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Abstract 

Integrated energy microgrids (IEM) have emerged as an effective way to improve energy efficiency and 

promote distributed energy utilization. IEM systems acquire electricity and gas from external markets 

and supply electricity/heat/cold to users. In this paper, we study the optimal energy purchase strategy for 

IEM, considering the impact of demand response incentives. Firstly, considering the uncertainties, we 

construct an IEM medium- and long-term market multi-energy purchase model based on conditional 

value-at-risk, optimizing the portfolio of electricity and gas purchases, as well as their proportion in total 

energy amount. Subsequently, based on medium- and long-term daily energy supply curves and day-

ahead load forecast results, a spot market energy purchase model is established to optimize the spot 

purchase of electricity and gas, maintaining the supply-demand balance while minimizing operating 

costs. Furthermore, we design demand response incentives and develop a master-slave game model 

between IEM and users to guide the formulation of the energy purchase strategy by incorporating 

corrected load data as feedback. The energy purchase strategies are resolved by the GUROBI solver, 

while the optimization of demand response incentives is carried out through the PSO algorithm, all based 

on the MATLAB platform. The adaptability of the proposed model and strategy is verified. 
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1. Introduction 

With the strategic goal of "carbon peaking" and "carbon neutral" proposed by the Chinese government, 

integrated energy microgrid (IEM) has emerged as a prominent research topic in recent years due to its 

effectiveness in improving energy utilization efficiency and promoting the consumption of renewable 

energy [1-4]. In the whole process of energy flow, IEM plays a crucial intermediary role by procuring 

electricity and natural gas from the upper-level networks and supplying energy to the lower-level users. 

In the market environment, as an independent entity, IEM faces the challenge of optimizing its benefits 

while mitigating potential market risks. Consequently, conducting a study on the energy purchase strategy 

of IEM becomes imperative. 

Nomenclature 

 

Abbreviations 

AC      absorption chiller 

CHP  combined heat and power 

CVaR  conditional value-at-risk 

EB      electric boiler 

EC    electric chiller 

ESS  electricity storage system 



HSS  heat storage system 

IEM  integrated energy microgrid 

PV   photovoltaic units 

WT   wind turbines 

 

Sets and indices 

i       energy 

( ),YL x s
 

IEM energy purchase cost risk loss function associated with the strategy set 
Yx  and the 

scenario s  

n       user 

s      typical scenarios set 

t      time 

w     energy storage system 

Dx     energy purchase strategy in the spot stage for IEM 

nx       strategies for user n  

Yx       energy purchase strategy in the medium- and long-term stage for IEM 

 

Parameters and constants 

/e g
D DC C     spot electricity/gas costs 

, ,/e g
D s D sC C   spot electricity/gas costs under scenario s  

/ESS HSSC C   maintenance costs of ESS/HSS 

/e g
Y YC C     medium- and long-term electricity/gas costs  

f         risk aversion factor 

H        low calorific value of natural gas 

/e h
M Mp p       maintenance price of ESS/HSS 
i
tp           TOU price of energy i  
,max ,min/i i

t tp p     maximum/minimum limits of TOU price of energy i  

, , , ,/ ge
D f t D f tprice price   forecasted spot electricity/natural gas price at time t  

, , , ,/e g
D s t D s tprice price   spot electricity/natural gas price at time t  under scenario s  

/e g

Y Yprice price   medium- and long-term electricity/natural gas price 

prob       the probability of satisfying the mathematical expressions in parentheses 

,AC tP        power of AC at time t  
max min/AC ACP P      maximum/minimum power of AC 

/e g
connect connectP P   supply power of the external grid/gas network 

,max ,max/e g
connect connectP P   maximum supply power of the external grid/gas network 

, ,/e h
CHP t CHP tP P   electric power/thermal power of CHP at time t  

,max ,min/e e
CHP CHPP P   maximum/minimum electric power of CHP 

,max ,min/h h
CHP CHPP P   maximum/minimum thermal power of CHP 

,
e

extra tP         the power exceeding the upper limit of IEM consumption at time t  
,EB tP         power of EB at time t  

max min/EB EBP P   maximum/minimum power of EB 
,EC tP        power of EC at time t  

max min/EC ECP P   maximum/minimum power of EC 
, , , , , ,/ /e h c

L f t L f t L f tP P P    forecasted electric/thermal/cooling loads at time t  on the spot stage 
, , , , , ,/ /e h c

L s t L s t L s tP P P   electric/thermal/cooling load at time t  under scenario s  

, , ,/ /e h c
n t n t n tP P P        user n  initial electric/thermal/cooling load at time t  

, ,PV s tP       power of PV at time t  under scenario s  
,int ,int ,int/ /e h c

t t tP P P    IEM initial electric/thermal/cooling power at time t  
,max ,max/c d

wSS wSSP P   power limits for energy charge/discharge 
, ,WT s tP        power of WT at time t  under scenario s  

, , ,/ /e h c
n t n t n tr r r    the normalized user n  load ratio at time t  
'
,
i

n tr  
 
     the load difference of the ratios between user n  and the strategy at time t

 
CVaRR   risk loss value based on the CVaR 
e
DR       revenue from the sale of electricity 
int
nR    user n  initial cost 
nR    user n  cost 

