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Abstract

Hierarchical models and observations show that galaxy interaction

and merging is of paramount importance to galaxy assembly and evo-

lution. However, the relationship between these physical processes

and the characteristics of the galaxies involved is unclear. In this

thesis, we make direct constraints between the physical processes oc-

curring in galaxy interaction - increased star formation, nuclear activ-

ity, and morphological disturbance - and the underlying parameters

of galaxies - their interaction stage, stellar masses, kinematics, and

orientation parameters.

To constrain these relations, we require large samples of interacting

galaxies which are representative of the full underlying parameter

space. A clear signature of interaction or merger activity is through

the morphological distortion of a galactic system. We search for such

signatures through the entire Hubble Space Telescope science archive

with a Bayesian convolutional neural network. In total, we classify 92

million sources into interacting and non-interacting galaxies. We find

21,926 disturbed and interacting galaxy systems; the largest interact-

ing galaxy sample morphologically classified to date.

We use this new sample to explore the relationship between the dy-

namical timescale of interaction and galactic parameters. We match

our new sample with the Cosmic Evolutionary Survey and find ancil-

lary data for a volume limited sample of 3,378 interacting galaxies. We

break this sample into four distinct stages aimed at capturing differ-

ent parts of the dynamical timescale of interaction. We find evolution

in the star formation rate with stage which cumulates in the complete

disappearance of the red sequence at the merging stage. We find that



the fraction of galaxies with an active galactic nuclei is constant with

interaction stage, except at the point of coalescence where we find it

increases from a measured value of 0.059±0.003 to an enhanced value

of 0.071±0.005. By investigating the relationship between these fun-

damental processes and stage, we show that there is a direct relation

between the interaction stage and the physical processes we observe.

However, we require methods to more precisely probe the dynamical

timescale of an interaction to make further constraints.

Thus, we introduce a new algorithm which will be capable of exploring

this relationship. We utilise a three-body numerical simulation with

an Markov-Chain Monte Carlo (MCMC) algorithm to directly map

the parameter space to tidal features. We constrain the underlying

parameters of a sample of 51 synthetic images representing different

observed interacting systems. We are able to recover the true parame-

ters within a confidence interval of 86.4%. We apply this methodology

to a subset of observational data, and explore the algorithm’s poten-

tial as well as its limitations.

The results of this thesis demonstrates the complex nature of the rela-

tionship between galaxy evolution and interaction, with larger samples

and catalogues needed to constrain it. With the use of ESA Datalabs,

building such samples is not just limited to interacting galaxies. It

will allow the largest general galaxy morphology catalogues to date to

be created. This, therefore, requires ever larger catalogues of ancillary

data or the development of methods to efficiently create it. The intro-

duction of a new algorithm to further investigate the relationship of

interaction and its underlying parameters provides us a unique way to

link interaction and evolution. The limitations of this algorithm are

primarily due to the computational expense such a MCMC approach

costs. We explore how this method can be developed, from bypassing

the computational expense entirely with simulation based inference

to new methods of optimisation with graphical processing units.



This thesis is dedicated to those who took the time to listen to a wee

boy talk about the stars.
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Chapter 1

Introduction

In the context of the large scale structure of the Universe, galaxies represent a

fundamental building block of matter. Their evolution through cosmic time leads

to the local Universe as we see it today (Springel et al., 2005). A key part of its

evolution is that of mutual interactions between galaxies. Our best cosmologi-

cal model, Λ-Cold Dark Matter, dictates that galaxies assembled hierarchically

(White & Rees, 1978; White & Frenk, 1991). Therefore, we must understand

the effects of mutual interaction to not just understand galaxy evolution but to

better understand our theories of cosmology.

We have come to understand that interaction has multiple impacts on the

evolution of galaxies. The first, and most obvious, effect is that it leads to the

distortion of the galaxies involved and the formation of distinct tidal features.

Early numerical simulations had excellent success recreating, and thus proving,

these distortions to the galaxies were from tidal interactions between galaxies

(Toomre & Toomre, 1972). Thus, tidal features became the primary method

by which to identify interacting galaxies. However, it was found that datasets

identified in this way contained high levels of contamination. Often, pairs of

systems which appeared interacting or distorted were found to be at very differ-

ent redshifts; their peculiar morphologies caused by other processes. These were

close pairs by projection rather than physically close together in space (e.g Ack-

ermann et al., 2018; Blumenthal et al., 2020; Pearson et al., 2022). A paramount
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requirement for the identification of interacting pairs became redshift informa-

tion, to ascertain their 3D distances from each other. However, spectroscopic

information is not available across many of the millions of close pairs to classify.

From the systems we have reliably identified, we have found mutual inter-

action has further effects on galaxies than morphological disturbance. It is has

been found that interaction also causes an increase in the measured star forma-

tion (Bushouse, 1987; Mihos et al., 1992), higher fractions of active galactic nuclei

(Ellison et al., 2008; Satyapal et al., 2014) and evidence for quenching of the sys-

tems involved (Schweizer & Seitzer, 1992; Gabor et al., 2010). This is particularly

true of interactions between gas-rich galaxies where the fuel for star formation is

readily available and quickly used. Rejuvenation of galaxies can also occur due

interactions between gas-rich and gas-poor systems (Schweizer & Seitzer, 1992;

Hopkins et al., 2009).

The scale, change and impact of these effects is dependent on a host of under-

lying parameters of the galaxies involved. These include the galactic masses, the

orientation of the galaxies and velocity of the encounter. This link between these

parameters and the characteristics of the final system have been poorly explored.

In this work, we create a large sample of interacting galaxies using a new machine

learning algorithm - Zoobot - and use it to investigate this relationship. We then

describe a new software to extract their underlying parameters for further study.

For now, however, it would be prudent to begin this discussion by exploring the

definition of a galaxy, and outline the major work already conducted into linking

galaxy interaction to its underlying parameters and, furthermore, with galaxy

evolution.

1.1 What is a Galaxy?

For the purposes of this work, a galaxy will be the smallest unit of mass we

will consider. A galaxy is a gravitationally bound system of gas, dust, stars and

dark matter. The orbits and kinematics of each of these components leads us

to different classifications of galaxies. At the galactic centre, there is often a

supermassive blackhole (SMBH). While almost all examples of galaxies have a
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SMBH at their centre, there are some examples where it is speculated they do

not (Gebhardt et al., 2001). If the stars, gas and dust orbiting the galactic centre

of mass have been unperturbed for a long period of time they flatten into a disk.

The disk is split into a thick and thin component. Their general sizes are dictated

by the history of the galaxy, and whether they have interacted or merged with

many other galaxies in their history. Such harassment by other galaxies leads to

heating of this disk. This heating takes the form of increased peculiar motion in

the stellar orbits. This heating contributes not only to the thick disk, but can

also lead to the growth of a bulge component in the galaxy (Hopkins et al., 2010;

Bell et al., 2017). The bulge can be grown by other, secular, processes but we

will focus on interaction and merging.

The bulge component is composed of stars whose orbit has been heated by

changes in the gravitational potential due to galaxy interaction and harassment.

This leads to new orbits that form a spherical bulge component around the galac-

tic centre. This leads the galaxy to have a bulge and disk component, with the

bulge composed of a spherical component of stars while the disk is formed of stars

and gas continuing in unperturbed orbits. This is the simple view of a classic

disk galaxy. Many disk galaxies do not show bulges at all, or show a pseudobulge

(Gadotti & Kauffmann, 2009). This remains, at least partially, dependent on the

merger history of the galaxy. If a galactic interaction leads to a strong enough

merger the entire galactic disk is heated and can be destroyed. This leads to a

completely spheroidal galaxy called an elliptical galaxy (Toomre, 1977; De Lucia

et al., 2006). Between these two galaxy types - disk and elliptical - lie lenticular

galaxies. These are systems that have used most of their gas across their disk

and are beginning to exhibit the same features as elliptical galaxies. Whether

this is due to mergers (Christlein & Zabludoff, 2004; Burstein et al., 2005) or

via environmental and secular effects (Mathieu et al., 2002; Rizzo et al., 2018)

remains debated. What this demonstrates, however, is the stellar dynamics of

galaxies is complex and determined according to the assembly history of each.

The stars, gas and dust are embedded in a much larger, spherical halo. This

galactic halo has two different matter components: baryonic and non-baryonic.

The baryonic component is formed of very diffuse, ancient stars that form the

stellar halo, stellar streams or globular clusters which orbit around the galaxy.
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The non-baryonic component is formed of dark matter. What dark matter is

precisely is still debated, but this spherical dark matter halo extents out to many

times the luminous matter of the galaxy. In general, all examples of galaxies are

embedded in a dark matter halo (although there are some debated exceptions

as described in van Dokkum et al., 2018). This dark matter halo has also been

imperative to our understanding of how galaxies form, evolve and interact.

For much of the history of extragalactic astrophysics, the idea that galaxies

could interact and merge was thought to be very improbable except in dense

clusters. The small radii (and, therefore, cross section) of the luminous matter in

galaxies led astronomers to believe that the probability of an interaction was close

to 0 and that galaxies were island universes (Kant, 1755; Curtis, 1917). However,

with the development of the idea of the dark matter halo, it was realised that the

probability of galactic systems interacting in the field was reasonable. Over time

the idea that galaxy interaction and merging would have a significant impact on

galaxy evolution was developed. Today, merger rates through cosmic time is a

well studied concept and test of our cosmological models.

1.2 Galaxy Assembly Across Cosmological Time

Galaxies throughout cosmic history have been assembling and accreting matter.

Studies at high redshifts reveal that galaxy structure is significantly different com-

pared to the local volume. Initially, galaxies were very small systems that formed

from gravitational instability throughout the early cosmos (Lacey & Cole, 1993).

These instabilities were generated by the physical processes of the very early Uni-

verse brought about by its small scale. From these initial density perturbations

arose small systems which accreted from the surrounding gas. These galaxies

had peculiar morphologies (Elmegreen & Elmegreen, 2005) with disk galaxies be-

ginning to dominate at z ≈ 3 − 6 (Ferreira et al., 2022). These early systems

formed stars at a much higher rate than the present day. While these systems

were accreting much of their matter to gain mass, the Universe was expanding.

At this time the rate of galaxies interacting and merging was also greater than

today (Hopkins et al., 2010; Lotz et al., 2011), reaching as high as 50% at z ≈ 6
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(Conselice & Arnold, 2009; Bluck et al., 2009). This provided a peak in the cos-

mic star formation history through 1 < z < 3 where approximately half of all

stellar mass was formed (Bundy et al., 2005).

However, it is not clear that the only driver of this higher star formation rate

in the early universe was mergers. More recent works have shown that secular

processes may have also played a significant role. It has been noted that the

fraction of clumpy galaxies was significantly higher at these times (Swinbank

et al., 2012; Cheng et al., 2020; Vayner et al., 2023). Clumps within galaxies are

large, star forming regions which form due to violent disk instabilities. The size,

and longevity of the clumpy region is found to correlate closely to the gas fraction

of the galaxy it is in (Fensch & Bournaud, 2021). This points to disc galaxies

in the early Universe containing much higher gas fractions (Tacconi et al., 2010;

Scoville et al., 2023) than their local counterparts. Therefore, not only was the

merger fraction higher at earlier epochs, but the internal properties of galaxies

differed and were much more extreme.

However, as stated, the merger rate was also changing throughout this epoch

of the Universe. Figure 1.1 shows the changing merger rate through cosmic

time. As shown, the merger rate has been decreasing with redshift, while the

internal environment of galaxies has become less extreme, which has had profound

effects on both the star formation density of the Universe and the morphology of

those galaxies within it. From z = 1, the once massive galaxies with rapid star

formation have transformed into bulge-dominated galaxies (Brown et al., 2007).

At lower redshifts we find that the majority of the stellar mass is contained

within bulge dominated systems. These galaxies are dominated by old stellar

components and have little ongoing star formation (Hogg et al., 2002; Bell et al.,

2004).

This gives us an avenue by which to link observed galaxy morphologies to their

merger histories. We split them into two distinct populations. One is of galaxies

with an intense merger history, leading to the complete destruction of their disks

and their domination by older stellar populations. The other is of those with

a relatively non-violent merger history. These non-destructive interactions and

mergers served to feed the gas within the galactic disks and increase their mass,

while maintaining their star formation rates. These systems are dominated by
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Figure 1.1: The clearly declining merger rates from z = 3 to z = 0. This is
Figure 3 of Hopkins et al. (2010). This study looked at the history of a simulated
set of galaxies of various stellar mass, and investigated the decrease in the merger
fraction as a function of redshift and baryonic mass. As shown, for all mass bins
and methods of identifying mergers (the different lines) the merger rate decreases.
This is only not true for mergers between very high mass systems and low mass
systems (in the bottom right of this plot). Thus, mergers between high and low
mass systems may still have some driving force in the cosmic star formation rate
density.
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younger stellar populations, with star formation continuing to the present epoch.

Thus, starting from the observations of morphology, we can make assumptions

about the internal gas content, star formation and, therefore, colour of galaxies.

1.3 Galaxy Morphology & Galactic Properties

Galaxy morphology, and its change with time, is the study and measure of a

galaxy’s shape and features. A striking distinction in galaxy morphology is be-

tween disk and elliptical galaxies, the primary breakdown in the famous ‘Hubble

tuning fork’ shown in Figure 1.2 (Hubble, 1936). This mapped the complexity

of galaxy morphology, with simple early-type elliptical galaxies on the left and

complex late-type disk and spiral galaxies on the right. Elliptical galaxies are

spheroidal systems, with high internal velocity dispersions. Such systems are

often created as the result of mergers and cannibalism of smaller systems to in-

teractions with counterparts of a similar mass (Baugh et al., 1996; De Lucia et al.,

2006). Disk galaxies, on the other hand, are rotationally-dominated systems with

a central bulge whose size is crucially dependent on the merger history (Barnes,

1992; Hopkins et al., 2010; Bell et al., 2017). In fact, galaxies that appear to have

no bulge component at all likely have had no merger event in the last few Gyrs

(Martig et al., 2012).

This is also reflected in the observed colour of disk and elliptical galaxies.

Observational colours in this context are the comparison of flux in two different

wavelength ranges: one capturing the flux of young, star forming regions while

the other captures the flux from old, low mass stars. In combination, these

young and old stars, constitute a stellar population. Stellar populations have well

defined spectral energy distributions (SEDs) based on their age and, indirectly,

to a galaxys’ star formation rate (SFR) and gas mass. When star formation is

occurring rapidly, and the SFR is very high, lots of young, luminous OB-type

stars form. The flux from these stars falls mainly in our blue filters, in the rest

wavelength of ultraviolet. These stars have lifetimes of only a few million years

and, therefore, die very quickly. Thus, if stars are forming slowly, and the SFR is

very low, these OB-type stars will die and not be replaced. This leaves an older
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Figure 1.2: The Hubble tuning fork. Credit goes to the Galaxy Zoo collaboration
(and specifically Karen Masters) for the creation of this figure. On the left, we have
elliptical systems - so called early-type galaxies - which are often ‘red and dead’
systems. They have an intense merger history, which has destroyed their disk
component and caused them to use the majority of their gas in star formation.
On the right, we have two different kinds of disk galaxies. Ignoring the bar or
un-barred part of this, they are systems which have a less intense merger history
and have only accreted smaller systems into them. This serves to enhance their
gas disk, and preserve their disk component.
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stellar population, mainly composed of G- to M-type stars which lie primarily in

our green and red filters, with wavelengths in the optical.

A secondary method to measure the time since active star formation is by

using the 4000Å break (Balogh et al., 1998). This is a large step in an observed

galaxies spectra at around 4000Å caused by the absorption of high energy ra-

diation from metals in stellar atmospheres. These metals are formed in high

luminosity stars and then injected into the population via supernovae. So, the

higher metallicity (and older) a stellar population is, the larger the 4000Å break

will be and the longer it will have been since active star formation and the redder

the population. Thus, the SFR and age of the dominant stellar population of a

galaxy influences their observed colour.

The SFR, then, is highly dependent on the gas mass present in the galaxy.

This gas must be cold, molecular gas, with little energy so it is able to form

massive clouds that fragment and undergo collapse (Goldreich & Lynden-Bell,

1965; Quirk, 1972). From models of individual clouds, it was noted that the cold

gas density was related to the density of star formation in galaxies (Schmidt,

1959). This was further refined to be a global law in disk galaxies in particular

in Kennicutt (1998). In this, it was shown that the surface area of star formation

is directly related to the surface area of cold gas by

ΣSFR ∝ Σn
Gas. (1.1)

This relation has been found to be n ≈ 1.3. Thus, two things are happening here,

if a galaxy has cold gas, it has star formation and if it has star formation with

little dust, it will be observed to be blue and vice versa.

When observing populations of red galaxies, those dominated by older stellar

populations, it has been found they are often elliptical galaxies (Bower et al.,

1992). These galaxies have a more violent merger history that has destroyed the

ordered rotationally dominated component of a galactic disk and, in the process,

either removed or used the gas within the galaxy (Faber & Gallagher, 1976). As

a result of this, the current gas mass and density are very low which leads to the

SFR being also low.
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The opposite is true for disk galaxies. As stated previously, these systems have

had a less tumultuous merger history - particularly since z ≈ 1. An indicator

of the merger or interaction history in disk galaxies is the size and shape of the

bulge component (Emsellem et al., 2011). However, because of the plentiful gas,

dust and ordered rotation in the galactic disk the SFR within is larger than

elliptical galaxies. The surface density of gas within the disk is much larger than

in elliptical galaxies providing the ideal for star formation. Spiral arms can exist

in such galaxies, containing large filaments of gas and dust. They contain areas

where large molecular clouds can condense, fragment and then collapse into new

stars. These star forming regions will be young enough that massive OB-type

stars will form, which in turn changes the underlying SED of the galaxy that we

observe. The blue filter will contain more flux, and therefore, the galaxy appears

blue when comparing the red and blue filters.

This gives rise to two distinct populations of galaxies: old, red elliptical

galaxies and young, blue disk galaxies. When plotting colour-colour or colour-

magnitude diagrams, there is clear bi-modality which separates these two popula-

tions with the ‘green valley’ running between them (Strateva et al., 2001). Figure

1.3 shows the colour-colour distribution if the two populations. In this Figure,

we clearly can see the blue population - blue cloud - and the red population -

red sequence - beneath it with the green valley in between. The green valley is

a disputed area of this distribution. Some works claim that it is a rapid transi-

tion phase (Schiminovich et al., 2007; Smethurst et al., 2015), where galaxies are

moving between the two populations due to different processes. Others, mean-

while, show that the picture is much more complicated, with morphology and

environment playing an important role that dictates the decline in star formation

(Schawinski et al., 2014). However, the rule elliptical galaxies are always red and

disk galaxies are always blue is not universally true (Smethurst et al., 2022). Ex-

amples of blue ellipticals and red spirals do exist (Schawinski et al., 2009; Masters

et al., 2010; Keel et al., 2022) and they are the subject of intense debate and study

in the current field. However, as a general guideline for the expected properties

of a galaxy the colour and morphology are deeply interdependent on one another.

There are also many types of systems that do not fit this simple morphological

definition of galaxies. Starburst galaxies are often very morphologically irregular
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Figure 1.3: The distribution of galaxies in colour-colour space showing two dis-
tinct populations in a clear bi-modal structure. This is using the u-band and
r-band filters and, therefore, the closer to 0 on the y-axis the bluer the galaxy. Left
plot: the top population is the blue cloud, primarily composed of disk galaxies
with young, star forming stellar populations. The bottom population is the red se-
quence, primarily composed of more massive elliptical galaxies which are gas poor
and quiescent. Between these two populations lies the green valley, marked by the
green lines. This is believed to be a transitional population moving between the
blue cloud and red sequence for debatable reasons. To further show the split with
morphology, the panels on the right split the colour-mass space into early-type (el-
liptical) galaxies and late-type (disk) galaxies. Note, this is Figure 2 of Schawinski
et al. (2014)

11



1.3 Galaxy Morphology & Galactic Properties

and have measured SFRs far in excess of expectation for their mass. These then

lead into post-starburst galaxies and merger remnants, who are the complete

opposite and have measured very low SFRs. Thus, a parameter such as the SFR

of the system is highly dependent on its merger histories and, as we will find, its

surrounding environments (Pawlik et al., 2018; Hani et al., 2020). In fact, it has

been found that in cluster environments, the fraction of disk galaxies drops to

≤10% when compared to ≈60% in the field.

The effect of the galactic environment on a galaxy should also not be under-

stated. There are many ways to define the galactic environment, but it is most

commonly associated with the number density of galaxies about them (Eisenstein

et al., 2003; Balogh et al., 2004). There are three broad classifications of environ-

ment: field, filament and cluster. A field galaxy is one with neighbours, and is

in relative isolation. A filament galaxy has some neighbours, but their influence

is minimal. A cluster galaxy is one in which a large number of other galaxies

are bound in large galactic super-structures. In such an environment, SFRs are

suppressed (Baldry et al., 2006) by ram pressure stripping and the dominant

morphologies are elliptical and irregular galaxies due to constant interaction and

harassment. In such environments, the relation between galaxy morphology and

the underlying processes is almost completely broken by interference from the

environment.

Galaxies in the field or in filaments are of particular interest. Here, we can

study the direct link between morphology and the underlying processes of galax-

ies. And these, in turn, are highly dependent on galaxies underlying merger and

interaction histories. So, what is this relation? As stated previously, the influ-

ence of interaction and merging accelerates the evolution of rotational systems

to dispersion dominated systems. However, there are many more subtle effects

that can be attributed to galactic merging and interaction. For instance, two

galaxies can be brought into a state of starbursting due to merging (Martig &

Bournaud, 2008). This completely changes the SED of the galaxy, and can lead

to the rapid quenching both systems (Violino et al., 2018; Ellison et al., 2022).

Depending on when we observe such a galaxy, we can find either a much bluer or

redder galaxy than expected (Di Matteo et al., 2007). However, these effects are

also debated, with some studies finding that galaxy interaction does not induce
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significant change in the SFR, and therefore, the underlying SED of the galaxy

population (Bergvall et al., 2003). So, why is this? It transpires that the effects

of a galaxy merger or galaxy interaction is dependent on the underlying param-

eters of the galaxies themselves. This leads to multiple classifications of galaxy

interactions which each lead to different outcomes for the galaxies involved.

1.4 Categorisation of Mergers

The effects of galaxy interaction and merging is dependent on multiple factors

and underlying parameters. A key parameter to the destruction or survival of

a disk is the mass ratio between the two systems (Bournaud et al., 2005; Cox

et al., 2008). The impact parameter also has significant influence over the final

morphology over the system, however, we will discuss this further in Section 1.5.

The gas content of each galaxy also has an effect on the changes of the internal

SFR of the systems. The large change in the systems we see based on these

parameters gives rise to many different categorisations of galaxies. For the mass

ratio, we define a major, a minor and a micro interaction. These are the ratios

of the primary galaxy mass (the more massive galaxy) and the secondary galaxy

mass (the less massive galaxy).

These are then further sub-divided into two separate categories based on their

gas content: a wet merger or a dry merger. This refers to the gas mass and

colour of both galaxies. A wet merger involves galaxies which have a high gas

fraction, and therefore, lots of resultant star formation. Both of the involved

galaxies are often disk-dominated galaxies. A dry merger involves little gas, and

is often the merger of massive, red elliptical galaxies. There are also intermediate

categorisations based on the amount of gas, such as damp mergers (where there

is some gas, but not enough to dramatically increase star formation) and mixed

mergers (mergers between gas-poor and gas-rich systems), however, we will focus

on the binary definition of wet and dry mergers.

Depending on the classification, an interaction leads to specific outcomes for

the interacting galaxy system. A major interaction is when the galaxies involved

have a mass ratio of approximately 1:1. Some definitions vary, however, and allow
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this limit to go down to 1:3. For the purposes of this work, they must have a

mass ratio of at least 1:3. Major interactions are the most devastating to the

morphology of the systems involved, with the forces upon them causing severe

morphological distortion and the formation of tidal features (described further in

the following Chapter). If the two systems merge, there is complete destruction of

the disks in both galaxies and the post-merger remnant will be highly irregular.

If this is also a wet merger we would also expect a significant increase in the

SFRs of both galaxies (Mihos & Hernquist, 1994, 1996; Woods et al., 2006). We

also find that wet major mergers have an increased AGN fraction, which suggests

that such a merger may play a role in starting nuclear activity (Alonso et al.,

2007; Ellison et al., 2011; Koss et al., 2012). The opposite of this is true when

a major interaction is dry, where only a small increase in SFR is found in the

nuclear region of the galaxies (Sánchez et al., 2004; Bell et al., 2006).

A minor interaction has less catastrophic consequences for the morphology

of one of the two galaxies. This is defined as an interaction where the mass ra-

tio is less than 1:3 but greater than 1:10. Due to this large mass disparity, the

morphology of the primary galaxy is relatively unaffected by such an interaction.

However, the secondary galaxy will be almost completely destroyed by the en-

counter. If only an interaction occurs, the secondary will be highly disrupted

forming a long and stretched tidal tail as it moves through the orbit. When these

systems merge, we observe small increases in the SFR of the primary. There is

ongoing work investigating whether such mergers were actually a primary driver

of star formation in galaxies across cosmic time through rejuvenation of gas reser-

voirs within the primary galaxy (Bournaud et al., 2007; Kaviraj, 2014b; Jackson

et al., 2022). Finally, a micro interaction is one in which the mass ratio between

the primary and secondary galaxies is less than 1:10. This sees the complete de-

struction of the secondary galaxy, whether a flyby or a complete merger. These

can form stellar streams about their primary galaxy and are often absorbed by

the primary with very little change in its morphology.

Figure 1.4 displays examples of each of the different merger categories we have

defined here. These, from left to right, are the Arp 240, Arp 188 and NGC 5907

systems. They each show a major, minor and micro interaction, respectively,

and demonstrate the change in effect the mass ratio has on the morphology of
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Figure 1.4: Examples of a major, a minor and a micro interaction. Each of
these are wet interactions, containing lots of gas and therefore, increases the rate
of formation of stars. These are the Arp 240, Arp 188 and NGC 5907 systems,
respectively. Here, we show the famous double looped stellar stream of NGC 5907
but point out that the existence of the second loop is in dispute and that we only
show it here for illustrative purposes (van Dokkum et al., 2019). From major to
micro interactions, we see decreasing impact and change in the morphology of the
primary galaxies but always the complete destruction of the secondary.

the galaxies involved, from Arp 240, with the complete distortion of the galactic

disks and formation of tidal features to NGC 5907 where the primary galaxy is

barely disturbed at all. Thus, the different categories of interactions and mergers

have very different impacts on the systems involved. We will now discuss, in

depth, the effects that interaction has on these galaxies and specifically explore

the formation of morphological disturbances like tidal features, changes in the

SFR and the increase in AGN fraction.

1.5 Effects of Galaxy Interaction

Until the work of Toomre & Toomre (1972), the probability that two galaxies

would encounter each other and interact was thought to be negligible. We now

understand that galaxy interaction plays an important, and fundamental role in

the evolution of galaxies. As stated previously, they have multiple effects upon

the systems undergoing the interaction. The specific effects of interaction rests

on a host of parameters. We have discussed the mass ratio and gas content

and mentioned the impact parameter but there is also the orientation of the

interaction, the relative sizes of the galaxies and the point in the dynamical history

of the interaction we are observing. Thus, in this Chapter, we will explore how
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these different underlying parameters link to the physical processes we observe in

interacting and merging galaxies.

1.5.1 Morphological Distortion: Tidal Features

As previously discussed, galaxies are large gravitationally bound systems of stars,

gas, dust and dark matter. Upon a close encounter between two galactic systems,

these components experience strong gravitational forces which disrupt their or-

dered layout. As the galaxies move through their relative orbits, the gravitational

potential changes at an accelerating rate. This imparts energy into the ordered

components of the galaxies, and causes thermalization of their internal motions.

This leads to violent relaxation, where the stellar orbits are so altered they no

longer follow their prior orbits. However, the energy in the system must be con-

served. Thus, as the internal stellar motions within the galaxy thermalizes, the

energy in the galaxies orbits decay via dynamical friction. If this decay is large

enough, the energy in the galaxies orbit may be sufficiently reduced to no longer

escape from one another and they will eventually coalesce to leave a single merger

remnant.

The changing gravitational fields as the two galaxies encounter each other

leads to radial distortion of each galaxy. If stellar material, including gas, dust

and stars, is close to the edge of the galaxy a combination of the galactic rotation

and radial elongation lead to it being sheared off and away from the galaxy. This

forms two ‘tidal tails‘ in the system, one leading and one proceeding the motion

of the galaxy. Dependent on the geometry of the encounter, the trailing tail of

one galaxy and the preceding tail of the other can form a ‘tidal bridge’ - a linking

of the two systems. An example of both of these is the interacting pair Arp 240,

shown in left hand plot of Figure 1.4.

The geometry of the bulk motion of the galaxy is very important in forming

these tidal features. To maximise the shearing of material, the internal galaxy

rotation and direction of the two galaxies in the orbit must match. Thus, the

formation of tidal tails and tidal bridges is only possible in a prograde interaction

whereas a retrograde interaction suppresses them. Further, depending on the

relative velocities of the galaxies these tidal tails can be split off from the galaxy
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as the encounter continues. This can lead to the formation of ‘tidal debris’ about

the galaxies.

The confirmation that features such as these were from a tidal origin came

primarily from simulations of interactions of different systems. The first restricted

numerical simulations were conducted by Toomre & Toomre (1972) who success-

fully modelled the features of four different systems using distributions of test

particles. Numerous works since have recreated tidal features using numerical

simulations (Salo & Laurikainen, 1993; Petsch & Theis, 2008; Barnes & Hibbard,

2009; Wallin et al., 2016). These have also been expanded to include a range

of other properties in hydrodynamic simulations (Hopkins et al., 2013; Moreno

et al., 2019, 2021; Sparre et al., 2022), and investigated in cosmological simu-

lations (Kaviraj et al., 2015; Rodŕıguez Montero et al., 2019; Hani et al., 2020;

Das et al., 2023b). In these more advanced simulations the key to linking the

simulations to observations is the morphology of the tidal features. This is often

from either direct comparison or from searching for analogues through a suite of

interaction simulations in cosmological simulations.

While the most striking tidal features to form in galactic encounters are these

tidal tails and bridges, we also see the formation of many other features. These

include ‘stellar streams’ (previously discussed), shells and rings forming in the

galactic disk. As stated, stellar streams are likely smaller galactic systems that

have been destroyed while passing the primary galaxy. This leaves a faint stream

of material about the galaxy. The right plot of Figure 1.4 shows an example

of a stellar stream with the NGC 5907 system. Shells, on the other hand, are

formed around galaxies and can be present in as many as 10% - 20% of elliptical

and lenticular galaxies (Malin & Carter, 1983; Atkinson et al., 2013). The right

panel of Figure 1.5 shows an example of shell in the elliptical galaxy NGC 1344.

Investigation of the formation shells shows they are primarily composed of stars

(Quinn, 1984). There are often numerous shells in a single galaxy. Shells are

formed from the disruption of a small satellite around a significantly more massive

galaxy - i,e, in a minor to micro interaction. This then forms a stellar stream

which, over time, condenses to a cloud of stars orbiting the primary galaxy. This

then either forms into an X-shaped structure or a annulus which, in the 2D

projection of the sky, appears as a shell. Thus, observing a stellar stream or a
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Figure 1.5: Examples of a collisional ring galaxy and a system containing shells.
Left: The Cartwheel galaxy, the most famous ring galaxy to date. Ring galaxies
can only be formed by a direct collision between two galaxies. The ring itself is
composed of a region of the disk undergoing intense star formation due to the
density wave passing through the disk from the impact of the secondary galaxy.
Right: The system NGC 1344, showing two shells of stellar material surrounding it.
This is formed by the condensation of stellar streams into clouds of stars. Cartwheel
Galaxy Image: NASA / Hubble, NGC 1344 Image: Malin & Carter (1983)

shell is highly dependent on the time in the dynamical history of the encounter

that we are observing.

Finally, we find rings can form from galaxy interaction. These systems are

often called ring galaxies or collisional ring galaxies. Figure 1.5’s left panel shows

the Cartwheel Galaxy: a famous example of a ring galaxy. This ring is formed

of young, hot stars and is formed only from the head-on collision with another

system (Lynds & Toomre, 1976). The interaction to form this is so intense, that

it causes a density wave to pass through the galactic disk which triggers intense

star formation at its wake.

From the example of a ring galaxy, we see that interaction not only affects the

stellar distribution of the galaxy, but also has direct impacts on the gas within

18



1.5 Effects of Galaxy Interaction

it. As we have stated in previous sections, interaction and merging can induce

enhancements in star formation and even lead to a starburst in a galaxy which

brings about the complete quenching of the system.

1.5.2 Star Formation Enhancement

As noted earlier, it is often observed in interacting and merging galaxies that the

star formation is enhanced in some way. While to what level this enhancement

is often debated between observations (Barton Gillespie et al., 2003; Li et al.,

2008a; Patton et al., 2011; He et al., 2022) and simulations (Di Matteo et al.,

2007; Cox et al., 2008; Hopkins et al., 2013; Moreno et al., 2021), the underlying

processes that lead to enhancement are well understood. First, by star formation

enhancement we mean that the SFR either globally or in different regions of an

interacting galaxy is higher when compared to isolated galaxies. Thus, some

property of interaction is causing an increase in the star forming activity of the

galaxies involved.

The rate at which stars form is known to be directly related to the surface

density of gas at any given piont within the galaxy, shown in equation 1.1. Due

to an interaction the torques and gravitational forces upon the gas clouds leads to

a loss of angular momentum. This causes the gas clouds to drift inwards, toward

the galactic centre. As more gas clouds fall into the centre, the surface density

of gas in this region increases. This in turn increases the SFR.

This is a simple explanation, and an easy idea to hold about driving the

increase in star formation in interacting galaxies. As the morphology of the

galaxy is compressed into a tidal feature, we see the same increase in the surface

density of gas which leads to a further increase in the SFR. This movement and

compression of gas into the galactic centre also has a secondary effect on the

SMBH at the galactic centre. Increasing the gas density begins the feeding of the

SMBH which causes the ignition of nuclear activity.
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1.5.3 Ignition of Active Galactic Nuclei

The presence of an active galactic nuclei (AGN) in a galaxy is easy to identify

observationally. When viewed them face on, the AGN is so luminous that it

often outshines the entire bulge and disk of the galaxy. The AGN dominates the

SED of the galaxy, and we must carefully remove it using models to decouple

the SED of the galaxy and the AGN. The bright flux we observe is from a long

and complicated process of accretion of material onto the SMBH at the galactic

centre (for an excellent breakdown of the structure and evolution of AGN see

Beckmann & Shrader, 2012). The structure of material about the black hole is

also complex, and results in many observational oddities.

Surrounding the black hole is an accretion disk of material. As this material

accretes, it causes the SMBH to project powerful jets of radiation perpendicular

to the accretion disk plane. These jets are highly luminous, and we observe them

in the radio, optical, infrared and X-ray. Two populations of AGN have been

discovered, containing narrow and broad emission lines, named Seyfert 1 and

Seyfert 2 AGN respectively. While at first thought to be two distinct types of

AGN, these are believed to be one AGN population viewed from different angles

(for a review of the unification, see Netzer, 2015). This is possible as surrounding

the accretion disk, there are gas clouds which are either within or outside the

nuclear region. Where these gas clouds are gives rise to the narrow and broad

line emission observed in AGN spectra.

When we observe only narrow lines we are viewing the accretion disk through

low density clouds. The gas of these clouds are photo-ionised by the continuum

emission from the central source itself. These are outside of the nuclear region

and moving slowly (on the order a hundred km/s). The broad lines are observed

when viewing the accretion disk through high density clouds which are located

within the nuclear region close to the accretion disk. These clouds are moving

fast (doppler broadening is observed to thousands of km/s). Putting this in the

context of our AGN classifications, we only observe narrow line emission in Seyfert

2 AGN, so we are observing the nuclear region through low density, slow moving

gas clouds out. When we observe Seyfert 1 galaxies, we are viewing the nuclear

region through dense gas clouds which lie close to the central engine. This entire
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system is encased in a dusty torus of material. We cannot observe the nuclear

region through this torus, thus, hiding emission lines from our observations at

perpendicular viewing angles.

There are many other categories of AGN beyond Seyfert 1 and 2’s. As we

move to higher luminosities, we get further populations of AGN such as blazars,

quasars, radio-quiet and radio-loud systems. These classifications are all depen-

dent upon the inclination at which we are viewing the AGN system and the

material in the line of sight.

From this description of an AGN structure we can see how galaxy interaction

increases the likelihood of nuclear ignition. AGN require large volumes of gas and

dust to be present at the galactic core, a surge of which is caused by interaction

(Hopkins et al., 2008, provides an excellent summary of this process from the point

of view of simulations). However, what is often surprising from observations of

samples of interacting systems is the meagre increase in the AGN fraction within

them. There have been many hypotheses as to why this might be, from a delay

in the AGN ignition (Ellison et al., 2011) to AGN flickering (Schawinski et al.,

2015). A delay in AGN ignition would make sense, again, in the context of the

structure we have just discussed. As gas and dust are moved into the galactic

core, they do not necessarily immediately move directly around the SMBH and

may take time to get there. There may be other mechanisms at work within the

AGN itself that causes suppression of ignition for some time. This could also

produce the AGN flickering, where material may be periodically cut off from the

SMBH.

It cannot be disputed that the sudden movement of gas into the galactic centre

during interaction appears like an obvious way for AGN activation to occur.

