presents a set of

ready-to-use tools and inputs that enables low-effort “plug-in” functionalities, such as
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testing new learning and estimation methods. Our framework uses the Gymnasium

package [101], the recent and updated version of Open-AI Gym [21], to build its

solution and is publicly available to encourage code sharing and platform usage,

offering a comprehensive documentation and an active support to the project.

Up to date, our framework’s repository provides twelve (12) distinct environment

and more than twenty (20) different scenarios in total to perform experiments. Beyond

that, AdLeap-MAS supports the execution of reactive algorithms, neural networks,

estimation methods for modelling previously unknown agents and reinforcement

learning application over full and partial observability, requiring the user only to

plug-in their algorithms into the Ad-hoc reasoning base model. In this matter,

we offer several reactive algorithms to run non-strategic agents, besides eight (8)

planning algorithms and six (6) estimation methods from the state-of-the-art as

baselines. AdLeap-MAS also offer the implementation of supportive codes for the

collection, analysis and plot of the data generated by the framework.

In summary, the contributions of the AdLeap-MAS’s project can be listed as:

1. It is a novel and open-source framework for the simulation of ad-hoc reasoning

domain(Section A.3–A.4);

2. It is build over a component-based architecture, which design enables the creation

of input points that facilitate the adaptation or modification of the simulation

characteristics in a quickly and efficiently manner (Section A.4), and;

3. It presents a generic model for implementing Ad-hoc reasoning problems focused

on providing higher code portability and a broader problem representation

(Section A.4.2). That will allow the community to easily benchmark new

algorithms for on-line learning, planning and estimation in ad-hoc contexts.

Double-check our Git’Hub for further details and tips about how to use it at

https://github.com/lsmcolab/adleap-mas/.
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A.2 Related Work

In multi-agents research, simulators are recurrently used as a supportive tool aiming to

test new concepts, strategies, and algorithms quickly and efficiently. As a consequence,

several works evaluate their novel algorithms by doing simulations over relevant

domains for the community, such as level-based foraging [91], capture-the-flag games

[81] and autonomous driving environments [79]. However, it is costly to implement

or find a good simulator that fits these applications.

For instance, Gazebo [59] tackles the representation and simulation of 3D scenarios

in robotics. Gazebo became popular due to its ability to present high-fidelity

simulations of multi-robot problems. However, Gazebo does not provide support

for learning/planning algorithms, maintaining its focus on simulating restricted

robotics scenarios without plenty of agents in the same execution. In contrast,

AdLeap-MAS offers a lightweight simulation alternative that supports the execution

of learning/planning algorithms within the experiments. Using the Gymnasium and

our available benchmarks, we allow the user to quickly run the intelligence algorithms

within the multi-agent scenario and also support the implementation and evaluation

of new methods to tackle the context of interest.

Intending to solve the same problem as Gazebo, the Stage simulator [103] proposes

a scalable version of the previous Player/Stage simulator [41]. Although presenting

a good performance and scalability, Stage does not provide a world-model for on-line

planning, making it hard to be used as a simulator in ad-hoc contexts. Similar

limitations emerge in the Swarmanoid project [82] or the SUMO [16] simulators,

specialised in the representation and assessment of swarms and urban mobility

problems, respectively.

Therefore, we address these problems by presenting an implementation that easily

allows a world model, and agents algorithms to be used as inputs to define an ad-hoc

problem setting for simulation. The AdLeap-MAS framework can represent the

same problems described by these state-of-art proposals but through our generic

design proposal to better match with Ad-hoc reasoning domains. Furthermore, in
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order to make it portable, we implemented it using Python 3 language, supported by

Gymnasium, and created ready-to-use input points to change the execution settings.

