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Abstract: Accurate cloud and shadow detection is a crucial prerequisite for optical remote 10 

sensing image analysis and application. Multi-temporal-based cloud and shadow detection 11 

methods are a preferable choice to detect clouds in complex scenes (e.g., thin clouds, broken 12 

clouds and clouds with interference from artificial surfaces with high reflectivity). However, such 13 

methods commonly require cloud-free reference images, and this may be difficult to achieve in 14 

time-series data since clouds are often prevalent and of varying spatial distribution in optical 15 

remote sensing images. Furthermore, current multi-temporal-based methods have limited feature 16 

extraction capability and rely heavily on prior assumptions. To address these issues, this paper 17 

proposes a Siamese network (Siamnet) for cloud and shadow detection based on Time-Series 18 

cloudy Images, namely TSI-Siamnet, which consists of two steps: 1) low-rank and sparse 19 

component decomposition of time-series cloudy images is conducted to construct a composite 20 

reference image to cope with dynamic changes in the cloud distribution in time-series images; 2) 21 



2 

 

an extended Siamnet with optimal difference calculation module (DM) and multi-scale difference 22 

features fusion module (MDFM) is constructed to extract reliable disparity features and alleviate 23 

semantic information feature dilution during the decoder part. TSI-Siamnet was tested 24 

extensively on seven land cover types in the well-known Landsat 8 Biome dataset. Compared to 25 

six state-of-the-art methods (including four deep learning-based methods and two classical 26 

non-deep learning-based methods), TSI-Siamnet produced the best performance with an overall 27 

accuracy of 95.05% and MIoU of 84.37%. In three more challenging experiments, TSI-Siamnet 28 

showed enhanced detection of thin and broken clouds and greater anti-interference to highly 29 

reflective surfaces. TSI-Siamnet provides a novel strategy to explore comprehensively the valid 30 

information in time-series cloudy images and integrate the extracted spectral-spatial-temporal 31 

features for reliable cloud and shadow detection. 32 

 33 

Keywords: Cloud and shadow detection, deep learning, Siamese network (Siamnet), 34 

time-series. 35 

 36 

 37 

1. Introduction 38 

 39 

The common existence of clouds in optical remote sensing images greatly limits their 40 

application. To make more effective use of optical remote sensing images, for example, by 41 

removing and potentially replacing cloud pixels, cloud and shadow detection is first required. 42 
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Traditionally, cloud and shadow detection has been realized by manual annotation. This scheme, 43 

however, requires a large number of human and material resources, and is not suitable for large 44 

scale data processing. Meanwhile, there always exists a certain degree of subjectivity in manual 45 

annotation, and the assessments made by different experts can vary. To meet the requirements of 46 

large scale data processing, several automatic cloud and shadow detection algorithms have been 47 

developed. These algorithms can be divided into two categories: mono-temporal-based and 48 

multi-temporal-based (Zhu and Helmer, 2018).
 
 49 

Mono-temporal-based cloud detection algorithms are usually performed based on the physical 50 

characteristics of clouds, such as a high reflectance in the visible, near-infrared and mid-infrared 51 

bands and low brightness in the thermal infrared band. On the basis of these physical 52 

characteristics, clouds can be distinguished from the background by defining thresholds in 53 

spectral space. The USGS proposed the automated cloud-cover assessment algorithm based on 26 54 

spectral thresholds for Landsat7 ETM+ images (Irish et al., 2006). The approach estimates the 55 

percentage of clouds in each image, but cannot obtain the accurate location of clouds. Luo et al. 56 

(2008) separated clouds from clear backgrounds by setting thresholds for spectral combinations 57 

of each MODIS band. Huang et al. (2010) considered adaptive thresholds to perform cloud 58 

detection based on the mean and standard deviation of each band of Landsat images. Choi (2004) 59 

proposed an adaptive normalized difference snow index (NDSI) threshold-based method for 60 

cloud detection in snow and ice covered areas. In addition to spectral features, cloud shape and 61 

texture features were also used in cloud and shadow detection. Li et al. (2017a) designed a 62 

multi-feature combined algorithm for cloud and shadow detection in GF-1 WFV data, which 63 
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forms a preliminary cloud mask by segmentation based on spectral feature thresholds, and then 64 

optimizes the preliminary cloud mask with geometric and textural features of the target cloudy 65 

image. Zhu and Woodcock (2012) proposed an adaptive threshold-based method called Function 66 

of mask (Fmask) for cloud and shadow detection in Landsat images (Zhu et al., 2015; Qiu et al., 67 

2019). Given its various benefits, the Fmask algorithm is now used widely by the USGS for 68 

quality assessment (QA) of Landsat 4-8 Level 1 and Level 2 products (Foga et al., 2017). In 69 

general, threshold-based methods can be effective for the identification of large thick clouds, but 70 

its performance can be greatly compromised for the detection of thin clouds and broken clouds. 71 

In addition, when brighter backgrounds (artificial surface, desert, snow, etc.) are involved, false 72 

detections are highly likely to occur (Jedlovec and Haines, 2007). 73 

With advances in computer technology, machine learning-based methods have been applied 74 

widely for cloud and shadow detection. For example, Xu et al. (2013) employed decision trees to 75 

extract cloud boundaries from MODIS images. Random forests and support vector machines 76 

were also applied to cloud and shadow detection (Hu et al., 2015; Yuan and Hu, 2015). As a 77 

branch of machine learning, deep learning has received increasing attention in recent years due to 78 

its ability to extract features automatically. It was applied extensively to classification tasks for 79 

remote sensing images (Zhu et al., 2017; Mountrakis et al., 2018; Yuan et al., 2020; Zhang et al., 80 

2018; Li et al., 2017b; Karakizi et al., 2018). As cloud and shadow detection is a typical 81 

classification task, deep learning is also applicable to cloud and shadow detection (Chai et al., 82 

2019; Choubin et al., 2019; Ghassemi and Magli, 2019; Shendryk et al., 2019; 83 

Segal-Rozenhaimer et al., 2020; Wei et al., 2020; Wu et al., 2021). As an example, Mateo-García 84 
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et al. (2017) designed a simple convolutional neural network (CNN) model to detect clouds in 85 

multi-spectral Proba-V images, which produced more accurate results than traditional machine 86 

learning-based algorithms (e.g., gradient boosting machines). Xie et al. (2017) further 87 

distinguished thin clouds, thick clouds and cloud shadows based on the CNN model. Zi et al. 88 

