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Abstract 1 

Cracking phenomena in tunnel side wall structures (TSWS) increasingly jeopardize 2 

their longevity due to water leakage, reinforcement corrosion, and eventual collapse. 3 

The primary contributor, early-age shrinkage (EAS) induced by hydration reactions, 4 

significantly undermines structural stability and durability. The integration of 5 

expansion agents (EA) and fibers presents a low-cost, efficient strategy to counteract 6 

EAS-induced cracking. Despite its promise, limited research on the influencing factors 7 

constrains its broader application. This study delves into the impacts of EA content, 8 

the CaO-MgO ratio, and fiber reinforcement on flexural strength (FS), compressive 9 

strength (CS), and EAS, revealing a complex interplay where EA and CaO content 10 

detrimentally affect mechanical properties yet beneficially influence EAS. Results 11 

showed that EA and CaO content had negative effects on the mechanical properties, 12 

but had positive effect on EAS. Additionally, Random Forest (RF) was developed with 13 

hyperparameters refined via the firefly algorithm (FA) based on the experimental data. 14 

The validity of the built RF-FA models was verified by substantial correlation 15 

coefficients and low root-mean-square errors. Subsequently, a coFA-based firefly 16 

algorithm (MOFA) was proposed to optimise tri-objectives of mechanical properties, 17 

EAS, and cost simultaneously. The Pareto fronts were obtained effectively for the 18 

optimal mixture design. This study contributes to its practical implications, offering a 19 

scientifically grounded approach to enhancing TSWS concrete design for improved 20 

performance and durability. 21 

Keywords: Expansion agent; CaO content; Mechanical properties; Early age shrinkage; 22 

Machine learning; Multi-objective optimisation 23 



1. Introduction 24 

Various tunnel are widely applied in urban underground space, sea floor, and 25 

mountains due to its space-free and versatile-conditions-compatibility[1-4]. However, 26 

cracking-related issues in tunnel side wall structures (TSWS), such as water leakage, 27 

reinforcement corrosion, and wall collapse, increasingly threaten structural durability. 28 

Among these issues, early age shrinkage caused by hydration reactions constitutes the 29 

majority, significantly impacting the stability and durability of structures [5]. 30 

Furthermore, additional challenges in mitigating the risk of thermal cracking include 31 

the large geometry of structures and the core-ambient temperature gradient [6-8]. 32 

Traditionally, strategies such as raw material pre-cooling and circulating water cooling 33 

have been employed to reduce cracking, but their high costs in terms of both 34 

economics and time hinder widespread application [9-11]. Consequently, there is a 35 

significant demand for optimization methodologies, such as the use of fiber in 36 

concrete and expansion agents [12-14].  37 

Currently, research indicates that incorporating fiber into concrete is an effective 38 

strategy for reducing early age shrinkage cracking, offering benefits in terms of both 39 

cost-efficiency and implementation time [15-17]. Specifically, polypropylene fibers 40 

(including synthetic and hybrid types) and steel fibers are highlighted for their high 41 

tensile strength, lightweight, and affordability [18-20]. Yuan et al. [21] have noted that 42 

fibers significantly enhance both early age shrinkage and compressive performance.  43 

Alida et al. [22] denoted polypropylene fiber obviously give rise to the width and 44 



length reduction of the cracks during the first 24h cast procedure. However, mono 45 

addition of fiber still face challenge because its early age shrinkage effect would be 46 

damaged upon fiber ratio is under 1kg/m3 while the concrete workability would be 47 

ruined if ratio exceed 0.8kg/m3[23, 24]. Consequently, combining fibers with 48 

expansion agents emerges as a viable approach to optimizing both early age shrinkage 49 

performance and concrete workability [25-27]. 50 

Expansive agents, particularly those based on MgO, have garnered interest for 51 

their self-expansive properties, enhancing early-age shrinkage deformation, fluidity, 52 

microstructure, and mechanical performance [28-31]. Research by Wang et al. [32] on 53 

the effects of CaO-MgO ratios on the deformation and mechanical properties of 54 

expansive agent-infused concrete revealed that mixes containing both MgO and CaO 55 

exhibit pronounced expansion as the CaO-MgO ratio increases. The growth pressure 56 

of CaO crystals contributes to the expansion of the paste and increased porosity, 57 

counteracting early-age autogenous shrinkage while potentially reducing strength 58 

[33-37]. However, the cumulative effects of CaO, MgO, and fiber content on early-age 59 

shrinkage and the mechanical properties of concrete warrant further exploration to 60 

fully understand their interactive impacts. 61 

To this end, the synergistic effects of CaO, MgO expansive agents, and fibers on 62 

the strengths and early-age autogenous shrinkage of TSWS were thoroughly 63 

investigated. However, the experimental procedures required significant effort to 64 

procure comprehensive results due to the numerous variables and the substantial 65 



workload and resources involved. Consequently, machine learning (ML) were explored 66 

to discern underlying patterns and applied to analyze the experimental data [38-40].  67 

Random Forests (RF), known for their computational efficiency and excellent 68 

generalization capabilities, were employed as a key ML approach. Furthermore, the 69 

RF model demonstrated exceptional performance in preventing overfitting and 70 

exhibiting a high tolerance for outliers [41-43]. 71 

However, the performance of RF models is often constrained by their sensitivity 72 

to hyperparameters, a limitation that can be mitigated by optimization algorithms, 73 

thus moving beyond traditional methodologies [44-46]. Consequently, the Firefly 74 

Algorithm (FA) emerged as an optimal solution due to its ability to eliminate 75 

multimodality and facilitate automatic parameter tuning [47-49]. Therefore, FA was 76 

employed to optimize the hyperparameters of the RF model (FA-RF), with the goal of 77 

identifying optimal concrete mixtures by balancing general production costs against 78 

the performance characteristics of TSWS concrete. As a result, multi-objective 79 

optimization (MOO) models have been developed using metaheuristic algorithms 80 

employing Pareto methods to achieve optimized objectives [50-52]. Zhang et al. [53] 81 

successfully applied MOO models to meet the optimized requirements for cost, slump, 82 

and strength in plastic-concrete. Building on this methodology, the FA-RF model was 83 

extended to a multi-objective optimization framework (MOFA-RF) to optimize three 84 

critical aspects of TSWS concrete: cost, early-age autogenous shrinkage, and 85 

mechanical performance.  86 



In this research, TSWS mixtures were developed utilizing MgO, CaO, and fiber 87 

content to examine the synergistic effects on early-age autogenous shrinkage and 88 

mechanical properties, including compressive and flexural strengths, across various 89 

ratios. The dataset comprised 216 groups detailing compressive strength and early-90 

age shrinkage results, as detailed in the Appendix. Following the acquisition of Pareto 91 

front solutions, the MOFA-RF model was validated for application in the tri-objective 92 

mixture design of TSWS. 93 

2. Experimental configuration  94 

2.1 Raw materials 95 

The fibers utilized in the experiment were from Nanjing Subrote Company, and 96 

the expansive agent was from Wuhan Sanyuan Company. The expansive agent was 97 

composed of CaO and MgO, both in powder form and added in a specific proportion. 98 

