
Playing Catch-Up: Evaluating Playback Speed
Control in Low-Latency Live Streaming

Yu Liang¶, Tomasz Lyko¶, Mike Nilsson§, Paul Farrow§, Steve Appleby§, Matthew Broadbent∗, Nicholas Race¶
¶Lancaster University, UK, §British Telecommunications, UK, ∗Edinburgh Napier University, UK

{y.liang20, t.lyko, n.race}@lancaster.ac.uk,{mike.nilsson, paul.farrow, steve.appleby}@bt.com, m.broadbent@napier.ac.uk

Abstract—The surge in popularity of live video streaming
has spurred the development of various bitrate adaptation tech-
niques, all aimed at enhancing user Quality of Experience (QoE).
Compared to streaming Video-on-Demand, achieving low-latency
live video streaming under fluctuating network conditions poses
additional challenges. It requires finding the balance between
rebuffering avoidance and latency, as a small client buffer is
required to achieve low latency. Video players can also employ
playback speed control to help optimize this balance. Specifically,
when client buffer occupancy is high and hence latency is high,
the player may increase playback speed to reduce the latency;
and conversely, when client buffer occupancy is low and hence
the risk of rebuffering is high, the player may reduce playback
speed to increase buffer occupancy. Based on this rationale, a
variety of playback speed control methods have been proposed.
This paper evaluates, using a real-world testbed, the effectiveness
of various playback speed control mechanisms when applied
to a set of bitrate adaptation algorithms, with the evaluation
also encompassing variations in target latency and network
conditions. Our findings show a lack of coordination between
adaptive bitrate (ABR) algorithms and playback speed control
mechanisms. This leads us to conclude that there is a need for
new playback speed control methods designed in conjunction
with ABR algorithms.

Index Terms—playback speed control, live streaming, bitrate
adaption, low latency

I. INTRODUCTION

The rapid growth of social media and improvements in
Internet connectivity have propelled live streaming into a
versatile tool for communication, entertainment, and more.
Platforms such as YouTube Live [1] and Periscope [2] have
leveraged this trend by enhancing user engagement through
features like comments and chat in live video applications.
Achieving low-latency live streaming poses a significant chal-
lenge, requiring adaptation to the constantly changing network
conditions while also managing a constrained playback buffer.
It is equally vital to carefully balance various QoE metrics,
such as playback quality and playback latency [3].

In order to address this challenge, chunk-based streaming
methodologies such as CMAF (Common Media Application
Format) [4] and HTTP 1.1 chunked transfer encoding [5] have
been introduced. In chunk-based streaming, video segments
are subdivided into smaller chunks, facilitating encoding,
transmission, and decoding in a seamless pipeline. A range
of low-latency adaptive bitrate (ABR) algorithms have been
proposed [6]–[8] that select an appropriate bitrate for each
video segment, aiming to maximise the Quality of Experience.
Additionally, video players employ a playback speed control

module that allows the client to alter the video playback speed
(faster/slower) in order to adjust the buffer depletion rate [9].
When the playback significantly trails behind the live event,
the playback speed control module can increase the playback
rate to catch up. Conversely, if latency is too low, resulting
in a shallow video buffer and the risk of playback stalling,
selecting a slower playback speed can gradually replenish the
buffer to a secure state [10]. Therefore, the playback speed
module plays a crucial role in controlling playback latency.

Despite the proposal of various playback speed control
methods [7], [11], it remains unclear how these methods
function in conjunction with different ABR algorithms. To
assess the efficacy of existing playback speed control schemes,
we undertake a thorough testbed-based evaluation by applying
two such methods (the default playback control used by the
Dash.js player and the playback control method proposed
by LoLp [7]), to three representative ABR algorithms: LoLp
[7], L2A [12], and Dynamic [13]. We have evaluated these
playback control modules under realistic network conditions
and various target latency settings. This paper makes the
following contributions:

1) Comprehensive evaluation of playback speed control
methods, applied to multiple low-latency ABR algo-
rithms, under realistic network conditions and various
target latency settings.

2) We present several insights into playback speed methods
derived from the evaluation results, and motivated by
these, propose future work that aims to enhance play-
back speed control.

II. EXPERIMENTAL TESTBED SETUP

The experimental testbed is based on the LLL-CAdViSE ar-
chitecture [16], modified to operate locally and with updates to
the latest version of the Dash.js live streaming player (version
4.7.4) [15]. To enhance our video generation and analysis,
we optimized server-side video processing and increased fault
tolerance to ensure experiment accuracy. We also introduced
an automated framework to efficiently conduct experiments
and track related metrics such as download rates and buffer
levels.