(2018) developed a PCANet-based algorithm for cloud and shadow detection of Landsat 8 89 

images. Li et al. (2019) proposed a deep learning-based multi-scale convolutional feature fusion 90 

method, which is universal for multi-source sensors. The methods produced satisfactory cloud 91 

and shadow detection results in both GF-1 and Landsat 8 images. Jeppesen et al. (2019) 92 

developed the RS-Net with an encoder and decoder structure based on the existing U-net 93 

framework (Ronneberger et al., 2015). Wieland et al. (2019) also developed a multi-sensor cloud 94 

detection method based on the Unet (MUnet). Yu et al. (2020) proposed a new two-branch CNN 95 

structure, called multi-scale fusion gated network, to extract shallow and deep information by 96 

introducing pyramidal attention and spatial attention modules. Zhang et al. (2020) proposed a 97 

network based on the Gabor transformation and a dark channel subnet attention mechanism, 98 

which can learn texture feature information more effectively. Recently, Zhang et al. (2021) 99 

proposed a UD-Net, which introduces wavelet transform-based upsampling and downsampling 100 

blocks in a symmetric encoder and decoder structure to reduce information loss and enhance the 101 

texture features of clouds, which can effectively detect thin clouds. Recently, Chai et al. (2024) 102 

proposed a shallow CNN (SCNN) consisting of only three convolutional layers, without using 103 

pooling layers or normalization layers. The SCNN greatly reduces training costs, while achieving 104 

reliable cloud detection results. In addition, migration learning and weakly supervised learning 105 
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strategies were also developed to address the limitations of deep learning algorithms that require 106 

large numbers of training data (Guo et al., 2022; Li et al., 2020; Zhao et al., 2022; Zou et al., 107 

2019). 108 

Unlike mono-temporal-based methods, multi-temporal-based methods treat cloud and shadow 109 

detection as a change detection problem. The values (e.g., reflectance or brightness, etc.) of cloud 110 

pixels usually change more dramatically than the background in a given time-series of images. 111 

Thus, cloud pixels can be identified by detecting the changed parts. Benefiting from the use of 112 

temporally neighboring images, this type of method can reduce missed detection of thin clouds 113 

and attenuate the interference of background with high brightness (Cayula and Cornillon, 1996; 114 

Ricciardelli et al., 2008). Wang et al. (1999) found that by using a cloud-free image of the same 115 

area as the reference, clouds in the Landsat image could be detected effectively by defining 116 

suitable thresholds. The multi-temporal cloud detection method proposed by Hagolle et al. (2010) 117 

detected clouds based on temporal changes of the blue band and spatial correlation between 118 

adjacent pixels. Chen et al. (2016) proposed an iterative optimal cloud transformation algorithm 119 

based on a cloud-free image to distinguish cloud pixels automatically from the background. 120 

Generally, these methods are highly dependent on the cloud-free reference images. For most 121 

optical satellite sensors (e.g., Landsat series), the valid (i.e., inherently cloud-free) temporally 122 

adjacent observations can be several months apart, limiting the applicability of these methods to 123 

some extent. Some studies synthesized relatively clean reference images for the target cloudy 124 

image by linear regression, which typically require at least three cloud-free images 125 

(Gómez-Chova et al., 2017; Goodwin et al., 2013; Mateo-García et al., 2018). Again, this type of 126 
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strategy is influenced by the time interval between the cloud-free and target cloudy data. That is, 127 

the performance is compromised when the time interval is long. Different from the 128 

abovementioned methods, Zhu and Woodcock (2014) proposed the multiTemporal mask (Tmask) 129 

algorithm that does not require a cloud-free image as reference. It first generates an initial cloud 130 

mask for each image using the Fmask algorithm, and then simulates the change of pixel 131 

reflectance based on multi-temporal reflectance data. Finally, the cloud mask is optimized by 132 

comparing the model predictions with the actual observations. Compared with the Fmask 133 

algorithm based on a mono-temporal image, the accuracy of Tmask is increased obviously. For 134 

the Tmask method, however, each pixel needs at least 15 corresponding cloud-free pixels along 135 

the time-series, which can be demanding in some cases. An automatic method for screening 136 

clouds and cloud shadows (ATSA) proposed by Zhu and Helmer (2018) can deal with cloud in 137 

the time-series, which first highlights the cloud features by calculating the haze optimal 138 

transformation (HOT) index and then optimizes cloud detection results based on the HOT of the 139 

time-series. Additionally, some studies developed deep learning-based methods for detecting 140 

clouds in the time-series meteorological satellite data with very fine temporal resolution (up to 141 

minutes) (Tuia et al., 2018; Mateo-Garcia et al., 2019). These methods aim to detect the clouds in 142 

the time-series jointly, where the cloud labels for all images in the time-series are required in the 143 

training models. 144 

In general, the trend is towards the utilization of multi-temporal images to increase cloud and 145 

shadow detection accuracy. Multi-temporal-based algorithms can effectively cope with cloud and 146 

shadow detection in complex scenes, such as the detection of thin and broken clouds and the 147 
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interference of highly reflective artificial surfaces, thus, generating more accurate cloud masks 148 

than mono-temporal based algorithms. However, challenges remain for this type of algorithm. 149 

Specifically, it requires cloud-free reference images in the time-series. As mentioned above, 150 

however, cloud can exist persistently in a time-series, and the spatial location of clouds varies 151 

greatly along the time-series, making cloud-free temporal neighbors commonly difficult to obtain. 152 

A simple strategy is to look for cloud-free images with long intervals as reference, but this 153 

usually involves great land cover changes, introducing a new source of uncertainty into the cloud 154 

and shadow detection task. In addition, most of existing multi-temporal-based cloud and shadow 155 

detection algorithms identify clouds and shadows through human-extracted features with 156 

customized thresholds, limiting the accuracy of cloud and shadow detection. 157 

To overcome the abovementioned issues, a new multi-temporal-based cloud and shadow 158 

detection algorithm, that is, a Siamese network (Siamnet) based on Time-Series cloudy Images 159 

(TSI-Siamnet), is proposed in this paper. The objectives are two-fold. The first is to deal with the 160 

prevalent cloud contamination (with dynamic spatial distribution) in the time-series and simulate 161 

a reference image for multi-temporal-based cloud and shadow detection. Accordingly, this paper 162 

synthesizes a composite reference image with suppressed cloud contamination based on the 163 

low-rank sparse decomposition method in the first step of TSI-Siamnet. The core idea is to fully 164 

utilize the valuable information in the partial cloud-free data in the time-series. Specifically, the 165 

non-cloud background and dynamically changed clouds in the time-series data are regarded as the 166 

low-rank and sparse components, respectively. The second objective is to develop a new deep 167 

learning-based method with more reliable feature extraction capability. Traditional model-based 168 
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cloud and shadow detection methods always have limited feature extraction capability and 169 

depend heavily on prior assumptions. In contrast, deep learning is capable of extracting 170 

multi-scale and high-level features automatically without any specific assumptions. To this end, 171 

in the second step of TSI-Siamnet, we proposed an extended Siamnet-based cloud and shadow 172 

