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Abstract

The purpose of this thesis is to take established results and structures

for the Burnside ring of finite groups and to create an analogue in the case

where we take the Burnside ring of profinite groups. Since every finite group

is a profinite group, we create these structures in mind of ensuring that they

coincide on the Burnside ring finite profinite groups. The main difference

being that in the Burnside ring of profinite groups, we consider almost finite

G-spaces, and so we can have infinite series within the Burnside ring repre-

senting infinite G-spaces. We begin with taking a pro-fusion system over a

pro-p group S and considering the F-stable S-spaces as a subring of B̂(S).

We show B̂(F) ∼= lim←−i(B(Fi)) ∼= B̂(lim←−iFi)and use this to construct a basis

for the subring. For prime ideals, we show that there exists an equivalent to

the prime ideals in the finite case and that we have prime ideals arising in

the infinite case that differ in construction from those in the finite. Finally,

we derive expressions for idempotents, showing that they are either finite,

and therefore an inflation of an idempotent in B(G/N), or they are infinite.
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Glossary

H ≤o G H is an open subgroup of G in the profinite topology. Page 35.

N0 The natural numbers including 0.

Zp The p-adic integers defined by the p-adic completion of the integers.

H ≤c G H is a closed subgroup of G in the profinite topology. Page 35.

G/H For H ≤ G this denotes the equivalence class of the transitive set G/H as

an almost finite G-space. Page 20,44.

B(G) The Burnside ring of the profinite group G. Page 38.

B̂(G) The completed Burnside ring of the profinite group G. Page 45.

QB(G) The Burnside algebra of the profinite group G.

QB̂(G) The completed Burnside algebra of the profinite group G. Page 129.

F A pro-fusion system over a pro-p group S. Page 53.

Fo The full subcategory of the pro-fusion system F over a pro-p group S given

by the objects the open subgroups of S in the profinite topology. Page 56.

(G/K)H = FixH(G/K) The points in G/K which are fixed by H-action. Page

27.

H ∼G K For H,K ≤ G, we have that there exists g ∈ G such that Hg = K, in

the case where the context of the supergroup is clear, we omit the subscript

G. Page 20.

H ∼F K For a pro-fusion system F , H,K ∈ ob(F) there exists ψ ∈ Mor(F) such

that ψ(H) = K. Page 49.
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O(G) The open orbit category of the profinite group G.

Gh(G) The ghost ring of the profinite group G isomorphic to ZO(G) =
∏′

H≤oG
Z.

∑′
H≤G A series taken over a single representative for each G-conjugacy class of

subgroups.

XH The Z-linear extension of the fixed points of the transitive G-spaces within

X. This is invariant on equivalence classes for H ≤o G, that is to say

XH =
∑′

K≤oG
xK · (G/K)H where xK ∈ Z. Page 27.

resGH For H ≤o G, the linear map resGH : B̂(G) → B̂(H) giving the restriction of

a G-space to an H-space. resGH(G/K) =
∑

g∈[H\G/K]H/H ∩ gK. Page 46.

φH The ring homomorphism φH : B̂(G)→ Z, the fixed point map which maps X

to |XH |, where the cardinality of the set is taken additively over the basis

elements, φH(X) = |XH | =
∑′

K≤oG
xK · |(G/K)H |. Page 46.

φ The ghost map φ : B̂(G)→ Gh(G) which maps X to (φH(X))H≤oG. Page 43.

indGH For H ≤o G, the linear map indGH : B̂(H)→ B̂(G) which gives the G-space

stabilized by the same subgroup. This is defined on the basis elements by

indGH(H/K) = G/K. Page 46.

InfGG/N For N ⊴o G, the linear map given by InfGG/N : B(G/N) → B̂(G). This is

defined on the basis elements by InfGG/N((G/N)/(K/N)) = G/KN . Page 46.

πGN The projection map πGN : B̂(G)→ B(G/N) which sends X to XN . Page 33.

PU,p The prime ideal of B̂(G) defined by PU,p = {X ∈ B̂(G) | φU(X) ≡ 0 mod p}

for p either prime or 0. Page 98.

cH For H ≤o G, the map cK : B̂(G) → Z returns the coefficient of G/H in the

series expansion. This is to say cH(
∑

K≤oG
xK ·G/K) = xH . Page 121.
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µ(K,H) The Möbius function on the poset of subgroups between H and K. It is

defined recursively on the poset by µ(K,K) = 1 and for K < H, we have∑
K≤L≤H µ(K,L) = 0. Page 125.

eGH The idempotent of QB̂(G) corresponding to H ≤o G, defined by the possibly

infinite series eGH =
∑

K≤oH
µ(K,H) |G:NG(H)|

|G:K| G/K. Page 131.

H(∞) The subgroup H(∞) is the minimal closed normal subgroup K of H such

that H/K is pro-solvable. Page 134.

Hπ The subgroup Hπ is the minimal normal subgroup of H such that H/Hπ is a

pro-solvable pro-π group. Page 141.

fGP The idempotent of B̂(G) corresponding to P ≤c G with [P, P ] = P . This is

defined by the possibly infinite series fGP =
∑

H≤oG
H(∞)=P

eGH . Page 138.
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1 Introduction

1.1 Scope of the Thesis

The broad goal of the thesis was to define the Burnside ring of a pro-fusion sys-

tem and extend known results to prove analagous results within new settings.

Specifically we extend results for finite groups to those for profinite groups. A

key motivation behind this is that the theories should be compatible as explained

below.

Throughout this section, let G denote a finite group, B(G) denote the Burnside

ring of G and F a finite fusion system over a finite group. We use Ĝ to denote a

profinite group, B(Ĝ) denotes the Burnside ring of Ĝ, B̂(Ĝ) to be the completed

Burnside ring of Ĝ and F̂ is a pro-fusion system. In the diagram below, let each

object denote the theory of all objects of that type, i.e. G below corresponds to

the theory of finite groups.

B(G) B̂(Ĝ)

G Ĝ

F F̂

B(F)

Barsotti, Carman

Solomon

Puig

Dress, Siebeneicher

Stancu, Symonds

Reeh

The relevant known theory and historical results are depicted here. Note that

we have inclusions to denote that finite groups are a subset of profinite groups,

Burnside rings of finite groups are a subset of the Burnside rings of profinite groups

and that fusion systems are a subset of pro-fusion systems. Consequently, we have

that the theory of each of the finite cases lies within the theory of the profinite

cases.

The first goal was to define the Burnside ring of a pro-fusion system F̂ , B̂(F̂),

we are once again motivated to ensure that when F̂ is a finite pro-fusion system,

then we have that B̂(F̂) agrees with the definition established by Reeh for B(F̂ ).
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In doing so, we have another inclusion of theory and so this thesis establishes the

following extension to the theory, in the diagram below the historical results are

abbreviated and those the methods established by this thesis are marked with a

dashed line and labelled Hall.

B(G) B̂(Ĝ)

G Ĝ

F F̂

B(F) B̂(F̂)

B., C. Hall

So.

P.

D., Si.

St., Sy.

R.

Hall

The second goal of the thesis is to consider the results shown for (non-completed)

Burnside rings of profinite groups and prove their analogue for completed Burn-

side rings of profinite groups. In particular, these results revolve around the prime

ideals and idempotents of the respective Burnside rings. Let Spec(R) denote the

prime ideal spectrum of the ring R, and define Idem(R) to be the set of idem-

potents of the ring R. Then once again, we use a diagram to show the existing

theory and the new advances made by this thesis.

Spec(B(Ĝ))

Spec(B(G))

Spec(B̂(Ĝ))

Dress

Hall

Idem(B(G)) Idem(B̂(Ĝ)).Hall

1.2 Burnside rings of pro-fusion systems

In the case of B(F), the Burnside ring of finite saturated fusion system F over

a finite group S, we have that the Burnside ring of F is defined by Reeh[18]

Definition 4.5 to be the F -stable elements of B(S). To combine the theories of the
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Burnside ring of a profinite group with that of a pro-fusion system F̂ over a pro-p

group Ŝ, we establish the F̂ -stable elements of B̂(Ŝ). Throughout this thesis, we

use the convention of G/H representing the equivalence class of the orbit G/H as

an almost finite G-space for H ≤ G.

Below, we compare and contrast arbitrary elements within their respective

Burnside rings, firstly in the Burnside ring of a finite group described by Burnside[6]

§184-185 (and subsequently named and defined the Burnside ring by Solomon[20]

§1), secondly in the Burnside ring of a profinite group defined by Dress[9] Appendix

B §2 and thirdly in the completed Burnside ring of a profinite group defined by

Dress and Siebeneicher[10] 2.3. In all cases, the series is taken over representatives

of the group conjugacy classes of the group in question.

B(G) ∋
′∑

H≤G

xH ·G/H,

B(Ĝ) ∋
′∑

Ĥ≤Ĝ
|Ĝ:Ĥ|<∞

xĤ · Ĝ/Ĥ, where finitely many of the xĤ ̸= 0,

B̂(Ĝ) ∋
′∑

Ĥ≤oG

xĤ · Ĝ/Ĥ,

with each xi ∈ Z. In the case where Ĝ is a finite group, we have that B(Ĝ) =

B̂(Ĝ). The completed Burnside ring of a profinite group is determined by the open

subgroups of Ĝ. Since B(S) ⊇ B(F), in order to act analogously, the definition

must be chosen such that for a pro-fusion system F̂ over a pro-p group S, we have

a corresponding result. As such, it is sufficient to take the summation over the

open subgroups of Ŝ, which is equivalent to considering F̂o. It is for this reason

that when establishing the Burnside ring of a pro-fusion system F̂ , we need only

consider F̂o. Reeh also requires the finite fusion system F to be saturated in the

definition of the Burnside ring of F and so we approach the definition established

in this thesis.
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Definition 1.1. The Burnside ring of a saturated pro-fusion system F̂ , is the set

of elements of B̂(Ŝ) which are F̂o-stable.

Note that is F̂ is saturated or pro-saturated, then we have that F̂o is both

saturated and pro-saturated. Consequently in the definition above we can replace

saturated with ’saturated or pro-saturated’. As an immediate consequence of the

motivation of this setup, we have that the Burnside ring of a saturated or pro-

saturated fusion system is itself a ring, hence the following result.

Proposition 1.2. The Burnside ring of a pro-fusion system B̂(F̂) is a subring of

B̂(Ŝ).

We note that the definition given by Reeh is for saturated fusion systems,

and the definition we have given is for pro-fusion systems for which F̂o is pro-

saturated. Therefore, there exists an inverse limit of finite fusion systems such

that F̂o ∼= lim←−i∈I Fi with each Fi saturated and therefore B(Fi) is well defined.

The following theorem shows that taking the Burnside ring commutes with taking

the inverse limit for a pro-fusion system.

Theorem 1.3. If F = lim←−i∈I Fi is a pro-saturated fusion system with each Fi

saturated, then B̂(F̂) ∼= lim←−i∈I B(Fi).

Reeh showed that a basis forB(F) is given by the set {αP | P ≤ S fully normalized}

where the αP are a combinatorially defined element of B(S) produced by stabiliz-

ing the element ∑
[P ]S⊆[P ]F

|NS(P )|
|NS(P ′)|

S/P ′.

By utlizing the inverse limit of the successive quotients as in the previous theorem,

we use this to create a basis for B̂(F). We show that there is a well defined element

in ob(F̂) through the inverse limit.

Definition 1.4. The element α̂P is defined to be α̂P = (αP/Ni
)i∈I for P fully

normalized in the pro-fusion system F̂ .

Theorem 1.5. The set {α̂P | P ≤o Ŝ fully normalized} is a basis for B̂(F̂).
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Since this hold for any saturated or pro-saturated pro-fusion system, we have

that for the Burnside ring of a pro-fusion system B̂(F̂), every element can be

expressed in the form

X =
′∑

P≤oS

xP · α̂P

with the sum taken over F̂ -conjugacy class representatives (a fully normalized

representitive taken for each), xP ∈ Z. Comparing with the pre-existing definitions

of Burnside rings of finite fusion systems, it is justified that this if a reasonable

definition by the following properties.

1. Taking F̂ = F be a finite fusion system over a finite group Ŝ = S, where

in each case the former expression in each equality is viewed as an inverse

limit, we have that the two definitions are equivalent and

B̂(F̂) = B(F) ⊆ B(S) = B̂(Ŝ).

2. For any saturated or pro-saturated fusion system F̂ over a pro-p group Ŝ,

we have that B̂(F̂) ⊆ B̂(Ŝ).

3. For a saturated or pro-saturated pro-fusion system F̂ over a pro-p group Ŝ,

we have that B̂(F̂) ∼= lim←−i∈I B(Fi) in a similar to how for a profinite group

Ĝ, we have that B̂(Ĝ) ∼= lim←−j∈J B(Gj).

Barsotti and Carman[3] Theorem 7.1 showed that using Reeh’s definition for the

Burnside ring of a fusion system defined by a group G over S, FS(G) = F , we have

that resGS (B(G)) = B(F) and so that the image of the restriction map is equal to

the set of F -stable elements of B(G). Emulating this in the case of the Burnside

ring of pro-fusion systems, we use techniques from Barsotti and Carman to prove

the following theorems.

Theorem 1.6. Suppose that F̂Ŝ(Ĝ) is a pro-fusion system for Ŝ ≤o Ĝ, then we

have that resGS (B̂(Ĝ)) = B̂(F̂).
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Theorem 1.7. The set {resGS (G/P ) | P ≤o S fully normalized} is linearly inde-

pendent.

1.3 Prime Ideals

The second goal of the thesis is to extend results proved for the Burnside rings

of finite groups to the completed Burnside rings of profinite groups. The focus

being results on prime ideals and idempotents established by Dress[8], Yoshida[27],

Gluck[11] and tom Dieck[23]. The process of finding prime ideals and idempotents

is strongly related to the fixed point maps and their image in the ghost ring.

Given any subgroup H ≤ G for G a finite group, and any orbit G/K, we can

define the points within G/K which are fixed by H-action, which is to say the

x ∈ G/K such that h · x = x ∀h ∈ H. We denote the set of all such points

by (G/K)H . We then define the fixed point map φH on the transitive G-sets by

φH(G/K) = |(G/K)H |, giving entries in Z. By abuse of notation, we extend this

map Z-linearly to the Burnside ring of G and so have a function φH : B(G)→ Z.

Therefore, by taking the preimages of prime ideals of Z under fixed point maps

we can find prime ideals in B(G). Prime ideals in Z being given by pZ for p either

prime or 0. Dress[8] Proposition 1 then showed that these preimages classify all

prime ideals of the Burnside ring of a finite group. Furthermore, taking φH for each

conjugacy class representative H ≤ G, we can define the ghost map φ : B(G) →∏′
H≤G Z =: Gh(G) by φ(X) = (φH(X))H≤G. This function is injective and so

we have that equivalence classes of virtual finite G-sets are determined uniquely

by their image in the ghost ring. This becomes a key property that allows us to

distinguish between different elements in the Burnside ring.

There is a similar notion within the (non-completed) Burnside ring of a profinite

group discussed by Dress[9] Appendix B §2 in which there are fixed point maps

φH defined similarly for any H ≤c Ĝ. These are well defined as this ring considers

only the finite Ĝ-sets and so there are only finitely many points in each Ĝ-set

which can be fixed by H-action. Therefore we have the maps φH : B(Ĝ) → Z

14



which component wise define the ghost map φ : B(Ĝ)→
∏′

H≤cĜ
Z.

For the completed Burnside ring of a profinite group, for each H ≤o Ĝ, we can

define maps φH : B̂(Ĝ)→ Z. Since B̂(Ĝ) consists of equivalence classes of virtual

almost finite Ĝ-spaces, this ensures that the number of H-fixed points is finite.

An intuitive topology arises when viewing the completed Burnside ring as an

inverse limit, namely where an open basis for the topology is given by cosets of

the kernels of the projection maps into the Burnside rings of the finite quotients.

Equipped with this, the thesis goes on to show that the open prime ideals of B̂(Ĝ)

are given in a similar way to those given in the finite case, however this does not

classify all prime ideals and we have examples of when we can have closed but not

open prime ideals of the completed Burnside ring, and therefore proving that the

theory diverges.

Theorem 1.8. The open prime ideals of B̂(Ĝ) are all of the form

PÛ ,p = {X ∈ B̂(Ĝ) | φÛ(X) ≡ 0 mod p}

for p either a prime or 0 and for some Û ≤o Ĝ.

With the topology we have defined, we see that the open prime ideals do

not coincide with the ideals of B(Ĝ). These prime ideals instead coincide with

B(Ĝ) ∩ PÛ ,p for Û ≤o Ĝ. In the finite case, all prime ideals are of this form,

but this is not the case when you consider a profinite group. Here we see that

the theory of the completed Burnside ring of profinite groups diverges from that

of Burnside rings of finite groups and (non-completed) Burnside rings of profinite

groups.

Proposition 1.9. There exists a profinite group Ĝ such that B̂(Ĝ) contains prime

ideals which are closed but not open.

Theorem 1.10. For a profinite group Ĝ = ĤK̂, where both Ĥ, K̂ are both infinite

profinite groups closed under conjugation, then there exists closed but not open

prime ideals of B̂(Ĝ).
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We note that this setup differs fromB(Ĝ) since in the (non completed) Burnside

ring of a profinite group, we only consider the finite Ĝ-sets and so for each closed

subgroup, we have a well defined fixed point map to Z since there are finitely many

points in each Ĝ-set which can be fixed. However, in the completed Burnside ring,

we only have such a result for open subgroups of Ĝ, and therefore we can have

(equivalence classes of) infinite almost finite Ĝ-spaces.

1.4 Idempotents

In order to extend the results of idempotents in both the Burnside algebra and

within the completed Burnside ring, this thesis proves a series of lemmas in order

to allow us to use equivalent results in the case of profinite groups as we have for

finite groups.

An idempotent, e, in a ring is characterised by the property that e2 = e. Since

the fixed point maps φH are injective group homomorphisms for each H ≤ G,

we have that φH(e)
2 = φH(e) and therefore φH(e) = 0, 1 for each H ≤ G and

this characterises all idempotents in the Burnside ring. We note that not every

combination need be possible since the ghost map is not surjective. However, this

issue is addressed by considering idempotents within the Burnside algebra, QB(G),

following the definition given by Solomon[20] §3 where the Burnside algebra is

defined to be the set of elements given by the Q-linear extension of the finite G-

orbits. The completed Burnside algebra QB̂(Ĝ) is defined similarly, and we give

the definition of arbitrary elements in the respective Burnside algebras below

QB(G) ∋
′∑

H≤G

yH ·G/H

QB̂(Ĝ) ∋
′∑

H≤oG

yH ·G/H

where yH ∈ Q.

By abuse of notation, we define the map φH : QB(G)→ Q where we take the
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Q-linear extension of the H-fixed points of the G-orbits in each equivalence class

of finite G-sets. It was shown by Yoshida[27] Theorem 3.1 that in the Burnside

algebra of a finite group, QB(G), there exists eGH ∈ QB(G) such that φK(G/H) = 0

if H ̸∼ K and φK(G/H) = 1 if H ∼G K and as such the image of the Burnside

ring in the algebraic ghost ring QGh(G) :=
∏′

H≤GQ is equal to the algebraic ghost

ring itself, which is to say that the ghost map is surjective. It follows that every

element in QGh(G) has a unique preimage in QB(G).

Since B(G) ⊆ QB(G) and any idempotents in B(G) are also idempotents in

QB(G), it is sufficient to find the idempotents in QB(G) which have integer coef-

ficients for each G/H, H ≤ G. We have that ever idempotent in Q is expressed as∑′
H≤G aH · eGH with each aH ∈ {0, 1}. We define the idempotents eGH as irreducible

since every idempotent is a series of the eGH , H ≤ G.

Theorem 1.11. The Burnside algebra QB̂(Ĝ) has an irreducible idempotent for

each conjugacy class of H ≤o Ĝ of the form

eĜH =
∑
K≤oH

µ(K,H)
|Ĝ : NĜ(H)|
|Ĝ : K|

Ĝ/K

where µ(K,H) denotes the Möbius formula of the subgroup partial ordering.

Here the use of the Möbius function is justified since between any two open

subgroups, there are at most finitely many intermediate subgroups. It follows then,

that finitely many of the summands in the expression of µ(K,H) are non zero and

so it is genuinely a finite sum. This expression in general can be an infinite series,

but since each coefficient is finite, we have that this is an almost finite Ĝ-space

and so has an equivalence class present in the Burnside algebra.

However, even in the finite case these elements need not lie within the completed

Burnside ring since the coefficients need not be integers. The characterisation of

the idempotents of the completed Burnside ring can be seen as a series of these

idempotents of the Burnside algebra. In order to find which idempotents lie within

the Burnside ring, we find familiesH such that
∑

H∈H e
G
H is an idempotent in B(G)

17



and we call an idempotent irreducible if there is no non empty subset of T ⊆ H

such that
∑

H∈T e
G
H is an idempotent.

Theorem 1.12. The irreducible idempotents of B̂(Ĝ) are given by

f ĜP =
′∑

H≤oĜ
H(∞)=P

eĜH =
′∑

H≤oĜ
H(∞)=P

∑
K≤oH

µ(K,H)
|Ĝ : NĜ(H)|
|Ĝ : K|

Ĝ/K

for P a closed perfect subgroup of Ĝ.

Since each open subgroup K lies within at most finitely many H ≤o Ĝ, we

have that there is a non zero coefficient of G/K in finitely many eĜH and therefore

once again, this is a well defined almost finite Ĝ-space and therefore its equivalence

class indeed lies within the completed Burnside ring of Ĝ.

Theorem 1.13. For Ĝ a profinite group, the set

Idem(B̂(Ĝ)) = {f ĜP | P ≤c Ĝ, ∃H ≤o Ĝ}

is a complete set of irreducible idempotent representatives of B̂(Ĝ).

Note that any idempotent of B(Ĝ) is also an idempotent of B̂(Ĝ) but the

converse is not necessarily true since idempotents of B̂(Ĝ) may have infinitely

many terms. The multiplicative unit of B̂(Ĝ) defined by the equivalence class of

Ĝ/Ĝ is the unique element in B̂(Ĝ) is the unique element which has image (1)H≤G

under the ghost map. It follows that 1 =
∑′

H≤G e
G
H in the Burnside ring of a

finite group, and we prove a similar result in the completed Burnside ring of a

profinite group. In particular, since this may be an infinite series, we prove that

the coefficient of each equivalence class of a transitive Ĝ-space is finite. This is a

result which is not generally possible in the (non completed) Burnside ring of a

profinite group.

Theorem 1.14. The series ∑
e∈Idem(B̂(Ĝ))

e = 1
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in the completed Burnside ring of Ĝ.

Now, having found the multiplicative identity we search for other units within

the Burnside ring. We note that any unit, u within the Burnside ring must have

an image in the ghost ring which is also a unit. However, since the ghost ring is

given by copies of Z, we have that we must 1 or −1 in each coordinate, which is

to say φH(u) = ±1 for each H ≤ G. It follows that each unit in the Burnside ring

is self inverse. Furthermore, we have by definition of the irreducible idempotents

of B(G) that u =
∑′

H≤G uH · eGH for some uH ∈ {±1}. In extending this to the

completed Burnside ring of a profinite group, we also prove in this thesis that there

are suitably finite coefficients.

Theorem 1.15. Every unit in the completed Burnside ring of a profinite group is

of the form eH− eH′ where H and H′ partition the set of conjugacy classes of open

subgroups of Ĝ.

We note that it is not necessarily true that every element of QB̂(Ĝ) that has

this form is a unit in the completed Burnside ring of a profinite group.

2 Background

2.1 Burnside Rings of finite groups

The Burnside ring of a finite group was first defined by Solomon in his paper “The

Burnside Algebra of a Finite group[20]”. This paper sought to define the ring as an

algebraic structure from foundations discussed in Burnside’s “Theory of groups of

Finite Order[6]”. Burnside discusses the representations of finite groups and shows

that each G-set X defines a representation of G in GLn(Q). In particular, we have

that isomorphic G-sets define the same character. Since then, the structure itself

has been studied as a means to define an algebraic structure which contains the

(finite) sets which are stable under G-action for a finite group G. This gives rise to

the following definitions, the majority of which are from Bouc’s survey paper[4].
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Definition 2.1. Let G be a group, H,K ≤ G. We write H ∼G K if there exists

g ∈ G such that Hg = K, i.e. that H and K are conjugate. We write H ≲G K if

there exists g ∈ G such that Hg ≤ K; such a group H is called subconjugate to

K.

Group conjugation is a property which is strongly associated with the equiv-

alence of G-sets, particularly transitive G-sets. Lemma 2.3.1 (2) from Bouc’s

paper[4] gives a characterisation as two transitiveG-setsG/H andG/K forH,K ≤

G are isomorphic if and only if H ∼G K. Explicitly, the isomorphism class

[G/H] = {G/K | K ∼G H}. Throughout this thesis, we use the convention

of G/H representing the isomorphism class of G/H as a G-set. We note that

clearly for H ≤ G any set of coset representatives G/H is a G-set equipped with

the action g · hH = (gh)H for all g ∈ G, hH ∈ G/H. Therefore it is well defined

as a G-set and so each isomorphism class is well defined.

Each G-orbit Y is expressible as a left coset G/Gx for Gx = {g ∈ G | g · x =

x} ≤ G for x ∈ Y any element within Y . Therefore, we have that each G-set

can be written
⊔
x∈T G/Gx for T a set of representatives for each G-orbit. Note

that we have a disjoint union since we can have x, y in different orbits which are

isomorphic, i.e. G/Gx
∼= G/Gy.

Under our convention, isomorphic transitive G-sets are represented by the same

symbol and so we can simply count the number of isomorphic G-orbits in a finite

G-set. Namely, we can write aH · G/H :=
⊔aH
i=1G/H for aH ∈ N0 and so each

finite G-set A can be written as A =
⊔′
H≤G aH ·G/H with each aH ∈ N0 denoting

the number of G-orbits in A isomorphic to G/H and here ′ denotes that we take

a single representative for each G-conjugacy class.

Therefore, we have a very usable method to combine G-sets since for two finite

G-sets A =
⊔′ aH · G/H and B =

⊔′ bH · G/H, we can take their disjoint union

A⊔B =
(⊔′ aH ·G/H

)
⊔
(⊔′ bH ·G/H

)
=
⊔′(aH + bH) ·G/H. Clearly there is an

additive identity in terms of the empty set ∅ viewed as a finite G-set. In order to

facilitate being able to remove G-orbits from finite G-set, we define what is meant
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by a virtual G-set.

Definition 2.2. Let G be a finite group. We define a virtual finite G-set to be a

formal expression
⊔′ xH ·G/H with xH ∈ Z where the disjoint union is taken over

H, the representatives of G-conjugacy classes of subgroups.

To avoid confusion, we call a virtual finite G-set, X, an actual finite G-set

if it has an expression X =
⊔
xH · G/H with each xH ≥ 0. This is to say

that it is what we have previously discussed as a finite G-set. With this, we can

define the disjoint union of virtual finite G-sets. Given two virtual finite G-sets

X =
⊔′ xH ·G/H and Y =

⊔′ yH ·G/H, then we define X ⊔Y =
(⊔′ xH ·G/H

)
⊔(⊔′ yH ·G/H

)
=
⊔′(xH + yH) ·G/H where we note that xH , yH ∈ Z can possibly

be negative. Consequently, each actual finite G-set, X, has an inverse −X such

that X + (−X) = ∅. It follows that we have an abelian group of isomorphism

classes of virtual finite G-sets.

Given actual finite G-sets X and Y , we can define their product by taking the

underlying set to be the Cartesian product X × Y and consider it as an actual

finite G-set equipped with the G-action g ·(x, y) = (g ·x, g ·y) for all g ∈ G, x ∈ X,

y ∈ Y . This carries through to the virtual finite G-sets in the natural way. Taking

the virtual finite G-set G/G, we have that for any virutal finite G-set X that

X ·G/G ∼= G/G ·X ∼= X since the action on G/G is trivial and therefore, viewing

the G-sets as representatives of their isomorphism classes, we have G/G ·X = X

and so G/G is an identity under this product.

Definition 2.3. Bouc[4] 3.1.1 The Burnside Ring B(G) of G is the Grothendieck

group of the category G-set, for the relations given by decomposition in disjoint

union of G-sets. The multiplication on B(G) is induced by the direct product of

G-sets.

This definition is equivalent to taking the ring of equivalence classes of virtual

finite G-sets given by taking the underlying set of such elements equipped with

X + Y = X ⊔ Y , XY = X × Y and −X given by formal negation. As discussed

21



above, we have a multiplicative identity G/G and an additive identity ∅ when

viewed as G-sets. Throughout this thesis, we use the convention of writing G/G =:

1 and ∅ =: 0 in the context of the Burnside ring. Similarly, we will use the

convention of writing n := n ·G/G within the Burnside ring.

Clearly, since (G/G)H = G/G, we have that φH(G/G) = 1 for all H ≤ G.

Therefore φH(n · X) = n · φH(X) for each H ≤ G. Therefore φ(n · X) = (n ·

φH(X))H≤G = n · φ(X) for each n ∈ Z. Furthermore, (∅)H = ∅ and so φH(∅) = 0

for all H ≤ G. This aligns with 0 ·G/G = ∅ as we would expect. A Z-linear basis

can be given for B(G) by considering the set of transitive G-sets {G/H | H ≤ G}

since once again each equivalence class of virtual finite G-sets can be expressed as

some linear combination of these orbits.

By definition for each G-set, X, there is a G-action defined on X such that

g ·x ∈ X for each g ∈ G, x ∈ X. There is an intuitive notion of considering X as an

H-set for each H ≤ G as we have that there is a well defined H-action for h ·x ∈ X

for each h ∈ H ≤ G and x ∈ X. For each virtual finite G-set, we have that the

underlying set has finitely many elements, and so considering it as a H-set, we

have that it must be a virtual finite H-set. Therefore, taking the representatives

in B(G), we have that the restriction to H-action corresponds to a representative

in B(H). It follows that we have a well defined functor resGH : B(G) → B(H)

corresponding to viewing the underlying set of a virtual finite G-set as a H-set.

As noted, each virtual finite G-set representative, X, can be seen as a disjoint

union X =
⊔′
K≤G xK ·G/K =

∑′
K≤G xK ·G/K. Since H is a subgroup of G, then

each transitive G-set G/K can be decomposed as a disjoint union of H-orbits. It

follows that we can therefore define the restriction on the transitive G-sets and

extend it linearly in order to achieve the same map. That is to say, resGH(X) =

resGH(
⊔
K≤G xK · G/K) =

⊔
K≤G xK · resGH(G/K). We consider the restriction of a

transitive G-set to H-action to generalise a formula for the restriction.

In order to decompose a transitive G-set into a disjoint union of transitive H-

sets, we note that it is sufficient to take a representative from each H-orbit of the
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underlying space and then take the disjoint union of these orbits. Considering the

transitive G-set G/K, we can take the set of representatives of the H-orbits to be

[H\G/K] since this set takes the underlying set G/K and considers the H-orbit

by the left H-action. Given x ∈ [H\G/K], we need to find the expression for this

H-orbit as a coset. It corresponds to the set HxK, and therefore we can take H/J

where J is the H-stabilizer of any element in the set HxK = {h · x ·K | h ∈ H}.

StabH(h · x ·K) = {g ∈ H | g · h · x ·K = h · x ·K}

= {g ∈ H | (hx)−1g(hx)K = K}

= {g ∈ H | (x−1h−1)g(hx) ∈ K}

= {g ∈ H | x−1(h−1gh)x ∈ K}

= {g ∈ H | h−1gh ∈ xK}.

Since we can find the stabilizer of any element within the orbit, we are free to

choose any h ∈ H, we can in particular choose the element h = 1 therefore

StabH(x ·K) = {g ∈ H | g ∈ xK} = H ∩ xK. It follows that the decomposition

of G/K into H-orbits is resGH(G/K) =
⊔
x∈[H\G/K]H/(H ∩ xK). We note that for

K1 ∼G K2 we have that G/K1
∼= G/K2, and so there exists ψ : G/K1 → G/K2

such that g · ψ(x ·K1) = ψ(g · x ·K1) for each x, g ∈ G. In particular, this holds

for each g ∈ H and so the restrictions are isomorphic as H-sets irrespective of the

choice of representative.

Let X be a virtual finite G-set, then as previously discussed, there is an ex-

pression X =
⊔
K≤G xK · G/K for some xK ∈ Z. Since for any H ≤ G we can

decompose G/K into a disjoint union of H-orbits, it follows that since the G-orbits

themselves are disjoint, we can write resGH(X) =
⊔
K≤G xK · resGH(G/K). There-

fore resGH(X) =
⊔
K≤G xK ·

(⊔
x∈[H\G/K]H/(H ∩ xK)

)
up to equivalence as virtual

H-sets. Note that since each xK is finite and G has finitely many subgroups, we

have that this is a virtual finite H-sets, and since the restriction agrees regardless

of the choice of representatives of virtual finite G-set, we have that the restriction
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resGH : B(G)→ B(H) is a well defined map.

Consider any non empty G-orbit of the product G/H ×G/K as we have pre-

viously defined, then there is an element (x1H, x2K) within this G-orbit. We

also have that there exists x−1
1 ∈ G such that x−1

1 · (x1H, x2K) and therefore we

have that the G-orbits G(x1H, x2K) = G(H, x−1
1 x2K) are equal. Let x = x−1

1 x2,

then for h ∈ H ≤ G, we have that h · (H, xK) = (h · H, h · xK) = (H, hxK),

noting that for g /∈ H we have g · H ̸= H. It follows that we can take the

set of all entries in the G-orbit which have H in the first coordinate, namely

{(H, yK) | y ∈ G} = {(H, hxk) | h ∈ H} = (H,HxK).

Suppose that G(H, x1K) = G(H, x2K) define the same orbit, then it follows

that we have (H,Hx1K) = (H,Hx2K) and so Hx1K = Hx2K. Conversely,

suppose that Hx1K = Hx2K then we have that (H,Hx1K) = (H,Hx2K) and

therefore they define the same G-orbit. We conclude that the G-orbit is classified

by the double coset representative, and since the double cosets HxK partition the

set G, we have that there is exactly one orbit from each double coset representative.

It is therefore possible to decompose the productG/H×G/K intoG-orbits indexed

by the double coset representatives.

Consider a G-orbit of G/H × G/K containing the element (H, xK) for some

g ∈ G, then the stabilizer of this element is given by

StabG(H, xK) = {g ∈ G | g · (H, xK) = (H, xK)}

= {g ∈ G | (g ·H, x−1gxK) = (H,K)}

= {g ∈ G | g ∈ H, x−1gx ∈ K}

= {g ∈ G | g ∈ H, g ∈ xK}

= H ∩ xK.

Since the G-orbits in G/H × G/K are indexed by x ∈ [H\G/K], then we have

that it can be decomposed as G/H ×G/K =
⊔
x∈[H\G/K]G/(H ∩ xK). From this

expression, it is evident that there is a correspondence between the multiplication
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and the restriction, where the disjoint union is indexed by the same set, namely

[H\G/K] and the stabilizers are given by the same subgroups, however in the case

of the restriction, we have H-orbits and in the multiplication we have G-orbits.

Through restriction, for H ≤ G we can define the H-action on the underlying

space of a G-set and therefore create a H-set. It will be beneficial to also define

an opposing notion which takes H-sets and equips them with a G-action. For ant

K ≤ H, we can consider the transitive H-set stabilized by K, namely H/K. Since

we have supposed that H ≤ G, then it is obvious that K ≤ G and so there exists

a transitive G-set, G/K, which is stabilized by K. This is well defined on the

transitive H-sets since regardless of conjugacy class representative, we have that

K1 ∼H K2 implies that K1 ∼G K2 since H ≤ G and so G/K1 = G/K2. Note that

the converse need not be true, for example taking H = ⟨(12), (34)⟩, G = S4, then

⟨(12)⟩ ̸∼H ⟨(34)⟩ but ⟨(12)⟩ ∼G ⟨(34)⟩ and so we can have G/K1 = G/K2 with

H/K1 ̸= H/K1.

