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A B S T R A C T
With the invention of high-throughput screening technologies, innumerable drug sensitivity data
for thousands of cancer cell lines and hundreds of compounds have been produced. Computational
analysis of these data has opened a new horizon in the development of novel anti-cancer drugs.
Previous deep-learning approaches to predict drug sensitivity showed drawbacks due to the casual
integration of genomic features of cell lines and compound chemical features. The challenges
addressed include the intricate interplay of diverse molecular features, interpretability of complex
deep learning models, and the optimization of drug combinations for synergistic effects. Through the
utilization of normalized discounted cumulative gain (NDCG) and root mean squared error (RMSE)
as evaluation metrics, the models aim to concurrently assess the ranking quality of recommended
drugs and the accuracy of predicted drug responses. The integration of the DRPO model into cancer
drug response prediction not only tackles these challenges but also holds promise in facilitating more
effective, personalized, and targeted cancer therapies.
This paper proposes a new deep learning model, DRPO, for efficient integration of genomic and
compound features in predicting the half maximal inhibitory concentrations (IC50). First, matrix
factorization is used to map the drug and cell line into latent ’pharmacogenomic’ space with cell
line-specific predicted drug responses. Using these drug responses, we next obtained the essential
drugs using a Normalized Discounted Cumulative Gain (NDCG) score. Finally, the essential drugs and
genomic features are integrated to predict drug sensitivity using a deep model. Experimental results
with RMSE 0.39 and NDCG 0.98 scores on Genomics of drug sensitivity in cancer (GDSC1) datasets
show that our proposed approach has outperformed the previous approaches, including DeepDSC,
CaDRRes, and KMBF. These good results show great potential to use our new model to discover
novel anti-cancer drugs for precision medicine.

1. Introduction
Cancer is one of the leading causes of death, as it is

a genetic disease that impacts gene expression and causes
uncontrolled cell proliferation and metastasis. Compared to
commonly used cancer treatment methods like chemother-
apy or radiotherapy, targeted drugs would be a better way to
destroy the cancerous cells with a minimized toxicity effect
on non-cancerous tissues [1]. However, based on individual
molecular and genomic variants, the patient responds to the
drug in a different way, i.e., drugs do not have a uniform
response for everyone [2]. These varieties of drug responses
in cancer treatment draw attention, to the use of genomics
features to predict the drug response (sensitivity), which is
one of the aims of precision medicine [3],[4].

Recently, the genomic information of cancer cell lines
and drug sensitivity profiles from hundreds of compounds
have been cataloged in public datasets such as cancer cell
line encyclopedia (CCLE) [5], GDSC [6] and human tumor
cell line screen NCI60 [7]. These datasets originate from
numerous human cancer tissues like the lungs, kidneys,
nervous, breast, and kidney. Moreover, the different types of
genomic information including gene expression, mutation,
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methylation, and copy number variant against each tissue
are also provided in these public datasets. The drug sensi-
tivity can be measured in terms of IC50, maximum effect
attributable to the drug (Emax), or area above the dose-
response curve AUC, but mostly IC50 has been used in the
literature to represent the drug sensitivity prediction. This
study utilized gene expression data to represent cell lines,
as it is considered more informative than other omics data
[8]. Additionally, the drug response was measured using the
IC50 metric.

The drug sensitivity prediction challenge organized by
the DREAM Project (http://www.the-dream-project.org/)
has motivated data scientists and researchers around the
world to solve this problem. Numerous predictive models,
like the random forest, support vector machine (SVM), and
neural network, have been used to solve drug sensitivity
prediction [9] [10] [11]. These kinds of challenges on public
datasets, particularly CCLE and GDSC1, enable researchers
and scholars to use computational and analytical approaches
for drug response prediction, such as [12], [13], [14], and
[15]. All these studies help drug discovery societies to come
up with more effective drugs. [16] and [17] also presented a
comprehensive review on drug-target interaction prediction
that contributed to the novel drug discovery challenge. But
none of these models incorporated drug information that
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limits our study includes drug information.
To cope with these limitations, more advanced machine

learning techniques like a dual-layer cell line drug net-
work (DLN) model [18] and similarity-regularized matrix
factorization (SRMF) [19] model were proposed that used
drug and cell line similarity information together to predict
the drug response. CaDRReS [20] the matrix factorization-
based recommender system used essential genes and pro-
duced better results than DLN and SMRF models in terms
of RMSE. The authors in [21] has also been widely used to
integrate multi-omics data along with the chemical features
of compounds to boost performance. Some of the variations
in matrix factorization approaches also produced better drug
response predictions like [22] [23] used weighted graph
regularized matrix factorization technique and kernelized
similarity-based matrix factorization (KSRMF) respectively.
Another work [24] is a hybrid recommender system that
uses neighbor-based collaborative filtering with global effect
removal (NCFGER) method to compute the drug response.
A dataset is preprocessed by applying a global effect removal
technique on drug similarity in addition to a cell line similar-
ity network to reduce biases of the unknown responses. The
result of NCFGER on the CCLE and GDSC datasets in terms
of averaged root-mean-square error (RMSE) and Pearson
correlation coefficient (PCC) are better than DLN, SMRF,
CaDRReS, KSRM overall drugs. However, all these works
suffered from the curse of dimensionality problems. As there
are limited numbers of cell lines i.e. rows and thousands
of compounds’ chemical and structural features and cell
lines genomics features i.e. columns, therefore the chance
of underfitting increases and prediction quality decreases.