detection method, which extracts the features of the target cloudy image and the composite 173 

reference image separately by designing a dual branch with shared weights. An optimal 174 

difference calculation module (DM) was proposed to extract the optimal difference features, 175 

while a multi-scale difference features fusion module (MDFM) was designed to remedy the 176 

information loss during the fusion of multi-scale difference feature maps. Furthermore, the 177 

attention mechanism was also added to the convolutional layer to enhance the ability to extract 178 

reliable features.  179 

 180 

 181 

Fig. 1. The overall framework of the proposed TSI-Siamnet. 182 

 183 
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2. Methods 184 

 185 

Fig. 1 illustrates the overall framework of the proposed TSI-Siamnet. TSI-Siamnet aims to 186 

create a usable reference image based on the time-series with prevalent cloud contamination and 187 

develop a deep learning-based method with powerful feature extraction capability, which are 188 

achieved by two steps. In the first step, for the target cloudy image, we constructed a time-series 189 

dataset by selecting images with low cloudiness within two years at the corresponding location. 190 

Then, a low-rank and sparse decomposition analysis was applied to the time-series data to 191 

produce the composite reference image with suppressed cloud contamination. In the second step, 192 

the extended Siamnet was developed, and the target cloudy image and the composite reference 193 

image were fed into the network as image pairs, where the cloud was identified by comparing the 194 

two input images using the network. Note that TSI-Siamnet detects the cloud and shadow in each 195 

target cloudy image separately, rather than simultaneously in the time-series cloudy images. The 196 

two steps will be described in detail in Sections 2.1 and 2.2. 197 

 198 

2.1. Composite reference image construction via low-rank and sparse decomposition 199 

Using a temporally neighboring image as reference, multi-temporal-based cloud and shadow 200 

detection can reduce the interference of background. However, cloud contamination is also a 201 

common issue in the temporally neighboring time-series. In applications, cloud-free images with 202 

long intervals are used as reference alternatively. That is, the temporally neighboring, cloudy 203 

images are always abandoned directly, although they may contain low percentage of cloud 204 
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contamination. This scheme, however, usually involves new uncertainty, due to great land cover 205 

changes introduced by the temporally further, cloud-free images. The purpose of the first step of 206 

TSI-Siamnet is to simulate a more reliable reference image directly based on the temporally 207 

neighboring time-series with prevalent, dynamically changed clouds. This is realized by fully 208 

exploring the valuable information in the partial cloud-free data (also with dynamic spatial 209 

distribution) in the time-series. 210 

As acknowledged widely, in the time-series data, the images are highly correlated with each 211 

other in both the spectral and temporal dimensions (Wang et al., 2016). Moreover, the cloud-free 212 

background usually remains constant or changes slightly in a short period, which means it has 213 

low-rank. In contrast, in the case of cloudy data with lower occupancy than the background, 214 

clouds and shadows induce significant variation in the time-series. That is, the assumption of a 215 

sparse prior is satisfied. Therefore, we can extract the cloud-free background from the time-series 216 

data by low-rank and sparse components decomposition. 217 

In this paper, we adopted robust principal component analysis (RPCA) (Candes et al., 2009) to 218 

decompose the low-rank and sparse components. Specifically, for a set of time-series data with N 219 

images (with the same spatial size and number of bands), we constructed a new matrix 220 

D=R
HW×CN

, where H, W and C represent the height, width and number of bands of each image, 221 

respectively. In this matrix, each column represents a spectral band and each row corresponds to a 222 

target pixel with data from all bands and time-series at the geographic location. In the task of 223 

cloud and shadow detection, the matrix D is assumed to be composed of two parts: low-rank 224 

clear background and sparse clouds and shadows. Accordingly, the mathematical model is 225 
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described as follows:  226 

D=Lb + Sc                                 (1) 227 

where Lb and Sc represent the low-rank part due to clear background and sparse part due to 228 

clouds, respectively. 229 

To decompose the low-rank and sparse parts, a corresponding prior restriction is imposed as 230 

follows: 231 

 Lb,Sc

min  rank(Lb)+λ‖Sc‖0      s.t.  D=Lb + Sc                      (2) 232 

where rank(Lb) denotes the rank of the low-rank matrix Lb and ‖Sc‖0 denotes the L0-norm 233 

of the sparse matrix Sc.  λ  represents the weight of the sparse part, which is set to 234 

λ=1/sqrt(max(HW,CN)) as the default. When rank(Lb) is small enough, Lb is considered to be 235 

ideally low-rank. L0-norm refers to the number of non-zero elements in the matrix Sc, and fewer 236 

non-zero elements means that Sc is sparser. 237 

In principle, low-rank sparse decomposition can be achieved by optimizing the two 238 

components in Eq. (2), rank(Lb) and λ‖Sc‖0, under the sum constraint. However, Eq. (2) is a 239 

non-convex optimization problem that cannot be solved directly. Thus, we transferred Eq. (2), 240 

into a convex optimization problem. Specifically, rank(Lb) is replaced by the nuclear norm of 241 

Lb, which denotes the sum of singular values in the matrix. That is, when the nuclear norm is 242 

smaller, the rank can be approximated as lower. In addition, we substituted the L0-norm with the 243 

L1-norm. The L1-norm takes the maximum value of the sum of the absolute values of the matrix 244 

Sc along the column dimension. In the process of minimizing the L1-norm, when the element of 245 

matrix Sc is less than the threshold defined by λ, it will be assigned a value of zero to ensure the 246 
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sparse property of matrix Sc. The transformed convex optimization can be described as follows: 247 

 Lb,Sc

min  ‖Lb‖*+λ‖Sc‖1      s.t.  D=Lb + Sc                       (3) 248 

where ‖Lb‖∗ denotes the nuclear norm of Lb and ‖Sc‖1 denotes the L1-norm of Sc. In this 249 

paper, we used the alternating direction method of multipliers (ADMM) to optimize this model 250 

(Boyd, 2010). 251 

 252 

2.2. Cloud and shadow detection via extended Siamnet  253 

Fig. 2 illustrates the structure of our extended Siamnet, where the features of input image pairs 254 

are extracted separately by a double branch with shared weights. To extract adaptively the refined 255 

features in the cloud and shadow detection task, we added an attention mechanism to each 256 

convolutional layer. Meanwhile, we proposed the optimal difference calculation module (DM) to 257 

derive the optimal disparity features. Furthermore, to alleviate the dilution of semantic 258 

information features during the decoder stage, we proposed the multi-scale difference features 259 

fusion module (MDFM) for enhancement.  260 

As shown in Fig. 2, the target cloudy and composite reference images were fed into the 261 

extended Siamnet model as image pairs. The features at different scales were then extracted with 262 

five blocks (i.e., Blocks 1-5) equipped with the convolutional block attention module (CBAM) 263 