In this study, a polypropylene fiber with a length of 9mm and a diameter of 0.019mm 99 

was employed. The density of the fibers was 0.91-0.95 g/cm³, and the tensile strength 100 

was greater than 500MPa. The test concrete used ordinary silicate cement with a 101 

grade of 40 MPa. Natural sand was used as the fine aggregate, with a particle size 102 

ranging from 2.4 to 2.8mm. 103 

2.2 Mixture design 104 

CaO, MgO, and fiber content are fully explored as the main variables of TSWS 105 

(Tailored Sulfur-Modified Wellbore Strengthening) mechanical properties 106 

(compressive and flexural strengths) and early age autogenous shrinkage. Expansive 107 



agent ranging from 1% to 1.6% declines early age shrinkage of TSWS mixture. Three 108 

CaO/MgO ratios (9:1, 8:2, 7:3) were set to be explored. Fiber was designed between 109 

0.6-1kg/m3 to offer optimal stabilization efficiency and adequate workability. Hence, 110 

CaO to MgO ratio, and fiber content with specific ratios are shown in Table 1. As so, 111 

243 TSWS specimens were prepared for the mechanical properties tests, and an 112 

additional 81 specimens were prepared specifically for shrinkage tests. In total, three 113 

ratios for expansion agent, fiber content, and CaO to MgO ratio, and three levels for 114 

age were involved in this research. 115 

Table 1. 27 Group mix design. 116 

Cement Flyash 
Expansion 

agent 
MgO/CaO Fiber Sand Stone Water Superplasticizer 

260 125 26 1/9 0.6 766 1078 149 7.1 
260 125 26 2/8 0.6 766 1078 149 7.1 
260 125 26 3/7 0.6 766 1078 149 7.1 
260 125 26 1/9 0.8 766 1078 149 7.1 
260 125 26 2/8 0.8 766 1078 149 7.1 
260 125 26 3/7 0.8 766 1078 149 7.1 
260 125 26 1/9 1 766 1078 149 7.1 
260 125 26 2/8 1 766 1078 149 7.1 
260 125 26 3/7 1 766 1078 149 7.1 
260 125 33 1/9 0.6 766 1078 151 7.1 
260 125 33 2/8 0.6 766 1078 151 7.1 
260 125 33 3/7 0.6 766 1078 151 7.1 
260 125 33 1/9 0.8 766 1078 151 7.1 
260 125 33 2/8 0.8 766 1078 151 7.1 
260 125 33 3/7 0.8 766 1078 151 7.1 
260 125 33 1/9 1 766 1078 151 7.1 
260 125 33 2/8 1 766 1078 151 7.1 
260 125 33 3/7 1 766 1078 151 7.1 
260 125 40 1/9 0.6 766 1078 154 7.1 
260 125 40 2/8 0.6 766 1078 154 7.1 
260 125 40 3/7 0.6 766 1078 154 7.1 



260 125 40 1/9 0.8 766 1078 154 7.1 
260 125 40 2/8 0.8 766 1078 154 7.1 
260 125 40 3/7 0.8 766 1078 154 7.1 
260 125 40 1/9 1 766 1078 154 7.1 
260 125 40 2/8 1 766 1078 154 7.1 
260 125 40 3/7 1 766 1078 154 7.1 

2.3 Sample preparation  117 

Generally, the obtention of concrete early age autogenous shrinkage faces 118 

challenge for the displacement is tiny. Therefore, an self-manufactured element 119 

autogenous shrinkage test specimen (Fig. 1) was designed to address the difficulty in 120 

installing displacement sensors and obtaining key aspects of displacement in a 121 

representative and proper location. This apparatus was utilized to determine concrete 122 

relative displacement and early age shrinkage because the micrometer was capable of 123 

accurating to 0.001mm compared to 400mm long test cell.  124 

The raw materials in this research include cement, water, and expansion agent, 125 

which were calculated based on designing ratios (expansion agent content, CaO/MgO 126 

ratio). Before the addition of water, cement and dry expansion agent were mixed for 127 

60 seconds to ensure uniformity. The designed water content was then blended with 128 

other dry components for 480 seconds, before the dampened cement blend was 129 

transferred into the molds. For the mechanical properties tests, specimens were cured 130 

for aging periods of 3 days, 14 days, and 28 days. For shrinkage performance tests, the 131 

timing began from the initial setting of the specimens, with a testing duration of 5 days. 132 
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 133 

Fig. 1. Shrinkage test device. 134 

2.4 Shrinkage test  135 

Prior to the pouring of mixtures, a plastic film, treated with lubricants to ensure 136 

its smoothness, was positioned within the test specimen. This preparatory step was 137 

crucial in reducing the boundary friction, thereby minimizing its potential negative 138 

impact on the accuracy of autogenous shrinkage measurements. Afterwards, the 139 

TSWS mixtures were vibrated and densified at size of 150×150×400mm molds. To 140 

ensure that the shrinkage tests were conducted under consistent conditions, the 141 

ambient environment within the testing facility was meticulously controlled. The 142 

humidity (60±5%) and temperature (20±2℃ ) of the room were kept stable, 143 

providing a constant environment for the specimen throughout the testing period. An 144 

iron plate and strong magnet were installed in the specimen middle, 25mm and 75mm 145 

away from both ends. The iron plate was embedded 125mm deep in the specimen, 146 

and the micrometer was fixed by the strong magnet adsorbed on the concrete surface. 147 