However, this movement of gas around the galaxy and use in star formation and

use or ejection by an AGN can start the quenching of the galaxy.

1.5.4 Quenching of Galactic Systems

During the interaction of two galaxies there is significant movement of gas, AGN

activation and large increases in star formation across the galaxy. However, a

galaxy only has a limited reservoir of gas available to it. Therefore, this sudden
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increase in gas usage in multiple different processes leads to the gas being used

in a shorter timescale than expected. Once the gas is used, and the gas density

drops significantly, star formation and AGN will rapidly cease and the colour of

the galaxy will change to red. This process is called quenching.

This rapid quenching of systems is different to what is expected for isolated

galaxies. Galaxies gradually use their gas over long periods of time forming

stars and slowly quench as the average gas density across the disk reduces to the

point of very low SFRs (Peng et al., 2010b) in ‘mass quenching’. A system can

also be quenched by the environment in ‘environment quenching’. However, by

concentrating gas and increasing the gas density in an interaction, even if a galaxy

had previously stopped forming stars it is able to commence star formation again

and use the remaining gas entirely. Thus, we often seen increases in the SFR

during and immediately after an interaction but then the sudden shut off of SFR

shortly after it (Ellison et al., 2022).

The gas is not only used in star formation, but also from stellar feedback

around the areas where the stars are forming. As these new stellar populations

form OB-type stars very quickly die and cause an increase in the rate of supernova.

This, in turn, creates strong shocks and winds that drive the molecular gas out

of the galaxy at very high speed (Bolatto et al., 2013; Geach et al., 2018). A

similar process can occur due to the AGN in the galaxy. These objects drive

strong winds across the galactic system. These winds can also act to drive out

gas (Cicone et al., 2014; Cheung et al., 2016; Baron et al., 2018) and cause the

cessation of star formation.

1.6 Identifying Interacting and Merging Galax-

ies

We have described and explored the effects of interaction and merging across the

galaxy population. We have described the basic properties of galaxies and how

these are differ when compared to interacting galaxies. However, we are only able

to fully understand these differences by using samples of interacting galaxies and

comparing them to control samples.
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The first samples of interacting galaxies were identified by eye. The earli-

est interacting galaxy catalogue was the Arp (1966) Atlas of Peculiar Galaxies.

This contained 166 interacting systems. This was quickly added to with a 2-part

edition of the Vorontsov-Velyaminov (1977) catalogue, providing a further 268

systems to the original Arp (1966) catalogue. Both of these catalogues contained

major interactions, where clear tidal features easily put them into the interacting

galaxy classification. These samples were also not large enough to make statis-

tical, representative statements about the interacting galaxy population. Thus,

larger catalogues had to be created.

Later catalogues often used visual classification to find interacting and merg-

ing galaxies. A very successful example is from the Galaxy Zoo collaboration

which created a catalogue of 3,003 interacting galaxies identified by citizen sci-

entists based on morphology (Darg et al., 2010a). However, a limitation was

found when visually classifying interacting galaxies. With no information on the

redshift, and therefore of 3D distribution of a galaxy pair, it is very difficult to

distinguish ‘close pairs’ from truly interacting pairs. A close pair, in this context,

is two galaxies which appear to be very close together in the sky in the 2D pro-

jection of the sky but are actually at different redshifts. This means they are not

actually close together in 3D space and cannot be interacting. Many interact-

ing galaxy samples created by visual classification must discard large numbers of

false positives from their sample (Blumenthal et al., 2020; Pearson et al., 2022).

As machine learning algorithms started to be used in galaxy classification, this

problem of contamination by close pairs continued.

Neural networks play an increasingly central role in galaxy classification. As

the size of observational samples has increased (e.g. RC3, with ∼ 20, 000 galax-

ies, de Vaucouleurs et al. 1991; 2dF, with ∼ 200, 000 galaxies Colless et al. 2001;

SDSS, ∼ 1, 000, 000 galaxies with spectra, York et al. 2000; Abazajian et al.

2009; Legacy Survey of Space and Time, with ∼ 20, 000, 000, 000 galaxies ex-

pected, Ivezić et al. 2019), so has the challenge of visually classifying each galaxy

individually. Rather, a neural network can now be trained to make morphol-

ogy classifications of galaxies using a much smaller subset of visually classified

galaxies.
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A neural network is a layered structure of interconnected nodes which can pass

information to one another. Each node has a weight assigned to it which allows it

to alter the input and then pass on the weighted output. If the weighted output

is above or below some value, the output is set zero. The input in this context

can be some information about a galaxy, a section of an image or an underlying

parameter estimation. These nodes all interconnect through many different layers

where they all perform operations on their input and provide weighted outputs.

The weighted outputs from the final layer are then passed to a classification layer

which outputs either a formal classification or some value that can be mapped to

a classification by a user.

A formal classification can be made in this way by training the neural network

to recognise certain features of an image. Training a neural network in supervised

learning involves providing it with a training set of fully annotated data so it can

‘learn’ classifications. If the training set is sufficiently large, it is split into batches

that the neural network will iterate over. To train, the neural network is fed each

batch of the training set and makes classifications upon each item within them. It

iterates through each batch until it has made classifications on the entire training

set. A loss function is then used to measure how accurate the model was based on

how many classifications were correct and incorrect. The weights of the model are

then updated by back propagating through the model. Once this is completed,

an epoch of the training has been completed. This process is repeated through

many epochs with model weights being tweaked each time and the a loss function

being minimised. Once this has been achieved, the model is able to make accurate

classifications on data similar to the training set. Thus, it is important that the

training set is large and is representative of the unclassified dataset.

In morphology classification, the workhorse neural network is the convolu-

tional neural network (CNN; examples include Banerji et al., 2010; Huertas-

Company et al., 2015; Walmsley et al., 2020; Tian et al., 2023). A CNN takes

an image and breaks it down into smaller subsections in its convolutional layers.

These are the layers immediately after the input layer, and reduce the dimensions

of the image by applying a convolutional filter of a specified size to the image.

This conducts the dot product between a group of the pixels in the image and

the filter. This returns a single integer which represents a group of pixels in the
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image. This integer is then passed to the next layer of the CNN. This is applied

across the entire image, and reduces the dimensionality of the image by a factor

of the size of the convolutional filter. A ReLU activation is applied immediately

after this and setting all negative integers equal to zero. After the convolutional

layer, there is a pooling layer. This layer dramatically reduces the dimensionality

of the output of the convolutional layer by pooling it by a specified filter and

dimension.

This can be repeated many times, depending on the dimensions of the im-

age. The aim is reduce the dimensionality of the image for passing to the fully

connected layers while maintaining the representation of the image. These repre-

sentations - essentially integers representing different sections of the image - are

passed through the neural network operations as described previously. The out-

put features from the fully connected layer then go to a classification layer, often

a Softmax or Logistic layer, which returns the classification to be interpreted.

The power of a CNN such as described is that it is able to recognise features in

an images. For instance, tidal features, AGN or the whole morphology of the

galaxy such as ellipticals or disks (e.g Ackermann et al., 2018; Ghosh et al., 2020;

Tarsitano et al., 2022; Tian et al., 2023).

However, using a CNN for the purposes of identifying interacting galaxies still

introduces the same problems as using visual identification. While the classifica-

tions it makes on the morphology of interacting galaxies, or on two galaxies being

near each other in an image, it faces the same contamination from close pairs.

New methods combining CNNs with morphological parameterisations of a

galaxy are being developed to overcome this issue. This has found some success

in correctly identifying interacting galaxies from morphology alone (Ren et al.,

2023). Other works have turned to training CNNs on simulated data, where the

training set could be controlled and large enough to span the entire parameter

space of interaction. These training sets would also have the advantage of be-

ing completely free of contamination. However, when applied to observational

data it was found that the accuracy of such models breaks down (Bottrell et al.,

2019; Ćiprijanović et al., 2020). Thus, creating large and pure interacting galaxy

samples remains a task to complete, and the method being it an open question.
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The effectiveness of using morphology, and the existence of tidal features,

is not uniform across redshift however. Galaxies at higher redshifts they are

found to have both dimmer surface brightnesses and smaller angular sizes. This

is not due to evolutionary effects, but from cosmological effects and has direct

consequences for this classification method. We will lose sensitivity to detecting

tidal features about interacting and merging galaxies as their redshift increases

and our interacting galaxy samples will become biased toward those systems with

high surface brightnesses.

1.7 Cosmological Effects

A fundamental obstacle to successfully identifying interacting and merging galax-

ies are two cosmological effects: surface brightness dimming of a galaxy and the

changing angular size of a galaxy. Both of these are a result of the Universe

expanding. For instance, we would expect that the luminosity per unit area of a

galaxy would remain constant if the Universe was static. However, because the

Universe is expanding three things are changing with time: the photon arrival

rate, the wavelengths of the photons and the angular size of the galaxy.

The surface brightness is defined as the luminosity within some defined area,

in this case angular size on the sky. So, because the angular size is changing

while the luminosity remains the same, the surface brightness is decreasing. This

relation between the surface brightness and redshift was originally derived by

Tolman (1930, 1934). If we have a galaxy at redshift, z, its surface brightness

will be dimmed by

I0 =
Ie

(1 + z)4
(1.2)

where I0 is the observed surface brightness of an object and Ie is its intrinsic

surface brightness. Due to this, a galaxy observed at z = 1 will be 16 times

dimmer than the same galaxy observed in the local Universe (z ∼ 0).

We use the detection of tidal features to classify interacting and merging

systems. These features often lie in the low surface brightness regime. Therefore,

even in the local Universe, we are observing them at the very limiting magnitudes

of many of our telescopes. So, when attempting to make classifications at high
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redshifts and where surface brightness dimming begins to take an effect, we will

lose the ability to detect the tidal features of an interacting galaxy. Therefore, we

risk being biased only those galaxies with a surface brightness (Calvi et al., 2014),

or mis-representing the underlying structure of a galaxy entirely (de Albernaz

Ferreira & Ferrari, 2018).

1.8 This Thesis

The primary focus of this thesis is investigating and constraining the relation-

ship between galaxy interaction and evolution. The list of unresolved questions

about galaxy interaction is long and complex, but we will focus on the following

questions here:

• What is the relation between galaxy interaction and the enhancement in

star formation?

• What is the relation between galaxy interaction and the fraction of AGN?

• At what point in an interaction do we find enhancement in star formation

and a change in fraction of AGN compared to non-interacting galaxies?

• What is the conclusive relationship between the dynamical timescale of

interaction, the formation of tidal features and the above effects?

To fully answer these questions three components are required: first, a large

statistically significant sample of interacting galaxies; second, available ancillary

data of these systems to make inferences between the underlying processes in

interaction and their parameters; and thirdly, the tools to constrain the dynam-

ical timescales of each system. This thesis details methodologies which achieve

these goals. First, in Chapter 2, we create the largest interacting galaxy cata-

logue to date through combining morphological classification with novel methods

of machine learning, data extraction and analysis. We then use this catalogue,

in Chapter 3, by matching to existing ancillary catalogues and conduct our own

inferences about the relationship between galactic parameters and underlying

27



1.8 This Thesis

processes. However, we find that we can only constrain this relationship to a

very general point. We require tighter constraints on the dynamical timescale of

the interactions in our sample to further explore the relationship between galaxy

evolution and interaction. In Chapter 4, we describe software we have built that

will conduct such constraint in the context of Bayesian statistics and galactic

parameterisation. We will describe the results we have found by applying it to

a small, well constrained, interacting galaxy sample and then describe the limi-

tations of the approach in terms of computational efficiency. Finally, in Chapter

5 we summarise our results, describe them in the context of current works and

speculate about the future work to advance them.

Where necessary, we use a Flat ΛCDM cosmology with H0 = 70kms−1Mpc−1

and ΩM = 0.3. Hereafter in this thesis, when referring to an interacting galaxy

we are referring to a galaxy which has undergone one or multiple flybys by a

secondary galaxy and caused a tidal disturbance. A merging galaxy is the final

state of these flybys, where two or more systems have coalesced to form a highly

morphologically irregular system.
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Chapter 2

Creating a Large Sample of

Interacting Galaxies

2.1 Introduction

Interacting and merging galaxies are important to our current theory of ΛCDM

cosmology, in which structure typically assembles hierarchically (Abadi et al.,

2003; Springel et al., 2005; De Lucia & Blaizot, 2007; Guo & White, 2008).

Galaxy interaction leads to highly disturbed morphologies (Toomre & Toomre,

1972; Hernández-Toledo et al., 2005; Wallin et al., 2016), intense starbursts (Mi-

hos & Hernquist, 1996; Springel, 2000; Saitoh et al., 2009; Moreno et al., 2021)

and, potentially, quenching of some systems (Hopkins et al., 2013; Smethurst

et al., 2018; Hani et al., 2020; Das et al., 2023a). In general, galaxies undergoing

interaction are observed to have higher star formation rates than those that ex-

ist in the field (Ellison et al., 2008; Scudder et al., 2012; Pearson et al., 2019b).

Interaction also has a direct impact on the gas angular momentum within each

galaxy, causing it to decrease. This, potentially, leads to funnelling of gas into

into their nuclear regions and igniting activity. This could be a connection with

active galactic nuclei (Ellison et al., 2008; Li et al., 2008b; Ellison et al., 2011;

Comerford et al., 2015). However, such a connection remains debated (Alonso
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et al., 2007; McKernan et al., 2010; Marian et al., 2020). Thus, understanding

galaxy interaction is crucial to testing theories of galaxy evolution itself.

Interacting galaxies have long been explored with different samples of galaxies.

Examples include constraining merger rates as a function of redshift (Lotz et al.,

2008b), inferring the contribution of minor mergers to the cosmic star formation

budget (Kaviraj, 2014b,a), and examining interactions as a function of their local

environments, internal properties and AGN activity (Darg et al., 2010b). These

studies (and many others; for further examples, see Barton et al., 2000; Alonso

et al., 2004; Ellison et al., 2013; Holincheck et al., 2016; Silva et al., 2021) illustrate

the complex parameter space involved in understanding the role of interaction in

galaxy evolution. Thus, to effectively study interacting galaxies, we need observed

datasets of such a size that they can sample a wide range of various parameters

of interest.

The first large-scale catalogues of interacting galaxies are from the mid 20th

century (Arp, 1966; Vorontsov-Velyaminov, 1959, 1977, hereafter VV). These cat-

alogues primarily used visual inspection to identify mergers (e.g., de Mello et al.,

1997; Nair & Abraham, 2010) and generally found from hundreds to thousands

of systems. The largest set of interacting galaxies identified by a single expert

classifier contains 2,565 relatively nearby systems (Arp & Madore, 1987). Citi-

zen science techniques can extend this number, as was presented by Darg et al.

(2010b) who used them to find a catalogue of 3,003 interacting galaxies.

The inclusion of automated classification shows promise to continue this ex-

pansion. The use of machine learning in classifying galaxy morphology is well

established (Ardizzone et al., 1996; Abd El Aziz et al., 2017; Barchi et al., 2020;

Ghosh et al., 2020; Cheng et al., 2021). The workhorse algorithm is the convo-

lutional neural network (CNN; for an introduction, see O’Shea & Nash, 2015),

most often used in image recognition and feature extraction. CNNs can be used

for general classification (e.g. early- versus late-type galaxies) or to extract spe-

cific morphological features of galaxies, such as bars, spiral arms, etc. Many

works have demonstrated their effectiveness at this (e.g. Ackermann et al., 2018;

Jacobs et al., 2019; Bickley et al., 2021; Buck & Wolf, 2021; Walmsley et al.,

2022a). Pearson et al. (2022) demonstrated the power of CNNs for finding in-
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teracting and merging galaxies specifically, finding 2,109 in 5.4 deg2 of Hyper

Suprime-Cam imagery - a large sample for the small area covered.

However, issues with using CNNs in classifying interacting galaxies have been

found on numerous occasions. The primary concern, is that - without due care -

classifying interacting galaxies by morphology alone can be highly contaminated.

For example, CNNs often confuse chance alignments of galaxy pairs on the sky

for interacting systems. This leads to many predicted interacting systems being

thrown away after visual inspection (in some cases up to 60%; Bottrell et al.

(2019); Pearson et al. (2022)).

In this work, we aim to use machine learning to create a large, high-confidence

catalogue of interacting systems, drawn entirely from existing astronomical im-

agery. We search through the European Space Agency’s Hubble Space Telescope

Science Archive1 using a CNN to predict whether an image contains an interact-

ing system, from among the 126 million extended objects in the Hubble Source

Catalogue (HSC; Whitmore et al., 2016). This catalogue is composed of source de-

tections across a range of filters using the Source Extractor algorithm (Bertin &

Arnouts, 1996). The limiting magnitudes of the HSC in the F606W and F814W

were found to be the 26th magnitude.

The feature extraction we implement is focused on finding tidal features or

morphological disturbance caused by the interaction. The tidal features priori-

tised include tidal tails, tidal bridges or tidal debris. As stated previously, this

runs the risk of introducing high levels of contamination by close pairs. We thus

implement further automated and manual methods, which significantly reduce

this. The systems we find are often in the background of previous deep sur-

veys (such as the Cosmic Evolution Survey, COSMOS, Scoville et al. 2007; the

Great Observatories Origins Deep Survey, GOODS, Giavalisco et al. 2004; and

the Panchromatic Hubble Andromeda Treasury Survey, PHAT, Dalcanton et al.

2012), where spectroscopic coverage varies. Therefore, while our final catalogue

reduces contamination to ∼ 3%, definitively removing all contamination by close

pairs remains a challenge following this work.

This Chapter is laid out as follows: Section 3.2 describes the HSC and all

the criteria we applied to create the images we predict over. This Section also

1See http://hst.esac.esa.int/ehst/
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introduces ESA Datalabs1; a new platform which allows the user to directly

access the Hubble Science Archive. Section 2.3 gives an in depth description

of the Zoobot CNN we utilise for our predictions, and how it differs from a

commonly used CNN. Section 2.4 explains the process of creating the training

set for our CNN to find interacting galaxies, with Section 2.5 showing how well it

performed and providing the diagnostics of the CNN. We also use this Section to

investigate the contamination in our catalogue. Section 2.6 describes our results

and discusses the final catalogue as well as define interesting systems or objects

that we have found. We also explore some basic properties of the catalogue here.

Finally, Section 3.7 summarises our results and conclusions.

2.2 Data

2.2.1 The Hubble Archives & ESA Datalabs

The observational data is directly from the Hubble Science Archive and is ac-

cessed from the new ESA Datalabs platform. The repository contains approxi-

mately 100TB of data from the Hubble Space Telescope (HST ). This repository

spans all HST instruments and filters. ESA Datalabs provides a direct interface

between users and the data. On this platform, every observation’s FITS file can

be accessed. To streamline our pipeline, we applied criteria to the observations

as not all filters have the same number of observations, some instruments are not

as sensitive to the low surface brightness regime as others or the field of view of

certain instruments would not be ideal for measuring galaxy morphology. Finally,

we do not conduct source extraction from each FITS file ourselves but use the

Hubble Source Catalogue (Whitmore et al., 2016, hereafter HSC) to define the

centre of each source cutout.

The criteria we apply are: the observational data must be from the Advanced

Camera for Surveys (ACS), it must be final product data of HST (i.e. within

a .drc file, where the data has been drizzle (Avila et al., 2015) combined and

had charge-transfer-efficiency corrections applied), observed within the F814W

1https://datalabs.esa.int/
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filter and must be flagged as an extended source in the HSC. This offloads sky

subtraction, cosmic ray rejection and charge efficiency calculations to the original

HST pipeline and removes costly steps from our cutout creation process. We

utilise all final product data of the F814W filter from HST as this was the filter

which contained the most FITS files, and therefore observations. The F814W

filter contained 9,527 final product FITS files which could be used for source

extraction, whereas the closest second (the F606W filter) contained ≈6000. By

using the filter with the most files, we are confident that we cover a majority of

the HSC. Applying this criteria gives 126 million sources to predict over.

We must create 126 million source cutouts from 9,507 different FITS files.

Creating a dataset of cutouts at this magnitude in conventional methods (such

as AstroQuery or Table Access Protocol (TAP) services) would be impractical

due to making many network calls and long FITS file download times. Instead, we

use the ESA Datalabs platform, which is due to be released in Q4 of 2024. This

platform has been developed to allow us to ‘mount’ the Hubble Science Archive

onto it. In practice, providing access to the entire Hubble Science Archives as local

files for the user to manipulate while on the platform. This bypasses network calls

to servers to download our required FITS files, a process which could have taken

minutes per download. Having direct access to the files, and quickly matching

source coordinates to FITS files (described in Section 2.2.2) allows us to open a

FITS file and create all source cutouts from it without having to close or reopen

it. Therefore, we were able to create on the order of 10k cutouts in the same

order of time taken to download a single file.

The source cutouts were created as F814W gray scaled 150x150 (7.5′′×7.5′′)

pixel images using the HSC source coordinates as the centre. The image size

was set and standardized to streamline the pipeline. The majority of cutouts are

centred on the source but, in a minority, misalignment between source and image

centre occurs. This is a result of the drizzling process, with incorrect alignment

sometimes being significant. However, the target source was always present in

the cutout and we, therefore, did not attempt to rectify this. We scale the image

using a ZScaleInterval with a set contrast of 0.05 and a LinearStretch following the

default parameters in the Astropy (Astropy Collaboration et al., 2013a, 2018a)

package. These were binned to 300×300 pixels (pixel resolution is 3.25′′×3.25′′)
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with a linear interpolation from the CV2 python package. The images were created

at 150×150 to minimise storage required on the early version of ESA Datalabs

being used. Creating the images at half the size allowed us to scale up to 300×300

pixels without any effects of the interpolation.

2.2.2 The Shapely Python Package

A large computational expense in our pipeline was matching FITS files to sources.

Conventionally, the Astropy contains function would be used to match source

coordinates to the FITS file WCS. We instead use the Shapely1 Python package.

Shapely is a geometry orientated package primarily focused on geospatial data.

We found converting the FITS image footprints into Shapely Polygons and the

source coordinates to Shapely Points and then checking if they overlapped had

significant speed up. Per iteration, Astropy’s contained by function matches a

source to a FITS file on the order of 500ms. Using Shapely’s contains function,

the same process is on the order of 6µs.

2.3 Utilising a Convolutional Neural Network

We must choose a CNN which would best suit our needs to classify them into

interacting galaxies or not. We select the newly developed CNN Zoobot (Walm-

sley et al., 2022a, 2023). Zoobot is a CNN specifically trained to classify galaxies

based on morphology into many different types (spiral, disk, elliptical, barred,

non-barred, etc). We retrain it to only classify galaxies into interacting or non-

interacting. Instead of training Zoobot from scratch and creating a new model,

we use transfer learning to finetune existing Zoobot models to classify our data

for our particular question. This allows us to retain information from Zoobot’s

previous training. More importantly, it requires a significantly smaller training

set to achieve high accuracy.

1Shapely docs: https://shapely.readthedocs.io/en/stable/manual.html
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2.3.1 Zoobot

The version of Zoobot we use is a deep CNN which was trained on Galaxy Zoo vol-

unteer classifications over three different Galaxy Zoo: DECaLS (GZD)(Dark En-

ergy Camera Legacy Survey, described in Dey et al., 2019) campaigns. These were

GZD-1, GZD-2 and GZD-5 - each number corresponding to the DECaLS data re-

lease. For training Zoobot, DECaLS imaging was selected using the NASA-Sloan

Atlas (NSA), which was itself constructed with SDSS Data Release 8 (DR8) im-

ages. This also introduced implicit cuts to the training data, as SDSS can not

get to the depths of DECaLS. This introduces implicit magnitude and redshift

cuts on the training data. Specifically, SDSS DR8 and the NSA cover galaxies

brighter than mr > 17.77 and closer than z < 0.15. In Section 2.3.2 we describe

using transfer learning to use Zoobot effectively outside of this magnitude and

redshift range.

Walmsley et al. (2022a) use the 249,581 volunteer classifications from GZD-5

campaign to train Zoobot to answer all 34 questions (example shown in Figure

4 of Walmsley et al., 2022a) in the remaining campaigns. GZD-5 was used as

it had a slightly different volunteer decision tree, having an expanded question

on potential different galaxy merger stages. Each galaxy image had been shown

to volunteers as a 3-colour (g,r,z) of 424×424 cutout. Each images pixel scale

was an interpolation between the measured Petrosian 50%- and 90%-light radius.

The measured full Petrosian radius had to be at least 3′′ to be shown to the

volunteers. When inputting into Zoobot, these cutouts were scaled and grayscaled

to 300×300×1 images, averaging over the 3-colour channels to remove colour

information and avoid biasing the morphology predictions. Zoobot utilised the

Adam (Kingma & Ba, 2014) optimizer to train.

By training Zoobot in this way, combining the approach of answering many

questions at once with Bayesian representation learning, it learns a generalisable

summary of many types of galaxies. These generalised summaries are lower-

dimensional descriptions of galaxy types and are referred to as representations.

These representations change depending on the galaxy type, morphology or en-

vironment in an image and lead to similar images being closer together in a

representation space than dissimilar ones. This representation approach on a
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very broad classification problem is found to increase accuracy and generality of

Zoobot, giving it an edge over conventional CNNs. A more detailed breakdown

of this approach, as well as further details about Zoobots’ architecture, can also

be found in Walmsley et al. (2022a).

Zoobot was trained to give a prediction score to an image of a galaxy based

on the question it is answering. The type of prediction score is set by the users

choice of the model final layer in Zoobot. We elect to use a SoftMax output,

which returns an output score as a float between 0 and 1. This prediction score

is not a probability score, although it may seem analogous. A well behaved

prediction score will map to probability, though not necessarily linearly. The

mapping between prediction score and probability is not considered in this work,

and we use the prediction score as an indicator of Zoobot’s confidence a source

is an interacting galaxy.

We are only interested in the ‘Is the galaxy merging or disturbed?’ question

from the Galaxy Zoo: DECaLS workflow, where the answer can be ‘merging’,

‘major disturbance’, ‘minor disturbance’ or ‘None’, and only want our version of

Zoobot to return the answer to this. Our version of Zoobot is also not trained

to predict over HST data which differs from DECaLS data (different resolutions,

filter bandwidths, etc). If we were to use our version of Zoobot as downloaded

we would likely lose accuracy. We utilise transfer learning to optimise accuracy

of just our question as well as to classify HST data. Since this work, Zoobot

has been trained on HST data so the transfer learning step would not be needed

in future with the new models. How we apply transfer learning is discussed in

the following Section, but an excellent review and discussion of applying transfer

learning for detecting galaxy mergers can be found in Ackermann et al. (2018).

2.3.2 Transfer Learning

Transfer learning (or finetuning) is a method of applying the same machine learn-

ing model to a similar problem that it was originally trained on. Rather than

having to completely retrain all parameters in a model and essentially create a

new one, we can use the original model architecture and the parameters it has

learned from its previous training. In the case of Zoobot, we keep the parameters
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it has learned from training on the DECaLS dataset and freeze all sections of the

model responsible for feature extraction and recognition.

We construct a classification section that maximises accuracy and only allow

the weights of this section to change. As the classification section has fewer pa-

rameters than the feature extraction section (the classification section contains

86,209 parameters compared to the feature extraction sections’ 4,048,989 param-

eters) we need significantly less data to completely retrain it (in our case, a factor

of 15 less). Once this retraining is complete, the weights of the feature extraction

sections of the model can be unfrozen and tweaked using our smaller dataset with

a very low learning rate to further boost overall model accuracy.

An example of taking an existing model and applying it to a new problem

with transfer learning is shown in Walmsley et al. (2022b). Here, they take the

trained model and finetune it to finding ring galaxies. They retain an accuracy of

89% while only needing to train the model on 103 ring galaxies. This significantly

reduces computational expense and training time of the model, while keeping the

required training set very small. Interacting galaxies are rare, and interacting

galaxy catalogues not expansive. So retraining the full network on hundreds of

thousands of interacting galaxies is not feasible. Using transfer learning, and

following the example from Walmsley et al. (2022b), we only need to create a

training set of 103 - 104 interacting galaxies to achieve an accuracy of ≈90%.

2.4 Creating the Training Set

We create a large training set of interacting galaxies following the criteria de-

scribed in Section 3.2 to train our model. Therefore, we need a large, labelled set

of interacting and non-interacting galaxies. We elect to follow the methodology of

finetuning as described in Walmsley et al. (2022b), and aim to create a balanced

training of 50% interacting and 50% non-interacting galaxies. This has the ad-

vantage that it significantly improves the performance and accuracy of machine

learning classifiers, but the disadvantage that it can bias our final model if few

interacting galaxies exist compared to the general population. However, such a

bias will be mitigated by using a high prediction cutoff to define an interacting
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galaxy. This is discussed in in Section 2.5.1. To create this large training set we

use the Galaxy Zoo collaboration (initial data release described in Lintott et al.,

2008).

2.4.1 Interacting Galaxies and Galaxy Zoo

The data in Galaxy Zoo is volunteer classifications on galaxy images spanning

multiple projects. We incorporate classifications from all major Galaxy Zoo

projects; Galaxy Zoo 1 (Lintott et al., 2008), Galaxy Zoo 2 (Willett et al., 2013),

Galaxy Zoo: Hubble (Willett et al., 2017), Galaxy Zoo: CANDELS (Simmons

et al., 2017) and Galaxy Zoo: DECaLS (Walmsley et al., 2022a). These projects

contain a total of 1,367,760 labelled galaxy images that we must extract the inter-

acting galaxies from. We only use labels that are from citizen scientists, and no

labels generated by previous versions of Zoobot. We apply three criteria to each

interacting or non-interacting label. Firstly, it must have greater than 20 volun-

teer votes on it. Applying this allows us to use a statistically robust weighted

vote from a crowd answer rather than trusting any volunteers individually. Sec-

ondly, the calculated weighted vote (i.e. the combination of the 20 or greater

votes) must then be greater than 75% in favour of being an interacting galaxy

or less than or equal to 25% for it not to be; this ensured purity in our training

set. If the question given to volunteers was more specific (such as ‘Is this a minor

disturbance?’ and ‘Is this a major disturbance?’) then if either answer was the

majority vote we classified it as an interacting galaxy. Thirdly, the object must

exist in the Hubble footprint so that we could make a cutout of it.

Checking if each training source existed in the Hubble footprint was only pos-

sible in an efficient way because of ESA Datalabs. Rather than having querying

every coordinate and make network calls to TAP services, we extract every final

product F814W observation footprint and check if each labelled galaxy exists in

at least one file. We make this check by creating a Shapely Polygon for each

observational footprint and a Shapely Point for each labelled galaxy central co-

ordinate. Using the Shapely Polygon contains function, we check if a labelled

galaxy’s Point overlaps with an observations’ footprint Polygon. This returns a

list of files which contain the training source. If a training source was not found
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in any observational footprint we discard it. We make no attempt here to check

if our sources have other photometry available to them, and only create 1-colour

images with the F814W data. We provide the images to Zoobot as 1-colour

grayscaled cutouts.

Upon applying these criteria we find 3,167 labelled interacting galaxies in

Galaxy Zoo: Hubble project, the largest contribution to our training set. These

were paired with 3,167 labelled non-interacting systems (following the previous

criteria) to balance the training set. From all other projects, we find 869 labelled

interacting systems which fitting the creation criteria. The primary limiting factor

for Galaxy Zoo’s 1 and 2 was that many found interacting galaxies did not exist

in the Hubble footprint. For Galaxy Zoo: CANDELS and Galaxy Zoo: DECaLS

the limiting factor was the required calculated weighted vote. These labelled

interacting systems were then paired with 869 labelled non-interacting systems,

ensuring that each labelled non-interacting system came from the same project

as its labelled interacting system counterpart.

Each of these projects has a varied redshift range: Galaxy Zoo: Hubble is

z < 1, Galaxy Zoo: CANDELS 1 < z < 3 and Galaxy Zoo’s 1, 2 and DECaLs are

z < 0.15. This introduces a redshift bias into our model, where the morphology

and brightness of interacting sources changes with a z > 1. This is only par-

tially rectified by including Galaxy Zoo: CANDELS, which provided 322 labelled

interacting systems.

From all Galaxy Zoo projects, we find a training set of 4,036 labelled interact-

ing galaxies and combine them with their matched 4,036 labelled non-interacting

galaxies giving a total training set size of 8,072. Figures 2.1 and 2.2 show six

examples of our labelled interacting and non-interacting galaxy training set. As

we require Zoobot to learn to weight tidal features or disturbances highly, it is

important that such structures dominate the training set. Previous works, such

as Pearson et al. (2019b), have found that final catalogues produced by CNNs

are often heavily contaminated by sources which are simply close pairs by pro-

jection effects and chance alignment in the sky. By focusing our CNN on tidal

features, we aim to minimise this contamination. We ran an initial test of the

prediction pipeline on the first 500,000 sources that had been created from the

HSC to initially test our Zoobot model. We investigate any source which was
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Figure 2.1: Example images of the labelled interacting galaxy systems used to
train Zoobot. Each galaxy had a weighted vote fraction ≥0.75 in Galaxy Zoo.
Top Row : Three examples from the Galaxy Zoo: Hubble project of the training
set. Bottom Row : Three examples from the other Galaxy Zoo projects. These are,
from right to left, Galaxy Zoo 2, Galaxy Zoo CANDELS and Galaxy Zoo DECaLS.
The priority with this training set was that the interactors had clear tidal features
and disruption so Zoobot would learn to highly weight them and not misclassify
close pairs.
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Figure 2.2: Example images of the labelled non-interacting galaxy systems used
to train Zoobot. Top Row : Three examples from the Galaxy Zoo: Hubble project
of the training set. Bottom Row : Three examples from the other Galaxy Zoo
projects. These are, from right to left, Galaxy Zoo 2, Galaxy Zoo CANDELS and
a starfield from the active learning cycle. Starfields/globular clusters/open clusters
existed throughout the HSC flagged as extended sources. 1,000 images of starfields
were added to the training set so Zoobot would give them a very low score.
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given a prediction score ≥ 0.75 and, to further increase the size of our training

set, conduct one step of active learning.

2.4.2 One Active Learning Cycle

To enlarge our training set further, we conduct one step of active learning to

find interacting galaxies. An active learning cycle involves an ‘expert’ checking

the predictions made by the model, correcting any incorrect predictions and then

feeding it back into the model as additional labelled images to a training set.

We complete finetuning of Zoobot on our initial training set of 8,072 galaxies

and make predictions on the first 500,000 sources from the HSC (created under

the criteria previously discussed). We visually inspect the sources Zoobot gives

a prediction score ≥ 0.75 and correct any wrong predictions. These corrected

labelled sources and those Zoobot correctly labelled are then added to the training

set. Not only does this step allow us to add more labelled interacting galaxies to

the training set, but it also allows us to evaluate Zoobot’s behaviour and check

if it consistently predicts a type of source or galactic morphology incorrectly.

From the first 500,000 sources, a total of 6,198 sources were given a prediction

score of ≥0.75. We correct the predictions Zoobot made and balance this set

to 5,698. During this cycle, a large number of globular clusters/starfields/open

clusters were given a very high prediction score. Figure 2.2 shows an example

of these contaminating star fields. We created sources of 1,250 star fields and

added these into the training set, labelling them as non-interacting. Adding the

balanced 5,698 sources plus the 1,250 starfields to our training set gave us an

unbalanced training set of 15,020 sources. To then balance the training set, we

took 1,250 labelled interacting galaxies from the Galaxy Zoo: Hubble project

and made random image augmentations with the TensorFlow Python package.

These augmentations were simple rotations, cropping and resizing. With these

extra sources, our training set contains 16,270 sources. Of these, 50% (8,135)

were labelled images of interacting galaxy systems.
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2.5 Diagnostics

2.5.1 Model Performance

Upon finetuning Zoobot we validate its performance. We reuse the validation

set that Zoobot automatically creates when training. This set is created by

putting aside a random set of 20% of the training set. Zoobots then uses it to

validate its performance in training. We record which images Zoobot selected,

and extract these from the training set for further diagnostics. This provides us

with a validation set of 3,270 images, containing 1,648 non-interacting galaxies

and 1,622 interacting galaxies.

Zoobot gave a prediction score between 0 and 1 to each of the validation

images, Figure 2.3 shows the resulting distribution. This distribution shows that

our model has high confidence in what is or isn’t an interacting system due to

the high counts at very low and very high probability scores. It is likely the

use of a balanced training set, and the very low volunteer score needed to define

a source as non-interacting that leads to a strongly bi-model prediction score

distribution. Using a balanced training set is an intrinsic trade off between ease

of training, and potential biases introduced. Having a balanced dataset does not

reflect reality, and leads Zoobot to over-predict interacting galaxies. Using very

stringent volunteer classification cutoffs also leaves few ambiguous systems in the

validation set, further enhancing this bi-modality.

The prediction score must be reduced to a binary classification for our prob-

lem. We use Figure 2.3 to define a prediction score above which a source is

classified as an interacting galaxy. We measure the accuracy of Zoobot for differ-

ent cutoffs, where the accuracy is the fraction of labels correctly predicted over

the total number of labels predicted on. Figure 2.4 shows this change in accuracy.