(Woo et al., 2018). The details of each block are shown in Table 1, where each block has a 264 

convolution layer (Conv2D) with a kernel size of 3×3 pixels and increasing kernel number 265 

layer-by-layer. The rectified linear unit (ReLU) was adopted as the activation function for each 266 

layer, batch normalization (BN) was adopted to prevent the gradient vanishing, and L2 267 
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regularization (L2) was utilized to avoid overfitting. The feature disparities of the two branches at 268 

multi-scales were obtained by the DM, which uses relative distance instead of absolute distance. 269 

Afterwards the multi-scale feature disparities were upsampled and fused by the MDFM. Finally, a 270 

softmax classifier was used to generate the final cloud mask. The three main modules, CBAM, 271 

DM and MDFM, are described in detail below. 272 

 273 

 274 

Fig. 2. The structure of the extended Siamnet (H, W and C represent the height, width and channels of the target 275 

cloudy image, Fcloud
i  and Fclear

i  represent the feature map of the target cloudy image and composite reference image 276 

in the i-th layer, Fdiff
i  represents difference between Fcloud

i  and Fclear
i  and MultiFdiff

i  represents the fusion result of 277 

Fdiff
i  in the different layers). 278 

 279 

Table 1 The structure of the basic convolutional Blocks (Conv2d represents a 2D convolution layer, ReLU represent 280 

rectified linear unit, BN represent bach normalization and L2 represents L2 regularization). 281 

Convolution 

Blocks 
Type 

Kernel 

number 

Kernel 

size 
Padding 

Block1 Conv2D + ReLU + BN + L2 (0.0005) 32 3×3 valid 

Block2 MaxPooling2D - 2×2 valid 

Conv2D + ReLU + BN + L2 (0.0005) 64 3×3 valid 
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Block3 MaxPooling2D - 2×2 valid 

Conv2D + ReLU + BN + L2 (0.0005) 128 3×3 valid 

Block4 MaxPooling2D - 2×2 valid 

Conv2D + ReLU + BN + L2 (0.0005) 256 3×3 valid 

Block5 MaxPooling2D - 2×2 valid 

Conv2D + ReLU + BN + L2 (0.0005) 256 3×3 valid 

 282 

2.2.1. The Convolutional Block Attention Module (CBAM) 283 

CBAM is a simple and effective attention module for use in a feed-forward CNN. It infers 284 

attention results sequentially along the channel and spatial dimensions. Specifically, the input 285 

feature map is passed through the channel attention module, and then the output is fed into the 286 

spatial attention module. 287 

The channel attention module compresses the input feature map in the spatial dimension, and 288 

then global max pooling and global average pooling are applied based on the size of the feature 289 

map. Average pooling generates feedback for all image elements, while max pooling produces 290 

feedback only for the position with the largest response. The outputs of average pooling and max 291 

pooling are then concatenated and multiplied with the input feature map. Generally, the channel 292 

attention module can be expressed as follows: 293 

Fc=ReLU(Add(MLP(GAP(F)), MLP(GMP(F))))F             (4) 294 

where F represents the input feature map, Fc represents the result of the channel attention 295 

module, MLP represents the multi-layer perception and is used to control the number of channels 296 

of the output, and GAP and GMP stand for global average pooling and global max pooling, 297 

respectively.  298 
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The output of the channel attention module is then fed into the spatial attention module, in 299 

which the channel dimension is compressed based on the channels of the feature map. In the 300 

spatial attention module, global average pooling and global max pooling are performed to extract 301 

the average and maximum values in the channels, and the two pooling results are then fused and 302 

multiplied with the channel attention result. The spatial attention module can be expressed as 303 

follows: 304 

Fs=ReLU(Conv2D3×3(Concatenation(GAP(Fc), GMP(Fc))))Fc          (5) 305 

where Fc represents the output of the channel attention module and Fs represents the result of 306 

the spatial attention module.  307 

 308 

2.2.2. The Difference Module (DM) 309 

In traditional approaches to change detection, the absolute distance (e.g., Euclidean distance) is 310 

commonly used to calculate the disparity between images at different times. However, the 311 

absolute distance result is a two-dimensional feature map with limited information for subsequent 312 

feature extraction. Therefore, in this paper, we developed a relative distance module DM to 313 

extract optimal feature maps representing differences at various scales. Specifically, in each layer, 314 

DM first concatenates the feature maps of the target cloudy and composite reference images, after 315 

which a convolutional layer with a kernel number of 64 and a kernel size of 3×3 pixels is used. 316 

Through the DM, the optimal features of the difference are learnt and extracted by the network 317 

instead of straightforward distance calculation. The DM can be expressed as follows: 318 

Fdiff
i =BN(ReLU(Conv2D3×3(Concatenation(Fcloud

i , Fclear
i ))))             (6) 319 
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where Fdiff
i , Fcloud

i
 and Fclear

i
 denote the feature maps of the difference feature map, target 320 

cloudy and composite reference image in the i-th stratified layer, respectively. 321 

 322 

2.2.3. The Multi-scale Feature Difference Maps Fusion Module (MDFM) 323 

Unlike typical segmentation algorithms (e.g., PSPnet (Zhao et al., 2017)) that directly 324 

upsample the final feature map multiple times until it matches the size of the input image, we 325 

proposed MDFM, in which the difference feature maps at different scales are first upsampled and 326 

then concatenated several times. Specifically, for five difference feature maps with various scales, 327 

the difference feature map in the deepest layer (i.e., the coarsest difference feature map) is 328 

upsampled and then concatenated with the map of the previous layer. The concatenation result is 329 

then upsampled and concatenated with the previous one iteratively until it matches the size of the 330 

target cloudy image. Block 6-9 are convolution layers with a kernel size of 3×3 pixels and a 331 

kernel number of 64. We adopted a 2×2 bilinear sample, followed by a convolutional layer of size 332 

3×3 pixels to implement the upsampling. The details are as follows: 333 

Up(F
diff

i
)=BN(ReLU(Conv2D3×3(Upsample(Fdiff

i , (2H, 2W), "bilinear"))))          (7) 334 

where Up(F
diff

i
)  represents the upsampling result of the difference feature map Fdiff

i  and 335 

(H, W) represents the original size of the difference feature map Fdiff
i . 336 

To fully fuse the information in difference features representing the different scales, difference 337 

feature maps are concatenated with the corresponding upsampled maps according to Eqs. (8) and 338 

(9): 339 

MultiFdiff
4

=BN(ReLU(Conv2D3×3(Concatenation(Up(F
diff

5
), Fdiff

4 ))))                        (8) 340 
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MultiFdiff
i