After micrometer value was stable, micrometer was zeroed and then measured the 148 

shrinkage. 149 



(a) (b) 150 

(c) 151 

Fig. 2. Shrinkage device installation, (a) iron sheets and strong magnets installation, (b) 152 

micrometer installation, (c) shrinkage test 153 

2.5 Splitting tension and Compressive strength test 154 

The splitting tensile and compressive strength properties were determined using 155 

a special fixture (15 cm side length) placed on the TYA-2000S Electro-Hydraulic 156 

compressor in Fig. 3. The compressor load rate was controlled at 0.7MPa/s 157 

(compressive strength test) and 0.07Mpa/s (splitting tension test) until the 158 

deformation is destroyed, determining the compressive strength and splitting tensile 159 

capacity.  160 



(a) (b) 161 

Fig. 3. Mechanical properties test, (a) Splitting tensile test fixture, (b) compressive 162 

strength test. 163 

3. Multi-objective-optimisation model method 164 

A schematic of the multi-objective-optimization model approach employed for 165 

attaining the optimal TSWS mixtures with MOFA-RF operation was presented in Fig. 4. 166 

The initial phase entails three RF-proposition models for anticipating compressive 167 

strength, flexural strength, and early age shrinkage. During the process, 10-fold cross-168 

validations (CV) and FA algorithm were used to adjust two hyperparameters of RF, 169 

namely the minNumLeaf and the numTree. Meanwhile, the cost of mixtures were 170 

determined by density of raw materials, such as MgO, CaO, and cement, etc. and 171 

defining the cost. Then, the MOFA was optimized the tri-objective design for TSWS, 172 

with a weighted sum method being utilized for the three-objectives. As so, the Pareto-173 

front was constructed to confirm the TSWS enhancement mixture scheme. Both the 174 

optimisation experiments and ML model were carried out by means of Matlab R2020a. 175 



 176 

Fig. 4. Schematic descriptions of MOFA-RF model system to achieve optimized TSWS. 177 

3.1 Data description 178 

The mass ratio of materials were calculated by the variables of CaO, MgO and 179 

fiber content. The outputs were the flexural strength, compressive strength, and early 180 

age shrinkage with their associated data sets coming from the mechanical 181 

experiments. Table 2 provided a summary of basic datasets information including 182 

flexural strength, compressive strength, raw materials and early age shrinkage. 183 

Table 2 Output and Input variables 184 

variables Maximum Minimum Mean Medium Std Dev CV 
CaO (kg/m3) 36 18.2 26.4 26.4 5.43 0.21 
MgO (kg/m3) 12 2.6 6.6 6.6 3.02 0.46 
Fiber (kg/m3) 1 0.6 0.8 0.8 0.17 0.21 

Compressive strength (kg/m3) 51.3 22.1 35.3 36.5 9.40 0.27 
Flexural strength (kg/m3) 3.74 2.21 2.86 2.88 0.43 0.15 

Early age shrinkage (×10-6%) 1007 512 738.07 730 121.33 0.16 



The correlations between input variables were demonstrated in Fig. 5 based on 185 

the flexural strength, compressive strength, and early-age-shrinkage. Only one matrix 186 

of mechanical performance relatedness was provided since the experimental mixed 187 

design of these three output variables was consistent. A correlation matrix was 188 

exploited to visualize the mutual influence between input variables, manifesting the 189 

Pearson correlation coefficient between the pairs of variables. Pearson Correlation 190 

Coefficient has proved to be a promising approach for assessing the association 191 

between X and Y. 0.5 was determined as the threshold for correlations between 192 

various components, suggesting that the input variables had little likelihood of 193 

triggering multicollinearity issues. The correlation coefficient between MgO and CaO 194 

was nearly 0.5, with the rest hovering around 0 since the ratio of MgO/CaO was set to 195 

1/9, 2/8 and 3/7, while the other variables remained independent. The multi-objective 196 

optimization RF-FA model was then proposed. 197 

 198 

Fig. 5. Correlation chart of factors impacting mechanical performance. 199 
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3.2 Development of FA-RF models  200 

3.2.1 Random forests 201 

Random Forests (RF) implemented the final decision by creating hundreds of 202 

decision trees (RTs). Random Forests models apply the ‘bagging’ approach to combine 203 

the results from the RTs and obtain the peak results through voting in Fig. 6, which 204 

successfully improved the prediction performance and reduced the prediction 205 

variance[54]. Equation (1) presented the training sample Rn, involving output scalar 206 

and input variables with m features ( 1 2 ,{ , ..., }mX x x x= ), respectively. 207 

During the processes of training each decision RTs, n sample are randomly 208 

sampled without replacement from the training set. The sampling process was 209 

referred to as ‘bootstrap’, and the bootstrap sample set was denoted by nRθ . 210 

Thereafter, the algorithm divided the input dataset nRθ . Upon conclusion of the RTs 211 

training sessions, the forecasting capability ˆ(X, )na Rθ  was formulated. Random 212 

Forests consist of k uncorrelated RTs, thereby forming k prediction-functions 213 

ˆ(X, )n
na Rθ , with the range of k being from 1 to k and nRθ  being independent random 214 

vectors for distinguishing decision trees. 215 

As so, the RF generates k outputs 1 2{Y ,Y ,...,Y }k , respectively corresponding to 216 

each RT, and then takes the average of these output according to equation (2) to 217 

obtain the prediction value Y. 218 



 219 

Fig. 6. Construction of an RF model. 220 

 1 1 2 2R {( , ), ( , ),...., ( , )}n n nX Y X Y X Y=  (1) 

 
1
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k

n
i

Y a X R
k =

= ∑ θ  (2) 

3.2.2 Firefly algorithm (FA) model 221 

Fireflies are exhibit social behavior as they are drawn to light, and thus, so that 222 

the attractiveness of fireflies to others is positive to its brightness[55]. However, the 223 

brightest fireflies flit about sporadically, and as the gap between two of them grows 224 

the allure of the light fades. Other fireflies would constantly move towards the 225 

brightest firefly, which would eventually be seen. The brightness of firefly, which was 226 

measured by its objective function, altered when it got close (brighter) to firefly j, as 227 

evidenced by Equation (3). 228 

 ( )2
ijt 1 t t t

i i 0 j i (rand 1/ 2)rx x e x x−+ = + − + −γβ α  (3) 



 
t t

ij j ir x x= −  (4) 

In the above function, the positions of fireflies i and j at the t-th iteration were 229 

t
ix  and t

jx . In equation (4), ijr  showed Euclidean distances among two fireflies, and 230 