VaRR   maximum possible risk of loss at confidence level   

,wSS tS   energy storage state of wSS at time t  



max min/wSS wSSS S      energy storage state limits of wSS 
C
nU       cost satisfaction of user n  
U
nU       energy use satisfaction of user n  

       confidence level 

       auxiliary variable in the calculation 

AC    cooling power efficiency of AC 

/e h
CHP CHP    electric / thermal power efficiency of CHP 
EB       power generation efficiency of EB 
EC    cooling power efficiency of EC 

, ,/eh sub ec sub

n n    electric thermal/cooling load conversion efficiency of user n  

/c d
w w    charge / discharge power efficiency of wSS 

,n t   discount received by user n  at time t  

s       auxiliary variable in the calculation 

,n t    the similarity of user n  at time t  
       satisfaction weight preference of user n  

s       probability of occurrence of scenario s  

1 2 3/ /       the influence coefficients of interruptible load, transferable load and substitutable load 

on user satisfaction 

 

Variables 

, , , ,/ ge
D s t D s tP P   the simulated winning spot electric/gas power at time t  under scenario s  

, ,/e g
D t D tP P   spot electric/gas power at time t  
'
,
i

n tP    user n  load power after IDR at time t  
, , ,
, , ,/ /i cut i sh i sub

n t n t n tP P P    user n  interruptible/ transferable/ substitutable load at time t  

,wSS tP   power of wSS at time t  
, ,/e g

Y t Y tP P   supply power for the medium- and long-term contract of electricity/gas at time t  
/ /e h c

t t tr r r   the normalized ratio of IEM optimal energy supply powers at time t  
0       the optimal discount 

, , , ,/wSS c t wSS d t    0-1 variables for charge/discharge states at time t  
/D S     discontinuity points 

IEM allows for the separate procurement of electricity and natural gas from various submarkets within 

the external market. However, there is a notable dearth of literature concerning IEM energy purchase 

strategy, as existing research predominantly focuses on the electricity market alone. In reference [5], 

electricity retailers allocated the proportion of electricity purchased from the contract, day-ahead, and 

real-time markets to reduce risk and increase profits. Reference [6] explored the electricity portfolio 

optimization problem for large consumers, taking into account self-generation power, day-ahead spot 

market, and forward contracts, and proposed a mixed-integer programming model to minimize expected 

costs and risks. References [7-8] considered the risk preferences of electricity buyers and constructed a 

model to identify the best procurement portfolio scheme, while quantitatively assessing risk. Several 

studies have analyzed the electricity purchasing strategies of retailers with the aim of considering profit 

risk while utilizing the conditional value-at-risk (CVaR) as a risk metric [9-11]. Reference [12] designed 

a genetic algorithm for determining the optimal short-term demand-side offer in both the day-ahead and 

intraday markets, optimizing the proportion of energy purchased by electricity sellers in each market. 

Reference [13] introduced a unified energy portfolio optimization framework for data centers to 

determine the optimal utilization portfolio. In [14], electricity sellers utilized self-generation, forward 

contracts, call options, and interruptible contracts to hedge risk by managing the portfolio between 

different contracts, in order to determine the best power procurement strategy. A power purchase model 

for electricity sales companies that combines renewable energy output and medium- and long-term power 

trading has been developed based on CVaR [15]. The above research provides valuable insights into the 

development of IEM’s energy purchase strategy. However, existing works still lack considerations for the 

natural gas market. In contrast to conventional electricity procurers, IEM possesses internal energy 

coupling property that enables it to fulfill energy demands by buying either electricity or gas. Moreover, 

the quantities of electricity and gas IEM acquired exhibit a mutually influential relationship. Facing price 

fluctuations originating from both the electricity and gas markets, the energy procurement challenge in 

IEM lies in the portfolio of electricity and gas quantities, as well as the allocation of proportions for 

medium- and long-term market and spot market purchases, for both electricity and gas. For now, few 

studies have been conducted on both energy selection preference and time-scale allocation in the energy 



purchase strategy of IEM. 

The manipulation of IEM in the energy market aims to mitigate the risk on the energy purchase side. 

However, similar uncertainty also prevails on the load side, where disparities in energy consumption 

between the actual load and the forecasted load can lead to losses for IEM. In this context, demand 

response (DR) serves as a regulatory tool for the power system, enabling increased flexibility and 

economic efficiency while minimizing the effects of load fluctuations. With conventional energy services 

progressively falling short in catering to the varied demands of users, integrated demand response (IDR) 

emerged. Reference [16] presented an optimal operational strategy for an integrated gas-electric energy 

system that takes into account IDR and uncertainty in wind power generation. In [17], a data-driven two-

stage distributionally robust CIES scheduling model was constructed to coordinate IDR and uncertainty 

in renewable energy generation. Reference [18] proposed a coordination approach that addresses 

uncertainty and IDR across different scheduling stages in integrated energy system operation. IDR has 

been well-established to be effective in mitigating load uncertainty and optimizing energy procurement. 

However, guiding users to participate in the response remains a challenge that operators must address. 

Traditional approaches, such as time-of-use (TOU) price or incentive distribution for response [19-21], 

do not account for differences among users and may not motivate them effectively. A solution proposed 

in the reference [22] is to create retail packages that incorporate IDR and provide different discounts for 

consumers. Another overlooked point is that electric/thermal/cooling energy only responds individually 

without coordinating different loads simultaneously to match the optimal electric/thermal/cooling power 

within IEM, which instead hinders the efficient consumption of purchased energy and the overall optimal 

operation. In light of the participation in demand response leading to load volume changes, it becomes 

imperative to consider the impact of demand response incentives on user loads in advance when 

formulating the energy purchase strategy of IEM. 