=BN(ReLU(Conv2D3×3(Concatenation(Up(MultiFdiff
i+1 ), Fdiff

i ))))  s.t. i=3, 2, 1  (9) 341 

where MultiFdiff
4

 represents the fusion of the upsampled disparity feature map in the 5-th layer 342 

and the original disparity feature map in the 4-th layer, MultiFdiff
i

 represents the fusion of the 343 

upsampled MultiFdiff
i+1

 and the original difference feature map in the i-th layer. 344 

 345 

 346 

3. Experiments 347 

 348 

3.1. Datasets 349 

In the experiments, the popular Landsat 8 Biome data were used for demonstration. The data 350 

were provided by Foga et al. (2017) and have been used widely for training and testing deep 351 

learning models for cloud and shadow detection. The mask for the Landsat 8 Biome data contains 352 

thick clouds, thin clouds, cloud shadows and background. In this study, thick and thin cloud are 353 

uniformly classified as cloud. The original Landsat 8 Biome data consist of 96 images that are 354 

evenly distributed across the globe and cover eight land cover types, including barren, forest, 355 

grass/crops, shrubland, urban, water, wetlands and snow/ice. As acknowledged widely, it is a very 356 

challenging task to detect the cloud in the snow and ice covered areas, the data used in the 357 

experiments do not cover snow/ice. The used Landsat 8 Biome data are TOA-corrected, and 358 

include seven bands (i.e., bands 1-7). Training and testing data are evenly distributed among 359 

seven land cover types without any overlap, and the training data consist of 756 images with a 360 

spatial size of 256×256 pixels, while the testing data contain 336 images with a size of 256×256 361 



19 

 

pixels. For each image, we selected 10-to-15 (within two years) temporally closest images with 362 

relatively low cloudiness (less the 50%) for RPCA to construct the composite reference images. 363 

 364 

3.2. Experimental setup 365 

3.2.1. Benchmark Methods 366 

In this paper, three mono-temporal deep learning methods (i.e., MUnet, DeepLabV3+ (Chen et 367 

al., 2018) and PSPnet) and one multi-temporal deep learning method (i.e., CDUnet++ (Peng et al., 368 

2019)) were compared with the proposed TSI-Siamnet method. Moreover, two non-deep learning 369 

methods were also used as benchmark methods, including one multi-temporal-based method (i.e., 370 

ATSA), and one mono-temporal-based method (i.e., the classical thresholding method Fmask). 371 

MUnet is a typical deep learning network with an encoding-decoding structure that achieved 372 

satisfactory results in cloud and shadow detection task. DeepLabV3+ and PSPnet are 373 

representative networks for image segmentation, which are also fully applicable for cloud and 374 

shadow detection. CDUnet++ was originally designed for change detection. In this paper, to 375 

facilitate its application in cloud and shadow detection, the input data are consistent with that for 376 

TSI-Siamnet. The ATSA algorithm produced reliable results for Landsat-8 OLI, Landsat-4 MSS 377 

and Sentinel-2 data. The Fmask method was applied widely by the USGS to produce cloud masks 378 

for Landsat data. All benchmark methods were implemented using publicly available codes, and 379 

were adjusted accordingly to accommodate multi-band remote sensing images. The traditional 380 

physics-based algorithms employed default thresholds, while deep learning-based algorithms 381 

used uniform parameter settings as described in Section 3.2.3. It should be noted that no 382 
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pretrained models were used in the experiments. 383 

 384 

3.2.2. Accuracy metrics 385 

In this study, the user accuracy (UA), producer accuracy (PA), and intersection of union (IoU) 386 

were used to evaluate the accuracy of detection of each identified class (i.e., clear background, 387 

cloud and shadow). Among these, UA and PA correspond to omission and commission errors, 388 

respectively. In addition, the mean IoU (MIoU) and overall accuracy (OA) were also used for 389 

comprehensive accuracy evaluation of all classes. All the metrics were calculated by referring to 390 

the reference labels of the Landsat 8 Biome data. 391 

 392 

3.2.3. Hyperparameters 393 

All the deep learning-based methods applied here adopted the same hyperparameter settings. 394 

More precisely, the batch size and epoch were set to 8 and 200, respectively. The Adam optimizer 395 

was used to optimize the parameters of all the networks. The learning rate was set to 0.001 in the 396 

first 100 epochs and 0.0001 in the second 100 epochs. All the deep learning-based methods were 397 

implemented using TensorFlow version 2.6.0 on a single NVIDIA GTX 3060Ti GPU with 32-GB 398 

memory. 399 

 400 

3.3. Results 401 

3.3.1. Qualitative evaluation 402 

Fig. 3 shows visually the results for all seven methods. We selected one image from each of the 403 
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seven land cover types for display. It can be seen from Fig. 3 that Fmask detects more cloud 404 

pixels than the other methods, which is mainly related to the constructed 3×3 buffer in the 405 

method. ATSA shows greater consistency with the ground reference data than Fmask, but its 406 

performance depends upon the quality of the used time-series data, and it exhibits more false 407 

positives in barren and shrubland scenes. Overall, the performances of Fmask and ATSA are not 408 

as satisfactory as for the five deep learning-based methods (e.g., the results of the barren and 409 

urban scenes). Furthermore, in the five deep learning-based methods, TSI-Siamnet is more 410 

accurate than the other four methods, especially in the barren, grass/crops and wetlands scenes, 411 

with obviously fewer omission and commission errors. 412 

 413 
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(g) 

         

Fig. 3. Cloud and shadow detection results of the seven different methods for a part of the testing images (one area 414 

was selected for each of the seven land cover types). (a)–(g) refer to the results of barren, forest, grass/crops, 415 

shrubland, urban, water and wetlands, respectively. True color composites (R: 4, G: 3 and B: 2) of the testing images 416 

are shown in the first column. White, gray and blue represent cloud, cloud shadow and background, respectively. 417 

 418 

3.3.2. Quantitative evaluation 419 

Table 2 lists the quantitative evaluation of the results of TSI-Siamnet against the six benchmark 420 

methods for all 336 testing images (the mean value of all 336 images was taken for each metric). 421 

The most accurate value under each metric is marked in bold. As can be seen from the table, 422 

Fmask produces the smallest IoU for both clouds and shadows, and has larger UA than PA for 423 

cloud and shadow, which is consistent with the visual results. Benefitting from the use of 424 

multi-temporal data, most of the metrics for ATSA are superior to those of Fmask. With respect to 425 

the five deep learning-based methods, they present greater accuracy than the traditional methods. 426 

For example, the OA and MIoU of all the five deep learning-based methods are at least 13.51% 427 

and 16.65% larger, respectively. Furthermore, compared with the three mono-temporal deep 428 

learning methods (MUnet, PSPnet and DeepLabV3+), CDUnet++ produces greater accuracay, 429 

indicating that the use of the composite reference image is beneficial. Finally, TSI-Siamnet is 430 

more accuate than CDUnet++. For example, the OA and MIoU of TSI-Siamnet are 0.96% and 431 