0β   denoted the highest attraction of fireflies (r=0). Considering the medium 231 

brightness and the attenuation caused by distance, a value of was taken as the 232 

absorption coefficient, with a range from 0 to 1. Concurrently α   and rand were 233 

assigned parameters and vectors randomly from a Gaussian-distribution, span from 0 234 

to 1. 235 

3.3 Cross fold verification 236 

The complexity of the problem resulting from a limited amount of data being 237 

overfitted was solved by employing 10-fold cross-validation, as demonstrated in Fig. 238 

7. First, the data were split into two parts randomly: training samples and test samples, 239 

accounting for 70% and 30% of the whole datasets respectively. The training samples 240 

were equally separated into 10 sets, out of which nine (internal-training-sets) were 241 

employed for models training. The remaining sets (validation-set) were utilized to 242 

evaluate the root-mean-square-error (RMSE) value. While training the model, 50 243 

iterations of adjusting the hyperparameters were conducted for obtaining the 244 

minimal-RMSE with FA. The model was obtained through a validation process in which 245 

it was trained ten times. The model with the lowest RMSE value was selected as the 246 

most desirable model to further analyze its output on the test sets. 247 



 248 

Fig. 7. training and test samples 7 10-Fold cross-validation. 249 

In this investigation, four different metrics were adopted to evaluate the 250 

characteristic of ML models, which were RMSE, Correlation Coefficient (R), Mean 251 

Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE). 252 
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where N denote the specimen of quantity in the dataset, *
iy  represent the prediction 253 

output value of the machine learning model, iy  represent the actual outputs value 254 

in the datasets, *y  denotes the expected mean-value, and y  show the actual 255 

average result. 256 



3.4 Multi-objective model optimisation 257 

3.4.1 Objective-function model establishment  258 

The representation-capacity of compressive strength, flexural strength, as well as 259 

early age shrinkage were the well-understood FA-RF model. Furthermore, Equation (9) 260 

delivered the polynomial-equation as the cost-objective-equation for the activator. 261 

 c f MgO MgO CaO CaO

fiber s st

3
c f

fiber s st ssp p

Cost / m C Q C Q C Q C Q
C Q C Q C Q C Q

( ) = + + +
+ + + +

￥  (9) 

In Equation (9), Ca sc fibe st sprQ Q Q Q Q Q Q Qf MgO O， ， ， ， ，， ，  represented the 262 

amount (kg/m3) of flyash, cement, MgO, CaO, fiber, sand, stone, superplasticizer, 263 

respectively, where C represented the unit each material price of TSWS mixtures, as 264 

shown in Table 3. 265 

Table 3 Cost per unit of each material of TSWS. 266 

Variables Notation 
Unit weight 

(kg/m3) 
Unit price 

(¥/ton) 

cement Cc 3060 600 
flyash Cf 2370 338 
MgO CMgO 2360 2400 
CaO CCaO 2570 1200 
fiber Cfiber 910 25000 
sand Cs 2628 194 
stone Cst 2678 120 

superplasti
cizer 

Csp 1050 2516 

3.4.2 Constraints 267 

The constraints of input parameters (materials, volume, and ratio limitations) 268 

were set for MOO functions. The volume of the concrete material Vm is restricted as 269 

shown in equation (10), where U stands for the density of each material. The 270 



correlation between different raw materials was established by adjusting the 271 

proportion of each material to find the optimal TSWS concrete mix ratio, as 272 

summarized in Table 4. 273 

 
MgO CaO

MgO CaO

Q QQQ Q Q Q Q
mV

U U U U U U U U
= + + + + + + +

f i ber

spc f f i ber s st

c f s st sp

 (10) 

Tab 4 The constraints input variables 274 

Variables Expressions 
Upper limit 

(kg/m3) 
Lower limit 

(kg/m3) 

cement Qc 260 260 
flyash Qf 125 125 
MgO QMgO 2.6 12 
CaO QCaO 18.2 36 
fiber Qfiber 0.6 1.0 
sand Qs 766 766 
stone Qst 1078 1078 

superplasticizer Qsp 7.1 7.1 

3.4.3 MOFA-RF model development 275 

The MOFA-RF model is established by blending three output variables (i.e. 276 

compressive strength, flexural strength, early age shrinkage) and a cost-oriented 277 

objective function. To tackle the multi-objective-optimization problem, numerous 278 

approaches were available, weighted-sum approach, complex approach, global-279 

standard approach, as well as goal-programming. Out of these methods, the 280 

Weighted-Sum Method is the most commonly employed because of its ease of use. 281 

Weighted-sum method systematically changed the weights, uniquely determining 282 

different optimal solutions for each single objective optimization, and the set of these 283 

solutions approximately represent the Pareto frontier. This technique has been 284 

utilized to create a collection of multi-goal optimization procedures, including Multi-285 



Objective Optimization Algorithm and Multi-Objective Cuckoo Search. As so, 286 

weighted-sum was employed in this study, with function F expressed as follows: 287 

 
1 1

, 1 =
k k

k k k k
k k

kF w
K

f pw w
= =

= =∑ ∑ ，  (11) 

where kf  represents the objective functions, kw  represents the weight, and kp  288 

represents the uniformly distributed random-value (from 0 to 1). In this research, the 289 

relationship between three output variables, compressive strength (CS), flexural 290 

strength (FS), early age shrinkage (EAS) and a cost objective functions, and the cost 291 

objective function was determined through two three-objective functions as follows: 292 

 1 2 3

3

1

1 2

  +   
      =  +   
F w w w

w w w
= CS EAS+ cost

FS EAS+ cost  (12) 

 
3

1
1k

k
w

=

=∑  (13) 

The Non-dominated Solutions that Pareto Front can offer makes it a commonly 293 

used technique for Multi-objective Optimization[56]. It being supposed that there is 294 

no x，which is an element of set Z with feasible solutions and x* being one of the 295 

Pareto points, that satisfies: 296 

 *( ) ( )  1, 2,3,..., t k kf x f x for k and≤ =，  (14) 

 *( ) ( ),    k kf x f x for atleast one k＜  (15) 

For any x, if *( )f x  is greater than ( )f x , then the Pareto optimal solution x* 297 

can be obtained. Pareto frontier consists of multiple Pareto points as illustrated in Fig. 298 

8. 299 



 300 

Fig. 8 Pareto front and feasible points. 301 

3.4.4 Decision-making establishment for MOO model 302 

Pareto frontier could be leveraged to tackle the MOO problem, but the optimal 303 

mixture proportion at the peak may not be the most suitable choice for algorithm 304 

decision-making. Subsequently, this model proposed the Technique of Preference by 305 