Player Setup. Dash.js acts as the live streaming player,
configured with default settings. On the server side, video
and audio content are dynamically generated in real-time,
as per the LLL-CAdViSE architecture. Both the client and
server components are hosted on a physical machine equipped



nC defC lolC0

10

20

30

40

50
A

v
g

. 
L
a
te

n
c
y
(s

)
1.5 s

nC defC lolC

3 s

nC defC lolC

4.5 s

CatchUp Mode

Dynamic

L2A

LoLP

(a) Norway

nC defC lolC0

10

20

30

40

50

A
v
g

. 
L
a
te

n
c
y
(s

)

1.5 s

nC defC lolC

3 s

nC defC lolC

4.5 s

CatchUp Mode

Dynamic

L2A

LoLP

(b) Belgium

nC defC lolC0

10

20

30

40

50

A
v
g

. 
L
a
te

n
c
y
(s

)

1.5 s

nC defC lolC

3 s

nC defC lolC

4.5 s

CatchUp Mode

Dynamic

L2A

LoLP

(c) BT Sport

Fig. 1: Playback Latency with different speed control methods, ABR algorithms, network traces and target latencies.

nC defC lolC0.0

0.5

1.0

1.5

A
v
g

. 
P

la
y
b

a
c
k
R

a
te

1.5 s

nC defC lolC

3 s

nC defC lolC

4.5 s

CatchUp Mode

(a) Norway

nC defC lolC0.0

0.5

1.0

1.5

A
v
g

. 
P

la
y
b

a
c
k
R

a
te

1.5 s

nC defC lolC

3 s

nC defC lolC

4.5 s

CatchUp Mode

(b) Belgium

nC defC lolC0.0

0.5

1.0

1.5

A
v
g

. 
P

la
y
b

a
c
k
R

a
te

1.5 s

nC defC lolC

3 s

nC defC lolC

4.5 s

CatchUp Mode

(c) BT Sport

Fig. 2: Average playback rate with different speed control methods, ABR algorithms, network traces and target latencies.

nC defC lolC0

25

50

75

100

S
ta

ll
s
 D

u
r
a
ti

o
n

(s
) 1.5 s

nC defC lolC

3 s

nC defC lolC

4.5 s

CatchUp Mode

(a) Norway

nC defC lolC0

25

50

75

100

S
ta

ll
s
 D

u
r
a
ti

o
n

(s
) 1.5 s

nC defC lolC

3 s

nC defC lolC

4.5 s

CatchUp Mode

(b) Belgium

nC defC lolC0

25

50

75

100

S
ta

ll
s
 D

u
r
a
ti

o
n

(s
) 1.5 s

nC defC lolC

3 s

nC defC lolC

4.5 s

CatchUp Mode

(c) BT Sport

Fig. 3: Playback stall time with different speed control methods, ABR algorithms, network traces and target latencies.

nC defC lolC0.0

1.5

3.0

4.5

6.0

A
v
g

. 
B

it
r
a
te

(M
b

p
s
) 1.5 s

nC defC lolC

3 s

nC defC lolC

4.5 s

CatchUp Mode

(a) Norway

nC defC lolC0.0

1.5

3.0

4.5

6.0

A
v
g

. 
B

it
r
a
te

(M
b

p
s
) 1.5 s

nC defC lolC

3 s

nC defC lolC

4.5 s

CatchUp Mode

(b) Belgium

nC defC lolC0.0

1.5

3.0

4.5

6.0

A
v
g

. 
B

it
r
a
te

(M
b

p
s
) 1.5 s

nC defC lolC

3 s

nC defC lolC

4.5 s

CatchUp Mode

(c) BT Sport

Fig. 4: Average Bitrate with different speed control methods, ABR algorithms, network traces and target latencies.

with a 13th Gen Intel(R) Core(TM) i9-13900KF processor
running at 3.00 GHz with 24 cores and 64.0 GB of memory.
The video content is provided at seven bitrates: 100Kbps,
365Kbps, 730Kbps, 1500Kbps, 3000Kbps, 4500Kbps, and
6000Kbps. The video content spans a duration of 200 seconds,
divided into segments lasting 2 seconds each. Furthermore,
each segment is subdivided into smaller chunks, each lasting
1 second. We set the target latency to 1.5s, 3s, and 4.5s, which
represents the desired duration between the capture of a video
frame and its display on the viewer’s screen in live streaming.

To ensure the thoroughness of our practical tests, we use
real-world network traces collected from a range of diverse
environments. This includes a moving train in Norway [19],
network conditions experienced in a car in Belgium [20], as
well as traces obtained from CDN logs of the live BT Sport

service [21]. Table I provides summary bandwidth information
for the three network traces. We note that the Norway trace
displays the highest level of instability, whereas the BT dataset
appears to be the most stable. Bandwidth between the client
and server is controlled by throttling via Chrome DevTools,
facilitated by Selenium automation tools [18].