We find that our model is most accurate with a prediction score cutoff of 0.55

with an accuracy of 88.2%. Figure 2.4 also shows the change in the purity of our

catalogue with changing prediction cutoff. Here, purity is the ratio of number

of true interacting galaxies to total sources in the final catalogue. These scores

can be combined into the F1 score of our model, shown in Figure A.2 in the

Appendix.
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Figure 2.3: The distribution of prediction scores given to our validation set of
3,270 labelled sources set aside by Zoobot in training. These were split into 1,648
non-interacting sources and 1,622 interacting sources. As can be seen from the
distribution, our model is often confident when a source does or does not contain an
interacting galaxy by the strong bi-modality. This is likely due to the very stringent
vote weightings used when selecting the training set. Using this distribution, we
decide the prediction score to use as a cutoff to give us our final binary classification:
interacting galaxy or not.
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Figure 2.4: A measure of accuracy and purity against prediction score. The
accuracy (in blue) is a direct measure of the number of sources Zoobot correctly
predicted vs the total number of predictions made. The measure of purity (in
orange) is the the number of predictions Zoobot correctly made vs the total number
of predictions for an interacting galaxy. The cutoff score (in red) shows the point
above which we would define an interacting galaxy and below which we would not.
At this point, the accuracy appears lower due to Zoobot making many false negative
predictions while successfully making true negative predictions. This is confirmed
by the maximisation of purity. Due to the number of sources Zoobot is predicting
over, the size of the catalogue will exceed any previous catalogues. Therefore, we
use this very conservative cutoff to maximise purity over the completeness of our
catalogue. These measures can also be shown with the F1 score. Figure A.2 shows
this change with prediction cutoff in the Appendix.

45



2.5 Diagnostics

Figure 2.5 also shows a measure of accuracy for our model at different cutoffs

using confusion matrices. Importantly, it also shows how our model is getting la-

bels wrong: either giving false positives (where a labelled non-interacting galaxy

is predicted to be interacting) or false negatives (where a labelled interacting

galaxy is predicted to be a non-interacting). The number of incorrect positive

and negative predictions change based on the prediction cutoff, with a very low

cutoff giving many false positives and a very high cutoff giving many false nega-

tives. Figure 2.5 shows that with a cutoff of 0.50, we would return a high level

contamination in our final catalogue. Of the 1,622 galaxies predicted to be in-

teracting, 218 would be non-interacting systems - approximately 13%. Our main

aim in this work is to present a highly pure, large interacting galaxy catalogue

that can be used for statistical exploration of interacting galaxy parameter space.

Therefore, we use a very stringent cutoff of 0.95.

Using a cutoff of 0.95 reduces contamination significantly. Figure 2.5 shows

the final contamination in our validation catalogue would be ≈2%, where Figure

2.4 shows that we are maximising the purity in our sample at the expense of

accuracy. The aim of this work is not to create a general tool to be used by

the community, but to find a large catalogue of interacting galaxies. As we are

investigating 126 million sources, despite removing ≈50% of interacting galaxies

from the final catalogue, we are certain that we can find a catalogue larger than

previous works.

Using such a high cutoff also reduces any risk of any biases introduced by

using a balanced training set. While using such a training set often increases the

accuracy and speeds up training, it can bias the model toward one conclusion.

In our case, the true rate of interacting galaxies will be much smaller than 50%.

Therefore, our model will be biased to labelling a source as an interacting galaxy.

This will be particularly true for edge cases, which could be ambiguous to even

an expert classifier. By using such a high cutoff score, this bias will be mitigated

by only labelling the most clearly interacting objects as interacting.
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Figure 2.5: Confusion matrices of four different cutoffs of prediction score defin-
ing a binary classification of interacting galaxy or not. Confusion matrices break
down our accuracy measurement into how Zoobot is misclassifying sources. At a
cutoff of 0.50, the accuracy is highest at 88.2%. However, at this cutoff, ≈10% of
our final catalogue would contain contamination. We elect to use the very strin-
gent prediction cutoff of 0.95 for the rest of this work as it will return the lowest
contamination.
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Figure 2.6: Flow diagram of our contamination and duplication removal process.
De-duplication used agglomerative clustering based on sky separation. The first
step of de-duplication uses a cutoff of 1.5′′. This significantly reduced duplication in
the catalogue, as well as the size of the catalogue to 54,757 interacting galaxies. We
then applied contamination removal to this de-duplicated catalogue. Upon visual
inspection, a small number of duplicated systems still existed in the catalogue. To
ensure a pure catalogue of unique systems, we applied a agglomerative clustering
again with a cutoff of 5′′. This gave us a catalogue of 27,720 unique interacting
systems. The final step to ensure purity was visual inspection by DOR, removing
any remaining contamination. This gave the final pure catalogue of 21,926 unique
interacting systems.
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2.5.2 Duplication Removal

The fully trained Zoobot made predictions on ≈126 million extended sources

from the HSC that had passed our creation criteria. Of these, 195,688 sources

were given a score of 0.95 or greater, ≈0.2% of the total number of sources. Upon

visually inspecting a subset of sources, it is clear that our Zoobot model had

predicted for an interacting galaxy even if it was not the central (and, therefore,

target) source in the image. This is due to the misalignment of sources from the

centre in the training set as described in Section 2.4. Zoobot learned to classify

an image as an interacting galaxy if it contained one, and not just if it was the

central source. Therefore, many interacting systems were duplicated in our final

catalogue, appearing in cutouts were the central source was not interacting.

Another source of further duplication was the HSC itself. In the HSC, many

extended objects have multiple source IDs applied to them. This is due to bright

clumps in extended sources being assigned a new ID, sources which had been

found but did not exist in reality or background sources which existed in extended

systems. We find that of the 195,688 Source IDs given a prediction score of 0.95

or greater, approximately 3.6 Source IDs were matched to a single real object.

To refine the catalogue and remove the duplication we use spatial clustering

of each source with agglomerative clustering (an introduction and description

of hierarchical clustering, including agglomerative clustering, can be found in

Nielsen, 2016).

Agglomerative clustering is a method of hierarchical clustering based on a

distance metric between the sources. We set the maximum distance between

points to define a cluster. i.e. any sources within a defined distance on the sky

from each other will be merged under one source ID. This approach means we do

not need any knowledge of how many cluster of sources exist in the dataset or

the level of duplication within it, as would be the case in many other clustering

approaches. We create distance matrices of the angular separation of every source

using the Astropy Python package. These projected sky separations are then used

as a euclidean distance in the clustering algorithm with an euclidean linkage.

The new ID of a cluster is the first source ID in the cluster.
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Initially, we utilise a limiting sky separation of 1.5′′ (corresponding to 0.03kpc

to 65.01kpc from 0.001 < z < 8) to remove the duplication. This reduced the

size of our potential catalogue to 54,757 interacting galaxy candidates. We then

applied contamination removal as described in Section 2.5.3. Once contamination

removal was completed, the catalogue size was 41,065 interacting galaxies. Visual

inspection found further duplication, so our initial de-duplication had not been

aggressive enough. To ensure the catalogue was of unique systems, we opted

to use a final aggressive limiting sky separation of 5′′ (corresponding to 0.10kpc

to 216.70kpc from 0.001 < z < 8) completely removing the duplication in our

catalogue. This aggressive de-duplication further reduced the size of our catalogue

to 27,720 candidate interacting systems. However, we could be certain that each

of these candidate systems was unique. Figure 2.6 shows a full breakdown of the

steps in our de-duplication and contamination removal process.

2.5.3 Bad Predictions & Removal

After the initial step of de-duplication we begin removal of contamination from

the catalogue. A major, and expected, source of contamination is by close pairs

of galaxies. These are systems where chance alignment in the sky appears that

galaxies are close together but are actually at different redshifts. Other sources of

contamination include large central galaxies with satellite galaxies about them,

star fields with extended sources in them and objects with strange morphologies

that Zoobot predicted were tidal features.

Upon applying the clustering by sky projection of 1.5′′, the catalogue con-

tained 54,757 candidate interacting galaxies. Our primary concern is contamina-

tion by close pairs. Creating catalogues of interacting galaxies with CNNs are

notorious for suffering from this problem, where a significant number of candi-

dates must be removed from otherwise large final catalogues (Bottrell et al., 2019;

Pearson et al., 2022). The decisive way to remove this contamination is to com-

pare redshift measurements of each galaxy in the candidate interacting system.

However, this is impractical for our catalogue where the majority of candidates

have no redshift measurements. To find close pairs, and remove them effectively,
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we take advantage of the representations Zoobot learns of each image. As de-

scribed previously, Zoobot was trained to answer every question in Galaxy Zoo:

DECaLS simultaneously for every galaxy. It therefore learns a generaliseable

representation of many kinds of galaxies. In this representation space, morpho-

logically similar galaxies will exist close together in clusters while those that are

dissimilar will be further apart. We extract the features Zoobot has learned of

each candidate, and plot its representation.

We remove the classification head of Zoobot and directly output the final

layer of the feature learning section of the model. This gives 1,280 features (the

representations) for each of our 27,720 candidate systems. However, there will

be much redundant information in this very high dimensional feature space. We

compress this using incremental principal component analysis (PCA) (Ross et al.,

2008). An excellent demonstration of using this approach can be found in Walms-

ley et al. (2022b). We reduce the dimensionality from 1,280 to 40 (as in Walmsley

et al. (2022b)), and input the resultant components into the Auto-Encoder UMAP

(McInnes et al., 2018). UMAP projects the 40 dimensional components of each

candidate system onto a 2 dimensional manifold. The position of each galaxy on

this manifold is directly linked to its visual morphology. Close pairs have similar

visual features which will then appear as a cluster in our representation space.

Figure 2.7 shows the representation distribution of our 54,757 candidates after

compression with UMAP. A random image in each bin has been selected to show

the morphology of the objects within the bin. There are three clear gradients

that exist in the representation distribution: one of source size, one of the source

inclination and one of image contrast between the source and the background.

The gradient of source size is clear from left to right. This is also true of contrast

between the source and background. The gradient of source inclination is from

top to bottom. The top shows very inclined sources, and even the diffraction

spikes of stars, while along the bottom we find face on sources which take up a

larger part of the cutout centre. At the very bottom of the figure (away from the

main body) a cluster of very poorly contrasted sources with the background that

are face on are found. The gradients of inclination and source size are expected

while that of contrast is less so. This gradient is likely a result of how we created
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Figure 2.7: The representation distribution of 54,757 candidate interacting galax-
ies. This distribution is the compressed 2D representation of the 1,280 dimensional
representation that Zoobot has learned of each image. Each image is a randomly
selected one from sources within each bin in the distribution. The X and Y axis on
this plot are the 2D mapping on the manifold given by UMAP for the 40 dimen-
sional principal components of each source, and not physical parameters. Three
gradients are clear in this distribution: first; from the left to right there is a distinct
gradient in the contrast of the images. The images to the left are local galaxies with
low redshift, while those on the right are dimmer sources at much higher redshift.
This is an effect of how the images are created using a linear scaling function and
a fixed contrast. The second feature, also from left to right, is a gradient of larger
source size to smaller source size. This is a feature Zoobot has learned based on
the redshift of the source as well. The third, from top to bottom, is a gradient of
the inclination of the source. With the most inclined (and even diffraction spikes)
of the sources appearing at the top, while at the bottom the sources are face on.
Along the bottom of the representation plot, there are close paired sources as well
as many star fields. Along the very top, there is contamination in the form of iso-
lated stars in star fields. Thus, we make aggressive cuts along the top and bottom
of our representation space to remove as much contamination in a general way.
The full representation plot, with all sources and the cuts, is shown in Figure 2.8.
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Figure 2.8: Scatter plot showing the precise distribution of each representation of
sources in the remaining 54,757 sources. This is the unbinned version of Figure 2.7.
The two red lines show the cutoffs utilised to remove the majority of close pairs
by projection as well as the very obvious contamination of stars and stellar fields
at the top of the representation distribution. The number of candidate interacting
systems in the catalogue was reduced to 41,065 systems.
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our images using a Linear Stretch with fixed contrast. The effect of this is that

dimmer sources have brighter backgrounds, a particular issue at high redshift.

Figure 2.7 has many areas of similar morphology. On the left, we have isolated

objects: disturbed spirals or large galaxies with tidal disturbance to them. Along

the bottom, we see isolated bright objects with satellites about them. On the

bottom right, we see our area of representation space dominated by close pairs. In

the centre, we see the population of interacting galaxies that Zoobot was trained

to find. The areas of representation space which are dominated by clear sources

of contamination are cut. Figure 2.8 shows a scatter plot of the representation

distribution and the cuts we make. They are made such that any source with a Y

Mapping of −2 ≤ Y ≤ 4.75 will be kept in the catalogue. The choice of these cuts

has been made by eye, and then bootstrapping the remaining images to check

contamination removed. After applying these cuts, we retain 41,065 systems in

our catalogue.

We estimate ≈ 25% of sources in the greater than 0.95 prediction bin are

close pairs. This may seem lower than previous works, but is due to our very

conservative prediction cutoff. The general cuts to our population based on their

position in representation space makes it very likely that we retain some close

pairs in the catalogue, while also removing interacting galaxy systems.

As described in Section 2.5.2, we then apply a 5′′ to the 41,065 remaining

candidates, further reducing our catalogue to 27,720 systems. With such an ag-

gressive sky projection cut, many individual interacting galaxies are now identified

under the same ID as the secondary galaxy in the system. To remove remaining

contamination in the catalogue, a final visual classification step was conducted.

This visual inspection was conducted by DOR. Any systems removed at this stage

were classified into three categories: interacting system, contamination and gems.

The gems sub-category became necessary as many sources of contamination that

were being removed were objects of other astrophysical interest, and is described

in Section 2.6.2.
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2.6 Results & Discussion

2.6.1 An Interacting Galaxy Catalogue

Upon de-duplication and contamination removal described in Sections 2.5.2 and

2.5.3, our final catalogue contains 21,926 interacting systems. Figure 2.9 shows a

random sample of 50 of the systems from our catalogue. In these examples we can

see highly distorted or currently interacting systems, precisely what we trained

Zoobot to highly predict. Some cutouts are of the full interacting system, con-

taining both the primary and secondary galaxies in the interaction. Some source

cutouts only show one of the interacting galaxies, though these systems remain

highly disturbed. Due to the constraints in our training set, so highly weighting

disturbance or tidal features in our predictions, we are sampling interaction from

all epochs except the approach to the initial pass. At this initial stage, there

will be no tidal features formed or disturbance in the disks as the two galaxies

approach each other. Separating them from close pairs would be difficult without

kinematic or redshift information, not available for the majority of these sources.

We investigate which of the systems in our catalogue have previous references

in the astrophysical literature. To search the literature, we use the AstroQuery

Python package with a coordinates based search of cutoff radius 5′′. We search

the astronomical databases Simbad (Wenger et al., 2000), the NASA Extragalac-

tic Database (NED; Helou et al., 1991) and ViZieR (Ochsenbein et al., 2000) for

references to our interacting systems. These return either a list of references, or

an empty list showing no references associated with the system. We find that

7,522 of our systems have at least 1 reference associated with them, while 14,404

do not. A flag exists in the catalogue data release which shows whether a sys-

tem has references associated with it or it could be considered a ‘new’ system.

We, however, do not claim that these systems are discovered by ourselves. These

systems have always existed in the backgrounds of large surveys or observations

and been discovered by others, it is only with ESA Datalabs that we can apply

a methodology such as in this work to extract those systems from these obser-

vations. We also do not claim that these unreferenced systems are particularly

interesting or phenomenal. It is most likely that these systems are the very faint
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Figure 2.9: An example of 50 of the final interacting systems found with Zoobot.
These were selected randomly from the de-duplicated and de-contaminated 21,926
sources. Each of these examples have extended tidal features and distortion. Not
all of the final interacting systems have two galaxies within them (for example,
image 2), but are clearly very disturbed by a tidal event. These were kept in
as they would form a large part of the interacting galaxy population and would
be flagged as disturbed or interacting in Galaxy Zoo. Each of these images is a
1-colour image using the F814W HST filter.
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background galaxies in surveys or observations whose main objective was some-

thing other than finding interacting galaxies. This will be further discussed in

Section 2.6.3.

Figure 2.10 shows the distribution of our catalogue in the sky. The HST is able

to observe the majority so the catalogue sources are scattered throughout it. We

find that the sources cluster in different parts of the sky which correspond to major

surveys conducted using the HST involving ACS and the F814W filter. We also

mark the centres of the seven surveys which correspond to the major clustering

of interacting systems in the sky. These were the COSMOS, the GOODS North,

GOODS South, PHAT, CANDELS, AEGIS and Spitzer Space Telescope FLSv

Region (Morganti et al., 2004) surveys.

The full catalogue and data product are found on Zenodo at the following

DOI where it is freely accessible to the community: doi:10.5281/zenodo.7684876.

Table 2.1 shows an example of the data and format of the 50 sources shown in

Figure 2.9. We also bootstrap the final catalogue as an estimate of contami-

nation remaining. As described in Section 2.5.3, the final step of contamination

removal was visual inspection by DOR of the 27,720 candidate interacting systems

to remove the remaining 5,794 contaminants from the final catalogue. Visual in-

spection by a single expert at this scale is not perfect. We extract random sources

from the catalogue in batches of 500 and manually re-classify them again. This

bootstrapping reveals that ≈3% of our interacting system in the final catalogue

remains contamination.

2.6.2 The Gems

By conducting a visual inspection of the 27,720 candidate systems we were able

to directly identify many other objects of astrophysical interest. As Zoobot was

trained to highly predict objects with irregular morphologies, we also find many

other astrophysical objects with strange morphologies which may be of interest to

the community. We call these sources of contamination gems. We make 16 sub-

categories of these: active galactic nuclei (AGN)/quasars, submillimetre galaxies,

galaxy groups, high redshift galaxies, jellyfish galaxies, galaxy jets, gravitational

lenses/lensing galaxies, Lyman-α Emitters, overlapping galaxies, edge on proto-
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Image No. SourceID RA (deg) Dec (deg) Interaction Prediction References Status
1 4001014298177 261.292845 37.162387 0.983999 No entry Unreferenced
2 4001444190958 183.527536 33.183451 0.998016 [1994PASP..106..646K] Referenced
3 4000809226818 93.960150 -57.813401 0.982266 [2019ApJ...878...66C] Referenced
4 4553390202 73.581297 2.903528 0.968280 No entry Unreferenced
5 4000907600174 259.037474 59.657617 0.999978 No entry Unreferenced
6 4575187799 150.001883 2.731942 0.974649 [2007ApJS..172...99C] Referenced
7 4000717342023 149.527791 2.126945 0.993912 [2007ApJS..172...99C] Referenced
8 4001174802281 28.593114 -59.643515 0.982890 No entry Unreferenced
9 4182689774 186.709991 21.835419 0.973232 [2016ApJS..224....1R, 2011ApJS..193....8B] Referenced
10 4000958398690 186.719496 23.961225 0.999288 No entry Unreferenced
11 4266881925 344.730228 -34.799824 1.000000 No entry Unreferenced
12 4001084105393 150.128198 2.623949 0.982739 [2018ApJ...858...77H, 2007ApJS..172...99C] Referenced
13 4000961670486 345.337556 -38.985521 0.954961 No entry Unreferenced
14 4000719687395 338.173538 31.189718 0.974724 No entry Unreferenced
15 4001435343326 331.771500 -27.826175 0.986885 No entry Unreferenced
16 4001268932937 8.856781 -20.271978 0.986329 No entry Unreferenced
17 4651336656 149.836709 2.141702 0.984389 [2007ApJS..172...99C] Referenced
18 4000877021787 116.211231 39.462563 0.979178 No entry Unreferenced
19 4000878525229 149.834893 2.516816 0.963694 [2007ApJS..172...99C, 2009ApJS..184..218L] Referenced
20 6000290755870 186.774907 23.866311 0.981961 No entry Unreferenced
21 4000806637434 210.253419 2.854869 0.960790 No entry Unreferenced
22 4001215753971 135.898809 50.487130 0.998386 No entry Unreferenced
23 4000813961830 163.678042 -12.776815 0.958405 [2005ApJ...630..206F] Referenced
24 4001200639012 54.037618 -45.170026 0.991404 No entry Unreferenced
25 4000921402261 150.417634 2.313781 0.990775 [2018ApJ...858...77H, 2012ApJ...753..121K] Referenced
26 4001224732336 337.217339 -58.444885 0.955972 No entry Unreferenced
27 4000781402752 216.968619 34.575819 0.974076 No entry Unreferenced
28 4001283017901 120.202582 36.058927 0.994169 [2016ApJS..224....1R] Referenced
29 4000833486119 116.260049 39.457642 0.971092 No entry Unreferenced
30 4000949659908 146.342493 68.730869 0.961113 No entry Unreferenced
31 4000982920478 53.084832 -27.765379 0.983472 [2010A&A...512A..12B] Referenced
32 4001189505548 192.492491 2.436292 0.992574 No entry Unreferenced
33 4001060882070 89.700725 -73.049783 0.962839 No entry Unreferenced
34 4000889750512 151.176470 41.214096 0.962205 No entry Unreferenced
35 6000322363510 53.149367 -27.823945 0.963889 [2016ApJ...830...51S] Referenced
36 4000722901091 28.257843 -13.928090 0.982778 No entry Unreferenced
37 6000198293960 264.488431 60.101798 0.986865 No entry Unreferenced
38 4001095660911 258.587670 59.970358 0.955193 No entry Unreferenced
39 4000972775076 330.960020 18.796346 0.989131 No entry Unreferenced
40 4001132466571 126.545810 26.456196 0.997077 No entry Unreferenced
41 4000933395648 312.810365 2.288410 0.976252 No entry Unreferenced
42 4000932940918 218.066960 32.997228 0.990737 No entry Unreferenced
43 4001048433104 93.880689 -57.754746 0.957755 No entry Unreferenced
44 4001039919651 53.111470 -27.673717 0.994424 [2011ApJ...743..146C] Referenced
45 4001282607544 333.765783 -14.006097 0.999520 No entry Unreferenced
46 4000922341052 260.723839 58.849293 0.995477 No entry Unreferenced
47 4000731518210 194.869144 14.146223 0.994651 No entry Unreferenced
48 4001082523786 311.703084 -12.869002 0.976454 No entry Unreferenced
49 4000767041112 149.784518 2.172233 0.991335 [2007ApJS..172...99C] Referenced
50 4001024667142 150.661685 1.718587 0.967865 [2007ApJS..172...99C] Referenced

Table 2.1: An example of the format of the final catalogue for the 50 example
images presented in this paper.
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Figure 2.10: Sky Distribution of our catalogue, with marked positions of well
known deep surveys conducted by HST. HST is able to observe almost the entire
sky and therefore the interacting galaxies are scattered throughout. Large clusters
of sources are found in the locations of surveys. This shows that often our sources
are in the background of larger surveys and observations.

planetary disks, radio halos, ringed galaxies, supernova remnants, transitional

young stellar objects, young stellar clusters and unknown objects.

Each sub-category has been defined by checking Simbad and VizieR for ref-

erences within a 5′′ radius of each source and using the astrophysical literature

for a definition of the source. DOR classified any unreferenced objects by mor-

phological similarity to other defined objects. The platforms ESASky1(Meŕın

et al., 2017), NASA Extragalactic Database (NED) and the Sloan Digital Sky

Survey were also used to investigate any unreferenced objects. ESASky was of

paramount importance to these classifications. This platform allows us to easily

access observations across a range of observatories across a range of wavelengths.

Most importantly, it allows us to easily find the source using the HST F814W

observations, and then switch seamlessly to the same coordinates in a different

observatory.

Switching observatories allowed us to classify objects in more wavelengths.

For example, we confirmed the unreferenced AGN/quasar candidates by investi-

1ESASky: https://sky.esa.int/
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gating the source in Chandra or XMM-Newton for hard or soft X-Ray emission.

We would find the source in the F814W observation, and then switch the ESASky

viewer to XMM or Chandra. This would reveal a high signal in X-Ray at the

source, and allow us to make our prediction. The same was done for the submil-

limetre candidates. They were located in F814W observation, and then swapped

to Herschel or Planck measurements. If there was a positive signal in their posi-

tions, they were classified as such. Further work will be needed to confirm these

classification.

The final category which required further inspection was that of the unknown

objects. These are objects which have unusual morphology which mark them out

from the rest of the sample, but no references associated with them in Simbad or

VizieR. They also did not appear in NED, meaning they could not be confirmed

to be galaxies. These objects are shown in appendix A.3.

Table 2.2 shows a breakdown of the total number of objects found and the

number of which were referenced or unreferenced. We have released catalogues

of each sub-category in the same format as that of the main catalogue without

the interaction prediction column. Each of these catalogues can also be found at

the same Zenodo link.

2.6.3 Source Redshifts and Photometry

We investigate the redshift distribution and photometric properties of sources in

our catalogue. We extract all sources with pre-existing data, querying Simbad,

VizieR, the HSC via the Milkulski Archive for Space Telescopes (MAST) and

NED. Our queries use a 5′′ search radius within the Python package AstroQuery.

The existing data from each of these databases has undergone heterogeneous

selection and analysis procedures by the various studies we extract them from;

we do not try to reconcile these here. Rather than a detailed physical analysis of

these sources, our priority in this subsection is to highlight how to explore and

use this catalogue, as well as any difficulties which may arise.

Of the 21,926 interacting systems in our high-confidence sample, 3,037 of the

7,522 referenced sources have a measured redshift. Figure 2.11 shows the redshift

distribution of this subset of our catalogue. 42.5% of the sources have a redshift

z ≤ 0.5, 45.1% have a redshift 0.5 < z < 1 and 12.4% have a redshift z > 1. In
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Category Total Found Referenced Unreferenced
AGN/Quasars 35 21 14

Submillimetre Galaxies 11 8 3
Galaxy Groups 6 6 0

High Redshift Galaxies 10 7 3
Jellyfish Galaxies 18 5 13

Galaxy Jets 25 10 15
Gravitational Lenses/Lensing Galaxies 189 64 125

Lyman-Alpha Emitters 1 1 0
Overlapping Galaxies 221 92 129

Edge-on Protoplanetary Disks 9 2 7
Radio Halos 1 1 0

Ringed Galaxies 6 1 5
Supernova Remnants 4 3 1

Transitional Young Stellar Objects 2 1 1
Unknown Objects 6 0 6

Young Stellar Clusters 2 1 1

Table 2.2: A breakdown of gems found in the visual inspection stage of contam-
ination. Each gem category has been classified based on the references associated
with each object.

fact, a small fraction (15) of these sources are found to be at z≥ 5. Upon investi-

gation of these sources two of their redshifts have been measured photometrically,

while the remaining 13 sources did not have the method of measurement recorded

in the archive. Therefore, this finding of very high redshift interacting galaxies

are uncertain at best.

It is important to note that the small sample with redshift information is

affected by the selection biases of the combined studies publishing these values,

and therefore the distribution may not be representative of the full sample. In

addition, above redshift z = 1 the F814W filter begins to only capture rest-

frame UV flux, and therefore z > 1 galaxies with low star formation rates are

more likely to fall below the flux limits of our detection images. Sampling only

the rest-frame UV also changes a galaxy’s observed brightness and morphology

(e.g., Ferreira et al., 2022) – the latter being how Zoobot identifies interacting

galaxies. For example, tidal features whose initial starburst has faded may be

undetected; conversely, a single galaxy with irregular star-forming clumps may

appear to be multiple interacting galaxies, which we noted as a particular source
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Filter (s) Sources Covered
F814W 100%

F606W + F814W 45.0%
F475W + F814W 11.0%

F475W + F606W + F814W 6.1%

Table 2.3: Percent of sources in the final catalogue which have observations in
the relevant Hubble filter.

of contamination during the visual inspection stage. High-redshift interacting

galaxies that are detected initially by Zoobot but have unusual morphologies

compared to z ∼ 1 sources may be removed during prediction (Section 2.3),

given that finetuning is based primarily on the z . 1 imagery of Galaxy Zoo:

Hubble. Therefore, the currently measured redshift distribution in Figure 2.11 is

likely due to some combination of selection bias and training bias.

Figure 2.12 shows the basic parameter space sampled by the sub-sample of

the catalogue with existing photometry and redshifts. We show the distributions

of redshift with the measured apparent F814W magnitude and the calculated

absolute F814W magnitude. The faintest objects are, as expected, observed at

approximately the limiting magnitude of the deepest observations in our cata-

logue. Other observations have brighter limits; those wishing to select a uniform

or volume-limited sample from our catalogue must consider the variable flux lim-

its across the sample.

We finally focus on sources from our high-confidence sample that have multi-

band photometry, focusing on commonly-observed filters. By construction, 100%

of the sample has F814W measurements, with 45% of the catalogue having

F606W and only 11% having measured fluxes in F475W . Table 2.3 summa-

rizes the filter coverage of our catalogue. 6.1% (1336 sources) have complete

3-band photometric information in the HSC. We use these to create examples of

colour images from the catalogue (using the algorithm of Lupton et al., 2004).

We used a scaling factor Q = 2 and α = 0.75, with (F814W , F606W , F475W ) as

RGB channels and multiplicative factors of (1.25, 0.95, 2). The resultant images

are shown in Appendix A.2.

We extract the measured magnitudes of the F606W and F814W filters, giving

us two-band photometry for 9,876 sources. Cross referencing with each source

62



2.6 Results & Discussion

Figure 2.11: The redshift distribution of a subsample of our catalogue. Of the
7,583 referenced systems, 3,037 of them had redshift measurements in the NED,
MAST or Simbad. This redshift distribution shows that our model confidently
predicted interacting systems primarily for z < 1 systems. This was anticipated,
as the model was primarily trained on systems at these redshifts. There are fifteen
sources with a reported z > 5.
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Figure 2.12: The distribution of redshift with magnitude for all sources with
available data. This shows the parameter space we are sampling in this catalogue.
Panel A shows that the majority of our sources are dim, background sources at low
redshift. Panel B shows the faintest objects we find are at the limiting magnitudes
of the different surveys this data is from. While we find many galaxies at high red-
shift in this sample, these are measured only with photometric redshifts. Therefore,
we would be hesitant to claim finding galaxies at such high redshift values.
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that had a redshift yields 2,993 sources from our catalogue. We calculate the

colour of each source and plot it against the absolute magnitude in the F814W

filter. Figure 2.13 shows the resulting colour-magnitude distribution in Panel A.

The resultant distribution is very hard to interpret due to the high scatter of the

sources. We extrapolate from this panel that there is little contamination from

sources other than galaxies. If levels of contamination were high we would expect

a second locus of sources with a very different colour-magnitude distribution.

Plotting the colour-magnitude distribution in this way captures a wide range

of rest-frame wavelengths in the observed filters, which is the primary reason that

panel A of Figure 2.13 is hard to interpret. In this first-look study, we do not

have full spectral energy distributions (SEDs) of most sources, so K-correction of

individual colours within this sample would involve assuming a template SED for

each galaxy. Given that a high fraction of galaxies in our sample of mergers may

deviate from standard SED templates, we wish to avoid this method. Instead,

we choose redshift ranges within which to examine subsamples, such that the

observed F606W and F814W bands cover consistent rest-frame colours within

that subsample. Figure 2.13B shows only sources with z < 0.18, within which

the observed filters can be taken to be approximately rest-frame filters, which we

define as at least 50% of the flux captured in the observed band being emitted at

rest-frame wavelengths covered by that band. At 0.24 < z < 0.56, the observed

F606W filter captures at least 50% rest-frame F475W flux, and the observed

F814W filter captures at least 50% rest-frame F606W flux, so Figure 2.13C is

approximately a rest-frame F475W − F606W vs F606W plot. At 0.62 < z < 1,

Figure 2.13D is approximately a rest-frame NUV-Blue plot (F336W − F475W

vs F475W ).

The galaxies in Panel B are observed in approximately the rest frame F606W

and F814W filters. Nearly all are blue systems (by general definitions at various

redshifts, e.g., Kauffmann et al., 2003; Whitaker et al., 2012; Schawinski et al.,

2014). This is expected for interacting systems with enough gas to fuel a star-

burst. The lack of many red systems is due to few gas-poor (“dry”) interactions

in the (relatively) local volume (López-Sanjuan et al., 2009). In Figure 2.13C,

the F606W and F814W filters are still detecting rest-frame optical (F475W and

F606W ) emission, and we find a much broader population. There are both blue
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Figure 2.13: The colour-magnitude distribution of sources with a redshift mea-
surement associated. Panel A shows the distribution of all galaxies, without con-
trolling for redshift or dust extinction. The remaining panels then split these
sources into distinct redshift bins where the F606W and F814W filters are observ-
ing in different rest frames. Panel B shows the colour-magnitude distribution in
the local Universe, where the rest frame observations are F606W and F814W flux.
This bin reveals a blue population. Panel C shows the redshift bin where at 50%
- 100% of observed F606W and F814W flux is rest frame F475W and F606W
flux. This bin reveals a larger distribution of interacting galaxies, with a dominat-
ing population of blue systems and a minor population of red systems. Panel D
shows the redshift bin where 50% to 100% of observed F606W and F814W flux is
rest frame F336W and F475W flux. These filter bands are very sensitive to star
formation, and reveal a broad distribution in colour of red and blue systems.
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and red interacting systems, with the redder mergers occurring in more luminous

(likely higher mass) systems, broadly consistent with expectations (van Dokkum,

2005; Lotz et al., 2008b). The rest-frame filters approximately captured in Panel

D (F336W and F475W ) sample emission across the 4000 Å break. Sensitivity

to NUV means this panel effectively splits systems according to very recent star

formation history (Schawinski et al., 2014; Smethurst et al., 2015). There is a

significant spread in colour, with equivalent red and blue systems. We, therefore,

find many young blue systems undergoing star formation and bright brighter,

elliptical, massive systems also undergoing interaction in this bin.

This initial examination of the subsample of systems with easily retrievable

redshifts has revealed that the interacting galaxies in the sample broadly agree

with previous studies of colours in merging systems. This demonstrates the un-

derlying promise of the catalogue. A detailed study is beyond the scope of this

work, but there is considerable potential for new astrophysical insights using this

high-confidence catalogue with nearly an order of magnitude more sources than

those previously published.

2.7 Conclusion

We present a large, pure catalogue of 21,926 interacting galaxy systems found

from the Hubble Source Catalogue. This catalogue is a factor of six larger than

previous works. Each interacting system was found using the European Space

Agency’s new platform ESA Datalabs, which allowed us to directly apply an ad-

vanced CNN - Zoobot - to the entire Hubble science archive. This corresponds

to predicting over 126 million sources. The compiled catalogue has a contamina-

tion rate of ≈3% as found by bootstrapping. Table 2.1 shows an example of 50

entries in our new catalogue, Figure 2.9 showing the corresponding images. The

new catalogue and all corresponding images can be downloaded from Zenodo:

doi:10.5281/zenodo.7684876.

Each of our interacting galaxies were given a prediction score≥0.95 by Zoobot,

with such a conservative score chosen to limit contamination and maintain purity

in the catalogue. Contamination was removed by applying cuts in representation

space (shown by Figure 2.8) and visual inspection. Upon visual inspection, many
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contaminating images were found to be objects of other astrophysical interest.

These have been compiled into separate catalogues, and Table 2.2 shows a break-

down of the objects found. These sub-catalogues have been released alongside

our interacting galaxy catalogue. With the priority of purity in this catalogue

creation, we will aim in future work to use it in the statistical analysis of in-

teracting galaxies and begin linking the underlying parameters of interaction to

the complex physical processes that occur in them. A secondary purpose of this

catalogue is to serve as a training set for future models which may wish to search

for interacting or merging galaxies.

With the use of ESA Datalabs, this project was conducted quickly. The entire

process, from creating the source cutouts, to training Zoobot, to making predic-

tions on 126 million sources took three months to complete. Using conventional

methods, such as AstroQuery or TAP services, downloading the data would have

likely taken on this timescale. By bringing the user to the data, rather than

vice versa, catalogues of a similar size - and many times larger than previous

catalogues - of many different objects can be created quickly.

None of the the interacting systems in this work are ‘new’; every one of them

exists in the background of large scale HST surveys and observations since their

release. However, the method to directly search for them has been impractical

until the release ESA Datalabs. By directly applying machine learning to exist-

ing astrophysical data repositories, a new method to creating significantly larger

catalogues has been achieved.

This shows the importance of archival work, and the power that ESA Datalabs

will bring to the field of astronomy. ESA Datalabs is expected to be released in

Q4 2024 and with it, the ability for large scale exploration of archival data. It will

be released with introductory tutorials, step-by-step guides and different Python

environments for ease of use for different telescopes and instruments the ESA

is involved in. It will have a full cluster of GPUs at its disposal and a storage

capability in the range of hundreds of Terabytes. In future, this entire project -

from training set creation to predictions - could be conducted on ESA Datalabs.

Such a setup as ESA Datalabs also allows the creation of large observational

catalogues, comparable to that we create from cosmological simulations. This

is incredibly important to further constraining already existing results. In the
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current period of astronomy where large survey instruments are awaiting first

light, or the beginning of future telescopes is uncertain, the ability to get ever

more information out of the archives is paramount.

69



Chapter 3

Timescales for the Effects of

Interactions on Galaxy

Properties and SMBH Growth

3.1 Introduction

To fully map out the effect of galaxy interaction, we must understand its impact

through various merger histories and across the full dynamical timescale of the

interaction. The dynamical timescale is the full time of the interaction, from the

two galaxies approaching each other to flying by and escaping or merging. We

cannot observe a full, continuous interaction and have to rely on many obser-

vations to provide snapshots of the dynamical timescale we can piece together.

This, however, makes it difficult to conclusively link the dynamical timescale to

physical processes. Often, observational samples are too small to be fully repre-

sentative or deep studies of individual systems are required to identify the dynam-

ical timescale (Barton et al., 2000; Lambas et al., 2012; Wild et al., 2014). We

gain insights from works focused on simulations, where the dynamical timescale

can be directly recorded. They find sudden increases in star formation occurs at

the mid-point of the dynamical timescale, as the two systems flyby (Cox et al.,
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2008; Rodŕıguez Montero et al., 2019; Moreno et al., 2021). However, confirming

this observationally remains elusive (Ren et al., 2023). Observational confirma-

tion is also difficult with nuclear activation and quenching of interacting systems

(Ellison et al., 2011; Goulding et al., 2018; Steffen et al., 2023).