Also, from the state-of-art, the GAMA simulator [37] proposes the modelling and

simulation of spatially explicit multi-agent domains. However, it is not focused on

ad-hoc contexts, making it hard to implement the required combination of on-line

learning and planning in this framework. Despite the issue of acquiring a world

model, the framework also requires an understanding of its dedicated programming

language before utilisation. In contrast, AdLeap-MAS uses the Python programming

language for the entire implementation without requiring the usage of supportive

languages. We built our framework over a component-based architecture that

provides independence for each module (fully implemented in Python). This loose

coupling improves robustness and facilitates the local management of components

and an architecture-independent testing procedure. In other words, the environment

simulation occurs through a unilateral communication channel within the architecture,

which establishes a standard and precise execution flow to simulate every problem

implemented in the framework, allowing the user to debug problems locally without

touching the architecture.

OpenSpiel [64] presents a collection of environments and algorithms for research

in general reinforcement learning and search/planning in games. Supporting

implementations in C++ and Python, this proposal presents relevant contributions

related to decision-making evaluation in several contexts. However, the OpenSpiel is

not focused on the simulation of Ad-hoc reasoning domains, demanding from the

user the design and modelling of these contexts before utilisation. The AdLeap-MAS

tackles this deficiency by directly implementing the necessary Ad-hoc simulation

tools and a Markovian base model within the framework. We allow the users to

easily switch from partial to full observability scenarios and vice-versa, apart from

enabling the quick plug-in of estimation algorithms into the reasoning methods. The

AdLeap-MAS also offers a set of relevant benchmarks to use or modify before running

these problems.
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From the old Open-AI Gym [21], Gymnasium [101] is a platform that aims to

provide a collection of benchmarks in a software package, offering also convenience

and accessibility. Gymnasium represents all the elements in the world as part of

the environment. The package abstracts these components to facilitate applying

reinforcement learning algorithms, which would receive all this information aggregated

into a single state/environment. Additionally, the software package suggests

the versioning of its environments to ensure that results remain meaningful and

reproducible through the updates. We extend the benefits of these platforms

and also improve its range of application. By directly modelling and offering

support of Ad-hoc reasoning applications, we provide the opportunity to use the

Gymnasium’s benchmarks into a focused environment for evaluation and simulation

in this context. We also allow the components to easily swap without requiring the

complete environment implementation understanding. Our framework also handles

visibility restrictions modifications without requiring the implementation of a new

class or method. The AdLeap-MAS describes an embedded framework that seeks to

improve the user’s experience with Gymnasium for Ad-hoc domains via its extension

related to implemented features for ad-hoc reasoning, and friendly usage.

We propose the AdLeap-MAS as an open-source project that can support the

community as a centralised code-source repository providing the algorithms via

updates made by the authors or other collaborators, providing valuable baselines for

benchmark. We use GitHub as the official website to make our simulator public, a

decision that considers GitHub’s reliability and wide use – encouraging code sharing

within the community.

Finally, proposing the AdLeap-MAS framework has no intention of replacing

or surpassing the capabilities of other simulators. Instead, we aim to provide a

robust and efficient simulator for projects that require the simulation of a variable

multi-agent context, changing the learning or reasoning paradigms in the simulation

or even testing several ad-hoc agents in the same environment. Our objective is to

increase collaboration by offering a safe, useful, and centralised shared platform.
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A.3 The AdLeap-MAS Framework

The essential principle of our design philosophy is to propose a collaborative work and

shared space to develop Ad-hoc reasoning applications, simulations and evaluation

within the Multi-Agent systems community. Our framework presents a robust

architecture as the main design feature, intending to provide adequate tools to

encourage its usage and code spreading. Among them, we can point out (i) the

facilities provided by the Python language and Gymnasium software package, and

(ii) the construction of the framework with a component-based architecture. Using

these tools, we can provide guarantees related to:

• Code Portability: offering the correct mechanisms to freely plug-in learning

and reasoning algorithms and environment components without requiring

extensive workloads for code adaptation.

• Integrity: ensuring that results remain meaningful and reproducible as the

software is updated and as the user manage the framework components.

• Adaptability: easing the software constraints via a module and model

generalisation design, reducing the implementation and adaptation workload.

