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Abstract

The detection of changepoints in spatio-temporal datasets has been receiving
increased focus in recent years and is utilised in a wide range of fields. With tem-
poral data observed at different spatial locations, the current approach is typically
to use univariate changepoint methods in a marginal sense with the detected
changepoint being representative of a single location only. We present a spatio-
temporal changepoint method that utilises a generalised additive model (GAM)
dependent on the 2D spatial location and the observation time to account for
the underlying spatio-temporal process. We use the full likelihood of the GAM
in conjunction with the Pruned Linear Exact Time (PELT) changepoint search
algorithm to detect multiple changepoints across spatial locations in a compu-
tationally efficient manner. When compared to a univariate marginal approach
our method is shown to perform more efficiently in simulation studies at detect-
ing true changepoints and demonstrates less evidence of overfitting. Furthermore,
as the approach explicitly models spatio-temporal dependencies between spa-
tial locations, any changepoints detected are common across the locations. We
demonstrate an application of the method to an air quality dataset covering the
COVID-19 lockdown in the United Kingdom.
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1 Introduction

In time series analysis, a changepoint is a point in time where an abrupt change in
the statistical properties of the time series occurs. Typically, the focus of changepoint
analysis has been on detecting changes in the temporal structure of the time series,
often changes in mean, variance, trend or a combination (Beaulieu and Killick, 2018).
Changepoint detection is utilised in a wide range of fields including genomics (Caron
et al, 2012; Liehrmann et al, 2023), health (Younes et al, 2019; Tapsoba et al, 2020;
Creswell et al, 2023), and environmental science (Lund et al, 2007; Gallagher et al,
2012; Beaulieu et al, 2020).

Historically, changepoint detection has focused on the univariate case whereby
changes are detected in a single time series although in recent years this has been
extended to multivariate time series (Ma and Yau, 2016; Hahn et al, 2020; Lowther
et al, 2023). The majority of multivariate approaches harness detection power across
the series but still make the assumption of independence between them.

However, often with environmental datasets, we are presented with data from var-
ious spatial locations that measure the evolution of a variable not only over time but
also the spatial domain on which the measurement process lies, thus violating this
assumption of independence between time series. Furthermore, univariate methods
can only be deployed in a marginal sense and the changes detected are representa-
tive of a single spatial location only. This property of environmental datasets has
prompted new approaches to be developed to account for the dependence between the
multiple time series. Ryan and Killick (2023) detect changes in covariance but focus
on the second order and assume the mean structure is zero. Gromenko et al (2017)
use an approach based on functional data analysis in order to detect a single change-
point in the annual pattern of precipitation data at fixed spatial locations. In this
case, observations are modelled as functional valued time sequences across the mul-
tiple spatial locations with the addition of spatially correlated error functions. Dette
and Quanz (2023) take spatio-temporal changepoint detection further by focusing on
changes exceeding a certain threshold rather than considering the problem of arbitrary
change sizes. Finally, Zhao et al (2024) develop a composite likelihood approach using
a piecewise stationary spatio-temporal process in order to detect underlying changes in
the non-stationary spatio-temporal process across multiple spatial locations. By using
a pairwise composite likelihood in conjunction with the Pruned Linear Exact Time
(PELT; Killick et al (2012)) algorithm, they are able to overcome the computational
burden of spatio-temporal modelling to detect multiple changepoints.

There are many spatio-temporal process models that have been developed in the
literature coming from different starting paradigms. Examples include linear mixed
effect models that can model spatial and temporal effects (e.g. using the R package
nlme based on the approaches of Laird and Ware (1982); Lindstrom and Bates (1988)),
Bayesian univariate and multivariate spatio-temporal random effects models (Finley
et al, 2015; Finley and Banerjee, 2020) and Bayesian hierarchical approaches (Bakar
and Sahu, 2015). However, one of the most easily accessible spatio-temporal processes
for practitioners is the generalised additive model (GAM), due to the conceptual
extended regression framework, and availability of code and accessible introductions.
In this paper, we adopt a spatio-temporal process using a GAM which is dependent
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on the 2-D spatial location and the time of the observation. We then use the full
likelihood in conjunction with PELT to detect multiple changepoints across spatial
locations in a computationally efficient manner.