Considering the above issues, this paper proposes an IEM two-stage energy purchase strategy, which 

decides the proportional allocation of energy purchases at the medium- and long-term scale and the spot 

scale and the optimal portfolio of electricity and gas purchases. Firstly, an IEM medium- and long-term 

market multi-energy purchase model based on CVaR is constructed to minimize the annual cost. By 

evaluating various energy purchase schemes, this model enables IEM to achieve the optimal selection of 

electricity and gas and the optimal allocation of medium- and long-term markets and spot markets, 

determining the medium- and long-term energy purchase quantities. Then, combined with the daily 

medium- and long-term supply curves and the forecast results of the next day’s load demand, renewable 

energy production, and spot price, a spot market energy purchase model is established, which optimizes 

spot electricity and gas purchase quantities and eliminates energy deviations during operation. 

Additionally, we develop differentiated demand response incentives, optimizing incentive parameters and 

user loads through a master-slave game between IEM and users. The corrected load informs the 

adjustment of the energy purchase strategy. Finally, the rationality of the method is verified through the 

simulation. 

The major contributions of this paper are as follows: 

• We develop an energy purchase strategy for IEM in the electricity and gas markets, considering the 

uncertainties in the energy purchase process, which achieves the optimal portfolio of purchased 

electricity and gas, as well as the optimal allocation of purchased energy in the medium- and long-

term scale and the spot scale. 

• IEM two-stage energy purchase optimization models are established, namely the medium- and long-

term multi-energy purchase market and the spot market energy purchase model. The former uses 

CVaR to minimize the risk caused by uncertainties, while the latter aims to minimize the spot cost. 

• A similarity index between the electric/thermal/cooling load of user consumption and the optimal 

energy supply powers of IEM is proposed, which provides differentiated demand response incentives 

to users according to the similarity. 

• A master-slave game model between IEM and users is established to simulate the load variation under 

different incentives. The corrected loads are fed back to IEM, providing a reference for the 

formulation of an energy purchase strategy. 

The remainder of this paper is organized as follows. Section 2 introduces the system structure and 

energy purchase architecture of IEM. IEM energy purchase optimization models in the market 

environment are proposed in Section 3. After that, Section 4 proposes model solving. Section 5 details 

the case simulation. Finally, conclusions are drawn in Section 6. 

2. System structure and energy purchase architecture of IEM 



2.1. System structure of IEM 

 

Fig. 1. The system structure of IEM. 

The system structure of IEM is shown in Fig. 1. The IEM is characterized by the interdependence and 

interaction between various energy sources, and it allows for the acquisition of electricity and natural gas 

from external networks. Due to the internal coupling conversion, IEM is able to meet the demand for 

electricity, heat, and cold on the user side by the energy supply from the grid or the gas network. 

During the electricity procurement process, the IEM establishes transactions with the external grid 

through the electricity market, encompassing the electricity medium- and long-term market and the 

electricity spot market. Likewise, to secure the supply of natural gas, IEM actively engages in the gas 

medium- and long-term market and the gas spot market. The medium- and long-term market is critical 

for energy consumers as it provides a means to hedge the spot price risk and achieve optimal allocation 

of resources. Due to the uncertainties of long-term forecasting and the substantial fluctuations in both 

load and renewable energy production, the energy purchased through medium- and long-term contracts 

may not align with the future actual energy demand. Consequently, the utilization of the spot market 

becomes necessary to ensure power balance. 

The electricity market operates differently from the natural gas market in transactions. The electricity 

market is characterized by spot transactions as the dominant form of trading, complemented by medium- 

and long-term contracts. Conversely, natural gas transactions primarily occur in the medium- and long-

term market. The advent of policies that promote medium- and long-term trading is likely to engender 

growth in the medium- and long-term procurement of electricity [23]. 

2.2. IEM two-stage energy purchase architecture with demand-side response 

On the energy procurement side, the cost of operating the IEM is affected by electricity and natural 

gas prices. By replacing expensive energy with cheaper ones and leveraging the substitutability between 

internal energy, the IEM can effectively minimize expenses. This cost advantage can then be leveraged 

as a pricing advantage. 

The energy purchase architecture can be divided into medium- and long-term stage and spot stage, as 

shown in Fig. 2. The IEM makes energy procurement decisions based on the electricity and gas markets, 

prioritizing the acquisition of energy sources that are priced lower or exhibit stable price trends according 

to its risk tolerance. This energy source serves as the primary supply, while another type of energy is 

used as a supplement. This approach ensures minimal price volatility risks. From time scales, market 

competitiveness results in spot prices often exhibiting characteristics of high peak prices. IEM protects 

its interests by signing medium- and long-term energy to counterbalance the high cost of spot energy. 

However, the transaction opening window for medium- and long-term market contracts is early, and the 

future spot price trend is unpredictable. Recklessly and blindly signing medium- and long-term purchase 

quantities will cause economic losses. To address this, we propose the IEM two-stage energy purchase 

architecture. 



 

Fig. 2. Two-stage energy purchase architecture with demand-side response. 