While we cannot directly measure the full dynamical timescale for individ-

ual systems, we can create large samples of interacting galaxies contain systems

spanning the full dynamical history. Attempts to create such a sample have been

either by machine learning classification (Pearson et al., 2019a; Suelves et al.,

2023), visual classification by citizen scientists (Darg et al., 2010a) or by pho-

tometric parameterisation (Lotz et al., 2004; Nevin et al., 2023). However, as

stated previously, each sample has always been plagued by contamination and a

loss of statistical significance when broken down into stages.

An alternate approach to directly measuring the dynamical timescale of an

interaction has been to infer it from the projected separation between the two

systems. Early works showed that there was significant star formation enhance-

ment (SFE) in galaxy pairs with small separations (Lambas et al., 2003; Li et al.,

2008a; Ellison et al., 2008; Shah et al., 2022). A connection was also found be-

tween the projected separation in galaxy pairs and the AGN fraction where, once

again, the AGN fraction appears to increase with decreasing projected separa-

tion (Rogers et al., 2009; Ellison et al., 2011; Gordon et al., 2017; Silva et al.,

2021). However, using projected separation as a proxy for the stage in dynamical

time of an interacting history overlooks which part of the dynamical history the

interaction is. For instance, if a galaxy pair is found to have small projected

separation, without visually confirming the morphology, it is difficult to ascertain

if the galaxies are just approaching each other or have just passed each other.

Extended morphological tracers can help break this degeneracy, which is critical

to our understanding of the effects of interaction.

In this Chapter, we split our large sample of interacting galaxies found in

Chapter 2 into four specific stages based on their morphology. Each stage is de-

signed to capture different parts of the dynamical time of an interaction. The

stages range from galaxies being close pairs, to overlapping and disturbed, to dis-

turbed and distinct to finally coalescing. This follows the classification methods
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of developing algorithms for staging of interaction (Bottrell et al., 2019; Chang

et al., 2022).

We focus here on the subset of our sample in the Cosmic Evolutionary Survey

(COSMOS) survey1. This provides us with ancillary data which contains many

galactic parameters of interest and we explore how they evolve with our defined

stages of interaction. We primarily focus on the evolution of the stellar masses,

star formation rates and AGN classification from various COSMOS catalogues.

We use the photometric redshifts available from COSMOS to confirm a set of

interacting galaxies and close pairs to draw on trends with projected separation.

This Chapter is laid out as follows. In Section 3.2 we briefly summarise the

COSMOS catalogue, and describe the process of catalogue matching especially

focused on accurate de-duplication and cross-matching. Section 3.3 describes

the methods by which we split the interacting systems into stages, and how we

identify the secondary galaxies in each pair. In Sections 3.4 and 3.5 we show

our results of star formation and active galactic nuclei evolution with interaction

stage and present an initial discussion. These are followed in Section 3.6 where

we compare to previous works and put our results in the context of the field.

Finally, in Section 3.7 we make concluding remarks and discuss future work to

better our constraints.

3.2 Data: Catalogue Matching & Secondary Iden-

tification

3.2.1 The COSMOS2020 Catalogue

The COSMOS survey is a deep, wide field survey centred on coordinates

(+150.1192◦,+2.20583◦). It covers a 2 square degree area about this central

point and has been observed with many major space and ground based obser-

vatories. These include HST, Spitzer, GALEX, XMM, Chandra, Herschel and

NuStar from for space based observatories and a host of ground based telescopes

1DOI: 10.26131/IRSA178
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including Keck, Subaru, the Very Large Array, the European Southern Observa-

tory Very Large Telescope, etc. This gives it unprecedented wavelength coverage

from the radio to the X-Ray wavelengths. The original survey overview is fully

described in Scoville et al. (2007), which initially used HST observations with the

F814W band, reaching a 5σ depth of 27.2AB. Since this initial release, there have

been many photometric catalogues from the COSMOS team using different fitting

software across the host of photometric information they have available to them.

This information has only grown as almost all major astrophysical observatories

have observed this field.

Each COSMOS dataproduct release contains multiple catalogues of galactic

parameters such as star formation rates (SFR), stellar masses and line emissions.

We elect to specifically use the COSMOS2020 catalogue (Weaver et al., 2022).

This catalogue has a wealth of ancillary information for approximately 1.7 million

sources. Each source has been analysed with well known astronomical software

(for our purposes, primarily LePhare, Arnouts et al. 1999; Ilbert et al. 2006, and

EAzY, Brammer et al. 2008). These provide estimates of the physical parameters

of each source based on its measured broadband photometry. For our purposes,

the parameters of interest are the stellar masses and the estimated star formation

rates of each source. For the stellar mass we use the best fit LePhare measurement

and for the star formation rates we use the best fit EAzY measurements. We

compare the output masses and SFRs for our sources in Figure 3.1. As shown,

there can be wide scatter and disagreement between the two algorithms. We

tested different combinations of EAzY and LePhare stellar masses and SFRs to find

which would be best to use in this work. We found that using the same algorithm

in both parameters revealed the degeneracies of using discrete templates to fit

the broad band photometry in the underlying parameter space. Therefore, we

elect to inter-mix the algorithms and use the best fit LePhare stellar mass and

best fit EAzY SFR measurement.

Our sample of interacting galaxies has been de-duplicated, but the COS-

MOS2020 catalogue is not specifically a de-duplicated merger catalogue. We

cross match between our sample and the COSMOS2020 catalogues using a po-

sition search within 10′′ of our sample coordinates. Once we have identified the

nearest COSMOS2020 source for each interacting galaxy ID, we de-duplicate
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Figure 3.1: Comparison of the measures of stellar mass and SFR using either
LePhare or EAzY photometric codes to calculate them. If the algorithms agreed
perfectly, the sources would lie on the blue 1:1 line. Left : The scatter in the stellar
masses between softwares. As shown, EAzY often seems to find larger stellar masses
when compared to LePhare. Right : Scatter in SFRs when measured with LePhare

or EAzY.

based on COSMOS2020 ID and redo the coordinate matching process with any

duplicate matches. If no further COSMOS2020 sources were within 1” of the

source, then we classify the source as not in the COSMOS2020 catalogue. We

find 3,786 of the our sources exist in the COSMOS2020 catalogue.

Once matched, we remove any sources with non-physical photometric mea-

surements for the stellar mass or star formation rates. We then further reduce our

sample by only keeping sources within a mass range of 6.5 ≤ log10 M∗(M�) ≤ 12.5

and a star formation rate range of −5 < log10 SFR(M�yr−1) ≤ 3.5. We also opt

to institute a redshift cut of z ≤ 1.2. Beyond this redshift, we find that identifica-

tion of tidal features becomes difficult due to surface brightness dimming and we

risk mis-identifying the stages of the interacting galaxies. This also matches the

redshift cut applied to the environment catalogue we cross match with in Section

3.3.2. Applying these cuts reduces our sample size to 3,689 interacting galaxies.
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3.2.2 Secondary Identification

As the catalogue described in Chapter 2 only contains source coordinates and

IDs, we must also manually identify the secondaries of many of our interacting

systems. To find the secondaries, we apply three steps. First, a cutout sur-

rounding each source was created. These cutouts were from the COSMOS cutout

service, selecting HST-ACS tiles in the F814W filter. Each cutout was 30”×30”

(corresponding to 1001 × 1001 pixels). The original cutout from Chapter 2 was

also displayed next to the enlarged cutout. We annotate each cutout with each

sources’ COSMOS2020 ID and measured photometric redshift and error. By an-

notating each cutout with the sources photometric redshift and ID, we visually

assessed each cutout and gave one of the four following classifications to each:

system disturbed but secondary could not be identified; secondary could be iden-

tified; cannot confirm galaxy is interacting; null redshift (0 or NaN); incorrect

primary assigned.

To associate a secondary galaxy for each primary, the galaxy had to be within

the cutout we were visually assessing and within the recorded error of the primary

photometric redshift. Using photometric redshift cutoffs in this way is often done

when calculating environment parameters (e.g Baldry et al., 2006) or defining

interacting galaxies by close pairs (e.g Shah et al., 2022). A null redshift is

defined as the primary galaxy out with our redshift limits, 0 or NaN. A minority

of the cutouts we visually assessed were found to have the incorrect primary at

the centre. In these cases, we record the correct primary galaxy ID and extract

the ancillary data from the COSMOS2020 catalogue. We then attempted to find

the secondary galaxy again for the corrected primary.

Using these definitions, we find that of the 3,689 original systems cross-

matched with COSMOS2020 2,283 could not have their secondary identified,

834 had a clear secondary, 446 could not be reliably classified as an interacting

galaxy, 248 had a null redshift and 149 were the incorrect primary. Figure 3.2

shows an example of each of our classifications. Each secondary we identify was

added to our sample, increasing our sample size to 3,829.

While initially surprising that the majority of our systems could not have a

secondary identified, we found that it was mostly due to limitations in the COS-
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Figure 3.2: An example of each visual classification made on the cross matched
sample. These are: (A) where the secondary could not be identified, (B) the
primary had a clear secondary, (C) the primary could not be reliably classified as
an interacting galaxy, (D) the redshift of the primary was null and (E) the incorrect
primary was identified. Based on these classifications, we either add the secondary
galaxies to the sample or we remove the contamination from it. These images are
30” across using the COSMOS cutout service, selecting HST/ACS tiles as the basis
for the observations in the F814W filter.

MOS catalogue or the way in which we conduct our secondary identification.

Each potential secondary must have a COSMOS ID associated with it, however,

when two systems are very close together and small enough they were identified

under a single COSMOS ID despite being two separate systems. The same also

occurred when two systems were merging or interacting. The tidal features con-

necting the systems or coalescing systems would only be identified under one ID

in the catalogue. Figure 3.2 panel (C) shows an example of two systems being

close enough together that they have been identified under a single COSMOS2020

entry. Figure 3.3 shows this disparity with the different types of interaction we

observe.

Those galaxies which were found to be contamination (i.e., could not be re-

liably classified as interacting as they showed little tidal distortion or had no

neighbouring systems at a matching redshift or having a redshift of 0) were re-

moved from our sample. Galaxies that could not be reliably classified as inter-

acting were also removed. These systems were often overlapping but at different

redshifts, or were systems with irregular morphologies of spiral arms or a clumps
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Figure 3.3: Where a secondary could be identified at different stages in the
interaction. The reasoning for such disparity in secondaries identified is due to the
relative distance each the secondary would be from the primary at each stage. For
a close pair, we often found the secondary galaxy, but a minority of these were so
close together that the entire system was given a single COSMOS ID. The same
was true for those interacting systems approaching pericentre or merging. When
the secondary was near apocentre, often it would be outside the cutout we were
using for visual classification.

77



3.2 Data: Catalogue Matching & Secondary Identification

were present. There was also many systems that were at high redshift (z > 1)

where the resolution of the cutouts meant that features could not be discerned

visually.

Our final classification type was that the incorrect galaxy had been identified

as the primary galaxy. This was the case for 149 systems. These were systems

where the interacting galaxies were clearly in the cutout but some tidal debris

or some nearby system had been matched from COSMOS. We reassign these

systems to the correct COSMOS IDs and then take them through the secondary

identification process.

By the end of this selection method, we find a sample size of 3,829 inter-

acting galaxies. We conduct a de-duplication based on the COSMOS2020 ID,

which reduces the sample back down to 3,547 interacting galaxies. The remain-

ing systems are each visually confirmed interacting and disturbed galaxies based

on their morphology and photometric redshift as measured in the COSMOS2020

catalogue.

For each galaxy in our sample, we define a mass- and redshift-matched con-

trol galaxy to investigate differences in their galactic parameters. We find these

control galaxies from the COSMOS2020 catalogue. All galaxies within 0.01 dex

of our samples stellar mass are selected from the catalogue, and within a ±0.01

redshift slice. We then define the control galaxy as the system furthest from our

interacting galaxy. Each control galaxy is then visually confirmed to be non-

interacting and have no nearby pairs. We also confirm that it does not already

exist in the catalogue, and ensure there is no duplication in the control sample.

Figure 3.4 shows the mass distribution of our paired sub-sample of galaxies and

their control, showing a mass distribution which is approximately the same as the

interacting sample. With the previously defined cuts, we find a control galaxy

for all but one of our interacting galaxies.

3.2.3 Finding Additional Systems

As a result of using visual classification to find the secondary galaxy in each

interaction, we were able to also confirm other interacting systems which had

not been found in our catalogue. Primarily, these extra interacting galaxies are
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Figure 3.4: The mass distribution of the paired interacting galaxy sample and the
control sample. Both primary and secondary galaxies are within this distribution.
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from systems which had more than two galaxies involved in the interaction. Our

selection process was built to only find a primary and secondary galaxy and,

therefore, we add these extra systems into our sample manually. Other interacting

galaxies that were added were low redshift systems which would have appeared

to completely fill the cutout of the classification process in Chapter 2. By looking

at the larger COSMOS2020 cutouts, we are able to recover these galaxies and

add them to this sample.

In total, we found an extra 841 interacting systems that we could add to

our sample. Upon conducting a de-duplication of these with the sample already

found, this was reduced to 634 interacting systems. This gives us a total flux-

limited sample size of 4,181.

3.2.4 Creating the Volume Limited Sample

We now investigate the distribution of our sample between mass and redshift.

Figure 3.5 shows the resultant distribution from our flux limited sample. In order

to ensure that our results are not biased by a redshift-dependent mass/luminosity

limit, we institute a cut in the mass of the interacting systems. Thus, creating

a mass limited sample. We elect to use a mass cut of log( M
M�

) ≥ 9.25, shown

by the blue dashed line in Figure 3.5. Note, if one galaxy in a pair is below this

volume cut, then we remove both galaxies from the sample. This ensure that

our pairs are volume limited, and not just individual galaxies. This specific cut

is motivated by two reasons. First, this is the lowest mass system which is still

observed in our the coalescing sample at z = 1.2. The second reason is that such

a mass cut is approximately the one made in the environment catalogue we will

describe later in Section 3.3.2. There we make a cut of log( M
M�

) ≥ 9.6, we find

that decreasing the mass cut to log( M
M�

) ≥ 9.25 does not make major differences

to our results. Thus, we opt to use a lower mass cut to increase the number of

galaxies in our sample. Making such a cut reduces our flux-limited sample of

4,181 to a mass-limited sample of 3,384 interacting galaxies.

Throughout this Chapter, we will use our volume limited sample in our anal-

ysis. This gives us uniform sensitivity across our volume. However, we also

conducted the same analysis described below with the flux-limited sample and
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Figure 3.5: Redshift vs Mass distribution for the four stages of interaction. We
separate those systems with an identified secondary (in red) from those where no
secondary could be found. The dashed blue line shows the mass cuts we make
for our mass-limited sample and is set at log( M

M�
) ≥ 9.25. As shown here, the

distribution of systems across redshift and mass is consistent for all stages in our
sample. This is important as we use tidal distortion and the existence as tidal
features as a fundamental for our classification methodology. Therefore, we are
likely not affected by this in our analysis. We find that our ability to identify pairs
is primarily affected by stage and not redshift.
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the qualitative conclusions of this Chapter did not change. For a full summary

of our selection process, and the source counts after each step, see Section 3.3.4.

This also will summarise our environment and AGN selection which is described

below.

3.3 Method: Environment, AGN and Interac-

tion Stage

A primary aim of this work is to investigate the evolution of different galactic

parameters with stage of the interaction. Each stage is defined to capture a

different part of the dynamical time and merger history. This stage also relates

to the projected separation of galaxies with an identified secondary. Here, we

define the shorthand for the interaction stages and which part of the dynamical

time they cover. We also describe how we find AGN in our full sample and

find measurements of the environment about each. The parameters required to

calculate the AGN fraction are not found in the COSMOS2020, and we therefore

must cross match with other catalogues to find the required parameters. We also

describe the catalogue we use to define the environmental density about each of

our sources. This is important to consider, as it is well known that measured

SFRs of galaxies can be affected by environment, as well as existing biases in

where interacting and merging galaxies reside. We, therefore, need to check that

we have not introduced any environmental biases into our definition of interaction

stage.

3.3.1 Classifying Stage of Interaction

The primary goal of this work is to find if a relation exists between a host of

galactic parameters, underlying physical processes and the stage of the interac-

tion. Each stage covers a different part of the dynamical history in an interaction

and, in this case, we define it based on the morphology and projected separation

between systems. We have already encountered the four stages we will investigate
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in Figures 3.4 and 3.5 and now define a short hand name to refer to them as well

as fully describe the part of the dynamical history they represent. These are:

• Separated: Systems which are well-separated with little to no morphological

disturbance (Close pairs).

• Pericentre: Close pairs showing morphological distortion while still in a pair

or show a physical connection by tidal features.

• Apocentre: Well separated pairs with morphological disturbance or isolated

galaxies with clear tidal features.

• Merging: Highly disturbed systems with a secondary core present.

Our four stage approach is not a new one, and many other works have utilised

it to differentiate different parts of the dynamical history of a galaxy interaction

(e.g Chang et al., 2022; Garay-Solis et al., 2023).

Figure 3.6 shows the original source cutouts used in Chapter 2 to give an

example of each stage. There are degeneracies associated with this staging system,

however. In this context, we define a degeneracy as when the interacting galaxies

may be at two or more parts of the dynamical timescale and we have no way to

tell without further information on the system.

The separated stage of the interaction captures the first approach of the two

systems and they are observed as a galactic pair. This sample comes from a

combination of the remaining contamination in the OR23 catalogue (approxi-

mately 4% as described in Chapter 2), or were found to be real galaxy pairs in

the de-contamination step described there. They have little to no morphologi-

cal disturbance and, in our sample, are most often those galaxies with distinct

disks. At this point, we would expect no change in the underlying processes of

the galaxies from their control samples. Interaction has not taken place yet, and

the two systems are morphologically intact. By definition, this stage requires an

identified secondary galaxy and therefore has the highest number of identified

secondaries with every system having a secondary that can be visually classified.

This is also the least degenerate part of the dynamical time we are sampling due
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Separated Pericentre

Apocentre Merging

Figure 3.6: Examples of the four stages we split our interacting galaxy sample
into. Separated: A close pair with confirmed redshift matching. Pericentre: Two
distinct systems interacting with tidal features forming. Apocentre: A tidally dis-
turbed system with no secondary present, likely at apocentre. Merging: A galaxy
with multiple cores while highly disturbed. At the final stage before coalescence.
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to a criteria of no morphological disturbance. Therefore, it is unlikely that the

galaxies have already made a passage.

The pericentre stage of the interaction is defined as the point where the two

galaxies in the interaction are at or just passing the pericentre of the tidal en-

counter. At this point, we find the beginning of morphological disturbance, the

beginning of the formation of tidal features and some tidal debris. Due to the two

systems having to overlap or connect via tidal features - by definition - this is the

stage that suffers most from limited identification of the secondary galaxy. The

COSMOS2020 catalogue often defines these two systems as a single system, and

therefore, we lack information about their secondary. This stage is also highly

degenerate in the context of the dynamical timescale of the interaction. Without

further information, we are unable to define whether the galaxies involved at this

stage are at the first, second, third, etc passage of the tidal encounter. We also

do not know if they are approaching or have just passed pericentre.

The apocentre stage describes those interacting systems where the two disks

are fully separated and distinct from one another. They have some morphological

disturbance associated with them, but do not require a secondary galaxy to be

put into this stage. If the galaxies have sufficient velocity they would escape from

each other and, therefore, their secondary could be beyond our COSMOS2020

cutouts used to visually identify them. This is reflected in an even distribution

of finding the primary and secondary in this stage. This stage also defines a large

part of the dynamical timescale. It spans from separating from the secondary and

after pericentre, to moving out to the apocentre of the interaction (or escaping

with sufficient velocity), to falling back in toward the secondary galaxy again.

Without velocity information, we have no way of finding if the galaxy is moving

away or moving toward its secondary.

Finally, the merging stage represents the final step of a galaxy interaction. If

the two galaxies do not have sufficient velocity to escape one another they coalesce

and ultimately merge. We define this stage through the severe morphological dis-

turbance of the galaxy involved as well as the existence of a second core within

it. While we attempt to capture only pre- or ongoing-coalescing systems, it is

important to note that this stage is degenerate to post-merger remnants which

will also be accepted by our criteria. Post-merger remnants are systems where
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coalescence has been completed and immediately after will be highly morpho-

logically disturbed and difficult to distinguish from those systems with merging

ongoing. At this stage, we would expect the interaction will be at its most vi-

olent with complete disruption of both galactic disks and likely increased star

formation across the galaxy.

We have noted the degeneracy of each stage as we have described them. Thus,

we can now put this fully into the context of the dynamical timescale. Over a

typical interaction, we would expect the galaxy pair to move from being separated

to the pericentre of the interaction in the early times of the dynamical timescale.

Then, dependent on the velocity of the system, the galaxy pair will either move

straight into the merging stage of classification and begin to coalesce or it will

move toward the apocentre stage. This change from pericentre to apocentre

can then take two branching paths dependent on the velocity in the system. If

the galaxies have sufficient velocity, the apocentre stage will be their end state

until the tidal features slowly dissipate. If they do not have enough velocity to

escape on another, the system will move from the apocentre stage back into the

pericentre stage. This could then happen for many cycles until finally the galaxies

enter the merging stage and coalesce. Figure 3.7 shows the branching paths

that the galaxies can take through each stage. These images are created using

the Advanced Python Stellar Animation Module restricted numerical simulation,

described in Chapter 4, and are for illustrative purposes only here.

As described previously, in the literature, rather than using the stage of an

interaction based on morphology the projected separation of the two systems

is used. To explore the difference between using our staging system and the

projected separation, as well as to ensure we recover the expected relations, we

measure the projected separations of our confirmed galaxy pairs. Figure 3.8 shows

the stage classification with projected separation between the two pairs. We mea-

sure this by taking the average of the best fit photometric redshifts between the

two galaxies, and converting their angular separation to a physical one. The most

distinct projected separation (sproj) in stages is between the pericentre and apoc-

entre stages. Here, we see that the pericentre stage is dominated by systems with

sproj < 35kpc while the apocentre stage is dominated 25 ≤ sproj ≤ 100 kpc. The

pericentre stage is visually classified as systems which are highly morphologically
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Figure 3.7: The progression through an interaction using our stage definitions.
In the separated stage, we have two systems that are approaching each other but
exhibit no tidal features. This is before the point of closest approach has occurred.
This is followed by an initial pericentre stage: the systems are approximately at
their closest approach. This stage is often mistaken, in the COSMOS catalogue,
for being of only one source. Clear tidal features exist with major disturbance in
the two disks. This is followed by the apocentre stage, where there are two distinct
cores with clear tidal features. However, after this point, there are two outcomes
to the system depending on the galactic velocities. If the secondary has the es-
cape velocity, the system will remain an apocentre stage interaction until the tidal
features dissipate (and no longer are in our sample). If they do not have enough
energy, the system will return to the pericentre stage of the encounter and then be-
gin to coalesce in the merging stage. Images are from the Advanced Python Stellar
Particle Animation Module interacting galaxy algorithm described in Chapter 4
and based on the stellar particle animation module algorithm described in Wallin
et al. (2016).
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Figure 3.8: The projected separations of the confirmed galaxy pairs in our sample.
This confers with other works the definition of our different stages. The separated
stage can be at any projected separation, however, we have visually confirmed that
these sources are not morphologically disturbed. The pericentre stage is dominated
by systems with small projected separation as, by definition, they must be mor-
phologically linked or overlapping. Those systems at larger separation are very
large systems whose morphology categorise them as at the pericentre stage. Fi-
nally, apocentre stage galaxies are those which are visually confirmed to be fully
morphologically separated and tidally disturbed. The bulk of these lie in a range
of 25 - 100kpc in projected separation from each other. There is some overlap be-
tween the pericentre and apocentre stages in projected separation, as their visual
classification is also dependent on the system size.

disturbed, while either being morphologically linked to each other or overlapping.

Those galaxy pairs with large projected separations are pairs which are very large

in angular size, while still overlapping or morphologically linked. If this criteria is

not met, then the system becomes an apocentre stage interaction where the two

galaxies in the pair are completely distinct. There is some overlap between the

projected separations of the pericentre and apocentre stage as this is somewhat

dependent on the angular size of the two systems involved in the interaction.

Figure 3.9 shows the overlap between our four stages in projected separation.

It also shows the limitations in our sample of finding the secondary galaxy in the

interaction. This, primarily, is at low redshift where a larger projected separation

represents a larger angular separation on the sky. This is a limitation of using

visual confirmation of the secondary within a cutout of limited angular size.

Thus, we see at low redshift (z < 0.2) we only identify pairs of galaxies with

projected separation below 50kpc. Toward our limiting redshift, however, we are

88



3.3 Method: Environment, AGN and Interaction Stage

able to identify galaxy pairs down to a projected separation of 10kpc, as well

as out to 200kpc. However, due to the size limitation of the original cutout

classified by Zoobot, we find a second bias at low redshift. As the projected size

of the cutout gets smaller at low redshift, we lose systems which are at larger

projected separations. There are systems beyond this cutoff, but these are likely

separated systems which had their secondaries identified with the much larger

COSMOS2020 cutouts used in the visual confirmation stage.

We will use the projected separation to investigate relations between AGN

activity and if we observe enhancement in star formation. The SFR is already

present in the COSMOS2020 catalogue as measured using EAzY. To ensure that

any enhancements are from interaction alone, we must ensure that there is no

large bias in the environment of our sample. First, we describe how we classify

the environment of each of our matches.

3.3.2 Matching to Environment Catalogue

It is well known that the environment has a direct impact on the observed SFR of

galaxies. A galaxy in a cluster environment has, on average, a higher SFR than

those in the field (Baldry et al., 2006). Thus, if any of our stage classifications

are biased towards one environment or another, it could impact our results.

There is no measure of the environmental density in the COSMOS2020 cata-

logue. Such a measure is often calculated in numerous ways, such as the N-nearest

neighbour (Baldry et al., 2006), different Bayesian metrics (Cowan & Ivezić, 2008)

or estimating it from Voronoi Tesselation (Vavilova et al., 2021). However, in this

Section, we use the existing environmental density catalogue produced by Darvish

et al. (2017). This catalogue was created specifically for the COSMOS survey,

and has a measured density for all sources with mass log( M
M�

) ≥ 9.6 and z ≤ 1.2.

Darvish et al. (2017) calculate not only the density, but also the density parame-

ter δ and assign each source to a field, filament or cluster classification. For a full

description of how they calculate the environment and density field see Darvish

et al. (2015) and Darvish et al. (2017), but we will briefly describe it here.

To build the density field throughout the COSMOS field, Darvish et al. (2017)

first construct a set of overlapping redshift slices. Within each slice, a subset of the
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Figure 3.9: The measured distribution of projected separation with redshift.
As we have made redshift cuts out to z = 1.2, we investigate the limitations on
the projected separations we can successfully identify across our volume. We find
that we can successfully identify secondary galaxies and their projected separations
down to 10kpc to z = 1.2. This is true across defined interaction stage. We find,
because of the defined size of our cutouts, the limitation of finding the secondary
galaxy is at low redshifts where the projected separation size of the two systems
will begin to be larger than the projected size of the cutout. The changing cutout
size with redshift is shown as the dashed black line.
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galaxies are selected such that the median of the probability distribution function

(PDF) of their photometric redshift is within it. Then, from this subset, they

calculate the weighted surface density within the redshift slice. The weighting is

based upon the PDF of the photometric redshift present within the redshift slice.

These weights significantly reduce the effects of projection effects. They then

apply a weighted adaptive kernel smoothing using a 2D Gaussian kernel whose

width changes based on the found local density of galaxies. Once this density

field is created, the density around the sample galaxies can simply be interpolated

across the density field based on the angular position and the redshift slice the

sample galaxy is in (based on its photometric redshift PDF).

The result of this process, and the cuts defined previously, is a catalogue

of ≈45,000 galaxies with their densities accurately measured. We remove any

sources which are flagged as uncertain from the catalogue (a flag in it) providing

us with ≈39,000 sources with which to cross match the sample from Chapter 2.

We apply the same cuts to our sample as applied in Darvish et al. (2017), and

only consider those systems with a mass log( M
M�

) ≥ 9.6. To cross match with

our sample, we use the COSMOS2015 ID which exists in both the COSMOS2020

catalogue and the Darvish et al. (2017) catalogue. Upon applying the mass cut

to our sample, we find 2,800 matches to the Darvish et al. (2017) catalogue.

Upon matching based upon the COSMOS2015 ID, we find that 628 sources in

our sample do not exist in the environment catalogue. This reduces our sample

to 2,172 galaxies with confirmed and reliable environment density measurements.

3.3.3 Classifying AGN

We will also investigate the effect of interaction stage on AGN activity through-

out our sample. As the COSMOS2020 catalogue does not contain the relevant

parameters to make this calculation, we turn to the Chandra COSMOS Legacy

Survey Multiwavelength Catalogue (Marchesi et al., 2016) and the COSMOS

VLA 3GHz survey (Smolčić et al., 2017; Delvecchio et al., 2017). Both of these

catalogues span the entire COSMOS area, and contain detailed classifications of

the sources they find. The Chandra survey spans the X-ray range of wavelengths,
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and successfully identified numerous X-ray AGN. The VLA 3GHz survey is a ra-

dio survey, and we use this to find the radio AGN through our sample.

Our matching process is similar to previously described matching processes.

We use the previously identified COSMOS2020 source coordinates and select

the nearest source with in a 10” matching radius. We first find matches of radio

AGN using the VLA 3GHz survey catalogue and then search the Chandra survey.

At every step, if we find a match in the relevant catalogue, we remove it from

subsequent searches in other catalogues and take the first classification as the

correct one.

Applying our matching criteria, we find 1,140 matches in the VLA 3GHz sur-

vey and 155 in the Chandra survey. From existing flags within the catalogues,

these were split into 833 star forming galaxies and 462 AGN. We also investigate

cross matching with the MPA-JHU catalogue (Kauffmann et al., 2003; Brinch-

mann et al., 2004; Salim et al., 2007), however, found that all matches were

already represented by the VLA and Chandra surveys. We also use the COS-

MOS XMM-survey and, again, find no new sources to add to our sample. While

the ratio of AGN to star forming galaxies in our sample seems large compared

to other works, it is important to note that this is a result of limited matching

between the catalogues. Of the 4,181 galaxies in our sample, only 1,295 appeared

at all in either the VLA or Chandra catalogues.

3.3.4 Summary of Selection Process and Source Counts

We summarise our source selection in a single table. Table 3.1 shows the break-

down of the number of sources added or removed at each selection and we de-

scribe it here. First, we cross match 3,346 sources from the OR23 catalogue to

the COSMOS2020 catalogue. We then conduct visual inspection of each source

with additional photometric redshift measurements. We use these to confirm

secondary galaxies, or other interacting systems, in the COSMOS field, finding

803 more systems. Of these 4,181 sources visually confirmed 845 were confirmed

pairs. Cross matching our found 4,181 sources with the Darvish et al. (2017) en-

vironment catalogue of the COSMOS survey provides us with 2,225 sources with

environment measurements. We then volume limit the sample and apply cuts of
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Selection Process Sources Confirmed Pairs Environment Measurements AGN & SFG Classifications
In COSMOS 3,689 - - -

Visual & Secondary Identification 3,829 - - -
Deduplication 3,547 - - -

Extra Found Systems 4,181 845 982 1,295
Volume Limited 3,378 1,214 607 802

Table 3.1: Source counts at each stage of our selection process.

stellar mass cuts of 9.25 ≤ log10
M∗
M�
≤ 12.5 and a redshift cut of 0 < z < 1.2. This

provides us with a volume limited sample of 3,378 sources with 566 confirmed

pairs and 2,214 with environment classifications.

This volume limited sample was then cross matched with the VLA and Chan-

dra catalogues which existed in the COSMOS archives and the MPA-JHU cat-

alogue. Of our flux limited sample of 4,181 sources 1,295 sources were cross

matched with these catalogues. Applying the volume limitation to this sample,

we find 802 sources with classifications of AGN or star forming galaxy.

3.3.5 Visual Classification: Sources of Contamination

Throughout the description of our sample, we have identified these interacting

systems by a combination of visual classification and the best-fit photometric

measurements from the COSMOS2020 catalogue. This introduces limitations

which could bias or contaminate our sample. We identify three serious areas of

bias or contamination: 1) error inherent from using only photometric redshift

measurements, 2) failure of identification of tidal features at higher redshifts

due to surface brightness dimming and reduction in angular size, and 3) mis-

identification of tidal features as disturbances caused by other processes. In this

subsection, we will address each of these points and quantify how they affect our

sample. We will also discuss any how we mitigate these effects where appropriate.

First, there is always an inherent error in using the photometric redshift mea-

surements of galaxies. We briefly mentioned this when describing pericentre stage

systems. There, we found ∼ 50 systems which were clearly morphologically dis-

turbed with linking tidal features, but their photometric redshifts were such that

they couldn’t possibly be interacting. It is also possible that we have missed pair

identifications in the separated stage (where no tidal features are expected) due to
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Figure 3.10: The scatter in photometric redshifts of our paired sample. Left shows
the scatter in the primary and secondary photometric redshift measurements. Right
the measured difference in the primary and secondary photometric redshifts found
in the left panel. The red dashed lines show the expected error at the maximum
redshift of our sample. As shown, the bulk of the sample lies within this region.

incorrect photometric redshifts. We wish to quantify both these effects. Weaver

et al. (2022) quantify the error in their photometric redshift calculations (which

we use here) as < 1% for our redshift and flux range. They quantify the scatter

in the distribution of photometric to spectroscopic redshifts is 0.025(1+z) within

our redshift and flux range.Therefore, the maximum error we would expect on

our photometric redshifts in our sample is ±0.06.

To investigate the affected systems, we therefore look at the redshift distribu-

tion of our paired sample. Figure 3.10 shows the scatter in our found pairs as well

as the difference between them from our visual classification. During the visual

classification, we instituted a cut that each interacting pair must be within a

photometric redshift difference of ±0.1. To estimate our completeness, we apply

a bootstrapping test to our sample and see the number of systems we may have

removed from our sample with this cut. We create a simulated paired sample

of 10,000 systems and apply an error measurement based on the photometric

redshift errors. This gives a paired sample across our redshift sample at slightly

different redshifts. We then apply our cut, and check how many systems we would
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remove due to the photometric error from the COSMOS2020 catalogue. We find

that we would retain ≈ 91% of the sample with this cut, given the photometric

redshift error. This is a lower limit on what we have retained, as we have not

considered possible tidal features that would have caused us to keep the system

in our sample. Therefore, we are unlikely to have removed a large percentage of

interacting galaxies due to the photometric redshift error and the cuts we have

applied.

The resultant scatter in photometric redshifts between the primary and sec-

ondary in our paired sample is shown on the left panel of Figure 3.10. The right

hand panel shows the distribution of the difference measured between the pri-

mary and secondary photo-zs, with the red dashed lines showing the maximum

expected error on the photometric redshift measurement at the highest redshift

of our sample. As shown, the bulk of our paired sample lies at very low redshift

difference, meaning we are unlikely to have removed too many systems. This

leads us to conclude that our pair selection process has been robust. The second

limitation of our approach is the failure of identifying interacting systems at high

redshift due to missing the tidal features of the system. This would be a com-

bined result of the affects of surface brightness dimming of their disks and tidal

features at high redshift and while also having a small angular size.

The change in angular size is more difficult as we have a standardised cutout

size which does not depend the redshift, or angular size of the system. This means

that if a system were at redshift 1.2, our pixel resolution corresponds to roughly

0.5kpc pix−1 limiting the tidal features we would be able to identify. With such

a scale we are able to identify extended tidal features away from the galactic

disk such as tidal arms, but lack the resolution to those features which would

be much closer to the disk. Thus, those interacting systems which have formed

features such as shells, small tidal bridges or stellar streams will be missing from

our samples at higher redshifts. Thus, at high redshift, we are most sensitive to

the separated, apocentre and merging stage interacting systems while lacking the

required resolution to pickup more intermediate tidal features at the pericentre

stage.

We attempt to mitigate surface brightness dimming by making reasonable

choices with our volume limitation. We elect to make redshift cuts of 0 ≤ z ≤ 1.2

95



3.3 Method: Environment, AGN and Interaction Stage

and a mass limit of 9.25 ≤ log M
M�
≤ 12.5 following similar works exploring

galaxy morphology (Conselice et al., 2007, 2009; Martin et al., 2022; Khalid et al.,

2024). In the context of identifying interacting galaxies, Blumenthal et al. (2020)

studied the reliability of making visual classifications by tidal features alone with

examples from the IllustrisTNG simulation. They found that relying on tidal

features alone biased their sample to to higher environments, stellar masses and

interactions near the time of the closest approach in the dynamical timescale.

This was due to these conditions leading to increased visibility of tidal features

and disturbed morphologies across redshift.

To investigate this, we look at the change in found fraction of micro, minor

and major interactions across our redshift range. The effect of surface brightness

dimming will be related to the type of interaction we are observing, and the

resultant flux distribution of the tidal features. For instance, a stream formed

in a minor interaction will be significantly dimmer than a tidal tail formed in a

major interaction or merger (Sola et al., 2022). To get an idea of how we are

affect, we split out pair sample into its constituent interaction types based on the

mass ratio. We define the mass ratio such that the primary galaxy contains the

highest stellar mass in the pair. If there is more than two galaxies involved in the

interaction, we take the primary galaxy to be the galaxy with the highest stellar

mass in the system. We define three different interaction types based on the mass

ratio: micro (where the mass ratio is less than 1:10), minor (where the mass ratio

is between 1:10 and 1:3) and major (where the mass ratio is greater than 1:3). For

the F814W filter, we would expect the surface brightness to decline by (1 + z)3,

and therefore that the surface brightness will decline by a maximum of a factor

of 10 at z = 1.2.