The remainder of the paper is set out as follows: Section 2 provides a description of
the derivation of the method and its application to spatio temporal changepoint detec-
tion. The approach is demonstrated through series of simulation studies in Section 3
and application to a real world example using air quality data over the United Kingdom
(UK) in Section 4. Finally Section 5 presents concluding remarks.

2 Methods

There are two main components needed for detecting change; 1) The model to fit
between two changepoints, and 2) the algorithm for identifying changes. The spa-
tiotemporal model we utilise between changepoints is a Generalised Additive Model
(GAM) (Wood, 2017). The likelihood of the GAM is utilised within the Pruned Exact
Linear Time (Killick et al, 2012) algorithm for detecting multiple changepoints over
time. These are described in the remainder of this section.

2.1 GAM model

Let ys,t be a three-dimensional observation of a process of interest over a 2-d space,
s = (u, v) and time, t. The collection of {ys,t}(s∈(U,V ),t=1,...,n) is a spatio-temporal
process over a defined spatial domain (U, V ) observed at n time points. This could be,
for example, air quality (NO2 or O3) observed at different spatial locations across the
UK over time. We choose to fit a Generalised Additive Model (GAM) to data of this
type.

ys,t = f1 (xs) + f2 (xt) + f3 (xs, xt) + ϵs,t (1)

where f1(·) is a function over 2-d space, f2(·) is a function over time and f3(·) is
a function over both time and space. The ϵs,t are errors that are independent of all
fitted components with mean 0 and variance σ2.

There are many different functional forms that the fi(·) can take, including thin
plate and cubic spline regressions, and tensor products. See Wood (2017) for descrip-
tions. We focus on a GAM described by (1) here but additional explanatory covariates
can also be added if warranted.

Recall that in identifying changepoints we seek to identify changes in the GAM
model parameters. To do this we need to have a way of describing and comparing
the fit of different GAM models to different segments of the data. A commonly used
measure of fit is the likelihood and we will adopt this approach, including maximum
likelihood estimation for the parameter estimates.

2.2 Changepoint Estimation

In describing the GAM model in Section 2.1 we sought to optimise the no changepoint
scenario
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n∑
i=1

C(ys,i|θ) (2)

for θ. Here C(·) is a measure of fit given fitted parameters θ̂ which is twice the
negative log-likelihood of the GAM model (1). As written, equation (2) fits a single
GAM model (and parameters via maximum likelihood) for all time points i = 1, . . . , n.
To add changepoints we focus on the time component in what follows. The spatial
component, and the within-segment space-time interactions, are dealt with by the
GAMmodelling for each segment. Thus we are detecting changes in time of the spatial-
temporal process parameters, we do not seek to detect changes across space i.e., cliffs.

Recall that we define changepoints at times 0 = τ0, τ1, . . . , τM , τM+1 = n. Under
the changepoint assumption the model parameters are restricted to be the same across
segments of data and we seek to optimise,

min
τ,M

M∑
m=0

τm+1∑
i=τm+1

C(ys,i|θ̂m). (3)

Due to the discrete nature of both the number and location of changepoints, stan-
dard estimation methods cannot be directly applied. We now have a model selection
problem where you need to select the appropriate number of changepoints. This is
akin to choosing the number of regressors in a regression problem. Without restric-
tions, the optimisation of (3) would choose the maximum number of changepoints, M
and so as in the regression context, we need to penalize. Zheng et al (2022) demon-
strates that penalties of the form CM log(n) are consistent for likelihood-based cost
functions, C(·), and constant C with respect to n. Thus we optimize,

F (n) = min
τ,M

M∑
m=0

τm+1∑
i=τm+1

C(ys,i|θ̂m) + CM log(n). (4)

Optimizing (4) over all possible combinations of M and τ is a computationally
intensive task. Killick et al (2012) demonstrates how a combination of dynamic pro-
gramming and pruning the search space can reduce the computational burden from
O(2n) to O(n). With the assumed independence of the segments in (4), dynamic pro-
gramming allows us to rewrite the search for all changepoints in (4) into the search
for the last changepoint prior to n,