In the medium- and long-term stage, it is the basic task of IEM to forecast the energy demand, 

renewable energy production, and monthly prices for the coming year. Based on the forecast results, IEM 

makes decisions on different energy purchase schemes, which involve a specific allocation of energy 

purchase quantities for various energy sources and at different time scales, determining the medium- and 

long-term purchases. In the spot stage, external networks provide electricity and natural gas to IEM 

according to the agreed-upon medium- and long-term contracts. After updating the forecast of the next 

day’s spot price, renewable energy production and user loads, the IEM purchases low-priced spot energy 

to maintain the balance of supply and demand. 

On the load side, the IEM formulates demand response incentive measures aligned with the medium- 

and long-term stage energy procurement scheme. Under the influence of demand response incentives, 

the original load curves can change. Therefore, when predicting the load curve, it is imperative to 

proactively consider this factor. 

3. IEM energy purchase optimization model in market environment 

3.1. IEM medium- and long-term market multi-energy purchase model 

Although energy demand, renewable energy production, and spot prices are all subject to uncertainties, 

daily load curves typically adhere to a consistent pattern within the same month, while daily renewable 

energy production curves also exhibit some degree of similarity. Furthermore, the daily spot price trend 

of the same month is relatively unchanging. As such, this paper employs historical data to simulate the 

three and creates a typical scenario set that includes daily typical load curves, daily typical renewable 

energy production curves, and daily spot prices for each month. For the medium- and long-term 

electricity and gas prices, an average of historical contract prices is taken. 

Based on the forecast results, the IEM utilizes portfolio theory to diversify its energy purchases across 

multiple markets. By optimizing the purchase share of different types of energy and allocating the 

purchasing ratios of the same type of energy at two different time scales, while evaluating the risk of 

various energy procurement schemes with CVaR, the daily medium- and long-term purchasing quantities 

can be determined. This quantity is then multiplied by the number of days in the month to compute the 

energy procurement required for the entire month. By summing up the energy procurement for each 

month, the annual medium- and long-term purchasing quantities are yielded. 

Therefore, we develop a medium- and long-term market multi-energy purchase model to minimize 

annual costs considering risk factors. The mathematical expression of the model is as follows: 

( ) ( ), ,min 1 e g e g

Y s Y Y D s D s CVaR

s S

F f C C C C f R


= −   + + + + 
             

(1) 

a) Medium- and long-term electricity purchase costs 

When conducting medium- and long-term market transactions, the IEM specifies the electric load 

curve and purchasing price in the contracts. Different months may choose different time-point curves, 

typically defaulting to the same time-point curve for all days in a single month. The electricity 

consumption entity is required to declare the transaction by point, and the purchase price remains 

constant, not subject to change over time. Therefore, the medium- and long-term electricity purchase 



costs can be expressed as the product of the contracted electricity quantity and the contract price: 

,

e e e

Y Y t Y

t T

C P t price


=  
                            

(2) 

b) Medium- and long-term gas purchase costs 

The details of natural gas procurement contracts are similar to that of electricity contracts. The 

medium- and long-term gas purchase costs are the product of the contracted gas purchase quantity and 

the purchased gas price: 

,

g g g

Y Y t Y

t T

C P t price


=  
                            

(3) 

c) Spot electricity purchase costs 

To mitigate the impact of uncertainties in the energy procurement process, we utilize the Monte Carlo 

method to simulate user loads, spot prices, and renewable energy production and replace all possible 

scenarios with a typical scenario set to assist the IEM in decision-making. The method selects historical 

data on daily load curves and daily spot prices for each month over the past year to generate the relevant 

probability distribution. The Beta distribution and Weibull probability distribution are utilized to model 

solar radiation and wind speed, respectively. Subsequently, by employing random sampling from the 

probability distribution models, we simulate scenarios for user loads, spot prices, solar radiation, and 

wind speed. Leveraging "solar radiation - PV output" and "wind speed - WT output" conversion formulas, 

scenarios for renewable energy production are derived. 

Given the abundance of similar scenarios generated through random sampling, the K-means clustering 

algorithm is applied to simplify the calculation by reducing redundancy. After randomly selecting K data 

points as cluster centers, according to the Euclidean distance between each data point and each cluster 

center, the remaining data points are assigned to the nearest cluster center. Following data assignment, 

the cluster centers are updated based on the existing clustering results, and the above steps are repeated 

until the cluster centers stabilize, ultimately yielding a typical scenario set. 

Based on the typical scenario set, the spot electricity purchase costs are the product of the winning 

quantity for each period and the spot price: 

, , , , ,

e e e

D s D s t D s t

t T

C P t price


=  
                         

(4) 

d) Spot gas purchase costs 

Similarly, the spot gas purchase costs are the product of the winning gas quantity for each period and 

the spot gas price: 

, , , , ,

g g g

D s D s t D s t

t T

C P t price


=  
                          

(5) 

The medium- and long-term purchase quantities and the spot winning quantities together constitute 

the medium- and long-term stage energy procurement scheme for the IEM. However, in this stage, the 

spot market plays a role in providing a reference for decision-making regarding medium- and long-term 

purchase quantities, and the simulated winning quantity is unrelated to the spot purchase quantities in 

the next stage. 

e) Conditional Value-at-Risk 

By considering the tail risk of the distribution function, CVaR enables decision-makers to consider 

the downside risk associated with different options. This facilitates the development of effective energy 

purchase strategies that mitigate potential losses and maximize returns [24], which is in line with the 

attitude of the IEM toward the energy purchase risks. The mathematical expression is shown below: 