Extending this Z-linearly over the transitive H-sets, we define the induction

map indGH : B(H) → B(G), it is clear that the image of a virtual finite H-set

under this map is a virtual finite G-set. By the above justification, we have that

the induction map is not necessarily injective, and further if we have that H ̸= G

then it is also not surjective since G/G cannot be given as a linear combination⊔
K≤H xK ·G/K, a general expression for an element in the image of the induction

map. Comparing with the definition of product and restriction, we have that for

H,K ≤ G

G/H ×G/K =
⊔

x∈[H\G/K]

G/(H ∩ xK) =
⊔

x∈[H\G/K]

indGH (H/(H ∩ xK))

= indGH

 ⊔
x∈[H\G/K]

H/(H ∩ xK)


= indGHres

G
H(G/K).

Summarising this, we give the well defined definitions of restriction and induction
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as discussed in Bouc’s ”Burnside Rings”[4] §3.1 in a manner which aligns with the

intuition for this that we have discussed in this chapter thus far. Note that since

we have justified they truly map within the Burnside ring, we use the symbols

for addition in the ring rather than that of disjoint union to align with the ring

structure.

Definition 2.4. [4]Bouc §3.1 For H ≤ G, we define the induction and restriction

maps indGH : B(H) → B(G) and resGH : B(G) → B(H) by the Z-linear exten-

sion of their definition on the transitive H-sets and G-sets respectively as follows.

The restriction resGH(G/K) =
∑

x∈[H\G/K]H/(H ∩ xK), and the induction map

indGH(H/K) = G/K. We also have G/H ×G/K =
∑

x∈[H\G/K]G/H ∩ xK.

This definition of the induction map from H to G, whilst always being well

defined, does require that the virtual H-set in question first be decomposed into

disjoint H-orbits. There is a more explicit method of calculating the induction

based on the structure of the H-action on the set and its underlying set. Given a

virtual H-set X, consider the set G×X and equip it with a right H-action defined

by (g, x) · h = (gh−1, h · x). If we identify all elements within the equivalence

classes of the H-orbits by this right H-action, we have a set G×H X that can be

considered a virtual G-set through the left G-action g1 · [(g2, x)] = [(g1g2, x)] for

each g1, g2 ∈ G, x ∈ X.

In particular, if we consider this explicit method on a transitive H-set H/K,

then we have that the equivalence class under H-action [(g, xK)] for some x ∈ K,

g ∈ G. This has explicit form [(g, xK)] = {(gh−1, hxK) | h ∈ H} and there is a

clear G-set isomorphism given by [(g, xK)] 7→ gxK. Note that this holds regardless

of representative since gh−1hxK = gK.

Given a G-set X and H ≤ G, then we can consider the set of elements within

X which are fixed by H-action, XH = {x ∈ X | h · x = x, ∀h ∈ H}. Consider a
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transitive G-set G/K, then we can take (G/K)H

(G/K)H = {gK ∈ G/K | h · gK = gK, ∀h ∈ H}

= {gK ∈ G/K | g−1hgK = K}

= {gK ∈ G/K | HgK = K}

= {gK ∈ G/K | Hg ≤ K}.

Consequently, it H ̸≲G K, we have that there are no H-fixed points in G/K since

no conjugate of H lies within K, it follows that (G/K)H = ∅. We note by the

definition of taking the H-fixed points of a G-set. we have that the H-action

on XH is trivial and so the set XH can be considered as a NG(H)/H-set since

gH · {x} = {gH · x = g · (H · x) = g · x}. We note that the provision that it is a

NG(H)/H-set arises since this must be a group in order for the associative group

action axiom to be met.

An exceptional case can be considered when we have that N ⊴ G is a normal

subgroup. In this case, since N is normal, we have that either every element of

a transitive G-set G/K is fixed under N -action or no element is. It follows that

either (G/K)N = G/K viewed as a G/N -set if N ≤ K or (G/K)H = ∅ if H ̸≤ K.

We once again extend this definition linearly over the transitive G-sets. Clearly,

the H-fixed points of a virtual G-set are a virtual finite G/N -set since we have

finitely many finite coefficients and so we can define a map ·N : B(G)→ B(G/N)

defined by
(∑

H≤G xH ·G/H
)N

=
∑

H≤G xH · (G/H)N . More generally, for any

H ≤ G we can view the map ·H : B(G)→ B(NG(H)/H) in a similar way.

Definition 2.5. [4]Bouc §3.1

Let G be a finite group, H ≤ G a subgroup, then we define ·H : B(G) →

B(NG(H)/H) to be the map taking the H-fixed points. That is to say, for each

virtual finite G-set X, we have XH = {x ∈ X | h · x = x ∀h ∈ H}.

There is a companion to the fixed points in the form of the H-fixed point ghost

map φH : B(G)→ Z for each H ≤ G, this is defined on the transitive finite G-sets
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G/K by φH(G/K) = |(G/K)H | and extend this Z-linearly, noting that this allows

us to have negative numbers. Considering the number of H fixed points becomes

a powerful property in classifying the elements of the Burnside ring. The following

theorem proven first in [6]Burnside [15, Ch. XII, Theorem 1] shows that we can

classify isomorphism classes of finite G-sets by considering just the number of fixed

points under each subgroup H ≤ G.

Theorem 2.6. Bouc 2.3.2 Let G be a finite group, and X and Y be finite G-sets.

Then the following are equivalent:

1. The G-sets X and Y are isomorphic.

2. For any subgroup H of G, the sets XH and Y H have the same cardinality.

Note that any finite virtual G-set X =
⊔
xH · G/H can be expressed as the

formal difference of two actual finite G-sets in the obvious way. This is to say that

X =
⊔
H≤G yH ·G/H−

⊔
H≤G zH ·G/H where yH = xH if xH ≥ 0, and zH = −xH if

xH ≤ 0 and all other coefficients 0. It naturally follows that each yH , zH ∈ N0 and

so we have that X is expressed as a formal difference of two actual finite G-sets

as claimed. Consequently, this theorem trivially extends to being able to classify

the finite virtual G-sets by the linear extension of the number of fixed points.

Definition 2.7. [4]Bouc §3.1

Let G be a finite group, H ≤ G a subgroup, then we define the map φH :

B(G) → Z by defining φH
(∑

K≤G xK ·G/K
)
=
∑

K≤G xK · φH(G/K), where

φH(G/K) = |(G/K)H | for each K ≤ G.

In discussion this map φH will be referred to as the number of H fixed points.

It may at first appear as though in taking the number of fixed points rather than

the fixed points themselves that we are weakening the information we have about

a virtual G-set. However, the number of fixed points is sufficient to classify an

element within the Burnside ring.

Consider some virtual finite G-set X =
⊔
K≤G aK · G/K, then we can take

XG = {x ∈ X | g · x = x ∀g ∈ G}. However, by the definition of the fixed point
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map, we have that XG is viewed as an element of the Burnside ring B(G/G) ∼= Z

since B(G/G) is the Z-linear span of G/G. It follows that |XG| = aG. Take a

proper subgroup H which is maximal up to conjugation, which is to say that there

does not exist g ∈ G such that there exists K ≤ G such that Hg < K < G. Then,

since the H fixed points of any G/K such that H is not subconjugate to K is the

empty set, we have that φH(X) = aG+aH(G/H). By the previous justification we

have that aG is already fixed and so we have a unique solution for aH . Repeating

this process, we have that the image within the Ghost ring is unique, therefore we

can classify elements in the Burnside ring through their image in the Ghost ring.

2.2 Burnside Rings of profinite groups

In the definition of Burnside rings of finite groups, we have a method of discussing

the structure and combination of different equivalence classes of virtual finite G-

sets for G a finite group. Dress, in “Notes on the theory of representations of finite

groups”[9] Appendix B then took this construction and extended it to profinite

groups. This was done in the most obvious way by considering the equivalence

classes of virtual finite G-sets where G is a profinite group. This definition uses the

underlying structure of a profinite group in order to define parallels to the fixed

point maps and establish a basis of transitive G-sets for which the Z-span is the

entirety of the Burnside ring of profinite groups.

Extending the theory to cover profinite groups is justified by two key properties.

Firstly, that all finite groups are profinite groups and so we have a working model

for how we would wish the Burnside ring of profinite groups to function in the case

of finite groups. Secondly, through the construction of a profinite group, we have

that there are subgroups of finite index, and since the same argument with regards

to orbit-stabilizers hold, we have that there are transitive finite G-sets G/H where

H is a subgroup of finite index. Since these properties are fundamental in the

discussion of the Burnside ring of a finite group, we have that this motivates this

choice of definition.
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In order to make the definition, we regard the structure of a general profinite

group. It harnesses the qualities of having subgroups of finite index without being

constricted to the group itself being finite, and indeed it is possibly infinite. This is

achieved by an infinite series of projection maps, each projecting finite groups into

finite groups. Taking the inverse limit of these we can define the terminal object

to be the Burnside ring of a profinite group. We shall go through this procedure

in detail as described in [26]Wilson Chapter 1.

Definition 2.8. [7]§1.1 A directed set (Λ,≤′) is a set Λ equipped with a relation

≤′ such that for any x, y ∈ Λ, there exists an element z ∈ Λ such that x, y ≤′ z.

Given a group G, we can define a directed set on its subgroups by taking

Λ0 = {H | H ≤ G} subject to the relation ≤′ to be ≥. This clearly satisfies the

definition for a directed set since for any H,K ∈ Λ we have that H ∩K ∈ Λ0 and

H,K ≥ H ∩K. More presciently, we can define Λ = {N ≤ G | N ⊴ G} and again

consider ≤′ to be ≥, then this is a directed set since for any N1, N2 ∈ Λ, we have

that N1, N2 ⊴ G and so it follows that N1 ∩ N2 ⊴ G, hence N1 ∩ N2 ∈ Λ with

N1, N2 ≥ N1 ∩ N2. Equipped with the definition of a directed set, we can define

an inverse system.

Definition 2.9. [7]§1.1 Given a directed set (Λ,≤′) then we define an inverse

system of sets over Λ to be a family of sets (Gλ)λ∈Λ together with a family of maps

(πλµ)λ,µ∈Λ, µ≤′λ satisfying the conditions πλλ = idGλ
and πλµ ◦ πµσ = πλσ whenever

σ ≤′ µ ≤′ λ.

Further, we can apply this to groups, rings or topological spaces with the corre-

sponding homomorphisms or continuous maps in order to make an inverse system

of the alike objects. Maps between similar objects that satisfy the composition

condition given in the definition are said to be compatible. In particular, in this

way, we can project from one group to another through homomorphisms provided

that we can define suitable compatible maps such that we have an inverse system

with compatible maps between the groups. By obvious extension, we can apply
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the same reasoning to a category, with the maps given by the morphisms between

objects.

Given an inverse system (Gλ)λ∈Λ of objects of a category C over a directed

set Λ, it follows that naturally you may wish to find some structure, L, which

contains all of the information that the inverse system is defined by. Firstly, we

would wish to be able to recover Gλ for each λ ∈ Λ. A natural approach to this is

to define that the structure L is equipped with a family of projection maps (πλ)λ∈Λ

such that πλ(L) = Gλ and each projection is a morphism of the requisite type.

Secondly, we wish for these projection maps to be compatible, which is to say

πji ◦ πi = πj : L→ Gj for each i, j ∈ Λ. Finally, we wish for L to have a property

that for any other structure M with compatible projections σλ : M → Gλ, the

projection can be factored through L, that is to say that there is a unique morphism

σ :M → L such that σλ = πλ ◦ σ :M → L→ Gλ for each λ ∈ Λ.

This object L is unique up to isomorphism and so we define L to be the inverse

limit of the inverse system. In particular, there is one element of the isomorphism

class of L that lends itself to explicit expression. Let Ĝ denote the subset of∏
λ∈ΛGλ such that Ĝ = {(gi)i∈Λ | πji(gi) = gj}. There is an obvious family of

projection maps (πλ)λ∈Λ defining the image of g = (gλ)λ∈Λ ∈ Ĝ to be πλ(g) = gλ.

This satisfies the required conditions by construction and so this is an inverse limit

of the inverse system.

Definition 2.10. [5]§7.1 Given an inverse system (Gλ)λ∈Λ of groups over a directed

set Λ with compatible maps (πji)i≤j, i,j∈Λ, we define the inverse limit of the inverse

system, Ĝ = lim←−λ∈ΛGλ to be be a group such that there are group homomorphisms

πλ : Ĝ→ Gλ for each λ ∈ Λ which are compatible, which is to say that for i, j ∈ Λ,

i ≤ j, then we have that πij ◦πj = πi : Ĝ→ Gi. The homomorphisms πλ for λ ∈ Λ

we define to be the projection maps. It must also satisfy that for any group H

such that there exist a family of compatible projection maps σλ : H → Gλ, then

there exists a unique group homomorphism σ : H → Ĝ such that σλ = σ ◦ πλ for

each λ ∈ Λ.
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With the notation of the definition, this is often depicted and summarised

through the following commutative diagram for each i ≤ j, i, j ∈ Λ. Here, the

existence of a unique map σ is depicted through the use of !σ.

H

Ĝ

Gj Gi

σiσj

!σ

πj πi

πij

As previously previously discussed, this can be defined in greater generality

than just in the case of groups provided we have structure preserving morphisms

for the projection maps. Similar to inverse systems, the inverse limit can be applied

to topological spaces with continuous maps, or rings with ring homomorphisms. If

the objects are topological groups, we have that we can similarly define the inverse

limit with continuous group homomorphisms. We note, however, that finiteness

is not necessarily preserved since the directed set Λ can contain infinitely many

elements, even if each element of the inverse system indexed by this directed set

is itself finite.

Suppose that we have an inverse system of groups over a directed set Λ with

infinitely many elements, and each Gλ, λ ∈ Λ is a finite group. Furthermore

suppose that there is an infinite chain in Λ, which is to say that there exists S ⊆ Λ

with the same ordering as on Λ such that for each σ, µ ∈ S and λ ̸= µ, then we

have either σ < µ or µ < σ and that each of the compatible maps is surjective with

non trivial kernel. Since there is no upper limit on the size of the finite groups, we

have that the explicit representative of the isomorphism class of the inverse limit

Ĝ = {(gi)i∈Λ | πji(gi) = gj}, we have that there is no upper limit on the cardinality

of Ĝ and therefore we have that Ĝ must be an infinite group.

This occurs explicitly in the case of the p-adic integers Zp where we can take

Λ = N0 with the usual ordering and the groups Gi = Z/piZ for each i ∈ Λ.

The compatible maps are given by defining πi,j : Gj → Gi to be taking the

representative x mod pj and mapping to x mod pi for i ≤ j. Since we have that
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there is a total order on Λ, this defines all of the required compatible maps.

. . . Z/p3Z Z/p2Z Z/pZ 1
π2,3 π1,2 π0,1

We now define the group of p-adic integers to be Zp := lim←−i∈N0
Gi = lim←−i∈N0

Z/piZ,

noting that this is an additive group. The compatible map πji can be viewed as

multiplication of the representatives of Gj by pj−i followed by an isomorphism

pj−iZ/pjZ→ Z/piZ. It follows that |ker(πji)| = pj−i and so we have that the ker-

nels are non trivial and the surjectivity of the maps is clear. Hence, the reasoning

applies to this construction and so Zp is infinite, as we may intuitively presume.

Conversely, suppose that we have that Λ is a finite directed set and each Gλ

is a finite group. It follows that the explicit isomorphism class representative of

the inverse limit Ĝ ⊆
∏

λ∈ΛGλ and since all Gλ are finite and Λ is finite, we must

have that |
∏

λ∈ΛGλ| <∞ and so clearly we must have that Ĝ is finite. Therefore

the inverse limit of inverse system of finite groups can in some cases be finite and

some cases can be infinite.

If C is a category and Ĝ is an inverse limit of an inverse system Ĝ = lim←−λ∈ΛGλ

with each Gλ ∈ ob(C) and the respective projections πσλ ∈ mor(C) then we say

that Ĝ is pro-C and said to be an inverse limit of C. Therefore a profinite group

is a group which is an inverse limit of finite groups. As evidenced by the earlier

observation, we note that this need not necessarily be a finite group. This approach

requires us to have an inverse system of groups, a natural question arises of whether

given a group, we can then define an inverse system.

Suppose that G is a finite group and consider the set Λ = {N | N ⊴ G}.

It follows that this is a directed set with reverse inclusion as previously noted.

Motivated by using this directed set to define an inverse system, there is a clear

candidate for a group indexed by N ∈ Λ in the form of the factor group G/N and

we have a group homomorphism πN : G → G/N defined by πN(g) = gN , giving

the coset of N in G that g lies in. Suppose that N ≤M forM,N ∈ Λ we have that

we have a group homomorphism πM,N : G/N → G/M given by πM,N(gN) = gM .

This is a well defined map since we have N ≤ M and therefore we have that M
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can be viewed as a disjoint union of the cosets of N in M and so each coset of M

in G is a union of cosets of N in G.

Taking the inverse limit defined by this inverse system, we write in the explicit

form Ĝ = {(gN)N⊴G | πM,N(gN) = gM}. Notably, we have that for any group

we have that 1 ⊴ G for every group G and so the element in Ĝ is entirely defined

by the image in the projection (abusing notation) π1 : Ĝ→ G/1. The compatible

maps are surjective and so there is an obvious isomorphism between G and Ĝ.

Subsequently if G is a finite group, then we have that G ∼= Ĝ with the inverse

system defined as above. Therefore, every finite group is a profinite group.

The immediate next step would be to consider whether this can be applied

to groups which are not finite. Let G be an infinite group, taking the previous

reasoning verbatim for G does not give a an inverse system of finite groups since

1 ⊴ G and G/1 is an infinite group and so the inverse limit cannot be a finite

group. Therefore, we take a different definition for the index set Λ which will

guarantee that we have an inverse system of finite groups. Let the index set

Λ = {N | N ⊴ G, |G : N | < ∞} with the usual ordering, it is easily verified

that this is a directed set since if we take N,M ∈ Λ, then N ∩ M ⊴ G and

|G : N ∩M | ≤ |G : N ||G :M | <∞ and so N ∩M ∈ Λ.

We can now define an inverse system of finite groups by G/N for N ∈ Λ. Since

we have an inverse system of finite groups, we can find the inverse limit which

will itself be a profinite group. Let Ĝ be the inverse limit of this inverse system.

By our definition of the inverse limit, we have that there are homomorphisms

πN : Ĝ → G/N for each N ∈ Λ and that there is a unique homomorphism

σ : G → Ĝ such that the required diagram is commutative since clearly we have

that the maps σN : G→ G/N are compatible with the required mapsm this is to

say that σN = πN ◦ σ. In this case, we call Ĝ the profinite completion of G.

Definition 2.11. [25]1.2.1 Let G be a group. The profinite completion of G, Ĝ, is

defined to be the inverse limit of the inverse system (G/N)N∈Λ over the directed

set Λ = {N | N ⊴ G, |G : N | < ∞} and the collection of compatible maps
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πN,M : G/M → G/N where πN,M(gM) = gN for M ≤ N .

Note that if G is a finite group, the both definitions for Λ agree since |G : H| <

∞ for all H ≤ G. As we have previously, for a finite group, G is isomorphic to its

own profinite completion.

It becomes useful to define a topology on the underlying set of a profinite

group. We would want the compatible system of maps to be continuous and for

the projection maps to be continuous. The most clear way of achieving this is

to say that each of the finite groups G/N is equipped with the discrete topology,∏
N⊴G, |G:N |<∞G/N with the product topology and Ĝ ⊆

∏
N⊴G,

|G:N |<∞
G/N with the

subspace topology. By taking the finest topology on the defining objects, we have

that this underwrites all of the fundamental properties that we wish to inspect.

Definition 2.12. [25]1.2.12 Let (Gj)j∈J be an inverse system of finite groups.

Consider each Gj with the discrete topology and
∏

j∈J Gj with the product topol-

ogy. The induced topology on Ĝ with the subspace topology is defined to be the

profinite topology.

Since we have that πN : Ĝ → G/N for each N ∈ Λ is a continuous map, we

have that π−1
N (1N) = ker(πN) = N ≤ G is open since {1N} is open in the discrete

topology. It follows that for each N ∈ Λ is open, and by a similar argument for

any {gN}, we have that an open base for the topology is given by cosets of the

normal subgroups of finite index in Ĝ. We note that we can conclude that this is

an open base for the profinite topology since it is defined by the discrete topology

on the finite quotients. Combining the group structure with the profinite topology,

we can consider a profinite group as a topological group.

Definition 2.13. [5]III 1, Definition 1 A topological group is a set G which carries

a group structure and a topology and satisfies the following two axioms:

1. The group multiplication map µ : G×G→ G, µ(x, y) = xy is continuous.

2. The group inverse map i : G→ G, i(g) = g−1 is continuous.
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This is to say that a group is a topological group if it can be equipped with a

topology such that the group multiplication and inverse maps are continuous. As

discussed, a profinite group is a topological group when considered as a topological

space with the profinite topology. When discussing profinite groups, we use this

property constantly and therefore we always consider a profinite group to be a

topological group under the profinite topology.

Naturally, if G is a profinite group, we use the notation H ≤o G to denote that

H is both an open subset of G and a subgroup of G. This itself is considered a

topological group with the induced subspace topology defined by the set of open

sets given by τ = {H ∩ U | U ⊆o G}. Since the open sets of G in the profinite

topology are equivalent to unions of the cosets of the open normal subgroups

of G, we have that an open base for the subspace topology on H is given by

{H ∩ gN | g ∈ G, N ⊴o G}.

Note that for each N ⊴ G, then we have N ∩ H ⊴ H ≤ G and N ∩ H ≤ H.

In particular, we have that N can be expressed as the union of disjoint cosets

of N ∩ H, that is to say N =
⋃
h∈N/N∩H hH ∩ N . Take an element of the open

base for the subspace topology gN ∩ H ∈ τ such that g ∈ G, N ⊴ G. It follows

that gN = g(
⋃
h hH ∩ N), substituting M = H ∩ N , we have gN = g(

⋃
hM).

Therefore, gN ∩H = (
⋃
ghM)∩H. Since N and H are disjoint unions of cosets of

M , it follows that for each h ∈ N/N ∩H, we have that either ghM ∩H = ghM or

ghM = ∅. It follows that each element of the open base of the subspace topology

can be expressed as a union of elements in the profinite topology.

Conversely, we know that an open base for the profinite topology is defined by

the cosets in H of each open normal subgroup M . Let M ⊴o H and consider the

element of the open base given by gM with g ∈ H. It is clear since M ≤ H that

gM = gM ∩ H and since M ⊆o G, we have that this is an element of the open

base of the subspace topology. It follows that both topologies are equivalent since

each representative of the open bases can be expressed as a union of the other.

It therefore follows that H can be viewed as a profinite group with the topology
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defined by either the subspace topology or the profinite topology since they are

equivalent.

As we had previously discussed, the profinite completion of a finite group is

isomorphic to the group itself. This is in fact true for all profinite groups and

therefore gives an isomorphism that is highly utilised in the subject of profinite

groups. Notably, since we have that all the maps involved are continuous, we have

that the groups are topologically isomorphic, and we quote a result that proves

this.

Proposition 2.14. [7]1.3 If G is a profinite group, then G is topologically iso-

morphic to its profinite completion Ĝ = lim←−N⊴oG
(G/N).

Note that this expression has many advantages, firstly that since G ∼= Ĝ

for G profinite, we have that the profinite completion is isomorphic to Ĝ ∼=

lim←−N⊴oĜ
(Ĝ/N), and so in order to find an inverse system with limit equal to a

given profinite group, it is sufficient to take the inverse system of quotients by the

open normal subgroups of G. Secondly, we know that each of the compatible maps

and projection maps of the profinite completion are surjective by construction and

so each group in the inverse system is entirely structurally described in the inverse

limit since πN : Ĝ → Ĝ/N is a surjective group homomorphism. Due to these,

when we are discussing a profinite group, we use G and Ĝ interchangeably since

they are isomorphic.

Having now defined profinite groups and remarking that they structurally pre-

serve each of the finite groups in an inverse system, we can now discuss the concept

of the Burnside ring of a profinite group. By definition 2.3, we have that for a

finite group G the Burnside ring of a finite group B(G) is the Grothendieck group

of the category G−set of finite G-sets. Given a profinite group G, we can define

the equivalent of a finite G-set by defining what is meant by left G-action on a

set. Since G is a topological group, we ensure that the map is also continuous by

requiring that there is a topology on the set to make it a topological space. In

general a left action of a topological group on a topological space is defined as
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follows.

Definition 2.15. [24]§1.1, §1.2 Let G be a topological group and X a topological

space. A left action of G on X is a continuous map ϱ : G×X → X such that

1. ϱ(g, ϱ(h, x)) = ϱ(gh, x) for g, h ∈ G, x ∈ X

2. ϱ(e, x) = x for x ∈ X, e ∈ G unit.

A left G-space is a pair (X, ϱ) consisting of a space together with a left action ϱ

of G on X.

Throughout we consider left actions and so we omit the word left, referring to

left G-spaces as G-spaces. Additionally, we denote ϱ(g, x) by gx and refer to the

G-space solely by its underlying topological space X, omitting the action ϱ. In

order to define a set X as a topological space, we need to equip it with a topology

and therefore a left G-action.

Definition 2.16. [9]Appendix B, §2 Let G be a profinite group. A G-set S is a

finite set with discrete topology on which there is a continuous left G-action.

We now have an equivalent for the finite G-sets for G a profinite group which

functions in a similar way to that of a finite group. Note that if G is a finite group,

then both definitions agree since in a finite group G we have that G is equipped

with the discrete topology. Dress, having defined these, then used this to define

the Burnside ring of a profinite group.

Definition 2.17. [9]Appendix B §2 For G a profinite group, consider the com-

mutative half ring to be the ring B+(G) of isomorphism classes of (finite) G-sets

formed by taking finite disjoint unions of the finite orbits. Then the Burnside ring

of G, B(G) is the corresponding Grothendieck ring.

As in the case of the Burnside ring of a finite group, this becomes the same as

considering the ring of isomorphism classes of finite virtual G-sets. Furthermore,

since each element is in a finite G-orbit, it must be stabilized by a subgroup of finite
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index, there is some subgroup H ≤ G such that |G : H| <∞ and H stabilizes the

orbit. Note that since H is finite, it is the preimage of a closed set since we can

consider the continuous map µ : G → G/H given by µ(g) = gH, and therefore

clearly H = µ−1(1H).

It follows that since the stabilizer of any orbit is closed and of finite index,

then it must be open and so we have that an arbitrary element X in B(G) can

be given by an isomorphism class representative X =
∑′

H≤oG
xH · G/H for some

xH ∈ Z. Since X is a virtual finite G-set, we have that at most finitely many of the

xH ̸= 0 since otherwise the underlying set of X contains infinitely many elements.

Conversely, we have that since we take the Grothendieck ring of finite G-orbits,

every (finite) linear combination of G-orbits is represented by an isomorphism class

in the Burnside ring. Subsequently, we have that the this describes all possible

elements of the Burnside ring. We adopt the convention of using X ∈ B(G) to

denote the isomorphism class of X.

For H a closed subgroup of finite index, which is to say it is open, we have that

there exists an open normal subgroupN ≤ H, N ⊴o G. It follows that the action of

G on G/H can be viewed as G/N action on G/H since gN ·hH = gh·NH = gh·H

and so we have that the action is entirely by the coset of N in G. Therefore, the

G action on G/H factors through the G/N action on G/H as a finite G/N -set

where G/N is a finite group.

By the above reasoning, we have that each element in the Burnside ring of a

profinite group can be considered as finitely many finite orbits. Take an element

of the Burnside ring X =
∑′

H≤oG
xH · G/H ∈ B(G), then we have that at most

finitely many of the xH ̸= 0. Let S denote the set of representatives of stabilizers of

the orbits in X. Since each of these is open, we have that their intersection defined

by K = ∩H∈SH is also an open subgroup, and clearly there is an open normal

subgroup N ⊴o G such that N ≤ K. It follows that we can view X ∈ B(G) as a

finite G/N -set where G/N is a finite group.

Therefore by a similar reasoning as above, we have that any element in the
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Burnside ring of a profinite group can be viewed as a G/N -set for N some open

normal subgroup of G. Note that in the case of finite groups, since we have that

1 ≤ H for each H ≤ G we have that the G-action is clearly equivalent to G/1-

action on each G/H. However, for infinite profinite groups, we do not necessarily

have a universal subgroup N such that each transitive finite G-set G/H can be

described by G/N -action on G/H. Note that in this way, we see that the N -action

on each of these G-sets must be trivial.

We can then construct a map πGN : B(G)→ B(G/N) for each N ⊴o G defined

to take the elements in each finite G-set which have a trivial N -action. This is

to say the elements in each finite G-set on which the group G/N summarises

the action of G. Explicitly, given X =
∑′

H≤oG
xH · G/H ∈ B(G), we have that

πGN(X) =
∑′

N≤H≤oG
xH · G/H since the N -action on an element is trivial if and

only if it lies in an orbit stabilized by H such that N ≤ H. It is easily verifiable

that πGN is a ring homomorphism.

We can therefore apply many of the same properties that we have in the case

of the Burnside rings of finite groups to the Burnside rings of profinite groups. For

H ≤o G, we can define a map resGH : B(G) → B(H) which as usual restricts the

action on a finite G-set to H-action. Furthermore, since the underlying set of a

finite G-set is a finite set, it follows that taking any H ≤c G, there are finitely

many points in any X ∈ B(G) which are fixed by H-action. It follows that we can

define theH-fixed points for anyH ≤c G in a similar way as we do for the Burnside

ring of a finite group, and therefore the following definition is well defined.

Definition 2.18. [9]Appendix B §2 Let G be a profinite group and H ≤c G, then

we can define the set of H-fixed points of an element X ∈ B(G) to be the set

XH := {x ∈ X | h.x = x for each h ∈ H}. Considering X =
∑

K≤cG
xK · G/K

with the usual expression, we have that we can define the number of fixed points

to be the map φH : B(G)→ Z given by φH(X) =
∑

K≤cG
xK · |(G/K)H |.

Taking the map φ : B(G)→
∏

H≤cG
Z to be defined by φ(X) = (φH(X))H≤cG,

we have a ghost map which is analogous to the ghost map of the Burnside ring
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of a finite group. As in the Burnside ring of a finite group, we have that the

preimage of any element of the ghost ring in the Burnside ring under the ghost

map is unique (up to equivalence). It therefore follows that the Burnside ring of a

profinite group is isomorphic to its image in the ghost ring.

Since G is a profinite group, it has a defined inverse system of finite groups

(G/N)N⊴oG indexed by the directed set of open normal subgroups of G. We recall

that the ordering we impose on this directed set is that of reverse inclusion on the

open normal subgroups, then for any N ≤ M (with inclusion ordering), we have

that there is a projection map π
G/N
G/M : B(G/N)→ B(G/M) as previously defined,

by taking theM fixed points. We note that strictly speaking this map should bear

the subscript (G/N)/(M/N), but since this is isomorphic to G/M , we choose to

write it in this way for ease of notation.

Furthermore, we have that there are canonical projections πGN : B(G) →

B(G/N) that take the N -fixed points of an element of the Burnside ring of a

finite group. If we have N ≤ M , then we have that all points which are fixed

by M must also be fixed by N , and so we have that there is a clear composition

of maps πGN ◦ π
G/N
G/M = πGM , showing that the maps themselves are compatible. As

previously stated, we have that these are all ring homomorphisms and so there is

a system of rings with compatible projection maps indexed by a directed set, and

therefore an inverse system of rings. It is natural then to take the completion of

this Burnside ring of a profinite group with respect to this inverse system which

will itself be a ring.

This ring was introduced by Dress and Siebeneicher, although starting from a

more explicit study of the elements of the completed Burnside ring [10]§2.3 and

later proven to be isomorphic to the completion of the Burnside ring of a profinite

group [10]§2.9.5 with the aforementioned inverse system. We now give the explicit

construction as given in the paper of Dress and Siebeneicher, which moves away

from the finite sets that we have discussed thus far and instead deals with possibly

infinite sets.
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By definition of the Burnside ring of the finite quotient G/N , we have that

each B(G/N) for N ⊴o G has a finite basis given by {[G/H] | N ≤ H ≤ G},

taking one representative of each equivalence class of G-orbit in B(G/N) and each

element of B(G) can be expressed as the inflation of an element of B(G/N) for

some N ⊴o G. However, in the completion of the Burnside ring, we just require

that an element is well behaved with respect to the compatible projection maps.

If we assume that G is a profinite group that has a collection of infinitely

many open normal subgroups {Ni | i ∈ N} such that Ni < Nj for all j < i and

let Bi denote a basis for B(G/Ni), then since G/Ni+1 /∈ B(G/Ni), we have that

Bi ⊂ Bi ∪ {G/Ni+1} ⊆ Bi+1. Note that πGNj
(G/Ni) = ∅ for j < i since

πGNj
(G/Ni) = {g ∈ G/Ni | h.gNi = gNi ∀h ∈ Nj}

= {g ∈ G/Ni | N g
j ≤ Ni}

but by the assumption we have that Ni < Nj and both are normal and so the set

is empty.

It follows that if we consider the infinite series
∑

i∈NG/Ni, then we have that

this is a well defined element of the inverse limit which is an infinite G-space (with

the discrete topology) in the completion of the Burnside ring which cannot be in

the Burnside ring. We therefore have that the Burnside ring of the completion of

the Burnside ring and the completion of the Burnside ring can be distinct, and in

fact always are distinct provided there are infinitely many open subgroups.

By abuse of notation, let πGN denote the corresponding projection map πGN :

B̂(G) → B(G/N) given by taking the N -fixed points. This is justified since we

have that clearly B(G) ⊆ B̂(G) and the restriction of πGN with this definition is

equal to the previous projection. This is to say that in the inverse limit construc-

tion, the unique map σ : B(G) → B̂(G) such that the required projections are

compatible is given by the inclusion map.

Furthermore, we note that since the completion is defined by the inverse limit

of the projections, then for each H ≤o G, we have that there exists N ⊴o G such
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that N ≤ H. Any H-fixed point must also be fixed by N -action and so we have

that φH/N(π
G
N(X)) = φH(X) for each X ∈ B(G). In a similar abuse of notation

as above, taking X ∈ B̂(G), we have that πGN(X) ∈ B(G/N) and so we define

φH(X) := φH/N(π
G
N(X)) for N ≤o H ≤o G, which is clearly in Z and so we have a

well defined function φH : B̂(G) → Z. A natural continuation of this is to define

the ghost map φ : B̂(G)→ Gh(G) as usual where φ(X) = (φH(X))H≤oG.

Definition 2.19. [10]§2.2 A G-space X is defined to be essentially finite if for

any open subgroup H ≤o G, the number of H-fixed points is finite. An essentially

finite that is also discrete are defined to be almost finite, this is to say that each

element in an almost finite G-space lies within a finite orbit.

Again, by definition of this topological G-space, we have that it can be de-

composed into distinct orbits. Suppose that X is a G-space, then we have that

X =
⊔′
x∈X G/Gx with the disjoint union taken over a single representative of each

G-orbit of X. Note that we can have infinitely many orbits, and that the orbits

themselves can be infinite for G a profinite group if G is infinite.

Note that as we are currently discussing actual (non-virtual) G-spaces then we

have that there is an expressionX =
⊔
H≤G xH ·G/H, and each xH ≥ 0 but possibly

infinite. Since G is open in G trivially, we have that |XG| =
⊔
xH · |(G/H)G| =

xG · |G/G| = xG. If X is essentially finite, then we have that xG ∈ Z and so in

particular there are only finitely many orbits of G/G.