The recent achievement of the Deep learning (DL) model
has been revealing the outstanding capability to contribute
to many challenging applications with high-dimensional
data [25]. The problems related to drug-target interaction,
drug repositioning, and visual screening, DL models have
outperformed the traditional machine learning models [26]
[27] [28]. Deep learning is also serving in drug response
problems like [29] proposed a deep neural network model
based on the expression and mutation profiles of cancer cell
lines. The model comprised three networks (expression and
mutation encoders and a feed-forward network), where both
the expression and mutation encoders were used to reduce
the dimension of the cancer genome atlas (TCGA) dataset
and then fed into the feed-forward network to make predic-
tions based on the IC50 values. [30] proposed a multi-model
attention-based neural network that integrated compounds’
molecular structure, cells’ genetic profile, prior knowledge
of protein interaction. which increased the overall model’s
performance), and SMILES encoding of compounds. [31]
used the DL model to quantify survival and drug responses
using multi-omics datasets of breast cancer cell lines with a
1.154 mean squared error (MSE). DeepDSC [32], CDRScan
[33] and tCNN [34] were some recent models that predict
IC50 values, but amongst them, DeepDSC produced the best

coefficient of determination (R2) and RMSE on both the
CCLE and GDSC datasets.

With the invention of ensemble-based deep learning
models, the aggregated result of the different predictions
would give deterministic estimates [35]. Considering these
characteristics, [36] used an ensemble of transfer learning
to predict drug responses in applications like drug repur-
posing, precision oncology, and new drug development.
The approach discussed in this paper was limited to that
particular application but did not contribute specifically to
drug sensitivity prediction. In [37], authors proposed new
machine learning techniques based on a transfer learning
approach to predict drug sensitivity. They worked on breast
cancer, triple-negative breast cancer, and multiple myeloma
datasets. The authors claimed that their work was the first
attempt at comparing different transfer learning approaches
in the clinical informatics domain. The results of this work
were remarkable in terms of classification problems. The
drug sensitivity problem refers to the regression problem
with respect to predicting the half-maximal inhibitory con-
centration, i.e., the IC50 value. Recently, article 37 pro-
posed a k-means ensemble support vector regression model
(kESVR) for predicting drug responses of patients using
gene expression data sets. The proposed model was a combi-
nation of supervised and unsupervised algorithms and used
principal component analysis and regression methods for
predicting drug responses. All of these simple to complex
models, integrated genomics, and drug features have exhaus-
tive combinations.

Recently [38] gathered gene expression data of 49 dif-
ferent breast cancer cell lines, as well as data on how these
cells responded to 220 different drugs, from the GDSC
dataset. With this data, they created a complex network,
called a multiple-layer cell line-drug response network (ML-
CDN2), with two different networks: one learns the simi-
larities between the cell lines, and another network learns
similarities between the drugs. Using this network, the au-
thors were able to make predictions about how new breast
cancer cell lines or samples from patients would respond
to different drugs. DrugCell [39] is another deep-learning
model that was trained on how 1,235 tumor cell lines reacted
to 684 drugs and mapped how human cancer cells respond
to therapy. They also attempted drug combinations, that also
enhanced results. However, the downside of this approach
is that it is limited to using mutation data only as drug
features, where other molecular information such as gene
expression, epigenetic states, and so on, may be more useful
features than mutations. Therefore, there is a need to come
up with a solution using targeted drugs and genomic features,
which should have biological significance rather than causal
integration.

In conclusion, we have identified two potential chal-
lenges: firstly, offering a substitute for informal integration
between genes and drugs, and secondly, attaining results
meeting the threshold deemed acceptable by the medical
community. This is crucial for adopting our approach in
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hospital practices for cancer prognosis and treatment plan-
ning. To make these challenges our objectives, in this work,
we propose DRPO: a deep learning technique for drug
response prediction in oncology cell lines and a novel neural
network framework for drug response prediction on cell
lines. DRPO represents a computational model designed to
provide personalised drug recommendation based on genetic
profile and molecular information of the patients. The aim is
to determine which drug would be most effective on cancer
cell lines using oncogenes expression data and the molecular
structure of essential drugs. DRPO model relies mainly on
the genetic and molecular data , extracting meaningful pat-
terns to obtain insights into patient specific drug responses.
The computational requirements associated with intricate
and extensive dataset requires a HPC (High Performace
Computing), large memory, GPU (General Processing Unit)
and storage capacity which is crutial for the DRPO model
training. Utilizing a GPU accelerated the training time due to
it’s parallel processing capability. Without a GPU, reliance
on a CPU alone may result in limited model complexity,
slow training time and increased computational cost. Hence
causing it not being feasible enough in a typical laboratory
setting. The work is carried out in multiple stages, where
initially the cell lines and drugs are mapped into latent space
using a matrix factorization approach, and then a list of
essential drugs is determined using the NDCG algorithm.
Later, a deep learning model is applied to the resultant list
of essential drugs for both CCLE and GDSC to determine
the final predicted sensitivity score. In comparison to all the
existing models, the performance of our proposed frame-
work on the GDSC1 dataset shows that it has achieved better
results concerning RMSE and NDCG.