( ) 

( ) ( )

( )
( )

,

, max 0, ,

1
,

1

Y VaR

Y VaR Y VaR

CVaR VaR s Y VaR

s S

prob L x s R

L x s R L x s R

R R L x s R






+

+




  =



− = −      

 = + −   −


                  

(6) 

CVaRR  in Equation. (6) represents the risk loss associated with the IEM medium- and long-term energy 

purchase scheme, while f  in Equation. (1) represents the subjective attitude of the IEM. A higher value 

of f  indicates a greater influence of CVaRR  on the objective function. In such cases, IEM tends to adopt 



a more conservative approach by increasing the quantity of energy purchased in a market with lower 

volatility. This strategy aims to mitigate the occurrence of substantial losses in the future, albeit at the 

expense of higher costs. Conversely, when f  is smaller, IEM leans towards minimizing the cost, albeit 

at the risk of facing significant losses in the future. In the calculation process, Equation. (6) can be 

simplified as: 

1

1
CVaR s s

s S

R   
 

= + 
−


                          

(7) 

The constraints of IEM medium- and long-term market multi-energy purchase model are as follows: 

a) Energy supply balance constraints 

( ), , , , , , , , , , 1, 2,

, , , ,

, , , ,

1e e e e

L s t Y t D s t WT s t PV s t CHP t t t

h h
L s t EB t CHP t t

c
L s t AC t EC t

P P P P P P a a

P P P b

P P P

  = + + + +  − − 


= + 


= +

           

(8) 

where Equation. (8) represents the energy balance constraint of the IEM electric/thermal/cooling energy 

flow, a
 

and b
 

are the distribution factors of the electric and thermal energy flows respectively. They 

are influenced by the energy demand in each period and optimized simultaneously with the purchased 

energy in the decision-making process. 

b) Risk constraints 

, ,

0s

e g e g

s Y Y D s D sC C C C



 




 + + + −                        

(9) 

c) Equipment power constraints 

( )

( )

( )

, , , ,

, , , ,

, , , , , , , , , 2,

, ,

, , , , , , , , , 1,

1

e g g e

CHP t Y t D s t CHP

h g g h

CHP t Y t D s t CHP

e e e

EB t Y t D s t WT s t PV s t CHP t t EB

h

AC t CHP t t AC

e e e

EC t Y t D s t WT s t PV s t CHP t t EC

P P P H

P P P H

P P P P P P a

P P b

P P P P P P a











 = +  

 = +  



 = + + + +    


=  − 

 = + + + +   





           

(10) 

,min max

,

,min ,max

,

min max

,

min max

,

min max

,

e e

CHP CHP t CHP

h h h

CHP CHP t CHP

EB EB t EB

AC AC t AC

EC EC t EC

P P P

P P P

P P P

P P P

P P P

  


 


 


 


 

                           

(11) 

The operational scheduling of the energy storage systems is not considered at this stage. 

d) Exchange power constraints between IEM and external electricity and gas networks 

,max ,max

,max0

e e e

connect connect connect

g g

connect connect

P P P

P P

−  


                            

(12) 

3.2. IEM spot market energy purchase model 

In the spot stage, the actual daily load of users may differ from the predicted values in the prior stage. 

Since the medium- and long-term contract quantities have already been determined, the IEM optimizes 

the spot electricity and gas quantities to maintain the supply-demand balance based on the day-ahead 

forecast results. IEM builds the model to minimize the spot stage costs: 

min e g e

D D D ESS HSS DF C C C C R= + + + −                       (13) 

The spot electricity purchase costs and the spot gas purchase costs in this stage are as follows: 



, , ,

e e e

D D t D f t

t T

C P t price


=                               (14) 

, , ,

g g g

D D t D f t

t T

C P t price


=                               (15) 

When the energy supply exceeds the load demand, the IEM can store the surplus electricity and heat 

in the storage system to avoid the waste of unconsumed energy and potential economic losses. While the 

IEM incurs daily maintenance costs, the integration of energy storage systems allows it to optimize spot 

energy procurement costs by purchasing energy in advance during valley periods and storing it in the 

energy storage system. Any excess electricity beyond the storage capacity is sold to the larger grid. It can 

be expressed as: 
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where Equations. (17-18) represent the maintenance costs of the energy storage systems. 

IEM in the spot stage disregards risk constraints and considers the energy storage systems constraints. 

The constraints are as follows: 

a) Energy supply balance constraints 
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b) Energy storage systems constraints 
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Equipment power constraints and exchange power constraints are consistent with the previous stage. 

3.3. Demand response incentives 

3.3.1. Design of demand response incentives 

The increased diversity of energy choices and energy substitutability on the user side exacerbate the 

randomness and unpredictability of loads. The resulting load fluctuations disrupt the supply-demand 

balance and affect the original operating scheme, which includes the internal energy flow being 

redistributed, and the balance will need to be restored through the purchase of spot energy or the 

curtailment of renewable energy power, leading to a multiplication of supply pressures for the IEM. In 

this study, we introduce the demand response incentive based on the electricity/heat/cold ratio as a means 

of minimizing the gap between the optimal energy supply in the expected operation scheme and user 

loads. 



 

Fig. 3. Composition of the demand response incentives. 