Now suppose that K is a maximal subgroup of the set {H ≤o G}\{G}, then

we have that |XK | =
⊔
xH · (G/H)K = xK · |(G/K)K | + xG|G/G| and so if X

is essentially finite, we have that |XK | must be finite and as we have previously

shown xG must be finite, therefore xK must be finite. Since each H ≤o G has

an open normal subgroup of N ⊴o G such that N ≤ H, we have that G/N has

finitely many subgroups, and so there are finitely many subgroups which contain

a conjugate of H. Therefore, repeating this process inductively shows that for an

essentially finite G-space, we have xH ∈ Z for each H ≤o G.

Conversely, if xH ∈ Z for eachH ≤o G, then we have thatX must be essentially
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finite since each orbit containing an open subgroup in its stabilizer is finite and

therefore there are finitely many fixed points under the open subgroups of G. It

follows that every essentially finite G-space is of this form.

Recall that in the Burnside ring of profinite group, we have that the elements

of the Burnside ring can be identified up to equivalence by their fixed points.

Since essentially finite G-spaces have finite coefficients xH for each H ≤o G as

we have discussed above, it follows that we can use a similar justification that

the coefficients of G/H with H ≤o G in the canonical expression are uniquely

determined by the number of fixed points under the open subgroups. We define

this equivalence relation as follows.

Definition 2.20. [10]§2.2 Let G be a profinite group, and X, Y be two essentially

finite G-spaces. We say that X is equivalent to Y if we have that φH(X) = φH(Y )

for all H ≤o G.

Since every element in an almost finite G-space must lie in a finite orbit, and

each stabilizer of an orbit of a G-space is closed, we have that every element is

in an orbit stabilized by a closed subgroup of finite index. This is to say that

each orbit is stabilized by an open subgroup. It follows that each equivalence

class of an almost finite G-space contains a unique almost finite representative (up

to isomorphism of orbits) which can be given by X =
∑

H≤oG
xH · G/H. By the

definition of the equivalence relation, we can add as many orbits that are stabilized

by closed but not open subgroups of G as we may wish to X and stay within the

same equivalence class.

Conversely, if we take an essentially finite G-space Y , then we have that there

must be an almost finite representative in its equivalence class given by taking the

sum Y =
∑

H≤G yH ·G/H and restricting the series to summing only over the open

subgroups of G. This is to say the element X =
∑

H≤oG
yH · G/H is an almost

finite representative of the equivalence class, and by the previous discussion this is

unique up to isomorphisms of the orbits. It follows that every equivalence class of

an essentially finite G-spaces contains a unique almost finite representative (up to
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isomorphism of the orbits). We can then take these equivalence classes and define

what is meant by the completed Burnside ring.

Definition 2.21. [10]§2.3 Let G be a profinite group, then we define the completed

Burnside ring of G, denoted by B̂(G), to be the Grothendieck group of the virtual

isomorphism classes of almost finite G-spaces. This is equivalent to taking the

Grothendieck group of essentially finite G-spaces.

Since all addition and multiplication within the ring is well behaved on the

almost finite representative, which is to say that [X]+[Y ] = [X+Y ], we shall adopt

the convention of using the almost finite representative to denote the equivalence

class it represents. Clearly we have a multiplicative identity in this ring in the form

of 1 = G/G and an additive identity in the form of 0 = ∅. These align with what

we expect from a Burnside ring from the previous two definitions. The notation

B̂(G) may seem to clash with that given for the completion of the Burnside ring

of a profinite group, but as previously stated it can be shown that the completion

is isomorphic to the completed Burnside ring.

Theorem 2.22. [10]2.9.5 Let G be a profinite group, then the completed Burnside

ring B̂(G) is isomorphic to the completion of the Burnside ring of G. This is to

say that B̂(G) ∼= lim←−N⊴oG
B(G/N).

We shall use this isomorphism throughout this thesis intuitively. We note that

if G is a finite group, then we have that the definition of the Burnside ring of a

finite group agrees with the Burnside ring of a profinite group and the completed

Burnside ring of the finite group. If G is an infinite profinite group, then we have

that the definition of the Burnside ring of a profinite group is contained within

the completed Burnside ring of a profinite group. We adopt a convention for the

rest of the thesis of using ‘Burnside ring’ to refer to the completed Burnside ring

since this shall be the ring we are considering in most cases. If the non-completed

Burnside ring is meant, it shall be made clear.

Definition 2.23. Let G be a profinite group, and H ≤o G, then we have ring
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homomorphisms resGH and φH . The map resGH : B̂(G)→ B̂(H), as in the previous

cases, is given by taking the same underlying set of X ∈ B̂(G) and considering it

under the restriction to H-action. For G/K ∈ B̂(G), we have that the restriction

is resGH(G/K) =
∑

g∈[H\G/K]H/H ∩ gK.

For X =
∑

K≤oG
xK · G/K, we have that the map φH : B̂(G) → Z which is

defined by φH(X) =
∑′

K≤oG
xK · |(G/K)H |.

Since these are defined on the basis elements, it is sufficient to show how they

map the basis elements. In the case of the restriction, we already have an explicit

formula. The formula for φH(G/K) for K ≤o G is calculated in a similar way as

finite groups. That is to say that we have the H-fixed points of G/K are given by

φH(G/K) = |{gK ∈ G/K | h.gK = gK ∀h ∈ H}| = |{gK ∈ G/K | Hg ≤ K}|.

One immediate consequence of this is that in particular, if we take the H-fixed

points of G/H, then φH(G/H) = |{gH ∈ G/H | Hg ≤ H}| = |NG(H) : H|.

Definition 2.24. For H ≤o G and N ⊴o G, we have that there are linear maps

indHG and InfGG/N called the induction and the restriction respectively. The induc-

tion map indGH : B̂(H) → B̂(G) is defined by indGH(H/K) = G/K. The inflation

map InfGG/N : B(G/N)→ B̂(G) is given by InfGG/N((G/N)/(K/N)) = G/KN .

2.3 Fusion systems

With the Burnside rings defined above, we have a method of discussing when

G-sets or G-spaces have a suitably rigorously defined form of similarity. In the

case of Burnside rings of finite groups they are isomorphic and in the case of the

(completed) Burnside ring of a profinite group equivalently. However, as shown

by [18]Reeh, we can also define G-sets that behave similarly under the action

of different subgroups. This is to say we can define an equivalence relation on

the subgroups of a group to ensure that the action under any subgroup in an

equivalence class is comparable to any other element in the equivalence class on

some specific G-sets.
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Firstly, we let G be a finite group. Consider the orbit G/H which is stabi-

lized by H-action. We have already stated that this is isomorphic to G/K for

K conjugate to H. Furthermore, we have that G-sets can be classified (up to

isomorphism) by the Ghost map, recalling that X ∼= Y as G-sets if and only if

φ(X) = (φH(X))H≤G = (φH(Y ))H≤G = φ(Y ). A reasonable candidate for when

H and K act similarly is if φH(X) = φK(X) for all X in some collection of G-sets.

Suppose that we haveH,K ≤ G and that φH(X) = φK(X) for eachX ∈ B(G).

It follows that in particular, we have that |NG(H) : H| = φH(G/H) = φK(G/H).

By a previous observation of the fixed point map, we must have that K ≲ H,

that is to say that K is conjugate to some subgroup of H. Conversely, we have

that φH(G/K) = φK(G/K) = |NG(K) : K| and so H ≲ K, therefore we must

have that H is conjugate to K. It is trivially true that φH(X) = φK(X) for all

X ∈ B(G) and so we have an if and only if statement.

We first wish to define an equivalence relation on the subgroups that we wish

to act similarly, and from this we can which G-sets they act similarly on. There

is a natural condition the we wish to impose, that the subgroups in question be

isomorphic. It is natural to define a category with objects the subgroups and

morphisms induced by the isomorphisms we wish to consider. By first instinct,

we consider the isomorphisms induced by conjugation within a larger group. It is

with this in mind that we introduce the definition of a fusion system.

Definition 2.25. [14]Linckelmann 1.1 LetG be a finite group and let S be a Sylow-

p-subgroup of G. We define the fusion system of G over S to be the category

denoted by FS(G) with ob(FS(G)) = {P | P ≤ S} and morphisms given by

HomFS(G)(P,Q) = HomG(P,Q) for each P,Q ∈ ob(FS(G)) with the morphisms

induced by conjugation in G. That is to say that the set of morphsism between

P and Q is HomG(P,Q) = {ψ : P → Q | ∃x ∈ G such that ψ(u) = xu ∀u ∈ P}.

Composition of morphisms is given by usual composition of group homomorphisms.

Note that with this definition, if we take P,Q ≤ S such that P is S-conjugate

to Q, then we have that they lie within the same FS(G) isomorphism class since
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there is clearly a conjugation map induced from S. If S = G, then the isomorphism

classes of FS(G) are precisely the S-conjugacy classes of subgroups of S. It follows

that each FS(G) isomorphism class of a subgroup of S is given by the disjoint

union of S-conjugacy classes of subgroups of S.

Given this, it is naturally motivated that we wish for the action to agree on

FS(G) conjugacy classes. Since the objects in this category are given by subgroups

of S, then it is clear that we study S-sets since the action by objects is already

restricted to S-action. However, as we have already noted, if we consider all S-sets,

we have that they cannot agree unless the FS(G) isomorphism classes agree with

the S-conjugacy classes.

We must make rigorous what it means for subgroups to act similarly on an

S-set. Suppose that P,Q ≤ S lie within the same FS(G) isomorphism class,

then there is ψ ∈ HomFS(G)(P,Q) such that Q = ψ(P ). By act similarly, as

we have expressed above, we mean that if X is an S-set, then P and ψ(P ) act

isomorphically on X as P -sets. Since we wish for this to be the case for any given

FS(G) isomorphism class, we have that this must hold for each isomorphism class,

and therefore for any subgroup P ≤ S. This property is summarised as follows.

Definition 2.26. [18]Reeh §1, (1.2) Let X be an S-set and P ≤ S, then we write

P,ψX to denote the P -set with the same underlying set as X with P -action defined

by g.x = ψ(g).x with the right hand side using the S-action on X. If F is a fusion

system over a p-group S, we define an S-set X to be F -stable if P,ψX ∼=P,incl X as

P -sets for all P ≤ S and ψ ∈ HomFS(G)(P, S).

Therefore, we wish to consider all S-sets which are F -stable, building from the

definitons of fusion systems. We can, however, define in a more abstract way a

fusion system over a p-group S. Note that currently, the only role that G plays is to

provide the morphism maps in the category. We can instead derive the properties

of the conjugation maps that make them suitable and define the fusion system

from them.

Let S be a p-group and suppose that C is a category with ob(C) = {P | P ≤ S},
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we wish to describe the morphisms of C such that they somewhat behave like

conjugacy maps. Firstly, we note that conjugacy maps are injective and so we

wish for the morphisms in C to be injective since it ensures that the domain of

a morphism is isomorphic to its image. Trivially, we wish that the morphisms

induced by conjugation by elements of S are included in the morphisms of C.

Finally, we wish that for each morphism, ψ, in the category, we have that there is

an induced isomorphism in the category to the image of ψ which guarantees that

all isomorphic images lie within the same C-isomorphism class.

Definition 2.27. [18]Reeh 2.1 Let S be a finite p-group, then we say that F is a

fusion system over S if it is a category with ob(F) = {P | P ≤ S} and morphisms

that satisfy the following properties for each P,Q ∈ ob(F).

1. φ : P → Q is an injective group homomorphism, where composition of

morphisms is the usual composition of group homomorphisms.

2. HomS(P,Q) ⊆ HomF(P,Q) where HomS(P,Q) = {cg : P → Q | g ∈ S} is

the set of morphisms induced by conjugation in S.

3. For each ψ ∈ HomF(P,Q), then the induced isomorphisms ψ̂ : P → ψP and

ψ̂−1 : ψP → P are also morphisms in F .

This shall be the ongoing definition we use for a fusion system over a finite

group S. It is easily verified that FS(G) is also a fusion system by this definition.

Furthermore the definition given for F -stability also holds for this definition of a

fusion system. Due to the close connection with the conjugacy maps, we write

P ∼F Q if they are isomorphic in F and we say that they are F -conjugate. Under

this equivalence relation, we use [P ]F to denote the equivalence class. We shall

use P ≲F Q to denote that P is F -conjugate to a subgroup of Q. If the context

is clear, we shall omit the subscript F .

However, this is a weaker definition than that of a fusion system over G since

we lose any result gained by S being a Sylow-p-subgroup of G. We therefore define

a class of fusion systems that have these properties.
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Definition 2.28. [18]Reeh §2, 2.2 Let F be a fusion system over a finite p-group

S. We define P ∈ ob(F) to be fully-normalized in F if |NS(P )| ≥ |NS(Q)| for

each Q in the F isomorphism class of P .

Likewise, we define P to be fully-centralized in F if |CS(P )| ≥ |CS(Q)| for each

Q in the F isomorphism class of P . A fusion system F over a p-group S is defined

to be saturated if the following are satisfied for each P ∈ ob(F):

1. If P is fully-normalized, then AutS(P ) is a Sylow-p-subgroup of AutF(P )

and P is fully-centralized.

2. Every homomorphism ψ ∈ HomF(P, S) where ψ(P ) is fully-centralized ex-

tends to a homomorphism ψ ∈ HomF(Nψ, S) where Nψ = {x ∈ NS(P ) | ∃y ∈

S such that cx ◦ ψ = ψ ◦ cy}.

If F is a fusion system given by G over S, then we have that F is saturated.

Throughout this thesis, most of the fusion systems we discuss will be saturated.

As may be expected, since we wish to discuss the F -stable S-sets, we can define a

ring structure which allows us to combine F -stable S-sets as we do in the case of

the Burnside rings of finite groups and profinite groups. We do this in the most

apparent way by taking all F -stable elements of B(S).

Definition 2.29. [18]Reeh 4.5 Let F be a saturated fusion system over a finite

p-group S. We define the Burnside ring of F to be the F -stable elements of B(S)

and is denoted B(F).

It is also shown in [18]Reeh that as a consequence of [18]Reeh 4.11, we have

that this is equivalent to taking the Grothendieck group of all actual F -stable

S-sets, which is to say that there is a basis of actual F -stable S-sets of this ring.

These basis elements of B(F) are given by taking S/P for P fully-normalized and

F -stabilizing it through a recursive combinatorial process in order to ensure that

the number of fixed points are constant on the F isomorphism classes.

The process of calculating these basis elements αP for P fully-normalized is

outlined as follows. Firstly, we note that since we try to stabilize the S-orbit S/P
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for P fully-normalized. This is to say that we start with S/P and attempt to find

a linear combination of elements to add to S/P to create an element αP such that

ϕQ(αP ) = φQ′(αP ) for all Q ∼F Q′. For Q ̸≲ P , we have that φQ(S/P ) = 0 and

so we do not need to add S/Q.

It follows that we need only stabilize for Q ≲F P . Let αP =
∑

Q∈ob(F) xQ ·S/Q

Suppose that Q ∼F P , then it follows that φQ(αP ) = xQ · |NS(Q) : Q|. We

note that φP (αP ) = |NS(P ) : P | and so we wish for φQ(αP ) = |NS(P ) : P |. It

follows that xQ = |NS(P )|
|NS(Q)| , therefore we have that αP is the F -stabilization of the

element X :=
∑

[Q]S⊆[P ]F

|NS(P )|
|NS(Q)| · S/Q. Here, it becomes clear as to why we have

the condition that P is fully-normalized in order to ensure that all coefficients are

integers since |NS(P )| is maximal in the F -conjugacy class.

Take H a maximal subconjugate subgroup of P which is fully-normalized. This

is to say take K a maximal proper subgroup of P and take H a fully-normalized

representative of the F conjugacy class of K. With the motivation that this should

be a basis, we wish for xH to be 0 for any fully-normalized subgroup which is not

isomorphic to P . This ensures that they are linearly independent since S/H only

appears in the summation αH .

Let H ′ ∼F H but not S-conjugate, it follows that if we consider φH(X + xH ·

S/H) = φH(αP ) = φH′(αP ) = φH′(X + xH′ · S/H ′). Since we have xH = 0, then

φH(αP ) = φH(X) = φH′(X) + φH′(xH′ · S/H ′). Therefore, since φH′(S/H ′) =

|NS(H
′) : H ′|, it follows that xH′ :=

φH(X)−φH′ (X)

|NS(H′):H′| for each [H ′]S ⊂ [H]F\[H]S and

xH = 0. Take X1 := X +
∑

[H′]S⊆[H]F
xH′ · S/H ′, then αP is the F -stabilization of

X1.

Let H = {[K]F | K ≲F P}. We repeat this process for X1 and some maximal

fully-normalized subgroupK ofH\{[H]F}, defining the resulting S-set to be stabi-

lized to be X2 and iterating the process now over the set H\{[H], [K]}. We repeat

the process until H is empty, and the resulting S-set, X|H|, is F -stable since the

fixed point maps are constant across F -conjugacy classes of subgroups. It follows

that αP := X|H| and they are linearly independent for each P fully-normalized.
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Corollary 2.30. [18]Reeh 4.11 Let F be a saturated fusion system over a finite

group S, then the set {αP | P ∈ ob(F) is fully-normalized} is a basis for B(F).

Therefore with a fusion system over a a finite p-group S, we have a method

to describe every F -stable virtual S-set and an accompanying Burnside ring. By

definition, we have that B(F) ⊆ B(S) is a subring. Note that in the case when

F = FS(G), if we take X ∈ B(G) then this is a (virtual) G-set with φH(X) =

φK(X) for each H ∼G K. Since the F -conjugacy class, we have that resGS (X)

must be an F -stable S-set since if H ≤ S,G then we have φH(X) = φH(res
G
S (X))

as the number of fixed points under H action is unchanged.

Furthermore, considering the map resGS : B(G) → B(S) it then follows that

Im(resGS ) ⊆ B(F) ⊆ B(S). It was claimed by [18]Reeh Example 4.3 that we cannot

have equality in the first inclusion since there are F -stable S-sets which cannot

be given by the restriction of any actual G-set. However, [3]Barsotti and Carman

Theorem 7.1 subsequently proved that this is in fact an equality and that in order

to be a surjection, one must consider virtual and not just actual G-sets.

Theorem 2.31. [3]Barsotti, Carman 7.1 Let G be a finite group and S a Sylow-

p-subgroup of G and take the fusion system of G over S, FS(G) = F . Then for

the map resGS : B(G)→ B(S), we have Im(resGS ) = B(F).

Thus far in this subsection, all groups have been finite. With the observation

that the Burnside ring of a fusion system is a subring of a Burnside ring of a finite

group, a natural question arises of if we can establish some subring of the Burnside

ring of a profinite group that behaves similarly. In order to do so, we first need an

analogue of a fusion system for a profinite group.

Given the way that the profinite groups and the Burnside rings of profinite

groups are defined, we have already established machinery for extending the theory

from a finite setting to a profinite setting through the inverse limit. It is intuitive

that we define an similar structure to fusion systems of a finite group for profinite

group by taking the inverse limit of an inverse system of fusion systems over finite

groups.
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Suppose that each Fi is a fusion system over Si. For any inverse system, we

must describe a family of compatible maps. That is to say a map Fi → Fj for

each i ≤ j under some ordering that are compatible. Since each Fi is a fusion

system, in particular we have that each Fi is a category and so by taking each

of these compatible maps to be functors, we have that the inverse limit will itself

be a category. Consequently, we must define the mappings of each object and

morphism in each fusion system in the inverse system.

Consider Fj,i : Fi → Fj a functor and we attempt to define the mappings for

each object in Fi. Since the objects in question are subgroups of Si, and that

this is an inverse system, we have that they must be mapped to objects in Fj, in

particular to subgroups of Sj. Therefore, we must have compatible maps between

the subgroup of the respective p-groups.

If we determine the image of Si then it must entirely determine the image

of each of its subgroups, and since we have that each image of a subgroup must

be a subgroup in the image of the functor, it follows that they must be group

homomorphisms. It is therefore justified that we have an inverse limit of the Si as

groups. In order to map the morphisms, we can simply consider the induced maps

between the image of the objects.

Take {fj,i : Si → Sj | i ≤ j} to be a family of group homomorphisms over

some directed set I. For any inverse system of fusion systems, we have that there

must exist such a family and directed set since they must be compatible. We can

therefore define Fj,i(P ) = fj,i(P ) for each P ∈ ob(Fi).

Definition 2.32. [21]Stancu, Symonds 2.7 Suppose that we have an inverse system

of fusion systems over finite groups, Fi over Si a finite p-group respectively, indexed

by a directed set I. By the definition of an inverse system, we have a compatible

family of functors {Fj,i | i, j ∈ I, i ≤ j}, Fj,i : Fi → Fj such that Fj,i(P ) = fj,i(P )

for each P ∈ ob(Fj). We set S = lim←−i∈I Si and let fi : S → Si be the induced

projections, Ni = ker(fi).

Define F := lim←−i∈I Fi to be a pro-fusion system over S. This is to say the category
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with ob(F) = {P | P ≤c S} and morphisms for each P,Q ∈ ob(F) given by

HomF(P,Q) = lim←−i∈I HomFi
(fi(P ), fi(Q)).

In the case of the profinite completion of a group G, we have that we can take

the inverse system formed by taking the finite quotients {G/N | |G : N | <∞}. In

this way, we can start with a group and derive an inverse system. In the previous

definition, a clear candidate for such an inverse system is given by taking S/Ni

since S/Ni
∼= Si is a finite group. In particular, we require that these Ni are closed

under the action of morphisms. We also define what it means for a pro-fusion

system to be saturated.

Definition 2.33. [21]Stancu, Symonds §2.4 Let S be a pro-p group and F be a

pro-fusion system over S. Q ≤c S is defined to be strongly closed in S with respect

to F if for all ψ ∈ HomF(Q,S), then for R ≤ Q, we have that ψ(R) ≤ Q.

Definition 2.34. [21]Stancu, Symonds 2.14, 2.15 Let F be a pro-fusion system

over S. Q ∈ ob(F) is defined to be receptive in F if for each R ∼F Q and

ψ ∈ HomF(R,Q), there exists ψ̃ ∈ HomF(Nψ, NS(Q)) such that ψ̃|R = ψ where

Nψ = {x ∈ NS(R) | ∃y ∈ S such that cx ◦ ψ = ψ ◦ cy}.

Let K ≤ AutF(Q), we define Q to be fully K-automized in F if AutKS (Q) :=

K ∩ AutS(Q) is a Sylow pro-p subgroup of K.

We define Q to be fully K-normalized in F if Q is receptive and fully K-automized

in F . If K = AutF(Q), then we say that Q is fully F -normalized

In practice, when the context of the pro-fusion system is clear we omit F

and say that Q is fully normalized if it is fully F -normalized. Recall that the

definition given for a (finite) fusion system is far less demanding since it only

requires |NS(Q)| to be maximal across the F -conjugacy class of Q. However, we

note that the conditions given in the above definition relate to those that we have

given for a finite fusion system to be saturated. It then becomes sufficient that with

these properties that each F -conjugacy class contains a fully normalized element

in order for the pro-fusion system to be saturated. As mentioned, we broadly only
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use saturated fusion and pro-fusion systems and therefore the definition of fully

normalized intuitively agrees in this case.

Definition 2.35. [21]Stancu, Symonds 2.16 A pro-fusion system F over S is de-

fined to be saturated if each F isomorphism class contains a fully normalized

subgroup of S.

We use Ff.n. to denote the set of all representatives of fully normalized sub-

groups in F . If F is saturated then we have a representative in Ff.n. for each F -

conjugacy class of subgroups. In the case of saturated fusion systems, it becomes

easy to take the quotients and therefore form an inverse limit of the quotients. As

previously mentioned, we have a candidate for quotients given by S/Ni and so we

need to define the morphisms on S/Ni. The following definition and result show

that in the case of a saturated fusion system, this is well behaved.

Definition 2.36. [21]Stancu, Symonds §2.4 Let F be a fusion system, N a strongly

F -closed subgroup of S, then we define F/N to be the fusion system on S/N with

morphisms given by the condition ψ ∈ HomF/N(PN/N, S/N) if and only if there

exists ψ̃ ∈ HomF(PN, S) such that ψ(uN) = ψ(u)N for all u ∈ P .

Corollary 2.37. [21]Stancu, Symonds 2.6 Let F be a saturated fusion system on

a finite p-group S

1. If F : F → G is a morphism of fusion systems, then F (F) is a saturated

fusion system isomorphic to F/ker(F ).

2. If N is a strongly closed subgroup of S, then F/N is induced by the subgroups

of S that contain N and their morphisms.

This result states that for a finite fusion system, taking the morphisms between

fusion systems is well defined by taking quotients. In particular, we can form an

inverse system of these quotients with the strongly closed subgroups being given

by kerj,i. This almost naturally translates to pro-fusion system with one notable

exception. This result requires that we contain a kernel of a projection map, and so
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we have that a saturated pro-fusion system projects only onto the finite quotients

as saturated fusion systems. Note that by the definition, we also include closed

but not open subgroups of S.

Proposition 2.38. [21]Stancu, Symonds 3.7 For any saturated pro-fusion system

F over a pro-p group S we have that F ∼= lim←−N∈N F/N where N is the set of open

strongly closed subgroups of S.

Definition 2.39. [21]Stancu, Symonds 4.1 A pro-fusion system F is pro-saturated

if it is an inverse limit of saturated fusion systems of finite groups.

There is subtlety between the definition of pro-saturated and saturated, and

they do not in general coincide, however for the results stated in this thesis, it

is regularly sufficient for the pro-fusion systems to be either saturated or pro-

saturated. We denote the restriction of the pro-fusion system F over a pro-p

group S to the open subgroups of S by Fo. This is the full subcategory of F

formed by taking ob(Fo) = {P |P ≤o S}. We write F(P,Q) = HomF(P,Q) to be

the set of F -homomorphisms from P to Q

3 Burnside ring of pro-fusion systems

3.1 Fo-stable S-spaces

We seek to establish a ring structure for the isomorphism classes of a fusion-

stable G-space, much in the same way as the completed Burnside ring does for

the isomorphism classes for conjugacy stable G-spaces. In order to explore this

notion, we codify being fusion stable as the following and follow a similar process

to [18]Reeh, we begin by recalling definition 2.26.

Definition 3.1. [18]Reeh §1, (1.2) Let X be an S-set and P ≤ S, then we write

P,ψX to denote the P -set with the same underlying set as X with P -action defined

by g.x = ψ(g).x with the right hand side using the S-action on X. If F is a fusion
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system over a p-group S, we define an S-set X to be F -stable if P,ψX ∼=P,incl X as

P -sets for all P ≤ S and ψ ∈ HomFS(G)(P, S).

This is the finite case and the motivation for us to extend this notion to the

profinite case. We do so in the natural way and this results in the following, we

make the adjustment that we only consider the open subgroups since we discern

isomorphic almost finite G-spaces through the image in the ghost ring under the

fixed point map. This is to say that when considering elements within the Burnside

ring, we take only the equivalence classes of virtual G-spaces determined by the

number of fixed points under the action by the open subgroups. Therefore, in

trying to establish a Burnside ring of a pro-fusion system as a subring of the

Burnside ring, it suffices for us to only consider stability under the action of open

subgroups.

Definition 3.2. Let X be an almost finite S-space and P ≤o S, then we write

P,ψX to denote the P -space with the same underlying set as X and P -action

defined by g.x = ψ(g).x with the right hand side using the S-action on X. If F is

a pro-fusion system over a pro-p group S, we define a S-space X to be Fo-stable

if P,ψX ∼=P,incl X as P -spaces for all P ≤o S and ψ ∈ HomF(P, S).

As discussed in the background section, since the Burnside ring is isomorphic

to its image in the ghost ring, it is sufficient to consider the number of fixed points

of an almost finite G-space under the open subgroups. Therefore, we prove the

following results based on fixed points in order to more easily classify almost finite

G-spaces. This follows on from the result [18]Reeh Lemma 4.1 for a fusion system

of a finite group and so we prove the corresponding result for a pro-fusion system

over a pro-p group S.

Proposition 3.3. The following are equivalent ∀X ∈ B̂(S);

(i) P,ψX ∼=P,incl X for each ψ ∈ HomF(P, S) and P ≤o S,

(ii) φP (X) = φψP (X) for each ψ ∈ HomF(P, S) and P ≤o S,

57



(iii) φP (X) = φQ(X) for each P,Q ≤o S with P ∼F Q.

Proof. We note that the S-spaces in B̂(S) are by definition almost finite. For

P ≤o S, we have the restriction map resSP : B̂(S) → B̂(P ) which takes the same

underlying space and considers only the P -action on that space. It follows that

resSP (X) is a (virtual) almost finite P -space for each X ∈ B̂(S). Given that in this

case, there is no difference between X and resSP (X) under P -action, by abuse of

notation we use in this proof X to also denote resSP (X) when the context of the

action is made clear.

Let φP : B̂(P ) 7→ ZO(P ) :=
∏

K≤oP
Z be the fixed point map into the ghost

ring of P . For R ≤o P , φPR denotes the map into the R coordinate in the ghost

ring. If P is open in S, then we have that we have an open basis of open normal

subgroups of P of the form P ∩N with N ⊴o S. It follows that any open subgroup

of P must contain some P ∩N . In particular, R must contain some P ∩N , but P

and N are open in S, therefore R is a union of cosets of an open group of S and

so must be open in S.

Note that when R ≤o P ≤o S, we have φPR(P,inclX) = φR(X) and that if R

is open in P , this implies that R is open in S. Now consider the R fixed points

(P,ψX)R = {x ∈P,ψ X | φ(r).x = x ∀r ∈ R} = XψR for any (almost finite) S-space

X and all R ≤o P . It then follows that φPR(P,ψX) = φψR(X) for X ∈ B̂(S) since

the number of R fixed points is not altered by the setting of the larger group.

Assume that property i) holds, then φP (X) = φPP (P,inclX) = φPP (P,ψX) =

φψP (X). This is allowable since if P ≤o S, then there exists some Ni ≤ P such

that Ni is open and strongly closed subgroup of S. By the definition of strongly

closed, it follows that Ni = ψ(Ni) ≤ ψ(P ) and so ψP ≤o S and the ψP -fixed point

map is defined for any almost finite S-space. In particular this holds ∀P ≤o S and

φ ∈ HomF(P, S) so we have that i) implies ii).

Assume that property ii) holds and take P ≤o S, ψ ∈ HomF(P, S). By this

assumption, we have that φψR(X) = φR(X) for each R ≤o P for any almost finite

S-space X. Consequently, we have φPR(P,ψX) = φψR(X) = φR(X) = φPR(P,inclX).
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However, since the ghost map φP is injective, we necessarily have that the almost

finite P -spaces P,φX ∼=P,incl X and so ii) implies i).

Finally, we have ii) and iii) are equivalent since P ∼F Q precisely means that

there exists ψ ∈ HomF(P, S) such that Q = ψP . Therefore we have shown that

all three properties are equivalent.

3.2 Burnside ring of a pro-fusion system B̂(F)

Equipped with this notion of Fo-stability, we can now begin to define a Burnside

ring structure of a pro-fusion system. Fundamentally, we begin by defining a

means of combining actual almost finite S-spaces, in particular we take the induced

addition (disjoint union) and multiplication (cartesian product) from the Burnside

ring of a profinite group and create a subsemiring in which we do not consider

formal negation of S-spaces.

Definition 3.4. Let S be a pro-p group, then we define B̂+(S) to be the subsemir-

ing of B̂(S) consisting of isomorphism classes of actual almost finite G-spaces,

which is to say the elements in B̂(S) with representative X =
∑

H≤oS
xH · S/H

such that xH ≥ 0 for each H ≤o S.

For F a pro-fusion system over the pro-p group S, define B̂+(F) ⊆ B̂+(S) to be

the set of all isomorphism classes of (non virtual) Fo-stable almost finite S-spaces.

Intuitively, it is clear that we also wish for B̂+(F) to also be a subsemiring, that

is to say that it should be closed under multiplication and addition and the addition

and multiplication are suitably distributive. We already have 0 = ∅ is in B̂+(F)

since φP (∅) = 0 for all P ≤o S, and therefore φP (∅) = φQ(∅) for each P ∼F Q

and so is Fo-stable. Distributivity comes naturally from the multiplication and

addition being induced by the operations in B̂(S).

Take X, Y ∈ B̂+(F) and consider the restriction of the P -fixed point map

φP : B̂+(F)→ Z for P ≤o S. It is clear that φP is a ring homomorphism since it

is defined additively on the basis elements of B̂(S). It follows that φP (X + Y ) =

φP (X) + φP (Y ) = φQ(X) + φQ(Y ) = φP (X + Y ) for each P ∼F Q and so
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X + Y is also Fo-stable. Similarly, we have φP (X × Y ) = φP (X) × φP (Y ) =

φQ(X) × φQ(Y ) = φQ(X × Y ) for each P ∼F Q and so X × Y is Fo-stable.

Consequently we have that B̂+(F) is a subsemiring of B̂+(S).

This then gives us methods of combining actual almost finite S-spaces which

are Fo-stable. We cannot immediately from this definition state that every every

virtual Fo-stable S-space can be expressed as the difference of two actual almost

finite Fo stable S-spaces. That is to say that it may be possible for there to be

an element X − Y ∈ B̂(S) with X, Y ∈ B̂+(S) such that X − Y is Fo-stable but

X and Y themselves are not Fo-stable. With this in mind, we can define a subset

of B̂(S) by taking all virtual almost finite Fo-stable S-spaces. It becomes a ring

with the induced ring structure from B̂(S) with similar reasoning as above.

Definition 3.5. Let F be a saturated pro-fusion system over S. We define the

Burnside ring of F , B̂(F), to the subring consisting of F -stable elements in B̂(S).

For the Burnside ring of a (finite) fusion system, [18]Reeh Theorem A showed

that B(F) can be generated by taking the Grothendieck group of B+(F) by finding

a basis for B(F) in terms of the elements from B+(F). This is to say that in fact

we do have the property that every virtual finite F -stable S-set is expressible as

the difference of two actual finite F -stable S-sets. We seek to show that the same

can be done for the Burnside ring of a pro-fusion system. In order to do so, we

first examine the structure of the Burnside ring of a pro-fusion system.

3.3 Structure of B̂(F)

As discussed in the definition 2.25, we have that there exists a class of (finite)

fusion systems given by FS(G) such that S is a Sylow-p-subgroup of G, with

morphisms induced by conjugation in G. We note that we can naturally extend a

similar structure to a profusion system by taking FS(G) where S is a Sylow pro-p

subgroup of the profinite group G with the morphisms induced by G-conjugation.

Furthermore, [3]Barsotti and Carman theorem 7.1 showed that for a (finite) fusion

system F = FS(G), then B(F) = Im(resGS ). However, for the Burnside ring of
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a profinite group, the definition of the ring homomorphism resGS : B̂(G) → B̂(S)

requires that S ≤o G.

The need for this can be evidenced by taking an infinite profinite group G

and considering X ∈ B̂(G) where X =
∑′

N⊴oG
G/N . We have shown in the

background section that this must be an infinite (actual) almost finite G-set. Note

that the number of 1-fixed points in an orbit is equal to the cardinality of the orbit

since every point in a topological space is fixed by 1-action. It follows that for X,

since this is an actual G-space, that the number of 1-fixed points is equal to the

cardinality of X, i.e. |X| since there are no formal negations of orbits. It follows

that X cannot be viewed as an almost finite 1-space since it does not have finitely

many 1-fixed points and so does not have a representative in B̂(1) ∼= Z.

We first examine the class of pro-fusion systems defined by F = FS(G) for G a

profnite group and S a Sylow pro-p subgroup of G such that S ≤o G. We consider

the map resGS : B̂(G) → B̂(S) given by restricting the G-action on G-spaces to

S-action. Then for J ≤o S ≤o G we have φJ(G/H) = φJ(res
G
S (G/H)) since this

is the number of fixed points under J action, which remains the same regardless

of the which group it is seen as a subgroup of. Since φJ(G/H) = φJg(G/H) for

each g ∈ G, it follows that φJg(resGS (G/H)) = φJ(res
G
S (G/H)) and so we have

that resGS (G/H) is Fo-stable since each of the morphisms in F are induced by

G-conjugation.