F (n) = min
τ∗

F (τ∗) +

n∑
i=τ∗

C(ys,i|θ̂M ) + C log(n). (5)
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Computing F (τ∗) recursively for τ∗ = 1, . . . , n recovers the optimal set of change-
points for penalty CM log(n) in O(n2) computational time. To reduce this to O(n)
one can prune the minimisation in (5). As the minimisation is looking for the best
last changepoint location at each step of the algorithm, where there has been an obvi-
ous changepoint prior to the current step, the best last changepoint is unlikely to be
before this obvious changepoint. This intuition is mathematically optimal to prune an
individual τ∗ from the minimization set, if it satisfies

F (τ∗) +

t∑
i=τ∗

C(ys,i|θ̂M ) ≥ F (t). (6)

Intuitively this says that if at any time in the recursive computation, a candidate
last changepoint location is more than C log(n) larger than the optimal likelihood at
that time, it can never be the last changepoint at any future point so it can be pruned
from the minimisation in (5). The authors call this algorithm, PELT, Pruned Exact
Linear Time.

We use PELT as a wrapper for our GAM model by using the negative twice the
log-likelihood as C(·) in (5). We denote this GAM-PELT in the remainder of the paper.
The computational cost of this is then O(Ln) where L is the computational order of
evaluating the likelihood for the GAM model in a single segment.

3 Simulations

In this section we evaluate the GAM-PELT method, with default SIC/BIC penalty,
to see if it can accurately detect different types of change. In applications, several
different types of change can occur so we run several scenarios in which changepoints
are specified in the; spatial structure, temporal structure, both (spatio-temporal), or
no change at all. It is important to include simulations with no change to ensure that
false changepoints are not detected when no changepoints are present. A summary of
the scenarios run can be found in Table 1 (no changes) and Table 3 (changes).

The GAM used in our simulations is defined following the form of Equation 1 where
f1 is a 2D thin plate regression spline over U , V , f2 is a cubic regression spline over
T and f3 is a tensor product interaction to account for the interactions between the
spatial and temporal components. The splines were defined using the default settings
from the mgcv package with the exception of the number of knots in the cubic regression
spline which were set to 5. Naturally other GAM forms could be used depending on
the dynamics of a given application.

We compare the performance of the GAM-PELT method with the closest available
marginal (univariate) method; the change in mean model with autoregressive errors
of order one, AR(1). The marginal method ignores the spatial component and fits
each spatial location independently, identifying multiple changepoints with the same
PELT search algorithm. Code for this method is available in the EnvCpt R package on
CRAN (Killick et al, 2021). Both the GAM-PELT and the marginal approach used
the standard Bayesian Information Criterion (BIC) as the penalty value in PELT.
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Scenario Time Space

A AR1: Same all locations Constant
B AR1: Random all locations Constant
C Independent Constant
D Independent Independent
E Independent Structured correlation
F Independent 2-D gamSim example (mgcv)

Table 1 Summary of scenarios where there are no spatial and/or
temporal changes in the simulated dataset.

For all scenarios the number of time points and spatial locations were fixed at
200 and 50 respectively, and 3 changepoints at timesteps 50, 100 and 150. For each
scenario there are 100 replicates with the spatial locations generated at random at
the start of each replicate uniformly from u ∼ Unif(-3,3), v ∼ Unif(40,60), rounded
to 1 decimal place. To compare the accuracy of the GAM-PELT method and the
traditional marginal approach, we consider the timing of the detected changepoints. A
changepoint is considered to be accurately detected (i.e. true positive) if it sits within
10 timesteps of the true position. If more than one changepoint sits within this window,
one is counted as the true changepoint, and the other as false. Finally, the number of
false changepoints (i.e. false positives) is the total number of changepoints minus the
number correctly identified. To be fair in the comparison with the marginal approach,
we perform this evaluation independently across all spatial locations according to the
expected changepoints for each method, and then average across locations. Thus a
falsely detected changepoint in GAM-PELT will be counted as 50 false changepoints
and a true detection as 50 true changepoints. Conversely, for the marginal approach,
where only a single spatial location has a change, if any other location detects a change
then it is considered a false changepoint.

3.1 No changes

To ensure that the GAM-PELT method doesn’t falsely detect changepoints, we run
a series of scenarios that have different spatial and temporal structures but have no
changepoints. Table 1 shows a summary of the scenarios run with specific parameter
values given in the Supplementary Material. A summary of the results is shown in
Table 2.