The demand response incentive is composed of elements such as energy price, electricity/heat/cold 

ratio, and discount, as shown in Fig. 3. In terms of energy prices, the IEM adopts the TOU pricing 

mechanism, dividing the entire day into peak and valley periods. In formulating the electricity/heat/cold 

ratio, the IEM employs a strategy whereby the ratio is determined based on the expected optimal 

electric/thermal/cooling supply power for each period. These powers are computed considering factors 

such as the predicted renewable energy outputs, the medium- and long-term stage planned energy 

purchase powers, and energy distribution factors. As for the discount, the IEM provides differentiated 

discounts to individual users based on the optimal discount. 

In each month, IEM employs consistent prices, peak and valley periods, ratios, and the optimal 

discount. The strategy differs from one month to another. 

Users receive corresponding discounts based on the similarity. The similarity is calculated as follows: 
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where in Equation. (21), subtracting the ratio of IEM optimal energy supply powers from the user 

electric/thermal/cooling loads ratio, then comparing it with the ratio of optimal energy supply powers 

supplied to obtain the difference between the two. On this basis, the standard deviation of the load 

difference is computed and utilized as the similarity value of the user. The smaller the standard deviation, 

the closer the user loads ratio is to the IEM ratio. Equations. (22) and (23) represent the normalization of 

the ratio of IEM optimal energy supply powers and the normalization of the user loads ratio, respectively. 

Considering some users may be unable to adjust their load ratios to be similar to the ratio supplied by 

the IEM due to their specific energy usage characteristics, they are billed the original price. On the other 

hand, if the user’s similarity falls below 
D  , he will receive the optimal discount. The IEM offers 

differentiated discounts to users based on their electricity/heat/cold ratios, which protects the motivation 

and fairness of user participation in IDR [25]. Thus, the discount factor can be expressed as: 
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(24) 

Users pay the fee once a month. The cost of the user can be expressed as: 
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3.3.2. IEM and user master-slave game model 

The IEM introduces demand response incentives. Through TOU price and differentiated discounts, 

users are guided to participate in IDR in an orderly manner, enabling them to align all types of loads as 

closely as possible to the optimal energy powers while aids the IEM in reducing both costs and risks. To 

simulate users’ load adjustment behavior and achieve optimal demand response incentives parameters, 

the IEM has established a game model that encompasses interactions between itself and the users, with 

the former acting as the leader and the latter as the follower. The model is shown in Fig. 4. 

 

Fig. 4. Master-slave game between IEM and users. 

Once the medium- and long-term energy purchase scheme is determined, IEM proceeds to optimize 

the elements of the demand response incentives, which aims to maximize the revenue generated by itself. 

The model is presented below: 
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The constraints of IEM include the TOU price constraint and the optimal discount constraint: 
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After obtaining information on demand response incentives, each user aims to maximize their overall 

energy use utility by adjusting the loads in each period. Utility functions are widely employed to quantify 

the level of satisfaction experienced by users when consuming energy. By comparing the merits and 

drawbacks of different strategies, an optimal consumption plan can be determined. The mathematical 

expression of the model is as follows: 
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(31) 

The evaluation of user comprehensive energy utility includes two parts: energy cost satisfaction and 

energy use satisfaction. The former compares the energy cost after IDR with the original cost of energy 

purchased by the user, and the difference between the costs represents the improvement of the user’s cost 

satisfaction. The latter takes into account the impact of user comfort caused by load volume changes due 

to participation in IDR. Different load types have varying effects on users, and the extent of their impact 

on user satisfaction is represented by assigning different coefficient values to each load category. 

According to the loads characteristics, the loads involved in IDR are classified as interruptible loads, 



transferable loads, and substitutable loads [26-28]. 

a) Interruptible loads 

Interruptible loads include some non-essential loads, which can be curtailed to some extent during 

peak periods. The power constraint of interruptible load can be expressed as: 
, ,

, , ,

i cut i i cut

n t n t n tP P   0

                               

(32) 

where ,

,

i cut

n t   is determined by the willingness of the user to participate and the actual power of the 

equipment. The higher the power, the stronger the willingness, and the larger the interruptible load. 

b) Transferable loads 

Transferable loads have a fixed working power, but their working time can be shifted to valley periods 

to avoid the peak of energy consumption. The power constraints of transferable loads can be expressed 

as: 

, ,
, , ,
i sh t i sh

n t n t n tP P  

                                

(33) 

,

,

i sh

n t

t T

P


= 0

                                  

(34) 

where Equation. (34) represents that the total amount of transferable loads remains constant throughout 

the dispatch cycle. 

c) Substitutable loads 

Energy conversion processes are not only present within IEM but also on the user side. The 

widespread use of electric thermal/cooling devices intensifies the pressure on the electricity supply. 

While these electric loads might have been replaced by a direct supply of thermal/cooling energy, the 

increasing production of renewable energy implies that these loads can increasingly be powered by 

electricity. The power constraint for substitutable loads can be expressed as: 
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where Equation. (36) indicates the changes in the thermal and cooling loads on the user side exhibit 

opposite trends to the changes in the electric loads. 

The loads volume for users at each period after participating in IDR can be expressed as: 

' , , ,

, , , , ,
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(37) 

The user-side constraints are equivalent to Equation. (32)-Equation. (36). 