In summary, the novelty of our work mainly resides in
the following aspects:

• We move towards identifying the optimal drug-gene
pairing by employing a unique methodology. Our
novel approach involves extracting essential drugs
through the utilization of the NDCG score and matrix
factorization. Subsequently, we merge these identified
drugs with oncogenes, drawing from the CRISPR
experiment [40], to construct the final input matrix.
To the best of our knowledge, no previous studies
have suggested mapping targeted drugs with essential
genes using this particular approach.

• We apply and test our DRPO approach on the CCLE
and GDSC1 datasets based on RMSE and NDCG
scores. In comparison with prominent models in ex-
isting literature, the lowest RMSE and highest NDCG
score of DRPO on the GDSC1 dataset and the cumu-
lative RMSE score on both the CCLE and GDSC1
datasets show the feasibility of the proposed tech-
nique.

As discussed in Sections 5.1 and 5.2, we have com-
pared our proposed DRPO model with some of the similar
previous studies like [41] [42] [43] [44] [20] [45] [46]

[9] [32]. Tables 5 and 6 show that with the above novel
proposed approach, we have achieved better results in terms
of NDCG and RMSE scores in our experiments. This would
hopefully be another potential step toward drug discovery
and precision medicine.

The rest of the paper is organized as follows: in Section
2 material and methods are presented. While Section 3
presents the performance measure, section 4 presents the
result and discussion and finally conclusion and future work
are presented in Section 5.

2. MATERIALS AND METHOD
This work presents the deep learning regression model,

(DRPO) that predicts the drug sensitivity score in terms of
IC50 value on cancer cell lines. Drug responses and cell
line expression data are obtained from CCLE and GDSC1
data sources. The drugs that are available in the GDSC1
and CCLE datasets, their molecular 2D structures, are ob-
tained from PubChem [47] in the form of Standard Delay
Format (SDF) files. These 2D structures are then converted
into Morgan fingerprints using Camb to make a compound
feature vector of 256 bits. The input for our model is cell line
expression data for oncogenes and compound fingerprints of
essential drugs.

In this section, the most commonly used datasets and
our proposed DRPO model are described, so that one can
replicate our experiments easily.
2.1. Materials

CCLE. The CCLE dataset contains gene expression data
of 1037 cell lines. There are approximately 20,042 genes
against each cell line thus making a vector of the same
length. Each gene value against each cell line expresses the
transcription level of genes. For drugs, we have also used
drug response data of 24 drugs provided by CCLE. The
metric for the drug’s sensitivity on cancers is 𝐼𝐶50 value
which is then converted into -𝑙𝑜𝑔10IC50(𝜇𝑀). The lower
𝐼𝐶50 value, the more effective drug is and the higher 𝐼𝐶50value means the opposite.

GDSC1. The gene expression data from the GDSC1
dataset contains 17419 genes for 1074 cell-line. Where each
genes’ value is a transcription level of genes. The drug
responses to a cell line data are also downloaded from
GDSC1. There are 367 drug responses in terms of 𝐼𝐶50value to each cell line taken from the GDSC1 dataset. The
summary of these two datasets are given in Table 1
2.2. Method

Our novel approach is split into two stages i.e. at first
stage, matrix factorization and drug ranking approaches are
used to build a final input matrix from both CCLE and
GDSC1 datasets. Whereas at the second stage, deep learning
models are used for drug response prediction.
As not all cell lines can be tested against each drug, therefore
we have extracted those cell lines that have drug responses.
After this extraction, the final data matrix contains 987 cell
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Table 1
Total Cell-lines, Gene Expression Profile and Drugs Matrix

Source Cell
Lines

Genes Expression Pro-
file

Drugs

CCLE 1037 20042 Genes 24
GDSC1 1074 17419 Genes 367

Table 2
Cell lines With Essential Genes and Drug Responses

Source Cell-lines Essential
Genes

Final Data Matri-
ces Shape

CCLE 491 1718 491x24=11784
GDSC1 987 1610 987x226=223062

lines versus 226 drugs from the GDSC1 dataset and 491 cell
lines versus 24 drugs CCLE dataset. The resultant shape of
these data matrices can be seen in Table 2.

Both data matrices represent gene expressions as fea-
tures of cell lines. To make our model simple, we have
reduced the dimension, i.e. gene expression features from
both matrices and have only considered the known onco-
genes obtained from the CRISPR experiment [40]. The
reduced feature dimension contains 1610 essential genes
from GDSC1 and 1718 essential genes from CCLE. These
essential genes are also known as oncogenes. The resultant
shape of our input data matrices can be seen in Table 2.