Similarity to an Ideal Solution (TOPSIS). TOPSIS concurrently selects the solution which 306 

is the furthest from the negative ideal point (di-) and the nearest to the positive ideal 307 

point (di+). The di- and di+ were the worst and best values of the objective function, 308 

respectively as follows: 309 
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where n is the sum of objective number and i denotes the ith Pareto point; ideal
jF  and 310 

idealnon
jF −  denote the ideal and non-ideal values of the jth objective, respectively. 311 

  312 



4. Results and discussion 313 

4.1 Laboratory experiment result 314 

Figure 9 illustrates the correlation between different input variables (EA content, 315 

CaO-MgO ratio and fiber content) and the mechanical performance (CS, FA and EAS) 316 

of TSWS experimentally. The addition of expansive agent and CaO had negative effects 317 

on the CS and FS. CaO reduced mechanical performances at 6.0%, which was less than 318 

EA (-12.6%). Meanwhile, the fiber had a positive effect on the CS and FS, but the 319 

influence was relatively small (1.8%). However, expansive agent and CaO imposed 320 

positive consequences on EAS by volume expansive. The effect of CaO on EAS (9.4%) 321 

was less than that of the expansive agent (28.0%), however, the addition of fibers had 322 

a minor yet positive influence on EAS (4.4%). 323 

(a) (b) 324 

(c) 325 



Fig. 9 The outputs (CS (a) FS (b) EAS (c)) for TSWS mixtures including different 326 

expansion agent, CaO-MgO ratio and fiber content. 327 

4.2 Modelling results 328 

4.2.1 Results of hyperparameter tuning 329 

NumTree and minNumLeaf were optimized and adjusted by FA as well as 10-fold CV. 330 

The 10-fold CV generated an optimized RMSE displayed in Fig. 10. On FS, CS and EAS 331 

datasets, the optimized RMSE was respectively spotted at the 4th, 5th and 4th folds. 332 

Figure 11 illustrates the respective RMSE of the iterative samples. Results showed that 333 

8, 49, and 43 iterations were obligated to acquire the optimized results, which 334 

confirmed the efficiency and validity of the FA model for optimizing hyperparameters. 335 

Finally, the fixed hyperparameters of constructed Random Forest models was as 336 

follows: CS (numTree=7, minNumLeaf=1), FS (numTree=14, minNumLeaf=1), EAS 337 

(numTree=14, minNumLeaf=1). 338 

 (a)  (b) 339 



 (c) 340 

Fig. 10 RMSE of 10-fold CV for on the (a) FS (b) CS (c) EAS dataset. 341 

 (a)  (b) 342 

 (c) 343 

Fig. 11 RMSE iteration in the optimal fold of datasets. 344 

4.2.2 Performance of FA-RF model 345 

Fig. 12 illustrated the prediction performance results of FA-RF model both on the test-346 

training set. The distance between the solid black line and the dots was in positive to 347 

the error between predicted and actual values. Most points stayed close to the 348 



diagonal line, pointing to the adequacy of the predictions rendered by the three-349 

constructed FA-RF models on the datasets. Table 5 summarised four evaluation 350 

evaluation indicators (RMSE, R, MAPE and MAE) for FA-RF model on the test set when 351 

predicting the CS, FS, and EAS. The R values of 0.9997, 0.9995 and 0.9787 352 

demonstrated that there was negligible discrepancy between the actual and predicted 353 

outcome. The MEA, RMSE and MAPE values were also relatively low, substantiating 354 

the veracity of the predictive models. The R or RMSE scores of the test set and training 355 

set were fairly similar, thus greatly reducing the potential risks of underfitting or 356 

overfitting. 357 

 (a)  (b) 358 

 (c) 359 

Fig. 12 Actual compared to predicted values for (a) CS (b) FS (c) EAS. 360 

Table 5 Evaluation index of training set. 361 



Test category 
Evaluation index 

R RMSE MAE MAPE 
CS 0.9997 0.210 0.154 0.005 
FS 0.9995 0. 014 0.009 0.003 

EAS×10-6 0.9787 24.88×10-6 24.46×10-6 0.029 

4.2.3 TSWS mixture optimisation 362 

The purpose of this study was to minimize EAS of concrete and maximize 28-day 363 

CS and FS while minimizing cost after establishing three FA-RF models. The Pareto 364 

front of the tri-objective (EAS, cost, and CS) optimized design, depicted in Fig. 13, was 365 

achieved due to the CS, FS and EAS are the output variables and both the CS and the 366 

FS were mechanical performances with correlation. Altogether, non-dominated 367 

Pareto-points at 100 were produced along the Pareto-front, providing a suitable cubic 368 

relationship between CS, EAS and cost, exhibiting that the MOFA-RF models was 369 

effective. In order to enhance the mechanical performance of TSWS (CS, FS and EAS), 370 

it is necessary to increase the cost, considering that a greater cement content leads to 371 

a greater cement cost and the related mechanical strength is higher than that of both 372 

sands and water. 373 

Out of 100 non-inferior solutions, Point A, B, C, and D can be regarded as special 374 

points in terms of MOO and single-objective optimization configurations, for, they all 375 

achieved highest TOPSIS, lowest cost, minimum EAS, and maximum CS, respectively. 376 

In Fig. 13, the 28-day CS reached the highest values at 51.8 MPa (point D) while EAS 377 

reached 998×10-6 due to parameter of expansibility admixture was reduced. Point C 378 

represented the lowest EAS (715×10-6), the CS was reduced to 40.5MPa due to the 379 



negative influence of expansive agent. Meanwhile, at Point B, the lowest cost (552.8 380 

¥/m3) was observed, though with the sizable decrease on the mechanical property 381 

(42.3 MPa). With respect to TOPSIS, Point A was identified as the optimal solution, 382 

revealing the balance between the three goals, leading to the peak TOPSIS result of 1 383 

with 47.1 MPa CS, 787×10-6 EAS, and a cost of 560.8 ¥/m3. 384 

 385 

Fig. 13 Pareto fronts of CS, EAS and cost. 386 

5. Conclusions 387 

The study assessed the impact of CaO, MgO, and fiber content on compressive 388 

strength, flexural strength, and early-age shrinkage in tunnel side wall structures 389 

through shrinkage and compressive tests. Subsequently, effective Pareto-fronts were 390 

obtained through proposing the MOFA-RF model. The main conclusions are as follows: 391 