4. Model solving 

Based on forecast data of user loads, renewable energy production, and energy prices, this paper 

utilizes the GUROBI solver through the YALMIP toolbox to address the mixed-integer planning problem 

regarding medium- and long-term energy procurement in IEM. Based on the initial energy purchase 

scheme, a subprogram is invoked to tackle the master-slave game between IEM and users. A hybrid 

approach combined with the Particle Swarm Optimization (PSO) algorithm and the GUROBI solver is 

employed to compute IEM energy sales revenue and user energy satisfaction. The PSO algorithm 

optimizes demand response incentive parameters iteratively to maximize both parties' objectives, while 

the solver is used to compute IEM revenue and user energy consumption strategy. After the game 

concludes, the updated user loads are integrated into the medium- and long-term energy purchase model 

to re-optimize the energy purchase scheme, and the above process will be repeated until the iteration of 

this stage is completed. As for the spot stage energy purchase strategy of IEM, the GUROBI solver is 

similarly utilized to solve the spot energy purchase quantity. 



 

Fig. 5. Flow chart of model solving. 

The flow chart is shown in Fig. 5, and the specific solution steps are as follows: 

1) Initialization of forecast data and the number of iterations, followed by input into the medium- and 

long-term multi-energy purchase model. 

2) Utilization of the GUROBI solver to optimize the medium- and long-term energy purchase scheme. 

3) Invocation of the master-slave game subprogram to input the initial energy purchase scheme. Set 

the number of particles, iterations, and convergence error tolerance, and randomly initialize the demand 

response incentive parameters. 

4) Calculation of IEM energy sales revenue and user energy satisfaction. 

5) Computation of the particle's fitness values and update the demand response incentive parameters, 

the fitness function, the local best solution for each particle, as well as the global best solution for the 

particle swarm. 

6) Evaluation of the iteration count and comparison of optimization results between the current and 

previous rounds. 

7) Steps 3 to 6 are repeated, with outputting of the load after demand response to the medium- and 

long-term multi-energy purchase model. 

8) Re-optimization of the medium- and long-term energy purchase scheme. 

9) Steps 2 to 8 are repeated until the end of the iteration. The spot energy purchase scheme is solved 

based on the medium- and long-term purchase quantity and spot forecast data. 

5. Case study 

5.1. Basic Data 

In this paper, an IEM is selected for the case study, given in the preceding Fig. 1, which includes WT, 

PV, CHP, EB, EC, AC, ESS, and HSS. The maximum power of WT and PV is 1200 kW and 400 kW, 

respectively. The upper limit of supply power between the external electricity grid and the IEM is 8000 



kW, and the upper limit of supply power of the external gas network is 2500 m3. The operating parameters 

of the equipment are detailed in Table A1, Appendix A. Furthermore, the maximum electric load power, 

maximum thermal load power, and maximum cooling load power for the IEM are 6000 kW, 5000 kW, 

and 2000 kW, respectively. In this case, there are 10 users on the load side. The weight preference of 

each user’s satisfaction is uniformly set to   as 0.5, while the influence coefficients 1 , 2 , and 3  

of interruptible load, transferable load, and substitutable load on user satisfaction depend on the users. 
The risk aversion factor f   is 0.9 and the confidence level    is 0.95 when developing the energy 

purchase strategy. 

5.2. Optimization results of IEM energy purchases 

5.2.1. IEM energy purchasing portfolio under different scenarios 

Geographical disparities not only influence energy market structures but also lead to variations in 

energy prices. This section discusses the IEM energy purchasing portfolio under two distinct geographic 

location scenarios. 

• Scenario I: The IEM is located in the northwest region of China, adjacent to renewable energy 

production bases. In this area, electricity prices are generally low but exhibit considerable volatility, 

in contrast to the relatively stable prices of natural gas. 

• Scenario II: The IEM is located in the eastern coastal region of China, which acts as a central hub for 

electricity consumption. In this locality, electricity prices exhibit minimal fluctuations but are 

comparatively more expensive. Given its proximity to natural gas ports, the eastern region experiences 

a lower price for natural gas. However, natural gas spot prices display higher volatility. 

The annual energy purchase of the IEM under the proposed strategy in different scenarios is presented 

in Table 1. In addition, it also gives the cost and the benefit of the IEM. The price fluctuations in each 

spot market are shown in Fig. B1- Fig. B4, Appendix B. 

Table 1 

The IEM annual energy purchases under the proposed strategy in different scenarios. 

Scenario Market 
Quantity  

(MWh, 103 m3) 

Cost     

(104 CNY) 

Benefit  

(104 CNY) 

Scenario 

I 

Electricity medium- and long-term market 23941.60 

2549.3 2863.1 

Electricity spot market 9082.45 

Natural gas medium- and long-term market 1938.53 

Natural gas spot market 535.18 

Scenario 

II 

Electricity medium- and long-term market 17965.21 

2625.0 2813.9 

Electricity spot market 7192.46 

Natural gas medium- and long-term market 2164.37 

Natural gas spot market 1138.65 

 

Fig. 6. Energy consumption structure diagram of the IEM in Scenario I and Scenario II. 

Fig. 6 shows the energy consumption structure of the IEM in Scenario I and Scenario II, which consists 

of electricity, natural gas, and renewable energy. From the perspective of different energy, electricity 
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represents a larger share of the IEM supply than natural gas does in Scenario I. The underlying factor 

behind this circumstance can be attributed to the region's close to renewable energy production bases, 

leading to lower electricity prices, which makes it more cost-attractive for IEM. However, the dramatic 

fluctuation in electricity prices also increases the risk of energy purchase for the IEM. Given that 

electricity is not the sole energy source, and to cut down on risks, the IEM retains a substantial portion 

of its purchases in the natural gas market. In Scenario II, the ratio of each market differs from that in 

Scenario I. The natural gas market has the largest share at 47%, and the electricity market has 37%. 