• Friendly Usability: providing sufficient tools to easily perform modifications

in the environment without demanding additional knowledge from the user

about the framework procedures, presenting and solving problems locally only

using the Python standard feedback.

Providing these tools within our framework guarantees, besides the aforementioned

benefits, an easy start to develop a novel idea. The framework is implemented over a

friendly and easy to learn software development workspace, as the Python language

and the Gymnasium package are widely used by the community, representing a safer

choice to corroborate our philosophy objectives in this proposal. Additionally, the

Gymnasium’s philosophies already support the principle linked to our framework
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design since users are encouraged to submit their results and provide links to source

code with detailed documentation.

Regarding the design features, we can point out the construction of a:

• Unilateral and Cyclical simulation flow: minimising the carried out errors,

facilitating the debugging process and guaranteeing the correct execution for a

diverse set of problems in a linear component execution.

• Consistent modelling for problems in the Ad-hoc reasoning domain:

assuring the benefits of using the markovian models to present a reliable

scenario representation and simulation.

• Reliable input points to define the environment components:

presenting ready-to-use input points for components that build and modify the

environment and/or the agents according to the user’s interest.

Note that we are pursuing the idea of offering a robust and friendly alternative to

develop, share and advance researches into the Multi-Agents community addressing

Ad-hoc reasoning domains, especially.

Finally, we will discuss the details about how these features and tools impacted

the decisions made during the framework implementation in Section A.3, starting

from a high-level view of the architecture going through some specific implementation

characteristics. AdLeap-MAS is available on the GitHub1 with further information

and instructions to usage.

A.4 Framework Architecture

A.4.1 High level view

The AdLeap-MAS’s architecture is based on unilateral and cyclical module

communication, where the information within the framework must be delivered

1AdLeap-MAS (Anonymous) GitHub: https://github.com/lsmcolab/adleap-mas/
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or received directly and exclusively by one module from another in the architecture.

Such design enables the problem simulation as a step-by-step process, processing

each fragment of the simulation (i.e., functionalities) independently. As in a cascade

workflow definition, this specific approach guarantees the correct information analysis

and transformation in each step. Furthermore, it is important to note that each

module acts independently from the other components. As such, learning and

reasoning are based solely on the delivered information.

Perhaps, the arising question now is: how did we separate the environment from

its components and the components from their learning and reasoning modules?

The answer is direct: we do not. However, considering that each module works

strictly over the current information, it is reasonable to assume that this data can

provide sufficient knowledge to simulate the environment without building a bilateral

communication channel. Likewise, we can describe this situation as the interactions

in an office environment, where people of different departments deliver reports to

other departments but do not mutually participate in the deliberation processes. In

this analogy, the environment module is analogous to the role of the office manager

who knows its departments (≈ components) and changes the environment without

necessarily deciding how specific employees (≈ agents) should act. The employees

represent the agents’ component modules (capable of learning, reasoning and taking

actions), the structure (components that define the environment organisation) or the

tasks (defined by the manager to be accomplished by the employers). Finally, the

entire environment (the office in the analogy) passes through the decision-making

process, where each character will modify the context by selecting the best action

from their perspective.

Following the analogy and explanation, the components are really connected, but

performing independent functionalities. Hence, changing the name of a component

or even its characteristic will not pose a problem if the modified or new component

delivers the same final product. In other words, we can change each component in

execution for another component that returns the same result.
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In this sense, perhaps now presenting the user as the “player of the game” instead

of the “game developer” does not sound so strange. The idea is that the user should

spend more time adjusting the game components than developing them. AdLeap-

MAS suggests this idea in every design decision made, trying to improve the user

experience over this point of view. Directly, the user can change every component in

AdLeap-MAS environment, where the only requirement is to keep the same type of

results at the end of each component. Figure A.1 presents the user’s flow to simulate

a desired problem.

Getting started
with 

AdLeap-MAS Yes

No

Problem
defined?

Yes

No

Components
available?