The map resGS is a ring homomorphism since the underlying space remains

the same under the image, it is just the action on it which changes. It follows

that Im(resGS ) is a subring of B̂(S) which is Fo-stable and so is a subring of B̂(F).

Clearly by the first isomorphism theorem we have that Im(resGS )
∼= B̂(G)/ker(resGS )

where ker(resGS ) = {X ∈ B̂(G) | φH(X) = 0 ∀H ≲o S}. The condition that S ≤o G

is a rather restrictive one, however as we shall note from the following well known

result that we prove.

Lemma 3.6. Suppose that G is an infinite profinite group. Then there is at most

one prime p for which the pro-p Sylow subgroup is open in G.
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Proof. Suppose there are S1 ≤o G a Sylow pro-p-subgroup and S2 ≤o G a pro-q-

subgroup respectively for p ̸= q. Note that since they are both open, then they

must be of finite index. It follows that qk divides |G : S1| and since S1 is pro-p,

we have that the order of a Sylow pro-q subgroup of G must be qk. However, this

then implies that S2 is of order qk and of finite index in G, therefore G must be

finite which is a contradiction.

A consequence of this result is that since for G infinite, there is at most one

prime p such that the Sylow pro-p subgroup, S, of G is open, it follows that S

(up to conjugacy) is the only subgroup such that there is a fusion system defined

over S and has a well defined map resGS : B̂(G) → B̂(S). In essence, this method

of defining a pro-fusion system is limiting for this approach to considering some

of the Fo-stable element since for each infinite profinite G there is at most one

pro-fusion system for which we have a map resGS : B̂(G)→ B̂(F).

We note that this differs from the case for a finite fusion system since then

we have a well defined fusion system with corresponding restriction map for each

prime divisor of the order of |S|. Therefore, in the case of a pro-fusion system,

it is beneficial to consider other methods. In particular, we note that in a pro-

fusion system we have the inverse limit, and so we can use this to make use of

results from the finite quotients. Recall that Ĝ ∼= lim←−N⊴oG
G/N implies that

B̂(Ĝ) ∼= lim←−N⊴oG
B(G/N), it is with this in mind that we pursue a similar result

for the Burnside ring of a pro-fusion system.

Theorem 3.7. Let F be a saturated pro-fusion system over S given as the inverse

limit of the inverse system {Fi | i ∈ I} where each Fi is a (finite) fusion system

over Si. Define the canonical projection maps fi : S → Si where Ni = ker(fi),

then we have that B̂(F) ∼= lim←−i∈I B(Fi) with the family of compatible maps given

by π
S/Nj

Ni/Nj
: B(Fj)→ B(Fi) giving the Ni/Nj fixed point set for each i ≤ j, i, j ∈ I.

Proof. By considering the family of compatible maps, we have that there is a

canonical projection map πSNj
: lim←−i∈I B(Fi) → B(Fj). Therefore, taking any
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element in the inverse limit, X ∈ lim←−i∈I , we have that this can be viewed as the

element X = (XNi)i∈I . From the definition it is clear that XNi must be Fi-stable.

If N ⊴o P , then we have that φP (X) = φP/N(X
N) since any element which is

fixed by P -action must also be fixed by N -action.

Take P ∈ ob(Fo), recall that since P ≤o S, then we must have that it must

contain some N = Ni which is open and strongly closed. Take ψ ∈ HomF(P, S),

then since N is open and strongly closed, we have that ψ(N) = N ≤ ψ(P ). It

follows that each F -conjugate of P can be seen as the inverse image of an element

in ob(Fi). Since HomF(P,Q) = lim←−i∈I HomFi
(fi(P ), fi(Q)), it follows that each

morphism from P to S in F must project into the finite quotient, in particular

Fi. Using the fact that XNi is Fi-stable, we have that φP (X) = φP/N(X
N) =

φψP/N(X
N) = φψP (X). It follows that X is Fo-stable and so X ∈ B̂(F).

Conversely, suppose thatX ∈ B̂(F). Then by definition we have that φP (X) =

φψP (X) for all ψ ∈ HomF(P, S). It follows that for each ψ ∈ HomFi
(P/Ni, S/Ni),

then there exists ψ̂ ∈ HomF(P, S) such that Fi(ψ̂) = ψ. It follows that we have

φP/Ni
(XNi) = φψP/Ni

(XNi) and so XNi is Fi-stable for each i ∈ I. It follows that

it is a well defined element of the inverse limit.

3.4 Constructing a basis for B̂(F)

A basis (in terms of a linearly independent Z-spanning set) for the Burnside ring of

a finite fusion system was given by [18]Reeh 4.11 in terms of the basis elements αP

for P fully normalized. The combinatorial process of defining these αP is discussed

in the background section 2.29-2.30. As previously mentioned, these allow you to

prove that there is an equivalence between the Grothendieck group of B+(F) and

B(F) in 3.4-3.5. We wish to emulate this in terms of the Burnside ring of a pro-

fusion system. We shall show that the bases of the finite quotients form a well

defined inverse system using the inverse limit defined in theorem 3.7.

In order to define the basis elements in the finite quotients, we first require

that each of the finite quotients contains a fully normalized subgroup using the
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definition 2.35. We require that each of the finite quotients is saturated by def-

inition 2.36. We recall a result from [21]Stancu, Symonds that shows that the

fully normalized subgroups in a pro-fusion system F project nicely through the

quotients.

Lemma 3.8. (Stancu, Symonds)[21]Stancu, Symonds 2.23 Let F be a pro-fusion

system over the pro-p group S. Let N be an open and strongly closed subgroup of

S and suppose that Q is a subgroup of S that is fully F-normalized. Then we have

that Q/N is fully F/N-normalized in F/N .

This provides us with the information that the image of a fully normalized

subgroup under the compatible projection maps is again fully normalized. We

show that each Fi-conjugacy class contains at least one subgroup fully normalized

in Fi whose preimage under the projection map is fully normalized in F .

Proposition 3.9. Let F be a saturated pro-fusion system over S with N ⊴ S open

and strongly closed, then each F/N-conjugacy class [Q]F/N , Q ≤ S/N contains

a subgroup R fully normalized in F/N whose preimage under the projection map

fN : S → S/N , f−1
N (R) = R̂ is fully normalized in F .

Proof. Take Q ≤ S/N then there exists Q̂ ≤ S the preimage of Q under the map

fN : S → S/N . Since F is saturated, there exists R̂ fully normalized in F such

that R̂ ∼F Q̂

⇒ fN(R̂) ∼F/N fN(Q̂).

But fN(R̂) ∈ [Q]F/N is fully normalized in F/N by the previous lemma and so

[Q]F/N contains a subgroup fully normalized in F/N whose preimage under fN is

fully normalized in F .

The following is a result gives a basis for the Burnside ring of a fusion system

over a finite group for which we shall find an analogue for in the profinite, allowing

us to construct a basis for the Burnside ring of a pro-fusion system. The process,

as discussed in the background section 2.29-2.30, Reeh[18] follows involves the
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recursive construction of F -stable S-sets for a finite fusion system F over the

finite p-group S. We give an explicit formula for calculating them as follows.

Definition 3.10. [18]Reeh 4.8 For a finite fusion system F over the finite p-group

S, let P ≤ S be a fully normalized representative of the F -conjugacy class. Then

we define the corresponding F -stable S-set, αP , as follows. Set X(P ) and HQ′ for

Q′ ≤ S with fully normalized F -conjugacy class representative Q ≤ S by

X(P ) =
∑

[P ′]S⊆[P ]F

|NS(P )|
|NS(P ′)|

S/P ′,

HQ′ =
1

|NS(Q′) : Q′|
(φQ − φQ′)

(
X(P ) +

∑
Q′<K≤P

HKS/K

)

with φQ, φQ′ the fixed point maps in the Burnside ring respectively and the map

(φQ − φQ′) : B(S)→ Z defined by (φQ − φQ′)(X) = φQ(X)− φQ′(X),

αP = X +
′∑

Q∈ob(Ff.n.)
Q≲FP

∑
[Q′]S⊆[Q]F

HQ′S/Q′

with ‘ in the first sum denoting to take one fully normalized representative of each

F -conjugacy classes.

Reeh[18] showed that if you take one fully normalized representative for each

F -conjugacy class, you get a basis and that for any two P,Q ∈ [P ]F both fully

normalized, then we have that αP ∼= αQ. Therefore by abusing notation and

allowing αP to denote the S-set isomorphism class of αP , we have that we can

consider α : ob(Ff.n.)→ B(F) the map which has α(P ) = αP .

Lemma 3.11. (Reeh)[18]Reeh 4.11 For F a saturated (finite) fusion system over

S, then {αP | P fully normalized} is a Z-linear basis for B(F).

Applying the previous two results we have that the projection from a pro-fusion

system to the fusion system given over a finite quotient group under the map

fN : ob(F) → ob(F/N) maps the fully normalized subgroups to fully normalized
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subgroups and that each fully normalized subgroup has a preimage in F under

this map. Since any preimage, P , must contain N , we have that it can be written

as P = PN since we can express P as a union of cosets of N .

Corollary 3.12. For a saturated pro-fusion system F over S, P ≤o S the set

{αPNi/Ni
| PNi/Ni fully Fi-normalized} is a basis for B(Fi).

We want to try and construct a basis for B̂(F) and so a natural place to

start is by studying the finite quotients. We consider the following commutative

diagram (where we adjust α to the fully normalized element in the F -conjugacy

class which exists since F is saturated). Define a family of compatible maps

γi,j : ob(Fj) → ob(Fi) to be γi,j(PNj/Nj) = PNi/Ni for P ≤o S. As previously

mentioned, this will project the fully normalized subgroups to fully normalized

subgroups in their respective fusion systems.

Using corollary 3.12, we have that we can define for each i ∈ I a map from

subgroups of Si to basis elements of B(Fi) given by αi : ob(Fi) → B(Fj) where

Q 7→ αP where P is a fully normalized representative of the F -conjugacy class of

Q ≤ Si.

Since we have that for P ∼Fj
Q, we know that by [21]Stancu, Symonds Propo-

sition 4.4, then γi,j(P ) ∼Fi
γi,j(Q) and therefore belong to the same Fi-conjugacy

class. It follows then that we can compose the maps without loss of generality

by taking any fully normalized representative since the image of the Fj-conjugacy

class is the same regardless of the fully normalized representative chosen.

Since we have that each element in B(Fj) can be written as a canonical linear

combination of the αP with P fully normalized in Fj, we can express each element

X ∈ B(Fj) in the form X =
∑′

P∈Ff.n. xP · αP taking one fully normalized repre-

sentative from each F -conjugacy class for some xP ∈ Z. We can therefore take

the preimage of the map αj to give the the F -conjugacy class. We can extend

this map linearly to arrive at a formal element Y =
∑′

P∈Ff.n. xP · P . Similarly,

we can define αj(Y ) = X by extending the map linearly and applying to the P

individually. Extending the maps linearly in this way, we have
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ob(Fj) ob(Fi)

B(Fj) B(Fi).

γi,j

αj αi

αi◦γi,j◦α−1
j

Define sets Ai = {αi(P ) | P ∈ Fi} to be a basis of B(Fi) for each i ∈ I, then the

maps (set homomorphisms) fi,j = αi ◦ γi,j ◦ α−1
j |Aj

: Aj → Ai are compatible, as

shown here

fi,j ◦ fj,k = (αi ◦ γi,j ◦ α−1
j ) ◦ (αj ◦ γj,k ◦ α−1

k )

= αi ◦ γi,j ◦ γj,k ◦ α−1
k

= αi ◦ γi,k ◦ α−1
k

= fi,k.

It follows that we can form the inverse system (Ai)i∈I with the family of compatible

maps {fi,j | i ≤ j}. We can subsequently take the inverse limit of the inverse system

given by AF := lim←−i∈I Ai. It follows that this is a basis for B̂(F) since the image

in each of the finite quotient is spanning and linearly independent and the inverse

limit of fusion systems is defined by the finite quotients. Therefore we have proved

the following result.

Theorem 3.13. For F a saturated pro-fusion system over S, then the set A =

lim←−i∈I Ai is a basis for B̂(F).

Whilst this has proven that a basis exists, it is not an easily usable defini-

tion in order to find the corresponding basis elements. We therefore define a map

α̂ : Ff.n. → B̂(F) which defines a basis element for each fully normalized repre-

sentative. We wish for this to project onto the finite quotients in a well behaved

way. With this in mind, we show that this is possible, however we note that if

N ̸≤ P , then the corresponding element in the projection should be the empty

set. We therefore make the definition that αi(0) = ∅. We note that since we make

no claim that α has any additional properties and is purely a function, we have

that this causes no issue in the definition. Likewise, we define for the following
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proof we set the elements of ob(Ff.n.i ) to be the fully normalized representatives

of subgroups of Fi and a purely formal entry in the form of 0 in order for the

following proof to be well defined.

Theorem 3.14. Let F be a pro-fusion system over the pro-p group S given by the

inverse system {Fi | i ∈ I}. Take πSNi
: S → S/Ni given by πSNi

(X) = XNi and

hi : ob(F) → ob(Ff.ni ) defined by hi(P ) = P/Ni if Ni ≤ P , hi(P ) = 0 otherwise,

then there exists a map α̂ : Ff.n → B̂(F) such that for πSNi
◦ α̂ = αi ◦ hi where

i ∈ I.

Proof. We can set α̂ to be (αi ◦ hi)i∈I and so we have that this is trivially true

since then we have that α̂(P ) ∈ B̂(F) for P ≤o S.

ob(F f.n.) ob(F f.n.
i )

B̂(F) B(Fi).

hi

α̂ αi

πS
Ni

Whilst simple with this setup and trivially true by the definition, we note that

the structure of the elements α̂(P ) for P fully normalized are descriptive of a basis

element. Take P ≤o S, then we claim that α̂Ni = ∅ for Ni ̸≤ P and α̂Nj = αP/Nj

for Nj ≤ P . In particular, we have that the basis elements of the respective fusion

systems must project well onto each other and so it is sufficient to describe the

basis elements of B̂(F) by the basis elements of the respective B(Fi). We prove

so in the following results.

Lemma 3.15. Let F be a pro-fusion system over the inverse system {Fi | i ∈ I}.

Consider Fj and some Ni ≥ Nj. If Ni/Nj ̸≤ PNj/Nj then (αPNj/Nj
)Ni/Nj = 0.

Proof. Since the Ni are strongly closed, we immediately have this since each sum-

mand in αPNj/Nj
is of the form S/H where H is Fj-subconjugate to PNj/Nj and

so writing the expression in the form

(αPNj/Nj
)Ni/Nj =

∑
H≤oS

xH · (S/H)Ni/Nj
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for some XH ∈ Z. xH = 0 if H is not Fj-subconjugate to PNj/Nj. Suppose that

xH ̸= 0, then we have that H ≲F PNj/Nj < Ni/Nj and so (S/H)Ni/Nj = 0.

Theorem 3.16. Let F be a pro-fusion system over the pro-p group S with open

basis for the topology given by {Nj | j ∈ I}, then when Ni ≥ Nj

(αP/Nj
)Ni/Nj =


∅ if Ni ̸≤ P

αP/Ni
if Ni ≤ P

Proof. The first case is given by lemma 3.15. Suppose that P ≥ Ni, Nj and Nj ≤

Ni, consider the element αP/Nj
∈ B(Fj). We have a well defined map taking the

Ni/Nj-fixed points which takes an Fj-stable element to an Fi-stable element since

we have that Q/Ni ∼Fi
R/Ni implies that Q/Nj ∼Fj

R/Nj and so, in particular,

we have that for φQ/Nj
(X) = φQ/Ni

(XNi/Nj) = φR/Ni
(XNi/Nj) = φR/Nj

(X) for

each X ∈ B(Fj) since any set fixed by Q-action must first be fixed by both Ni

and Nj action.

Since X := α
Ni/Nj

P/Nj
is in B(Fi, there must exist some linear combination of basis

elements ofB(Fi) equal toX.By [18]Reeh Proposition 4.8, we have that φQ(X) = 0

for all Q not subconjugate to P and so X must be a linear combination of basis

elements with representative subgroups subconjugate to Q, but the coefficient of

S/Q must be equal to 1 for Q fully normalized and so there is only one possibility

in the form of X = αP/Ni
.

Proposition 3.17. Let F = lim←−i∈I Fi be a pro-fusion system over the pro-p group

S = lim←−i∈I Si, with Ni = ker(fi), fi : S → Si for each i ∈ I. Then for Ni strongly

closed in F , we have that Ni/Nj is closed in Sj for i ≤ j.

Proof. For each ψ ∈ Fi, there exists ψ̂ ∈ F such that Fi(ψ̂) = ψ, and take R ≤

Ni/Nj. We can take the preimage under the map fj to get f
−1
j (R) ≤ f−1

j (Ni/Nj) =

Ni. Fi ◦ ψ̂(f−1
j (R)) ≤ Ni/Nj since ψ̂(f

−1
j (R)) ≤ Ni since Ni is strongly closed.

Proposition 3.18. For F a pro-fusion system over the pro-p group S {α̂(P ) | P ∈

Ff.n.} is linearly independent.
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Proof. Suppose that Q is fully F -normalized and consider the element

α̂(Q) =
∑

P∈Ff.n.

P ̸∼Q

xP · α̂(P )

with xP ∈ Z. Suppose that Ni < Q is maximal across the projection kernel

subgroups {Ni | i ∈ I}. For the sake of clarity of expression, we use FixNi
:

B̂(F) → B(Fi) to denote the Ni fixed points of any almost finite Fo-stable S-

space.

FixNi
(α̂(Q)) = FixNi

 ∑
P∈Ff.n.

P ̸∼Q

XP α̂(P )


⇒ αQ/Ni

=
∑

P∈Ff.n.

P ̸∼Q
deg(P )≤i

XP αP/Ni

But we have that these elements form a basis in the quotient ring and so we must

have

αQ/Ni
= αP/Ni

for some P and so we have a contradiction, ⇒ {α̂(Q) | Q ∈ Ff.n.} is linearly

independent.

We use the results Dress-Siebeneicher[10]Dress and Siebeneicher 2.7.2-2.7.3 on

the Burnside rings of profinite groups to prove the extension of the following from

Burnside ring of (finite) fusion systems. This is a generalisation of [18]Reeh theo-

rem B that checks that all of the techniques used in the proof is well defined.

Lemma 3.19. Let F be a saturated pro-fusion system over a pro-p group S and

let B̂(F) be the completed Burnside ring of F . We have a short exact sequence

0 B̂(F) Gh(F)
∏

P∈ob(Fo) Z/|NS(P ) : P |Z 0
φ Ψ

where φ = φS is the fixed point map into the ghost ring for the open subgroups of
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S,

Ψ = ΨF : Gh(F)→
∏

P∈ob(Fo)

Z/|NS(P ) : P |Z

is a group homomorphism given by the [P ]-coordinate functions for P ≤o S, for

ξ = (ξP )P≤oS ∈ Gh(F), ξP ∈ Z,

ΨP (ξ) =
∑

s̄∈NS(P )/P

ξ⟨s⟩P mod |NSP : P |

where P is a fully normalized representative of [P ]F . ΨP = ΨP ′ is P ∼F P ′ are

both fully normalized.

Proof. In Stancu-Symonds[21] they have shown that in a pro-fusion system, if

P ≤o S, Q ∼F then Q ≤o S and |S : Q| = |S : P |. In particular, we have that any

two F -conjugacy class representatives of the same F -conjugacy class have the same

index. By the Zermelo’s well ordering theorem[12], every set can be well ordered.

Applying this to {P ∈ ob(F) | |S : P | = σ, P ≤o S} := obσ(Fo) ⊆ ob(F), we can

choose a well ordering of obσ(F). In particular a total ordering. Repeating this

process for each σ ∈ N0, we can construct a total order of the F -conjugacy classes

[P ], [Q] ∈ Cl(Fo) by asserting that

|S : Q| > |S : P | ⇒ [Q] > [P ].

In particular, in this ordering it holds that

Q ∼F H < P ⇒ [P ] < [Q].

Since we have that the P -coordinate in Ψ(ξ) can be given by

ΨP (ξ) =
∑

s̄∈NS(P )/P

ξ⟨s⟩P mod |NSP : P |,

we have that ΨP (ξ) is a linear combination of ξQ such that [P ] ≤ [Q] and taking

s̄ = 1 ∈ NS(P )/P we see that ξ⟨s⟩P = ξP . With respect to the ordering above, the
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group homomorphism

Ψ : Gh(F)→
∏

P∈ob(Fo)

Z/|NS(P ) : P |Z

can be given as Ψ(X) =MX where M is given by a lower triangular matrix with

1s on the diagonal with the rows and columns ordered with respect to descending

order of the ordering as above.

It follows that Ψ is surjective since by taking linear combinations of the elements

ζP = (δP,Q)Q≤oS ∈ Gh(F)., we can generate every element of Gh(F) and every

element in the codomain of Ψ is an image of some linear combination. φ is injective

by Dress-Siebeneicher and ΨS ◦ φS = 0,

⇒ (Ψ)P = (ΨS)P , P ∈ Ff.n.

and φ = φS|F

⇒ Ψ ◦ φ = 0.

It remains to show that Im(φ) = ker(Ψ) but this is immediate by [10]Dress and

Siebeneicher since the formula for Ψ is precisely the classifying congruence relation

given in (2.7.2)-(2.7.3) of Dress-Siebeneicher[10].

It remains to show that the linearly independent α̂(P ) for P ≤o S fully nor-

malized are indeed spanning. In order to do so, we use techniques from [18]Reeh

4.8 and therefore show that they form a well defined Z-linear basis.

Lemma 3.20. Let F be a pro-fusion system over the pro-p group S, then the Z-

linear combinations of the α̂P , P ∈ Ff.n., P ≤o S is isomorphic to the Burnside

ring of F . That is to say is we take a fully normalized F-conjugacy class repre-

sentative for each F-conjugacy class, we have spanZ{α̂P | P ∈ ob(Ff.n.)} = B̂(F).

Proof. Let H = spanZ{α̂P | P ∈ ob(Ff.n.}}. Consider the restriction φ|H of the

homomorphism φ : B̂(F)→ Gh(F). Clearly, since the expression for α̂P contains

only orbits of the form S/H such that H is F -subconjugate to P , we have that
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φQ(α̂P ) = 0 unless Q ≲F P . By [18]Reeh 4.8, we have that the coefficient of S/P

in αP/Ni
is 1, and therefore since α̂ is defined as an inverse limit of the αP/Ni

, it

follows that φP (α̂P ) = |NSP : P |.

Since φ|H is a restriction of φ, we have that every element which maps to 0

under φmust also map to 0 under φ|H . However, there may be elements which map

to 0 under φ|H which do not map to 0 under φ. It follows that ker(φ|H) ⊇ ker(φ),

therefore if we then take the cokernel, which is to say the codomain of a map

factored by its kernel, we have coker(φ) ≤ coker(φH) =
∏

P∈ob(F) Z/|NS(P ) : P |Z.

As we have previously shown, we have that Ψ ◦φ = 0 and so the cokernel of φ

must at least contain every element which maps to 0 under Ψ. Notably, we must

have
∏

P∈ob(F) Z/|NS(P ) : P |Z ≤ coker(φ). It follows that we must have equality

since we are bounded on both sides by inequalities from the same set. It follows

that Im(φ) = Im(φ|H) = ker(Ψ). Therefore H is a spanning set since the images

agree.

Theorem 3.21. {α̂P | [P ] ∈ Cl(F)} is a basis for B̂(F).

Proof. This combines the three previous results and is immediate since we have

that it is a linearly independent spanning set for the Burnside ring.

3.5 Burnside ring of FS(G)

We now turn our attention to the Burnside ring of a fusion system over S given by

a group G such that S ≤o G. In particular we are interested in the image under

the restriction map from G to S. As we previously discussed before lemma 3.6,

we have that resGS (B̂(G)) ⊆ B̂(F), and we have quoted [3]Barostti and Carman

theorem 7.1 in the background section 2.31.

It follows that we naturally want to generalise this result for a pro-fusion sys-

tem. We show that there are well defined notions for each of the properties required

in Barsotti and Carman’s paper in the context of a pro-fusion system such that

resGS (B̂(G)) = B̂(F). This holds for any case provided we have S ≤o G and as
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discussed in lemma 3.6, for G an infinite profinite group, we have previously noted

that there is at most one prime p such that a Sylow pro-p subgroup of G is open.

Theorem 3.22. Let G be a profinite group and suppose that there exists S ≤o G

a pro-p Sylow subgroup of G and F = FS(G), then resGS (B̂(G)) = B̂(F).

Proof. We seek to define an injective homomorphism tGS : B̂(F)→ B̂(G) which is

right inverse to resGS in order to prove that every element in B̂(F) has a preimage

in B̂(G). In doing so, we show that a ∈ B̂(F) is such that resGS ◦ tGS (a) = a and

therefore, since tGS will be injective, we have that the restriction map must be

surjective.

Let H ≤o G, then we have that H ∩ S ≤o G is a pro-p group since S ≤o G is a

pro-p group. Consequently, H∩S ≤ P where P is a Sylow pro-p group of H and so

P ≤o G. For a ∈ B̂(G), b ∈ B̂(F) we define an element a∗b ∈
∏

H≤oG
Z = Gh(G)

by |(a ∗ b)H | = |aH ||bP | where P is a p-Sylow subgroup of H contained in S. We

note that |bP | ∈ Z under this construction since we know that P ≤o G⇒ P ≤o S

and b ∈ B̂(F) ⊆ B̂(S).

We show that for each a ∗ b, there exists X ∈ B̂(G) such that the ghost map

φ : B̂(G) → Z, defined as usual by φ = (φH)H≤oG, has φ(X) = a ∗ b. Let

x ∈ Gh(G) =
∏

H≤oG
Z defined by x := (x(H))H≤oG where x(H) ∈ Z. We recall

that in [10]Dress and Siebeneicher 2.7.3, it was shown that x ∈ φ(B̂(G)) if and

only if x satisfies ∑
vU∈V/U

x(⟨vU⟩) ≡ 0 mod |V : U |

where ⟨vU⟩ is the subgroup of G generated by the coset vU for all pairs

U ⊴o V ≤o G such that V/U is a Sylow-q-subgroup of NG(U)/U for some prime

q. That is to say that there exists X ∈ B̂(G) such that φ(X) = x.

If p ̸= q, and Q/H is a Sylow-q-subgroup of NG(H)/H, then by definition of

a∗ b, |(a∗ b)⟨vH⟩| = |avH ||bP | where P is a Sylow pro-p subgroup of ⟨vH⟩ contained

in S. However, since Q/H is a Sylow-q-subgroup of NG(H)/H then each Sylow

pro-p subgroup of ⟨vH⟩ is also a Sylow pro-p subgroup of H for each vH ∈ Q/H.
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Take P ≤ S a Sylow pro-p subgroup of H ≤o G then

∑
vH∈Q/H

|(a ∗ b)⟨vH⟩| ≡
∑

vH∈Q/H

|a⟨vH⟩||bP |

≡ |bP |
∑

vH∈Q/H

|a⟨vH⟩|

≡ 0 mod |Q : H| since a ∈ B̂(G).

If p = q, first note that by [10]Dress and Siebeneicher (2.9.3), we have that for

N ⊴o G

πGN(G/U) =


G/U if N ≤ U,

0 = ∅ otherwise.

Suppose that N ⊴o H ≤o G, then for any H ≲ K, we have that N ≤ K as

K contains some conjugate of H and N ≤ ∩g∈GHg. Recall that for N ⊴o G,

a ∈ B̂(G), we have aN = πGN(a) ∈ B(G/N). Let a =
∑

K≤oG
aKG/K, aK ∈ Z,

and suppose that N ⊴o H ≤o G, then

|aH | =

∣∣∣∣∣∣
( ∑
K≤oG

aKG/K

)H
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑
H≲K

aKG/K

H∣∣∣∣∣∣
=

∣∣∣∣∣∣πGN
(∑
K≤oG

aKG/K

)H/N
∣∣∣∣∣∣

= |πGN(a)H/N |.

Take ⟨vH⟩ ≤o Q ≤o G, then |a⟨vH⟩| = |resGQ(a)⟨vH⟩|. Let PQ denote a Sylow

pro-p subgroup of Q such that PQ ≤o S. Since Q/H is a Sylow-p-subgroup of

NG(H)/H, we have that Hg = H ∀g ∈ PQ and so PQ normalizes H. Define

PH := PQ ∩ H, then this is a Sylow pro-p subgroup of H. Since PQ normalizes

both PQ and H, we have that PQ normalizes PQ ∩H = PH , therefore PH ⊴o PQ.

Since Q/H is a p-group, then PQH/H is a Sylow-p-subgroup of Q/H by [26] 2.2.3,
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and hence Q = PQH. By the second isomorphism theorem[22], we have that since

HPQ = Q, H ⊴o Q, PQ ≤ Q,

Q/H = HPQ/H ∼= PQ/H ∩ PQ = PQ/PH .

The isomorphism can be given by

θ : PQ/PH → Q/H

xPH 7→ xH.

since θ is a group homomorphism, θ(xyPH) = xyH = xHyH = θ(xPH)θ(yPH).

This also has an inverse map θ−1 : Q/H → PQ/PH , θ
−1(xH) = xPH . Conse-

quently, B(Q/H) ∼= B(PQ/PH), let α denote the corresponding ring homomor-

phism

α : B(Q/H)→ B(PQ/PH).

Note that necessarily we have that for each X ∈ B(Q/H), |XK | = |α(X)θ
−1(K)|

for eachK ≤ Q/H. Combining the above ring homomorphisms α, πGN = FixGN , res
G
H

for N ⊴o G, H ≤o G, we obtain two ring homomorphisms

α ◦ πQH ◦ res
G
Q : B̂(G)→ B(PQ/PH),

π
PQ

PH
◦ resSPQ

: B̂(S)→ B(PQ/PH).

Each of these preserves the number of fixed points provided that we take the

appropriate isomorphism or quotient group as required for each map. We demon-

strate this as follows. Let a ∈ B̂(G), b ∈ B̂(F) ⊆ B̂(S), ⟨vH⟩ the subgroup of Q

generated by the coset vH of Q/H, and let PvH denote a Sylow pro-p subgroup of
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⟨vH⟩ such that PH ≤ PvH ≤ PQ,

|(a ∗ b)⟨vH⟩| = |a⟨vH⟩||bPvH |

= |resGQ(a)⟨vH⟩||resSPQ
(b)PvH |

= |πQH ◦ res
G
Q(a)

⟨vH⟩/H ||πPQ

PH
◦ resSPQ

(b)PvH/PH |

= |α ◦ πQH ◦ res
G
Q(a)

θ−1(⟨vH⟩/H)||πPQ

PH
◦ resSPQ

(b)PvH/PH |

= |α ◦ πQH ◦ res
G
Q(a)

PvH/PH ||πPQ

PH
◦ resSPQ

(b)PvH/PH |.

We define x := α ◦ πQH ◦ resGQ(a) ∈ B(PQ/PH), and y := π
PQ

PH
◦ resSPQ

(b) ∈

B(PQ/PH), then we have that the above can be written as |(a∗b)⟨vH⟩| = |xPvH/PH ||yPvH/PH | =

|(xy)PvH/PH | since the fixed point map |(·)PvH/PH | : B(PQ/PH) → Z is a ring ho-

momorphism. This holds for any vH ∈ Q/H and so

∑
vH∈Q/H

|(a ∗ b)⟨vH⟩| =
∑

vH∈Q/H

|(xy)PvH/PH |.

Note that θ−1(⟨vH⟩/H) = PvH/PH = ⟨vPH⟩/PH . Since xy ∈ B(PQ/PH) and

|PQ/PH | = |Q : H|, we have

∑
vH∈Q/H

|(xy)PvH/PH | =
∑

vPH∈PQ/PH

|(xy)⟨vPH⟩| ≡ 0 mod (PQ : PH)

≡ 0 mod (Q : H).

We can therefore say that

∑
vH∈Q/H

|(a ∗ b)⟨vH⟩| ≡ 0 mod (Q : H).

This holds for any Sylow-p-subgroup Q/H of NG(H)/H, and therefore by

Dress-Siebeneicher[10] (2.7.3), we have that a ∗ b ∈ φ(B̂(G)), since the fixed point

map φ is injective, we have that this image is unique and so we shall abuse no-

tation to refer to the the element in the Burnside ring with this image also as
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a ∗ b ∈ B̂(G). Taking 1 ∈ B̂(G) we define the map tGS as follows,

tGS : B̂(F)→ B̂(G)

b 7→ 1 ∗ b.

We now show that the function tGS is an injective ring homomorphism. Firstly,

we prove injectivity. Suppose that tGS (a) = tGS (b) for a, b ∈ B̂(F), then 1 ∗ a =

1 ∗ b ∈ B̂(G) ⇔ |(1 ∗ a)H | = |(1 ∗ b)H | for all H ≤o G. By definition of ∗, let

PH ≤o S be a Sylow pro-p subgroup of H, then |aPH | = |(1∗a)H | = (1∗b)H | = |bPH |

for all H ≤o G. Each PH ≤o S by definition and for each K ≤o S, there exists

H ≤o G such that K = PH , namely taking H = K ⇒ PH = PK = K. It is

therefore sufficient to show |aK | = |bK | ∀K ≤o S, but this can only be the case if

a ∼= b ∈ B̂(S) as S-spaces and consequently a ∼= b ∈ B̂(F) ⊆ B̂(S).

We now prove it is a ring homomorphism. For a, b ∈ B̂(F), we have tGS (a+b) =

1 ∗ (a + b), then considering the fixed points under H ≤o G action, take H ≤o S

since these alone determine the number of fixed points as above, then we have

|(1 ∗ (a + b))H | = |(a + b)H | = |(a + b)H | = |aH ||bH | = |(1 ∗ a)H | + |(1 ∗ b)H | =

|((1∗a)+(1∗b))H | and similarly |(1∗(ab))H | = |(ab)H | = |aH ||bH | = |((1∗a)(1∗b))|H |

for each H ≤o S, which determine the fixed points for each open subgroup of G.

Since the fixed point map is injective, we have that 1 ∗ (a + b) = (1 ∗ a) + (1 ∗ b)

and 1 ∗ (ab) = (1 ∗ a)(1 ∗ b).

For 1 ∈ B̂(F), we have |(1 ∗ 1)H | = 1 for all H ≤o G and so 1 ∗ 1 = 1 ∈ B̂(G),

and so tGS (1) = 1. Therefore we have that tGS is an injective ring homomorphism.

Taking a ∈ B̂(F), then for H ≤o S we have that |(resGS ◦tGS (a))H | = (1∗a)H = |aH |,

it follows that resGS (1 ∗ a) = a ∈ B̂(S) since the fixed points agree on all open

subgroups of S. Hence, tGS is right inverse to resGS . The map

resGS : B̂(G)→ B̂(F)

is surjective since for each a ∈ B̂(F), we have tGS (a) ∈ B̂(G) has image
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resGS ◦ tGS (a) = a ∈ B̂(F). We have shown then that resGS (B̂(G)) = B̂(F).

Since we now have that B̂(F) = resGS (B̂(G)) in the case when F = FS(G) a

pro-fusion system over S ≤o G, we use this result to define a more usable basis

for B̂(F). Suppose that we have F a pro-fusion system over S given by G ≥o S.

Clearly, since {G/H |H ≤o G} is a basis for B̂(G), we have {resGS (G/H) |H ≤o G}

is a spanning set for B̂(F). We then consider the set R = {resGS (G/P ) | P ≤o S}

where we note that by abuse of notation we take the isomorphism class of G/P ∈

B̂(G) to be written as G/P . That is to say we have one representative of each

G-conjugacy class, or equivalently, each F -conjugacy class. In order to show that

R is a linearly independent set, we prove that for each T ⊆ R such that T is a

finite set, then we have that T is linearly independent.