For Scenario A, GAM-PELT benchmarks well against the marginal approach with
both methods correctly estimating zero changepoints in 98% of replicates. In scenario
B, where each spatial location has a different AR component, GAM-PELT performs
slightly worse; estimating 1–4 false changepoints in 8% of replicates compared to
only 1.64% using the marginal approach. For scenarios C–F, GAM-PELT correctly
estimates zero changepoints in 100% of replicates run for each scenario. This slightly
outperforms the marginal approach which demonstrates some evidence of over-fitting
with false changepoints estimated in a small number of replicates (0.62–0.96%).
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GAM-PELT Marginal

Scenario 0 1–4 >5 0 1–4 >5

A 98 2 0 98.58 1.42 0
B 92 8 0 98.36 1.64 0
C 100 0 0 99.10 0.90 0
D 100 0 0 99.04 0.96 0
E 100 0 0 99.38 0.62 0
F 100 0 0 99.04 0.96 0

Table 2 Percentage of estimated changepoints m
among 100 replications at 50 locations under various
no changepoint scenarios.

Scenario Time Space

1a All locations change: No change:
AR1, Mean & Variance Constant

1b All locations change: No change:
AR1, Mean & Variance All random

1c All locations change: No change:
AR1, Mean & Variance Correlated

2a 1 location changes: No change:
AR1, Mean & Variance Constant

2b 1 location changes: No change:
AR1, Mean & Variance All random

2c 1 location changes: No change:
AR1, Mean & Variance Correlated

3a No change: Change:
AR1, Mean & Variance Constant → Constant

3b No change: Change:
AR1, Mean & Variance All random → All random

3c No change: Change:
AR1, Mean & Variance Correlated → Correlated

4a Change: Change:
Random draw Random draw

(Can include no change) (Can include no change)
4b Change: Change:

Random draw Random draw

Table 3 Summary of scenarios where changepoints are introduced
into the simulated data.

3.2 Temporal changes

We first evaluate GAM-PELT in terms of the ability to detect changepoints where
there is a change in the temporal structure of the dataset only (Scenarios 1a–c and
2a–c in Table 3). Full details of the parameter settings are given in the Supplementary
Material. The results are shown in Figure 1.

For scenario 1, GAM-PELT outperforms the marginal approach in all scenarios,
correctly identifying a greater proportion of the true changepoints alongside a lower
proportion of false positives. In contrast for scenario 2, the marginal approach is shown
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Fig. 1 Proportion of correctly identified changepoints against the proportion of falsely detected
changepoints for scenarios 1 (First row) and 2 (Second row). GAM-PELT: Thick dashed black line
and dark grey shading, marginal approach: Thick solid black line and light grey shading. Shading is
a 95% confidence interval. The triangle and the square represent the BIC penalties for GAM-PELT
and marginal approaches respectively.

to outperform GAM-PELT. This is expected as the change is at a single spatial loca-
tion and the GAM-PELT parameter estimates are unlikely to change significantly
due to this. Conversely, the marginal approach treats each spatial location in isola-
tion (ignoring spatial dependencies) and therefore is better at capturing changes that
impact single locations as in scenario 2.

3.3 Spatial changes

We now evaluate the method in terms of the ability to detect changepoints where there
is a change in the spatial structure of the dataset only (Scenario 3 in Table 3). Full
details of the parameter settings are given in the Supplementary Material. Figure 2
shows a summary of the results.

For the detection of changes in the spatial structure, both methods performed well
at detecting the timing of the changepoints, however, in all scenarios the GAM-PELT
method was shown to outperform the marginal approach, once again showing lower
proportions of false positives. The scenarios where GAM-PELT tends to perform much
better are 3b (all random) and 3c (structured correlation). Recall that the marginal
approach does not take account of the spatial structure.
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Fig. 2 Proportion of correctly identified changepoints against the proportion of falsely detected
changepoints for scenario 3. GAM-PELT: Thick dashed black line and dark grey shading, marginal
approach: Thick solid black line and light grey shading. Shading is a 95% confidence interval. The
triangle and the square represent the BIC penalties for GAM-PELT and marginal approaches respec-
tively.