Pre-processing steps are applied to the resultant input
matrix, where null values are replaced by the mean of 𝐼𝐶50values. To create a combined dataset, the gene expression
data from two sources (CCLE and GDSC1) were used. The
CCLE dataset included 491 cell lines and 1718 genes, while
the GDSC1 dataset included 985 cell lines and 1610 genes.
The drug response data was also included, resulting in a
matrix that contained the 𝐼𝐶50 value and gene expression
value for each cell line in relation to its corresponding Drug
ID. The summary of resultant matrices can be seen in Table
3.

Various methods are applied in our work for determining
the sensitivity score of 𝑐𝑒𝑙𝑙−𝑙𝑖𝑛𝑒𝑠×𝑑𝑟𝑢𝑔𝑠 relation and rank-
ing the drugs based on their sensitivity scores using various
mathematical techniques and machine learning models.
2.2.1. DRPO - Matrix Factorization Technique

Matrix factorization (MF) has gained popularity primar-
ily due to its effectiveness in predicting missing values.
For the past couple of years, it has extended its application
into the realm of personalized medicine, showing promise
in modern drug discovery analyses. Its potential lies in its
ability to integrate various heterogeneous datasets, making
it particularly valuable in this context. The reason for the use
of this collaborative filtering technique lies in constructing
a model that emphasizes information from similar drugs,
thereby not assigning equal importance to all drugs in pre-
dicting responses. Furthermore, it is a method to come up

Table 3
Merged drug response and gene expression data for both CCLE
and GDSC1

Source Drug Response
data shape

Gene
Expression
data shape

Resultant
matrix

CCLE 491 Cell-lines x 11
Essential Drugs =
5401 rows x 3
columns (Cell-line,
Drug ID, IC50)

491 Cell-lines x
1718 Genes

5401
Cell-lines
x 1720
Columns
(1718
Genes,
Drug ID
and IC50)

GDSC1 985 Cell-lines x 23
Essential Drugs =
22,655 rows x 3
columns (Cell-line,
Drug ID, IC50)

985 Cell-lines x
1610 Genes

22655
Cell-lines
x 1612
Columns
(1610
Genes,
Drug ID
and IC50)

with latent features through the product of two matrices.
The contribution of matrix factorization to predicting drug
responses lies in its ability to capture complex relationships
and dependencies between drugs and cell lines. By mapping
drugs and cell lines into a latent pharmacogenomic space,
the model gains a more compact and meaningful representa-
tion of the underlying biological interactions. This facilitates
improved generalization to new drug-cell line pairs do not
present in the training data and enhances the model’s ability
to predict responses for targeted cancer drugs. In recom-
mender systems, collaborative filtering is one of the well-
known applications of matrix factorization, which maps two
different entities into a latent space. This latent space gives
the relationship amongst entities. MF has become a famous
method in the personalized medicine domain because of
its capability to solve linear problems and predict unknown
drug responses [48]. MF is an unsupervised algorithm that
factorizes a high dimensional matrix into two low-rank
matrices as shown in the equation 1.

𝐑 ≈ 𝐏𝐐𝖳, where 𝐏 ∈ ℝ𝑁×𝐾 ,𝐐 ∈ ℝ𝑀×𝐾 . (1)
Here 𝑅 is a drug response matrix that represents the

association between cell lines and drugs, 𝑃 is a matrix that
gives the association between cell lines and their genomics
features, whereas 𝑄 is another matrix i.e. association be-
tween the drug and its features.

We have used the same approach that factorized the
known drug response matrix into cell lines and drug matrices
with their latent features in latent space.
A latent space is a vector representation showing the re-
lationship between the cell line vector and drug vector as
depicted in Fig 1. Here P represents the cell line vector and
Q represents the drug vector. The cell lines 𝑃𝑢 are sensitive
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Figure 1: Latent space representation of cell-line and drugs

to the drug 𝑄𝑖 and 𝑄𝑗 but not to the 𝑄𝑘 in the latent space.
As the cell line 𝑃𝑢 and drug 𝑄𝑖 have a smaller angle between
them compared to cell line 𝑃𝑢 and drug 𝑄𝑘 that has a larger
angle. Smaller angles between the vectors indicate a higher
degree of similarity than the larger angles. This is because
two vectors having smaller angles between them tend to
point in the same direction which suggests that they share
some common characteristics.
The model is trained by defining a drug sensitivity score,
where a higher value of the drug sensitivity score determines
that the cell lines are more sensitive to the drug. The model
was trained against CCLE and GDSCI datasets indepen-
dently. For training the DRPO model, the MF model was
used. Our MF model learned the latent features of cell lines
and drugs using a done product between cell line vector and
drug vector resulting in a cell line-specific drug response as
shown in the Eq. 2.

�̂�𝑢𝑖 = 𝜇+𝑏𝑄𝑖 +𝑏𝑃𝑢 +𝑞𝑖.𝑝𝑢 = 𝑢+𝑏𝑄𝑖 +𝑏𝑃𝑢 +𝑞𝑖(𝑥𝑢𝑊𝑃 )𝑇 (2)
Here �̂�𝑢𝑖 is the predicted drug sensitivity score, 𝑃 repre-

sents the cell-lines vector and 𝑄 represents the drug vector.
While the 𝑏𝑄𝑖 and 𝑏𝑃𝑖 are the biases hyper-parameter for cell-
line 𝑢 and drug 𝑖. 𝜇 represent the mean for all drug responses
and 𝑊𝑝 represents the transformation matrix for projecting
cell-line features 𝑥𝑢 onto the pharmacogenomic space (latent
space).