Let T be a finite subset of R and define a partial order ≤ on T by resGS (G/P ) ≤

resGS (G/Q) if and only if P ≲G Q. Since T is a finite set, it follows that T has

maximal elements. Recall that for Y ∈ B̂(G), we have that resGS (Y ) is defined

as the same underlying set but considered under the S-action rather than the

G-action. It follows that for Q ≤o S ≤o G, the Q-action on resGS (Y ) and on Y

respectively are the same since the S-action is induced by the G action. Therefore

we have that resGS (Y ) ∼= Y as Q-spaces, and notably φQ(res
G
S (Y )) = φQ(Y ).

Consider the element X :=
∑′

P≤oS
xP · resGS (G/P ) for xP ∈ Z such that xP = 0

if resGS (G/P ) /∈ T . This is to say that X is a linear combination of elements of T .

In order to show that T is independent, we want to show that X = 0 if and only

if xP=0 for each P ≤o S. By the definition of the equivalence classes of almost

finite S-spaces, we have that X = 0 in B̂(S) if and only if φQ(X) = φQ(0) = 0 for

each Q ≤o S. Suppose X = 0, we calculate the number of fixed points of X under
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Q ≤o S

X =
′∑

P≤oS

xP · resGS (G/P ) = 0

⇔ φQ

(
′∑

P≤oS

xP · resGS (G/P )

)
= 0 ∀Q ≤o S

⇔
′∑

P≤oS

xP · φQ(resGS (G/P )) = 0 ∀Q ≤o S

⇔
′∑

P≤oS

xP · φQ(G/P ) = 0 ∀Q ≤o S.

Let Q ≤o S and consider φQ(G/P ) for P ≤o S. By definition 2.23, we have

that this is the number of Q-fixed points in the G-set G/P . By 2.23, we have

that φQ(G/P ) = |{gP ∈ G/P | Qg ≤o P}|. It follows that φQ(G/P ) = 0 unless

Q ≲G P . Therefore, φQ(X) needs to only consider the sum of summands in X of

the form xP ·φQ(G/P ) such that Q ≤G P . This is to say we have that the number

of Q-fixed points are φQ(X) =
∑

Q≲GP≤oS
xP ·φQ(G/P ). Take resGS (G/Q) maximal

in T , and consider the Q fixed points of X. By the previous discussion, then we

have φQ(X) =
∑

Q≲GP≤oS
xP · φQ(G/P ) = xQ · φQ(G/Q) = 0 but φQ(G/Q) =

|NG(Q) : Q| ≠ 0 so we must have that xQ = 0.

Proceeding recursively on T , define a new set T ′ = T\{resGS (G/Q)}, at each

step we take one of the maximal elements, Q′ of T ′ and see that xQ′ ·φQ′(G/Q′) = 0

implies that xQ′ = 0 and therefore the set T is linearly independent. Since this

holds for any finite subset of R, we have that R must be linearly independent.

In order for R to be a basis as a free Z-module, we must check that it is

spanning. Since Z is not a field, in order to be a Z-basis we must check that every

Fo-stable element can be expressed as a linear expression of elements in R. As a

consequence of the definition of the restriction map discussed on pages 21-23, we

have that resGS (G/H) =
∑

g∈[S\G/H] S/S ∩ gH and so S ∩ gH ≲G H.

This implies that the only element in R with a non zero coefficient for S/S is

given by resGS (G/S). Note that S/S is Fo-stable since φP (S/S) = 1 for all P ≤o S.

80



Consider that φS(G/S) = φS(res
G
S (G/S)), then it follows that φS(res

G
S (G/S)) =

|NG(S) : S|. Therefore if NG(S) ̸= S, then R is not a Z-spanning set of B̂(F).

Consequently, we show that R forms a Q basis for QB̂(F) := Q⊗ B̂(F .

In order to show that this is truly a basis, we must show that it is also spanning.

We do this by showing that the canonical projections πSM : B̂(F)→ B(F/M) map

R to a basis for B(F/M) for M ⊴o S. Suppose that G ∼= lim←−N⊴oG
G/N then since

S ≤o G, we have that S ≤c G and therefore by Wilson[26] Theorem 1.2.5, S can

be expressed as S ∼= lim←−N⊴oG
S/(S ∩ N). Suppose N ⊴o G, then S ∩ N ≤o P

implies g(S ∩N) = gS ∩N ≤o gP . However, S ∩N ⊴o S ≤o G implies that S lies

in the normal core of S in G and so S ∩N ≤
⋂
g∈G

gS, finally taking intersection

of the right hand side with N we have

S ∩N ≤
⋂
g∈G

gS ∩N ≤ S ∩ gS ∩N ≤ gP ∩ S.

Hence considering resGS (G/P ) =
∑

g∈[S\G/P ] S/(S ∩ gP ) we see that either each

summand has S ∩N ≤ S ∩ gP or none of them do. Therefore, the projection can

be given as

πSS∩N(res
G
S (G/P )) =


∑

g∈[S\G/P ] S/(S ∩ gP ) if S ∩N ≤ P

∅ otherwise.

For N ⊴o G, define π
S
S∩N(R) = {πSS∩N(resGS (G/P )) | S∩N ≤ P ≤o S}, then clearly

since R is linearly independent, we have that πSS∩N(R) is linearly independent.

Additionally |πSS∩N(R)| = |{αP | P ≤ S/S∩N fully F -normalized}| since they

both take one representative from each G-conjugacy class. It follows that πSS∩N(R)

is a basis for B(F/N). Define πSS∩N(R0) = πSS∩N(R) ∪ {∅}.

Restricting the canonical projection maps to the sets πSS∩N(R0) for N ⊴o G, we

get that there are compatible set morphisms for each N ≤M , both open normal in

G, π
S/S∩N
S∩M/S∩N : πSS∩N(R0)→ πSS∩M(R0) to be the restriction of the usual canonical

ring homomorphisms to set morphisms between the basis sets, with the empty set
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added, of B(F/(S ∩N)) and B(F/(S ∩M)) respectively.

Taking the inverse limit with these compatible maps for each N,M ⊴o G, we

get R0 := lim←−N⊴oG
(πSS∩N(R0)) = R∪{∅}, and since ⟨R0⟩ = ⟨R⟩, we get that R is a

basis of QB̂(F). Recall that indGS (S/H) = G/H for H ≤o S ≤o G. Clearly, each

element G/H such that H ≤o S can be written as indGS (S/H) and so

R = {resGS (G/H) | H ≤o S} = {resGS ◦ indGS (S/H) | H ≤o S}.

Consequently taking the obvious Q-linear extension of the maps, we have that the

composition resGS ◦ ind
G
S : QB̂(S)→ QB̂(F) is surjective.

By theorem 3.21, we have a Z-basis for B̂(F) for any pro-fusion system F

given by {α̂P | P ∈ ob(Ff.n.)} =: A. We note that in the construction through the

inverse limit of basis elements of the Burnside rings of the finite quotients, we have

that by [18]Reeh Proposition 4.8, the coefficient of S/P in the expression is 1. Note

that by taking φP (S/P ) = |NS(P ) : P |, it follows that φP (α̂P ) = |NS(P ) : P |.

If we consider the element ZP := 1
|NG(P ):NS(P )| · res

G
S (G/P ) ∈ QB̂(F), then we

have that φP (ZP ) =
|NG(P ):P |

|NG(P ):NS(P )| = |NS(P ) : P |. Clearly, we have that φQ(ZP ) =

φP (ZP ) for any Q ∼F P since φQ(G/P ) = φP (G/P ) for any P ∼F Q. It follows

that if we were to express ZP as a Q-linear expression of elements of the basis A,

then we would have that the coefficient of α̂P is 1.

Consider that resGS (G/P ) =
∑

g∈[S\G/P S/S ∩ gP . In particular, consider the

double coset representatives given by g ∈ [S\G/P ]. Note that in the expression

we take S/S ∩ gP . If gP ∈ NG(P )/P , then we have gP = P , it follows that the

double coset SgP gives the same coset for g ∈ S, and therefore g ∈ NG(P ) ∩ S.

Therefore we habe that the set of representatives that give distinct double cosets is

given by |NG(P ) : NS(P )|. It follows then that we can also write the expression as

resGS (G/P ) = |NG(P ) : NS(P )|
∑

g∈[S\G/NG(P )] S/S ∩ gP . It follows that ZP is not

only a well defined element of QB̂(F), but a well defined element of B̂(F) since

as we have shown, dividing by the given denominator must leave us with integral

coefficients.

82



We have that each orbit in ZP must be stabilized by some S ∩ gP for some

g ∈ G. In particular, they must be G-subconjugate to P . Therefore, since the

α̂P form a basis, we have that there is an expression ZP =
∑

Q≲GP
xQ · α̂Q with

xP = 1. We can rewrite this to say α̂P = ZP −
∑′

Q<P xQ · α̂Q with the series

taken over a fully normalized F conjugacy class representative. We note that this

series is well defined since ZP is a well defined almost finite S-space, as is each

α̂Q and for any H ≤o S, there are only finitely many subgroups U which contain

H and so S/H appears in only finitely many α̂Q, therefore the coefficient of each

isomorphism class of orbit is finite and therefore it is an almost finite G-space.

We repeat this process, replacing each αQ with ZQ − Y for some Y a series of

α̂H . It follows that we have an expression for α̂P which is a linear combination of

the ZQ, the coefficient of each ZQ being a finite integer. It follows that we have

that the set {ZP∥ P ∈ ob(Ff.n.)} is Z-spanning, and since it is a linear scaling of

R, we have that it must also be linearly independent. It follows that this set is a

Z-linear basis of B̂(F).

Theorem 3.23. Let S be a Sylow pro-p-subgroup of G and take the pro-fusion

system F = FS(G) to be the pro-fusion system of G over S. Then we have a

Z-linear basis for B̂(F) given by {ZP | P ∈ ob(Ff.n.)} where

ZP :=
1

|NG(P ) : NS(P )|
· resGS (G/P ).

3.6 Induced pro-fusion systems

In the previous subsection, we showed that when we have a fusion system over

a pro-p group S such that S ≤o G is Sylow pro-p subgroup of G, QB̂(F) has

a basis given by R, a set of isomorphism classes of restrictions from G-action to

S-action of G-spaces. In this section, we shall show that a pro-fusion system F on

a pro-p group S has that all morphisms in F expressed as G-conjugation followed

by inclusion for some profinite group G ≥ S.

We note that in our current definition of a fusion system of G over S, it is
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required that S is a Sylow-p-subgroup of G. However, we note that it is pos-

sible to consider a fusion system over P < S with the morphisms induced by

G-conjugation. In this case we say that the system is induced by G.

Definition 3.24. [16]Park §1 Let P be a (finite) p-group with P ≤ G, G finite,

then we define the fusion system induced by G on P to be the category FP (G)

with ob(FP (G)) = {Q ≤ P} and for each Q,R ≤ P ,

HomFP (G)(Q,R) = {φ : Q→ R | ∃x ∈ G such that φ(u) = xux−1 ∀u ∈ Q}.

Note that in the case we have that P is the Sylow-p-subgroup of G, we have that

this coincides with the fusion system of G over S and therefore there is no conflict

with notation since both constructions give the same category. A saturated fusion

system F over a p-group P is said to be realizable if there exists finite G with

Sylow-p-subgroup P such that F = FP (G). If no such G exists, then we define F

to be an exotic fusion system[1]. However, results by Puig[17] and Park[16] have

shown that every saturated fusion system F over a p-group P can be a induced

by a finite group G ≥ P .

Theorem 3.25. [16](Theorem 1) For every saturated fusion system F on a finite

p-group P , there is a finite group G having S as a subgroup such that the fusion

system induced by G over S is equal to F , F = FS(G).

Let F be a finite exotic fusion system over a p-group P . By this theorem

by Park[16] there must be a finite group G such that F is induced by G over P

which is to say F = FP (G). By Reeh[18], there is a basis for B(F) given by

{αQ | [Q]F , Q ≤ P}, which is to say that there is a 1-1 correspondence between

F -conjugacy classes and the basis elements of B(F).

Theorem 3.26. Let F be an exotic fusion system over the p-group P , such that

F is induced by a finite group G ≥ P , then the set R = {resGP (G/H) | H ≤ P} is

a basis for B(F).
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Proof. Since the set R has equal cardinality to the number of F -conjugacy classes

of subgroups of P , it is sufficient to show that this set is linearly independent,

which we prove in a similar way as in the previous section. Take the G-space

X =
∑

H≤P XHres
G
P (G/H), XH ∈ Z then assume that X = 0.

X =
∑
H≤P

XHres
G
P (G/P ) = 0

⇔φK

(∑
H≤P

XHres
G
P (G/H) = 0

)
∀K ≤ P

⇔
∑
H≤P

XHφK(G/H) = 0 ∀K ≤ P.

By maximality, we get that XP = 0. Repeating for all maximal subgroups H such

that XH has not yet shown to be zero, gives XH = 0 and so the only solution

is given when XH = 0 for all H ≤ P , which is to say X = 0 and therefore R is

linearly independent.

Let F be a saturated pro-fusion system over a pro-p group S. By Stancu-

Symonds[21] (2.24) we have that if N an open strongly closed subgroup of S, then

F/N is a saturated fusion system on S/N . Namely, it is a saturated fusion system

on a finite group. Applying the theorem above, we have that for any saturated

pro-fusion system F on a pro-p group S, N open strongly F -closed in S, then

there exists a finite group GN ≥ S/N such that F/N = FS/N(GN).

Definition 3.27. Let P be a pro-p group, S ≤ G, G profinite, we define the

pro-fusion induced by G on P , FP (G), by ob(FP (G)) = {P ≤c S} and

HomFP (G)(Q,R) = {φ : Q→ R | ∃x ∈ G such that φ(u) = xux−1 ∀u ∈ Q}.

Let S be a Sylow pro-p subgroup of G a profinite group where S is not nec-

essarily open in G. Suppose that F = FS(G) is a pro-fusion system over S and

that we have N ≤ S an open strongly F -closed subgroup in S. Consider the map

F → F/N then there exists GN ≥ S/N such that F/N = FS/N(GN), then we
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have a basis of QB(FS/N(GN)) is given by TN := {resGN

S/N(G
N/P ) | N ≤ P ≤ S}.

Suppose that M,N ≤ S are both open strongly F -closed subgroups such that

M ≤ N and take GM to be a finite group such that F/M = FS/M(GM). Since N

is open strongly F -closed then for φ(N/M) = N/M for all φ ∈ HomF/M(N/M,−).

Then we can take the projection map fM,N : GM → GM/N and therefore we have

F/N = FS/N(GM/N).

4 Prime Ideals in B̂(G)

4.1 Topology of B̂(G)

Suppose that G is a profinite group, we define a topology on B̂(G) by taking an

open base for the topology to be cosets of the kernels of the projection maps

πGN : B̂(G)→ B(G/N)

for N ⊴o G. Therefore, an open base for the topology is given by

A := {X + ker(πGN) | πGN , N ⊴o G, X ∈ B̂(G)}.

We prove this is truly a topology by showing it adheres to the topology axioms.

Let τ denote the set generated by union of elements in A. Taking the empty

collection from the open base, we see that ∅ ∈ τ . For N ≤o G, we can write

B̂(G) =
⋃
X∈B̂(G)X + ker(πGN) ∈ τ . Suppose that T ⊆ τ , then we have that⋃

t∈T t ∈ τ by definition since we have defined τ to be generated by unions.

Recall from §2.18-§2.19 that for Z ∈ B̂(G), then we can write Z =
∑

H≤oG
zH ·

G/H such that zH ∈ Z. Take M ⊴o G, then we have that πGM(G/H) = 0 if

M ̸≤o H, therefore we must have that G/H ∈ ker(πGM) if M ̸≤o H. It follows

that for X,Z ∈ B̂(G), Z + ker(πGM) = X + ker(πGM) if and only if zH = xH for all

H ≥M with the xH defined similarly to the zH .

Suppose we have X + ker(πGN), Y + ker(πGK) ∈ A for X, Y ∈ B̂(G). By above,
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without loss of generality we can write elements of A by the coset representatives

X =
∑

H≥N xH · G/H and Y =
∑

H≥K yH · G/H. Consider the intersection

I = (X + ker(πGN)) ∩ (Y + ker(πGK)). For H ≥ N,K, we have that I = ∅ unless

xH = yH since G/H is in neither kernel.

Suppose that H ≥ N but H ̸≥ K and take Z ∈ I then zH = xH and similarly

if H ̸≥ N but H ≥ K then zH = yH . If H ̸≥ N,K then G/H ∈ ker(πGN), ker(π
G
K)

and so G/H ∈ ker(πGN) ∩ ker(πGK). Since ker(πGN∩K) ⊆ ker(πGN) ∩ ker(πGK), we

can choose a set of coset representatives of ker(πGN∩K) given by T ⊆ A such that

ker(πGN) ∩ ker(πGK) = ∪t∈T t+ ker(πGN∩K). For W ∈ B̂(G),

W + ker(πGN) ∩ ker(πGK) = W +
⋃
t∈T

t+ ker(πGN∩K)

=
⋃
t∈T

W + t+ ker(πGN∩K).

We seek to define a representative of a coset of kerGN∩K to write I as a coset.

If we can define zH ∈ Z, for each H ≤o G up to conjugacy, we therefore define

the required representative in B̂(G). We define zH := xH = yH for H ≥ N,K

since we have that they must agree. For the remaining entries, if we have H ̸≥ N

but H ≥ K, we have that G/H ∈ ker(πGN) but G/H /∈ ker(πGK) and so the

representative of the intersection must have zH := yH . Similarly if H ≥ N but

H ̸≥ K, we define zH := xH . Finally, define Z :=
∑

H≤oG
zH · G/H. It follows

that

I =


∅ if xH ̸= yH for some H ≥ N,K⋃
t∈T Z + t+ ker(πGN∩K) otherwise.

Since N,K ⊴o G, we have that their intersection N ∩K ⊴o G and so I ∈ τ in

either case. Take a, b ∈ τ such that a = ∪iai, b = ∪jbj, ai, bj ∈ A. Then by the

usual algebra of set operations we have a ∩ b = (∪iai) ∩ (∪jbj) = ∪i ∪j (ai ∩ bj) =

∪i,j(ai ∩ bj) ∈ τ since we can express the sum as a union of pairwise intersections

of elements of A, which we have shown also lie in τ . Therefore we have shown that

this is a well defined topology on the underlying space B̂(G).
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In order to say that B̂(G) is a topological ring, we show that the ring oper-

ations of addition, additive inverse and multiplication are continuous maps. Let

ι : B̂(G) → B̂(G) denote the map ι : X 7→ −X, that is to say sends an ele-

ment in the Burnside ring to its additive inverse. For X ∈ ker(πGN), N ⊴o G,

we have that ι(X) = −X ∈ ker(πGN) since πGN is a ring homomorphism and so

πGN(ι(X)) = πGN(−X) = −πGN(X) = 0. It follows that ι(ker(πGN) = ker(πGN). Let

Y +ker(πGN) ∈ A and consider ι(Y +ker(πGN)) = ι(Y )+ι(ker(πGN)) = −Y +ker(πGN).

A is an open base for the topology and ι = ι−1, therefore we have shown that the

preimage of every open set is open and so ι is continuous.

Let σ : B̂(G)× B̂(G)→ B̂(G) be the addition map given by σ(X, Y ) = X +Y

for X, Y ∈ B̂(G). By definition, we must have σ(X − Z,Z) = X for all X,Z ∈

B̂(G). Since ker(πGN) is closed under addition, we have that for X ∈ B̂(G),

{(X − Z + ker(πGN), Z + ker(πGN)) | Z ∈ B̂(G)} = σ−1(X + ker(πGN)).

Since ∪Z∈B̂(G)Z + ker(πGN) ∈ τ , we have that the above subset of the preimage

is open in the product topology therefore the preimage itself is open. Since this

holds for any a ∈ A, we have for any collection {at | t ∈ T} ⊆ A, the preimage

σ−1(∪t∈Tat) = ∪t∈Tσ−1(at) is also a union of the elements in A and therefore lies

in τ . Since the preimage of any open set is open, we have that σ is a continuous

map.

Let µ : B̂(G)×B̂(G)→ B̂(G) denote the multiplication map given by µ(X, Y ) =

X ×Y for X, Y ∈ B̂(G). By the multiplication map, we have that for H,K ≤o G,

then we have that G/H × G/K =
∑

g∈[H\G/K]G/H ∩ gK. In particular, we have

that N1 ≤ H ∩ gK where N1 ⊴o K is a maximal normal subgroup of K. Since this

multiplication is commutative, we can similarly deduce that N2 ≤ H ∩ gK where

N2 ⊴o H is a maximal normal subgroup of H.

Therefore, considering the preimage µ−1(X+ker(πGN)), we have that the repre-

sentative X =
∑

H≤oG
xH ·G/H where we can without loss of generality say that

xH = 0 for N ̸≤ H. The set of elements (Y, Z) such that µ(Y, Z) = X must have
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that the entries yH , zH = 0 for N ̸≤ H. Since ker(πGN) = spanZ{G/H | N ̸≤ H},

we have that

µ−1(X + ker(πGN)) = {(Y, Z) | µ(Y, Z) ∈ X + ker(πGN)}

=
⋃

µ(Y,Z)=X

{(Y + ker(πGN), Z + ker(πGN))}

and so is a union of open sets in the product topology. Therefore we have that the

preimage of any open set is open and so µ is continuous. Consequently, we have

that B̂(G) is a well defined topological ring with this topology.

4.2 Open prime ideals

This section examines results proven by [8]Dress Proposition 1 on the prime ideals

of Burnside rings of finite groups and seeks to identify an analogue to them in the

Burnside rings of profinite groups.

A key aspect of the proof for the Burnside ring of finite groups is being able to

identify a minimal transitive G-set for a finite group G which is not in the prime

ideal. The proof proceeds by considering the preimage of a prime ideal in Z under

the H-fixed point map. By finding the minimal transitive G-set G/H which is

not in the prime ideal (under an ordering), we find the minimal H such that the

preimage of a prime ideal classifies the prime ideal under the preimage of φH

The argument in question is built upon the well known result that for R, S

rings, θ : R → S a ring homomorphism, then if P ⊆ S is a prime ideal of S then

θ−1(P ) ⊆ R is a prime ideal of R. This follows from the argument that if a, b ∈ R

such that ab ∈ θ−1(P ) then θ(ab) = θ(a)θ(b) ∈ P but since P is a prime ideal then

we have that θ(a) ∈ P or θ(b) ∈ P and therefore a ∈ θ−1(P ) or b ∈ θ−1(P ) and so

θ−1 is prime in R.

In particular, for G a finite group, H ≤ G we have the usual fixed point ring

homomorphisms φH : B(G) → Z, X 7→ |XH |. Then for each H ≤ G we have

a class of prime ideals can be defined by the preimages of the prime ideals in Z
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since the preimage of a prime ideal under a ring homomorphism is itself a prime

ideal. The prime ideals of Z are given by {0} and pZ. The class of prime ideals

characterised by the preimage of these ring homomorphisms can be expressed as

φ−1
H ({0}) = ker(φH) = {X ∈ B(G) | φH(X) = 0} and

φ−1
H (pZ) = {X ∈ B(G) | φH(X) ∈ pZ} = {X ∈ B(G) | φH(X) ≡ 0 mod p}.

Dress[8] Proposition 1 showed that this class of prime ideals is in fact all the

prime of ideals of B(G) for G a finite group. This result is obtained by showing

each P ⊆ B(G) a prime ideal, there is a unique minimal transitive G-set in B(G)

which is not in P under the ordering G/H ≤ G/K ⇔ H ≲G K. Taking the

stabilizer subgroup, H of the G-orbit G/H corresponds to the defining fixed point

map in question φ−1
H (pZ) = P for some p either prime or 0. The existence of this

minimal element is dependent on the subgroup lattice of a finite group being finite,

a condition that we do not have in general for profinite groups.

We can, however, define an equivalent class of prime ideals of B̂(G) for a

profinite group G. Recall from definition 2.19 that since each X ∈ B̂(G) is almost

finite by definition, it must necessarily be essentially finite and so for each H ≤o G,

we have XH < ∞. Therefore φH := |(·)H | : B̂(G) → Z is a well defined ring

homomorphism and φ−1
H ({0}), φ−1

H (pZ) for p a prime are the preimages of prime

ideals and therefore prime ideals themselves.

Define B̂(G) to have the topology defined in the previous subsection and

equip Z with the the discrete topology and consider the ring homomorphism

φH : B̂(G) → Z. Since Z has the discrete topology, each subset of Z is open.

In particular, the singleton sets {q} ⊆ Z are open. G itself is a topological group

under the profinite topology, that is to say that the product and inverse maps

p(x, y) = xy and c(x) = x−1 are continuous. For g ∈ G, we can define a constant

map f : G → G, x 7→ g, suppose that U ⊆o G then f−1(U) = G if g ∈ U ,

f−1(U) = ∅ otherwise and therefore f is continuous.

Let idG : G→ G, x 7→ x, clearly this is continuous. Consider G×G with the
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product topology, then we have that a map h : G→ G×G, x 7→ (h1(x), h2(x)) is

continuous if and only if h1, h2 are both continuous. Define h by h1(x) = f(x) = g

and h2(x) = idG(x) = x then this is a continuous map. Finally, we compose this

with the function p and get p ◦ h : G → G, x 7→ gx is a continuous function.

Since it is continuous, the preimage of any open set is open. For U ⊆o G we have

(p◦h)−1(U) = g−1U , this process can be repeated for any g ∈ G and so each coset

of U is open. A similar argument for right multpilication by g−1 shows that each

G-conjugate of U is open.

Consider φ−1
H (q) = {X ∈ B̂(G) | φH(X) = q}. If H ≤o G, we have that

|G : H| <∞, and therefore |G : NG(H)| and so there are finitely many conjugates

of H in G. Each Hg is open, therefore the normal core in G of H, defined as

KG(H) :=
⋂
g∈GH

g is open in G since it is the intersection of finitely many open

subgroups and normal since it is the intersection of all the conjugates of H.

Suppose that K ≤o G, we have that φH(G/K) = |{gK | Hg ≤ K}|. Since

KG(H) =
⋂
g∈G

gH ≤ Hg, then if KG(H) ̸≤ K, we have φH(G/K) = 0. Take

Y :=
∑

K≤oG
yK ·G/K ∈ B̂(G) then

φH(Y ) = φH

(∑
K≤oG

yK ·G/K

)
=
∑
K≤oG

yK · φH(G/K)

=
∑

KG(H)≤K≤G

yK · φH(G/K)

= φH

 ∑
KG(H)≤K≤G

yK ·G/K

 .

Since the value φH(Y ) has no dependence on the coefficient YK in the expression

of Y if K ̸≥ KG(H) and so we are free to choose any yK ∈ Z for such K ≤o

G. As previously discussed for KG(H) ̸≤ K, we have φKG(H)(G/K) = 0 and

therefore G/K ∈ ker(πGKG(H)). It follows then that for some collection of X =∑
KG(H)≤K≤G xK ·G/K, we have φ−1

H (q) =
⋃
φH(X)=qX+ker(πGKG(H)) and therefore

φ−1
H (q) is open for all q ∈ Z. Since the preimage of each singleton set is open, we

have that φH is a continuous map, therefore each prime ideal of the form φ−1
H (pZ)
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for some H ≤o G, p a prime or 0 is open.

Definition 4.1. Define I(G) = {G/H| H ≤o G} be a Z-spanning set for B̂(G).

By abuse of notation, we use this notation to denote a single representative from

each almost finite transitive G-space by taking one representative H from each

G-conjugacy class of subgroups. We define a partial order on this set by G/H ⪯

G/K ⇔ H ≲G K, noting that this is well defined since if we have H,K ≤o G such

that H ∼G K, L ≤ K, then there exists g ∈ G such that H = Kg, K ≥ L⇔ H =

Kg ≥ Lg and therefore G/L ⪯ G/H.

With this ordering, we see a divergence from the theory in the case of prime

ideals of Burnside rings of finite groups where, as previously discussed, they can

always guarantee that there is a minimal transitive G-set which is not in the ideal.

We prove that if there are minimal transitive G-spaces that are not in a prime

ideal of B̂(G) for G a profinite group, then there is a unique minimum to that set.

As usual, we define the character of a ring to be the least n ∈ N such that

n×1 = 0, if no such n exists, then we take the character to be defined to be 0. We

denote the chatacter of R by char(R). In the case of the Burnside ring, we have

that 1 := G/G and so we have that char(B̂(G)) = 0 for the Burnside ring, but we

can also take the character of the factor ring charB̂(G)/P which will either be p

a prime or 0. This corresponds to whether pG/G ∈ P for some prime p or not.

Proposition 4.2. Let P be a prime ideal in B̂(G). Then the set

I(G)\I(G) ∩ P = {G/H|H ≤o G,G/H /∈ P}

contains at most one minimal element. In the case a minimum exists, we shall

call the unique minimum TP = G/U and for p = charB̂(G)/P, we have

P = {X ∈ B̂(G) | φU(X) ≡ 0 mod p}.

Proof. Suppose that I(G)\I(G)∩P = ∅, then for all H ≤o G, we have G/H ∈ P .

92



P is a prime ideal and so is closed under addition, therefore since I(G) is Z-

spanning set for B̂(G), we must have that ⟨G/H | H ≤o G⟩ = B̂(G) ⊆ P which

contradicts P being prime. Now suppose that I(G)\I(G) ∩ P has no minimal

element, then we are done. Finally, suppose that I(G)\I(G) ∩ P has minimal

elements.

Let G/H,G/K ∈ I(G)\I(G) ∩ P and assume they are both minimal.

⇒ G/H ×G/K =
∑

g∈[H\G/K]

G/H ∩ gK /∈ P

since P is a prime ideal and so the product being in the prime ideal would imply

either G/H ∈ P or G/K ∈ P and so a contradiction. Assume H ̸∼G K, then

H ≲G H,K but H ∩ gK ̸∼G H,K, then we must have G/H ∩ gK ≺ G/H,G/K

for each g ∈ G, namely that each summand above is strictly less than G/H

and G/K in the ordering on I(G). Since this sum is not in P and P is closed

under addition, there must be at least one of these not in the prime ideal which

contradicts the minimality of G/H,G/K. We are left to conclude that H ∼G K

and so G/H ∼= G/K. Since this holds for any two minimal elements, we have that

they must all coincide and so if a minimum exists, it is unique.

Suppose that I(G)\I(G) ∩ P has a minimal element G/H and take X =∑
K≤oG

XK G/K, XK ∈ Z. Recall for any K ≤o G, g ∈ G, we have G/H ∩ gK ≺

G/H. Let Y =
∑

L≤oG
YH G/L = G/H ×X, then

Y = G/H ×X = G/H ×
∑
K≤oG

XK G/K =
∑
K≤oG

XK

∑
g∈[H\G/K]

G/H ∩ gK

=
∑
L≲GH

YL G/L.

Since φH(G/K) = 0 for H ̸≲G K, we have

φH(Y ) =
∑
L≲GH

YL φH(G/L) = YHφH(G/H).
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Consequently, we have φH(G/H)φH(X) = φH(Y ) = YHφH(G/H) and so it follows

φH(X) = YH . By the expression of Y =
∑

L≲GH
YL G/L, and by the minimality

of G/H, we have that each other summand for L ̸∼G H is in P . Therefore X ∈ P

if and only if φH(X) ∈ P , which is to say that φH(X) ≡ 0 mod charB̂(G)/P , and

since P is prime, it must either have prime characteristic or 0 characteristic, using

the convention that for ease of notation φH(X) ≡ 0 mod 0⇔ φH(X) = 0.

We show that both cases can occur, which is to say that there exists a profi-

nite group G such that the prime ideal P1 of the Burnside ring of G for which

I(G)\I(G) ∩ P has a minimal element, and there exists a profinite group H such

that the prime ideal P2 of the Burnside ring of H for which I(H)\I(H) ∩ P2.

Example 4.3. Take G = S3, since I(G)\I(G) ∩ P is finite, it has a minimal

element. This condition holds for any finite group, all of which are profinite by

definition. As previously discussed, we can get a prime ideal of B̂(G) by taking the

preimage of a prime ideal under the fixed point map. Let H = ⟨(12)⟩, then there

is a prime ideal defined by φ−1
H (0) =: P . Consider the fixed points of H action on

the transitive G-sets, then for K ≤ G we have φH(G/K) = |{g ∈ G/K | Hg ≤

K}|. We have then that P contains both S3/1, S3/⟨(123)⟩ since neither contain a

conjugate of H and so φH(G/1), φH(G/⟨123⟩) = 0. Furthermore, we see trivially

that φH(S3/S3) = 1 and φH(S3/H) = 1 since H is self normalizing. Consequently,

we have that P = ⟨S3/1, S3/⟨(123)⟩ , S3/S3 − S3/H⟩ since linear combinations of

these are the only methods of achieving 0 fixed points under H-action. As we can

see, G/H is the minimal element of P in this case.

This approach precisely coincides with the method of taking prime ideals of

Burnside rings of finite groups discussed in Dress’ paper[8], for in a finite group we

have that the number of conjugacy classes of subgroups is always finite and so by

[8]Dress Proposition 1, we have that there is always a minimal element not in the

prime ideal since each poset of transitive G-sets which are not in the prime ideal

is finite.
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We shall prove that for the (completed) Burnside ring of a profinite group,

there are prime ideals which are not given in this way. In order to show that we

can have a prime ideal P of the Burnside ring of a profinite group G for which

I(G)\I(G) ∩ P has no minimal element then, we must have that that G is an

infinite profinite group. This alone is not sufficient, however, as we demonstrate

with the following examples.

Example 4.4. Let G = Zp be the p-adic integers and suppose that P ⊆ B̂(G) is

a prime ideal such that I(G)\I(G) ∩ P has no minimum. Consider Zp as a ring,

since it is a principal ideal domain, we have that all ideals can be generated by a

single element and so additive subgroups of G as a group are of the form ⟨pi⟩ for

some i ∈ N0 and so form a total chain.

⟨1⟩ ⊇ ⟨p⟩ ⊇ · · · ⊇ ⟨pi⟩ ⊇ . . . .

If I(G)∩P is non empty, then we have that there must be a non negative integer

i such that G/⟨pi⟩ ∈ P , G/⟨pi+1⟩ /∈ P since otherwise I(G)∩P is either empty or

I(G)\I(G) ∩ P is finite.

Assume that we have G/⟨pi⟩ ∈ P and G/⟨pi+1⟩ /∈ P . Clearly the product

G/⟨pi⟩ ×G/⟨pi+1⟩ ∈ P since P is closed by supermultiplication,

⇒ G/⟨pi⟩ ×G/⟨pi+1⟩ =
∑

g∈⟨pi⟩\G/⟨pi+1⟩

G/⟨pi⟩ ∩ g⟨pi+1⟩.

However, since G is abelian, |H\G/K| = |G/HK| for all H,K ≤ G and g⟨pi+1⟩ =

⟨pi+1⟩. Using that these subgroups form a total chain, we know that ⟨pi⟩∩⟨pi+1⟩ =

⟨pi+1⟩. Consequently, we have G/⟨pi⟩ × G/⟨pi+1⟩ = |G/⟨pi+1⟩| G/⟨pi+1⟩ ∈ P . By

assumption we have G/⟨pi+1⟩ /∈ P and so pi+1 = |G/⟨pi+1⟩| ∈ P . Consider

G/⟨pi+1⟩ × G/⟨pi+1⟩ = |G/⟨pi+1⟩| G/⟨pi+1⟩ = pi+1 G/⟨pi+1⟩, then this is in P

since p ∈ P , but that would imply G/⟨pi+1⟩ ∈ P and so we have a contradiction.

Namely, that there we cannot have G/⟨pi⟩ ∈ P when G/⟨pi+1⟩ /∈ P .

Hence we have contradiction and so no such prime ideal exists, which is to
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say that all prime ideals of B̂(Zp) must have a minimal isomorphism class of a

transitive G-space not in the ideal.

Example 4.5. Consider the profinite completion of the integers, that is to say

Ẑ = lim←−n∈Z Z/nZ
∼=
∏

p prime Zp =: G. Let p be a prime and consider the subgroup

Hi = piZp×
∏

q ̸=p Zq ≤o G, i ∈ N. Then we have a prime ideal defined by φ−1
Hi
(pZ).