Yes

No

Decision
algorithms
available?

Start the
Simulation

No

Yes

Do you want
something novel?

Take the code from
our repository and

modify it as you want

Yes

No

Environment
implemented?

NoYes Want to change
something?

Use our
template and

get started

Figure A.1: User’s flow to build, modify and simulate environments in AdLeap-MAS.

Note that we can break the diagram into two groups: the novel and the experiment

group. The users belonging to the novel group will invest some time adapting our base

code before starting the simulation. On the other hand, the user in the experiment

group can directly access our repository, choose the desired features and plug-in

into the framework to start the simulations. However, both groups will spend less

time than starting the process from scratch, mainly supported by the base codes.

Additionally, this diagram describes the precise cascade scheme tied to our framework,

leading the user to avoid repeating previous steps due to misimplementations or

wrong modifications.

After defining the context of interest and starting the simulation, the AdLeap-

MAS’s workflow will conduct the whole execution requesting the user participation

only to fix self-implemented or adapted codes.
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A.4.2 Implementation

A.4.2.1 Background

The modelling for Ad-hoc domains is diverse and presents different outcomes in the

end. Following the crescent application of reinforcement learning (RL) and planning

algorithms to solve problems in this domain, AdLeap-MAS proposes a generic

design, applying decision-making Markovian Models and its extensions, denominated

the Markov Decision Processes (MDPs). This alternative for modelling represents

a relevant approach in the state-of-art [2, 81, 91, 99], fitting different application

contexts and well-describing the world for learning and planning algorithms regarding

the mathematical representation of the world’s information. The MDPs describes

the world defining:

• State set s ∈ S: that represents the possible environment configurations.

• Action set a ∈ A: that present the possible agents’ actions in the domain.

• Transition function: that describes the probability of achieving the state s′

from s taking the action a.

• Reward function: that define the expected reward value r ∈ R given a state

s and the performed action a.

Therefore, an MDP model is represented by the tuple (S,A,T ,R), which describes

how the agents see the world, act and reason about it.

We also allow the user to use extensions of the MDP models. Foremost, we permit

the user to design a partially observable environment via the application of a Partially

Observable Markov Decision Process (POMDP). The essential difference between

the MDP and the POMDP model is the addition of an element that compounds the

decision model, which can be described as:

• Observation set z ∈ Z: that delivery partial information from the states.
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Observations represents states with concealed information to the agents. Hence,

the agents must consider this lack of information to improve the reasoning and the

decision-making process. The idea is to build a belief state b ∈ B that approximates

the real state s and allows the policy development.

From our point of view, the policy represents the decisions taken by the

reasoning module of each agent in the simulation, describing indirectly the probability

distribution function (pdf) of the actions across the states.

Considering this background, we present the components of AdLeap-MAS.

A.4.2.2 Components Design

Over the mathematical definition of an MDP and its extensions, AdLeap-MAS

applies these concepts to design the components from the environment to the

decision-making modules. The main idea aims to guarantee the integrity of the code

and also robustness for further adaptations, applying strong mathematical properties

established by the modelling process. Unfortunately, this imposition decreases the

user’s freedom to implement different mathematical models. However, it definitely

benefits our defined principles and supports the design philosophy.

From this perspective, we designed each component to achieve the final purpose.

Consequently, we need to first understand the desired final products for each

component. Figure A.2 presents the high-level workflow highlighting the desired

output to be carried out at each step of simulation.