For calculating the sensitivity score, 𝑃 and 𝑄 values
are determined, i.e., 𝑃 cell line vector and 𝑄 drug vector,
corresponding to the CCLE and GDSC1 datasets. At the start
of training, random weights (biases) are considered for cell
lines and drugs, represented as 𝑊𝑝 and 𝑊𝑞 respectively.

During the training process, the objective is to minimize
the loss using the sum of squared error as shown in Eq. 3

𝐿(𝜃) = 1
2|𝐾|

∑

𝑢

∑

𝑖
𝑅𝑢𝑖 (3)

𝑅𝑢𝑖 =
(

𝑠𝑢𝑖 − �̂�𝑢𝑖
)2 (4)

Here 𝐿(𝜃) represents the loss function for the mean sum
of squared error. u and i represent cell lines and drugs, 𝑆𝑢𝑖and �̂�𝑢𝑖 represent the observed and predicted sensitivity
scores for cell lines and drugs, and |𝐾| represents the
number of drug response experiments in the training dataset.
𝑅𝑢𝑖 represents the squared difference between the observed
and predicted drug sensitivity score.

Fig. 2 depicts step-by-step processes of applying MF. Ini-
tially, cell line features are calculated based on gene ex-
pression data. Gene expression data is one of the genomic
features often used as input features for the DRPO model.
These gene expression features significantly influence the
prediction of IC50 values as they provide insights into the
molecular mechanisms governing drug response. Specific
gene expression patterns may be indicative of sensitivity
or resistance to particular drugs, thereby influencing the
predicted IC50 values. Each gene has multiple values cor-
responding to each cell line, it is then normalized by com-
puting fold changes in comparison to the mean values across
the cell lines. Once gene expression data is normalized, the
Pearson correlation coefficient value for each cell-line pair is
computed to determine the similarity between each cell-line
pair. Once GDSC1 and CCLE datasets are pre-processed, the
matrix factorization technique is applied to the resultant cell-
line similarity matrix and drug response data to compute the
final predicted sensitivity score. During training, the model
learns to recognize patterns in the gene expression profiles
that are associated with different IC50 values. This training
allows the model to generalize to new data and predict IC50
values for drug-cell line pairs not present in the training set.
2.2.2. DRPO - Drug Ranking

One of the reasons for using the Matrix Factorization
technique in our work is to rank the drugs based on their pre-
dicted sensitivity score. The drugs are ranked using the nor-
malized discounted cumulative gain (NDCG) [49], which
gives a score that indicates the ranking. Our top-ranked
drugs are calculated using Eq. 5 [49] and Eq. 6 [49], which
are as follows:

𝑁𝐷𝐶𝐺(�̂�, 𝑠) =
𝐷𝐶𝐺(�̂�, 𝑠)
𝐷𝐶𝐺(𝑟, 𝑠)

(5)

𝐷𝐶𝐺(�̂�, 𝑠) =
∑

𝑖

2𝑠𝑖 − 1
𝑙𝑜𝑔2�̂�𝑖 + 1

(6)

The �̂�𝑖 is the predicted rank obtained from MF, 𝑠𝑖 is the
drug-sensitive score and 𝑟 is the actual or known rank of the
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Figure 2: The proposed framework shows step by step process of applying MF technique and obtaining essential drugs. (a) The
drug data, gene data and sensitivity score were obtained from two main datasets: GDSC1 and CCLE. (b) The gene expression
data is normalized by computing fold changes across the cell lines. A cell line similarity matrix is created where Pearson correlation
is evaluated for each cell line pair. (c)The predicted sensitivity score is evaluated using the matrix factorization technique. (d)
The final NDCG score is determined from actual and predicted sensitivity scores of both CCLE and GDSC1.

drug of the 𝑖𝑡ℎ cell line which is calculated on the basis of
drug response values. NDCG score closer to 1 indicates that
the model has correctly ranked the drugs based on their sen-
sitivity score. This technique is used to determine essential
drugs for both CCLE and GDSC1 datasets as shown in Table
4 which is then used in our deep learning model to predict
the drug responses.
2.2.3. DRPO - Deep Learning Technique

At this stage, we have used a deep learning regression
model, in which gene expressions and compounds’ finger-
prints are integrated and used as input to predict the sen-
sitivity score. As our input data matrix has high dimensions
i.e. more features than the samples, therefore we used feature
selection techniques to reduce the model over-fitting.