3.46% larger, respectively, suggesting the advanatage of the developed extend Siamnet. 432 
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 433 

 434 

Fig. 4. The accuracy of the seven different methods for each land cover type. (a) OA. (b) MIoU. 435 

 436 

Table 2 Accuracy metrics of the seven different methods for all 336 testing images (values of all 336 images were 437 

averaged for each metric; the bold value means the most accurate result under each metric). 438 

  PA (%) UA (%) IoU (%) OA (%) MIoU (%) 

Fmask 

Clear 71.02 96.16 69.06 

77.68 54.98 Cloud 96.66 68.84 67.24 

Shadow 57.23 36.43 28.63 

ATSA 

Clear 75.03 90.44 69.52 

79.14 56.14 Cloud 91.45 79.39 73.91 

Shadow 59.07 38.17 31.99 

MUnet Clear 98.22 91.45 89.96 92.65 72.79 
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Cloud 94.27 95.31 90.09 

Shadow 39.39 93.34 38.32 

DeepLabV3+ 

Clear 95.75 93.90 90.14 

92.86 78.40 Cloud 93.39 92.80 87.09 

Shadow 66.39 82.03 57.96 

PSPnet 

Clear 95.60 94.22 90.30 

93.04 77.75 Cloud 96.44 91.38 88.40 

Shadow 57.82 88.47 53.77 

CDUnet++ 

Clear 96.58 94.63 91.56 

94.09 80.91 Cloud 95.30 94.95 90.70 

Shadow 68.28 84.11 60.48 

TSI-Siamnet 

Clear 96.42 96.14 92.83 

95.05 84.37 Cloud 96.88 94.48 91.69 

Shadow 76.22 87.24 68.57 

 439 

To quantitatively analyze the performance across different land cover types, we calculated the 440 

OA and MIoU of the methods for each land cover type separately, as shown in Fig. 4. Both the 441 

OA and MIoU of the deep learning-based methods are larger than those of Fmask and ATSA. 442 

Moreover, TSI-Siamnet produces the largest OA and MIoU in almost all land cover types, 443 

especially in barren and urban scenes. We further analyzed the stability of each method in Fig. 5. 444 

It can be seen that the deep learning-based methods tend to be more stable, but it must be noted 445 

that neither Fmask nor ATSA require data for training. Noticeably, TSI-Siamnet presents the most 446 

satisfactory performance in almost all land cover types. 447 

 448 



25 

 

 449 

Fig. 5. The stability of the seven methods for different land cover types. (a) Barren. (b) Forest. (c) Grass/Crops. (d) 450 

Shrubland. (e) Urban. (f) Water. (g) Wetlands. (h) All classes. 451 

 452 

3.3.3. Detection results in three challenging cases  453 

To further examine TSI-Siamnet, we present the visual results for three challenging cases in 454 

Figs. 6-8. Fig. 6 shows the detection results for thin clouds. Thin cloud detection has always been 455 

a challenging issue due to the complexity of cloud information mixed with the background. As 456 

can be seen from Fig. 6, TSI-Siamnet shows greater ability to detect thin clouds than the 457 

benchmark methods, which can detect more thin clouds correctly than the other methods. For 458 
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example, in Fig. 6(a) the detected thin cloud is much more consistent with that of the ground 459 

reference, especially in the part marked in yellow. CDUnet++, DeepLabV3+, MUnet and PSPnet 460 

result in more omission errors in thin cloud detection, while ATSA and Fmask present more 461 

commission errors.  462 

Fig. 7 exhibits the detection results for broken clouds. Since the difference in brightness 463 

between broken clouds and background is generally small, the benchmark methods present 464 

noticeable omission errors. In general, TSI-Siamnet still produces more accurate broken cloud 465 

and shadow detection results. Checking the results marked in yellow in Fig. 7(b), TSI-Siamnet 466 

produces obviously smaller omission errors. 467 

Highly reflective surfaces are a common interfering factor in cloud detection. That is, due to 468 

similar spectral characteristics, highly reflective surfaces are susceptible to being incorrectly 469 

detected as cloud. As shown in Fig. 8, the benchmark methods incorrectly detect several 470 

background pixels as cloud pixels, especially in the area marked in yellow. In contrast, the 471 

TSI-Siamnet method presents far fewer commission errors. Overall, TSI-Siamnet produces the 472 

most reliable performances for cloud and shadow detection in these three challenging cases. 473 
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Fig. 6. Detection results for thin clouds. (a) Thin clouds over barren. (b) Thin clouds over wetlands. True color 474 

composites (R: 4, G: 3 and B: 2) of testing images are shown in the first column. White, gray and blue represent 475 

cloud, cloud shadow and background, respectively. 476 
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Fig. 7. Detection results for broken clouds. (a) Broken clouds above water. (b) Broken clouds over forest. True color 479 

composites (R: 4, G: 3 and B: 2) of testing images are shown in the first column. White, gray and blue represent 480 

cloud, cloud shadow and background, respectively. 481 

 482 
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Fig. 8. Detection results for clouds above artificial surface with large reflectance. (a) and (b) are both clouds above 483 

surface with large reflectance. True color composites (R: 4, G: 3 and B: 2) of testing images are shown in the first 484 

column. White, gray and blue represent cloud, cloud shadow and background, respectively. 485 

 486 
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Fig. 9. The ground reference cloud coverage plotted against the detected cloud coverage for the seven different 487 

methods. 488 

 489 

3.3.4. Evaluation based on cloud coverage 490 

To evaluate the accuracy of TSI-Siamnet in cloud coverage estimation, a scatterplot of the 491 

detected cloud coverage in 336 images was compared against the ground reference (Fig. 9). It can 492 

be seen that TSI-Siamnet produces greater accuracy in cloud estimation, especially in the barren, 493 

urban and shrubland scenes. Specifically, the R
2
 coefficient of TSI-Siamnet is the largest (i.e., 494 

0.9874) and the root mean square error (RMSE) is the smallest (i.e., 0.0310). Table 3 shows the 495 

stability of cloud coverage estimation by calculating the mean absolute deviation and standard 496 

deviation of the estimation errors. It can be seen that the mean absolute deviation and standard 497 

deviation of TSI-Siamnet are obviously smaller than those of the benchmark methods, indicating 498 
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that TSI-Siamnet is more stable for cloud coverage estimation. 499 