3.4 Spatio-temporal changes

The final set of simulations evaluate the ability to detect changepoints where both
the spatial and/or the temporal structure of the dataset changes between segments
(Scenario 4 in Table 3). Full details of the parameter settings are given in the
Supplementary Material. Figure 3 shows a summary of the results.

For scenario 4a (where no change is an option between changepoints) both meth-
ods show similar performance at detecting the timing of the changepoints. However,
the GAM-PELT method is shown to perform slightly better; detecting a greater pro-
portion of the true changepoints for fewer false positives. The stronger performance
of GAM-PELT is highlighted for scenario 4b (where there is always a change of some
type between changepoints) with this approach showing a higher proportion of true
positives and a marked reduction in false positives over the marginal approach. This
scenario is the most likely to be seen in practice.

3.5 Comparison to Composite likelihood approach

Finally we compare the performance of GAM-PELT against the composite likelihood -
minimum description length (CLMDL) approach proposed by Zhao et al (2024) which
also uses PELT for the multiple changepoint search. For this scenario we adopt the
same four parameter autoregressive spatial model utilised in the simulation studies
of Zhao et al (2024) and simulate on an 8 by 8 regular two-dimensional grid (with
a grid spacing of 0.25 to simulate a real geographic grid) with 100 time points. We
define a single true changepoint at t = 50, with a change in the signal strength of
0.3 in both the spatial and temporal components of the model after the changepoint.
Both the GAM-PELT and CLMDL approaches are run for 100 replicates using their
default settings and set to detect a minimum segment length of 20. Finally we run
a no change scenario to evaluate both methods during situations of no change. The
results are presented in Table 4.
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Fig. 3 Proportion of correctly identified changepoints against the proportion of falsely detected
changepoints for scenario 4. GAM-PELT: Thick dashed black line and dark grey shading, marginal
approach: Thick solid black line and light grey shading. Shading is a 95% confidence interval. The
triangle and the square represent the BIC penalties for GAM-PELT and marginal approaches respec-
tively.

Method Scen %Cpt Capture %m = 0 %m = 1 %m >= 2 Run time

CLMDL no cng - 6 18 76 6.7Hrs
1 cpt 90 0 11 89 6.8Hrs

GAM-PELT no cng - 65 26 9 0.34Hrs
1 cpt 80 4 24 72 0.29Hrs

Table 4 Comparison of GAM-PELT and CLMDL under different scenarios. Note: the true
changepoint is classed as captured if the method estimates a changepoint within 10 of the true
changepoint. The run time is based on running the 100 replicates in parallel using 7 cores on an intel
i7 processor.

The CLMDL approach is shown to capture the timing of the true changepoint
in 90% of replicates, slightly outperforming GAM-PELT which captures the true
changepoint in 80% of replicates. However, both methods demonstrate evidence of
overfitting, with GAM-PELT less prone to this. For the no change scenario, GAM-
PELT correctly estimates zero changepoints in 65% of replicates compared to only
6% using CLMDL. Here, CLMDL shows greater evidence of overfitting by estimating
greater than 2 changepoints in 76% of replicates compared to 9% for GAM-PELT.
We do however note here that we are reporting the performance of each method
using their default penalties which take different approaches to using the penalty in
the PELT algorithm (BIC vs MDL). Both approaches could benefit from employing
smaller penalties to reduce overfitting. Finally, GAM-PELT is shown to complete
the 100 replicates for each scenario in around 0.3 hours which is approximately 23
times quicker than CLMDL which takes around 6.8 hours. This is majorly due to
the difference in computation time for evaluating the likelihood in the two different
models.

10



4 Data Application

The GAM-PELT method was applied to air quality (AQ) station data from the United
Kingdom (UK) Automatic, Urban and Rural Network (AURN). This network of 175
monitoring sites around the UK provides measurements of several key air pollutants
at a frequency of up to 1 hour. More details about the data can be found in the supple-
mentary material. The period 1st February - 31st August 2020 (213 days) was chosen
as this covers the timeline of the UK’s first nationwide COVID-19 lockdown, whereby
impacts on pollutant concentrations would be expected to be seen in some effect at
all monitoring locations. We focus on 2 primary (directly emitted) pollutants namely
Nitrogen Dioxide (NO2; measured at 74 spatial locations) and particulate matter of
size smaller than 2.5 micron (PM2.5; 30 spatial locations), and 1 secondary pollutant
(formed in the atmosphere and thus behaves differently), namely ozone (O3; 30 spatial
locations). Here, the data was aggregated to daily averages which provided complete
time series for all pollutants at the respective locations. If there were incomplete time
series one could add an appropriate missing data handling procedure to the GAM
fit within each segment. GAM-PELT was run with default settings (including BIC
penalty) with the exception of the minimum segment length which was set to 15 days.
A summary of the output is shown in Figure 4.