Since φHi
(G/Hi) = pi, we have that G/H ∈ P and so P ≠ ∅. Consider that the

Hi fixed points of the identity must be 1 and so φHi
(G/G) = 1, therfore G/G /∈ P .

Define a map for each prime q, πq : G → Zq to be the projection into that

coordinate of the direct product. Choose a prime r ̸= p and take a subgroup K :=∏
Kq ≤o G where Kr <o Zr, Kq = Zq otherwise. Then φHi

(G/K) = 0 since Hi is

not contained in any conjugate of K since G is abelian and πr(K) ̸= Zq = πr(Hi).

Therefore, G/K ∈ P . Consider φHi
(G/Hj) = pj for i ≥ j and so G/Hj ∈ P ,

therefore the only element of I(G)\I(G) ∩ P is G/G and so I(G)\I(G) ∩ P =

{G/G}. Since this does not depend on our choice of i ∈ N for Hi, we have that

this holds for any prime ideal defined in such a way.

Proposition 4.6. For G a profinite group, P a prime ideal of B̂(G), if T =

I(G)\I(G) ∩ P is infinite, then there does not exist a minimal element of T .

Proof. Suppose G/H ∈ T is the minimal element of T and take G/K ∈ T\{G/H}.

Since G/H ≺ G/K, we have H ≲G K and so the normal core of H lies within

the normal core of K,
⋂
g∈GH

g ≤
⋂
g∈GK

g. Since this must hold for each G/K ∈

T\{G/H}, we have
⋂
g∈GH

g ≤
⋂
G/K∈T

⋂
g∈GK

g. Take a collection of open normal

subgroups of G, N = {N ⊴o G | ∃G/K ∈ T such that
⋂
g∈GK

g = N}.

If N is finite, then there are at most |G/
⋂
N∈N N | elements in T , but since

N is finite, we have that
⋂
N∈N N is an open subgroup and so |G/

⋂
N∈N N | is

finite. Consequently, we have that N must be infinite by assumption that T is

infinite. Note that
⋂
N∈N N =

⋂
G/K∈T

⋂
g∈GK

g ≥
⋂
g∈GH

g, and any normal

subgroup of H must be contained in
⋂
g∈GH

g, but |G :
⋂
N∈N N | = ∞ implies

that |G :
⋂
g∈GH

g| = ∞. It follows that there does not exist M ⊴o G such that

M ≤ H and so H ≤ G is not open, hence G/H /∈ I(G).
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Corollary 4.7. For G a profinite group, P a prime ideal of B̂(G), then T =

I(G)\I(G) ∩ P is finite if and only if T has a minimal element.

Example 4.8. Let G = Zp × Zp where Zp is the p-adic integers, and take the

collection C = {Zp × Zp/(Zp × piZp) | i ∈ N0} ⊆ B̂(G). C is infinite, we wish

to find a prime ideal P ⊆ B̂(G) such that C ∩ P = ∅, in doing so we will have

demonstrated a prime ideal which has no minimal element by Proposition 4.6 since

we will have infinitely many transitive G-space which are not in P . In order to do

this, we form a multiplicative set in B̂(G).

Take X = {
∏

c∈D c
kc | kc ∈ N, D ⊆ C} to be the set of product of elements

of C. By definition this is a multiplicative set since G/G = 1 ∈ C and for any

x, y ∈ X, we have xy ∈ X. By Krull’s separation lemma[2], if we can find an ideal

which is disjoint from X, the non empty multiplicative set, then is it contained in

a prime ideal P which is disjoint from X.

Consider the set Y = {Zp × Zp/(pjZp × pkZp) | j ̸= 0, k ∈ N0} and the ideal

it generates I = ⟨Y ⟩. Define S(Y ) = {H ≤o G such that G/H ∈ Y } and the

projection map π1 : G → Zp to be the projection into the first coordinate. By

definition of Y we have that for any H ∈ S(Y ), π1(H) < Zp. For any G/K ∈ C,

we have π1(H) = Zp and so Y ∩ C = ∅.

Take G/K ∈ Y , Z ∈ B̂(G) such that Z =
∑

H≤oG
zH · G/H, zH ∈ Z and

consider the product

G/K =
∑
H≤oG

zH ·G/K ×G/H

=
∑
H≤oG

zH
∑

g∈[K\G/H]

G/K ∩ gH.

Since each K ∩ gH ≤ K for all g ∈ G, H ≤o G, we have π1(K ∩ gH) < Zp and so

no summand of rZ can be written as a linear combination of elements in C.
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Take G/L, G/M ∈ C then

G/L×G/M =
∑

g∈[L\G/M ]

G/L ∩ gM =
∑

g∈[L\G/M ]

G/L ∩M

since G is abelian. Since π1(L) = π1(M) = Zp, π2(L ∩M) = min{π2(L), π2(M)}

and L ∩M = π1(L ∩M) × π2(L ∩M) = Zp × min{π2(L), π2(M)}, we get that

G/L∩M is also in C, in fact G/L∩M = min{G/L,G/M}. Therefore G/L×G/M

can be expressed as a linear combination of elements in C. Clearly, any finite

product of elements in C can be written as a linear combination of elements of C

and so every element of X can be written as a linear combination of elements of

C.

Taking any s ∈ I, we see that for some index set J ,

s =
∑
ri∈Y,

Zi∈B̂(G)
i∈J

riZi /∈ X

since no summand of each riZi can be expressed as an element of C. Therefore

I ∩X = ∅ and so by Krull’s separation lemma, we have that there exists a prime

ideal P ⊇ I such that P ∩X = ∅. We have thus shown the existence of a prime

ideal such that C ⊆ I(G)\I(G) ∩ P is infinite.

Since we have shown there are profinite groupsG such that there is a prime ideal

P ⊆ B̂(G) with a minimal element of I(G)\I(G)∩P , and a profinite group H such

that there is a prime ideal Q ⊆ B̂(H) with no minimal element of I(H)\I(H)∩Q,

we have proved the existence of both cases. A natural question arises, given the

topology we have specified on B̂(G), which prime ideals of the Burnside ring of a

profinite group G are open, and which are closed but not open. As we have already

stated, the prime ideals φ−1
H (pZ) for p either 0 or prime, H ≤o G, are open, we will

show that these are precisely the open ideals in the topology of B̂(G) are given by

these ideals.

Definition 4.9. We define the ideal PU,p to be the prime ideal of elements whose
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number of U -fixed points for U ≤o G is congruent to 0 mod p for p either prime or

0. That is to say the set PU,p = {X ∈ B̂(G)|φU(X) ≡ 0 mod p}. This is certainly

a prime ideal since it can be written as φ−1
U (pZ), noting that we use the convention

that in the case p = 0, the congruence φU(X) ≡ 0⇔ φU(X) = 0.

For Burnside rings of finite groups, Dress has shown that this class of prime

ideals is exhaustive[8]. This can be seen by applying Proposition 4.2 to a finite

group. Consequently we have that for a finite group G, P a prime ideal of B̂(G) =

B(G) then I(G)\I(G)∩P has a minimal element since it is finite. Call this element

G/U then by 4.2, we have that P = PU,p for p either prime or 0. We note that it

is clear that φ−1
H (pZ) = PH,p for H ≤o G for G a profinite group by definition 4.9.

Theorem 4.10. For G a profinite group, then every open prime ideal P of B̂(G)

is of the form P = PU,p for some U ≤o G, p either a prime or 0.

Proof. Suppose that G is a profinite group, and that P is an open prime ideal of

B̂(G). Since P is open, we have that there exists a set X = {x} ⊆ B̂(G) such

that P =
⋃
x∈X x + ker(πGNx

) for some Nx ⊴o G. However, P is a prime ideal and

so x+ker(πGNx
) ⊆ P implies that −(x+ker(πGNx

)) = −x− ker(πGNx
) ⊆ P and since

−ker(πGNx
) = ker(πGNx

), we have that −x + ker(πGNx
) ⊆ P . As P is closed under

addition, we have −x+ x+ ker(πGNx
) = ker(πGNx

) ⊆ P .

Therefore the prime ideal contains the isomorphism classes of transitive G-

spaces which are in the kernel of πGNx
, P ⊇ ker(πGNx

) ⊇ {G/K | N ̸≤ K ≤o G}. It

follows that I(G)\I(G) ∩ P ⊆ {G/H | N ≤ H}, and since G/N is finite, we have

that {G/H |N ≤ H} is finite and so has a minimal element. By Proposition 4.2

we have that P = PU,p for some U ≤o G, p either prime or 0.

Corollary 4.11. For G a profinite group, then P a prime ideal of B̂(G) is open

if and only if I(G)\I(G) ∩ P is finite.

Note that with the definition above, we now have a method of expressing

the kernel of the restriction map. Dress-Siebeneicher[10] (2.10.6) states that for
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U ≤o G, ker(resGU ) = {X ∈ B̂(G) | φV (X) = 0, ∀V ≤o G, V ≲G U}. In particular,

each X ∈ ker(resGS ) must also lie in each X ∈ PV,0 for each V ≲G S, and so we

have ker(resGS ) =
⋂
V ≲GS

PV,0. Since resGS is a ring homomorphism, we use the first

isomorphism theorem and the following result is immediate by B̂(F) = resGS (B̂(G))

as proved in the previous chapter, in Theorem 3.22.

Proposition 4.12. For F = FS(G) the pro-fusion system of G over S, S ≤o G,

then we have

resGS (B̂(G)) = B̂(F) ∼= B̂(G)/
⋂

H≲OS

PH,0.

Proof. By Theorem 3.22, we have that resGS : B̂(G) → B̂(F) is a surjective ring

homomorphism. Subsequently, applying the first isomorphism theorem for rings,

we have that B̂(F) ∼= B̂(G)/ker(resGS ). Note that the kernel of resGS is the set of

elements of B̂(G) which map to 0 ∈ B̂(F). This is equivalent to the elements

X ∈ B̂(G) which have φP (res
G
S (X)) = 0 for all P ≤o S since the image in the

ghost ring is injective.

Since X and resGS (X) denote the same underlying set perceived with G-action

or the S-action induced by G respectively, we have that they are equivalent un-

der P -action for P ≤o S. It therefore follows that we have ker(resGS ) = {X ∈

B̂(G) | φH(X) = 0 ∀H ≤o S}. By definition 4.9, we have that PU,0 = {X ∈

B̂(G) | φU(X) = 0} and so ker(resGS ) =
⋂
H≤oS

PH,0.

We have now classified all open prime ideals, however, there is no explicit

requirement that PU,p ̸= PV,q for some U, V ≤o G, U ̸∼G V , p, q prime or 0 and so

we wish to investigate when two prime ideals defined in this way are equal. We

know that both of these expressions must share a minimal isomorphism class of a

transitive G-space but there is no claim that this need be the class of G/U or G/V .

We begin by showing that it can be the case that two prime ideals, each of the

form PU,p defined by different subgroups need not be distinct. We subsequently

prove Proposition 4.14 which is a generalisation of [8]Dress Proposition 1.b) on

when prime ideals are subsets of each other.
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Example 4.13. In example 4.5 we took the profinite completion of the inte-

gers, given by the expression G =
∏

p prime Zp, and showed that for Hi = piZp ×∏
P ̸=q Zq ≤o Gi, i ∈ N, we have that the prime ideal given by φ−1

Hi
(pZ) = PHi,p =:

Pi has a minimal element of I(G)\I(G) ∩ Pi given by G/G. By Proposition 4.2,

this is a defining element of Pi and so we also have X ∈ Pi if and only if φG(X) ≡ 0

mod p. Since this holds for any i ∈ N, we have that Pi = Pj for all i, j ∈ N and

so we see that they need not be distinct prime ideals despite Hi ̸= Hj for i ̸= j.

Proposition 4.14. Let G be a profinite group, U, V ≤o G and p, q primes or 0,

then we have that

PU,p ⊆ PV,q ⇔


p = q PU,p = PV,q,

p = 0, q ̸= 0 PU,q = PV,q.

Therefore PU,0 is minimal and PU,p, p ̸= 0 is maximal.

This result is equivalent to saying that if we have two prime ideals defined by

the number of U-fixed points and the number of V -fixed points respectively such

that PU,p ⊆ PV,q, then we have that either p = q and the prime ideals are the same

and every element, or we have that for q ̸= 0, PU,0 ⊂ PV,q = PU,q.

Proof. Suppose that p, q are both primes with p ̸= q, then we have by defini-

tion that pG/G ∈ PU,p and qG/G ∈ PV,q since φU(pG/G) = pφU(G/G) = p

and φV (qG/G) = qφV (G/G) = q. Assume that PU,p ⊆ PV,p, it follows that

pG/G, qG/G ∈ PV,q and by immediate consequence of Bezout’s lemma we have

that there exist m,n ∈ Z such that mp + nq = 1 = G/G and so by PV,q being

closed under addition, we have 1 ∈ PV,q. Taking any X ∈ B̂(G) it follows that

1 · X = X ∈ PV,q and so PV,q = B̂(G) which is a contradiction and therefore we

cannot have p and q distinct primes.

Now consider p = q a prime, and consider the sets T1 = I(G)\I(G)∩PU,p, T2 =

I(G)\I(G) ∩ PV,p, then we have T2 ⊆ T1 since PU,p ⊆ PV,p. By Proposition 4.2

there is a minimal element to both T1 and T2 respectively, define G/H to be the
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minimal element of T1 and G/K to be the minimal element of T2. Suppose that

T2 = T1 then they share a minimal element and by Proposition 4.2 we have that

this minimal element defines both ideas by the relation X ∈ PU,p if and only if

φH(X) ≡ 0 mod p ⇔ φK(X) ≡ 0 mod p if and only if X ∈ PV,p since we must

have H ∼ K. In this case we get equality of the prime ideals PU,p = PV,p.

Suppose that PU,p ⊂ PV,p, then in particular we have G/H ≺ G/K. Consider

the fixed points φK(G/K) = |NG(K) : K| ̸≡ 0 mod p, we have φH(G/K) =

|{gK ∈ G/K | Hg ≤ V }| = |NG(K) : K||{g ∈ G/NG(K) | Hg ≤ K}|. If p divides

|{G/NG(K) | Hg ≤ K}| then G/K ∈ PU,p, G/K /∈ PV,p and so we contradict out

assumption. If p does not divide |{G/NG(K) | Hg ≤ K}|, then it has an inverse

in Z/pZ, and so we can select r ∈ Z such that G/K − rG/H ≡ 0 mod p, in which

case we have G/K− rG/H ∈ PU,p but G/K− rG/H /∈ PV,p, once again we have a

contradiction and so we conclude that we cannot have PU,p ⊂ PV,p for any prime

p.

If p = q = 0 then both prime ideals are defined by the same unique element

G/H ∈ I(G)\I(G)∩PU,p since otherwise we can follow a similar process to above to

contradict the inclusion, and therefore the only possibility is given by PU,p = PV,p.

If p is prime but q = 0 then we have a contradiction since there are elements in PU,p

which are not in PV,q, namely we can take the element pG/K, since φK(pG/K) =

p|NG(K) : K| ≠ 0 but φH(pG/K) ≡ 0 mod p.

Finally, we suppose that p = 0, q a prime. We have PU,0 ⊆ PU,q since we

have that φH(X) = 0 ⇒ φH(X) ≡ 0 mod q. Any prime ideal with characteristic

q which contains PU,0 must also contain PU,p since by Proposition 4.2 we have

shown that this defines the minimal ideal with this property and so PU,q ⊆ PV,q.

By the rest of the Proposition, we have already shown that in this case we must

have equality and so we have proved all required statements. It naturally follows

that any open prime ideal defined with characteristic 0 is minimal and any prime

ideal with prime characteristic is maximal.
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The following few Propositions now cover the final result on prime ideals as

proved in Dress’ paper[8]. The result in question concerns the case when we have

equality of prime ideals PU,p = PV,p and gives a condition for when they coincide.

This is namely that (for the Burnside ring of a finite group) PU,p = PV,p if and only

if Up ∼ V p where Up denotes the smallest normal subgroup of U such that U/Up is

a p-group. Difficulty arises with profinite groups since the natural analogue would

be to take the minimal normal subgroup, N , of an open subgroup U of a profinite

group G such that U/N is a pro-p group, the problem being that N may not

be open and so any argument based on almost finite G-spaces becomes difficult

since there is no condition that the number of fixed points be finite for non open

subgroups.

Indeed, if for example we take the p-adic integers Zp or any infinite pro-p

group, we have that there is never an open normal subgroup minimal such that

the factor group is a p-group. In appendix B of Dress’ notes on representation[9],

he considers the Burnside ring of profinite groups defined by the Grothendieck

ring of isomorphism of finite G-sets for a profinite group G, this guarantees that

the number of fixed point shall always be finite under the action of any closed

subgroups since there are only finitely many fixed points. We seek to find a useful

replacement for taking Up in the context of profinite groups.

We first begin with a technical lemma that shall prove useful and then follow

with the most simple case, that is when this minimal element does exist and is

open.

Lemma 4.15. Let U be a profinite group and suppose that W ⊴o U is an open

normal subgroup of U such that U/W is a p-group, then for X ∈ B̂(U), we get

φU(X) ≡ φW (X) mod p and PU,p = PW,p.

Proof. Suppose W ⊴o U,U/W a p-group and take X ∈ B̂(U). Recall that the set

XW = {x ∈ X | W.x = x} denotes the elements in X which are invariant under

W -action. Since W ≤ U , we have that those elements which are invariant under

U action can be seen as a subset of XW ⊇ XU . We can therefore deconstruct
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the set as XW = XU + (XW −XU) = XU +XW\XU with addition and negation

induced by the Burnside ring to be set unions with multiplicity and formal negation

respectively. Take x ∈ XW\XU , then we have by definition U.x ̸= x and W.x = x.

It follows that we can express the W -action on XW\XU by allowing W to act

trivially on XW\XU . Therefore, any U action on XW\XU can be expressed as

U/W action on it.

It follows that there exist K ≤ U/W , aK ∈ Z such that

XW\XU =
∑

K≤U/W

aK((U/W )/K)W

as a U -space since U action in this case is equivalent to U/W -action. Additionally,

we have that in the sum, K ̸= U/W since in this case the elements would also

be invariant under U -action and so lie within XU . It follows that as a U -space

we can write the number of fixed point of X under W action as the sum XW =

XU + XW\XU = XU +
∑

K<U/W aK((U/W )/K) = XU +
∑

K<U/W aK(U/WK).

Note that U/W a p-group implies that p divides U/WK for all K such that

U/WK ̸= U/W . Take the W fixed points of both sides and we have

φW (X) = |XW | = |XU |+
∑

K<U/W

aK |(U/WK)W |

≡ |XU | mod p

≡ φU(X) mod p.

PU,p = {X ∈ B̂(G)|φU(X) ≡ φW (X) ≡ 0 mod p} = PW,p

Example 4.16. Let G = GLn(Zp) for p ≥ 7 a prime, then we have a system of

open normal subgroups given by Nk = {x ∈ G | x ≡ In mod pk} for k ∈ N and

consider the open subgroups N := Nk, M := Nl for some k, l ∈ N. For K ⊴o G

and any H ≤o G, we have that φK(G/H) = |{gH ∈ G/H | Kg ≤ H}| = |{gH ∈
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G/H | K ≤ H}|, this then splits into two cases, if K ≤ H, φK(G/H) = |G : H|

otherwise we get φK(G/H) = 0. Take P = PN,p = {X ∈ B̂(G) | φN(X) ≡

0 mod p}.

If N ̸≤ H, we have that φN(G/H) = 0 and so G/H ∈ P , suppose that N ≤ H

and that p divides |G : H| then G/H ∈ P . If N,M ≤ H then φN(G/H) = |G :

H| = φM(G/H) and if M ≤ H, N ̸≤ H then φN(G/H) = 0, φM(G/H) and

vice versa. Since the open normal subgroups make a chain, we have φM(G/H) =

|G : H| ̸≡ 0 but φN(G/H) ≡ 0 implies that H ≥ N but H ̸≥ M and therefore

φN(G/H) = 0. Assume that M ≤ N , then we clearly have by the fixed points of

the transitive G-spaces that for X ∈ B̂(G) written as X =
∑

H≤oG
XH G/H, then

φN(X) = φN

(∑
H≤oG

X/H G/H

)
=
∑
H≤oG

XH φN(G/H)

≡
∑

p∤φN (G/M)

XHφN(G/H) mod p

φM(X) ≡
∑

p∤φN (G/H)
p∤φM (G/H)

XHφM(G/H) +
∑

p∤φM (G/H)
φM (G/H)=0

XHφM(G/H).

Clearly, since M ≤ N , we have that the p ∤ φN(G/H) implies p ∤ φM(G/H)

since if N ≤ H, we must have that M ≤ H. Assume that p does not divide

|G : H| = φM(G/H), then we have |G : M | = |G : H||H : M |, and so the

multiplicity of p in |G :M | is equal to the multiplicity of p in |G : H|. Taking the

group G/M , we see that H/M is a Sylow p-subgroup of this and so N/M ≤ H/M

since N/M is normal in G/M . Subsequently we have that we have a contradiction

and so the latter sum in the expression of φM(X) is congruent to 0 mod p.

It follows that φN(X) ≡ φM(X) mod p for all X ∈ B̂(G). Therefore we have

PN,p = PM,p.

Proposition 4.17. Let U be a profinite group and p be a prime. Then if there

is a minimal open normal subgroup Up ≤ U such that U/Up is a p-group, then

PU,p = PV,p if and only if Up ∼ V p.
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Proof. Assume that Up ∼ V p, then we have φUp(X) = φV p(X) for every X ∈

B̂(G). Applying the previous lemma to U and V respectively, we have φUp(X) ≡

φU(X) ≡ φV (X) ≡ φV p(X) mod p for each X ∈ B̂(G). Therefore, we have

PU,p = PV,p.

Conversely, assume that PU,p = PV,p = P and that the minimal element of

I(G)\I(G) ∩ P is given by G/W . Then a prime ideal PH,p is equivalent to P if

and only if φH(X) ≡ φW (X) ≡ 0 mod p for all X ∈ P . Now consider

NG(U
p)

Up

Up

NG(U
p)/Up

S

1

where Up is the preimage of a p-Sylow subgroup, S of NG(U
p)/Up under the

quotient map. Now applying that Up is the minimal open normal subgroup of U

such that U/Up is a p-group, therefore (Up)
p = Up as otherwise there would be

some smaller H ⊴o U
p such that U/H is a p-group. Up is characteristic in Up and

so NG(Up) ⊆ NG(U
p) and p ∤ |NG(Up) : Up| since Up is the preimage of a p-Sylow

subgroup.

⇒ φUp(X) ≡ φU(X) ≡ φUp(X) mod p

by applying the previous lemma and noting that Up ⊴ Up. Repeating this processes

for V and using that the respective Up, Vp are preimages of Sylows,

⇒ Up ∼ Vp

⇒ (Up)
p = Up ∼ V p = (Vp)

p.

Noting that in the above argument we see that Up /∈ P , we in particular get

the following.
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Corollary 4.18. In the above Proposition, with P = PU,p with definition 4.9, then

TP = G/Up.

Example 4.19. Let G = GL2(Z5) to be the general linear group over the ring

of p-adic integers, then this is virtually a pro-5 group, which is to say that there

exists a subgroup H ≤o G such that H is a pro-5 group. Namely, the open normal

subgroup N = {x ∈ GL2(Z5) | x ≡ I2 mod 5} is pro-5, although not maximal

pro-5 since we have G/N ∼= GL2(5) and this has subgroups of order 5, for example

the subgroup given by ⟨( 1 1
0 1 )⟩. Taking S to be a Sylow-3-subgroup of G/N , and

taking the preimeage under the projection map πGN
−1
(S) = SN , then the minimal

open subgroup of G, M , such that SN/M is a 3-group, we have that S3 = N since

N is a pro-5 group and so no subgroup has index 3.

We have thus shown that it is possible to have a subgroup which adheres to

having a minimal open subgroup such that U/Up is a p-group. However, Propo-

sition 4.17 also states that all such minimal open subgroups are conjugate in G.

It’s important to note that Up ⊴o U ≤o G but that Up is not necessarily open in

G, although we do have that in this case.

When dealing with an infinite profinite group, U , it is possible that there is

an infinite set T = {N | N ⊴o U, U/N a p group}, for example Zp. In this case,

the subgroup M = ∩N∈TN gives a minimal open subgroup of U such that U/N is

a pro-p group. Since this group M is closed and not open, it is not certain that

there are finitely many fixed points under M action on almost finite U -spaces. We

show that this can be expressed as an inverse limit as shown in Dress’ notes[9].

Let G = lim←−N⊴oG
G/N , then for U ≤o G, N ⊴o G, we have that (fN(U))

p ≤

fN(U) is the minimal (finite) normal subgroup such that fN(U)/(fN(U))
p is a p-

group. Take M ⊴o U the minimal open normal subgroup of U such that U/M is

a pro-p group. Consider the projection fN(M) = fN(NM), then NM is an open

subgroup of U containing M , therefore U/NM is a p-group since U/M is a pro-p

group and so fN(M) is a normal subgroup such that fN(U)/fN(M) is a p-group.

It follows that (fN(U))
p ⊆ fN(M). It also holds that K := fN

−1(fN(U)
p) ∩ U is
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a normal subgroup of U such that U/K is a p-group and so fN(M) ⊆ (fN(U)
p).

Consequently we have that Up = lim←−N⊴oG
fN(U)

p.

We now note that this is equivalent to stating Up = lim←−N⊴oU
(U/N)p. We note

that since Up ≤ U , we have that U ≤ NG(U
p) and so NG(U

p) is open in G. Since

U/Up is a pro-p group, there is a Sylow pro-p group of NG(U
p)/Up containing

it, denote this subgroup by S. Taking the preimage of S in NG(U
p), we define

this element to be Up. Consider the map fN : G → G/N , then we have that

fN(Up) = Up/N . Now |NG(U
p)/N : Up/N | must be coprime to p, and so we get

that Up = lim←−N⊴oG
(U/N)p and so is a well defined open subgroup of G for G open.

Proposition 4.20. Let G be a profinite group, U, V ≤o G, then we have PU,p =

PV,p for a prime p if and only if Up ∼ V p.

Proof. Assume that Up ∼ V p and that Up is closed but not open since other-

wise we have already proved by Proposition 4.17. It follows that the set T =

{N | N ⊴o U, U/N a p-group} is an infinite set since otherwise, Up = ∩N∈TN is

the intersection of finitely many open subgroups and therefore open. TakeM ∈ T ,

then we have M ≤o U and Up ≤ M . U/M is a p-group and M/Up is a pro-

p group since U/Up is a pro-pgroup. Since M is normal in G, M/Up must be

normal within the quotient of NG(U
p)/Up and so in particular lies within every

Sylow pro-p subgroup of NG(U
p)/Up since it is also a pro-p group. It follows then

that M ≤ Up such that U/M is a p-group and Up/M is a p-group, it follows that

φU(X) ≡ φM(X) ≡ φUp(X) mod p for all X ∈ B̂(G). In particular,we note that

φU(G/Up) ≡ φUp(G/Up) ̸≡ 0 mod p and so we have that G/Up is the defining

element for the prime ideal.

Repeating the process with V , we see that Up ∼ V p implies that fN(U
p) ∼

fN(V
p) for all n ⊴o G and so we have that in particular, fN(Up) ∼ fN(Vp) since it

is unique up to G conjugation, thus we have that Up = Vp, namely that PU,p = PV,p

since they share the same defining element.

Proposition 4.21. If |U : KG(U)| = pk for some k, p ̸= 0, and there exist

{Ni|i ∈ I}, I infinite, such that U/Ni is a p-group, then we have that for P = PU,p,
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TP = G/Up where Up is the preimage of the p-Sylow of G/KG(U) in G.

Proof. Consider the following diagram.

G

Up

KG(U)

G/KG(U)

S

1

By the previously stated lemma we have

PUp,p = PKG(U),p = PU,p

since the core is normal in G. Now consider φUp(G/Up).

φUp(G/Up) = |{gUp | h.gUp = gUp ∀h ∈ Up}|

= |{gUp | hgUp = Up ∀h ∈ Up}|

= |{gUp | U g
p ≤ Up}|

= |{gUp | U g
p = Up}|

= |NG(Up)/Up|

= |NG(Up) : Up|.

Now we have that NG(Up) ≤ NG(KG(U)) = G

⇒ p ∤ |NG(Up) : Up|

since Up is the preimage of a p-Sylow.

⇒ G/Up /∈ P

⇒ TP = G/Up.
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We are searching for a good way of classifying groups that induce these prime

ideals. In the case of a minimal open normal group we have already shown that

it’s sufficient to check Up ∼ V p.

Remark 4.22. If |U : KG(U)| = pkp′ then we necessarily have that ∄Ni ≤ KG(U)

since otherwise |U : Ni| = pkp′q for some q and this is not a p-power. In particular

we have that every Ni is normal in U but not normal in G.

Proposition 4.23. Let P = PU,p and assume that there exists {Ni ⊴ U |i ∈ I}, I

infinite, such that U/Ni is a p-group.

Then we have that TP = G/Up where Up is the preimage of the p-Sylow subgroup

of NG(U
p)/Up for Up the minimal subgroup U ≤ Up ≤ KG(U) such that U/Up is

a p-group.

Proof. This is illustrated with the following diagram.

NG(U
p)

Up

U

Up

G/KG(U)

S

1

KG(U)

Applying the lemma we once again have

PU,p = PUp,p = PUp,p.

Additionally

φUp(G/Up) = |NG(Up) : Up|,

NG(Up) ≤ NG(U
p) since Up characteristic in Up,

⇒ p ∤ |NG(Up) : Up|
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⇒ G/Up /∈ P

⇒ TP = G/Up.

Proposition 4.24. Assume p ̸= 0 and that U, V ≤o G with respective infinite sets

of open normal subgroups {Ni ⊴o U | U/Ni is a p-group}, {Mj ⊴o V | V/Mj is a p-group}.

If there exists some Ni,Mj such that Ni ∼Mj, then we have that PU,p = PV,p.

Proof. Assume that ∃Ni ⊴ U,Mj ⊴ V such that Ni ∼Mj.

φU(X) ≡ φNi
(X) = φMj

(X) ≡ φV (X) mod p,

⇒ PU,p = PV,p.

Therefore we have that the prime ideals defined by the number of H-fixed

points for H ≤o G are precisely the open prime ideals of B̂(G). This is to say the

prime ideal defined in definition 4.9 by PU,p for p a prime or 0 and U ≤o G.

4.3 Prime ideals in B̂(S)

Let S be a pro-p group. We seek to specifically examine the open prime ideals

of B̂(S) in order to classify the open prime ideals of the Burnside ring of a pro-

p group. As for any profinite group, we have that either a prime ideal P has

a minimal element in I(S)\I(S) ∩ P or it does not. The case where a minimal

element exists, we have that the prime ideal is open, and the case where it does

not, the prime ideal is closed but not open. Both of these can occur with pro-p

groups as shown in the previous section with the prime ideals of Zp and of Zp×Zp

respectively.

Recall that if I(S)\I(S)∩P has a minimal element, then P = PU,q for U ≤ S, q

a prime or 0 with the definition PU,q = {X ∈ B̂(S)|φU(X) ≡ 0 mod q}. Since for
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any U ≤o S we have |S : U | = pr for some r ∈ N0, we have that every subgroup is

of p power index.

Lemma 4.25. For S a pro-p group and any U ≤o S, K ≤o S we have the following

result

φU(S/K) = |NS(K) : K||{g ∈ S/NS(K) | U g ≤ K}|.

Proof. Let U,K ≤o S, then we have φU(S/K) = |{g ∈ S/K | U.gK = gK}| =

|{g ∈ S/K | U gK = K}| = |{g ∈ S/K | U g ≤ K}| = |{g ∈ S/K | U ≤ gK}| =

|NS(K) : K||{g ∈ S/NS(K) | U g ≤ K}|.

Lemma 4.26. If we suppose K ⊴o S, then that q ∤ φU(G/K), q ̸= p

G/K ∈ PU,q ⇔ φU(G/K) ≡ 0 mod q ⇔ q | |{ḡ ∈ G/NG(K)|U g ≤ K}|.

Corollary 4.27. If q = p then

spanZ{G/K|NG(K) ̸= K} ⊆ PU,p.

Proof. As we noted before

φU(G/K) = |NG(K) : K||{ḡ ∈ G/NG(K)|U g ⊆ K}|,

and if |NG(K) : K| ≠ 1⇒ p
∣∣|NG(K) : K| ⇒ G/K ∈ PU,p.

It remains to observe what happens in the case that K is self normalizing.

Corollary 4.28. K ⊆ G is self normalizing ⇔ φK(G/K) = 1.

Proof.

φK(G/K) = |NG(K) : K| = 1⇔ NG(K) = K

Combining the fact that PU,0 ⊆ PU,p, we get that the only self normalizing

subgroups we need to consider are the subgroupsK such that U ≲ K,K = NG(K).
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Corollary 4.29.

I(S)\I(S) ∩ PU,p ⊆ {S/K|K = NS(K), U ≲ K}.

Corollary 4.30.

U ≤ KS(K)⇒ U ⊆ sK ∀s ∈ S ⇒ φU(K) = |S : K|.

Proposition 4.31. Suppose that S is an abelian pro-p group, U ≤o S then

the prime ideal PU,p = spanZ{I(S)\{S/S}} + pZ[S/S] and I(S)\I(S) ∩ PU,0 =

{S/K|U ≤ K}.

Proof. First note that φU(S/H) = |{sH | U s ≤ K}| for U,H ≤o S as a conse-

quence of 2.23, and therefore we have that φU(S/H) = 0 if U ̸≲ H. Taking the

number of U -fixed points of X =
∑′

H≤oS
xH ·S/H ∈ B̂(S) with the series over the

conjugacy class representatives, we use that φU(S/H) = 0 for U ̸≲ H to restrict

the series to a finite sum.

φU(X) =
′∑

H≤oS

φU(xH · S/H)

=
′∑

H≤oS

xH · φU(S/H)

=
′∑

U≤H≤oS

xH · |S : H|.

Since S is a pro-p group, p
∣∣|S : H| ∀H ̸= S.

φU(X) ≡ 0 mod p⇔ xS ≡ 0 mod p

⇒ PU,p = spanZ{I(S)\{S/S}}+ pZ[S/S]

and

φU(S/K) = 0⇔ U ̸≤ K.
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Proposition 4.32. Suppose that S is an abelian pro-p group, q ̸= p,

PU,q =

{∑
H≤oS

aH · S/H
∣∣∣∣ ∑
U≤H≤oS

aH · |S : H| ≡ 0 mod q

}
.

Proof. The prime ideal PU,q = {X ∈ B̂(S) | φU(X) ≡ 0 mod q} and so we clas-

sify the elements with this property. The spanning set of isomorphism classes of

transitive S-spaces is clear since if S is abelian, we can take S/H with U ̸≤ H,

and therefore φU(S/H) = |{sH | U s ≤ H}| = |{sH | U ≤ H} = |S : H|, but

|S : H| is a power of p and so cannot be congruent to 0 mod q for q ̸= p, therefore

S/H /∈ PU,q. Now suppose that U ̸≤ H ≤o S, then we have φU(S/H) = 0 and

so S/H ∈ PU,q. Now suppose that X =
∑

H≤oS
aH S/H ∈ B̂(S), aH ∈ Z, then

φU(X) = φU(
∑

H≤oS
aH S/H) =

∑
U≤H≤oS

aH |S : H| ∈ B̂(S) and so we have the

required result.

Theorem 4.33. If S is a pro-p group then there is exactly one open prime ideal

containing the element p · S/S ∈ B̂(S), namely

PS,p = spanZ{S/H|H <o S}+ pZS/S.

Proof. Since S = lim←−N⊴oS
S/N and we have that the ∩N⊴oSN = 1, and any sub-

group U ≤o S can be expressed as U = lim←−N⊴oS
U/U∩N such that ∩N⊴oSU∩N = 1

and we note that each U/U ∩N is a p-group, it follows then that we have Up = 1

for all U ≤o S by the previous chapter.