Figure 3.11 shows the distribution of interaction types across redshift. The

bottom panel shows the distribution in galaxy counts across redshift for the

volume-limited sample. The top panel shows the change in the fraction of each in-

teraction type we find in each redshift bin. For the minor and major interactions,

we see that there is little change in the fractions across our redshift distribution.

However, as expected, with micro interactions we see a gradual decline in the

found fraction with increasing redshift. This shows a loss in sensitivity to this

interaction type but over our redshift distribution there is not significant change

96



3.3 Method: Environment, AGN and Interaction Stage

0.0 0.5 1.0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fr
ac

tio
n

0.0 0.5 1.0
Redshift

0

50

100

150

200

250

Co
un

ts

Micro
Minor
Major

Figure 3.11: The change in found interaction type across our redshift distribution.
We define interaction types from the mass ratio of paired galaxies in our paired
sample. Bottom: The distribution of different interaction types across redshift.
Top: The change in the fraction found of different interaction types with redshift.
As expected, the minor and major interaction fractions remain consistent with
redshift but the micro interaction fraction declines. This is a result of surface
brightness dimming on the tidal features formed in the interactions. In a micro
interaction, we would see the complete destruction of the secondary into stellar
streams about the primary galaxy. Such a tidal feature would be in the low surface
brightness regime, and quickly be lost at increasing redshift. However, the change in
fraction we find across our redshift range is not high enough to alter our conclusions.
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that could change our conclusions. Therefore, we show this as a warning to those

who might use our methodology over a wider redshift distribution.

The final limitation of our approach we discuss is of relying on visual classifica-

tion to identify interacting galaxies. Besides the issue of close pairs (described in

previous sections) there is also assuming the disturbance of the systems is due to

interaction, and not from other processes. The most obvious process which could

mimic tidal disturbance is that of ram pressure stripping (RPS). RPS is an effect

of the galactic environment stripping out the gas within a galaxy, and causing the

formation of what appears like debris about the galactic disk. It can also cause

major disturbance and irregular morphology. Thus, this could easily be a form of

high contamination in the apocentre and merging stages of our sample. The envi-

ronment that RPS is most prevalent is that of a cluster environment. Therefore,

if we are highly contaminated to identifying RPS galaxies as interacting galaxies,

we would see a bias in the environment of our sample toward galaxy clusters. To

check this, we measure the distributions of our galaxies in each environment with

stellar mass. We use the sample matched to Darvish et al. (2017) as described in

Section 3.3.2.

Figure 3.12 shows the distribution of our matched samples with their density

values with Figure 3.13 showing the change in environment fraction with stage.

It is important to note that Darvish et al. (2017) has a higher mass cutoff than

we have implemented in our underlying sample. Therefore, this is showing the

density of all systems logM∗/ M� ≥ 9.6. We conduct weighted Kolmogorov-

Smirnov (KS-test; Kolmogorov, 1933) and Anderson-Darling (AD-test; Stephens,

1974) tests on the environment distributions. The KS-test is excellent at com-

paring different weighted distributions and indicating if they are drawn from the

same parent sample. The AD test tests for this similarity as well, and we use

both to ensure consistency and robustness in our measurements.We conduct this

calculation based on the mass weighted counts in each stage and with the control

sample. We find reasonable p-values ≥ 0.85 between each sample, meaning each

stage sample is likely drawn from same parent sample of environment measures.

However, when we compare to the control, we get a significantly smaller p-value.

This is ∼0.1, with a calculated significance difference of 2. Figure 3.12 shows the

mass weighted distributions of each of our interacting stage samples as well as our
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control sample. The errors on calculated as the 2σPoisson Confidence Interval

based on the counts in each bin (Gehrels, 1986). we can see that the control

distribution peaks at a lower number density when compared to the interacting

sample. While this will not effect our comparison between the samples of differ-

ent interaction stages, it is important to note that our sample has a slight bias

toward higher density environments when compared to the control, as expected.

We also check the SFR-stellar mass relation between our four interacting

stage samples and environment, and show these in Figure 3.14. This shows that

there is no ordered structure, or bias, in our sample with environment across our

four stage samples and further reinforces that the galactic environment is not

responsible for effects we may find from interaction. The majority of our sample

lie either within filaments or in the field. The environment which would have the

most effect upon the SFRs of our sample is a cluster environment. However, the

fraction of our sample within a cluster is never greater than ∼ 20%. Therefore,

the lack of information here does not have a large impact on this measurement.

Another source that could be of major contamination is in our merging stage

sample. We have identified the merging stage as those systems with a disturbed

disk and containing more than one core. Another such system that could be

recognised by this description is that of a clumpy galaxy. Clumpy galaxies are

systems with internal regions undergoing intense star formation. These regions

appear like multiple other ‘cores’ throughout the galactic disk which are actually

clumps of young stellar populations. To avoid such contamination, we apply

multiple criteria to mitigate the potential impact they might have. First, our

redshift range spans a sufficient range that the found fraction of clumpy galaxies

declines rapidly compared to the merger rate, settling at a fraction of 2.38+0.33
−0.30%

in 0.02 < z < 0.15 (Adams et al., 2022). The decline in the fraction of clumpy

galaxies is particularly true at 0.15 ≤ z ≤ 3, where the fraction drops from > 40%

at z ∼ 3 to 15% by z ∼ 0.5 (Guo et al., 2015). Other works have found the peak

of the fraction of clumpy galaxies at z ∼ 2 (Murata et al., 2014; Guo et al., 2018),

well beyond our redshift range before this rapid decline occurs to z ∼ 0.5. There

are also two morphological distinctions that we use to our advantage to discern

between merging and clumpy galaxies. Clumpy galaxies often exhibit more than

one clump at different radii across the galactic disk (with Adams et al., 2022,
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Figure 3.12: The density about each of our sources matched with the Darvish
et al. (2017) catalogue. As shown, there is no existing bias in the distribution of
galactic environments throughout our stages. We also plot the weighted density
distribution of the control sample. Here, we find that the peak in density is at a
lower value 0.5 Mpc−2 compared to our interacting sample. Errors are found by
calculating the Poisson confidence interval for each bin. Therefore, that we have
identified primarily tidal affects and not environmental ones.
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Figure 3.13: The fraction of galaxies in each stage in different environments.
This reinforces that there is no overarching bias between our samples for the cluster
environment. In the cluster environment, RPS could lead to morphologies which
appeared like tidal disturbance.
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Figure 3.14: The distribution of environment classifications through our sample.
This is only for sources with a logM∗ / M� ≥ 9.6. However, from this subsample,
we see that there is no trend with environment and that the distribution is random
throughout each stage.
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finding a mean of 3.16 clumps per galaxy), making them easy to differentiate

from a second core which would be close to the centre of a perturbed disk. We

therefore remove potential merging galaxies which appear to have more than one

‘core’ at different places of a non-perturbed disk (∼ 25). With the low fraction of

clumpy galaxies in our redshift range and an increased number of cores compared

to mergers we are confident we have separated out potential contamination by

clumpy galaxies.

3.3.6 Aside: Mass Ratios in Sample

Here, we briefly discuss the mass ratios we find of our identified pairs of interact-

ing galaxies. Figure 3.15 shows the distribution of interaction types through our

subsample. We find that our sample is dominated by micro and minor interac-

tions.

The mass ratio is known to have a direct impact on the potential enhancements

we see in SFR and in AGN fraction. While we do not focus on the mass ratio

throughout this work, due to the limited pair galaxy size, knowing that we are

dominated by micro and minor interactions will inform us of the relations we

expect to uncover from our analysis. This assumes, of course, the subsample of

galaxy pairs is representative. With this note on the distribution of interaction

types based on mass ratio in mind, we now look at the relation between the stellar

mass of our systems and the SFRs through interaction stage.

3.4 Star Formation and AGN Evolution with

Interaction Stage

3.4.1 Controlling for Interaction Stage

With our mass-limited sample selected, we investigate the change in multiple

parameters with stage of the interaction. First, we show the results of break-

ing down our sample into stages with relation to the SFR and stellar mass of our

sample. We use the estimates of these parameters that exist in the COSMOS2020
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3.4 Star Formation and AGN Evolution with Interaction Stage

Figure 3.15: The distribution of mass ratios in our paired sample and across
each stage of interaction. The ratio has been calculated as the mass of the least
massive galaxy in the pair divied by the mass of the more massive galaxy in the
pair. These are separated into our previously defined interaction stages and the
interaction type (based on mass ratio). We find that, overwhelmingly, our sample
is dominated by micro and minor interactions. These are where the two systems
have very different stellar masses.
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3.4 Star Formation and AGN Evolution with Interaction Stage

catalogue itself. Then, we use our subsample of galaxy pairs to recover the re-

lationship between projected separation and star formation enhancement (SFE).

We then further break this measure down into its component stages.

Figure 3.16 shows the breakdown of stellar mass and SFR with stage. On

a population scale, there is clear evolution in the star formation rate from the

separated stage through to the merging stage. In the separated stage, where the

galaxies are distinct from one another with no clear morphological disturbance, we

clearly see two populations of galaxies. These are the blue, star-forming galaxies

and red sequence of galaxies. The blue contours in Figure 3.16 show increasing

number density in the population into the blue cloud. In the pericentre stage,

when the galaxies are actively interacting and overlapping, this red sequence

remains but is highly diminished while there is no change in the blue cloud.

The apocentre stage shows a similar effect, where the red sequence reduces again

before finally in merging the red sequence completely disappears. Through these,

the blue cloud remains highly populated and hosts the majority of galaxies in the

stage.

However, this result could also be due to many other factors rather due to

interaction stage. For instance, if the mass distribution of our sources evolves as

well, we could simply be selecting higher mass systems as we increase stage. This

would have the result of systems in the merging stage having, on average, higher

SFRs than those in the separated stage and appearing like we had evolution in the

star forming population with stage. Another effect that could cause this relation

to appear would be our selection was highly dependent on galactic environment.

However, we have already explored this possibility in Section 3.3.2 and found no

bias in environment between the stages. While there is a slightly higher fraction

of cluster galaxies in our separated stage, we find in Figure 3.12 they are scattered

across our sample with relation to SFR and stellar mass. Therefore, this is likely

not the cause of a larger red sequence in our separated stage.

We can quantify the similarity of the mass distributions, and then the SFR

distributions, using well known statistical tests. We opt to conduct tests: KS and

AD-tests. First, we create weighted distributions of stellar mass. The weighting

scheme we use balances the distributions such that each bin could be assumed to

have the same number of sources within it. Therefore, any bins with fewer than a
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Figure 3.16: The LePhare stellar mass against the EAzY SFR across the different
stages of the interaction. The blue contours are 8 levels of density of the underlying
populations in each frame. Top left : The stellar mass and star formation rate of
the separated stage of our sample. Here, the interacting galaxies are simply close
pairs with little to no morphological disturbance. There are clearly two populations
here: a main, star forming sequence forming the main population and a smaller
red sequence. Top right : pericentre stage of the interaction, where the two galaxies
are close to pericentre. The star forming sequence remains, but the red sequence
is reduced significantly. Bottom left : apocentre stage of the interaction, where
the galaxies are close to apocentre or escaped. Here, we see the almost complete
disappearance of the red sequence. Bottom Right : merging stage of the interaction,
where the two systems are close to or have coalescence. The red sequence of galaxies
has completely disappeared.
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3.4 Star Formation and AGN Evolution with Interaction Stage

certain number of sources will be weighted up while those bins with more will be

weighted down. These weights applied to the mass distribution are then applied

to the SFR distribution as to control for stellar mass in this distribution.

Figure 3.17 shows the weighted mass distributions through the four different

stages. By design, the weighted distribution has identical counts, with the error

calculation being conducted as an estimate of the 2σ confidence interval assuming

an underlying Poisson distribution. This is the same as done for the environment

distributions. We statistically measure the similarity we apply our KS- and AD-

tests to them. We chain the KS and AD test through each distribution and

calculate the value of the test values and a p-value. This p-value represents the

probability that each distribution is drawn from the same parent distribution.

For each mass distribution, we find that p-value of both tests is ≈ 1. Thus, this

proves that the distribution in stellar mass though each stage is likely drawn from

the same parent sample.

Figure 3.18 shows the SFR distributions while being weighted by stellar mass.

When comparing the separated and pericentre, separated and apocentre, sepa-

rated and merging, pericentre and merging and apocentre and merging stages,

the p-values are �0.05. This allows us to reject the null hypothesis for these

distributions and assume they are from different parent samples. However, for

comparing pericentre and apocentre stages, the p-value= 0.74. Thus, while these

distributions are likely to be not identical, they are very similar in the parent

sample they have been drawn from. For the same mass distribution through each

stage of interaction, the star formation distribution changes from separated to

pericentre stage and from apocentre to merging stage, while remaining similar

from the pericentre to apocentre stage.

Putting this result into the context of the dynamical timescale of an interac-

tion, it shows there are distinct points at which the SFR changes in these systems.

The first is when the interacting system moves from being a close pair to actually

morphologically disturbing each other in a close flyby. This difference, most likely

enhancement, then persists through to the apocentre stage - where the galaxies

remain highly disturbed but are no longer overlapping with their secondary. The

SFR distribution remains approximately the same between these two, meaning

the forces that drive and affect star formation remain equivalent between these
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Figure 3.17: The stellar mass distribution across the four stages. Each bin is
weighted based on the counts in the smallest sub-sample in stage: the merging stage
of the interaction. These counts have been weighted so that there are equivalent
counts in each distribution. The error bars are calculated by estimating the 2σ
confidence interval on the underlying Poisson distribution.
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Figure 3.18: SFR distribution weighted by mass across each stage. This weighting
is based on our sample of merging stage.
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3.4 Star Formation and AGN Evolution with Interaction Stage

two stages. Finally, the SFR changes again when we approach the merging or

post-merger stage of the interaction. We can also say that this change is likely an

enhancement in the SFR of the galaxies through the interaction due this change

being driven by the disappearance of the red sequence through each stage.

We further examine this result by controlling for redshift and making specific

classifications of galaxy star formation class. While the red sequence is signif-

icantly reduced across across each stage, it is difficult to ascertain the change

in the galaxies within the blue cloud. We expect that, due to an interaction,

the population of starbursting and quiescent galaxies will change. Therefore, we

define a star forming main sequence (SFMS) across redshift. This allows us to

classify each source based on its SFR independently of redshift. To define the

star forming main sequence, we follow the example of Aird et al. (2019). There,

they define the star forming main sequence as a function of galactic stellar mass

and redshift as

log SFRMS(z)[M�yr
−1] = −7.6 + 0.76 log

M∗
M�

+ 2.95 log(1 + z). (3.1)

This finds the expected main sequence SFR of a galaxy at a given stellar mass,

M∗, and redshift, z.

The ratio of the measured galaxy SFR and the expected main sequence SFR

is then taken. We then use this fraction to classify each galaxy into distinct bins.

These bins are:

(i) Starburst galaxies. Here, the galaxy SFR is highly elevated compared to the

SFMS. We follow Aird et al. (2019) and define a cutoff of log SFR/SFRMS >

0.4.

(ii) Main sequence galaxy. The galaxy is within 0.4 dex of the SFMS and

approximately has the expected SFR, defined as −0.4 < log SFR/SFRMS <

0.4.
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3.4 Star Formation and AGN Evolution with Interaction Stage

(iii) Sub-main sequence galaxy. A galaxy whose SFR is below the majority of

the SFMS, but likely not quiescent, defined as −1.3 < log SFR/SFR MS <

-0.4.

(iv) Quiescent (High) galaxy. A galaxy with an SFR in the top ≈50% of the

quiescent galaxy population, defined as −2.3 < log SFR/SFR MS < -1.3.

(v) Quiescent (Low) galaxy. A galaxy with low SFR and very likely completely

quenched, defined as log SFR/SFRMS < -2.3.

We split our sample into its different stages and apply these criteria. Figure

3.19 shows the ratio between the expected SFMS SFR and the measured SFR in

COSMOS2020. This clearly shows a large increase in galaxies classified as star-

burst from the separated to merging stages and a large reduction in the number of

quenched systems. Figure 3.20 shows the change in fraction of the different galaxy

classifications through stage, reflecting the results found in Figure 3.16. Initially,

in the separated stage, we find that the majority of our galaxies lie on the SFMS

or just below it. There also exists a small population of galaxies which are clas-

sified as starburst with a population of quiescent galaxies that is roughly double

the starburst fraction. We find some of these quiescent galaxies exist in cluster

environments, but not to a significant extent to affect our results. As we move

through the interaction stage, we see that the quiescent galaxy fraction gradually

decreases to the point of almost non-existence in the merging stage galaxies. The

inverse is true in our starburst fraction. We find this almost quadruples over

the course of the different stages of interaction. The fraction of galaxies on the

SFMS remains dominant throughout, however, we do find the fraction of sub-MS

galaxies significantly reduced. We find that, in general, the SFR of these galaxies

is increasing with interaction stage (though, not in the pericentre to apocentre

stage). It appears to have sub-MS and quiescent galaxies move up and join the

SFMS (as it remains dominant). But, many galaxies from the SFMS are moved

upwards and into a starbursting phase.

It is important to note the parameter space that we are searching in these

examples. We are probing interactions between galaxies of high mass, where

the resultant tidal features that form would be classifiable in an image. The
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Figure 3.19: Stellar mass against the ratio of measured SFR to the expected
SFR if the galaxy was on the SFMS. This is of all galaxies in our sample. Black
points are the individual sources, while the blue contours are as in Figure 3.16. The
red dotted lines show the cutoffs for different galaxy classifications based on their
SFR, with each cut off being defined by the text in blue. The histograms beside
each plot show the change in counts. We find that through interaction stage, the
quiescent galaxy population significantly reduces while the starburst population
rapidly increases. As these cutoffs are also dependent on redshift, we find that this
evolution in SFR with interaction stage is independent of redshift.
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Figure 3.20: The change in fraction of different galaxy classifications from the
fraction of SFR to the expected SFR on the SFMS. While galaxies on the SFMS
remain dominant through each sample across interaction stage, there is significant
change in the starburst and quiescent populations. The starburst galaxy population
moves from being roughly half the size of the quiescent population in the separated
stage to completely dominating it in the merging stage. This is occurring while
the quiescent population is significantly reduced to almost non-existence in the
merging stage.
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majority of our sample is minor interactions where one of the two systems is very

highly perturbed by the interaction. In this parameter space, we would expect

large increases in the SFRs. However, we do not see a significant increase in

the starbursting population until we the two galaxies begin to actually coalesce.

Thus, the effect of the interaction itself may be to only enhance the SFR, while at

coalescence we find the dramatic starburst. This can be argued from our results of

clear, statistically robust change and evolution of a galaxy’s SFR with interaction

stage. The SFR changes dramatically from the separated to pericentre stage and

apocentre to merging stage - after the initial passage of closest approach and at

the point of coalescence of the interaction.

3.4.2 Projected Separation and Star Formation Enhance-

ment

We directly investigate the relation between the SFE and the projected separation

using our confirmed sub-sample of galaxy pairs. This sample is significantly

smaller than our non-pair sample: containing 607 pairs or 1,214 galaxies. Upon

sub-dividing this into different stages we find 253 separated pairs, 94 pericentre

pairs and 241 apocentre pairs. Only 19 merging galaxies were in our confirmed

galaxy pair sub-sample, and therefore we do not attempt to make inferences about

this population.

To measure the SFE of our galaxy pairs, we directly compare to the mass- and

redshift-matched control sample that was also created with this sub-sample and

defined in Section 3.2.2. We separate our galaxy pairs into different bins based

on the projected separation between them. We find that the bulk of our sample

has a projected separation between the two galaxies of ≤50kpc. Therefore, we

sample from this region of the parameter space with high precision and smaller

bin widths before we increase the bin widths at larger projected separations. We

define a cutoff that each bin must contain at least 10 counts to be included in

this plot and, therefore, by changing the bin widths with projected separation we

are able to maintain some level of statistical robustness. We define our bins as

[0.5, 10, 20, 50, 100, 125] kpc.
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We create two projected separation distributions: one of interacting galaxies

and the other of our control galaxies. We then take the average of each bin.

By taking the average of each bin, we find the total excess of the SFR caused

by interaction alone and then compare it to what we would expect from non-

interacting galaxies in the same bin. Note that the control galaxy relation to the

projected separation is meaningless as they are not paired. The control galaxies

are simply mass and redshift matched to each interacting galaxy and used as a

reference for what SFR we would expect of it had it not been interacting. Finally,

we divide the averaged interacting SFR distribution by the averaged control SFR

distribution. This provides us with a measure of the excess star formation due

to interaction, and the SFE when compared to the isolated population.

Figure 3.21 shows star formation enhancement between our interacting and

control binned SFRs and the projected separations between each galaxy pair.

On the left of the plot, we have the distribution for the full galaxy pair sample,

without taking account of stage. The errors on our measurements are following

the methodology of Cameron (2011) and briefly described in Section 3.4.1. The

dashed black line represents no enhancement in SFR, as the average SFR in

the interacting galaxy sample would be equal to the average SFR in the control

sample. We find at very small projected separation a SFR enhancement of 1.74

which gradually decreases with projected separation down to approximately 1 at

117.5kpc.

On the right, we break the galaxy pair sample into different stages and plot out

the resultant enhancement in star formation. This shows very different behaviour

in enhancement dependent on the stage of the interaction. In the separated

stage, we find that the star formation is very weakly enhanced, and with no

overall structure. The enhancement moves around 1 through the distribution,

with some enhancement being a result of low number counts in the bin. This is

not unexpected. The separated stage represents when the two galaxies are close

pairs, but with no morphological disturbance. Therefore, we would not expect

significant, if any, enhancement in the SFR based on the projected separation.

This is the stage with the lowest enhancement across projected separation.

In the pericentre stage, we see consistent enhancement with projected separa-

tion. It is also much larger than the separated stage, with it being approximately
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Figure 3.21: The projected separation against the SFE in average star formation
at different bins of projected separation. Each bin must contain at least 10 counts to
be considered. As the bulk of our galaxy pair sample is at low projected separation,
we heavily sample from this region of the parameter space. The bins are: [0.5,
10, 20, 50, 100, 125] kpc. As we move to higher projected separation, the bins
increase in width to maintain statistical significance in our sample. Left : The star
formation enhancement found in the entire galaxy pair sample. As expected, we
see a gradually decreasing enhancement. Right : As left but broken up into different
stages of the interaction. Black markers are the separated stage, red the pericentre
stage and blue the apocentre stage. We limited our investigation to the separated,
pericentre and apocentre stages as only three galaxy pairs were identified in the
merging stage. We find a generally decreasing star formation enhancement with
projected separation but very different individual behaviour dependent on the stage
classification.
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1.6. In fact, the measured enhancement increases across the 50kpc of projected

separation. However, accounting for the errors on these measurements and the

declining counts in each bin, it is likely that the enhancement remains constant

as the projected separation increases. We see a very large enhancement in the

overlapping apocentre stage galaxies which overlap with the pericentre stage mea-

surements. The enhancement in apocentre stage galaxies then rapidly declines as

we move to higher projected separations. After 150kpc, our galaxy pair sample

does not have the counts to make robust estimates of the SFE. However, it is

important to note that this result has been found with a sample of 607 pairs. No

merging stage galaxies have been represented and in numerous projected sepa-

ration bins the counts are small enough to have conclusion altering error bars.

Therefore, it is imperative that future works, with larger sample sizes not only

look at the projected separation of the systems but the morphology as well.

3.5 Nuclear Activity with Interaction Stage

We now use our AGN sample matched with the AGN catalogues described in

Section 3.3.3. As stated previously, we find matches of 802 AGN and star forming

galaxies (SFGs) in our volume limited sample. These are from both the sample

of primary and secondary galaxies. The breakdown of number of classifications

per stage is shown in Table 3.2. Figure 3.22 shows distribution of stellar mass to

SFR with stage, with the confirmed AGN and SFGs marked. We find no major

changes in AGN with stellar mass or SFR with stage in our sample. Galaxies

containing AGN appear throughout the starburst, the SFMS and red sequence

across each stage. There is no obvious bias in stellar mass or SFR for hosting

an AGN. We do, however, see a concentration of AGN in the separated stage

on the red sequence at higher masses. This changes as we increase interaction

stage, with the bulk of the AGN beginning to appear at lower masses in the

apocentre and merging stages. Finally, in the merging stage we see AGN and

SFGs distributed almost evenly across the star forming main sequence with little

bias in distribution with mass.
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Separated Pericentre Apocentre Merging
SFG 79 135 216 121
AGN 58 55 88 50

Table 3.2: Breakdown in number of classified AGN and SFGs per stage. With
our counts so low in this sample, it is difficult to make concrete conclusions about
the evolution of AGN during interaction.

Applying KS or AD tests to these, however, reveals p-values close to 1 and

therefore these distributions are consistent with being drawn from the same parent

sample. However, due to the low counts of AGN and SFGs in our sample, using

KS and AD tests to verify this is not optimal. Therefore, we instead investigate

the global AGN fractions in our sample across different stages. We apply a

weighting, as in our SFR and stellar mass distribution examples, to account for

the various counts across the different stages. We then take a second weighting of

the measured AGN fraction from the total size of the different samples we have.

Thus, we have assumed that we have equivalent counts in each mass bin of our

sample as well as approximated having the same sample size in each stage bin.

Figure 3.23 shows the changing AGN fraction with interaction stage. The

dotted line shows the AGN fraction in the separated stage, which will have little

affects of AGN. We find that the AGN fraction generally remains this fraction

through the separated to apocentre stages. There is a small decrease from the sep-

arated to pericentre stage, followed by the fraction mostly remaining unchanged

until the apocentre stage. Then, in the merging stage we measure a large increase

in the AGN fraction from 0.059 ± 0.004 to 0.071 ± 0.005. However, before we

discuss this result further, we must point out that the large error bars on our

measurements. We are only at the 3σ threshold of detecting this enhancement of

our merging AGN fraction. The errors on these distributions are calculated using

the methodology of Cameron (2011). Rather than assume a Poisson distribution

to calculate the error based on the confidence interval, we assume the underlying

distribution is the β-function. We use this as, found in Cameron (2011), we retain

an accurate measure of the error even with the very low number counts in our

AGN samples, making interpretation difficult.
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Figure 3.22: The distribution of AGN through stage with SFR and stellar mass.
We find that the AGN populate every part of the SFR-M∗ parameter space probed
in the pair sample.
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Figure 3.23: The change in AGN fraction with stage. The dashed line shows
the AGN fraction in our separated sample, representing a control non-interacting
sample to compare to. We define the AGN fraction as the ratio of number of
confirmed AGN divided the number of sources in that stage. The weights used
are the mass weights described previously. Errors on each fraction are found as
the confidence intervals defined via the beta distribution. We find a drop in AGN
fraction from the separated to pericentre stage, followed by a rapid increase from
the apocentre to merging stage.
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It is also difficult to use interaction stage as a proxy for the projected sepa-

ration in this context. As shown previously, the pericentre and apocentre stages

have some overlap in the range of projected separations we have classified them

into. Therefore, we also investigate any overlap between our confirmed pairs and

the AGN fractions we see here. We find 104 AGN and 180 SFGs overlap with

our confirmed pairs. Figure 3.24 shows the change in density of AGN classifica-

tions and SFGs with increasing projected separation. As expected, we find that

with increasing projected separation the number of confirmed AGN and SFGs

decreases. In the AGN distribution, we find two different components. The first

is a peak in the projected separation distribution is from 0kpc-25kpc. The only

contribution here is from pericentre stage galaxies. The second peak, from a

projected separation of 30kpc - 60kpc is dominated by apocentre stage galax-

ies, although some separated stage AGN are in this peak as well. Finally, the

third peak from 85 - 125kpc is representative of a mixture of the separated and

apocentre stage galaxies. None of our merging stage galaxies which had their

secondaries identified overlapped with our AGN and SFG identified sample.

We find the AGN fraction only increases at the point of coalescence in in-

teraction: the merging stage. This indicates that the mechanism driving AGN

ignition in interaction is primarily at the point of the closest approach between

the two systems. When we investigate the AGN number counts with respect to

the projected separation of systems, we find that it gradually declines over the

projected separation. However, we find two peaks; first clearly in the pericentre

of the interaction where the galaxies are overlapping and secondly in the early

parts of the apocentre stage. This could be evidence of a delayed AGN ignition

depending on the underlying parameters of the interaction. Thus, we find that

the AGN fraction is generally unchanged with stage, although the mechanisms

responsible for an increase in the fraction primarily occur when the two systems

are actually merging. We find evidence of a delay of ignition, as there is a peak

in AGN counts at a small projected separations in the apocentre stage.
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Figure 3.24: The distribution of both AGN and SFGs which have matched our
confirmed galaxy pairs. These are 104 galaxies containing AGN and 180 classified
as SFGs. While we find, as expected, the number of AGN and SFGs decreases with
projected separation we find an interesting double peak in the AGN sample. The
first peak, between a projected separation of 0 and 25kpc is primarily from peri-
centre stage galaxies (in red) while the second peak of 40 to 65kpc is of apocentre
stage galaxies (in yellow) in our sample. As shown in Figure 3.23, we expect the
fraction of AGN to be similar in these two stages despite being at different parts of
the dynamical timescale in interaction. The third peak, from 75 to 125kpc is only
from separated and apocentre stage galaxies.
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3.6 Discussion

3.6.1 Interaction Stage and Projected Separation

Finding evolution with interaction stage is not a new idea in the field. Multiple

works have found increases in SFE and SFR as a function of projected separation

of pairs of galaxies (Barton et al., 2000; Ellison et al., 2008; Patton et al., 2013).

Projected separation is often seen as a proxy for the point in the dynamical time

of the interaction that is being measured. It is likely that, when the galaxies in the

pair are closer together, they are closer to coalescence in the dynamical time and

can be thought of as a linear progression in the interaction from being close pairs

to coalescence. However, what this fails to capture is the larger complexity of

interaction. Without morphological consideration, we are unable to tell whether

galaxies at small projected separations are actually at the closest point of flying

by each other or about to coalesce.

We find that throughout the different stages of interaction the SFR within

the systems is increasing. Observations of interacting galaxies at various stages

have found increased gas inflows into the nuclear regions of the galaxies which

lead to enhancement in the SFR at the galactic core over their outer reaches

(Barrera-Ballesteros et al., 2015). This is often confirmed with deep observations

of individual systems, which capture snapshots of different parts of the dynamical

timescale of the interaction (Karera et al., 2022). Our study utilises numerous

snapshots of the dynamical time of interaction in attempt to build a full picture of

the change in SFR. We have found that this process increases the SFR of galaxies

and that being driven to starburst begins from the pericentre of interaction.

Multiple simulation works, which have the ability to model the entire dynamical

history, show that this is to be expected (Di Matteo et al., 2007; Hopkins et al.,

2013; Karman et al., 2015; Moreno et al., 2021). Often, these works show an initial

dramatic increase in the SFR of interacting systems followed by an exponential

decline through the dynamical time before increasing dramatically again at either

a second passage or coalescence. Moreno et al. (2015) is a direct example of this

SF history through the interaction.
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Our results differ here as we do not find an exponential decrease in the SFR

in the pericentre systems to the apocentre systems. As stated previously, obser-

vational work does support a continued increase in SFE in galaxies to projected

separations of out to 80kpc - well into our defined apocentre stage systems (for

further examples, see Li et al., 2008a; Scudder et al., 2012). However, it is im-

portant to note that our apocentre stage defined classification is a ‘wide net’

that captures many systems that may be very soon after the initial passage in

the dynamical timescale (recall Figure 3.7). The criteria defining pericentre and

apocentre stages are simply that the galaxies must be no longer connected or

overlapping morphologically with tidal features. They must only be distinct and

separate galaxies. Therefore, our found large enhancement in the apocentre stage

may be from interacting systems which are only just out of the pericentre passage

and not enough time has passed for the rapid decline in SFR to begin.

Nonetheless, we still find a disappearance of the red sequence in the apocen-

tre systems which may come as unexpected to when compared to simulations.

It is important to note, however, that this is not the same as saying that a

large proportion of the apocentre systems are classified as starbursting galaxies.

While previously mentioned simulations approximate an initial large starburst

before rapid decline, we find the interacting galaxy population is pushed from

being quiescent / sub-main sequence to being on the star forming main sequence.

Therefore, it may be more likely that the impact of interaction on star formation

is not to suddenly cause rapid star formation in the aforementioned starburst

before declining, but rather to gradually increase a galaxy’s SFR up and into the

blue cloud of galaxies. This could be supported by the lack of rapidly quenched

post-interaction galaxies found in both observations (Weigel et al., 2017) and

simulations (Hani et al., 2020; Quai et al., 2021). Thus, the impact of interaction

on star formation may not be a catastrophic increase in star formation that leads

to quenching but, rather, a small increase in galaxies to use whatever gas they

have into star formation.

This idea can be brought further forward by considering the large increase in

starbursting galaxies we find when going from pericentre / apocentre stage to the

merging galaxies. The merging stage represents, in our sample, galaxies that are

undergoing the final coalescence of the two systems involved. We find that the
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point of final coalescence leads to a large increase in the fraction of starbursting

galaxies as well as the almost complete disappearance of the quiescent and sub-

main sequence fraction of galaxies. Thus, from this result we can conclude that

during coalescence galaxies use whatever gas they have into star formation which

will quickly lead to their quenching. This is also supported by works such as

Ellison et al. (2022), which find that galaxies post-coalescence are 30-60 times

more likely than control galaxies to have rapidly shut down star formation.

Thus, we can conclude that, for merging galaxies, if gas is present within

them, star formation will increase and change our classification of the galaxy.

We will observe a sudden increase in the star formation rates of these systems

followed by a rapid quenching as the gas is used up entirely. This differs from

galaxies that move into the apocentre stage and do not merge. These apocentre

stage systems will then slowly lose their enhancement over a long period of time,

and return to star forming at their expected rate, whereas only moving into a

merging stage galaxy will lead to a starburst which may incur rapid quenching.

Such a conclusion would also, therefore, explain the often quite large divide

in the literature between whether interaction actually leads to enhancement or

not. The only part of the interaction which causes the enhancement, and is

the forking point, is the pericentre stage. From this point, if the galaxies then

move off to the apocentre stage and escape, we will see a gradual decline in

the SFE with the apocentre stage galaxy only having a minor increase in its star

formation classification, whereas if the galaxies move into the merging stage of the

interaction and coalesce we see the results of a major starburst and the complete

using and of all the gas in the systems. Thus, this leads to a large fraction of

quenched post-merger galaxies, but only after the initial coalescence.

3.6.2 Interaction Stage and AGN

The evolution of the AGN fraction in interacting galaxies is similar to that of the

evolution of star formation. It has often been found with projected separation

the AGN fraction increases. There are multiple observational works that show

this (Alonso et al., 2007; Ellison et al., 2013; Shah et al., 2020) as well as works

on cosmological simulations which support these conclusions (Byrne-Mamahit
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et al., 2023). In simulations, the increased likelihood of AGN activation comes

from the sudden increase in gas density in the galactic core which naturally leads

to increased black hole feeding, growth and nuclear activity. To satisfy these

conditions, actual coalescence of the two systems are required. Observations of

interacting galaxies are often interesting, as they contain examples of dual AGN

and individual examples (e.g. Ellison et al., 2017; Stemo et al., 2021) or investigate

the increase in the AGN fraction in only the merger / post-merger stage (Gao

et al., 2020).

We find peaks in the AGN fraction with projected separation, before the

galaxy merging and coalescence takes place. This is supported with other works

which specifically look at AGN fraction with projected separation (Ellison et al.,

2011; Steffen et al., 2023). However, we specifically find that the AGN fraction

increases rapidly in the merging stage and holds quite constant between the sep-

arated to apocentre stages. This shows two distinct effects of interaction which

can colour our interpretation of the link between AGN and interaction. It ap-

pears from our results that the AGN fraction is driven up during the points in

the dynamical time when the inner parts of the galaxy are majorly disturbed,

and not by the simple movement of gas and dust into the core during the two

galaxies passing each other. There is evidence that the onset of nuclear ignition

from interaction may be delayed (Ellison et al., 2011), or even flicker (Schawinski

et al., 2015) after ignition. Both of these possibilities are reflected in the double

peaked distributions of AGN fraction with projected separation and the different

times in the dynamical time these represent.

Again, it is important to note the rather ‘wide net’ that our stage classification

takes. There is overlap between our pericentre and apocentre stage classifications

at high pericentre projected separation and low apocentre projected separations.

However, these stages naturally lead onto one another. Therefore, what see in the

bi-modal distribution of AGN fraction with projected separation in Figure 3.24

are two peaks. The second of these peaks is at the cross over point of pericentre

to apocentre; the point at which (if the two galaxies have just flown by each

other) a delayed AGN ignition could take place. This is also reflected in Figure

3.22 where we see a slight increase in AGN fraction in the apocentre stage. This
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is likely from the ignition of nuclear activity taking place over a large period of

time with a delay being involved from the initial flyby.

We see an increase in AGN fraction in the merging stage systems, where

coalescence is just beginning or has occurred. Byrne-Mamahit et al. (2023) has

used cosmological simulations to show that we expect a large increase in AGN

fraction at coalescence, and even for sometime into the post-merger phase. This

is supported by measured AGN fractions in post-merger galaxies. This matches

both what we find and what observations mentioned previously of increased gas

densities in nuclear regions and cores, and that the merging stage is when this

really occurs in earnest.