GAM-PELT detects common changepoints at all spatial locations on the 26th

March 2020 for O3, 21
st March 2020 for PM2.5, and 27th March 2020 for NO2, which

correspond to the days around the nationwide UK lockdown on the 23rd March 2020.
When the lockdown was introduced there was a sudden reduction in travel to work
and other economic activity, and therefore an associated reduction in the emission of
air pollutants that would be seen UK-wide. The changepoint for PM2.5 occurs slightly
before the nationwide lockdown however, in the week before the national lockdown
many people started working from home as a precaution which could account for an
earlier change in particulate emissions. Figure 4 also shows the spatial components
of the underlying GAM model before and after the onset of the lockdown period.
Here, particularly for NO2 and O3, there is a noticeable shift in the nationwide spatial
distribution of the pollutants when the lockdown commenced. Finally, changepoints
that could be attributed to the first events of lifting the UK lockdown (Phased re-
opening of schools from the 1st June 2020) are also detected for all pollutants (4th

June 2020 for O3, 11
th June 2020 for PM2.5 and 7th June 2020 for NO2).

5 Conclusion

We have developed a new spatio-temporal changepoint detection method (GAM-
PELT) that can detect changes in spatially linked multivariate time series data. This
method is implemented by utilising a generic GAM model (fitted on the spatial loca-
tion and observed time of the data) in conjunction with the PELT search algorithm
to detect changes in the underlying spatio-temporal dependencies between the time
series. When compared to a marginal approach (where a univariate model is applied to
each spatial location in isolation), the GAM-PELT method is shown to perform more
efficiently in simulation studies at detecting the true changepoints and demonstrates
less evidence of over-fitting. Furthermore, when treating each location in isolation,
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Fig. 4 Top plot: GAM-PELT changepoints across AURN stations measuring O3 (squares), NO2

(Triangles) and PM2.5 (Circles). The changepoints most likely associated with the start of the UK
lockdown (23rd March 2020 - dashed blue line) are shown in red. Maps: Spatial component of GAM
before (left column) and after (right column) the start of lockdown along with locations of AURN
measurement stations for each pollutant.

if 2 changepoints occur at different locations at the same time step, the multivari-
ate power cannot be leveraged. As the GAM-PELT approach explicitly models the
spatio-temporal dependencies between locations, our approach can detect common
changepoints across the entire network of points. The effectiveness of the method was

12



demonstrated through an application to an air quality dataset over the UK, where
GAM-PELT was able to detect changepoints that may be linked to the onset and grad-
ual lifting of the UK COVID-19 lockdown in 2020. Finally, when benchmarked against
the existing state-of-the-art CLMDL approach of Zhao et al (2024), GAM-PELT is
shown to perform better at detecting the timing and number of true changepoints
whilst demonstrating a runtime that is over 20 times faster.

It is important to note that any changepoint approach is sensitive to the model and
penalty choices (C in (5)) made. Whilst not considered here, if the GAM model form
is not constructed to be sensitive to the underlying changes within a given dataset,
then the approach is unlikely to identify changepoints. In practice, slight overestimate
of, for example, spline or tensor orders is preferable to underestimation, depending
on which coefficients the change manifests within. Similarly for the penalty, C, if it
is set too small then spurious changepoints may be detected, equally, too large and
changepoints may be missed. Typical choices for C include the SIC/BIC (used here),
MBIC (Zhang and Siegmund, 2007), and data-driven methods based on the steepness
of a scree-type plot (Lavielle, 2005), or supervised learning (Hocking et al, 2013).

Supplementary information. This article has accompanying supplementary
material dictating the full details used in the various simulation studies conducted in
this manuscript.
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