A natural question arises of if all closed ideals are open and we show using the

following result that this is not always the case.

4.4 Existence of closed and not open prime ideals in B̂(G)

We return to the case when we have G a profinite group. We generalise a result

in the previous section on pro-p groups to show some cases in which we can have
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closed and not open prime ideals, in particular we show that they can exist. This

section is not claimed to be exhaustive of the ways that we can achieve a closed

and not open prime ideal in B̂(G).

Proposition 4.34. Suppose that G ∼= H × K is an infinite profinite group such

that H,K are both abelian, then we have that there exists a closed prime ideal of

B̂(G) which is not open if K is infinite.

Proof. By Krull’s separation lemma, if we find an ideal I and a multiplicative

set X such that I ∩ X = ∅, then we have that I is a prime ideal. Take C =

{G/(H ×Kj) | Kj ≤o K} and let X = {x ∈ X | x =
∏

i∈S gi, gi ∈ C, J finite},

then we have that X is a multiplicative set. It therefore suffices to show that there

is an ideal in B̂(G) which does not contain any element of X.

Take I = spanZ{G/(Hi × Kj) | Hi <o H, Kj ≤o K} and we show that I is

a well defined ideal. The additive group structure on I is inherent in taking the

Z-span. It remains to show that I is closed under multiplication by any element

of B̂(G). Since B̂(G) has a basis in the form of {G/L | L ≤o G} as a free Z-

module, if we show that I is closed under multiplication by G/L for any L ≤o G,

by distributivity we have that I is closed under multiplication by any element of

B̂(G).

Take G/R with R ≤o G and take G/J ∈ I, then we have G/J × G/R =∑
g∈[J\G/R]G/(J ∩ gR). Since G is abelian, we have that gR = R for all g ∈ G and

[J\G/R] = [G/JR] since all elements commute and therefore we have that the

double coset JgR = gJR. It follows that G/J ×G/R =
∑

g∈[J\G/R](G/J ∩ gR) =∑
g∈[g/JR]G/(J ∩R) = |G/JR| ·G/(J ∩R).

Define a map π1 : H ×K → H by π1(h, k) = h to be the projection map into

the first coordinate. Clearly, we must have π1(J ∩ R) ≤ π1(J) ∩ π1(R). Since

G/J ∈ I, we have that π1(J) <o H and therefore π1(J ∩R) <o H. It follows that

G/(J ∩R) ∈ I by definition and it follows that I is an ideal.

Consider the subgroups H × Ki, H × Kj for some Ki, Kj ≤ K, then since

we have a direct product, the coordinates entries are independent and so (H ×
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Ki) ∩ (H × Kj) = H × (Ki ∩ Kj). It follows that each element of X is a linear

combination of transitive G-spaces of the form G/Gi where π1(Gi) = H. By the

definition of I, we must have that these two sets are disjoint and so I ∩ X = ∅.

It follows that I is a prime ideal which is closed but not open since there is an

infinite set of transitive G-spaces which are not in I, namely C. I is closed since

we can take I =
⋂
N⊴oG

I + ker(πGN).

This property is quite restrictive since we require both H and K to be abelian

groups, we show that it suffices for there to be only one infinite abelian group in

the product, which to say that G = H ×K where K is infinite abelian.

Proposition 4.35. Suppose that G is an infinite profinite group that is virtually

abelian, which is to say that Z(G) ≤o G and therefore of finite index, then G ∼=

H ×Z(G) where H is a finite group. In this case there is a closed, non open ideal

of B̂(G).

Proof. Firstly we consider the case when Z(G) ̸= G. Suppose that G is virtually

abelian, then by the definition in this case, we have that Z(G) <o G. Z(G) is

clearly normal in G since every element of Z(G) commutes with every element of

G and so Z(G)g = Z(G). Therefore, the quotient group G/Z(G) is well defined.

It follows that for any g ∈ G, we can express g = g′ · z where z ∈ Z(G) and g ∈

G/Z(G) in a unique way. We can form an isomorphism θ : G→ G/Z(G)×Z(G).

Let H = G/Z(G), and take the collection C = {G/H × Zi|Zi ≤o Z(G)} and

set X = {x ∈ X | x =
∏

i∈S gi, gi ∈ C, J finite}, then by similar reasoning as in

proposition 4.34, we have that the ideal I := spanZ{G/Hi × Z | Hi <o H} has

I ∩X = ∅ and so is prime. In the case when Z(G) = G, the proof proceeds in the

same way but instead we can consider the isomorphism θ : G→ G/H ×H for H

any proper open subgroup of G.

Proposition 4.36. For G = H×K where H,K are infinite profinite groups which

are closed under conjugation induced by elements of G, then there is a closed, not
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open prime ideal of B̂(G).

Proof. Let Gi = Hi × Ki and consider gGi is still a direct product since if we

take (a, b) ∈ Gi and g = (g1, g2) ∈ G, then we have (a, b)g = (ag1 , bg2) and so

Gg
i = {(ag1 , bg2) | a ∈ Hi, b ∈ Ki} = Hg1 × Kg2 . As before, we have that

1-generated subgroups are not open, 2-generated subgroups are open and direct

products and 3-generated subgroups are isomorphic to a 2-generated subgroup.

Therefore, we need only consider the 2-generated subgroups.

G/Gi ×G/Gj =
∑

g∈[Gi\G/Gj ]

G/Gi ∩g Gj

H ×K/Hi ×Ki ×H ×K/Hj ×Kj =
∑
g

H ×K/(Hi ×Ki) ∩g (Hj ×Kj).

However

(Hi ×Ki) ∩ (Hj ×Kj) = {(a, b)|a ∈ Hi, Hj, b ∈ Ki, Kj}

= {(a, b)|a ∈ Hi ∩Hj, b ∈ Ki ∩Kj}

= (Hi ∩Hj)× (Ki ∩Kj)

⇒ each summand is of the form H ×K/Hr ×Kr such that

Hr ≤ Hi ∩Hj, Kr ≤ Ki ∩Kj.

So now taking

C = {H ×K/Hi ×K|Hi ≤ H}, X = ⟨C⟩,

I = ⟨H ×K/Hi ×Hj|Hi ≤o H,Kj <o K⟩.

By the previous argument we get that ∃P ⊇ I such that P is closed, not open,

prime ideal.

In fact, we can strengthen this argument to consider when the action of K on

H can be non trivial. In this case we take the subgroups H,K to be normal such
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that they generate the whole group. This is to say that the elements of H do

not necessarily commute with all elements of K, but that K-action stabilizes the

subgroup H by conjugation.

Proposition 4.37. Suppose that G is a profinite group, and G = HK such that

H,K ≤ G are infinite groups closed under conjugation in G, with H ∩K ̸= H,K,

then we have that there is a closed but not open prime ideal in B̂(G).

Proof. Suppose that H,K are closed under conjugation⇒ H,K ⊴ G. We want to

find an infinite multiplicative set of elements. Take the collection

C = {HK/HiK | Hi ≤o H}

and consider the set X generated by C multiplicatively.

HK/HiK ×HK/HjK =
∑

g∈[HiK\HK/HjK]

HK/HiK ∩ gHjK

g(HjK) = (gHj)K = HlK with Hl ≤o H

⇒ HiK ∩ gHjK = (Hi ∩g Hj)K

and so we have that each product is a linear combination of transitive G-spaces in

C. Considering

I = spanZ{HK/HiKj | Hi ≤o H, Kj <o K}

we have that I ∩ X = ∅. Since X is multiplicative there exists a prime ideal P

such that P ∩X = ∅ and I ⊆ P and so we have that P is a (non empty) closed

but not open prime ideal.
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5 Units and idempotents of Burnside rings

5.1 Units of B̂(G)

Let G be a profinite group, if u ∈ B̂×(G), then clearly the image in the ghost

ring under the ring homomorphism φ : B̂(G)→ Gh(G) defined by φ = (φU)U≤oG

where φU : B̂(G) → Z must map to a unit in the ghost ring. Since the ghost

ring is composed by a copy of Z for each conjugacy class of open subgroups, we

see that Gh(G)× =
∏′

H≤oG
{±1} where we take the restricted product to take one

representative from each G-conjugacy class of subgroups and so any element that

maps to this subset must also be a unit of B̂(G). In particular, we have that

φ(B̂(G)×) ⊆
∏′

H≤oG
{±1}.

Take u ∈ B̂(G)×, then since φH(u) = ±1 for each H ≤o G, we have in

particular that φG(u) = ±1. Take u ∈ B̂(G) such that u =
∑

H≤oG
uH ·G/H and

uH ∈ Z, then

φG(u) = φG

(∑
H≤oG

uH ·G/H

)
=
∑
H≤oG

uH · φG(G/H)

but φG(G/H) = 0 if G ̸≲ H and so φG(u) = uG · φG(G/G) = uG, but since u is a

unit, we have that uG = ±1. Take H ≤o G a maximal subgroup of G, and recall

from 2.23 that φK(G/K) = |NG(K) : K| for any K ≤o G, then the number of

H-fixed points is given by φH(u) = uG+uH · |NG(H) : H|. If φH(u) = φG(u), then

we have that uH = 0 since |NG(H) : H| ̸= 0, otherwise we have φH(u) ̸= φG(u)

and so uH ̸= 0. In the latter case, we see that |NG(H) : H| = 2, uH = −uG or

|NG(H) : H| = 1, uH = −2uG.

For any K ≤o H, consider that φK(G/H) = |{gH | K ≤ gH}, by definition

for any g ∈ NG(H) then we have gH = H and so it follows that |NG(H) : H|

divides φK(G/H). If H is a subgroup of G of index 2, then it must be normal,

subsequently we have that if H is a subgroup of index 2, φH(G/H) = |NG(H) :

H| = |G : H|. Note that for any K ≤o G, we have that φK(G/H) ≤ |G : H|
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since it corresponds to the number of elements in the G-orbit G/H which are fixed

by K-action. Therefore for K ≤o H for H a subgroup of index 2, we have that

|G : H|n = φK(G/H) ≤ |G : H| for some n ∈ Z. It follows that n = 0 or n = 1,

but for K ≤ H, we have that it must be contained in some conjugate of H and so

the fixed points cannot be 0, consequently φK(G/H) = 2.

Take u := G/G − G/H for |G : H| = 2, then for any K ̸≲ H, we have that

φK(u) = φK(G/G) − φK(G/H) = 1 − 0 = 1. If K ≲o H, we have φK(u) =

φK(G/G) − φK(G/H) = 1 − 2 = −1. Therefore for any K ≤o G, we have

φK(u) = ±1 and so u ∈ B̂(G) is a unit. Therefore if G is a profinite group with a

subgroup of index 2, there is a non trivial unit of B̂(G) of the form G/G−G/H.

If, on the other hand, we have that |NG(H) : H| = 1, then we must necessarily

have that NG(H) = H, which is to say that it is self normalizing. By Wilson[26]

Proposition 2.4.3, we have that the existence of a self normalizing subgroup implies

that G is not pro-nilpotent. In this case, however, we do not immediately get units

sinceH ≤o G implies that there is an open normal subgroupN ofG such thatN ≤o

H. Consider the fixed point map φN(uG G/G + uH G/H) = uG + uHφN(G/H),

but φN(G/H) = |{gH ∈ G/H | N g ≤ H}| = |G : H| since N ⊴o G, N ≤ H. We

have seen that |G : H| ≠ 2 since otherwise it would be normal. It follows then

that u ̸= ±(G/G− 2G/H), and so we must include a correction term for such a u

to be a unit.

Proposition 5.1. For u ∈ B̂(G)×, u can be written as either X or −X where

φG(X) = 1.

Proof. Let u ∈ B̂(G)× be a unit, then as we have shown, we must have⇒ φG(u) =

±1. In the case that φG(u) = 1, we are done with u = X.. Now suppose that

φG(u) = −1, it follows that φG(−u) = −φG(u) = 1 and so we set X = −u.

Hence we have a clear bijection

{u ∈ B̂(G)×|φG(u) = 1} ←→ {u ∈ B̂(G)×|φG(u) = −1}
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so without loss of generality we can consider just one of these subsets in order

to recover all possible units by multiplication by ±1. We can therefore form

an equivalence relation where each equivalence class [u] = {u,−u}. We choose

the former subset as a set of representatives of this equivalence class. We shall

generally use the notation of u for the representative of the equivalence class [u]

with φG(u) = 1.

Note that for X ∈ B̂(G) with X =
∑

H≤oG
xH · G/H, we have that φK(X) =∑′

K≤oH
xH · φK(G/H) with the sum taken over conjugacy class representatives

since φK is a ring homomorphism. Since φK(G/H) = 0 if K ̸≲ H, we have that

φK(X) =
∑′

K≤oH
xH · φK(G/H). In particular, φG(X) = xG and if φG(X) = 1

then xG = 1. We therefore have that all of these representative units are of the

form u = G/G +
∑

H<oG
uH · G/H. We use the notation cH(u) = uH to denote

the coefficient of G/H in the canonical expression of any u ∈ B̂(G).

Proposition 5.2. If G has no self normalizing subgroups, and u ∈ B̂(G)× the

canonical representative of the equivalence class [u], then we have that cH(u) ̸= 0

with cH(u) = 0 for each H ≲o K <o G implies that cH(u) = −1 and |NG(H) :

H| = 2.

Proof. Suppose that u ∈ B̂(G)× with cH(u) ̸= 0 and for each H ≲o K <o G,

we have that cH(u) = 0. Then by the previous observation, we have that for

u =
∑

K≤oG
uK · G/K, then φH(u) =

∑′
H≤K≤oG

uK · φH(G/K). It follows that

φH(u) = uG · φH(G/G) + uH · φH(G/H) since all other uK in this sum are 0 by

our assumption.

Recalling from 2.23 that φH(G/H) = {gH |Hg ≤ H}, we have that φH(G/H) =

|NG(H) : H| and so φH(u) = uG+uH · |NG(H) : H|. Since u is the canonical repre-

sentative, we have uG = φG(u) = 1. It follows that φH(u) = 1+ uH · |NG(H) : H|.

Since u is a unit, we must have that φ)H(u) = ±1, and since uH ̸= 0 and |NG(H) :

H| ≠ 0, then we must have φH(u) = −1 and subsequently uH · |NG(H) : H| = −2.

Since we have no self normalizing subgroups, then we have |NG(H) : H| = 2 and

uH = −1.
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Consequently this holds for any nilpotent group G.

Remark 5.3. Suppose that cG(u) = 1,

⇒ u = 1−X and (1−X)2 = 1

⇒ 1− 2X +X2 = 1

⇒ X2 = 2X.

Proposition 5.4. Suppose that u ∈ B̂(G)× and u ̸= 1 with uG = 1, then we have

that there exists K <o G such that φK(u) = −1.

Proof. This is clear since if we suppose that φK(u) = 1 for all K ≤o G, then

we have that u = 1 up to equivalence. Therefore we must have that there exists

K <o G such that φK(u) ̸= 1. However, since φH(u) = ±1 for all H ≤o G, we

have that φK(u) = −1.

Proposition 5.5. Suppose that G has no self normalizing subgroups. Let u ∈

B̂(G)× and

Hu = {H ≤ G|H maximal with cH(u) ̸= 0}.

Let K be maximal such that K /∈ Hu and cH(u) ̸= 0 then cH(u) > 0.

Proof.

φK(u) = φK(G/G+
′∑

K≲H,K ̸∼H

uHG/H + uKG/K +X ′

= φK(G/G) +
′∑

K≲H,K ̸∼H

uHφK(G/H) + uKφK(G/K)

= 1 + uK |NG(K) : K|+
′∑

K≲H,K ̸∼H

uHφK(G/H)

= 1− 2
′∑

K≲H,K ̸∼H

|{g ∈ G/NG(H)|Kg ≤ H}|+ uK |NG(K) : K|.
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Case 1.

Suppose that |Hu ∩ {H ≤ G|K ≲ H}| ≥ 2

⇒ φK(u) = −1⇒ uK ≥ 0

φK(u) = 1⇒ uK ≥ 0

⇒ uK ≥ 0⇒ uK > 0.

Case 2.

Suppose that |Hu ∩ {H ≤ G|K ≲ H} = 1 then

|{g ∈ G/NG(H)|Kg ≤ H}| = 1

⇒ φK(u) = −1 + uK |NG(K) : K|

⇒ uK ≥ 0

⇒ uK > 0.

Corollary 5.6. If we have that G is a group with no self-normalizing subgroups,

|Hu ∩ {H ≤ G|K ≲ H}| = 1

⇒ φK(u) = 1

and uK = 1, |NG(K) : K| = 2.

5.2 Units of B̂(D2∞)

We show the process of finding the units recursively by taking the pro-dihedral

group that is discussed in Miller[15]. Take the presentation of the group given by
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G = Z2 ⋊ {±1} ∼= lim←−D2n =
{
( ±1 a

0 1 )
∣∣ a ∈ Z2

}
. Let r = ( 1 1

0 1 ), s = ( −1 0
0 1 ). We

define Hn = ⟨r2n−1⟩, Kn = ⟨s, r2n⟩, K ′
n = ⟨rs, r2n⟩. By [15]Miller §3, we have that

every open subgroup of G is conjugate to exactly one of these for some n ∈ N.

This is to say that the set of these subgroups is a complete set of representatives

of conjugacy classes of open subgroups of G.

Proposition 5.7. Let X ∈ B̂(G)× such that cH1 ̸= 0 and cKn(X) = cK′
n
(X) = 0

for all n ∈ N, then we have that cHn(X) = 0.

Proof. Assume cHk
(X) ̸= 0, Hk maximal with this property, k ≥ 2, and consider

X = G/G − G/H1 + xHk
· G/Hk + X ′ for some X ′ ∈ B̂(G) such that cG(X

′) =

cH1(X
′) = cKn(X

′) = cK′
n
(X ′) = 0. It follows that by taking the Hk-fixed points

of X, we have that φHk
(X ′) = 0. It therefore follows that

φHk
(X) = φHk

(G/G−G/H1 +XHk
G/Hk)

= 1− |G : H1|+XHk
|G : Hk|

= 1− 2 +XHk
2k

̸= ±1 for k ≥ 2.

Proposition 5.8. Let X ∈ B̂(G)× such that cH1(X) ̸= 0, cKi
(X) ̸= 0 for some

maximal Ki, and cK′
j
(X) = 0 for all j ≤ i, then we have that cHi+1

(X) = 0.

Proof.

φHi+1
(X) = φHi+1

(G/G−G/H1 −G/Ki +XHi+1
G/Hi+1)

= 1− 2− 2i +XHi+1
2i+1

= −1− 2i +XHi+1
2i+1

⇒ XHi+1
= 0
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The same reasoning shows that if we interchange all occurances of Km and K ′
m

for some m ∈ N in the above proposition then the same result holds.

5.3 Idempotents

In order to establish the idempotents within the Burnside ring of profinite groups.

we first prove some background results around establishing stating the structure of

idempotents. To do this we extend a result by Solomon [20]Solomon, Theorem 1

which was proved for finite posets, and prove an analogue to the Möbius inclusion

function of subgroups in the case where we have a poset with a maximal element.

In order to do this, we need a version of the Möbius inversion formula for a class of

infinite posets. We establish one such µ for this thesis with the following definition.

Definition 5.9. LetG be a profinite group, we define the poset P = {H |H ≤o G}

ordered by inclusion and we define a function µ : P×P → Z. For each H,K ≤o G,

we have a well defined function µ(H,K) → Z which is defined by µ(H,K) = 0 if

H ̸≤ K, µ(H,H) = 1 and
∑

K≤J≤H µ(J,H) = 0.

Since K,H ≤o G, we have that there are finitely many subgroups between H

and K, we have that for each pair of open subgroups, the defining sum of the

function has finitely many non zero summands. We abstract this result in order to

prove in greater generality a method for finding idempotents for Z-modules based

by elements of posets. The Möbius function on a finite set is precisely the one

given in definition 5.9, however this is not currently defined for an infinite set.

With the following definition, we define what we mean by the Möbius function on

an infinite set which is motivated by it adhering to the properties of the Möbius

function in the finite case.

Definition 5.10. Suppose that P is a poset such that for each H ∈ P , there are

finitely many K ∈ P such that H ≤ K. We define a Möbius function µ on P to

be the map µ : P × P → Z such that µ(H,K)=0 if H ̸≤ K, µ(H,H) = 1 and the

relation that
∑

K≤J≤H µ(J,H) = 0.
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For P a poset, we define the Möbius module of P , M [P ], to be the free Z-

module with basis elements of the poset. Note that since B̂(G) has a basis as a

free Z-module of the form {G/H | H ≤o G} coincides with this description with

the ordering on this basis given by subconjugation of the stabilisers, although

we have yet to define products. We show in the following lemma a formulation

for the product of elements in the Möbius module, this is a generalisation of the

[20]Solomon, Theorem 1.

Lemma 5.11. Let P be a poset such that for each H ∈ P , there are finitely many

K ∈ P such that H ≤ K. Let µ be the Möbius function of P as given in definition

5.10. For each (a, b) ∈ P × P we define a function by φ(a,b) : P → Z

φ(a,b)(p) =
∑

q∈P(a,b)

µ(p, q), p ∈ P

where P(a,b) = {q ∈ P | q ≤ a, q ≤ b}. Define the product of elements in P by

ab =
∑
p∈P

φ(a,b)(p)p

and extend toM[P ] by linearity, thenM[P ] ∼=
∏

Z. If K is a field then the Mobius

algebra defined by

MK [P ] =M[P ]⊗Z K

is a semisimple algebra over K and its primitive idempotents are ea ⊗ 1 where

ea =
∑
b∈P

µ(b, a)b, a ∈ P.

Proof. We first prove that since p ∈ P , the function φ(a,b) is well defined as a

function into Z. For p ∈ P , we have that there are finitely many q ∈ p such that

p ≤ q by the condition imposed on our poset P , and by definition of the Möbius
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function, we have that µ(p, q) = 0 for any q ̸≥ p. It follows that

∑
q∈Pa,b

p≤q

µ(p, q) =
∑
q∈Pa,b

µ(p, q)

since any other summand is 0. Finally, we have that the condition on the summa-

tion is equivalent to {q | q ≤ a, q ≤ b, p ≤ q} ⊆ {q | p ≤ q} which is finite for

fixed p ∈ P . Therefore since this is a finite sum of finite values, we have that this

certainly maps into Z.

We automatically have that Pa,b = {q | q ≤ a, q ≤ b} = Pb,a. Since φa,b(p) is

finite for each a, b, p ∈ P , we have that ab =
∑

p∈P φa,b(p)p is well defined as an ele-

ment ofM[P ] since it is a Z-linear combination of elements of P . We want to show

that the product ab defined in the lemma is commutative, this follows naturally

by ab =
∑

p∈P φa,b(p)p =
∑

p∈P
∑

q∈Pa,b
µ(p, q)p =

∑
p∈P

∑
q∈Pb,a

µ(p, q)p = ba.

We define a function ζ : P × P → Z by

ζ(a, b) = 1 if a ≤ b

ζ(a, b) = 0 otherwise.

Then for each c ∈ P we make a Z-linear map ζc :M[P ] → Z by defining ζc(a) =

ζ(c, a) for each a ∈ P and taking the linear extension of this since P is a Z-basis

forM[P ]. This map is well defined since once again, there are only finitely many

a ∈ P such that c ≤ a by assumption and so any element r ∈ M[P ] has finite
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coefficients for each a ∈ P . Then for a, b ∈ P

ζc(ab) =
∑
p∈P

φa,b(p)ζc(p)

=
∑
q∈Pa,b

∑
p∈P

ζ(c, p)µ(p, q)

=
∑
q∈Pa,b

δc,q

= ζc(a)ζc(b),

therefore ζc is a homomorphismM[P ]→ Z since it is Z-linear by definition.

Suppose that x ∈ M[P ] such that ζc(x) = 0 for each c ∈ P , and write x =∑
a∈P x(a)a with each x(a) ∈ Z and so 0 =

∑
c≤a x(a) for each c ∈ P . By Zorn’s

lemma, we can take c maximal in P , we see that x(c) = 0, repeating the process

inductively for P ′ = P\{c} removing a maximal element each time we have that

x(a) = 0 for every a ∈ P and therefore x = 0.

Take x ∈ M[P ], y ∈ M[P ] and suppose that ζc(x) = ζc(y). Since ζc is a

linear map, we can reformulate this to say 0 = ζc(x)− ζc(y) = ζc(x− y) for every

c ∈ P . Therefore we have x − y = 0 since we have that 0 is the unique element

with ζc(0) = 0 for all c ∈ P and so we have x = y. Let ea =
∑

b∈P µ(b, a)b for

a ∈ P , we note again that this is a well defined element ofM[P ] since each µ(a, b)

is finite. Take x ∈ M[P ], c ∈ P and consider ζ(xea) = ζc(x)ζc(ea) = ζc(x)δa,c

since if c < a, we have that
∑

c≤b≤a µ(b, a) = 0 and if c > a, we have each b ≤ a

has ζc(b) = 0. We have then that a = c and ζc(x)δa,c = ζa(x)δa,c. Applying

ζc(ea) = δa,c and noting that ζa(x) = ζc(ζa(x)c) we have ζc(ζa(x)ea) = ζc(xea). It

follows that xea = ζa(x)ea.

For b ̸= a, b ∈ P , we have that ebea = ζa(eb)ea = δa,bea and so in particular

eaea = ea and eaeb = 0 if a ̸= b, therefore these are pairwise orthogonal idempotents

in M[P ]. Now let e =
∑

a∈P ea and consider for b, c ∈ P we have that ζc(be) =

ζc(b)ζc(e) = ζc(b), this holds for every c ∈ P and so it follows that be = b for every

b ∈ P . It follows that e is an identity onM[P ].
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x ∈M[P ]

⇒ x = xe =
∑
a∈P

ζa(x)ea.

Orthogonality shows associativity

(xy)z =
∑
a∈P

ζa(x)ζa(y)ζa(z)ea

= x(yz).

If K is a field then

MK [P ] =
∑
a∈P

K(ea ⊗ 1).

By definition, we have shown that this lemma can be applied to the poset of

open subgroups of G since it satisfies the assumption that for each H ∈ P , there

are finitely many groups K ∈ P such that H ≤ K. We claim that there is in fact

an isomorphism from MQ[P ] to QB̂(G) and so we have that the idempotents of

QB̂(G) are given by the image of ea ⊗ 1 for each a ∈ P . Take the elements in the

basis of QB̂(G) given by vH = G/H
|G:H| , then define the map θ : QB̂(G)→MQ[P ] to

be the linear extension of the map which has θ(vH) = H ⊗ 1.

Addition clearly holds and so we check multiplication. It follows that the

product of the basis elementsG/H × G/K =
∑

H\G/K G/H ∩ gK, in order to see

that this is in fact an isomorphism we have that this must coincide with the image

in MQ[P ]. Taking ∩g∈GHg = N and ∩g∈GKg = M which are both open, we

have that N ∩M is an open subgroup contained in all conjugates of H and K.

In Solomon’s paper[20], it has been proved that there is an isomorphism for any

Burnside algebra (QB(G)) of a finite group G to the Möbius algebra and so in

particular we have that that the multiplication of elements can be shown to be

equal since there are minimal open subgroup as a stabilizer of a summand.

This is to say that QB̂(G) ∼= lim←−N QB(G/N) ∼= lim←−NMQ[P/N ] ∼= MQ[P ].

Equipped with this result, we can follow a similar process to Yoshida[27][4] in
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the finite case to show that we can define idempotents in the Burnside ring of

profinite groups. In order to do so, we cite the Möbius inversion formula as proved

in Rota[19] to approach equivalences of summations. Let f(x) be a function into

a commutative ring defined for x in a locally finite poset, then we have g(x) :=∑
y≤x f(y) if and only if f(x) =

∑
y≤x µ(y, x)g(y).

We note that a poset P is defined to be locally finite if the interval [H,K] is

finite for each H,K ∈ P . As we have shown, each interval of this form in the

poset of conjugacy classes of open subgroups must be finite as there are finitely

many elements above H for each H ≤o G and so we can apply the theorem, in

particular, let

f(H) =
eH

|G : NG(H)|
:=

∑
K≤oH

µ(K,H)

|G : K|
G/K

for each H ∈ P and observe that the theorem then implies that for g(K) = G/K
|G:K|

we have

G/H

|G : H|
=
∑
K≤oH

eK
|G : NG(K)|

and so by rearrangement we have

G/H =
∑
K≤oH

|G : H|
|G : NG(K)|

eK .

Define uH = G/H forH ∈ P , the poset of open subgroups of G. Since eH is defined

in such a way since by the previous lemma, and the defined isomorphism θ, we see

that the idempotents ofMQ[P ] where P denotes the poset of subgroups ordered

by ≤ are given by tH =
∑

K≤oH
µ(K,H)K ⊗ 1, for ease we write this as tH =∑

K≤oH
µ(H,K)K, then taking the image under the inverse of the isomorphism θ

given above, we have

θ−1

( ∑
K≤oH

µ(K,H)K

)
=
∑
K≤oH

µ(K,H)
G/K

|G : K|
.

However, this sum is taken over subgroups and not conjugacy classes of subgroups

and so we have that there are |G : NG(H)| isomorphic copies of each conjugacy
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class, it follows that

eH = |G : NG(H)|
′∑

K≤oH

G/K

|G : K|
,

with the sum taken over the poset of conjugacy classes of open subgroups. Since

each idempotent of MQ[P ] can be written as a sum of idempotents of the form,

ea, we have that the idempotents of QB̂(G) are all linear combinations of the eH .

Therefore we have proved the following theorem.

Theorem 5.12. Let G be a profinite group, H ≤o G then

eGH := |G : NG(H)|
′∑

K≤H

µ(K,H)

|G : K|
uK

is an idempotent in the Burnside algebra. Any idempotent of the Burnside algebra

is a linear combination of these elements, with each eH having coefficient 0, 1 in

the series.

We have a method to construct idempotents of QB̂(G) which are orthogonal

since ea in the Möbius algebra are orthogonal. Consider φH(e
G
H) for e

G
H ∈ QB̂(G),

then we have that φH(e
G
H) = |G : NG(H)|µ(H,H) |NG(H):H|

|G:H| = 1. Proceeding with

downwards induction, we note that it has been shown in the lemma that the

unit in MQ[P ] is expressed as the sum of all idempotents, by isomorphism this

is also true in QB̂(G). Let G/G =
∑

H≤oG
eGH , then we have for each H ≤o G,

φH(G/G) =
∑

H≤oK
φH(e

G
K) = 1 since for H ̸≤ K, we have φH(e

G
K) = 0. Note

that for any idempotent e ∈ QB̂(G), we must have φH(e) = 0, 1 for each H ∈ P .

It follows that φH(eK) = 0 if H ̸∼ K since otherwise we would have φH(G/G) ̸= 1

which is a contradiction.

φH(eK) =


1 if H ∼G K

0 otherwise.

Recall that an inverse limit of groups is called pro-C if it is an inverse limit of

groups of class F . In particular, we have that if G = lim←−N⊴oG
(G/N) is an inverse
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limit, then we have that G is pro-solvable if each G/N is solvable. Solvability

has a key role in the Burnside ring of finite groups, as a consequence of [8]Dress,

Proposition 2 shows that the only idempotents of B(G) for G a finite group are

given by 0 and 1.

Proposition 5.13. Suppose that G is a profinite group such that H ≤o G is pro-

solvable. Then we have that every idempotent e ∈ B̂(G) is an inflation of an

idempotent from B(G/K) to B̂(G) for K = KG(H) ≤o G.

Proof. Let e ∈ B̂(G) be an idempotent, then clearly since φJ(eH) = φJ((eH)
2) ∈

Z, it follows that φJ(e) ∈ {0, 1} for each J ≤o G. Since this holds, we also have

that φJ(e) ∈ {0, 1} for each J ≤o H ≤o G. Recalling that φJ(X) = φJ(res
G
S (X))

for all X ∈ B̂(G), J ≤o S. In particular, we have φJ(res
G
H(e)) ∈ {0, 1} for all

J ≤o H. Since the ghost map is injective, we have that this uniquely determines

an element in B̂(H) which is itself an idempotent.

Since H is pro-solvable, we have that the only idempotents in B̂(H) are given

by 1 = H/H and 0 since we have that the image in the Burnside ring of each

finite quotient must be solvable and so we must have that the idempotents of

B̂(H) are an inverse limit of idempotent elements. It follows that since H acts

trivially on e, we have that that KG(H) acts trivially on e. By the quotient

map πGN : B̂(G) → B(G/N), there is an element πGN(e) ∈ B(G/N) with the

required fixed points for N = KG(H). Therefore e can be expressed as an inflation.

Moreover, it is the inflation of an idempotent since the fixed points must be 0, 1

for each J ≤o G.

Since B(G/N) contains finitely many idempotents, we have that for a virtually

pro-solvable group, that is a group which contains an open pro-solvable group,

then there are as many idempotents as in the Burnside ring of the quotient of the

group by the core of the open pro-solvable group. In particular, we have that there

are at most finitely many. This gives a method for expressing the idempotents in

B̂(G) for G virtually pro-solvable, but we wish to find the idempotents for any

profinite group G.
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Corollary 5.14. If G virtually pro-solvable then there are finitely many idempo-

tents in B̂(G).

Proposition 5.15. Let G be a profinite group, then for N ⊴o H ≤o G then we

have that there is an open subgroup HN such that H/HN is solvable where

HN =
⋂
K⊴H
N≤K

H/Ksolvable

K.

Proof. Since we have that N is open in G and that each K ≥ N , then we have that

each subgroup K is itself open. Additionally, since N is open, there are finitely

many subgroups between N and G and therefore this intersection is an intersec-

tion of finitely many subgroups, and therefore an open subgroup. It remains to

show that this is a subgroup with the property that H/HN is solvable. This is

equivalent to showing that the intersection of any two subgroups M,K such that

G/M solvable and G/K is solvable, then G/M ∩K is solvable. Clearly we have

M ∩ K is a normal subgroup, but this follows since G/M ∩ K can be seen as a

subgroup of G/M ×G/K which is itself solvable.

Proposition 5.16. Let G ≥o H be a profinite group defined by the inverse limits

lim←−
N⊴oG

G/N ≥ lim←−
N⊴oG

H/H ∩N.

The set {H/H ∩ N | N ⊴o G} admits an inverse system of subgroups with the

notation of the previous Proposition {H/HH∩Ni
}Ni

with compatible maps {φji :

H/HH∩Ni
→ H/HH∩Nj

}i≤j.

Proof. Suppose that j ≤ i then define Hi := HH∩Ni
, Hj := HH∩Nj

, it follows from

the definition that the Hi and Hj can be expressed respectively as

Hi =
⋂

H∩Ni≤K
H/K solvable

K, Hj =
⋂

H∩Nj≤K
H/K solvable

.K
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Since we know that H/Hi is solvable and H/Hj is pro-solvable, we have that

Hi ≤ Hj since Hj appears in the defining intersection of Hi, therefore we have that

there is a natural homomorphism given by the projections between the quotient

maps.

⇒ φji :H/Hi → H/Hj

hHi → hHj

and so these do form an inverse system since we have chosen the subgroups to be

contained appropriately.

Proposition 5.17. Let G be a profinite group, then for each H ≤o G we have that

there exists a minimal closed subgroup K ≤ H such that H/K is pro-solvable. We

call such an element H(∞).

Proof. Take H ≤o G, then we have that there is an inverse limit on the subgroup

as a profinite group H ∼= lim←−N⊴oG
(H/(H ∩N)) induced from G ∼= lim←−N⊴oG

(G/N).

Then by the notation in the previous theorem we have that HH∩N is the minimal

subgroup of H above N such that H/HH∩N is solvable. H ∩ N ≤ HH∩N ≤ H.