Fig. 3 is a model architecture diagram, depicting the
entire process of the proposed approach, initially, GDSC1

Table 4
List of essential drugs in CCLE and GDSC1 datasets

Data source Essential drugs
GDSC Masitinib, BMS-509744, Parthenolide,

XMD8-85, Cytarabine, CGP-082996,
PD0325901, JNK Inhibitor VIII, NSC-
87877, OSI-930, FTI-277, Olaparib,
LFM-A13, CP724714, NVP-TAE684,
PIK-93, GNF-2, BMS-536924

CCLE Nilotinib, RAF265, PHA-665752, PD-
0325901, ZD-6474, AZD0530, Lapatinib,
Sorafenib, Erlotinib, PLX4720, TKI258

and CCLE data is collected and processed based on common
genes, cell lines, and drugs. After the pre-processing of the
dataset, the feature selection technique is applied to the gene
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Figure 3: The proposed framework shows DRPO model architecture. (a) The essential gene, essential drug, gene expression and
sensitivity score were obtained from two main datasets: GDSC1 and CCLE (b) The data is pre-processed through common genes
and drugs (c) Feature selection is applied to the gene expression dataset and Morgan fingerprint technique is applied to the drug
data (d) The processed data is passed to the DRPO model for training and prediction.

expression dataset, and Morgan’s fingerprint technique is
applied to the drug data to obtain a 256-bit vector. The
processed dataset is passed to the DRPO model for training
where drug response (IC50) is the label and 500 genes and
256 vector bits of drug data are the input features.

Feature Selection is a technique that gives us those
features from our data that contributes the most to the target
variable. During our work feature selection technique is
applied to the gene expression dataset for various reasons:

1. To reduce the feature dimensions and choose the
features that contribute the most to the target data.

2. To reduce the training time and improve the model’s
performance.

3. To avoid overfitting.
In our proposed work, SelectKBest [50] feature selection
technique is applied to an essential gene expression dataset.
This is done in 2 steps:

1. By finding the cross-correlation between the regressor
i.e. each gene from gene expression data and the target
variable i.e. 𝐼𝐶50 value using Eq. 7

2. By converting this to F score which will then be used
to find the top rank gene expression features that are
positively correlated with 𝐼𝐶50 value.

𝐹𝑘 =
∑𝑛

𝑖=1(𝑔𝑖 − 𝑔)(𝑠𝑖 − 𝑠)
√

∑𝑛
𝑖=1(𝑔𝑖 − 𝑔)2(𝑠𝑖 − 𝑠)2

(7)

Where 𝑔𝑖 represents the gene expression value of the
𝑖𝑡ℎ cell line, and 𝑠𝑖 is the corresponding drug sensitivity
score in terms of 𝐼𝐶50 value. 𝑔 and 𝑠 are the means of gene
expression values and drug sensitivity scores respectively.

Finally, top-ranked genes are selected that are indicated
by 𝐹𝑘 given in eq. 7, where 𝑘 is a hyper-parameter for
selecting the genes which we explicitly defined to 500. The
reason for selecting the top-ranked 500 gene expression
data features is to make them more meaningful genes in
terms of their potential contribution toward predicting drug
sensitivity.

For our drug (compound) features, we used the Morgan
fingerprint technique using camb [51] to make a compound
feature vector of 256 bits. The molecular fingerprints convey
information about the presence of a molecular sub-structure.
Drug molecular structures are obtained in the form of an
SDF file from PubChem [52]. In the case of GDSC1, we have
obtained 18 essential drugs sdf files from PubChem, and in
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the case of CCLE, we have obtained 11 essential drugs sdf
files from PubChem. To determine the essential drugs, we
selected the highest-scoring drugs from the GDSC dataset
by considering the top 10% based on the NDCG score.
Meanwhile, when creating a list of essential drugs from the
CCLE dataset, we chose the top 50% of drugs based on their
NDCG scores. The resultant matrix is a binary vector of 256
bits corresponding to each drug in the dataset.
Both the compound’s fingerprints and the selected features
of the gene expression datasets are concatenated to make
the final input matrix and to feed into a deep feedforward
network for predicting drug sensitivity scores.

The algorithm 1 outlines a methodology for predicting
drug sensitivity scores based on gene expression data and
drug molecular structures. Overall, this algorithm provides
a structured approach to leveraging gene expression data
and drug molecular structures for predicting drug sensitivity,
incorporating feature selection techniques and deep learning
methodologies.

3. Experimental Setup
We have used the same architecture to train our DRPO

model on CCLE and GDSC1 datasets. After performing the
pre-processing steps, at the first step, we performed feature
selection on gene expression data using the f_regression()
function, a Python scikit-learn library function that uses
correlation statistics to learn the feature’s relationship. The
parameter 𝐾 is set to 500, resulting in 500 gene expression
features that contributed the most to the IC50 value.

The deep forward network consists of five stacked layers
where each neural unit is connected to all the units of the next
layer and the obtained output is the sensitivity score of each
drug-cell-line pair. Implementation of this model is done on
Keras [53]. The dimension for the input layer is 756 i.e. 500
features are gene expression features and 256 bits vectors are
drug features obtained by using Morgan’s fingerprints. The
hidden layers consisted of 4 layers having 1000, 800, 500,
and 100 neural units respectively. The activation function
for all these hidden layers is an exponential linear unit (elu)
[54]. The reason for selecting elu is due to its ability to
handle the vanishing gradient problem, improved accuracy,
faster convergence, and lack of saturation, especially in deep
learning models. There is a single neural unit at the output
layer with no activation function. For good estimations of the
model’s performance, a 10-fold cross-validation approach
is used on the input data with 1000 epochs during model
training. Where the RMSE is used as the loss function for
the feed-forward network and for the dropout [55] rate value
we have adopted the same value as used in [34] to avoid
overfitting after hidden layers. Furthermore learning rate
in the AdaMax optimization algorithm and patience values
for early stopping is also the same as employed in [34]
experiments.