(1) Expansion agent content decreased mechanical properties by 6%-12.6% yet 392 

significantly reduced EAS by 9.4%-28%. This effect is linked to the expansion 393 

of CaO and MgO crystals during cement hydration. 394 

(2) An optimized TSWS mix ratio (Qc: Qf: QMgO: QCaO: Qfiber: Qs: Qst: Qsp = 260: 125: 395 

31.8: 6.4: 0.6: 766: 1078: 149: 7.1 kg/m3) was established to balance 396 

mechanical properties, EAS, and cost. 397 

(3) The FA-RF models proved efficient, evidenced by low RMSE values (CS: 0.21, 398 

FS: 0.014, EAS: 24.88) and high correlation coefficients (CS: 0.9999, FS: 0.9997, 399 

EAS: 0.9787). However, these models are primarily suited to laboratory data, 400 

and adjustments are necessary for field application due to discrepancies 401 

between laboratory and field results. 402 

(4) The MOFA-RF-based tri-objective optimization models effectively generated 403 

Pareto fronts, offering viable alternatives for decision-making. The TOPSIS 404 

method identified Point A as the optimal solution, featuring a CS of 47.1 MPa, 405 

an EAS of 787×10-6, and a cost of 560.8 ¥/m3. 406 

Given the impact of limited data on ML model performance, expanding databases 407 

and advancing model technology are essential steps to achieve superior accuracy, 408 

efficiency, and wider applicability. 409 
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Appendix 417 

Table 6 Mechanical performance for TSWS composites(MPa) 418 

Cemen

 

FA MgO CaO Fibe

 

Sand CA Wate

 

SP Age FS CS 

260 125 2.6 23.4 0.6 766 1078 149 7.1 0.54  2.41  24.1 
260 125 2.6 23.4 0.8 766 1078 149 7.1 0.54  2.42  24.2 
260 125 2.6 23.4 1 766 1078 149 7.1 0.54  2.43  24.3 
260 125 5.2 20.8 0.6 766 1078 149 7.1 0.54  2.44  24.4 
260 125 5.2 20.8 0.8 766 1078 149 7.1 0.54  2.45  24.5 
260 125 5.2 20.8 1 766 1078 149 7.1 0.54  2.46  24.6 
260 125 7.8 18.2 0.6 766 1078 149 7.1 0.54  2.47  24.7 
260 125 7.8 18.2 0.8 766 1078 149 7.1 0.54  2.49  24.9 
260 125 7.8 18.2 1 766 1078 149 7.1 0.54  2.50  25 
260 125 3.3 29.7 0.6 766 1078 151 7.1 0.54  2.31  23.1 
260 125 3.3 29.7 0.8 766 1078 151 7.1 0.54  2.32  23.2 
260 125 3.3 29.7 1 766 1078 151 7.1 0.54  2.33  23.3 
260 125 6.6 26.4 0.6 766 1078 151 7.1 0.54  2.34  23.4 
260 125 6.6 26.4 0.8 766 1078 151 7.1 0.54  2.35  23.5 
260 125 6.6 26.4 1 766 1078 151 7.1 0.54  2.36  23.6 
260 125 9.9 23.1 0.6 766 1078 151 7.1 0.54  2.37  23.7 
260 125 9.9 23.1 0.8 766 1078 151 7.1 0.54  2.38  23.8 
260 125 9.9 23.1 1 766 1078 151 7.1 0.54  2.40  24 
260 125 4 36 0.6 766 1078 154 7.1 0.54  2.21  22.1 
260 125 4 36 0.8 766 1078 154 7.1 0.54  2.22  22.2 
260 125 4 36 1 766 1078 154 7.1 0.54  2.23  22.3 
260 125 8 32 0.6 766 1078 154 7.1 0.54  2.24  22.4 
260 125 8 32 0.8 766 1078 154 7.1 0.54  2.25  22.5 
260 125 8 32 1 766 1078 154 7.1 0.54  2.26  22.6 
260 125 12 28 0.6 766 1078 154 7.1 0.54  2.27  22.7 
260 125 12 28 0.8 766 1078 154 7.1 0.54  2.29  22.9 
260 125 12 28 1 766 1078 154 7.1 0.54  2.3 23 

260 125 2.6 23.4 0.6 766 1078 149 7.1 1.25 2.93  37.1 
260 125 2.6 23.4 0.8 766 1078 149 7.1 1.25 2.94  37.2 
260 125 2.6 23.4 1 766 1078 149 7.1 1.25 2.95  37.3 
260 125 5.2 20.8 0.6 766 1078 149 7.1 1.25 2.95  37.4 
260 125 5.2 20.8 0.8 766 1078 149 7.1 1.25 2.96  37.5 
260 125 5.2 20.8 1 766 1078 149 7.1 1.25 2.97  37.6 
260 125 7.8 18.2 0.6 766 1078 149 7.1 1.25 2.98  37.7 
260 125 7.8 18.2 0.8 766 1078 149 7.1 1.25 2.99  37.8 



260 125 7.8 18.2 1 766 1078 149 7.1 1.25 3.00  38 
260 125 3.3 29.7 0.6 766 1078 151 7.1 1.25 2.85  36.1 
260 125 3.3 29.7 0.8 766 1078 151 7.1 1.25 2.86  36.2 
260 125 3.3 29.7 1 766 1078 151 7.1 1.25 2.87  36.3 
260 125 6.6 26.4 0.6 766 1078 151 7.1 1.25 2.88  36.4 
260 125 6.6 26.4 0.8 766 1078 151 7.1 1.25 2.88  36.5 
260 125 6.6 26.4 1 766 1078 151 7.1 1.25 2.89  36.6 
260 125 9.9 23.1 0.6 766 1078 151 7.1 1.25 2.90  36.7 
260 125 9.9 23.1 0.8 766 1078 151 7.1 1.25 2.91  36.8 
260 125 9.9 23.1 1 766 1078 151 7.1 1.25 2.92  37 
260 125 4 36 0.6 766 1078 154 7.1 1.25 2.77  35.1 
260 125 4 36 0.8 766 1078 154 7.1 1.25 2.78  35.2 
260 125 4 36 1 766 1078 154 7.1 1.25 2.79  35.3 
260 125 8 32 0.6 766 1078 154 7.1 1.25 2.80  35.4 
260 125 8 32 0.8 766 1078 154 7.1 1.25 2.80  35.5 
260 125 8 32 1 766 1078 154 7.1 1.25 2.81  35.6 
260 125 12 28 0.6 766 1078 154 7.1 1.25 2.82  35.7 
260 125 12 28 0.8 766 1078 154 7.1 1.25 2.84  35.9 
260 125 12 28 1 766 1078 154 7.1 1.25 2.84 36 