By the previous Proposition, these subgroups form an inverse system and so we

can take the inverse limit K := lim←−(H/HH∩N). There is a group homomorphism

θ : H → lim←−(H/HH∩N) defined by the relation θ(gH ∩N) = gHH∩N . We get that

ker(θ) = {h ∈ H | h ∈ HH∩N∀N ⊴o G}

⇒ ker(θ) =
⋂

N⊴oG

HH∩N

⇒ There is a unique minimal closed subgroup of H such that H/ker(θ) is a pro-

solvable group. This is also evident since H(∞) is the intersection of infinitely

many open (and therefore closed) subgroups of G.

Theorem 5.18. Let G be a profinite group and P the poset on the open subgroups

of G with inclusion ordering. If µ(H,G) ̸= 0 for µ the Möbius function as in
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definition 5.10, then we have that H = G or H is the intersection of finitely many

open subgroups of G, which is to say H =
⋂
i∈IMi such that each Mi ≤o G is a

maximal subgroup.

We prove the generalisation of [13]Hall, Theorem 2.3 in order to derive a sim-

plification of the representation of idempotents in the Burnside ring of a profinite

group. In essence, this result states when the Möbius function µ(H,K) can be

non zero. Utilising this with the expression given in Theorem 5.12 allows us to

discount the 0 entries of the idempotent eGH .

Proof. LetG be a profinite group, then we have that there are at most finitely many

subgroups above any H ≤o G, H ∈ P . Clearly we have that G ∈ P . Let f(H) be

any function defined ∀H ∈ P and let g(H) be the function g(H) =
∑

K≤H f(K).

P is locally finite since each H ∈ P is contained in finitely many open subgroups

since it is of finite index, subsequently we have by the Möbius inversion formula

f(G) =
∑
H∈S

µ(H,G)g(H)

cS(G) = 1∑
H≤K≤G

µ(K,G) = 0

For H ≤o G, take the finite poset S = {K | H ≤o K ≤o G} ⊆ P so that we

can apply this. Suppose that H ≤ G and that H is not the meet of maximal

subgroups.

Assume the result is true for K > H so that µ(K,G) = 0 for each K > H. Let M

be the meet of all maximal members of S which contain H, then we have that

−µ(H,G) =
∑
K>M

µ(K,G),

but all the terms on the right vanish and so we can conclude that µ(H,G) = 0.
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Definition 5.19. Let G be a profinite group, then define

LM(G) = {K ≤ G | K = ∩Mi} ∪ {G}

where each Mi a maximal open subgroup of G and

LOM(G) = {H ∈ LM(G) | H ≤o G}

be the meet lattice of the maximal subgroups and the meet lattice of finitely many

maximal open subgroups respectively. This is to say the poset ordered by inclusion.

Definition 5.20. [26](2.5) For G a profinite group, define the Frattini subgroup

Φ(G) to be the intersection of all open maximal subgroups of G. The Frattini is

normal in G.

Proposition 5.21. For G a profinite group then we have that

LOM(G) ∼= LOM(G/Φ(G))

as lattices where Φ(G) is the Frattini subgroup of G.

Proof. Take H ∈ LOM(G), then H is either equal to G or is the intersection of

finitely many maximal open subgroups. It follows that Φ(G) ≤ H since Φ(G) is

the intersection of all open maximal subgroups. Therefore we have H/Φ(G) is a

well determined unique element of the lattice LOM(G/Φ(G)).

Applying Theorem 5.12 and proposition 5.21 to the fact that µ(K,H) ̸= 0

then it follows that K is an intersection of maximal subgroups of H, then we have

that µ(H,G) ̸= 0 if and only if H ∈ LOM(G). Consequently, we get an equivalent

expression for the idempotent of QB̂(G) as follows.

Proposition 5.22. Let G be a profinite group, H ≤o G then we have that

eGH =
∑

K∈LO
M (G)

µ(K,H)
|G : NG(H)|
|G : K|

G/K.
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The following is motivated by tom Dieck[23](Proposition 6), we have shown

that we can form an inverse limit of minimal normal open subgroups such that

their quotient group is solvable. By the notation of proposition 5.17, we have that

for H the normal subgroup which is the kernel of the quotient is denoted by H∞.

These will allow us to make a connection between the closed perfect subgroups of

G and the idempotents of B̂(G). Note that a closed perfect subgroup always exists

since 1 ≤ G is a closed subgroup for all profinite groups G. We prove a result that

is the analogue to a result in Bouc’s survey paper on the Burnside ring of finite

groups[4](Proposition 3.3.4).

Proposition 5.23. Let G be a profinite group and π a set of primes. Suppose

that F is a family of open subgroups closed under conjugation. Let [F ] the set of

G-conjugacy classes of these groups, then the following are equivalent.

1. ∑
H∈[F ]

eGH ∈ Z(π) ⊗ B̂(G) ⊆ QB̂(G)

2. Let H,K ≤o G be subgroups such that K/H is (cyclic) of prime order p ∈ π

then

H ∈ F ⇔ K ∈ F .

Proof. Suppose that e ∈ QB̂(G) is an idempotent such that e =
∑

H≤oG
yH · G/H,

with yH ∈ Z(π). Clearly then, we have that e ∈ Z(π)B̂(G). Take H ≤o K such

that K/H is a cyclic group of prime order, then by lemma 4.15 we have that

φK(X) ≡ φH(X) for each X ∈ B̂(G), in particular we can take the Q-linear

extension of the ring homomorphism φH and the result still holds. As we have

shown following theorem 5.14, φH(e
G
K) = 1 if H ∼ K and 0 otherwise. Consider

φH(e) = φH

(
′∑

L∈F

eGL

)
=

′∑
L∈F

φH(e
G
L),

then since we are taking the restricted sum over the conjugacy classes of subgroups

in F , we have that φH(e) = φH(eH) = 1 if [H] ∈ [F ] and φH(e) = 0 otherwise.
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However, since φK(e) ≡ φH(e) mod p, and if p ∈ π, we have that [H] ∈ [F ] if and

only if [K] ∈ [F ].

Conversely, suppose that we have H ≤o G, then there is an open normal

subgroup contained in H. Consider the map πGN : QB̂(G)→ QB(G/N) to be the

Q-linear extension of the projection map, and take e ∈ QB̂(G), then we have that

φK/N(X) = φK(X) for each K ≥ N , it follows that in particular, φK/N(X) = 0 or

1 for each K/N ≤ G/N . Therefore, since all of the fixed points under subgroups

of G/N are either 0 or 1, we have that πGN(e) is an idempotent in QB(G/N).

By Bouc[4](theorem 3.3.4), we have that for each pair of open subgroups such

that K/H a cyclic group of prime order, we have that this idempotent lies within

Z(π) and so all coefficients yH in the expression e =
∑

H≤oG
yH ·G/H are in Z(π).

Repeating for all H ≤o G achieves the required result that yH ∈ Z(π) for every

H ≤o G and so e ∈ Z(π)B̂(G).

If we apply this result with the set π to be the set of all primes, we have

the idempotents of QB̂(G) since all primes are coprime to the denominator of

the rational coefficients yH such that e ∈ QB̂(G) is expressed in the form e =∑
H≤oG

yH · G/H. We therefore look for irreducible families of subgroups which

can define idempotents. Recall that a subgroup P ≤ G is said to be perfect if

[P, P ] = P = P (∞), where the sum is taken over each conjugacy class of subgroups.

Proposition 5.24. Let G be a profinite group, P a closed perfect subgroup of G,

then the G-space defined by

fGJ =
′∑

H≤oG,
H(∞)=J

eGH

is a virtual almost finite G-space.

Proof. In order to show that this is a virtual almost finite G-space, we are required

to show that there are finitely many fixed points under the action of each open

subgroupsK ≤o G and that each element in fGJ is in a finite orbit by definition 2.19.
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This is to say that each element in fGJ has an open stabilizer subgroup, by Dress-

Siebeneicher[10](2.2.2) we then have that this can be regarded with the discrete

topology. Virtual, in this case, merely states that we can have both negative and

non negative coefficients for each G orbit in the formal expression.

Define a map cK that for any G-space X, X =
∑

H≤oG
xH · G/H, each xH

a coefficient, then we define cH(X) = xH . Then, applying this to eGH for some

H ≤o G, we have that we sum over all conjugates of K in order to establish the

number of isomorphic transitive G-spaces. It follows that

cK(e
G
H) =

∑
K′∼K

|G : NG(H)|
|G : K ′|

µ(K ′, H).

Note that since |G : NG(K)| ≤ |G : K| is finite, there are finitely many

conjugates of K in G and therefore we have that this is a finite sum. Clearly, since

H,K ≤o G we have that |G : NG(H)|, |G : K| and µ(K ′, H) are finite and so

cK(e
G
H) is finite.

We now consider fGJ ,

cK(f
G
J ) = cK

 ′∑
H≤oG,
H(∞)=J

eGH


=

′∑
H≤oG
H(∞)=J

cK(e
G
H)

=
′∑

K≤H≤oG,
H(∞)=J

cK(e
G
H).

However, since |G : K| is finite, we have that there are finitely many groups

containing K for each K ≤o G, therefore once again this is a finite sum of finite

summands and therefore finite itself. Since cK(f
G
J ) is finite for each K ≤o G, we

have that for L ≤o G,

φL(f
G
J ) =

′∑
K≤oG

φL(cK(f
G
J )G/K) =

′∑
L≤oK≤oG

cK(f
G
J )φL(G/K).
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Since K ≤o G we have φL(G/K) is finite and there are finitely many summands,

we have that φL(f
G
J ) is finite for each L ≤o G. We therefore conclude that this is

a virtual essentially finite G-space, since each orbit is finite we can regard it with

the discrete topology and so it is a virtual almost finite G-space.

Therefore the isomorphism class of fGJ as a G-space is an idempotent in the

Burnside ring. Since the H(∞) we have defined are perfect subgroups, each open

subgroup H ≤o G contains precisely one subgroup of this form since if it were to

contain two, we would contradict the minimality of the subgroup H(∞). Therefore,

the closed perfect subgroups partition the sets since they are disjoint and the union

of the sets {H ≤o G | H(∞) = P} is all the open subgroups of G. Therefore, we

have that since each conjugacy class of open subgroup appears exactly once across

these sets, we can make the following corollory.

Corollary 5.25. Let G be a profinite group, P a closed perfect subgroup of G,

then

G/G =
∑
P≤cG

fGP

with the sum taken over all conjugacy classes of closed perfect subgroups of G.

Proof. Let G be a profinite group, then we have that in QB̂(G), then the sum of

all idempotents is of the following form

G/G =
∑
H≤oG

eGH .

Since H(∞) is a closed perfect subgroup ∀H ≤o G, and is unique, we have that

each conjugacy class of subgroups appears exactly one in the sum. It follows that

by summing over the closed perfect subgroups P and then over open subgroups

H ≤o G such that H(∞), we have a series which includes eGH exactly once for each
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conjugacy class of H ≤o G.

G/G =
∑
P≤cG

∑
H(∞)=P

eGH =
∑
P≤cG

fGP .

Corollary 5.26. Let G be a profinite group and π a set of primes. For H ≤o G,

define Hπ to be the minimal normal subgroup of H such that H/Hπ is a pro-

solvable pro-π group. A group with the property H = Hπ is called π-perfect.

Define an element rGJ by

rGJ =
∑
H≤oG
Hπ∼GJ

eGH

Then the set {rGJ | J a closed π-perfect subgroup ∃H ≤o G, Hπ ∼G J} is a

complete set of orthogonal idempotents of Z(π)B̂(G).

Proof. Firstly, we show that Hπ is a well defined element that exists. Suppose that

H has two subgroups K1, K2 ⊴ H such that H/K1 and H/K2 are pro-solvable

pro-π groups, then we have that K1∩K2 ⊴ H and we have that K1K2 ≤ H implies

that K1K2/K1 is a π-group and K1/K1∩K2 is a π-group by the tower theorem for

subgroups. It follows that H/K1∩K2 must be a π-group by definition. Therefore,

we can take the intersection of all such subgroups to find Hπ. We always have

H/H = 1 is a pro-solvable pro-π group and therefore there always exists at least

one subgroup K such that H/K is a pro-solvable pro-π group.

By Proposition 5.25, we have that for F a family of subgroups closed under

conjugation, then f =
∑′

H∈F e
G
H , where the sum is over a representative of each

conjugacy class of open subgroups, is an idempotent in Z(π)B̂(G) if and only if for

all K,H ≤o G such that H is normal in K such that K/H is a group of order

p ∈ π, then K ∈ F ⇔ H ∈ F . We first show that each rGJ as defined above is an

idempotent in Z(π) using this equivalence.

Suppose that we have H,K ≤o G such that K/H is a cyclic group of order

p. Then by definition, we have that Kπ ⊴ K, since H ≤ K and K/H is both
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solvable and a p-group, then we have that H ∩Kπ since Kπ is the intersection of

all normal subgroups such that the quotient is a solvable p-group. This implies

that Kπ ⊴ H but Hπ ⊴ Kπ and so we have that Kπ = Hπ, therefore for a closed

π-perfect subgroup J ≤ G, we have a family F = {H ≤o G | Hπ ∼G J} such that

H ∈ F ⇔ K ∈ F and so defines an idempotent in Z(π)B̂(G) of the form rGJ since

this family being closed under conjugation is clear.

In order to show orthogonality, assume that we have closed π-perfect subgroups

J,K ≤ G and consider x = rGJ · rGK . Take H ≤o G, then we compare the fixed

points under H-action, φH(x) = φH(r
G
J ) ·φH(rGK). Recall that by definition of the

eGH , we have that φH(r
G
J ) = δHπ ,J and φH(r

G
K) = δHπ ,K . We have then φH(x) =

φH(r
G
K) · φH(rGJ ) = δHπ ,K · δHπ ,J . If this is 0 everywhere then we have that they

are orthogonal. Assume they are not 0 everywhere, then by definition of delta we

have that Hπ = J = K for some H ≤o G. But then we have rGJ = rGK , therefore

they are mutually orthogonal.

Finally we show that there is no proper sub family of F ′ ⊆ F such that F ′

defines an idempotent. Suppose that there is such a family and take H ∈ F ′ and

K ∈ F . Since F ′ is a subfamily, we have that H ∈ F and so Hπ = J . Since

H,K are open, we can take an open normal subgroup N ≤ H ∩K, then HπN is

a normal subgroup of H and K such that the quotient H/HπN = K/KπN , both

of which are solvable. Since the composition groups of both of these are formed

of cyclic groups of prime order, we have that H ∈ F and so the families must be

equal.

If we apply this for π = {all primes} then consequently we get that the perfect

subgroups are the ones that form the orthogonal idempotents for B̂(G). In this

case, the closed π-perfect subgroups become closed perfect subgroups.
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5.4 Idempotents of B̂(A5 × Zp)

Example 5.27. Let G = A5 × Zp for p ≥ 7 where Zp is the p-adic integers and

take the profinite completion. The closed perfect subgroups of G are given by

{A5 × e, 1 × e} where e denotes the trivial group of Zp since the projection into

each group in the direct product must be perfect and we know that Zp is Abelian.

We know that the order of A5 does not divide p and so we have no other perfect

subgroups since there does not exist a subgroup of order |A5| = 120 in Zp.

As we have proved, it is sufficient to look at the closed perfect subgroups of

G in order to determine a complete set of orthogonal idempotents of B̂(G). It

is clear then that the orthogonal idempotent admitted by these are {fGA5×e, f
G
1×e}.

These are both not 0, 1 in the Burnside ring since we have that there exist open

subgroups such that these perfect groups are given by the commutator subgroup.

Explicitly, we have [G,G] = A5 × e and [1× Zp, 1× Zp] = 1× e.

Both of these subgroups are open and so in both cases we have an open sub-

group such that φG(f
G
A5×e) = 1, φ1×Zp(f

G
1×e) = 1 and conversely φG(f

G
A5×e) = 0,

φ1×Zp(f
G
A5×e) = 0 since the idempotents are orthogonal. It follows that neither

can be 0, G/G ∈ B̂(G) and therefore are non trivial examples of idempotents.

Substituting in the expression shown in Proposition 5.24 for eGH , we see an explicit

expression for the idempotents.

fA5×1 =
∑
H≤oG,

H(∞)∼A5×e

eGH

=
∑
H≤oG,

H(∞)∼A5×e

∑
K∈LO

M (H)

µ(K,H)
|G : NG(H)|
|G : K|

G/K.

In order to evaluate the summands, we first select H ≤o G such that H(∞) ∼

A5×e. Then we use the notation that π1(H) = H1, π2(H) = H2 are the projections

into either coordinates respectively. Any H satisfying this condition must be of

the form A5×H2 where H2 ≤o Zp. Using this, we know that the Möbius function
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on the element K ∈ LOM(H) has µ(K,H) = 0 unless K = H or is the intersection

of maximal subgroups of H. Since every subgroup of A5 can be expressed as the

intersection of maximal subgroups of A5, we see that the poset is equivalent to the

poset LOM(A5)× {H2, pH2} with the product ordering.

In order to further simplify the coefficients, we consider the value of the terms

|G : NG(A5 ×H2)| for each H2 ≤o Zp. For any H2 ≤o Zp, we have that H2 = piZp

for some i ∈ N0. We combine these to get an expression for fGA5×e.

fGA5×1 =
∑

H2≤oZp

∑
K∈LO

M (A5×H1)

µ(K,A5 ×H2)
|G : NG(A5 ×H2)|

|G : K|
G/K

=
∑
i∈N0

∑
K∈LO

M (A5×piZp)

µ(K,H)

|A5 : π1(K)||Zp : π2(K)|
G/K

=
∑
i∈N0

∑
K∈LO

M (A5)

µ(K × piZp, A5 × piZp)
|A5 : K||Zp : piZp|

G/(K × piZp)+

µ(K × pi+1Zp, A5 × piZp)
|A5 : K||Zp : pi+1Zp|

G/(K × pi+1Zp)

=
∑
i∈N0

∑
K∈LO

M (A5)

µ(K,A5)

|A5 : K|pi
G/(K × piZp) +

−µ(K,A5)

|A5 : K|pi+1
G/(K × pi+1Zp).

Let Ki = K × piZp then for i ≥ 1

cKi
(fGA5×1) =

∑
K′∼K

µ(K ′, A5)

pi|A5 : K|
− µ(K ′, A5)

pi|A5 : K|

= 0

⇒ fGA5×1 =
∑

K∈LO
M (A5)

µ(K,A5)

|A5 : K|
G/(K × Zp)

⇒ fG1×1 = G/G− fGA5×1

=
∑

K∈LO
M (A5)\A5

µ(K,A5)

|A5 : K|
G/(K × Zp).

Since A5×Zp is virtually pro-solvable since it contains an open subgroup of the
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form 1×Zp, we see that these idempotents can be expressed as the inflation of an

idempotent from B(G/1×Zp), and that we have as many idempotents as we have

in B(A5). This raises a question of whether it is possible to find idempotents which

are not the inflation of idempotents for some B(G/N) and shall be the motivation

behind the next section.

5.5 Finite and infinite idempotents

We wish to answer the question of if it is possible to find idempotents in the

Burnside ring of a profinite group that are the isomorphism classes of virtual

almost finite G-spaces which are not finite G-sets. We begin by proving a basic

result on the the idempotents of B̂(G).

Proposition 5.28. Let G be a profinite group, every finite G-set can be represented

as the inflation from B(G/N) to B̂(G) for some N ⊴o G.

Proof. Suppose that X ∈ B̂(G) is a finite G-set, then X can expressed by the

element X =
∑

H≤oG
xH ·G/H where at most finitely many xH are non zero. Take

K =
⋂
XH ̸=0H, then we must have that K ≤o G since it is the intersection of

finitely many open subgroups. In particular, be the definition of the topology, we

must have that there is an open normal subgroup of G contained within K. That

is to say that there exists N ⊴o G such that N ≤ K. Consequently, we have∑
H≤oG

xH ·G/H = InfGG/N
(∑

N≤H≤oG
xH · (G/N)/(H/N)

)
.

Corollary 5.29. Every idempotent in B̂(G) which is a finite G-set is an inflation

from some N ⊴o G. That is to say, the inflation from the Burnside ring of some

finite group as defined in 2.24.

We note that G = A5×Zp is an example of a virtually pro-solvable group and

so these idempotents can be expressed as the inflation from B(A5×Zp/1×Zp) ∼=

B(A5).

Definition 5.30. Let G be a profinite group, N ⊴o G, then for e ∈ B(G/N) an
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idempotent, we let ê := Inf GG/Ne ∈ B̂(G) be the idempotent corresponding to the

inflation in the respective ring.

Proposition 5.31. For e ∈ B(G/N), N ⊴o G and K ≤o N , we have that

φK(ê) = φN(ê) = φN/N(e).

Proof.

φN(ê) =
∑
H≤oG

|xH | · |{x ∈ G/H|N.x = x}|

As a virtual G-space but K ≤ N and N acts trivially on ê since ê ∈ Im(Inf GG/N)

⇒ N.x = x ∀x ∈ ê

⇒ K.x = x ∀x ∈ ê

φK(ê) =
∑
H≤oG

|xH | · |{x ∈ G/H|K.x = x}|

=
∑
H≤oG

|xH | · |{x ∈ G/H|N.x = x}|

= φN(ê)

But N acting trivially on ê

⇒ φN(ê) = φN/N(ê),

This covers the case when we have that the idempotents are virtual finite G-

sets, but can we have virtual almost finite G-spaces? And if so, when do they

occur? We break this question down into two cases.

1. We have a perfect subgroup P such that fGP is isomorphism class of an

(infinite) almost finite G-space,
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2. We have infinitely many orthogonal idempotents fGP but all of which are

finite G-sets and it is possible to take an infinite series of these which is

infinite.

We shall show that the first of these can occur using an example, thus proving

that idempotents that are infinite almost finite G-spaces can exist.

Example 5.32. Let G =
∏

NA5, we then construct the profinite completion of

G. To create the profinite completion, we require a base for the topology of open

normal subgroups, which is to say normal subgroups of finite index. Take any

normal subgroup of G, then it must be normal in each coordinate (although it is

not necessarily a direct product). However, since this subgroup must be of finite

index, we have that for each open normal subgroup N , there is a maximal natural

number j such that πj(H) = A5 for all k ≥ j and we are free to take any element

in any coordinate for k ≥ j.

Note that this is possible since even a diagonal subgroup H ≤o G must have

finitely many k ∈ N such that πk(H) ̸= A5. It is therefore sufficient to take a sub

base for the topology defined by
∏

i<j 1×
∏

i≥j A5. Any intersection of subgroups

of this form is again a subgroup of this form and so is a well defined filter base.

We take the compatible maps, for i < j,

ϕj,i :

j∏
k=1

A5 →
i∏

k=1

A5

to be the projection maps into the first i coordinates. These are compatible in the

usual way since ϕk,jϕj,i = ϕk,i for i ≤ j ≤ k. Then we have a sub collection of open

normal subgroups of Ĝ are given by the kernels of the maps

ϕi : Ĝ→
i∏

k=1

A5.

It is important to note that these are not all of the open normal subgroups, since

we can also have diagonals in the sense that we could have a group H such that

πi(x) = πj(x) ∀x ∈ H where πi, πj are the projection into the i, j coordinate
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respectively, however each of these must contain the kernel of some ϕk and so it is

sufficient to consider the groups which contain the kernels of the maps. We give a

base for the topology in terms of the kernels,

Nj = ker(ϕj) =

j∏
k=1

1×
∏

N\{1,...,j}

A5

The closed perfect subgroups of Ĝ are given by the Cartesian product of any

combination of diagonals, trivial groups and copies of A1. It is worth noting that

all perfect subgroups are isomorphic to Ĝ ∼=
∏
A5.

H ≤o Ĝ⇒ ∃j : Nj ≤ H.

Taking S = {
∏

I 1 ×
∏

J A5 | I ∪ J = N, I ∩ J = ∅} a subset of the set of closed

perfect subgroups of G, PĜ = {P ≤c Ĝ | [P, P ] = P}, we see that there are

infinitely many orthogonal idempotents. For ease of notation, from now on we

shall use G to refer to the inverse limit Ĝ. Consider in particular the idempotent

given by fGG since we have that G is perfect.

fGG =
∑

H(∞)=G

eGH

= eGG

=
∑

LO
M (G)

|G : NG(G)|
|G : K|

µ(K,G)G/K

=
∑

LO
M (G)

µ(K,G)

|G : K|
G/K.

We can set Hj,M =
∏

i ̸=j A5 ×M where A5 is maximal in A5.

⇒ µ(Hj,M , G) = −1

Since we know that A5 is simple, we have that the maximal subgroups are self

normalizing, and therefore the number of conjugates that appear in the expression
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is equal to the index |G : Hj,M |

⇒ cHj,M
(fGG ) = −|G : Hj,M |.

⇒ cHj,M
(fGG ) =


−6 if M ∼= D10

−5 if M ∼= A4

−10 if M ∼= S3.

Therefore we have infinitely many summands which are non zero and non can-

celling.

⇒ fGG is an almost finite G-space which is not finite.

We can generalise this result to the following using similar arguments.

Lemma 5.33. If G is a profinite group and G ∼=
∏

i∈NGi with each Gi ̸= 1 a finite

perfect group, then we have B̂(G) contains an idempotent which is an infinite G-

space.

Proof. Consider the idempotent fGG . Clearly we have that fGG = eGG, in order

to show that this is not equal to 1, we find a proper open normal subgroup,

namely P =
∏

i ̸=j Gi, since this is open, we have φP (f
G
G ) = φP (e

G
G) = 0 and so

φH(f
G
G ) = 0 ∀H <o G. The following series is well defined since for each open

subgroup K, there are at most finitely many conjugates of K ∈ G and so despite

being an uncountable set, there are only finitely many summands for each G/K.

fGG = eGG =
∑

K∈LO
M (G)

µ(K,G)
|G : NG(G)|
|G : K|

G/K

=
∑

K∈LO
M (G)

µ(K,G)

|G : K|
G/K

But in particular we have that for maximal subgroups M ≤o G, µ(M,G) ̸= 0.

Since the series is given over the open subgroups and not the conjugacy classes of

open subgroups, we check that these do not cancel termwise. Given that we have

uncountably many maximal subgroups we get that there are infinitely many non
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cancelling terms and so we shall be done.

G/M1 = G/M2 ⇔M1 ∼G M2.

Take M maximal and suppose that we have cg : M → M g to be the conjugation

map by g ∈ G. Then suppose we have that M g is not maximal, then M g ≤ H

implies M ≤ gH, but M is maximal in G and so gH = M or gH = G. However,

since |G :M | = |G :g M | we have a contradiction.

⇒ µ(M,G) = µ(M g, G) = −1

for M maximal, in particular sgn(µ(M,G)) = sgn(µ(M g, G))

⇒ cM(fGG ) ̸= 0 ∀M ≤o G maximal.

We can use the same principles as defined in this example to prove the following

result.

Corollary 5.34. Let G be a perfect profinite group with infinitely many open

maximal subgroups, then we have that there is an idempotent which is not a finite

G-set in B̂(G) and fGG will be an isomorphism class of an almost finite G-space.

Theorem 5.35. Let G be a perfect profinite group with Φ(G) not open, then we

have an infinite idempotent in B̂(G).

To assist with our investigation of the second case, when we have infinitely

many idempotents all of which are finite G-sets, we prove the following result.

Proposition 5.36. Let G be an infinite profinite group with infinitely many idem-

potents of B̂(G), then we have that K = {K | cK(fGP ) ̸= 0 for some P ∈ PG} is

an infinite set.
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Proof. Suppose that K is a finite set, then we have that the intersection of all

elements of K must be an open subgroup since it is the intersection of finitely

many open subgroups. It follows there exists an open normal subgroup N ⊴o G

such that N ≤
⋂

KK. Consequently, we have that all idempotents of B̂(G) are

expressible as an inflation ê = InfGG/N(e) for e some idempotent of B(G/N). There

are only finitely many idempotents in B(G/N) and so we have a contradiction,

therefore we must have that K is an infinite set.

We note that G must not be virtually pro-solvable since otherwise we would

have only finitely many idempotents. If we choose a perfect group, then it cannot

have infinitely many maximal subgroups since otherwise we will have that fGG is an

infinite almost finite G-space. Since we require all of the othogonal idempotents

to be finite G-sets, we have that they can each be given by an inflation, and we

need infinitely many perfect subgroups. We begin by proving a result that shows

one way in which we can find finite G-sets as idempotents.

Proposition 5.37. Suppose that P ≤o G, a perfect subgroup of G, such that

Φ(P ) ≤o G,

⇒ fGP is a finite G-set.

Proof. Consider

fGP =
∑
H≤oG
H(∞)=P

eGH

=
∑
H≤oG
H(∞)=P

∑
K∈LO

M (H)

|G : NG(H)|
|G : K|

µ(K,H)G/K.

K ∈ LOM(H)⇒ Φ(H) ≤ K

H(∞) = P ⇒ P ≤ H

⇒ Φ(P ) ≤ Φ(H)

⇒ Φ(P ) ≤ K
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Φ(P ) ≤o G⇒ there are finitely many K such that Φ(P ) ≤ K.

⇒ fGP is a finite G-set.

Example 5.38. Let G = SL2(Zp), then we have that [SL2(Zp), SL2(Zp)] = G,

which is to say it is equal to its derived subgroup. This must be perfect since in

each of the finite quotients of its inverse limit, we have that G/N will be have

[G/N,G/N ] = G/N and therefore is perfect in G/N . Note that Φ(G) ≤o G since

G is virtually pro-p, with an open normal subgroup N1 which denotes the matrices

congruent to the identity mod p. The Frattini of N1 is open in G and so the

Frattini of G is open in G since Φ(N1) ≤ Φ(G).

Consequently, taking a group H such that H = G × Cp gives a group which

has an open perfect subgroup with open Frattini, namely 1×G is perfect since it

is an inverse limit of perfect groups. This again is virtually pro-p and so we can

use Φ(K := N1 × Cp) = ¯[K,K]Kp = Φ(N1)× 1 = N2 which is open in H

Since we know that Φ(G) is the intersection of all maximal open subgroups of

G, we clearly see that it is open if we have finitely many open maximal subgroups.

Therefore, in order to find a group which has infinitely many idempotents as the

form listed above, we are looking for a group that has infinitely many perfect

subgroups, each of which with finitely many maximal subgroups. We see that the

example of G1 = lim←−i∈I A
i
5 does not adhere to these conditions since whilst it has

infinitely many open perfect subgroups, we see that each of these subgroups has

infinitely many maximal subgroups. In fact, we can also claim that in fact all

idempotents of the form fG1
P are infinite G1-spaces since we have that each open

perfect subgroup is isomorphic to G1.

Consequently, we look to other such groups which are perfect, for example we can

take the group G2 = SLn(Zp) for p ≥ 7, we have that this is a perfect virtually

pro-p group which has an open normal subgroup which is a finitely generated
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pro-p group and therefore has open Frattini. Whilst this satisfies the condition

that there are finitely many maximal subgroups, we see that we only have finitely

many open perfect subgroups, in fact we get that G2 itself is the only open perfect

subgroup since all others have infinite index.

If we can find a perfect group, that similar to G1 has infinitely many open perfect

subgroups isomorphic to the whole group and that similar to G2 has an open

Frattini/finitely many open maximal subgroups then we will have found a group

with infinitely many idempotents that are finite G-sets.

5.6 Units from idempotents

We now consider the link between idempotents and units within the Burnside ring.

We can classify both these classes of elements by their image in the Ghost ring,

the former taken to have an entry of 0, 1 in each coordinate and the latter with

1,−1 in each coordinate. Using our results for the Burnside algebra, Q⊗B̂(G), we

have a method of constructing every unit from every idempotent in the Burnside

algebra.

Lemma 5.39. If u ∈ B̂×(G) then u =
∑

H∈H e
G
H −

∑
H∈H′ eGH where H ∪ H′ =

{[H]|H ≤o G} and H ∩H′ = ∅.

Proof. Take u ∈ B̂×(G)

⇒ φK(u) = ±1 ∀H ≤o G

Then we also have that φK(e
G
H) =


1 if H ∼ K

0 otherwise

⇒ K ∈ H if φK(u) = 1, K ∈ H′ if φK(u) = −1

⇒ u =
∑
H∈H

eGH −
∑
H∈H′

eGH .
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Consequently we have that every unit in the Burnside ring is expressible as

the difference of two different idempotents in the Burnside algebra. Since the sets

H,H′ are disjoint sets whose union cover all conjugacy classes of open subgroups

of G, we have that the unit can be determined solely by H.

Definition 5.40. Let u ∈ B̂×(G), H ⊆ [sG] then we let u = uH to be the unit

such that φH(u) = 1 for all H ∈ H.

Clearly we have the units which can be expressed as the difference of idempo-

tents not just within the Burnside algebra but idempotents within the Burnside

ring.

Theorem 5.41. Let G be a profinite group,

S ⊆ P (G) = {[J ]|J ≤c G, [J, J ] = J}

then we have that

u =
∑
J∈S

fGJ −
∑

J∈P (G)\S

fGJ ∈ B̂×(G).

Proof. Take K ≤o G

⇒ [K(∞)] ∈ P (G)

⇒ [K(∞)] ∈ S or [K(∞)] ∈ P (G)\S

⇒ φK(u) =


1 if [K(∞)] ∈ S

−1 if [K(∞)] ∈ P (G)\S

⇒ u ∈ B̂×(G).

Corollary 5.42. Every unit, u, that can be written as u = 1− 2e with e ∈ B̂(G)

an idempotent is of the above form.

Proof.

u = 1− 2e =
∑

J∈P (G)

fGJ − 2
∑
J∈S

fGJ =
∑

J∈P (G)\S

fGJ −
∑
J∈S

fGJ .
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The natural question arises whether these are all of the units or if there are

units which cannot be expressed in the form 1− 2e for e ∈ B̂(G). It can be noted

that it is always true that every unit in B̂(G) is of the form 1− 2e for e ∈ QB̂(G).

We give an example to show that this is not always an exhaustive list of units.

Example 5.43. Let G = Z2, then we have that there is a unit in the form

u = Z2/Z2 − Z2/2Z2 since we have a subgroup of index 2. However, G is pro-

solvable and so the only idempotents in B̂(G) are 0,1 so it cannot be written in

the form 1− 2e for e ∈ B̂(G).

6 Open Questions

Throughout this thesis, I have proved the generalisation of many results concerning

the Burnside rings of finite groups to the Burnside rings of profinite groups. A

key aspect has been comparing and contrasting when the classifying results for

structures in the Burnside rings for profinite groups aligns similarly to that of

the Burnside rings of finite groups and where it diverges. The difference is where

interesting open questions arise.

I have proved the existence of profinite groups G for which the Burnside ring

B̂(G) has closed but not open prime ideals. For H a finite group, then B(H) ∼=

B̂(G) only has prime ideals which are both closed and open. These lead to the

natural question of what structure must G have to ensure that there are ideals

which are closed but not open. Given the strong connection between the prime

ideal spectrum and idempotents, and we have shown that the idempotents are

defined by perfect subgroups of G, it is natural to assume that the prime ideal

structure on B̂(G) is connected to the existence of perfect subgroups of G in some

way.

I have also shown that every unit in B̂(G) can be expressed as the difference

of two idempotents in QB̂(G). In example 5.43 it is demonstrated that the idem-
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potents do not themselves be in B̂(G) since it is possible that the terms with non

integer coefficients may cancel. Therefore, can we classify when the partitions

H,H′ of the set of open subgroups of G as in lemma 5.39 admit a unit within

B̂(G)? Equivalently, can we describe all idempotents e ∈ QB̂(G) such that 1− 2e

is in B̂(G)?

Finally, we have that {resGS (G/H) | H ≤o S fully normalized} is a basis for

B̂(F) for F a pro-fusion system over S defined by F = FS(G) with S ≤o G.

Can we then derive a similar result for a pro-fusion system over S given by G

where S is not open in G? Each finite quotient of the fusion system Fi over

the p-group Si must necessarily be induced by some finite Gi. It follows that for

Fi ∼= FSi
(Gi), we have that there is a basis of B(Fi) given by {resGi

Si
(Si/H) | H ≤

Si fully normalized}. Can we show that these basis elements in the finite quotients

form an inverse limit?
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