 500 

Table 3 Statistical results of cloud coverage detection error in terms of mean absolute deviation and standard 501 

deviation.  502 

 Mean absolute deviation Standard deviation 

TSI-Siamnet 0.0191 0.0237 

CDUnet++ 0.0201 0.0305 

PSPnet 0.0251 0.0291 

DeepLabV3+ 0.0230 0.0265 

MUnet 0.0229 0.0309 

ATSA 0.0827 0.1156 

Fmask 0.1253 0.1003 

 503 

3.3.5. Cloud detection results in thick cloud areas 504 

In regions with persistent cloud cover, images are often extensively obscured by clouds, and 505 

time-series images may not provide useful information for reference. That is, the reference image 506 

synthesized by RPCA may not provide effective information. To examine the performance of the 507 

proposed TSI-Siamnet method in this case, cloud detection for two thick cloud areas was 508 

performed and the results are shown in Fig. 10. It is seen that TSI-Siamnet still produces 509 

satisfactory detection results. More precisely, TSI-Siamnet produces an average OA of 98.05% 510 

for the two areas, which is 1.13%, 2.01%, 2.20%, 0.20%, 5.58% and 4.35% larger than 511 

CDUnet++, PSPnet, DeepLabV3+, MUnet, ATSA and Fmask, respectively. The reason is that 512 

TSI-Siamnet contains a dual-branch structure. Although the branch responsible for the 513 

synthesized reference image struggles to provide effective information, the branch for the target 514 

cloudy image can still achieve reliable detection by the feature extraction module composed of 515 
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multiple convolutional layers with appended CBAM module and feature fusion module with skip 516 

connections (a process analogous to mono-temporal-based cloud detection in this case). 517 

 518 
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Fig. 10. Detection results for two thick cloud areas. True color composites (R: 4, G: 3 and B: 2) of testing images are 519 

shown in the first column. White, gray and blue represent cloud, cloud shadow and background, respectively. 520 

 521 

3.3.6. RPCA-composite image versus clean image as reference image 522 

Although cloud-free images are commonly difficult to obtain, the likelihood of being such 523 

images being available increases for longer intervals. However, longer intervals can lead to the 524 

inclusion of more dramatic changes in the background. Thus, we conducted an experiment to test 525 

the effect of using, as the reference image, an RPCA-composite image and a temporally distant 526 

cloud-free image. As shown in Fig. 11, the target cloudy image was acquired on August 6, 2013. 527 

We chose two cloud-free images from September 15, 2016 and May 29, 2017 for comparison of 528 

the cloud detection performance. This scene mainly covers urban, bare land and vegetation, and 529 

the land cover changes can be seen clearly by comparing Fig. 11(b) and Fig. 11(c).  530 

The RPCA-composite image and the two cloud-free images were, respectively, fed into 531 

TSI-Siamnet as the reference image, and the three results are shown in Fig. 12. It can be seen that 532 

the cloud detection result obtained using the cloud-free image in 2016 is closer to the result of the 533 
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proposed method (i.e., the RPCA-composite image as a reference). Alternatively, when using the 534 

cloud-free reference image in 2017, more detection errors are produced, especially in the marked 535 

yellow part, which corresponds to the areas experiencing intensive land cover changes in Fig. 11. 536 

The corresponding quantitative assessment results are shown in Table 4. Generally, the cloud-free 537 

reference in 2017 with greater land cover changes leads to the lowest accuracy, which is 538 

consistent with the visual result. The result obtained using the cloud-free reference image in 2016 539 

shows larger metrics than that for 2017, but the accuracy is still lower than for the proposed 540 

RPCA-based strategy. 541 

 542 

   

(a) (b) (c) 

Fig. 11. The selected testing image for validating the benefit of using the RPCA-composite reference image (true 543 

color composite (R: 4, G: 3 and B: 2) images are shown). (a) Target cloudy image acquired on August 6, 2013. (b) 544 

Clean image acquired on September 15, 2016. (c) Clean image acquired on May 29, 2017. 545 
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Clean image as 

reference (2017.05.29) 

     
Fig. 12. The detection results of TSI-Siamnet with difference reference images in Fig. 11. True color composite (R: 4, 546 

G: 3 and B: 2) of the testing image is shown in the first column. White and blue represent cloud and background, 547 

respectively. 548 
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 549 

Table 4 Accuracy evaluation results of TSI-Siamnet with different reference images (the bold value means the most 550 

accurate result under each metric). 551 

 OA % IoU % 

RPCA-composite image 98.08 93.73 

Clear image on 2016.09.15 98.02 92.74 

Clear image on 2017.05.29 95.09 85.59 

 552 

3.3.7. Validation of the RPCA method 553 

In this paper, we composited reference image from time-series cloudy images by RPCA. To 554 

demonstrate the advantage of the RPCA method, we also constructed reference image by 555 

averaging the time-series cloudy images, referred to as the Ave-reference image. Then, the 556 

extended Siamnet (or the change detection method CDUnet++) was performed using the 557 

RPCA-composite reference image and Ave-reference image as auxiliary data separately. That is, 558 

four different versions were implemented, and the corresponding accuraices are shown in Table 5. 559 

The results indicate that the RPCA-composite reference image leads to more accurate results for 560 

both TSI-Siamnet and CDUnet++. Additionally, the accuracy of TSI-Siamnet is greater than that 561 

of CDUnet++. 562 

 563 

Table 5 Accuracies of using different reference images (RPCA-composite or Ave-reference) based on different 564 

networks (TSI-Siamnet or CDUnet++) (the bold value means the most accurate result under each metric). 565 

Network Reference image OA (%) MIoU (%) 

TSI-Siamnet 
RPCA-composite reference image 95.05 84.37 

Ave-reference image 94.66 82.73 

CDUnet++ 
RPCA-composite reference image 94.09 80.91 

Ave-reference image 93.75 80.68 

 566 
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3.3.8. Ablation studies 567 

We performed three ablation studies to evaluate the effectiveness of the TSI-Siamnet modules, 568 

including the DM, MDFM and CBAM. First, we used the Euclidean distance instead of the DM 569 

to calculate the difference in multi-scale features to validate the effectiveness of the DM. Second, 570 

the advantages of the MDFM were validated by fusing the upsampled difference features directly 571 

according to Eqs. (10) and (11):  572 

MultiFdiff=Concatenation(Up(F
diff

1
), Up(Fdiff

2 ), Up(F
diff

3
), Up(F

diff

4
), Up(Fdiff

5 ))          (10) 573 

MultiFdiff=BN(ReLU(Conv2D3×3(MultiFdiff))                      (11) 574 

where MultiFdiff represents the fusion result of multi-scale disparity feature maps. 575 

Third, we compared TSI-Siamnet with TSI-Siamnet without CBAM to demonstrate the 576 

effectiveness of the CBAM module. The accuracies of the various cases are shown in Table 6. 577 

Moreover, Fig. 13 shows the visual results for seven land cover types. It can be seen that 578 

TSI-Siamnet without using any of the DM, MDFM and CBAM results in more commission or 579 

omission errors, especially in the absence of the DM and MDFM. With the aid of the CBAM, 580 