In detail, assuming that the environment module is properly implemented over the

AdLeap-MAS modelling, this component should pass forward the current observation

z ∈ Z of the environment. Note that the observation can be total or partial,

depending on the user’s choice. When the components receive the observation, those

who can develop their policy and execute a decision-making process should send

forward the current state s ∈ S and a valid environment simulator G. The simulator

mentioned here represents the transition function T of the Markovian model. Since

the agents do not have full information on the environment, it is impossible to deliver
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Environment

module

Components

modules

Decision-Making

modules

Observation z ∈ Z

Current State s ∈ S

and a Simulator G

Next action a ∈ A

Figure A.2: The AdLeap-MAS high-level workflow, highlighting the information

delivered at each step of the simulation. The red squares represent the workflow

steps. The blue squares indicate the delivered information.

a correct transition function to them to evaluate the current state. For instance, we

may be learning about previously unknown agents in the environment, and hence

our transition function would be estimated, given the uncertain models on how these

other agents may act. Furthermore, solving real-world problems require surpassing

complex contexts and constraints, which turns the explicit modelling of the transition

function impossible, facing the infinite uncertainty space. The simulator relaxes this

problem by sampling a possible state given the current state and specific action,

without need to explicitly define the transition probabilities for every possible state.

Therefore, the role of the decision-making module is to evaluate the current state s

and choose the best action a ∈ A for an agent at the time. This action will return

to the environment module, which will commit each arrived action and update the

current simulation.

In terms of implementation, Figure A.3 depicts the class diagram in the AdLeap-

MAS project. The “AdhocReasoningEnv” class represents our main module for

the simulation. It is responsible for managing the components and executing each

simulation step using only the required modules. Following the idea presented by

Gymnasium, the execution of our basic routine follows description in Algorithm A.1.
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Algorithm A.1: AdLeap-MAS basic routine for simulation.

env = AdhocReasoningEnv ( args )

s t a t e = env . r e s e t ( )

while not done and env . ep i sode < max episode :

env . render ( )

next ac t i on , = type p lann ing ( s tate , agent )

s ta te , reward , done , i n f o = env . s tep ( nex t a c t i on )

env . c l o s e ( )

AdhocReasoningEnv
 state
 state_set

action_space
 components
 episode
 viewer

transition_funtion

reward_function

observation_space

copy_components()
get_observation()
reset()
step()
copy()
render()
close()

StateSet
 state_representation
 inital_state
 initial_components

 end_condition

is_final_state()
gym.Env

             ...

             ... AdhocAgent
 index
 type
 next_action
 target
 smart_parameters

 copy()
 type_planning()

Figure A.3: Class diagram of the AdLeap-MAS

project presenting base classes for simulation. The

highlighted texts indicate the framework’s main

components.

Basically, the routine de-

scribes (in pseudo-code) the

same high-level workflow pre-

sented by Figure A.2, which can

be detailed as follows: Given a

defined problem and an initial

state, the environment module

defines, over the Ad-hoc agent

point of view (line 2), the

current simulation’s state, for-

warding this information from

the Environment module to the

Component module’s level. At

this point, the Ad-hoc agent

will run its reasoning method,

providing the state and the Ad-

hoc agent reference to it (line 9).

Note that the reasoning method must evaluate the current state over the ad-hoc

agent perspective, hence handles the uncertainties about the environment and its
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teammates/adversaries. To support it, the AdLeap-MAS provides the necessaries

tools to tackle the uncertainties. For instance, our framework enables the embedding

of estimation algorithms to the reasoning methods, which allows the sample of generic

models used at each planning iteration to approximate the behaviour of the other,

previously unknown, agents. So, the reasoning method (at the Decision-Making

module’s level) will return the next action (line 8) to be performed by the Ad-hoc

agent and, finally, the environment will advance for the next step in the simulation

(line 12); returning the observation and restarting the process by transferring this

new information to the Ad-hoc agent again.

This basic routine can be easily adapted to suit different applications. For instance,

considering several ad-hoc agents acting over the same environment, our framework

handles this application by changing the perspective every time one component starts

to reason (a feature which can be found in the Level-based Foraging environment

implementation). On the other hand, if you want to apply a turn-based approach, our

framework can change the environment perspective at each step in the environment

(a feature that can be found at the Truco environment’s code). Note that no

modification in the architecture was required to change the problem approach.