However, to more fully study this, we would need a larger sample of confirmed

AGN and star forming galaxies from existing photometry or catalogues to make

more decisive conclusions based on stage. In this Section, we were limited to

a small number of AGN and star forming galaxies across each stage. When

compared to our paired sample, we do not have the numbers to also divide into

stage again. Therefore, Figure 3.24 shows the global AGN number count with

projected separation. We show that the two peaks are due to different stages of

the interaction, however, these are using very low number counts and should be

treated carefully.

3.7 Conclusions

In this work, we investigate the evolution of multiple parameters and processes in

galaxy interaction with interaction stage. We use the interacting galaxy catalogue

created in Chapter 2 and match it with the COSMOS survey to gain ancillary

data. This gives us a flux limited sample of 4,181 interacting galaxies of which 982

have a confirmed secondary from available photometric redshift data. We apply

a mass limit to our sample, reducing it to 3,384 galaxies with 607 pairs. We

use visual morphology as well as angular separation to split our sample into four

distinct stages: (1) close pair, (2) morphologically disturbed and overlapping, (3)

morphologically disturbed and distinct, (4) merging. Each stage is designed to

capture a different part of the dynamical timescale of the interaction. We then
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match these samples with existing catalogues of environment and active galactic

nuclei for further study.

We first split our sample of galaxies into their different stages and inves-

tigate their evolution with stellar mass and star formation rate. We conduct

Kolmogorov-Smirnov and Anderson-Darling tests to show the mass distribution

of our sample does not change with stage, while the star formation rate changes

dramatically. This change in star formation rate from the separated to merging

stages is found in the red sequence of galaxies reducing to the point of disap-

pearance. This is further confirmed by sub-classifying each sampled stage into

starbursting, main sequence and quiescent galaxies. We find that as the galaxies

move from the separated to pericentre stages the fraction of starbursting galaxies

increases while the quiescent galaxy fraction reduces. In the merging stage, the

starbursting fraction increases dramatically while almost no quiescent galaxies ex-

ist in the sample. This implies that the mechanisms responsible for enhancement

in star formation in interacting galaxies is dominant from separated to pericentre

stages and in the final coalescence of the system. We find that, for all of our

galaxies, some enhancement in star formation is observed.

To further investigate this change in enhancement, we investigate our sub-

sample of galaxy pairs and compare it to a mass and redshift matched control

sample. We bin our projected separations and measure the ratio between the

average interacting SFR and control SFR in each bin. We find, across the whole

subsample, a general increase in this ratio as we move to smaller projected sep-

aration. The highest found SFR enhancement is below 10 kpc. However, when

broken down into their constituent stages, we find different behaviour in the SFR

ratio. This is best seen in the pericentre stage enhancement, which does not

seem to change with projected separation while remaining enhanced. There is a

dramatic decrease in the pericentre stage enhancement from 2.2 at 10 kpc down

to 1.0 at 100 kpc. This shows that just using projected separation as a proxy for

stage will leave out crucial information to the underlying causes and mechanisms

fuelling star formation enhancement. To confirm that the effects observed here

are not related to biases in the environment, we investigate its relation to our

staged sample. We find that the environment is consistent between all stages,

with no biases existing.
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Finally, we investigate the change in AGN activity across our whole sample.

We find that, on average, the AGN fraction remains constant with stage until

the point of coalescence. However, when looking at project separation, we find

an almost bi-modal distribution. This could be evidence for a delayed ignition

in the AGN present in those systems undergoing an interaction. However, it is

difficult to draw this conclusion definitively due to small number counts. We also

find that the AGN fraction is highest in merging and merged galaxies.

While the results with projected separation are not unexpected, those with

the different stages are. We have shown the use of projected separation of in-

teracting galaxies as a proxy for the stage of the interaction may miss crucial

information. We find very different behaviour in the star forming behaviour of

interacting galaxies based on stage which are at in the dynamical timescale of the

interaction. We find the beginning of an enhancement in star formation occurs

in the pericentre stage. Then, through to the apocentre stage, the enhancement

remains although with no further increase. There is then another dramatic star-

burst in the merging stage, where the two galaxies actually begin to undergo the

coalescence processes.

Our work shows the importance of considering morphological stage when con-

sidering interaction, and that there is a fine interplay between underlying pro-

cesses and dynamical timescale of an interaction. We require larger samples of

correctly staged galaxies to further understand and exploit what these relations

are, and how to best investigate when and where star formation and its enhance-

ment occurs. This is also particularly true of the relation between active galactic

nuclei and the interaction stage, where we are unable to have the sample size to

definitively draw conclusions from our results. We also require numerical models

to better identify the point in the dynamical timescale an interacting system is.

This would lead to reliable constraints on the relations we have explore in this

Chapter. We present our work on building such an algorithm in the following

Chapter. This algorithm is focused on constraining both the dynamical timescale

of the interaction and the full set of underlying parameters needed to describe a

galaxy interaction.
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Chapter 4

An Infrastructure to Constrain

Underlying Interacting Galaxy

Parameters

4.1 Introduction

The precise interplay between the observed processes we have discussed in this

thesis and the underlying physical parameters of the involved galaxies is diffi-

cult to quantify. Using large scale observational datasets allows us to probe this

relation, but without the ability to constrain the dynamical timescale the preci-

sion of our constraints on it remains limited. Algorithms have been developed to

match the underlying parameters of an interaction and its dynamical timescale

by directly modelling the expected final morphology. If a simulation of an inter-

action can reproduce the final morphology, then it has likely correctly inferred

the interaction over the dynamical time.

Examples of algorithms designed to make this matching include Identikit by

Barnes & Hibbard (2009) or the Stellar Particle Animation Module (SPAM) by

Wallin (1990). However, finding the best fit underlying parameters for more than

a handful of systems is often seen as unfeasible. There are often greater than 10
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different parameters which contribute to different observed morphologies. This

leads the underlying parameter space to be greater than 10-dimensional and com-

plex. Exploring even a sub-space of this parameter space fully requires tens of

thousands of models to be run. This is also hindered by its degeneracy. For

example, Smith et al. (2010) found that four of their best-fit models were able to

accurately match morphology of the Arp 284 system. Therefore, it is often prefer-

able to use large cosmological simulations (e.g. Schaye et al., 2015; Hopkins et al.,

2018; Hani et al., 2020) to create large samples of synthetic interacting galaxies

where analogues to the observed system can be found. This, however, limits

our capability to explore observational parameter space beyond the limitations

of such cosmological simulations. By their nature, cosmological box simulations

have finite scope and size; meaning the rarest (and likely most interesting) inter-

acting systems will remain unexplored without significant further computational

expense.

This limitation of directly comparing numerical simulations to observations

was solved in a novel way by Holincheck et al. (2016) in the Galaxy Zoo: Mergers

(GZM) project (for details on Galaxy Zoo, see Lintott et al. (2008)). GZM worked

with citizen scientists to run simulations of interaction and visually compare the

simulated morphology to observations. GZM studied a sample of 62 interacting

galaxies from the Arp catalogue of interacting galaxies (Arp, 1966). Citizen sci-

entists’ were given a selection of simulation outputs around an observation and

would select the one which appeared most alike. The simulations would then be

run again with tweaked underlying parameters with the citizen scientist select-

ing the new the best fit output. With enough citizen scientists on the project,

enough new simulations run and enough time GZM were able to find the best

fit parameters for their interacting galaxy sample across a 14-dimension param-

eter space. This created the largest fully constrained interacting galaxy samples

to date. In the era of the Vera C. Rubin Observatory such an approach will

not be practical, with statistically significant samples of thousands of interacting

galaxies potentially being produced every week, a new approach is required.

In this Chapter, we present an automated methodology to constrain the un-

derlying parameters of interaction. We combine a fast restricted numerical sim-

ulation code with a Markov-Chain Monte Carlo (MCMC) framework. We con-
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struct the flux distribution of interacting systems from different sets of underlying

parameters. This allows us to map these underlying parameters to interacting

system morphologies we then compare to an input image via pixel-to-pixel com-

parison. We apply our methodology over a 13D parameter space and constrain

the probability distribution and find the likely parameter values describing an

interacting galaxy system. This approach allows us to marginalise over each pa-

rameter, provide the best fit value as well as the error on each measurement.

First, we apply this to a set of synthetic interacting galaxy observations created

from a restricted N-body simulation where we have input the 13 underlying pa-

rameters. This provides us with diagnostics of our methodology. We then apply

our process to five real observations of interacting galaxies and discuss how our

methodology could be applied to real data, and the limitations therein. We also

discuss the more general limitations of this approach, with a particular emphasis

on the computational expense required, and the potential future solutions.

The layout of this Chapter is as follows. In Section 4.2, we describe the sample

of 51 galaxies we will study and our approach to observation preparation. Section

4.3 will summarise our simulation code and how it has been updated from previous

iterations. We also describe how we build our sample of synthetic interacting

galaxies and the parameter space we will explore with this simulation. A full

discussion of our results will be given in Section 4.5 followed by our conclusions

and future work in Section 4.6.

4.2 Data

4.2.1 Sample of Major Interacting Galaxies

In this work, we test our Markov-Chain Monte Carlo (MCMC) process on ide-

alised, mock observations of 51 major interacting systems. These mock observa-

tions are created using our numerical simulation where we have input the under-

lying parameter values directly. As we know what the true underlying parameters

of each interaction are, we can test the accuracy of our MCMC. To create these

mock observations, we use the underlying parameters found in the GZM project

for 62 interacting galaxies.
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Of the 62 systems, we create synthetic images of 51 of them to act as our

idealised observational sample. As we are including the flux distribution of each

system, we require an accurate redshift of each system. 3 of the 62 systems do

not have a redshift measurement in the NASA Extragalactic Database (NED),

the Sloan Digital Sky Survey (SDSS) or Simbad databases. Therefore, we discard

these. We create each mock observation as though it was observed using SDSS. Of

our remaining 59 interacting systems with reliable redshift measurements, eight

had not been observed with SDSS. Therefore, we also discard these systems. This

leaves us with the GZM best-fit parameters of 51 systems with which to create

our synthetic observations. The details of the real systems are displayed in Table

4.3, including the target coordinates, the SDSS ID and the redshift measurements

we use. How we create our synthetic images is described in Section 4.3.2 after we

have described our simulation.

4.2.2 Observation Preparation

To robustly test our MCMC algorithm, we will constrain the underlying parame-

ters of observations of a subset of the systems described in Table 4.3. Therefore,

we describe how we build such observational images here. We downloaded the

FITS files from SDSS Data Release 16 which contained the full system of inter-

acting galaxies. These were then used to create smaller cutouts of the systems.

The coordinates of the primary galaxy are used as the centre of the image. We

judged the size of the cutout by the size of the full interacting system, most often

between 600 - 1000 pixels. We created cutouts in each SDSS filter (u, g, r, i, z).

We convert each observational image into counts from the native unit of

nanomaggies using the conversion value in each FITS header. Each filter im-

age was then stacked into white image by simply summing them together. This

gave us a higher signal-to-noise in the tidal features of the interacting systems.

Then, we took these native resolution white images and block reduced them to

a 100 × 100 thumbnail. Each cutout was visually inspected to ensure that, even

with the reduced resolution, the tidal features were still clear and prominent in

the image.
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Name SDSS ID RA Dec Redshift
Arp 240 587722984435351614 204.980417 0.835278 0.02250
Arp 290 587724234257137777 30.946317 14.72365 0.01171
Arp 142 587726033843585146 144.429583 2.763056 0.02329
Arp 318 587727177926508595 32.380516 -10.158508 0.0132
Arp 256 587727178988388373 4.710417 -10.369167 0.02730

UGC 11751 587727222471131318 322.247796 11.382539 0.02909
Arp 104 587728676861051075 203.037083 62.733889 0.01082

Double Ring, Heart 587729227151704160 238.287292 54.147861 0.040
Arp 285 587731913110650988 141.040000 49.226111 0.00967
Arp 214 587732136993882121 173.145221 53.067922 0.00331

NGC 4320 587732772130652231 185.740516 10.548328 0.02668
UGC 7905 587733080814583863 190.952917 54.900278 0.01648
Arp 255 587734862680752822 148.290000 7.870000 0.04106
Arp 82 587735043609329845 122.811250 25.193056 0.01368
Arp 239 587735665840881790 205.423852 55.672324 0.02489
Arp 199 587736941981466667 214.265833 36.573333 0.01024
Arp 57 587738569246376675 199.198750 14.424444 0.048

(HWB2016)Pair 18 587738569249390718 206.209583 13.921361 0.089
Arp 247 587739153356095531 125.889478 21.342976 0.01108
Arp 241 587739407868690486 219.461958 30.481222 0.03472
Arp 313 587739505541578866 179.418333 32.285556 0.01045
Arp 107 587739646743412797 163.069583 30.065278 0.03318
Arp 294 587739647284805725 174.931624 31.920108 0.00892
Arp 172 587739707420967061 241.389583 17.597222 0.029
Arp 302 587739721376202860 224.251667 24.612222 0.03286
Arp 242 587739721900163101 191.544583 30.727222 0.02205
Arp 72 587739810496708646 236.733750 17.878333 0.01100
Arp 101 587739845393580192 241.124946 14.800192 0.026
Arp 58 587741391565422775 127.990209 19.211523 0.03722
Arp 105 587741532784361481 167.804167 28.724722 0.021
Arp 97 587741534400217110 181.439583 31.068889 0.02305
Arp 305 587741602030026825 179.655833 27.490833 0.004
Arp 106 587741722819493915 183.902522 28.173576 0.02199

NGC 2802/3 587741817851674654 139.172619 18.963463 0.02914
Arp 301 587741829658181698 167.470000 24.259722 0.02059
Arp 89 587742010583941189 130.665852 14.285624 0.00687
Arp 87 587742014353702970 175.185000 22.437778 0.02373
Arp 191 587742571610243080 166.834167 18.431111 0.02739
Arp 237 587745402001817662 141.933458 12.286750 0.02899
Arp 238 588011124116422756 198.886667 62.126944 0.03106

MCG +09-20-082 588013383816904792 181.161667 52.956111 0.078
Arp 297 588017604696408086 221.330417 38.761389 0.0298

NGC 5753/5 588017604696408195 221.328663 38.805889 0.01374
Arp 173 588017702948962343 222.869434 9.328297 0.028
Arp 84 588017978901528612 209.649167 37.438889 0.01158

UGC 10650 588018055130710322 255.060770 23.106346 0.00986
Arp 112 758874299603222717 0.368333 31.437778 0.024
Arp 274 587736523764334706 218.786250 5.356389 0.02890
Arp 146 587747120521216156 1.685000 -6.635833 0.07544
Arp 143 588007005230530750 116.72333 39.019444 0.01374
Arp 70 758877153600208945 20.864583 30.778333 0.03500
Arp 218 587739720308818095 238.397500 18.607222 0.075

Table 4.1: The names, SDSS ID, right ascension, declination (in degrees) and
redshift for the 51 interacting systems we will examine. All redshifts are as found
on the NASA Extragalactic Database.
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We take the 0.396” pixel scale of SDSS on the sky with the measured redshift

to calculate its physical size. From the pixel-to-distance conversion for each im-

age, the position of each secondary galaxy was calculated from the central pixel.

No attempt was made to approximate the z-position of the secondary galaxy,

as this is a parameter to constrain. In total, there are 13 parameters that we

must constrain over our synthetic and observation images. These parameters are

detailed in the following chapter. The observation image preparations were made

using the Astropy Python package (Astropy Collaboration et al., 2013b, 2018b).

4.3 Simulating Galaxy Interaction

We require a method of mapping underlying parameters to our observed systems

morphology and calculating how likely it is they are representative. We input our

set of underlying interaction parameters into a restricted three-body simulation

which predicts the morphology and flux distribution of the interacting system.

In this chapter, we describe our simulation code, its previous iterations and how

we add in additional flux information.

4.3.1 APySPAM

4.3.1.1 Restricted Three-Body Simulation

The simulation code we use is the Java Stellar Particle Animation Module (JSPAM)

(Wallin et al., 2016). For an in-depth description of the underling code, we direct

the reader to Wallin (1990); Wallin et al. (2016) but provide a summary here.

JSPAM is a restricted three-body code focused on recreating the morphology of

interacting systems. It approximates the interaction as two massive bodies each

being orbited by a set of massless test particles. The gravitational potential of

the two massive bodies and the resultant forces upon the massless test particles

is calculated and used to predict the particles position and velocity at different

timesteps. The size and number of time steps can be input by the user. JSPAM is

computationally efficient, approximating the morphology of an interacting system

using thousands of particles in seconds on a regular work PC at a reasonable time
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resolution. The primary particle integrator is a fourth-order Runge-Kutta which

applies backwards integration to calculate the position and velocity of the massive

bodies from t=0 to the time set by the user. The test particles are then added

to the simulation, and forward integration is conducted to find their position and

velocity in each timestep through the trajectory of the massive bodies. In this

way, a flyby of the two galaxies is simulated with the test particles representing

the extended morphology of the two galaxies.

The user has the option to choose a N-body approximation or a softened point

mass approximation. Each of these slightly changes the way that the integrator

calculates the forces on each particle. Therefore, there will be slight discrepancies

between the final morphology of systems interacting with the same underlying

parameters but different force approximations. We elect to utilise the softened

point mass approximation, as this has improved computational efficiency over

the higher accuracy of N-body approximation (for more on this see Wallin et al.,

2016).

The base code of JSPAM was purely a morphology matching code. Attempting

to extract underlying parameters of interaction from morphology matching alone

has been shown in prior works to be difficult (e.g. Barnes & Hibbard, 2009). JSPAM

itself has been used in genetic algorithms to find the best fit parameters of different

systems (e.g West et al., 2023). However, this lacks the exploration of parameter

space and the quantification of uncertainties we aim to achieve in our approach.

Using both morphology and flux matching between simulations and observations

improves accuracy of recovered parameters (Miller & van Dokkum, 2021) and we

have therefore enhanced the original JSPAM algorithm with the ability to model

population evolution with star formation/star bursts to approximate the flux

distribution of the interacting system. We have created this enhanced version in

Python 3.7.4 (hence, we shall refer to this algorithm as Advanced Python Stellar

Particle Animation Module, APySPAM).

To approximate the flux distribution of the galaxies in the simulation we

calculate luminosity of each particle while minimising the computational cost.

We incorporate the evolution of the underlying stellar populations of each galaxy

over the time taken in the interaction. We also incorporate the formation of new

stellar populations in potential starbursts, and approximate the impact this will
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have on the galaxy flux distribution. To preserve the computational efficiency,

we build a semi-analytic model and define a global stellar population to assign

a luminosity to each particle based on its assigned, hypothetical mass. In this

way, we ‘paint on the stars’ of each galaxy without having to directly model

stellar evolution and star formation. This process is detailed in the following two

subsections.

4.3.1.2 Stellar Population Evolution

To model the underlying stellar populations, we utilise a Bruzual & Charlot

(2003) (BC03) simple stellar population. These contain SEDs generated from

flux libraries from a Chabrier (2003) initial mass function. We set this stellar

population model to have a delayed exponentially declining star formation rate

(Johansson et al., 2009; Pacifici et al., 2013; Simha et al., 2014; Boquien et al.,

2019). However, to capture any star formation due star formation enhancement

in the interaction, we increase the star formation based on the conditions in the

interaction. We assume an e-folding time for star formation of τ = 1.7Gyrs. This

value is chosen as it matches field, massive galaxies found in the literature (e.g

Peng et al., 2010b) and used in hydrodynamical simulations (e.g. Jeon et al.,

2022). Our simulation outputs a spectrum normalised to 1M� with each particle

initially assumed to be the same age as the galaxy.

This spectrum must then be scaled to the stellar mass present at each particle.

We follow the prescription as stated in Wallin et al. (2016) to distribute the mass

between the three components of the galaxy, and then to each test particle. The

galaxy in the JSPAM simulation has its mass distribution as Mbulge = 0.05Mgalaxy,

Mdisk = 0.14Mgalaxy and Mhalo = 0.81Mgalaxy. We take the total mass assigned

to the galaxy (input by the user) and divide it into these three components. We

then assume that the bulge and disk masses are fully baryonic, with the remaining

mass being non-baryonic dark matter. We further divide the calculated baryonic

mass into two components: stellar and gas. The total stellar mass of each particle

is used to scale our final output SEDs from our model while total gas mass of each

particle is used to calculate the star formation rate. The gas and stellar mass to

be distributed to the particles is then defined by a gas fraction parameter that the
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user can alter. By default, this value is 0.15 for both the primary and secondary

galaxies.

We assume the initial ages of the galaxies (both 10 Gyrs by default) at ini-

tialisation and calculate the final age of the SEDs based on the number of time

units the user wishes to run the simulation. This age is then used to extract

the normalised spectra from the BC03 templates. These output SEDs are then

convolved with given telescope filters of the users choice and integrated, giving

a colour flux value to each particle. However, this process only outputs the final

flux values at each particle of the initial stellar population. During the interac-

tion, we assume that the galaxy begins to form new stars at a rate significantly

higher than is modelled in the BC03 templates. Therefore, we account for this

by modelling newly created stellar populations as the interaction progresses.

To incorporate the increase in star formation in our simulations, we manu-

ally enhance the expected star formation rate through the simulated interaction.

In high-resolution simulations which also model the evolution of gas, starbursts

occur naturally (Saitoh et al., 2009). However, in our simulations we must ap-

proximate this behaviour in a semi-analytic fashion. The change in star formation

is heavily dependent on the mass ratio and the kinematics of the interaction and,

therefore, we implement an enhancement parameter based on these parameters.

We calculate the excess star formation due to the interaction compared to what

is already expected in the SED, and distribute this to each particle based on the

initial gas mass. Approaching the problem in this semi-analytic way is similar to

what is done in the CIGALE (Boquien et al., 2019) algorithm. Here, we detail

this enhancement parameter.

At any given timestep the enhanced SFR is given by

SFRenhancement = β

(
t

τ 2

)
exp

(
− t
τ

)
MbaryonicM�yr−1. (4.1)

Here, τ is the e-folding time of star formation, Mbaryonic is the baryonic mass of

the galaxy and t is the age of the galaxy at the given timestep. This is the star

formation at any time given by the BC03 template. However, we include the β

parameter, which is our enhancement value. This is a dimensionless value given
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by

β = MratioD
2
ratio. (4.2)

Mratio is the mass ratio between the galaxy being enhanced and the galaxy causing

the interaction. Dratio is the ratio of each galactic radius to the distance between

the galactic cores. In a system with a high mass galaxy interacting with a low

mass galaxy, the high mass galaxy will have relatively little star formation en-

hancement while the less massive galaxy will have significant enhancement. This

is similarly true for the ratio of the radius and separation. If the galaxies are

interacting in such a way that the distance of closest approach is less than each

galactic radius, then this ratio will rapidly increase above one, enhancing star

formation further. This represents a significantly more violent interaction. It is

important to note, however, that this has significantly less impact on strength-

ening star formation than that of the mass ratios.

These parameters successfully reflect the findings of the current astrophysi-

cal literature, where mass ratio has a significantly higher role on star formation

enhancement than impact parameter (Barton Gillespie et al., 2003; Lotz et al.,

2008a; Li et al., 2008a). We base our semi-analytic approach on the star forma-

tion histories found in a range of high resolution N-body simulations (Mihos &

Hernquist, 1996; Springel, 2000; Rodŕıguez Montero et al., 2019) which measure

the change in star formation directly from the Kennicutt-Schmidt (Kennicutt,

1998) relation. These simulations directly model the star forming gas through

the interaction, measuring the change its evolution which we are able to approxi-

mate. Thus, we achieve an accuracy comparable to directly-modelled simulations

at a fraction of the computational cost.

The output of Equation 4.1 is global star formation of each interacting galaxies

at any given timestep. However, the aim of our model is to be able to match

the flux distribution across the entire galaxy (particularly the tidal features) to

any observation that the code is given. Therefore, we must distribute the star

formation throughout the particles. To keep computational efficiency, we utilise

weights which have been assigned to each particle. These weights are based on

the ratio of the gas mass of the particle which has been assigned at initialisation

to the total gas mass of the galaxy. So, to find the star formation rate of a single
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particle at any given timestep, the following equation is applied:

SFRParticle =
Mgas,Particle

Mgas,Galaxy

SFRGalaxy. (4.3)

After every time step, the gas within each particle is reduced by the mass con-

verted into stars. Once this drops below a user defined value, the particle is

cut off from star formation and is considered quenched. Currently, each parti-

cle is assigned equivalent gas mass at initialisation of the simulation. Therefore,

when a particle is quenched in this example, every particle in the galaxy will also

be quenched. The user can define a gas distribution model, which will lead to

particles being quenched at different times.

There are limitations to this approximation. We assume that each galaxy is

a disk galaxy prior to the interaction when we assign gas masses to each particle.

We assume that all of the gas mass assigned can be used in star formation, i.e.

all the gas is cold molecular gas. We make no account of gas ionization or the

turbulence in the ISM that likely occurs during these interactions. We also assume

that the disruption occurring to the test particles represents what would occur to

the gas disk of galaxies within an interaction. However, we find that with these

assumptions, the output star formation histories mimic those simulations which

directly calculate these values.

Upon finding the star formation rate at the position of each particle, we

convert this into a stellar mass formed through the timestep taken. We then

compare this formed mass to the expected mass formed in the initial underlying

stellar population. If excess stellar mass has been formed, we assign an SED to

it and its age is recorded. Once the simulation is completed, each new stellar

population age is used to extract the relevant BC03 SED and multiplied by the

total mass of the new stellar population. We then stack all of the SEDs together.

This gives us the total extra emission we expect from the stars formed during

the starburst throughout the simulation. This is then added to the initial stellar

population emission defined at the beginning of the simulation. This gives us the

total SED of each particle throughout the simulation. Each particle SED is then

convolved with user inputted telescope filter responses and integrated. This gives

a total flux that would be measured from each particle as if observed.
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Thus, starting with the underlying JSPAM code approximating the positional

distribution of particles to the observed system, we paint on the flux and find

the flux distribution with APySPAM. This allows us to directly compare the pixel

in a simulation image to an input observational image. However, in doing so, a

limitation was found due to using a particle number that was significantly less

than the number of pixels.

4.3.1.3 Extending Flux Distribution

One remaining challenge in the simulations is that we are attempting to model

full interacting systems with a number of particles significantly less than the

number of pixels in each image. This is to maximise computational efficiency.

The resulting effect is that large gaps can appear in the tidal features that form

or within the disks themselves as the interaction progresses. To mitigate this

effect, we calculate the flux at each particle position and then use the procedure

described below to distribute it through each pixel of our image. This results in

more realistic images of galaxies compared to binning the particle flux based on

position.

First, we calculate the flux at each particle described in the previous sections.

We take each particle SED, and convolve it with the filter(s) of the user’s choice.

These convolved SEDs are then integrated to give a value of the flux in counts at

each particle. We then create a grid of pixels and calculate the physical distances

between each of their centres. We then calculate the contribution of flux from

each particle to each pixel centre. Once the 2D flux distribution has been found

across the pixel grid, we then use the measured redshift of the galaxies to find

the measured fluxes as if the system had been observed.

The result of this is a well distributed galaxy image where there are no empty

spaces in the tidal features nor in the disk. However, it does have a limitation

when particles are not within the galaxy. When a particle is flung out to different

parts of the image during the interaction the particle flux is smeared into seem-

ingly larger orbiting systems to the interaction. When doing our pixel matching,

this can lead to much to a calculated excellent reproductions of the primary tidal
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features being labelled as unrepresentative. As a result, we set the value of any

particle with no neighbour within 5 × 5 pixels to zero.

The process described above successfully creates continuous, synthetic images

of the galaxies flux distribution with a limited number of particles in the simu-

lation. However, this approach does impose two limitations on our constraining

methodology. These limitations are related to the existence of tidal features at

the very limits of detectability of our telescopes. The first is when a galaxy has

a ‘hidden’ tidal feature that hasn’t been detected. In this example, the correct

underlying parameters would lead to the formation of the tidal feature that would

be measured in the synthetic image. When compared to the observational image,

this would be identified as a mis-match between the morphologies of the observed

and simulated images. It is important to be aware of all the tidal features within

the image and understand the limiting flux and surface brightness of all images

in a sample. Here, we have selected major mergers in SDSS with very clear tidal

features which are far from the low surface brightness regime. Thus, we do not

encounter this issue here.

The second is with tidal features at the very limit of our detectability, where

a single isolated particle could be representative of the tidal feature but we now

remove it with our 5 × 5 neighbour criteria. Primarily, in testing, we find that

this is a lesser problem that the first. The 5 × 5 criteria is a very lenient one,

and often such tidal features are close enough to the galactic disk in our images

that they remain in the image. They often form continuous features which then

incur the first limitation. This can be rectified by selecting lower resolution and

getting more flux into larger pixels.

4.3.1.4 Impact on Computation Time

The new algorithms to calculate flux have been added to the original JSPAM code

while preserving computational efficiency. The choice to create an interaction

constraining code which uses flux distribution rather than morphology matching

is due to the prior difficulties of using such a method. Therefore, the introduction

of extra algorithms which require extra computation time has been necessary. The

runtimes of JSPAM and APySPAM are shown in table 4.2. As shown here, even with
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N Particles JSPAM (s) APySPAM (s)
10 0.062 0.250
100 0.45 0.338
1000 4.22 1.090
2500 10.535 2.392
5000 21.104 4.458
10000 42.796 8.625

Table 4.2: Timing comparison between the original JSPAM code (as used in Galaxy
Zoo: Mergers) and the advanced version of PySPAM we are using here. These
timings were taken using Python 3.7.4 on an Intel(R) Core i7-8665U CPU. Our
version of APySPAM significantly outperforms that of the original JSPAM by many
times, even with the added architecture of approximating the flux distribution.
This is because in our re-write of the underlying simulation code we take advantage
of Python’s efficiency with vectorization and array multiplication over that of for
loops. These tests were performed by running the simulation for seven hundred
steps fifty times and then taking the average run time of each iteration.

our extra flux calculations, for reasonable particle counts our new code APySPAM

outperforms JSPAM by at least a factor of four. When we have translated JSPAM

into Python, we have also re-written the underlying code to take full advantage

of Numpy and Python’s speed with vectorization over for loops. As shown, the

computational efficiency impact only becomes noticeable at very low particle

number, where the overheads of Python’s vectorization is comparable to the base

runtime of a for loop.

To explore the full parameter space we must run APySPAM many thousands

of times. Therefore, we need to use the simulation specified with the fastest

runtime possible for the smallest trade off in resolution of the tidal features. We

elect to use 2,500 particles throughout our run. This is still relatively fast, taking

approximately 2 seconds, but also maintains high resolution of the tidal features.

This is still five times faster than using the original JSPAM code with this many

particles.

By using the flux distribution method described in Section 4.3.1.3, we mitigate

the effect of lower particle compared to pixel number. This is at the cost, however,

the adding the largest computational overhead. We find that this part of the

algorithm is much more sensitive to image size than particle number. The timing

calculations shown in Table 4.2 use an output image size of 100 × 100. When
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increased to 500 × 500, the computation time for 2,500 particles increased to over

30s. Therefore, it is imperative that the user keeps this in mind when selecting

cutout size.

4.3.2 Creating Test Images

With the descriptions of our simulation completed, we now describe how we build

our idealised observations. We use the APySPAM three-body algorithm described

in Section 4.3.1.1 to create these images. These images are measured in counts,

as if observed in the SDSS. We utilise the best fit parameters which were found in

the GZM project, and re-create their best fit images for each named interacting

system. The parameters to create these images are shown in Table 4.3. We

run our APySPAM with 20,000 particles and a high time resolution of 0.057Myrs

per timestep. The resultant images are shown in Figure 4.1. Each image is

white, created by the stacking of ugriz filters of SDSS. We find the original

SDSS observations of each system, and extract the conversion from nanomaggies

(native SDSS flux unit) to counts and apply them to the native standard units our

simulation outputs the flux distribution in. By stacking, we increase the signal

in the tidal features, as well as other points in the disk.

Each test image is centred on the ‘primary’ galaxy, with the xyz-position of

the secondary galaxy being used to calculate the size of the cutout. The primary

galaxy is the galaxy with most mass in the pair, as defined in H16. These images

were then reduced from their native resolution to 100 × 100 cutouts. This image

size was found to be the best compromise between detail in the tidal features. As

we will be matching the flux distribution of each system, it requires the redshift

of the interacting system. As stated previously, the redshifts for our sample were

found from the NASA Extragalactic Database. The full range redshift range of

our sample is 0.003 < z < 0.113.