TSI-Siamnet can further increase the accuracy.  581 

 582 

Table 6 Ablation study of the three blocks in TSI-Siamnet (the bold value means the most accurate result under each 583 

metric). 584 

DM × √ √ √ 

MDFM √ × √ √ 

CBAM √ √ × √ 

OA (%) 94.00 93.81 94.13 95.05 

MIoU (%) 81.76 79.47 82.21 84.37 

 585 
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Fig. 13. Cloud and shadow detection results of TSI-Siamnet with different modules removed or altered. (a)–(g) refers 586 

to the main land cover types of barren, forest, grass/crops, shrubland, urban, water and wetlands, respectively. True 587 

color composites (R:4, G:3 and B:2) of the testing images are shown in the first column. White, gray and blue 588 

represent cloud, cloud shadow and background, respectively. 589 

 590 

 591 
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4. Discussion 592 

 593 

4.1. The rationale behind RPCA 594 

The proposed TSI-Siamnet method identifies cloud pixels by comparing the difference 595 

between the target cloudy image and the RPCA-composite reference image. To analyze the 596 

rationale of using RPCA to construct a composite reference image, we selected a scene 597 

containing a clear background, and thin and thick clouds simultaneously. As shown in Fig. 14, the 598 

interference of both thin and thick clouds is suppressed after the RPCA process, and the 599 

background information is revealed to some extent. To quantitatively analyze the difference 600 

between the target cloudy image and the corresponding RPCA-composite image, we, respectively, 601 

selected three blocks of size 50×50 pixels from these two images to provide scatterplots in the 602 

seven bands. As shown in Fig. 15, the thick cloud pixels present a large difference and separation 603 

compared with the corresponding pixels of the RPCA results in all bands. For the thin cloud 604 

pixels, the RPCA-composite image is partially different from the target cloudy image, especially 605 

for the blue, green and red bands. It should be noted that some of the thin cloud pixels do not 606 

present obvious differences after the RPCA process, and these pixels are also difficult for 607 

non-deep learning-based methods to detect. For the clear background pixels, there is no 608 

significant difference before and after the RPCA process, indicating that the background 609 

interference can be effectively removed during cloud detection. 610 

 611 
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Fig. 14. An example of a cloudy image with RPCA-based processing (A: clear background; B: thin cloud; and C: 612 

thick cloud). (a) Target cloudy image. (b) RPCA-composite reference image. 613 

 614 

4.2. Computational complexity 615 

In Table 7, we evaluated the complexity and efficiency of the deep learning-based methods by 616 

the number of parameters and the inference time. The inference time is counted for an image of 617 

size 1k × 1k pixels. As can be seen from the table, our method has only 3.2 million parameters, 618 

which is far fewer than the other models, indicating that TSI-Siamnet is a relatively lightweight 619 

model. Since TSI-Siamnet has to extract features from both the target cloudy image and the 620 

corresponding RPCA-composite image, the inference time is slightly longer than the other 621 

methods, but this sacrifice is acceptable for much greater accuracy. 622 

 623 
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 624 

Fig. 15. Comparison between the target cloudy image and the RPCA-composite reference image. (a)-(g) are results 625 

for bands 1 to 7 for Landsat 8. 626 

 627 

 628 
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Table 7 Computational complexity analysis of different deep learning-based methods. 629 

 Parameters Inference time (s) (1k × 1k) 

TSI-Siamnet 3.2×10
6 

0.70 

CDUnet++ 9.1×10
6
 0.68 

PSPnet 46.7×10
6
 0.53 

DeepLabV3+ 41.1×10
6
 0.53 

MUnet 8.6×10
6
 0.50 

 630 

4.3. Future research 631 

Although TSI-Siamnet achieves promising cloud and shadow detection results, there is still 632 

room for further enhancement. First, our algorithm does not consider cloud and shadow detection 633 

in snow/ice covered areas. It would be worthwhile research to undertake research to identify the 634 

differences in physical characteristics between snow/ice and cloud, and develop corresponding 635 

modules in TSI-Siamnet to effectively reduce the interference caused by snow/ice in cloud and 636 

shadow detection. Second, in this paper, the RPCA algorithm was used to synthesize a single 637 

auxiliary reference image by integrating the valid information in the available time-series data, 638 

which inevitably leads to a certain degree of information loss. In future research, it would be 639 

interesting to develop models that can more exploit the remaining information in time-series data 640 

to synthesize more reliable reference images, such as to provide more reliable input to Siamnet. 641 

 642 

 643 

5. Conclusion 644 

 645 

In this paper, we proposed a new multi-temporal-based method called TSI-Siamnet for cloud 646 



39 

 

and shadow detection in optical remote sensing images. The algorithm implements cloud and 647 

shadow detection from the perspective of change detection, reducing the interference of complex 648 

backgrounds and increasing cloud and shadow detection accuracy. TSI-Siamnet consists of two 649 

main parts: (i) cloud-free reference image construction based on RPCA and (ii) cloud and shadow 650 

detection via the extended Siamnet. The developed RPCA method mines effectively the valid 651 

information in time-series cloudy images to synthesize reliable reference images, suppressing the 652 

interference of cloud contamination in the time-series data. The developed extended Siamnet, 653 

including the construction of DM and MDFM modules, utilizes fully the 654 

spectral-spatial-temporal features of the available images and extracts reliable feature differences.  655 

TSI-Siamnet was tested with the Landsat 8 Biome dataset (including 336 images covering 656 

seven land cover types) and compared with four deep learning-based methods (i.e., CDUnet++, 657 

PSPnet, DeepLabV3+ and MUnet) and two classical non-deep learning-based methods (i.e., 658 

ATSA and Fmask). The key findings are summarized as follows. 659 

1) TSI-Siamnet produced the greatest cloud and shadow detection accuracy amongst the 660 

seven methods, with an OA of 95.05% and MIoU of 84.37%.  661 

2) The advantage of CDUnet++ over three mono-temporal deep learning methods validated 662 

the effectiveness of the composite reference image, while the advantage of TSI-Siamnet 663 

over CDUnet++ validated the advanatage of the developed extend Siamnet. 664 

3) TSI-Siamnet also outperformed the benchmark methods in terms of stability and cloud 665 

coverage estimation.  666 

4) For the three more challenging cases, TSI-Siamnet also demonstrated noticeable 667 
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advantages. Specifically, TSI-Siamnet produced the most accurate boundaries of thin 668 

clouds, and produced obviously fewer omission errors when detecting broken clouds. 669 

Moreover, for the interference of highly reflective artificial surfaces, the benchmark 670 

methods are susceptible to incorrectly detecting background pixels as cloud pixels, while 671 

TSI-Siamnet produced far fewer commission errors. 672 

 673 
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