Referring to the class diagram, the “AdhocAgent” class represents the agent

itself. The foremost important parameter related to this class is its type because it is

responsible to define the reasoning method which decides its behaviour (policy) and

develop the decision-making process. As a generalisation within our framework, the

type of the agent will be similar to the module that implements the reasoning/planning

method. For example, if the module which implement the POMCP algorithm has the

name “pomcp.py”, the agent that follows the behaviour defined by the POMCP should

have the type “pomcp”. Therefore, the framework will import the referent module

to the current Python execution (simulation) and then start the reasoning/planning.

Following the same generalisation idea to import the module, every module should

implement the function “type planning”, highlighted in the class diagram inside the

“AdhocAgent” class. Considering the example about the POMCP implementation,
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this function should have the name “pomcp planning” and receive as argument the

state and the agent that called the function. Note that the state here represents

the simulator and the state combined, enabling the performance of deterministic

and Ad-hoc reasoning methods. It is also important to note that, for partial

observable scenarios, the state must conceal the information before advancing to the

Component’s level. Our framework implements this concealment process within the

function related to the “observation space” that modifies the real state and returns

the partially observable one.

Overall, Figure A.4 exhibits our complete workflow, from the user selecting the

components to the framework running the simulation procedure.

In the figure, we want to highlight that: (i) the user can modify every component

in the problem and plug it in the framework without facing hard constraints (limited

only by the framework’s model), (ii) the environment has its components, which

includes the agents, hence includes the reasoning methods (as presented in Figure

A.3) but the framework performs these links automatically (with no user interference),

and (iii) after the problem definition and the establishment of each link, the whole

simulation is performed exclusively by the AdLeap-MAS basic routine (as presented

Figure A.4: Complete workflow of AdLeap-MAS framework, from the user definition

to the internal simulation procedure.
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Algorithm A.2: AdLeap-MAS generic code for components definition.

from your agent implementat ion module import Agent

from your task implementat ion module import Task

from your environment module import Environment

components = {

’ agents ’ : [

Agent ( index=’A ’ , atype=’ r ea son ing 1 ’ ) ,\

Agent ( index=’B ’ , atype=’ r ea son ing 2 ’ ) ,\

Agent ( index=’C ’ , atype=’ r ea son ing 3 ’ )

] ,

’ t a sk s ’ : [ Task ( index=’ 1 ’ ) , Task ( index=’ 2 ’ ) ,\

Task ( index=’ 3 ’ ) , Task ( index=’ 4 ’ ) ] }

env = Environment ( components )

in Figure A.2) based on the user definitions. An example of these concepts on coding

is presented in Algorithm A.2.

A.5 Performance and Results

The computer’s settings used in the experiments are: (i) Ubuntu 16.04 LTS 64-bit,

(ii) 7.7 GiB of RAM, (iii) Intel Core i5-7200U and (iv) Intel HD Graphics 620.

We conduct the performance experiments at the Level-based Foraging environment

as it allows us to scale the environment size, the number of agents and other

components (such as the tasks) [5]. The purpose of running these experiments is

not to surpass other simulators. Instead, we want to illustrate the trends associated

with resource usage scalability.

In this way, we propose to run the experiments scaling the number of agents

and tasks from 100 to 900, considering steps of 100, carried out in a 100x100 grid.
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Additionally, we also scale the environment size as the population grows, it being a

squared grid with width and height (considering the 2D space) equals the number of

agents. We evaluated the CPU and Memory usage besides the time spent to run 1

step within the simulation. The mean and the standard deviation were calculated

over the results of 20 simulations for each configuration.

Firstly, we collected the CPU and Memory usage in simulations scaling the

number of agents and tasks from 100 to 900. Figures A.5 and A.6 show the results

for CPU and the Memory performance, respectively.
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Figure A.5: CPU usage (%) scaling

the components in the environment

100 200 300 400 500 600 700 800 900
Number of agents and tasks

0

2

4

6

8

10

M
em

or
y 

Us
ag

e 
(M

b)
 

AdLeap-Mas

Figure A.6: Memory usage (Mb)

scaling the components in the envi-

ronment.