Algorithm 1 DRPO (Drug Response Prediction and Opti-
mization)

Input: GDSC1 and CCLE datasets, Gene expression data,
Drug molecular structures in SDF format
Output: Predicted drug sensitivity scores
Algorithm Steps:
Collect and process GDSC1 and CCLE datasets based on
common genes, cell lines, and drugs.
Pre-process the dataset:
∙ Apply feature selection technique to gene expression
dataset.
∙ Apply Morgan’s fingerprint technique to drug data.
Pass the processed dataset to the DRPO model for train-
ing.
∙ Use drug response (IC50) as the label and 500 genes and
256 vector bits of drug data as input features.
Feature Selection:
∙ Apply SelectKBest feature selection technique to gene
expression dataset.
∙ Find cross-correlation between each gene 𝑔𝑖 and the
IC50 value 𝑠𝑖 using the formula:
𝐹𝑘 =

∑𝑛
𝑖=1(𝑔𝑖−�̄�)(𝑠𝑖−�̄�)

√

∑𝑛
𝑖=1(𝑔𝑖−�̄�)2

∑𝑛
𝑖=1(𝑠𝑖−�̄�)2where 𝑛 is the number of genes, �̄� is the mean of gene

expression values, and �̄� is the mean of IC50 values.
∙Convert cross-correlation to F score to find top rank gene
expression features positively correlated with IC50 value.
∙ Select top-ranked 500 gene expression data features.
For drug (compound) features:
∙ Use Morgan fingerprint technique to create compound
feature vector of 256 bits.
∙ Obtain drug molecular structures in SDF format from
PubChem.
∙ Select essential drugs based on NDCG scores from
GDSC1 and CCLE datasets.
∙ Concatenate compound fingerprints and selected gene
expression features.
Use deep feedforward network for predicting drug
sensitivity scores.
Calculate Predicted Drug Sensitivity Score:
∙ Use the equation:
�̂�𝑢𝑖 = 𝜇 + 𝑏𝑄𝑖 + 𝑏𝑃𝑢 + 𝑞𝑖 ⋅ (𝑥𝑢𝑊𝑃 )𝑇where:
−�̂�𝑢𝑖 is the predicted drug sensitivity score.
−𝑃𝑢 represents the cell-lines vector.
−𝑄𝑖 represents the drug vector.
−𝑏𝑄𝑖 and 𝑏𝑃𝑢 are the biases hyper-parameters for cell-

line 𝑢 and drug 𝑖.
−𝜇 represents the mean for all drug responses.
−𝑊𝑃 represents the transformation matrix for project-

ing cell-line features 𝑥𝑢 onto the pharmacogenomic space.
=0
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4. Performance Metrics
To assess the effectiveness of our proposed model, we

employ multiple evaluation metrics. Prior research on pre-
dicting cancer cell line drug responses has often been limited
in its evaluation methods, relying primarily on RMSE met-
rics. Our study addresses this gap by introducing two evalua-
tion metrics, RMSE and NDCG, to measure the performance
of the model. NDCG score focuses mainly on the ranked list
of recommendations, emphasizing the importance of plac-
ing more relevant items higher in the list, whereas RMSE
focuses on the accuracy of the predicted things without
considering their order. Together, both metrics provide a
comprehensive evaluation of the proposed system. Using
these two evaluation metrics in the proposed model not
only gives accurate predictions but also presents those pre-
dictions in a way that reflects users’ likely preferences in
the recommended list. Using both metrics helps to address
different aspects of the recommendation quality: accuracy of
predictions and quality of the recommended ranking. Both
the CCLE and GDSC1 datasets are evaluated using these
two evaluation metrics. The following subsections discuss
the details of both RMSE NDCG metrics.
4.1. Root Mean Squared Error (RMSE)

RMSE metrics are used to determine the loss achieved
from the model by comparing the actual sensitivity score
with the predicted sensitivity score. A smaller RMSE value
indicates better model performance in terms of prediction
accuracy. The Eq. 8 is defined as follows:

𝑅𝑀𝑆𝐸 =

√

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦𝑖)2

𝑁
(8)

Where 𝑦𝑖 is the observed drug sensitivity score and 𝑦𝑖is the predicted drug sensitivity score by the deep forward
network for the 𝑖th input data and 𝑁 is the size of the test
data.
4.2. Normalized Discounted Cumulative Gain

(NDCG)
Initially in Section 2.2.2, we used the NDCG score

to determine the list of essential drugs from both GDSC
and CCLE datasets. Here the NDCG score is again used
as an evaluation metric for our proposed DRPO model.
To evaluate our DRPO model for each cell, we calculate
the NDCG score for each cell line based on the predicted
drug response values. We then average NDCG scores over
the entire test dataset to obtain a final NDCG score for
the model. Calculating scores based on NDCG is already
defined in Eq. 5 and Eq. 6.