260 125 2.6 23.4 0.6 766 1078 149 7.1 5 3.44  47.1 
260 125 2.6 23.4 0.8 766 1078 149 7.1 5 3.47  47.6 
260 125 2.6 23.4 1 766 1078 149 7.1 5 3.52  48.2 
260 125 5.2 20.8 0.6 766 1078 149 7.1 5 3.58  49 
260 125 5.2 20.8 0.8 766 1078 149 7.1 5 3.61  49.5 
260 125 5.2 20.8 1 766 1078 149 7.1 5 3.66  50.1 
260 125 7.8 18.2 0.6 766 1078 149 7.1 5 3.68  50.4 
260 125 7.8 18.2 0.8 766 1078 149 7.1 5 3.70  50.7 
260 125 7.8 18.2 1 766 1078 149 7.1 5 3.74  51.3 
260 125 3.3 29.7 0.6 766 1078 151 7.1 5 3.22  44.1 
260 125 3.3 29.7 0.8 766 1078 151 7.1 5 3.24  44.4 
260 125 3.3 29.7 1 766 1078 151 7.1 5 3.27  44.8 
260 125 6.6 26.4 0.6 766 1078 151 7.1 5 3.29  45 
260 125 6.6 26.4 0.8 766 1078 151 7.1 5 3.31  45.3 
260 125 6.6 26.4 1 766 1078 151 7.1 5 3.33  45.6 
260 125 9.9 23.1 0.6 766 1078 151 7.1 5 3.37  46.1 
260 125 9.9 23.1 0.8 766 1078 151 7.1 5 3.39  46.5 
260 125 9.9 23.1 1 766 1078 151 7.1 5 3.43  47 
260 125 4 36 0.6 766 1078 154 7.1 5 3.07  42.1 
260 125 4 36 0.8 766 1078 154 7.1 5 3.08  42.2 
260 125 4 36 1 766 1078 154 7.1 5 3.10  42.4 
260 125 8 32 0.6 766 1078 154 7.1 5 3.11  42.6 



260 125 8 32 0.8 766 1078 154 7.1 5 3.12  42.7 
260 125 8 32 1 766 1078 154 7.1 5 3.14  43 
260 125 12 28 0.6 766 1078 154 7.1 5 3.16  43.3 
260 125 12 28 0.8 766 1078 154 7.1 5 3.19  43.7 
260 125 12 28 1 766 1078 154 7.1 5 3.21 44 

Table 7 Early age shrinkage for TSWS composites(×10-6) 419 

Cement FA MgO CaO Fiber Sand CA Water SP Age EAS 

260 125 2.6 23.4 0.6 766 1078 149 7.1 1 800 
260 125 2.6 23.4 0.8 766 1078 149 7.1 1 770 
260 125 2.6 23.4 1 766 1078 149 7.1 1 760 
260 125 5.2 20.8 0.6 766 1078 149 7.1 1 825 
260 125 5.2 20.8 0.8 766 1078 149 7.1 1 800 
260 125 5.2 20.8 1 766 1078 149 7.1 1 780 
260 125 7.8 18.2 0.6 766 1078 149 7.1 1 861 
260 125 7.8 18.2 0.8 766 1078 149 7.1 1 830 
260 125 7.8 18.2 1 766 1078 149 7.1 1 810 
260 125 3.3 29.7 0.6 766 1078 151 7.1 1 670 
260 125 3.3 29.7 0.8 766 1078 151 7.1 1 640 
260 125 3.3 29.7 1 766 1078 151 7.1 1 620 
260 125 6.6 26.4 0.6 766 1078 151 7.1 1 710 
260 125 6.6 26.4 0.8 766 1078 151 7.1 1 680 
260 125 6.6 26.4 1 766 1078 151 7.1 1 645 
260 125 9.9 23.1 0.6 766 1078 151 7.1 1 740 
260 125 9.9 23.1 0.8 766 1078 151 7.1 1 720 
260 125 9.9 23.1 1 766 1078 151 7.1 1 690 
260 125 4 36 0.6 766 1078 154 7.1 1 550 
260 125 4 36 0.8 766 1078 154 7.1 1 520 
260 125 4 36 1 766 1078 154 7.1 1 512 
260 125 8 32 0.6 766 1078 154 7.1 1 590 
260 125 8 32 0.8 766 1078 154 7.1 1 560 
260 125 8 32 1 766 1078 154 7.1 1 550 
260 125 12 28 0.6 766 1078 154 7.1 1 620 
260 125 12 28 0.8 766 1078 154 7.1 1 600 
260 125 12 28 1 766 1078 154 7.1 1 590 

260 125 2.6 23.4 0.6 766 1078 149 7.1 2 808 
260 125 2.6 23.4 0.8 766 1078 149 7.1 2 780 
260 125 2.6 23.4 1 766 1078 149 7.1 2 768 
260 125 5.2 20.8 0.6 766 1078 149 7.1 2 858 
260 125 5.2 20.8 0.8 766 1078 149 7.1 2 830 
260 125 5.2 20.8 1 766 1078 149 7.1 2 808 



260 125 7.8 18.2 0.6 766 1078 149 7.1 2 894 
260 125 7.8 18.2 0.8 766 1078 149 7.1 2 880 
260 125 7.8 18.2 1 766 1078 149 7.1 2 858 
260 125 3.3 29.7 0.6 766 1078 151 7.1 2 688 
260 125 3.3 29.7 0.8 766 1078 151 7.1 2 665 
260 125 3.3 29.7 1 766 1078 151 7.1 2 642 
260 125 6.6 26.4 0.6 766 1078 151 7.1 2 725 
260 125 6.6 26.4 0.8 766 1078 151 7.1 2 703 
260 125 6.6 26.4 1 766 1078 151 7.1 2 688 
260 125 9.9 23.1 0.6 766 1078 151 7.1 2 768 
260 125 9.9 23.1 0.8 766 1078 151 7.1 2 742 
260 125 9.9 23.1 1 766 1078 151 7.1 2 725 
260 125 4 36 0.6 766 1078 154 7.1 2 570 
260 125 4 36 0.8 766 1078 154 7.1 2 543 
260 125 4 36 1 766 1078 154 7.1 2 516 
260 125 8 32 0.6 766 1078 154 7.1 2 603 
260 125 8 32 0.8 766 1078 154 7.1 2 586 
260 125 8 32 1 766 1078 154 7.1 2 570 
260 125 12 28 0.6 766 1078 154 7.1 2 642 
260 125 12 28 0.8 766 1078 154 7.1 2 621 
260 125 12 28 1 766 1078 154 7.1 2 603 