Figure A.7: Time spent in one

simulation step for different reasoning

methods.

As the image illustrates, the AdLeap-MAS can simulate different environment
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settings managing similar CPU usage. On the other hand, the memory used in

the application scales almost linearly when scaling the number of agents and tasks.

Note that we are only considering the memory used by the environment component,

ignoring the additional memory required by additional methods.

For the next experiment, we investigated the time performance of our framework.

To collect this data, we evaluate the necessary time to run one step in the simulator

while increasing the number of components from 15 to 75, using steps of 15.

Additionally, we evaluate the time for the reasoning, considering one ad-hoc agent

whose policy is defined by the L1, L2, L3, L4, MCTS (UCT), POMCP or DDQN

algorithms. Figure A.7 shows the result. The experiments also includes the

application of estimation methods within the execution.

We can notice that the reactive algorithms, L1, L2, L3 and L4, and both POMCP

and MCTS show similar trends for the time scalability. As expected, the reactive

algorithms describe a linear trend with the increasing number of agents and tasks

since they evaluate the agent’s position to act. The trend related to the MCTS and

POMCP algorithms is a consequence of the maximum depth and iteration to perform

the search procedure within the tree. Finally, the DDQN algorithm demands much

more time to execute one step due to the expensive calculations of convolutions and

fully connected layers.

Furthermore, we also want to highlight another significant result related to the

high adaptability of OpenAI gym’s codes to run in the AdLeap-MAS. To further

illustrate our point, we present in our GitHub, the DDQN implementation for both

of our environments. We adjust it from the DDQN implementation2 implementation

in the “cart pole” environment project for the OpenAI gym. The only modifications

we carried out are about enabling the loading of the environment and the network

structure. For the Level-based Foraging environment, we also reshape the 2D feature

space to be compatible with the 1D observation space of the “cart pole” environment.

We successfully managed to re-purpose the implementation from the “cart pole” to

2DDQN implementation: https://github.com/VXU1230/Medium-Tutorials
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ours using less than 10 (short) code lines, which saves the users’ times to maintain

the focus on their researches.

A.6 Conclusion

The application of multi-agent systems is recurrently used to tackle daily social

problems. Similarly, Ad-hoc reasoning models can improve these systems’ efficiency,

adapting the system while handling the context uncertainties. However, before

starting a real-world application, simulators play a crucial role in testing and

evaluation. The lack of a centralised platform for code sharing and methods

evaluation/comparisons defines an expressive bottleneck to the research advancement,

where the workload required for these applications affects the results directly,

demanding more time to implement a reliable testing framework than to start

the experiments.

Therefore, we presented the AdLeap-MAS, a collaborative workspace for Ad-hoc

reasoning applications. Built over a component-based architecture, our framework

offers friendly usability, ensuring the modification of the context, reasoning method

and environment quickly and efficiently. We employed AdLeap-MAS to simulate two

contrasting applications of ad-hoc multi-agent systems. We investigated AdLeap-

MAS’s overhead and concluded that is possible to perform distinct experiments over

a low scalability rate and with different reasoning models. Additionally, the proposed

architecture and model delivered a significant minimisation in the implementation

workload. The AdLeap-MAS presents high portability for code re-utilisation and the

capability to represent diverse problems, addressing a significant problem defined in

this document.

AdLeap-MAS is released as open-source for the benefit of others in the multi-

agents research community.
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Interdisciplinaires et de Développements en Intelligence Artificielle, 2007.

[83] Neil Rabinowitz et al. “Machine Theory of Mind”. In: Proceedings of the

35th International Conference on Machine Learning. Ed. by Jennifer Dy and

Andreas Krause. Vol. 80. ICML. 2018, pp. 4218–4227.

[84] Arrasy Rahman et al. “Open Ad Hoc Teamwork using Graph-based Policy

Learning”. In: arXiv preprint arXiv:2006.10412 (2020).