Speed Control Methods. We employ three playback speed
modes: (i) No Catchup (nC), indicating playback speed re-
mains at 1×; (ii) Default Catchup (defC) [15], which utilizes
the catchup method proposed by Dash.js, increasing playback
speed only when live latency deviates from the target value;
and (iii) LoLp Catchup (lolC) [7], which controls playback
speed based on current latency and buffer occupancy. It speeds
up when current latency exceeds the target latency and buffer
level surpasses a safe threshold, and slows down when current



TABLE I: Bandwidth information for the three network traces.

Arithmetic Mean (Kbps) Standard Deviation (Kbps)

Norway 2999.34 1865.15
Belgium 4116.16 1597.92

BT 4921.67 944.08

latency falls below the target latency and buffer level drops
below the safe threshold. The parameters of these methods
are set to their default settings.

III. EXPERIMENTAL RESULTS

In this section, we evaluate the influence of different play-
back speed methods when using the three ABR algorithms
with different network traces and values of target latency, using
the metrics: playback latency, playback rate, rebuffering time
and playback bitrate.

1) Playback Latency: Figure 1 shows the playback latency
of three ABR algorithms across the three network traces. Our
observation reveals a notable reduction in playback latency
across the tested ABR algorithms with the playback speed
module enabled. For instance, with the target latency set to
1.5s for the Norway trace, employing the playback speed
modules from the default Dash.js player and LoLp leads to
374.8% and 342.1% reduction in playback latency for L2A,
respectively, compared to when the playback speed control is
disabled. Similarly, with the target latency set to 3s for the
Belgium trace, enabling the playback speed modules from the
default Dash.js player and LoLp results in 239.8% and 239.2%
decrease in playback latency for Dynamic ABR, respectively,
compared to disabling the playback speed control.

2) Playback Rate: Figure 2 shows the average playback
rate. We observe that when the playback speed control module
is disabled, the playback speed remains at 1x. We note that the
speed control module introduced by LoLp tends to decrease
the speed to mitigate the risk of buffer depletion and minimize
the chance of playback interruption. Conversely, the default
Dash.js speed control module tends to increase the playback
speed to alleviate playback latency. For example, for the
Belgium trace, the average playback rate of LoLp is 1.115
under the default speed control and 0.8375 under its own speed
control when the target latency is 1.5s. Similarly, when the
target latency is 3s, the average playback rate of L2A under
the Belgium trace is 1.0975 under the default speed control,
while it is 0.745 under the LoLp speed control.

3) Rebuffering Time: Figure 3 shows the total rebuffering
duration. The default Dash.js playback speed control module,
which tends to accelerate playback, results in increased re-
buffering. Conversely, the stall time associated with the LoLp
speed control module is lower, attributed to its slower playback
rate compared to the default playback speed control. For the
Dynamic ABR and BT trace, when the target latency is 1.5s,
the average rebuffering time under the default speed control
is 64.6s, compared to 32.6s under the LoLp speed control,
marking a 98.2% increase.

4) Playback Bitrate: Figure 4 shows the playback bitrate
of the three ABR algorithms with the playback speed control
methods. These results indicate that there is not a strong
correlation between the speed control method and the playback
bitrate of the three ABR algorithms. This suggests that the
integration of ABR algorithms and playback speed control
methods is not tightly coupled.

IV. DISCUSSION

Based on the evaluation results, we can make the following
observations:

• Playback speed control plays a crucial role in reducing
playback latency, ultimately enhancing live streaming in-
teractivity. Additionally, we can observe that the playback
speed variation under the LoLp playback speed control
module is greater than that under the default Dash.js
playback speed control.

• The default playback speed control module aims to
achieve lower latency by speeding up playback, but this
is at the expense of increased rebuffering. Conversely,
the LoLp playback speed control module tends to slow
down the playback speed to reduce rebuffering, albeit at
the cost of higher latency. These findings suggest that
current playback speed control methods struggle to strike
a balance between playback latency and rebuffering.

• Current playback speed control lacks sufficient coordina-
tion with ABR algorithms. Without proper coordination,
ABR algorithms face challenges in achieving a balanced
tradeoff between different playback metrics, such as
playback bitrate and playback latency.

Building upon these observations, we plan to enhance the
playback speed control module as part of future work. This
requires designing a novel speed control method capable
of seamlessly integrating with different ABR algorithms to
achieve an optimal balance across various QoE metrics and
target latency settings when operating under diverse network
conditions.

V. CONCLUSION

In this paper, we have presented a comprehensive evaluation
of playback speed control methods using a real-world testbed
environment. Playback speed control plays a critical role in
enhancing user experience by mitigating latency in live stream-
ing scenarios. Our analysis of current playback speed control
modules across various network conditions, target latency
settings, and ABR algorithms reveals significant limitations,
particularly their struggle to strike a balance between playback
latency and rebuffering time, and their lack of coordination
with underlying ABR algorithms. In response to these chal-
lenges, we aim to enhance the playback speed control module
in the future to further elevate the QoE in low-latency live
streaming.