4.4 Constraining Interaction

We now require a method to compare our simulation images to our synthetic

images. This comparison acts as a way to map the set of underlying parameters to
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Names x(kpc) y(kpc) z(kpc) vx(kms−1) vy(kms−1) vz(kms−1) log MT,1(M�) log MT,2(M�) R1(kpc) R2(kpc) φ1 φ2 Θ1 Θ2

Arp 240 -149.08 -68.71 231.50 -260.83 -504.46 794.60 12.54 12.47 44.69 63.75 301.00 35.50 310.81 321.99
Arp 290 16.22 -25.02 -31.02 -31.22 -67.22 -4.94 10.71 10.56 14.11 6.58 12.97 135.12 97.54 305.01
Arp 142 -7.40 -21.57 0.90 12.44 -173.23 152.27 11.04 11.19 19.16 5.01 48.79 43.80 50.07 135.06
Arp 318 14.10 2.70 39.98 0.00 -71.83 196.50 10.56 11.01 9.87 9.21 6.21 95.00 200.00 289.23
Arp 256 -6.12 -28.88 29.37 -194.60 -173.47 132.02 11.12 11.10 14.11 8.16 97.79 60.52 144.60 216.50

UGC 11751 10.00 -31.91 24.23 -31.46 -39.20 34.96 10.28 10.19 12.22 11.34 15.00 87.50 203.48 22.36
HEART -1.89 5.25 50.36 -21.98 94.78 680.87 10.89 10.99 4.58 6.18 152.78 195.63 147.23 138.43

NGC 4320 -1.58 2.14 -3.10 -339.22 -30.34 101.96 10.90 11.05 7.07 2.57 117.88 147.04 326.46 65.76
Arp 255 -18.50 21.49 17.61 -40.64 -89.59 126.67 11.36 10.64 15.20 11.73 140.38 -4.88 317.52 221.37
Arp 82 -7.30 -21.75 -9.39 68.90 -90.15 7.84 11.17 10.87 5.90 2.89 26.65 49.48 342.60 232.84
Arp 199 -4.10 2.85 11.17 218.16 176.37 84.61 10.25 10.05 4.55 4.63 96.61 49.83 152.65 109.12
Arp 57 -69.44 -52.30 128.05 -173.38 -160.84 440.18 11.15 10.99 17.70 9.77 176.94 71.08 337.85 335.44
Arp 247 7.14 -10.80 -41.04 26.09 -53.22 -43.00 10.87 10.55 7.17 3.33 55.45 45.65 319.41 335.29
Arp 241 -4.54 -8.23 -0.55 -74.39 79.62 0.00 10.20 10.37 3.72 5.17 96.08 107.20 227.48 229.44
Arp 107 -29.43 33.42 -9.48 0.20 19.43 46.26 10.99 10.86 16.49 6.55 82.03 271.03 191.08 296.27
Arp 294 -4.61 13.67 -62.09 -122.55 -52.72 -25.10 10.63 10.82 8.69 8.20 70.38 178.66 59.54 109.24
Arp 172 -6.62 -18.38 -30.98 -42.56 -33.24 -52.22 11.26 11.12 8.81 8.09 213.74 67.31 203.50 241.01
Arp 302 2.76 -25.61 74.51 -196.00 -305.20 97.39 10.75 10.32 14.16 9.52 6.24 36.33 283.48 345.34
Arp 242 -6.47 -13.90 -26.85 4.19 60.44 -3.14 10.52 10.74 10.69 5.86 7.45 57.97 85.88 212.75
Arp 72 16.78 -8.81 26.86 8.24 -23.74 171.19 10.12 9.98 9.18 2.59 6.80 90.49 224.26 228.89
Arp 58 -28.91 -25.10 -15.37 20.13 -158.10 11.60 11.32 10.55 19.35 2.85 173.29 45.58 44.63 230.34
Arp 105 -1.53 -31.87 80.03 37.05 -3.92 265.62 10.77 11.45 9.23 11.88 -34.38 141.75 306.34 0.00
Arp 106 -6.39 -12.55 -28.98 -73.92 1.21 -185.26 11.12 10.30 8.98 2.94 108.93 39.06 319.92 160.84

NGC 2802 15.95 15.68 24.54 169.82 53.15 263.10 10.75 10.36 13.78 7.52 108.04 30.31 327.91 146.78
Arp 301 -17.28 -4.91 -19.08 -314.96 25.19 -3.15 11.05 11.17 10.24 16.68 9.19 78.00 160.99 252.67
Arp 89 -14.81 -9.89 -36.98 21.05 -81.46 -20.52 10.71 10.49 12.05 4.66 149.19 110.69 78.26 70.43
Arp 87 -3.46 26.92 -38.84 -42.32 45.27 -106.64 10.16 10.23 8.08 5.42 116.69 65.78 32.05 249.08
Arp 191 9.03 -5.50 -47.81 -2.88 34.73 -272.22 10.87 11.09 7.37 8.22 101.88 53.06 2.24 216.89
Arp 237 -8.24 1.92 1.88 85.13 -141.79 48.60 11.04 10.65 7.85 5.18 86.86 55.83 348.72 148.42
Arp 173 11.63 -26.45 -54.92 75.32 5.69 -139.47 12.04 10.56 6.95 6.87 83.54 329.68 310.01 317.61
Arp 84 7.61 23.25 2.26 -24.13 44.84 26.11 10.67 10.06 17.24 4.08 11.06 65.56 111.80 290.68

UGC 10650 -1.64 -16.00 -26.56 43.91 30.74 5.69 10.59 10.61 8.50 6.96 73.19 -63.69 346.58 187.83
Arp 112 -9.47 9.57 4.03 -170.75 -32.95 71.45 10.96 10.98 4.37 4.09 97.25 -4.75 194.53 35.78
Arp 274 19.50 -4.72 55.56 226.62 154.11 -150.67 10.75 10.24 17.75 12.69 126.88 51.38 296.59 232.55
Arp 146 18.05 10.10 9.61 72.89 85.41 73.70 10.70 10.78 8.83 12.91 72.50 48.81 111.80 67.08
Arp 143 -3.91 -16.09 24.25 53.06 -21.88 84.27 10.62 10.15 7.35 7.75 45.23 32.38 236.54 61.02
Arp 70 9.24 -30.53 -29.87 42.03 -128.45 -0.41 10.78 10.67 13.72 7.80 149.90 136.19 50.40 38.01
Arp 218 35.55 -20.53 3.84 74.29 -59.10 -25.77 10.74 10.12 11.07 6.38 148.30 49.41 231.50 261.45

Violin Clef -15.21 -33.86 -16.08 -15.95 -70.31 -186.56 10.59 10.78 10.47 7.86 142.49 65.29 258.15 238.65
Arp 104 0.89 -9.61 -9.34 32.76 -26.66 -53.61 10.94 10.68 1.44 0.88 78.09 87.64 36.70 347.77
Arp 285 -16.66 21.33 25.37 -84.45 86.28 14.76 9.20 10.50 5.01 5.71 51.19 -35.00 295.16 249.32
Arp 214 -43.09 13.54 0.93 -57.28 31.96 -21.48 10.07 10.01 8.01 6.31 135.70 354.86 140.82 138.14

UGC 7905 1.32 -9.53 16.47 -112.54 -80.94 67.17 10.31 11.07 4.19 5.03 14.93 68.72 103.69 239.11
Arp 239 -12.19 4.02 21.45 -104.37 16.96 58.77 10.97 10.27 7.45 2.21 58.82 94.31 235.38 335.40
PAIR18 -12.44 32.72 -18.36 14.70 -38.05 -156.67 10.96 11.36 11.02 16.62 153.57 43.84 168.63 326.13
Arp 313 -13.42 11.35 -39.17 -142.02 -61.52 -303.92 10.71 10.44 4.64 11.10 7.92 42.80 115.72 304.23
Arp 101 14.52 -39.46 -33.44 27.22 -132.95 -143.42 10.71 10.78 6.60 4.45 45.10 358.74 62.34 207.08
Arp 97 -0.57 27.13 4.51 -40.93 31.86 45.10 9.98 10.09 8.14 3.62 53.18 146.65 46.34 24.76
Arp 305 44.52 54.29 -1.86 50.93 115.06 12.07 10.53 10.27 10.51 7.03 45.81 166.88 286.21 234.78
Arp 181 -3.11 -1.81 -7.72 -199.27 -63.32 -201.94 10.69 10.94 1.56 1.73 96.00 65.69 127.45 221.37

MCG 09-02-082 8.67 -5.60 -16.64 197.24 16.52 -228.72 11.10 10.77 2.97 3.49 85.43 97.51 317.60 4.75
Arp 297 11.55 -2.79 -35.87 38.79 -62.45 20.98 10.84 10.48 10.76 5.24 51.44 136.06 199.01 243.73

NGC 5753 -24.85 -34.94 -21.60 -59.57 -86.24 -5.50 10.64 10.40 4.62 5.77 141.06 110.25 138.63 26.83

Table 4.3: The best fit parameters found the GZM project to represent each of the
named interacting systems. We use these best fit parameters to create idealised
images of each interacting system using APySPAM. Each of these parameters are
the final parameters of the galaxy at the point of the observation. The positional
and velocity vectors are of the secondary galaxy in the frame of the primary. The
masses are the total mass of the system. The radii is that of the disk initialised
to create the final morphology. Finally, the four orientation parameters are with
respect to the y- and z- axis and allows the disk to be rotated in 3D with respect
to the sky. The resultant simulation cutouts are shown in Figure 4.1.
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Arp101 Arp104 Arp105 Arp106 Arp107 Arp112

Arp142 Arp143 Arp146 Arp172 Arp173 Arp191

Arp199 Arp214 Arp218 Arp237 Arp239 Arp240

Arp241 Arp242 Arp247 Arp255 Arp256 Arp274

Arp285 Arp290 Arp294 Arp297 Arp301 Arp302

Arp305 Arp313 Arp318 Arp57 Arp58 Arp70

Arp72 Arp82 Arp84 Arp87 Arp89 Arp97

Heart MCG09-02-082 NGC2802 NGC4320 NGC5753 Pair18

UGC10650 UGC11751 UGC7905

Figure 4.1: Our mock observations of each interacting system. These act as an
idealised observation, which is completely noiseless. We also know the underlying
parameters which formed these outputs. Therefore, this forms an excellent test-set
to see if we can recover the underlying parameters when searching over a large
parameter space.
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4.4 Constraining Interaction

an output morphology that we can then constrain by comparing to observations.

However, we need a framework to conduct this comparison and to explore the

parameter space of our interactions. To do this, we use an Markov-Chain Monte

Carlo (MCMC) algorithm. In this chapter, we first describe the parameter space

we explore, followed by our MCMC algorithm, how we quantify the similarity

between simulation and synthetic images and how we find the parameters which

are best fit.

4.4.1 The Parameter Space of Interaction

We aim to explore the underlying parameter space of interaction and find the best

fit parameters which describe an input observation or test image. The parameters

we constrain are the required parameters in the APySPAM three-body simulation

algorithm. To function, APySPAM requires 15 different parameters. These are: the

6 positional and velocity vectors of the secondary galaxy, the total masses of both

galaxies, their radius, 4 orientation parameters and the dynamical timeframe to

model. We now also require the redshift measurement of the system to correctly

estimate the flux distribution of the system. However, some of these parameters

we can find before we begin exploring the underlying parameter space.

The first two parameters we find are the projected 2D position of the secondary

from the primary. These are measured from the observational image of the system

by converting between pixel and physical coordinates in the image. We take this

position as the centre of the secondary disk. We also provide the redshift of the

interacting system. The redshift not only directly impacts the flux distribution

of the input image, but its scale and resolution. Therefore, we assume that this

parameter is known and provided. Work is currently being conducted to making

this a free parameter that can also be constrained based on the interacting systems

flux distribution and size.

Thus, there are 13 different free parameters to recreate an interacting systems

morphology and are the 13 parameters we will constrain over. A description of

these parameters and the size of the parameter space explored are shown Table

4.4. We choose the limits of the parameter space based on the maximum values of

the parameters we used to build our test images in Table 4.3. Table 4.4 provides
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4.4 Constraining Interaction

Parameter Description Conversion(Spec. Units) Parameter Range(Spec. Units)
z-position Secondary z-position 15kpc -300kpc - 300kpc
vx,vy,vz Secondary velocities 169.34kms1 -1693kms−1 - 1693kms−1

M1,M2 Total Masses of Galaxy 1011M� 1 × 109M� - 4 × 1012M�
R1,R2 Radii of Galaxies 15kpc 0.15kpc - 150kpc
φ1, φ2 Y-axis orientation deg 0◦ - 360◦

θ1, θ2 Z-axis orientation deg 0◦ - 360◦

t Time of Min. Separation 57.7Myr 0Myr - 500Myr

Table 4.4: The thirteen parameters used in both JSPAM and APySPAM to recreate
an interaction. Each of these parameters must be found to consider an interaction
constrained. The Parameter column shows how each parameter will be described
throughout the rest of this paper. The third column then gives the conversion
required to go from simulation units to SI units.

the size of the parameter space as well as the conversion between the simulation

units and physical units. The conversions are found from Wallin (1990).

The z-position parameter is the distance of the secondary from the primary in

the plane of the sky. Without accurate redshift information, this is very difficult

to estimate and we, therefore, leave it as a free parameter. The vx, vy and vz are

the three dimensional velocity components of the secondary in the frame of the

primary galaxy. The two mass parameters are the total masses of the galaxies.

The radii parameters are the maximum distance from each galactic core that

a particle can be initially placed to represent the flux within the galaxy. In

practice, the particles are distributed across different rings between the galactic

core and the value of the radii parameter. The particles are distributed following

an exponential disk. The φ and θ parameters are the orientations of the disks

with respect to the sky. Finally, the time parameter is a measure of the time

since the closest approach of the two galaxies.

4.4.2 Defining the Likelihood Function

4.4.2.1 MCMC & Bayes Theorem

We define framework by which to explore our parameter space, and identify ar-

eas where the parameter set successfully represent the input image. We combine

APySPAM with a MCMC methodology in order to fully explore the underlying

parameter space. In an MCMC, a set of walkers are created and are then moved
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through parameter space in an ensemble. Each walker position is a set of pa-

rameters in our 13D parameter space. At each point, we calculate the likelihood

that the output simulation is representative of the input interacting system. We

then compare the likelihood between the old and new position, and if the like-

lihood is higher at the new position the walker moves there. If not, the walker

remains in place and makes another attempt to find a higher likelihood. The

walkers form their own chain of steps which gradually move toward the areas of

highest likelihood. In our case, the likelihood is a measurement of the similarity

in flux distribution between a simulated image with parameters of the walker po-

sition and an observed image of unknown underlying parameters. Therefore, the

walkers are moving from a set of underlying parameters that poorly describe the

observed system to a set of underlying parameters which describe the observed

system well.

We use the well known Python package emcee (Foreman-Mackey et al., 2013)

for our MCMC. This is an ensemble MCMC package with numerous predefined

moves and algorithms to make getting to the area of high likelihood more efficient.

We construct contours of walker mass and use these to calculate the errors and

probability distribution of our best fit measurement; i.e. we can construct a

posterior for each of our parameters. For full details of emcee and the different

modes that it can use, see the extensive readthedocs1, but here we will briefly

state the hyper parameters that we use.

For each observed image, an ensemble of six hundred walkers was initialised

which would explore a total chain length of 7500 steps. Following the advice

in the documentation regarding potentially complex and multi-model parameter

spaces we utilised two different walker move proposals in our algorithm. These

were the Differential Evolution (DE) Move (Nelson et al., 2014) and the Snooker

Differential Evolution (DES) Move (ter Braak & Vrugt, 2008). An identical

version of our setup can be found on GitHub2. Here, a user can download our

setup to reproduce our results, or to update the model for their own purposes.

We define a likelihood function to compare the input images to our simulation

outputs. By Bayes Theorem, the probability that a set of underlying parameters

1https://emcee.readthedocs.io/en/stable/
2https://github.com/AstroORyan
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which produced a simulation also describe a test image follows Equation 4.4,

P (Hi|Dobs, C) = P (Hi|C)
P (Dobs|Hi, C)

P (Dobs|C)
). (4.4)

P(Hi|Dobs,C) is the probability that some hypothesised set of underlying param-

eters, Hi, successfully describes some observational data, Dobs, under some prior

constraints, C. Applying this to our hypothesis, Hi, allows us to utilise the prior

knowledge that we have about the interacting system in question and can be used

to put constraints on the parameter spaces we explore to shorten computation

time. This is described by the expression P(Hi|C). This is multiplied by the like-

lihood that the observation is defined by the hypothesised parameters given the

constrains, P(Dobs|Hi,C), all divided by a normalisation constant, P(Dobs|C).

4.4.2.2 Simplifying the Prior

In order to simplify this expression, we make assumptions about the underlying

parameter space to increase efficiency and simply our computations. We first

assume uniform priors for each of our 13 parameters. Therefore, we define a

range of parameter values that if a walker moves beyond, we set the probability

immediately to zero. The ranges we allow for each parameter are specified in

Table 4.4. These ranges can be tweaked, or a different prior function defined, by

the user. Here, we elect to set the priors part of Equation 4.4 to one.

We improve efficiency in our code further by adding to the prior based on the

likelihood that tidal features will form in any given interaction. This is defined

by a filter parameter, γ, and is fully described in Holincheck et al. (2016, where

it is called β but we call it γ here to not be confused with our star formation

enhancement parameter of Equation 4.2):

γmin =
M1 +M2

r2minVrmin

. (4.5)

Here, rmin is the closest approach distance, Vrmin
is the relative velocity at the

time of closest approach and M1 and M2 are the primary and secondary masses,

respectively. This parameter is designed to capture two important quantities: the
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4.4 Constraining Interaction

mutual gravitational attraction and the inverse of the closest approach velocity.

Each of which is important for the resultant gravitational distortion of the in-

teracting system. By maximising the total mass of the system, while minimising

the distance of closest approach and maximising the time of closest approach (i.e.

minimising Vrmin
) we would expect stronger tidal distortion.

In our case, we use it to inform our prior as the MCMC continues. This sig-

nificantly enhances the computational efficiency and pushes the walker ensemble

to areas of high likelihood quickly. In each step of the MCMC, running the sim-

ulation itself is the highest computational cost, so we calculate γ first and then

make a decision on whether to run the simulation. This decision is based on an

exponentially declining probability dependent on the value of γ. This probability,

or prior, is defined as

C =

{
exp(0.5 γ

γmin
), if γ < 0.5

0, if γ ≥ 0.5
(4.6)

Here, γ is a user defined cutoff, 0.5 in our case. Taking the log of this, we can

directly add it to prior. If the prior is initially calculated above 100, we do not

run the simulation and move the walker to a new set of parameters.

4.4.2.3 Simplifying the Likelihood Function

To further simplify the likelihood function, we can assume our probability distri-

bution is Gaussian. This is a reasonable assumption to make as a starting point

for our constraining attempts. However, as will be described in Section 4.5 this

is found to not always hold true, particularly for the orientations of the system.

However, making this assumption allows us to utilise the following Equation to

compare our mock observations to our observed data:

P (Dobs|Hi, C) = (2πσ2
j ) exp(− 1

2σ2

n∑
j=1

(xj − µ)2)× C. (4.7)

Here σj is the uncertainty in the observed image, xj is our mock observation and

µ is the observed image. The above expression can be simplified further by noting
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4.5 Results & Discussion

that the expression in the exponential function is just a half of the χ2 difference

between the observational image and the mock observational image. This is the

same χ2 function that is used in the code GALFIT (Peng et al., 2002), where χ2

is given by;

χ2 =
1

N − ndof

Nx∑
0

Ny∑
0

(px,y − qx,y)2

σ2
x,y

. (4.8)

Here, N is the number of pixels in the observed image, which has the number of

degrees of freedom subtracted from it, ndof . px,y and qx,y are the flux values of

the (xth, yth) pixel in the observed and simulated images respectively. σx,y is

the σ value of the (xth,yth) pixel; this is the uncertainty in the observed images

pixel value and follows the σx,y-image definition from GALFIT (Peng et al., 2002;

Peng et al., 2010a). This is then summed over all pixels in the image, giving us

a single χ2 value between each simulated image and observed image.

Finally, to help computation time the log is taken of our likelihood function.

This leaves us with a final expression that a given set of parameters describing a

simulation image also describe the observed image input into the algorithm,

log10(P (Hi|Dobs, C)) = log10(L) = −χ
2

2
+ log10(C). (4.9)

This is used at every step of our MCMC chain, with a simulation have to be run

for each.

Thus, we now have a method by which to quickly predict the resultant mor-

phology and flux distribution that the user would observe in a set of given filters.

We also have a means of exploring the likely parameter space of an interaction,

given an existing observation.

4.5 Results & Discussion

We now apply our MCMC algorithm to our set of synthetic interacting galaxy

images. To reduce the number of repetitive figures in this paper, we focus here

on a specific system as a representative sample, and publish the results of all
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4.5 Results & Discussion

systems online. They are presented online on Zenodo1. As these input images

are created from APySPAM, they provide us with a set of synthetic images of

interacting pairs with no noise and where the underlying parameters are known.

Initially, we explore the results of running this on the synthetic image of Arp 240.

We discuss how the constraints could be improved, and discuss improvements

on our constraints with extra, 3D information. We then plot the results for the

entire dataset, and discuss trends we see in the parameters we recover.

We apply our methodology to a set of real, observed images of interacting

galaxies. We select the five which are at different stages and various levels of

constraint from our test dataset. We apply our MCMC to only a subset as the

computational expense is significantly increased to make constraints on the ob-

servational systems and for our MCMC to reach convergence. We compare our

found best fit values with those of our synthetic system, and discuss the differ-

ence between applying this to best fit simulations and observations. Finally, we

describe the applicability of our approach to other systems, keeping an empha-

sis on those in the low surface brightness regime and the limitations this would

introduce.

4.5.1 Testing on a Synthetic Image

We apply our MCMC to a single image from our mock dataset described in

Section 4.3.2. We elect to use this system as it is is composed of two clear and

distinct disks, with a tidal bridge connecting them and tidal tails forming on the

opposite side. The tidal features lie in the high surface brightness regime, and

have an inclination close to 0. The observation and synthetic image are shown

in Figure 4.2. There are clear differences between the morphology of our mock

image and the observation of Arp 240. Therefore, testing on the synthetic image

is not the same as constraining the Arp 240 system. However, the synthetic image

is an ideal scenario to test our methodology on. We elect to test our MCMC on

the Arp 240 system first, as it has a high mass in our sample meaning the tidal

features will contain more flux and should be easier for our MCMC to constrain.

1All results are found on Zenodo with DOI: 10.5281/zenodo.11532157
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Obs. Arp 240 Mock Arp 240

Figure 4.2: The example system used to test our MCMC: the Arp 240 interacting
system. This system is considered an easy one to constrain. It is composed of two
clearly distinct galaxies, with strong tidal features that our MCMC can match.
These tidal features are the two tidal tails formed in the interaction and the tidal
bridge linking the two systems. Left : The prepared observation image of the
Arp 240 system created from SDSS DR16 observations. Right : The synthetic
observation of Arp 240 used in our pipeline. It is created by using the best fit
parameters found by Holincheck et al. (2016). The different in scale and orientation
are discussed below.

We constrain the synthetic Arp 240 image by running our simulation with

2,500 particles with 600 walkers and 7,500 steps in the MCMC. An example of

our full results is shown in Figure 4.3. This corner plot is created using the Corner

Python Package (Foreman-Mackey, 2016). However, displaying our results as is

shown in Figure 4.3 will be difficult as we will be discussing multiple different

systems throughout this chapter. This larger corner plot also uses a lot of space.

Therefore, we will present and discuss our results using reduced corner plots as

shown in Figure 4.5.

Figure 4.5 shows the constraints we have found on each parameter from our

MCMC. The golden lines then show the true values used to create the synthetic

image, and are those described in Table 4.3 for Arp 240. The contour levels corre-

spond to 11.8%, 39.3%, 67.5% and 86.4% of the samples across all walker chains

(these are default values), indicating the confidence level (CI). For reference, we

have set up the corner plots here such that the contours containing 68% of the

walkers roughly corresponds to 1σ1. However, this assumes a Gaussian probabil-

1Full explanation in Corner plot Docs: https://corner.readthedocs.io/en/latest/
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Figure 4.3: Corner plot showing the constraints made on all thirteen parameters
we are exploring. Each contour level contains 11.8%, 39.3%, 67.5% and 86.4% of
the samples across all walker chains. The blue lines show the true values used
to create our synthetic observation. Displaying our results using the full corner
plot is difficult in a paper because of the high dimensional results that we obtain.
Therefore, we elect to show all remaining results in this paper as reduced corner
plots like Figure 4.5. We elect to put the parameters which are most likely to
correlate together in different corner plots.
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Figure 4.4: Same as Figure 4.3, but reduced to only corresponding parameters.
Gold lines indicate truth values.

ity distribution, which is not strictly true for the results we find here. The blue

lines in each contour plot correspond to the true parameter value used to create

the synthetic observation of Arp 240. Figure 4.5 shows that each of these truth

values is within a 67.5% CI of the probability distribution with the exception of

the z-position and time.

We get excellent constraints on the masses of the two galaxies. This system

is the most massive system in our sample, and therefore we expect the mass at

the very limits of the range we are exploring. We find that the MCMC first

converges on the two masses of the disks, and are the easiest for us to constrain.

We provide the algorithm with the secondary 2D position, and therefore it only

has to fit the flux distribution of the inner disk correctly to get good constraints

on the galactic masses. The largest gains in likelihood maximisation come from

matching the flux distribution in the inner parts of the primary and secondary.

While the formation of the tidal features depends on the mass ratio, they also

depend heavily on the orientation of the interaction as well as the relative sizes.

The relative sizes of the disks is important for the constraining the tidal

features as it is the outer parts of the disk that are sheared off to form them.

pages/sigmas/
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The primary radius is constrained very well, and is primarily expected to be

smaller than the true value of this system. This is, again, due to the χ2 nature

of calculating the distance between the two images. The likelihood, on average,

is lower with some pixels within the galaxy being missed than a pixel containing

the central disk in it when it should not. We therefore have a bias effect where

the peak of probability drifts to just below the true value of the radius. However,

the true value of the radius remains within 86.4% CI of the found contours.

The recovery of the radius of the secondary is worse than that of the primary.

We find the peak in the probability distribution is far lower than the true value.

This is from a limitation of our simulation as well. While the output simulations

of the MCMC are always centred on the primary, the secondary galaxy central

position is not so certain. Due to the backwards integration and trajectory cal-

culated here, the secondary does not always end in the exact same image bin in

the output simulation image. Therefore, the secondary disk likely moves slightly

per simulation. This change transfers further uncertainty in the secondary disk

size, and a preference for the secondary to be smaller to improve the likelihood

calculation. The size of the secondary disk also contributes much more to the

tidal debris formed in the interaction. The simulation is conducted in the frame

of the primary, leading to the 3D velocity of the secondary being higher than that

of the primary. Therefore, the particles in the secondary are much more likely to

be ejected during the encounter than the simply orbiting primary particles. This

adds further uncertainty to the secondary radius. However, once again, the best

fit values found are within 84.6% CI of the true value from the base simulation.

There will also be some uncertainty involved in this measurement from the

formation of the tidal features. The flux distribution of the tidal features that

form are inter-dependent on multiple parameters, primarily the mass ratio, the

size ratio and the orientation of the galaxies in the interaction. The significant

degeneracy in the orientation constraints undoubtedly has some effect on the

fitness of the resultant system. Due to a lack of three dimensional information,

our algorithm cannot discern which way the galaxy is rotating or which way the

tidal features should be orientated in the line-of-sight. Therefore, degeneracy at

±180◦ of the true parameter values for φ and ±180◦ for θ. Figure 4.5 shows

this with several different peaks in both measurements of φ and θ. However, we
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recover the true parameters in one of the peaks of the marginalised posterior for

each orientation parameter.

It is important reiterate here that φ is the orientation of the galactic disk with

respect to the y-plane while θ is the orientation with respect to the z-plane. With

3-dimensional information, such as the direction of rotation of the disks or the

line of sight (LOS) velocities of the tidal features, we would be able to resolve

the degeneracy in the φ parameter. However, the source of the degeneracy in θ

has a different source. The tidal features can form in the opposite direction from

the mock observation and still be found to have high likelihood. This is a result

of our likelihood being based on flux matching on pixels. There is no knowledge

provided of the direction the tidal features should be moving or forming, only if

the pixels contain the correct flux. Therefore, this gives a significant degeneracy

in the θ parameter. Therefore, while the disk can be flipped in the z-direction and

still match the observation, it can also be flipped in the y-direction as well. While

the degeneracy in φ can be solved with velocity information, the θ orientation

will require information on the rotation of the disk itself. Having rotational

information will allow us to constrain the bulk motion within the galaxy and

the direction the inner disk should be rotating as well. These two pieces of 3D

information will remove the 4-fold degeneracy in each parameter.

The lack of 3D information also affects our constraints in the z-direction:

the z-position and the z-velocity. As seen in Figure 4.5, the finds the peak in

the posterior distribution for both parameters as much lower than they truly

are. First, the z-position is difficult to constrain as we lack 3D information.

The simulation is run in the reference plane of the primary galaxy, therefore the

secondary can only be behind or in front of it. There will be change in the flux

of the secondary based on whether it is in front or behind of the primary galaxy.

However, this change in flux is completely dominated by the distance due to the

redshift of the galaxy. Therefore, there is little to no observable change in the

absolute values of flux unless the true value of the z-position was very large.

The constraint of the z-velocity remains far from the true parameters due to

similar reasons as above. The true value lies at the very edge of the probabil-

ity distribution found, at approximately 86.4%. This would, again, be rectified

readily by introducing velocity information into our constraints. The simulation
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works so that the secondary galaxy is always at the same x and y position that is

defined by the user. Therefore, an output simulation with a positive or negative

LOS velocity will have the same flux distribution. Hence, this constraint simply

peaks about zero for the z-velocity.

Our MCMC works significantly better, however, with the x- and y-velocity

of the secondary galaxy. We find the truth value of this is within 67.8% CI of

our found distribution. The velocity values are directly related to the strength of

the interaction, and therefore indirectly relate to the tidal features which form.

Thus, our MCMC is informed by the flux distribution of the resultant simulated

image and gives an excellent constraint on the parameters.

Finally, we discuss attempting to constrain the time of the interaction. We

show the time since closest approach, not the total interaction time. The un-

derlying simulation utilises backwards integration to calculate the trajectory of

the interaction. Therefore, the time we input into the simulation simply tells it

how far back in said trajectory to put the secondary galaxy. Therefore, the same

interaction will occur whether we input -10 time units or -100 time units. The

algorithm will require more computation time to calculate the particle positions

in the lead up to the interaction. It is important to note that the total integra-

tion time will only affect the output system when we make it too small. In other

words, if the secondary starts after the point of closest separation or at closest

separation, our simulation breaks down and gives nonphysical results.

We calculate the time of closest approach for all of our walker steps and then

present this as a measure of the time posterior distribution. Our measured value

is significantly smaller than the true value of our best fit simulation, although it

does lie within the region of 86.4% CI. This parameter is highly dependent on

the velocity and position constraints that we have made, and these are skewed to

significantly smaller values than the truth. Therefore, it is unsurprising that our

time of closest approach value is also found to be much smaller.

To fully put this result into context, we explore the simulations that lie in the

areas of highest probability within these posteriors. To select which simulations

to present, we take those walkers that were within the 11.8% CI throughout each

walker chain and take the top 5 as an illustration here. Our MCMC is not able to

precisely reproduce the input image. It is often able to reproduce the tidal features
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Mock Observation

Best Fits

Poor Fits

Figure 4.5: Simulations from the areas of parameter space that lay within the
11.8% CI of our constraints. First Row : The synthetic image we are attempting
to constrain. Second Row : The best fit simulations from this parameter space.
Bottom: The worst fit simulations from this parameter space. Our MCMC found
those parameters which cause the formation of the correct tidal features, as well
as the tidal bridge connecting the two systems. However, it has been unable to
fully identify the tidal features of the secondary. There is also a lot of noise in this
posterior distribution, with many systems with different tidal features in the areas
of high probability. Therefore, identifying specific systems with the sought after
tidal features requires manual intervention.

of the primary as well as the tidal bridge connecting the two systems. This

appears to be where the MCMC has centred the posterior upon. The likely reason

for this is actually due to the filtering parameter that we use on the simulation.

The Arp 240 simulation lies in an unlikely area of tidal features to form - γ =

0.259. Therefore, using our γ parameter as a filter is suppressing the likelihood

measured in this particular parameter combination. However, the γ parameter

remains a necessity in our MCMC. Without the ability to filter the simulations

quickly, we begin to approach very large requirements of computational expense.

Therefore, for this particular example the γ parameter is a hindrance.

In the surrounding area of probability space, however, we find some interesting
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constraints. Changing each parameter by small amounts based on the posteriors

of each parameter space leads to variation in the simulation outputs and tidal

features. Due to the disks being well defined and aligned, this can often lead

to them being weighted highly. Therefore, the question remains, how would one

use this code to find their best fit simulation and actually make constraints using

it? This algorithm is best used as an indication of where in parameter space the

true parameters lie in recreating the tidal features observed in an observation.

This reduces the size of parameter space to explore dramatically, and could be

an indication of where to search with more accurate simulation models for true

interacting galaxy parameters.

Overall, from our example of Arp 240, we are able to recover nearly all the true

values of the input simulation to within an 86.4% CI of the true parameters. The

only missing parameter is the time since the flyby. There is significant degeneracy

in constraining the orientations of this interaction, but this is expected. While

our results appear like they have converged in the MCMC, we will also describe

the diagnostics with which to prove this.

4.5.2 Diagnostics of Pipeline

It is important to ensure our results are reliable by using diagnostics to investigate

the MCMC chains. We investigate three different diagnostics of our MCMC run.

First, we check that they have truly converged with the Geweke diagnostic. The

Geweke diagnostic is a Z-test of equality of means where the autocorrelation in

the flattened samples is taken into account as the standard error is measured. We

compare the means of the first 10% and last 50% of each chain in each parameter,

and require the resultant Z-score to be < 1 for convergence. We use the Geweke

diagnostic as written in the ChainConsumer (Hinton, 2016) Python package. For

this case, every parameter passes this convergence test, with the exception of

the orientation parameters (although, this is likely the result of converging on

multiple best-fit values).

Figure 4.5 clearly shows that each orientation has incredibly complex, multi-

model structure in the parameter space. We have a 2- or 4-fold degeneracy

in the output models due to three dimensional information not being available.
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This disrupts our Gewke diagnostic measure, which is looking for a single peak

in parameter space. Therefore, by folding the parameter space over and only

exploring over 0◦ - 180◦, we achieve a single peak in parameter space. These

results then pass the Geweke diagnostic test.

The second diagnostic we use is that the walkers have fully explored parameter

space and that we have removed enough of the steps at the beginning of the run

to consider the MCMC burnt-in. Once again, using ChainConsumer, we can plot

out each walker step throughout parameter space. Figure 4.6 shows the flattened

walker chains through parameter space. We have removed the first 200 steps

of each walker chain before thinning the chain and flattening it. By flattening

we have taken each walker chain and combined them into one chain for every

parameter. Discarding the first 200 steps has been enough for the burn in of the

MCMC, as the walkers have already moved mostly through parameter space and

are centring on a central value of high probability. The structure in the orientation

parameters is also interesting. The degeneracy structure in the parameter space

has already formed by the end of the burn-in and then the walkers move within

those areas of high probability. This is for two reasons. First, they affect the flux

distribution of the disks primarily if they are face-on or edge-on. The MCMC

quickly converges on face-on systems in our case. Second, when they are in that

degenerate space, the slight changes in inclination of the disks given does not

change the likelihood calculation significantly enough to reduce this degenerate

space further. Hence, the degenerate areas are very large with very flat areas of

probability at their peak.

We have tested resolving this problem by running further steps in our MCMC

to achieve convergence naturally within the parameter space. We find that in-

creasing the number of steps does improve convergence on the orientation pa-

rameters, but at a much larger computational cost and without substantial im-

provement on the other parameters. Therefore, we elect to fold our resultant

degenerate solutions into a smaller parameter space. This achieves convergence,

and gives us excellent estimates on the orientation for these systems.

A second solution to this problem would be involving velocity information

into our models. Knowing the bulk motion of the tidal features would allow

us to constrain the tidal features based on which way they were rotating. This
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Figure 4.6: Steps taken by each walker in our MCMC chain to constrain the
Arp 240 best fit simulation. Note, the y-scales here do not extend over the full
parameter space for some galaxies, and only show where the walkers have stepped
after the burn-in phase. The deeper the blue, the more walkers have stepped at
that point. This figure shows that our MCMC has successfully burnt in and very
quickly goes to high areas of probability for parameter space. They then oscillate
around the best fit values while searching the remaining parameter space. The z-
position, z-velocity and φ2 parameters show significant uncertainty as the walkers
move around the entire parameter space. In the φ1, θ1, θ2, we can see the two fold
degeneracy form very early on and then the walkers do not explore across them at
any point.
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would eliminate part of the degenerate space. However, as stated previously, little

spectroscopic data exists of our sample of interacting galaxies. Therefore, we run

this test using the our synthetic Arp 240 image and including the LOS velocity

of the particles and creating a velocity grid to constrain over.

4.5.3 Inputting 3D Information

Very few of the systems described in Table 4.3 have associated integral field spec-

troscopy (IFU) data in order to get LOS velocities to incorporate 3D information

into our fitting process. This is because they are very large in the field-of-view of

many instruments, and therefore we can only achieve measurements of their inner

disks and not their tidal features. We, therefore, map the velocity distribution of

our synthetic Arp 240 image. This map is created by summing the z-velocities

of each particle in the bin and then create a total LOS velocity map for which

to compare to simulations. This has little impact on the measurements of mass,

size and x- and y-velocity measurements. However, it completely changes our

measurements of the z-position and time of interaction as well as improves our

constraints on all three velocity vectors dramatically.

Figure 4.7 shows the new measurements of the constraint on the z-position,

y- and z- velocities. The constraints on each of these parameters is significantly

improved. This is with the same number of MCMC walkers and steps as without

3D information. For the y- and z-velocities, the constraints are improved to the

point where we completely recover the true underlying parameter values within

39.3% CI. With the z-position, we also gain significant constraint. We are able

to recover which side of the primary the secondary lies, with a sharp drop in the

marginalised posterior over the negative part of the z-position parameter space.

We also significantly improve our constraint on the time of the interaction, and

approximately recover the true parameter. We are able to constrain the final

velocity expected in the observation, and therefore, means the galaxy cannot

be moving too fast at in the final timestep. This has the effect of shifting the

expected time of contact back significantly.

Interestingly, we lose a significant amount of constraint on the relative sizes

of the two systems. Adding the velocity information in the way we have likely
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Figure 4.7: The reduced corner plot of the synthetic Arp 240 system with a
velocity map also used for constrained. To add this extra information, we created
a mock velocity map of our Arp 240 synthetic image and summed the LOS velocity
(z-velocity) in each pixel of our image. Comparing between here and Figure 4.5, we
see we make different constraints on the z-position and the time as well as resolve
one of the degeneracies in the orientation space.

increases the required size of the disks so the LOS velocities match within them.

Therefore, more particles are stripped from the secondary galaxy and cause fur-

ther uncertainty in the final image. We also find the removal of some of the

degeneracy in the orientation parameters, as expected. It is important to note

that, in this example, we have only used the LOS velocities to achieve this im-

provement in constraint. To better get constraint on orientation, we likely need

further velocity and 3D information of the system. For instance estimates of the

internal rotation, and accurate measures of the bulk motion of the tidal features

in the galaxy. Currently, the simulation is not able to accurately reproduce this

and simply assumes circular velocities at different radii from each galactic centre.

Finally, the mass constraints remain the same as was found without velocity in-

formation as they are dependent primarily on the flux distribution and dominated

by the inner disk of the system.

This shows the improvement that adding velocity information to our MCMC

could bring, and how far interacting galaxy simulation and constraint can go

once we incorporate IFU spectroscopy over more systems. In the sample we are

using here, of the most massive, large, major interacting systems, only three have
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got any IFU data. This data is from the MaNGA (Bundy et al., 2015) IFU

spectrograph, whose field of view is only able to capture the central disk of these

systems. While having velocity information on even a subset of the pixels of the

galaxy would improve constraints, to significantly improve them we will need this

of the full tidal features of the systems. IFUs with larger fields of view are soon

to come online, such as WEAVE (Dalton et al., 2014).

4.5.4 Running on Full Idealised Sample

With constraints being ascertained on nearly all parameters of our synthetic Arp

240 image, we then applied our MCMC to the remaining 50 synthetic images.

The reader is invited to see the resultant corner and reduced corner plots of each

system on the website. Here, we will detail describe our best and worst three

corner plots, and then discuss the trends throughout applying the MCMC to the

dataset. First, our ability to constrain is highly dependent upon the stage of

interaction. Our tightest constraints, the ones with narrowest posteriors, were on

those interacting galaxies which were only just past the point of closest approach.

I.e., they were the systems which had highly distinct tidal features and disks were

fully separate. Our best three fits were those of synthetic images of Arp 172, Arp

240 and Arp 290. The ‘best fits’ have been judged by those with the smallest

FWHM of their marginalised probability distribution in mass. The reduced corner

plots are shown in here in Figures 4.5, 4.8 and 4.9. Each of these systems is clearly

in stage 2 or 3 of the interaction, where tidal features have formed clearly, and

there are two distinct disks.

The worst fits we achieved were of those systems which were close to the

merging stage. They were systems where the two cores were close to coalescence,

very little tidal features were visible or the position of the secondary galaxy was

very unclear. Our worst three fits and examples of this were Heart, NGC4320

and Arp 57. The reduced corner plots are shown in Figures 4.10, 4.11 and 4.12.

Each of these systems represent the three limitations, respectively. First, is the

issue with constraining a stage 4 system. If two cores are close to coalescence,

the flux distribution will appear similar to two overlapping disks. Therefore, our

χ2 calculation will lead to a maximised likelihood which is equivalent between
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Figure 4.8: Second example of our best fits from our methodology is representa-
tive of the simulated image of Arp 172, a stage 3 system. Gold lines represent the
true values.

Figure 4.9: Third example of our best fits from our methodology is representative
of the simulated image of Arp 290, a stage 2 system.
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Figure 4.10: First example of our worst fits. This shows our constraints of the
simulated image of the Heart system, a stage 4 system.