260 125 2.6 23.4 0.6 766 1078 149 7.1 3 850 
260 125 2.6 23.4 0.8 766 1078 149 7.1 3 830 
260 125 2.6 23.4 1 766 1078 149 7.1 3 809 
260 125 5.2 20.8 0.6 766 1078 149 7.1 3 900 
260 125 5.2 20.8 0.8 766 1078 149 7.1 3 855 
260 125 5.2 20.8 1 766 1078 149 7.1 3 820 
260 125 7.8 18.2 0.6 766 1078 149 7.1 3 945 
260 125 7.8 18.2 0.8 766 1078 149 7.1 3 921 
260 125 7.8 18.2 1 766 1078 149 7.1 3 900 
260 125 3.3 29.7 0.6 766 1078 151 7.1 3 710 
260 125 3.3 29.7 0.8 766 1078 151 7.1 3 683 
260 125 3.3 29.7 1 766 1078 151 7.1 3 669 
260 125 6.6 26.4 0.6 766 1078 151 7.1 3 755 
260 125 6.6 26.4 0.8 766 1078 151 7.1 3 730 
260 125 6.6 26.4 1 766 1078 151 7.1 3 710 
260 125 9.9 23.1 0.6 766 1078 151 7.1 3 809 
260 125 9.9 23.1 0.8 766 1078 151 7.1 3 775 
260 125 9.9 23.1 1 766 1078 151 7.1 3 755 
260 125 4 36 0.6 766 1078 154 7.1 3 588 
260 125 4 36 0.8 766 1078 154 7.1 3 556 
260 125 4 36 1 766 1078 154 7.1 3 536 



260 125 8 32 0.6 766 1078 154 7.1 3 622 
260 125 8 32 0.8 766 1078 154 7.1 3 602 
260 125 8 32 1 766 1078 154 7.1 3 588 
260 125 12 28 0.6 766 1078 154 7.1 3 669 
260 125 12 28 0.8 766 1078 154 7.1 3 641 
260 125 12 28 1 766 1078 154 7.1 3 622 

260 125 2.6 23.4 0.6 766 1078 149 7.1 4 888 
260 125 2.6 23.4 0.8 766 1078 149 7.1 4 861 
260 125 2.6 23.4 1 766 1078 149 7.1 4 838 
260 125 5.2 20.8 0.6 766 1078 149 7.1 4 928 
260 125 5.2 20.8 0.8 766 1078 149 7.1 4 895 
260 125 5.2 20.8 1 766 1078 149 7.1 4 888 
260 125 7.8 18.2 0.6 766 1078 149 7.1 4 976 
260 125 7.8 18.2 0.8 766 1078 149 7.1 4 952 
260 125 7.8 18.2 1 766 1078 149 7.1 4 928 
260 125 3.3 29.7 0.6 766 1078 151 7.1 4 750 
260 125 3.3 29.7 0.8 766 1078 151 7.1 4 730 
260 125 3.3 29.7 1 766 1078 151 7.1 4 700 
260 125 6.6 26.4 0.6 766 1078 151 7.1 4 798 
260 125 6.6 26.4 0.8 766 1078 151 7.1 4 771 
260 125 6.6 26.4 1 766 1078 151 7.1 4 750 
260 125 9.9 23.1 0.6 766 1078 151 7.1 4 838 
260 125 9.9 23.1 0.8 766 1078 151 7.1 4 812 
260 125 9.9 23.1 1 766 1078 151 7.1 4 798 
260 125 4 36 0.6 766 1078 154 7.1 4 611 
260 125 4 36 0.8 766 1078 154 7.1 4 586 
260 125 4 36 1 766 1078 154 7.1 4 562 
260 125 8 32 0.6 766 1078 154 7.1 4 658 
260 125 8 32 0.8 766 1078 154 7.1 4 636 
260 125 8 32 1 766 1078 154 7.1 4 611 
260 125 12 28 0.6 766 1078 154 7.1 4 700 
260 125 12 28 0.8 766 1078 154 7.1 4 678 
260 125 12 28 1 766 1078 154 7.1 4 658 

260 125 2.6 23.4 0.6 766 1078 149 7.1 5 906 
260 125 2.6 23.4 0.8 766 1078 149 7.1 5 886 
260 125 2.6 23.4 1 766 1078 149 7.1 5 866 
260 125 5.2 20.8 0.6 766 1078 149 7.1 5 956 
260 125 5.2 20.8 0.8 766 1078 149 7.1 5 931 
260 125 5.2 20.8 1 766 1078 149 7.1 5 906 
260 125 7.8 18.2 0.6 766 1078 149 7.1 5 1007 
260 125 7.8 18.2 0.8 766 1078 149 7.1 5 983 
260 125 7.8 18.2 1 766 1078 149 7.1 5 956 



260 125 3.3 29.7 0.6 766 1078 151 7.1 5 768 
260 125 3.3 29.7 0.8 766 1078 151 7.1 5 742 
260 125 3.3 29.7 1 766 1078 151 7.1 5 725 
260 125 6.6 26.4 0.6 766 1078 151 7.1 5 821 
260 125 6.6 26.4 0.8 766 1078 151 7.1 5 793 
260 125 6.6 26.4 1 766 1078 151 7.1 5 768 
260 125 9.9 23.1 0.6 766 1078 151 7.1 5 866 
260 125 9.9 23.1 0.8 766 1078 151 7.1 5 843 
260 125 9.9 23.1 1 766 1078 151 7.1 5 821 
260 125 4 36 0.6 766 1078 154 7.1 5 636 
260 125 4 36 0.8 766 1078 154 7.1 5 601 
260 125 4 36 1 766 1078 154 7.1 5 584 
260 125 8 32 0.6 766 1078 154 7.1 5 688 
260 125 8 32 0.8 766 1078 154 7.1 5 657 
260 125 8 32 1 766 1078 154 7.1 5 636 
260 125 12 28 0.6 766 1078 154 7.1 5 725 
260 125 12 28 0.8 766 1078 154 7.1 5 703 
260 125 12 28 1 766 1078 154 7.1 5 688 
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