ACKNOWLEDGEMENTS

This work was supported by the UK Engineering and
Physical Sciences Research Council (EPSRC) and British
Telecom (BT).



REFERENCES

[1] Pires, Karine, and Gwendal Simon. “YouTube live and Twitch: a tour
of user-generated live streaming systems.” Proceedings of the 6th ACM
multimedia systems conference. 2015.

[2] Siekkinen, Matti, Enrico Masala, and Teemu Kämäräinen. “A first look
at quality of mobile live streaming experience: the case of periscope.”
Proceedings of the 2016 Internet Measurement Conference. 2016.

[3] Li, Weihe, et al. “A learning-based approach for video streaming
over fluctuating networks with limited playback buffers.” Computer
Communications 214 (2024): 113-122.

[4] Lyko, Tomasz, et al. “Evaluation of CMAF in live streaming scenarios.”
Proceedings of the 30th ACM Workshop on Network and Operating
Systems Support for Digital Audio and Video. 2020.

[5] Yadav, Praveen Kumar, et al. “Playing chunk-transferred DASH seg-
ments at low latency with QLive.” Proceedings of the 12th ACM
Multimedia Systems Conference. 2021.

[6] Gutterman, Craig, et al. “Stallion: video adaptation algorithm for low-
latency video streaming.” Proceedings of the 11th ACM Multimedia
Systems Conference. 2020.

[7] Bentaleb, Abdelhak, et al. “Catching the Moment With LoL + in Twitch-
Like Low-Latency Live Streaming Platforms.” IEEE Transactions on
Multimedia 24 (2021): 2300-2314.

[8] Lyko, Tomasz, et al. “Improving quality of experience in adaptive low
latency live streaming.” Multimedia Tools and Applications 83.6 (2024):
15957-15983.

[9] Aladag, Omer F., et al. “Content-aware playback speed control for
low-latency live streaming of sports.” Proceedings of the 12th ACM
Multimedia Systems Conference. 2021.

[10] Sun, Liyang, et al. “Tightrope walking in low-latency live streaming:
Optimal joint adaptation of video rate and playback speed.” Proceedings
of the 12th ACM Multimedia Systems Conference. 2021.

[11] Li, Yunlong, et al. “Fleet: improving quality of experience for low-
latency live video streaming.” IEEE Transactions on Circuits and Sys-
tems for Video Technology (2023).

[12] Karagkioules, Theo, et al. “Online learning for low-latency adaptive
streaming.” Proceedings of the 11th ACM Multimedia Systems Confer-
ence. 2020.

[13] Spiteri, Kevin, Ramesh Sitaraman, and Daniel Sparacio. “From theory to
practice: Improving bitrate adaptation in the DASH reference player.”
ACM Transactions on Multimedia Computing, Communications, and
Applications (TOMM) 15.2s (2019): 1-29.

[14] W. Li, J. Huang, J. Liu, W. Jiang and J. Wang, “Learning Audio and
Video Bitrate Selection Strategies via Explicit Requirements,” IEEE
Transactions on Mobile Computing, vol. 23, no. 4, pp. 2849-2863, 2024.

[15] “Dash.js.” https://github.com/Dash-Industry-Forum/dash.js.
[16] B. Taraghi, H. Hellwagner and C. Timmerer, “LLL-CAdViSE: Live

Low-Latency Cloud-Based Adaptive Video Streaming Evaluation
Framework,” IEEE Access, vol. 11, pp. 25723-25734, 2023.

[17] W. Li, J. Huang, Y. Liang, J. Liu and F. Gao, “Synthesizing Audio
and Video Bitrate Selections via Learning from Actual Requirements,”
Proceedings of the IEEE ICME, 2012, pp. 1-6.

[18] Vila, Elior, Galia Novakova, and Diana Todorova. “Automation testing
framework for web applications with Selenium WebDriver: Opportu-
nities and threats.” Proceedings of the International Conference on
Advances in Image Processing. 2017.

[19] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, “Commute
Path Bandwidth Traces from 3G Networks: Analysis and Applications,”
Proceedings of the ACM MMSys, 2013, pp. 114-118.

[20] J. van der Hooft et al., “HTTP/2-Based Adaptive Streaming of HEVC
Video Over 4G/LTE Networks,” IEEE Communications Letters, vol. 20,
no. 11, pp. 2177-2180, 2016.

[21] “ABR Throughput Traces derived from CDN logs of BT Sport 1
service,” https://github.com/lancs-net/ABR-Throughput-Traces.