[85] Kambiz Rasoulkhani et al. “Resilience planning in hazards-humans-infrastructure

nexus: A multi-agent simulation for exploratory assessment of coastal

water supply infrastructure adaptation to sea-level rise”. In: Environmental

Modelling & Software 125 (2020), p. 104636.

[86] Francesco Riccio, Roberto Capobianco, and Daniele Nardi. “LoOP: Iterative

learning for optimistic planning on robots”. In: Robotics and Autonomous

Systems 136 (2021), p. 103693.

[87] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

3rd. USA: Prentice Hall Press, 2009. isbn: 0136042597.

[88] Daniel Russo and Benjamin Van Roy. “Learning to optimize via information-

directed sampling”. In: Proceedings of the 27th International Conference

on Neural Information Processing Systems - Volume 1. NIPS’14. Montreal,

Canada: MIT Press, 2014, pp. 1583–1591.

227



References

[89] Paul Scerri, David V. Pynadath, and Milind Tambe. “Towards Adjustable

Autonomy for the Real World”. In: J. Artif. Int. Res. 17.1 (Sept. 2002),

pp. 171–228. issn: 1076-9757.

[90] Elnaz Shafipour and Saber Fallah. “Task-Based Ad-Hoc Teamwork with

Adversary”. In: Towards Autonomous Robotic Systems: 22nd Annual Confer-

ence, TAROS 2021, Lincoln, UK, September 8–10, 2021, Proceedings. Lincoln,

United Kingdom: Springer-Verlag, 2021, pp. 76–87. isbn: 978-3-030-89176-3.

doi: 10.1007/978-3-030-89177-0_8. url: https://doi.org/10.1007/

978-3-030-89177-0_8.

[91] Elnaz Shafipour Yourdshahi et al. “On-Line Estimators for Ad-Hoc Task

Allocation”. In: Proceedings of the 19th International Conference on Au-

tonomous Agents and MultiAgent Systems. AAMAS ’20. Auckland, New

Zealand: International Foundation for Autonomous Agents and Multiagent

Systems, 2020, pp. 1999–2001. isbn: 9781450375184.

[92] Devavrat Shah, Qiaomin Xie, and Zhi Xu. “Non-asymptotic analysis of Monte

Carlo Tree Search”. In: Abstracts of the SIGMETRICS/Performance Joint

International Conference on Measurement and Modeling of Computer Systems.

2020, pp. 31–32.

[93] David Silver and Joel Veness. “Monte-Carlo Planning in Large POMDPs”.

In: Proceedings of the 23rd International Conference on Neural Information

Processing Systems - Volume 2. NIPS’10. Vancouver, British Columbia,

Canada: Curran Associates Inc., 2010, pp. 2164–2172.

[94] David Silver et al. “Mastering the game of Go without human knowledge”.

In: Nature 550.7676 (2017), pp. 354–359.

[95] Peter Stone et al. “Ad Hoc Autonomous Agent Teams: Collaboration without

Pre-Coordination”. In: Proceedings of the Twenty-Fourth AAAI Conference

on Artificial Intelligence. AAAI’10. Atlanta, Georgia: AAAI Press, 2010,

pp. 1504–1509.

228

https://doi.org/10.1007/978-3-030-89177-0_8
https://doi.org/10.1007/978-3-030-89177-0_8
https://doi.org/10.1007/978-3-030-89177-0_8


References

[96] Zachary N Sunberg and Mykel J Kochenderfer. “Online algorithms for

POMDPs with continuous state, action, and observation spaces”. In:

International Conference on Automated Planning and Scheduling. 2018.

[97] James Stuart Tanton. Encyclopedia of mathematics. Infobase Publishing, 2005.

isbn: 9780816051243.

[98] Khadija Tazi, Fouad Mohamed Abbou, and Farid Abdi. “Multi-agent

system for microgrids: design, optimization and performance”. In: Artificial

Intelligence Review 53.2 (2020), pp. 1233–1292.
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