5. Result AND Discussion
Numerous models for predicting drug response have

been suggested in existing literature, primarily concentrating
on forecasting how various cell lines will respond to a

specific drug. Consequently, the assessment of these models
has been conducted for each drug separately, relying on the
correlation between predicted and observed drug responses.
Nevertheless, although predicting the response of cell lines
to individual drugs can offer insights into distinct drug
response mechanisms, the clinical utility is likely to be
higher when ranking drugs for unseen cell lines or patients.
Therefore, to obtain a more accurate measurement of the
predictive performance of our deep learning models trained
on the CCLE and GDSC datasets, we utilized a 10-fold
cross-validation technique. This was done to reduce bias
in the results. We have randomly divided our experimental
data into ten equally sized folds. One fold is selected as
the validation set, while the remaining nine folds are used
for training purposes, and this process is repeated itera-
tively. The final results are determined by calculating the
average of the root mean square error (RMSE), and NDCG
score values obtained from the ten folds. In both evaluation
metrics, DRPO consistently generated effective models and
demonstrated strong performance on datasets not previously
encountered.
5.1. Comparison with other Models on CCLE and

GDSC1 based on NDCG Scores
Based on the NDCG performance metric, we have com-

pared our DRPO model with four previous studies: [41]
[42] [43] [44] [20]. All of these models use the NDCG
metric to evaluate their model strength on drug response
prediction problems on the CCLE and GDSC1 datasets. The
result shown in Table 5 has been obtained from their papers
for comparison purposes. To avoid any biased performance
measurement, we have performed 10-fold cross-validation
for our DRPO evaluation. The result shows that our DRPO
has outperformed the previous studies by achieving the
highest NDCG score. Figure 5.2 shows the visual representa-
tion of comparisons between our proposed model and other
existing models in literature.
5.2. Comparison with other Models on CCLE and

GDSC1 based on RMSE Scores
We have compared our DRPO model with the previous

studies [45] [46] based on the RMSE performance metric [9]
[32], namely multi-layer NN, KBMF, RF, and DeepDSC. It
is observed that our proposed DRPO model, when trained
on essential drugs, outperformed these prominent models in
the existing literature based on RMSE scores. We have also
performed 10-fold cross-validation to obtain less biased per-
formance measurements. The average RMSE with essential
drugs on CCLE is 0.26, and on GDSC1, it is found to be
0.39, as shown in Table 6 and Figures 4 & 5. These missing
values at CCLE columns in Table 6 are because the [45] and
[46] approaches were not applied to the CCLE dataset. The
result indicates that our proposed approach works well on the
CCLE and GDSC datasets using the gene expression profile
and Drug Response datasets when trained on essential drugs.
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Table 5
NDCG scores of CCLE and GDSC over various approaches

Model CCLE GDSC
Elastic Net Regression
Model using Cross-
Validation [41]

0.89 0.61

Optimal Drug Prediction
Algorithm [42]

0.79 0.38

CwKBMF (Kernelized
Matrix Factorization with
Component wise kernel
learning) [43]

0.79 0.4

SRMF (Matrix Factoriza-
tion with Similarity Regu-
larization) [44]

0.75 0.42

CaDRRes [20] 0.89 0.6
Our DRPO 0.99 0.98

Table 6
RMSE scores of CCLE and GDSC dataset over various ML
algorithms

Model CCLE GDSC
Feed Forward Multilayer
Perceptron Neural Net-
work using Chemical and
Genomic features [45]

- 0.83

KMBF (Kernelized
Bayesian Matrix
Factorization) [46]

- 0.83

Random Forest [9] 0.44 0.75
DeepDSC [32] 0.23 0.52
Our DRPO with all Drugs 0.30 0.67
Our DRPO with Essential
Drugs

0.26 0.39

6. CONCLUSION
In conclusion, we successfully propose a new method,

DRPO, in which we first find the essential anticancer drugs
using matrix factorization and then get the optimized cell
line’s oncogene expression features using the SelectKBest
technique. The final input matrix is built by integrating the
essential drugs’ chemical features with optimized cell lines’
gene expression features. This final input matrix is then
fed into a deep feed-forward network to train our DRPO
model. Our experimental results show that our new method
has outperformed the previous approaches discussed in the
literature with respect to NDCG and RMSE scores on both
the CCLE and GDSC datasets. To avoid biased performance
measurement, we evaluated our experimental results based
on 10-fold cross-validation using sub-sampling.

Our research presents a novel approach for predicting
drug response to cancer cell lines using gene expression data
and the chemical structure of drugs. The limitation of the
present study is the consideration of gene expression data
only, without considering the multi-omics perspective of the
target gene. Along with the multi-omic data, the network

Figure 4: RMSE score comparison of different machine learning
models over GDSC datasets

Figure 5: RMSE score comparison of different machine learning
models over CCLE datasets

Figure 6: NDCG score comparison of different machine learning
models over CCLE and GDSC datasets

biology-based dimensions will strengthen the biological sig-
nificance. This work can be extended in future work by incor-
porating other molecular features like mutation, copy num-
ber variation, and methylation along with gene expression
data. Moreover, explainability and interpretability will also
be added to this framework so that biological significance
can be explicitly drawn from the results.
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