Figure 4.11: Second example of our worst fits. This shows our constraints on the
simulated image of NGC 4320, a stage 4 system.
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Figure 4.12: Third example of our worst fits. This shows our constraints on the
simulated image of UGC 11751, a stage 3 system.

systems with little to no interaction and a merger with multiple flybys undergoing

coalescence. This would be improved by including velocity information, where

the velocity distribution will be very different between two overlapping disks and

coalescing galaxies. Our process is also not yet designed to account for multiple

flybys, which is likely to have occurred in a merging system. To make accurate

constraints on many parameters, we require clear and distinct tidal features.

UGC 11751 is a system where we have reduced the resolution so much that we

lose spatial resolution in the flux distribution of the tidal features. Therefore, we

insert a significantly higher uncertainty into our constraints. Finally, our MCMC

requires a secondary galaxy to make reasonable constraints on the underlying

parameters. The example of NGC 4320 is a final stage merger where a large tidal

feature has formed as a result of the coalescence.

Throughout every system we put constraint on, the parameter we are able to

get reliable constraints on are the masses of the systems. This is shown above

as even our worst fit systems still hold excellent constraints, with the values

confined to small areas of parameter space. However, our worst constraints lie

in the orientation and time since the interaction. We show the relation between

the true parameter used to create the synthetic image and our recovered best

fit parameter with errors included. Figure 4.13 shows this distribution. We
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Figure 4.13: The distribution of parameter values used to create our synthetic
interaction images and the best-fit values we recover from our algorithm. The
constrained values are taken as the 50th percentile of our walker distribution. Our
lower and upper errors are then calculated as the difference from our best found
value and the 16th and 84th percentiles, respectively. This gives an idea of the
extent of our walker distribution in 1D. The red lines show a 1-1 relation and
where our points would lie if the 50th percentile represented the exact input value
found. Parameter names and units are found in the title of each subplot.

define the best fit value from our MCMC as the 50th percentile of our walker

distribution. This is represented by each point in Figure 4.13. The upper and

lower error bars are calculated from the difference between the 50th percentile

value and the 84th and 16th percentile values, respectively. The red lines in each

subplot represent a 1-to-1 relation between the true parameter value and the

recovered value.

Figure 4.13 clearly shows where our MCMC has made excellent constraints

and where it has not. The best constraints are on the masses of the interact-

ing systems, where each best-fit value approximately follow the 1-to-1 relation.
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Where there is some discrepancy, the true values are within our errors. There

is a trend here, however, that the total mass of the system is over estimated

when compared to the true value. We also find excellent constraints on the ma-

jority of the positional and velocity vectors of the interaction, where the 50th

percentile value approximates the true value. However, in these parameters we

have explored a very wide parameter space when the majority of the true values

are clustered around the centre of the parameter space. We will require further

investigation with interacting systems more representative of the full parameter

space we have explored.

We also have reasonable constraints on our orientation parameters. As we

often have two areas of high probability due to degeneracy, we opt to only plot the

50th percentile and errors of the high probability space near the input value. This

would not be possible with an observational system with unknown parameters.

Therefore, the user will either need to make a choice of what area of parameter

space to explore, or input some prior on the orientation / inclination of the system.

Once we have accounted for the degeneracy, we find that our 50th percentile value

is representative of the true value, with the true value being within error of it.

There are three parameters remaining where we find poor constraints or strug-

gle to recover the true parameter value in general. The first are the radii of the

two galaxies. We find that these are often over-estimated. Upon inspection of

many of the output simulations, we find this is likely an effect of the distribu-

tion of particles and that we are using idealised synthetic images with no noise

in the image. The way in which the particles are distributed is with an expo-

nentially declining disk. This is achieved by creating a disk of particles which

are sectioned into rings. Each ring has an exponentially declining probability of

particles appearing within it based on the radius from the centre. Therefore, we

find the outer rings of the galaxy are diffuse of particles, and do not dominate

the likelihood function at high radius. This, in turn, means that galaxies with

large angular size can be calculated as likely if the inner parts of the galaxy, with

high particle numbers, match the flux of the inner disk. This also explains the

over-estimate of the mass of each system. There are likely fewer particles than

expected still within the galactic disk, and therefore more mass (ergo, luminosity)

is required to keep the flux matched in the disk.
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We also find we often under-estimate the time since the closest point of the

encounter - i.e., the time of the passage - by a large margin. While those synthetic

images whose underlying parameters had their point of passage very recently we

recover very well, those at larger values we fail to. This is due to the likelihood

function finding equivalent, high probability values between systems with correct

tidal features and simple disks which match the inner disk of the interacting

system. The former, tidal feature formation, requires a high γ parameter with

low velocity and low impact distance. However, if the system is fast and does not

form tidal features, but ends the simulation in the right place with the correct

flux, the calculation will be dominated by the inner disk. Thus, we find a radius

that covers the inner parts of the galactic disk successfully, with little disturbance

that matches the flux of a large part of the galaxy. Therefore, the γ parameter

is of the utmost importance to filter out these galaxies and give weight to higher

tmin values.

Aside from the points that have already been raised regarding our MCMC

constraining each parameter, a further problem was that the likelihood calculation

is dominated by contributions from the mass and velocity parameters. Therefore,

to continue improvements on other parameters further walkers and a longer chain

must be run, incurring a cost of far more computation time. For the purposes of

this work, we show the full degeneracy, limitations and difficulties of our model

and what is to be expected in the most general case. Many of these limitations

and problems can be resolved from tighter priors with more information regarding

the systems being investigated.

The true power of this approach will be when investigating large populations

of interacting galaxies and combining and marginalising over many different pos-

teriors. When combining the parameter spaces of many different systems, it will

be possible to identify those areas of parameter space which lead to the formation

of certain features across populations of interacting galaxies. Our method will

allow more intense simulations to sample smaller parameter spaces and be more

efficient when finding systems with specific features. However, how to combine

the posteriors is somewhat up for debate. We have ensured that the parameter

spaces we are exploring are equivalent in size and that the prior is equal across

parameter space. This introduces the question of the γ parameter in filtering
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simulations which, indirectly, changes the prior based on the trajectory of the in-

teracting system. To conduct this combination, we would recommend that the γ

parameter was not utilised when building the different posteriors if the increased

computational cost is viable.

However, all of our results so far have been in the best-case scenario of a

noiseless best fit simulation. The translation from simulation to observation in

previous algorithms such as these is never an easy one. We, therefore, use our

top three best fit systems here (Arp 172, Arp 240 and Arp 290) and apply our

pipeline to their reduced observations.

4.5.5 Applying to Observations

We apply our MCMC to the reduced observational data of Arp 172, Arp 240, Arp

256, Arp 290 and Heart. Cutouts were created as described in Section 4.2.2. We

reiterate here that the cutout resolution is reduced from its native resolution to

cutouts of 100 × 100 pixels. Before we input the images into the pipeline, we find

the central pixel of the secondary galaxy and convert this into a physical x- and

y-position. We also find the total size physical size of the cutout in kpc, convert

it to simulation units and provide this to the pipeline. We find that the physical

size of the cutouts are significantly different from those of our synthetic dataset.

As an example, we create the cutout of Arp 240 at 600 × 600 pixels at native

resolution. With SDSS data, this corresponds to a physical size of 111.50kpc ×
111.50kpc at the redshift of Arp 240. The synthetic image we previously used

of Arp 240 is 785.35kpc × 785.35kpc. Figure 4.2 clearly shows a very different

scaling between the observation and simulation, however, it is not enough to be

seven times zoomed in on the system. We also find that the secondary positions

are very different between the observation image and that used previously. As a

result, the parameters we will find for constraining the observation will likely be

very different.

We apply our MCMC to those outputs which had varying constraint. We only

investigate these five systems as we find the computational expense is significantly

higher when constraining the observations compared to the best fit simulations.

We find the reasons for these are two fold. First, we must run each walker for
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twice the number of steps than when constraining the synthetic images to reach

convergence. This is from increased noise contributions in the observation images.

Second, due to the smaller scale size of our images, the defined γ parameter is

much stronger than with the synthetic images. This is due to the smaller scale

of the images, and therefore we have a much smaller impact distance. We will

also have a smaller velocity at closest approach measurement because the final

point of the secondary has been moved closer to the primary. These reasons lead

to a higher computational expense as the γ parameter filters out less candidate

systems and runs the base simulation code more often.

Figure 4.14 shows the reduced corner plot for the observed Arp 240 system.

The constraints on the velocity parameter have significantly worsened when com-

pared to the constrains on the best fit simulation. They are also in a different

area of parameter space when compared. The velocity and spatial parameters

are the most likely to be affected by the change in scale between the two input

images. As the secondary galaxy position has been completely altered the best

fit trajectory of the interaction has also completely changed. The secondary is

significantly closer to the primary, therefore meaning the secondary velocity must

be significantly slower than previously. Due to the increase in noise in the obser-

vational image, and the extent of the tidal features of the primary and secondary

galaxies, the constraint has also significantly weakened.

However, for the remainder of the parameters the level of constraint remains

similar even with the change in the best fit values. We retain the two- and four-

fold degeneracy in the orientation parameters. This follows on that the pipeline

outright rejects disks which are edge on and loses accuracy when attempting to

pin point the precise inclination of each galaxy. We are unable to make any

constraint on the θ parameters, while the degeneracy of the φ parameters is still

visible. The radius parameter is well constrained at 11.8% CI, although with

large tails in the probability space for both the primary and secondary galaxies.

These tails are significantly larger here than when using the best fit simulation

as the input. This is due to the observation image having no hard cutoff of the

edge of the galaxy, and simply moving into more noise. The outer edges of our

simulated galaxies also moves to very low signal, and therefore, there is lots of

uncertainty surrounding the true radius of the galaxy.
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Figure 4.14: Reduced corner plot of the constraints made on the observational
image of Arp 240. As shown, there is significant additional uncertainty in these
measurements than those of the best fit simulation. However, we are able to make
constraints on almost all parameters in the sample. The degeneracy in the orien-
tations remains. The gold lines represent the true values we used in to create the
synthetic image.

We, again, make excellent constraints on the mass parameters. The accuracy

in the flux distribution of the primary and secondary disk is what dominates

here, and therefore, we find this value incredibly quickly. The found value is

comparable to the best fit simulation, although slightly lower. We also compare

our constrained values to what is found in the literature. Using the criteria

described previously, we recover total masses of M1

1011M�
= 7.97−15.9 and M2

1011M�
=

8.1− 16.2 which correspond to stellar masses between M1,∗
1011M�

= 0.94− 1.89 and
M2,∗

1011M�
= 1.0 − 1.9 in our simulations. These are slightly higher than literature

values, with a recent work quoting the stellar mass as M1,∗
1011M�

= 0.94 and M2,∗
1011M�

=

1.05 (He et al., 2020). Thus, while our 50th percentile value is higher than the

measured values, we do recover them within error.

We find similar constraints on the other observations we input into our MCMC.

Figures 4.15, 4.16, 4.17 and 4.18 show these constraints with the gold lines being

the best fit parameters to create out test imes. The variability across our con-

straints is greater than on the synthetic images. We often find degeneracy in the
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4.5 Results & Discussion

Figure 4.15: Reduced corner plot of the constraints made on the observational
image of Arp 172.

Figure 4.16: Reduced corner plot of the constraints made on the observational
image of Arp 256.
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Figure 4.17: Reduced corner plot of the constraints made on the observational
image of Arp 290.

Figure 4.18: Reduced corner plot of the constraints made on the observational
image of the Heart system.
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velocity parameters, as expected, but also appear to lose much of the constraint

on the radius parameters. The constraints we do make are often different from

those of our synthetic images representing these systems. The primarily reason

for this is the synthetic images we have used are at a different scale when com-

pared to the the SDSS observations. We therefore find similar constraints to the

different parameters, however with significant variation in the spatial parameters.

The uncertainties in the radius parameters are significantly increased, while the

constraint on the θ and φ parameters are lost. In fact, for the same number

of steps compared to constraining the best fit parameters, our MCMC fails the

Geweke diagnostic. Therefore, due to the added noise, and more complex flux

distribution, running longer chains is imperative which drives up computational

expense.

This leads us onto the limitations of this process to constraining galaxy inter-

action. While it has been very successful for many of the underlying parameters,

there are many different parameters which must be provided to the pipeline so

it is able to make those constraints. We discuss the limitations of applying this

methodology to large interacting galaxy datasets, and how these can be offset in

the short term but a long term solution is still required.

4.5.6 Limitations

While this methodology does show promise in being able to constrain underlying

parameters across populations of interacting galaxies, it is important to note that

at its base is a restricted numerical interaction code with limited resolution. There

may be some interacting systems that simply cannot be modelled realistically

using three-body approximations, and may therefore cause a skew in results.

However, there are also some more subtle limitations which may affect how a

user wishes to use this MCMC approach.

4.5.6.1 Resolution & Depth Effects

One of the fundamental parameters that must be provided for this methodology

to work is the redshift of the system. This is used to calculate the distance to the
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system and then converted to an assumed resolution for the scale of the image.

If this is input incorrectly the simulation images will be created at an incorrect

resolution, and the MCMC will likely not reach convergence. This is also true of

providing and calculating correctly an approximation of the position of the sec-

ondary galaxy. Significant computation power can be wasted if these parameters

are incorrect, and will give spurious results. The reduction in resolution of the

images is also an important limitation. This toy model needs small, thumbnail

size images with a reasonable number of degrees of freedom as to reach conver-

gence. Therefore, input images can only be of limited resolution which will affect

the quality of the constraints we can actually make on different systems.

The redshift is also used in scaling the fluxes calculated for each particle in

the simulation. The base SED is calculated for a 1 M� system at a distance of

10pc. This is then scaled to the mass assigned to a particle and then put at the

distance calculated from the redshift. If the redshift is incorrect (or even slightly

off) then this could lead to a bad fit for the mass of the two galaxies in the system.

A flag exists in the algorithm to give it the freedom to slightly vary the redshift

(and therefore the distance and resolution) by 0.001 with each step. It will then

attempt to fit the redshift and resolution of the system. Note, however, this is

untested and currently significantly increases computational expense.

Depth effects also play a significant role in the ability of our algorithm to

fit a system which may have ‘unseen’ tidal features. For this Chapter, we used

primarily synthetic images, meaning we were not at risk of this. Our observational

examples were of major interacting systems which resided in the high surface

brightness regime, where we retained the full extent of the tidal features and

could provide better fitting. However, for systems that lie closer to the low

surface brightness regime, our algorithm will become less efficient and require

more computational expense to make effective constraints.

This also has the opposite effect in terms of tidal features formed. For exam-

ple, if a system is being fit but at the true parameters a tidal feature exists which

has not been detected due to its low surface brightness then our MCMC pipeline

will not be able to converge on the true values. The algorithm would instead con-

verge on those parameters where the disks were at the correct flux rather than

getting the tidal features correct. Therefore, when exploring the parameter space
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of interacting systems with our pipeline, it is imperative that the full structure

is within detection of the observing instrument.

There must be a trade off between the resolution of our simulation and the

observations. In this work, we used cutouts of 100 × 100 pixels. This was so that

we could still get consistent system outputs from our simulations using only 2500

particles. If many pixels are used, then using a low number of particles can lead

to many ‘unphysical’ output simulations. I.e. these are simulation systems where

the disks will have large holes in them where there haven’t been enough particles

to fill the disk. To mitigate the effect of potentially using low particle numbers, we

distribute the flux as described in Section 4.3.1.3, which is an imperfect solution.

It is recommended for any user to make a balanced trade off between resolution

and computational expense.

4.5.6.2 Computational Expense

The main drawback of this methodology is that of computational expense required

to run such an MCMC over a the full parameter space. In the case of this work,

the simulation was set up with 2500 particles on a High End Computer Cluster

with 50 CPUs. Each simulation took approximately two seconds, with the full

sample run taking approximately 40 days to complete. Each galaxy was given 600

walkers to move through parameter space with each walker moving 7,500 steps.

The highest memory requirement of any system was 6GB. Therefore, the runtime

is very high but the memory required for it is approximately 122MB per core.

This methodology was successful in constraining 51 different interacting galaxy

synthetic images. Achieving the same in prior work projects, such as Galaxy Zoo:

Mergers, took months to complete. We have reduced the runtime required of it

to 40 days on a powerful High End Computer Cluster. However, this is not the

solution to the large scale dataset problems that we will be seeing when LSST

comes online. If we are to run this methodology on a much larger galaxy sample

- such as thousands of galaxies - then we will need to find ways to significantly

improve the runtime of this method.
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4.6 Conclusions & Future Work

In this Chapter, we have introduced a new algorithm based on a MCMC frame-

work to apply constraints on the underlying parameters of interacting galaxies.

We have made these constraints, and explored the underlying parameter space,

through directly comparing input images to output simulations. This maps the

underlying parameters that define interaction to an output morphology that we

compare for similarity with a synthetic or observation image. We have introduced

an updated version of the restricted three body simulation JSPAM and modified it

to calculate and match the flux distribution of interacting galaxies based on thir-

teen underlying parameters. This updated algorithm, APySPAM, calculates the

flux distribution by assigning particles with a spectral energy distribution and

accounting for star formation throughout the interaction.

To test our MCMC, we applied it to a set of synthetic images of interacting

systems created from the parameters found in the Galaxy Zoo: Merger project

for a set of real interacting systems. We were able to recover the true parameters

used to create these images, with associated error measurements on each. We

have explored the specific results of a single synthetic image: that of the Arp 240

system, and shown the corner plots and full posteriors of each parameter. We

have took the 50th percentile value as the best fit value for our synthetic dataset,

and used the 16th and 84th percentile to define the errors on our measurements.

We then presented the distribution of our recovered underlying parameters and

the true values, describing the general trends in our methodology as well as its

limitations.

Every parameter was recoverable, however there was significant degeneracy

in the orientation angles of the two galactic disks. This was expected as works

such as Smith et al. (2010) found significant degeneracy between systems, but

not a direct cause. In this work we found, without taking account of kinematic

information, multiple orientation angles can recreate observed tidal features as

well as limitations in the pixel matching method of constraint. When tested on

observational data of our best fit synthetic systems, we were able to retain the

excellent constraints on nine of the thirteen parameters, but lost any constraint
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on the orientations. However, we were able to maintain a tight constraint on the

masses of the two systems.

There are limitations to this method that any users must be aware of. First,

the core simulation of this process is a restricted three-body code with a highly

optimised flux distribution calculation and approximation. It is probable that

there are systems that this approach can not constrain, or may give nonphysical

results for. The required reduction in the parameter space of the images, such

as reducing the degrees of freedom and limiting individual pixel resolution in

favour of computation time, also may lead to constraints only on the disks of

the galaxies and not the tidal features themselves. There is also limited time and

spatial resolution within the simulation itself. When using true observations, they

had to be artificially scaled up so our simulation could maintain the resolution to

have constraint. In terms of the temporal and spatial parameters, this scale up

can be accounted for. However, in terms of the masses of the flux distribution, this

can be significantly hindered. Therefore, a user must be careful when choosing

the image scales to use when attempting to constrain individual systems.

We have demonstrated the power of this methodology, and that it is capable

of recovering the underlying parameters of interaction in idealised examples. The

next serious test of this MCMC approach will be to use it on a set of observed

interacting systems, where the underlying parameters are known to properly di-

agnose the results. However, completely constrained interacting galaxy samples

are only of a small scale and few exist. We will apply our MCMC to the observed

dataset of our 51 interacting systems in SDSS.

This is an initial step towards developing the methodology to serve the field as

large scale surveys - such as LSST - come online. Large scale automation where

we can constrain interaction, make diagnostics and estimates about parameter

space are not only important for inferences about individual datasets but for the

interacting galaxy population as a whole. The main limitation of this method

is the computational expense associated with it. To run this on 51 systems,

the total run time was thirty days; an unusable timescale when being applied

to interacting galaxy samples in the thousands. Therefore, future works with

this algorithm and methodology will also be focused on increased computational

efficiency and working on larger interacting galaxy datasets.
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The bottleneck for computational efficiency lies in the time spent running the

APySPAM simulation. While incredibly cheap individually, this is exceptionally

expensive when having to be run in an MCMC chain. With the growing power

of graphical processing units, and their ability to run numerical simulations sig-

nificantly more efficiently than CPUs, a pathway to solve this limitation may

already exist. This, combined with further developments in methodologies such

as simulation based inference, machine learning and Gaussian Processes could

begin to reduce computation time.
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Chapter 5

Summary and Future Work

5.1 Summary

This work has focused on the role of galaxy interaction with respect to galaxy

evolution. We have shown a new and novel way of creating large interacting

galaxy samples, used it to explore the relation between galactic parameters and

interaction and presented the initial pilot of a MCMC algorithm to definitively

link the parameters of galaxies to the tidal features that form. The novel process

of creating a large catalogue of interacting galaxies was detailed in Chapter 2.

By using newly developed data-access architecture with the newly developed

Bayesian CNN, Zoobot, the largest catalogue of interacting galaxies to date was

created. Along with this, we demonstrated how the new data-access architecture,

ESA Datalabs, can be used to explore archival data volumes easily and efficiently.

To make concrete links between galaxy evolution and interaction in the local

volume, this catalogue was cross-matched to catalogues of ancillary data. This

was done using the catalogues created from deep observations of the COSMOS

field. This provided us with a flux limited sample of 4,181 and volume limited

sample of 3,378, interacting galaxies to explore.

In Chapter 3 we conducted this exploration of our cross-matched sample in

the context of interaction stage. We investigated whether conflicting theories

about galaxy interaction were a result of not accounting for interaction stage
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based on observed morphology. We confirmed that interaction stage does have

a significant impact on the underlying processes and enhancements that result

from interaction. It was immediately found that the SFR increases dramatically

through stage - from close pair to merger. This was demonstrated by measuring

the distributions of stellar mass and SFR through stage and comparing them. We

found that for distributions of stellar mass drawn from the same parent sample,

the distribution of SFR changes. This was in the form of the disappearance of the

red sequence, as our samples SFR was enhanced. We compared this with existing

works which utilise the projected separation between systems as an approximation

of the stage of interaction in the two systems. We found a complete disconnect

with the projected separation and stage, noting that conflicting results can emerge

from only looking at the projected separation without properly accounting for the

interaction stage from the morphology.

This degeneracy in the projected separation was particularly true of the

change in the fraction of active galactic nuclei with stage, a topic the literature

is particularly divided upon. We found that AGN fraction remained consistent

with the separated stage at 0.059± 0.004 to throughout the interaction until co-

alescence where the fraction increased to 0.071± 0.005. Breaking down our AGN

counts with projected separation, we found two peaks in AGN count. Thus, we

find evidence for a delay in the activation of the AGN which is difficult to ac-

count for when only using projected separation. While this methodology shows

how we can use ancillary data to connect the underlying parameters of galaxies to

interaction, and fundamental processes we attempted to conduct this in a more

general way and to bring in linking to tidal feature formation.

Chapter 4 saw the development of an algorithm to find the underlying pa-

rameters of the galaxies involved in interaction from their flux distribution. We

combined a fast, efficient restricted numerical simulation with a MCMC method-

ology and Bayesian statistics and placed constraints on the underlying parameters

of 51 synthetic images of interacting systems. While our uncertainties increased

when applied to observational data, constraints were nonetheless able to be made

upon the majority of the parameters. Constraints only failed on the orientation

parameters. The creation of this MCMC algorithm paves the way to apply this
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to large interacting galaxy datasets such as the one described in Chapter 2. How-

ever, the limitations in the runtime of the algorithm; taking approximately 15-20

hours per interacting galaxy, leads this to not be feasible. Therefore, methods

of further improvement in efficiency of the underling numerical simulation must

be explored. There is particular promise in this regard with the development

of numerical simulations on GPUs, and the massive acceleration they provide to

such projects.

We have created a large interacting galaxy dataset and demonstrated its ca-

pability in the context of how the progression of a galaxy changes the underlying

properties of galaxies. We have introduced a method by which further examina-

tion of these systems could be explored, although further advances in its efficiency

must be made for this approach to be viable. Potential methods, plus descrip-

tions of future works in Chapters 2 and 3, are discussed in the final subsection of

this thesis.

5.2 Future Work

5.2.1 Catalogues of Galaxy Morphology with Ancillary

Data

Chapter 2 demonstrated that new data access architecture is now ready for us

to conduct source classification at a scale rarely seen to this point. We can

now directly access millions of sources across multiple filters, instruments and

observatories to yield unprecedented sample sizes. These can be combined with

novel machine learning algorithms requiring small training set sizes to fine-tune

making them versatile and accurate across many different observatories. Since

the publication of the paper underlaying Chapter 2, the Zoobot algorithm has

been updated many times. Not only is it now trained upon HST data, but part

of the representations of galaxies it learns is if a galaxy is interacting or not. By

redoing the work conducted in Chapter 2, one could classify galactic morphologies

across the Galaxy Zoo workflow rather than just on an individual question.
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The fundamental component of this which makes it possible is the ESA Data-

labs platform. This platform has also been updated to provide access to many

different observatories archives within it (such as JWST and Euclid) and also has

access to much larger storage spaces and GPUs. Therefore, the entire work of

Chapter 2 can be done on the platform with no requirement for data transfer (in

our case, data had to be moved from ESA Datalabs to the Lancaster computer

cluster for classification, taking the bulk of the project time). ESA Datalabs

now allows us to conduct to a project similar to the one outlined in Chapter 2

with much greater efficiency. Not only could this classification be applied for

interacting vs non-interacting, but we can also begin to consider creating larger

catalogues of much broader morphology classifications. The recent Galaxy Zoo:

DESI release contained 9.7 million galaxies with full morphology classification.

Applying this to just the sources created in Chapter 2 would find 126 million

morphology classifications, which is over a factor of 10 greater than previously

achieved.

We can also take this further and not limit the opportunity here to only to only

large catalogues of morphology classification. With the all-sky photometry that

will be available from Euclid, or survey scale photometry that will be available

from ground based observatories like the Legacy Survey of Space and Time, it will

be possible to get broad-band photometry for millions of overlapping sources. By

applying well-known astrophysical software such as FAST, EAzY or LePhare, it will

be able to estimate many galactic parameters. These include the stellar masses,

the photometric redshifts or, in some cases, the presence of AGN. By creating

such large morphology catalogues, combined with this ancillary data, we will be

able to robustly link different galaxy parameters to their physical morphologies.

This can then be expanded out to include linking to the source environments

across the sky.

The development of algorithms like those proposed and tested in Chapter 4

will also provide excellent methods for constraining the underlying parameters of

sources. While Chapter 4 focused on such an algorithm in the context of interact-

ing galaxies, algorithms such as GALFIT are able to find morphological parameters

purely from comparison to flux distributions and images. Even without further

broad band photometry from other observatories, we will be able to explore the
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underlying parameter spaces of galaxies and link this to their morphologies using

these data access architectures.

5.2.2 Constraining Interacting Galaxy Parameters

In Chapter 4, we made direct links between the flux distribution of interacting

galaxies and the parameters of those galaxies. We made constraints and revealed

degeneracies across multiple parameters. However, the limitation of this approach

was the computational expense, taking between 15-20 hours per system with the

associated run time cost for this. For the large scale surveys or the catalogues

such as those created in Chapter 2, this efficiency is not enough. Making con-

straints on the entire sample selected in Chapter 2 would take between 37 and

50 years. However, there are multiple development routes that could be taken in

future to boost computational efficiency. The first is to take full advantage of the

next generation of GPUs. Many cases of accelerating numerical simulations have

been written about and analysed, particularly from the GPU developer NVIDIA.

These have demonstrated striking improvements in efficiency up to a factor of 3,

especially in the context of numerical models of fluid dynamics (recent examples

include Mantas et al., 2016; Costa et al., 2021). Thus, reworking the code in this

way would remove this limitation and have constraint being made in a matter of

minutes: much more feasible for applying to large scale samples.

A second approach would be to move away from the direct method of MCMC

and into utilising simulation based inference (SBI), often called likelihood free in-

ference. Work has been conducted into SBI, and its massive increases in efficiency

when constraining over large and complex parameter spaces (for an excellent de-

scription of likelihood free inference, see Jeffrey et al., 2021). In this context,

rather than running a MCMC and directly comparing simulation outputs to an

observational image, a machine learning algorithm trained on simulation outputs

is used to explore the parameter space. By running an initial set of simulations

and feeding this into a rudimentary CNN, a low dimensional representative vector

can be created of each image. This is then applied to the observational image.

The CNN then approximates the posterior through parameter space, achieving
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constraints comparable to a direct MCMC exploration. However, while this ap-

proach has been very successful for small parameter spaces defining 1D cases,

applying to cases of images - especially one defined by a 13D parameter space

presented here - is in its infancy.

Once this is evolved, however, it would succeed in significant improvements

in the efficiency of our constraining algorithms. We could take advantage of the

amortisation of SBI, and be able to apply our initially trained network and poste-

rior distribution to many different systems instead of having to explore parameter

space directly every time. This has the effect of front-loading the computational

expense of our constraining process, running thousands to millions of simulations

across parameter space initially to train the neural network and then being able

to use the model in multiple cases, albeit with some caveats. Amortisation of the

trained model across parameter space would be very sensitive to many different

fundamental parts of our analysis process. For instance, changing the position

of the secondary galaxy, the changing resolution of the images, the number of

particles in the simulation, etc, all could be attempted. Changing any of these

would mean amortisation is not valid, and the model would have to be retrained

- re-introducing the problem of computational efficiency.

However, if these caveats can be resolved, this would open the way for large-

scale application of SBI and our direct inferencing methodology to large samples.

These will be our next steps in the development of this algorithm, and to then

make it widely accessible to the community, with the application of our sample of

interacting galaxies from Chapter 2. We will then be able to apply the process as

conducted in Chapter 3, and link the effects of interaction to further underlying

parameters than the stellar mass, interaction stage and SFR.
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Appendix A

Model Diagnostics & Further

Identified Objects

A.1 Further Model Diagnostics

In Section 2.5 we present diagnostic properties of our model. These include the

accuracy measurements, purity measurements as well as confusion matrices at

different cutoffs of our model. Here, we present the Receiver Operating Charac-

teristic (ROC) curves, the precision-recall (PR) curves, and measures of true and

false positive rates vs the cutoff threshold.

Figure A.1 shows the ROC and PR curves of the final Zoobot model we ap-

plied to the the Hubble archives. The ROC shows the rate of change of finding

true positives and false positives with changing cutoff. The PR curve shows the

changes of precision against recall. Precision is the ratio of true positives (inter-

acting galaxies correctly predicted as so) to the sum of true and false positives

(non-interacting galaxies incorrectly predicted as interacting). The recall is then

the ratio of true positives to the sum of true positives and false negatives (inter-

acting galaxies that have been misclassified as non-interacting). The red crosses

in both plots shows how the model was behaving when we use a cutoff of 0.95.

These are both as expected. Both curves show that the model behaves well,

and are much better than a random classifier (which would have a 1:1 relation).
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The ROC plot shows that we are minimising our false positive rate when using

a prediction score cutoff of 0.95. However, we are misclassifying approximately

50% of interacting galaxies as non-interacting galaxies. The contamination rate

in our final catalogue (False Positives rate) will be very low (close to zero in this

ideal validation set). The PR curve shows a similar result. Here, we are operating

with a high precision (finding a pure catalogue) while keeping our recall minimal.

We also present the changing F1 score for the model used in this work, shown

in Figure A.2. The F1 score is twice the ratio of precision multiplied by recall

upon precision summed to recall. This combines our measure of accuracy and

purity into a single metric. The cutoff we use in this work is at the point where

the F1 score has began to decline. This is because we are beginning to lose recall

rapidly, but gaining significantly in precision. As discussed in Section 2.5, this

was an acceptable trade off in this work for a very large, pure interacting galaxy

catalogue.

A.2 Examples of Sources with 3-Band Informa-

tion

Of the full catalogue of 21,926 interacting systems, only 1336 of them had got

all 3-band information. Six examples are shown in Figure A.3. These were

created using the Lupton et al. (2004) algorithm, with a scaling factor Q = 2 and

α = 0.75, with (F814W , F606W , F475W ) as RGB channels and multiplicative

factors of (1.25, 0.95, 2).

A.3 Unknown Objects

From the final catalogue, there were six sources which we could not visually

identify. These objects were also not referenced anywhere in the astrophysical

literature. F814W cutouts of the six objects are shown in Figure A.4. Their

Source IDs are shown in the upper left of each image, and a separate catalogue
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Figure A.1: The Receiver-Operator and Precision-Recall Curve for the Zoobot

model that was used to explore the Hubble archives. The blue curves are the
measured curves. These curves measure the relevant rates or characteristics based
on the changing cutoff applied to how Zoobot defines an interacting galaxy. The
red crosses are where the prediction score cutoff is for this work. We can see in
the Reciever-Operator Curve that the prediction score cutoff we use would have
an incredibly low false positive rate, while it would be misclassifying ≈50% of
interacting galaxies. This also shown in the precision recall curve where our recall
is ≈50%.
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Figure A.2: The F1 score found during the diagnostics of the model used in this
work. The F1 score is a measure combing the measure of accuracy and purity into
one metric. The cutoff we use is at the point where the F1 score begins to rapidly
decline. This point is shown by the red vertical line.
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Figure A.3: Example of six interacting systems in the catalogue with full 3-band
imagery.
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4001156424176 4001368788120 4001418076626

6000186797547 6000341449179 6000398415347

Figure A.4: The six unknown systems found in this work. These have no ref-
erence in Simbad or in NED, and their morphology could not be classified by the
authors. Investigation into these six objects are presented to the community, with
the authors hoping that future work and investigation of them can be conducted
by them.

has been released of these with all other objects. This catalogue can be found at

the data release on Zenodo.

Four of the six objects (40001156424176, 4001368788120, 4001418076626 and

6000398415347) have a bright central source, followed by a low-surface bright-

ness tail. Initially, it was assumed that these were solar system objects such as

comets. This, however, could not be confirmed. The first of these four sources

is also thought to potentially be a highly disruped system with a significantly

elongated tidal feature. The final two unknown sources (6000186797547 and

6000341449179) have no clear central source, though there is extended structure

to them. These are likely to be highly irregular galaxies, but no confirmation

could be found.

These objects are released to the community for identification and investiga-

tion, as the authors cannot find definitive agreement on what they are.
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Proposal ID Observation ID Observation Date DOI references
8183 hst 8183 54 acs wfc f814w j59l54 18/07/2002 https://doi.org/10.5270/esa-88k8vcj
9075 hst 9075 2a acs wfc f814w j6fl2a 24/07/2002 https://doi.org/10.5270/esa-gsxhb4b
9351 hst 9351 11 acs wfc f814w j8d211 31/03/2003 https://doi.org/10.5270/esa-5lba8bo
9361 hst 9361 03 acs wfc f814w j8d503 22/07/2003 https://doi.org/10.5270/esa-ecmnqgh
9363 hst 9363 09 acs wfc f814w j8d809 02/07/2002 https://doi.org/10.5270/esa-ethtec5
9367 hst 9367 02 acs wfc f814w j8ds02 10/06/2003 https://doi.org/10.5270/esa-3j404ll
9373 hst 9373 02 acs wfc f814w j6la02 05/07/2002 https://doi.org/10.5270/esa-ztsq94u Rejkuba et al. (2005)
9376 hst 9376 02 acs wfc f814w j8e302 13/07/2002 https://doi.org/10.5270/esa-h90iavd Keel et al. (2006)
9381 hst 9381 02 acs wfc f814w j8fu02 13/03/2003 https://doi.org/10.5270/esa-vlapyea
9400 hst 9400 04 acs wfc f814w j6kx04 29/05/2003 https://doi.org/10.5270/esa-39rnout
9403 hst 9403 02 acs wfc f814w j8fp02 09/07/2002 https://doi.org/10.5270/esa-k5mv9ct
9405 hst 9405 6k acs wfc f814w j8iy6k 22/05/2003 https://doi.org/10.5270/esa-zy9phm1
9409 hst 9409 03 acs wfc f814w j6n203 29/06/2003 https://doi.org/10.5270/esa-vjngw7r Goudfrooij et al. (2004)
9411 hst 9411 09 acs wfc f814w j8dl09 11/02/2003 https://doi.org/10.5270/esa-debpiln
9427 hst 9427 13 acs wfc f814w j6m613 21/10/2002 https://doi.org/10.5270/esa-bw1b97v
9438 hst 9438 01 acs wfc f814w j6me01 16/01/2003 https://doi.org/10.5270/esa-e5eaam5 Gregg & West (2017)
9450 hst 9450 02 acs wfc f814w j8d402 25/08/2002 https://doi.org/10.5270/esa-9ttmykz York et al. (2005)
9453 hst 9453 02 acs wfc f814w j8f802 03/12/2002 https://doi.org/10.5270/esa-1xvyjfy Brown et al. (2003)
9454 hst 9454 11 acs wfc f814w j8ff11 23/03/2003 https://doi.org/10.5270/esa-xsdowj9

Table A.1: Twenty example of the accompanying data table of observations used.

A.4 Acknowledging PIs

In the final section of this work, we wish to acknowledge all of the PIs whose

observations we have used. A machine readable table containing the proposal

IDs, the DOIs and the references (if provided/found) is presented with this work.

Table A.1 shows the first twenty observations used in this work and is an example

of this table.
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Hopkins P. F., Cox T. J., Younger J. D., Hernquist L., 2009, ApJ, 691, 1168

Hopkins P. F., et al., 2010, ApJ, 715, 202

Hopkins P. F., Cox T. J., Hernquist L., Narayanan D., Hayward C. C., Murray

N., 2013, MNRAS, 430, 1901

Hopkins P. F., et al., 2018, MNRAS, 480, 800

Hubble E. P., 1926, ApJ, 64, 321

Hubble E. P., 1936, Realm of the Nebulae

Huertas-Company M., et al., 2015, ApJS, 221, 8

Ilbert O., et al., 2006, A&A, 457, 841
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