In terms of the time scale, both scenarios exhibit a certain resemblance in the energy purchasing 

portfolio. Specifically, the medium- and long-term markets contribute approximately 60% of the energy 

supply, while the share of the spot markets is comparatively lower. This phenomenon arises from the 

simulated typical spot price scenario set, where average spot prices, depending on the scenario, can 

fluctuate, either falling below or exceeding the fixed prices in the medium- and long-term markets for 

both electricity and natural gas. Therefore, by engaging in large-scale energy procurements from 

medium- and long-term markets, the IEM effectively stabilizes the risk float. The operating results of the 

IEM for a given day are shown in Fig. B5, Appendix B. 

The IEM typically relies on external electricity and natural gas sources under normal state. In the 

event of a sudden interruption of the external electricity grid or external gas network, the remaining 

energy network is used to compensate for the shortfall in the IEM energy supply, which ultimately leads 

to a surge in spot purchases of either gas or electricity and subsequent spot price hikes during the 

interruption period. To mitigate these risks, a multi-market purchase strategy can be employed, helping 

to stabilize the energy supply during such disruptions. 

5.2.2. Comparison of different energy purchase strategies 

Based on Scenario II, we compare the energy procurement of IEM under the existing strategy and the 

strategy proposed in this paper, as exhibited in Table 2. Strategy 1 denotes the existing approach relying 

solely on a spot settlement mechanism [17,26], while Strategy 2 represents the method proposed in this 

paper. 

Table 2 

The IEM annual energy purchases under different energy purchase strategies. 

Strategy 

Electricity medium- 

and long-term market 

(MWh) 

Electricity 

spot market 

(MWh) 

Natural gas medium- 

and long-term market 

(103 m3) 

Natural gas 

spot market 

(103 m3) 

Cost (104 

CNY) 

Benefit (104 

CNY) 

1 0 23309.53 0 3512.13 3014.2 2387.2 

2 17965.21 7192.46 2164.37 1138.65 2625.0 2813.9 

Compared to Strategy 1, the IEM under the strategy proposed in this paper achieves a reduction of 

12.91% in costs and an increase of 17.87% in benefits. Without participation in the medium- and long-

term markets, the optimal allocation of the energy purchase portfolio is impossible. The energy 

procurement decision in Strategy 1 is simplified to an optimization problem that only requires cost 

considerations and is solely dominated by the spot market, where the risk is no longer under its control. 
Additionally, the implementation of IDR has effectively assisted IEM in reducing medium- and long-

term energy purchases during high-priced periods, lowering the overall cost of energy purchases while 

increasing benefits. 

The strategy proposed in this paper balances the stability of the medium- and long-term market and 

the flexibility of the spot market. Considering the uncertainty of energy prices in different markets and 

the IEM's risk attitude, the strategy facilitates optimal decisions for both medium- and long-term and 

spot markets, which also enables the IEM to adjust the quantity and types of energy purchases and 

determine the shares of electricity and natural gas markets. Ultimately, energy purchase costs and risks 

decline. Moreover, the strategy enhances energy utilization efficiency and further reduces costs by 

coordinating demand response to optimize the internal ratio of electric, thermal, and cooling loads. 

5.2.3. The impact of renewable energy penetration within the IEM on energy purchases 

The renewable energy penetration within IEM significantly impacts its market energy allocation. This 

study explores a situation wherein a higher share of renewable energy sources is integrated into the IEM 

while external energy prices remain consistent with those in Scenario II. 

When the total installed capacity of renewable energy grows from 1600 kW to 5000 kW and the 

fluctuation in renewable energy power further intensifies, the operational risk of the IEM also increases. 

As depicted in the energy procurement scheme in Table 3, the rise in renewable energy penetration 



encroaches on the proportion of externally procured energy within the IEM energy consumption structure. 

The medium- and long-term and spot procurement quantities have decreased, yet the proportion of 

purchases in the medium- and long-term markets has heightened. The IEM has shifted its procurement 

strategy towards the medium- and long-term market to mitigate the risks associated with renewable 

energy uncertainty. 

Table 3 

The IEM energy purchases under higher shares of internal renewable energy sources. 

Electricity medium- and 

long-term market (MWh) 

Electricity spot 

market (MWh) 

Natural gas medium- and 

long-term market (103 m3) 

Natural gas spot 

market (103 m3) 

Cost (104 

CNY) 

Benefit (104 

CNY) 

15487.29 3272.40 2037.18 894.27 2258.7 3137.4 

5.3. Sensitivity study of key factors of IEM strategy 

The IEM energy purchase strategy is affected by many factors, including the attitude toward market 

risk and the demand response incentive. This paper conducts a sensitivity analysis to explore these 

influences. 

5.3.1. Influence of risk averse factor 

 

Fig. 7. Changes in the purchase quantity of various markets under different risk aversion factors. 

Based on Scenario II, Fig. 7 illustrates the variations in the medium- and long-term stage energy 

purchase scheme of the IEM under different risk aversion factors. As the risk aversion factor experiences 

an increase, there is an upward trend in purchases within the medium- and long-term market. Conversely, 

both spot procurements display a declining pattern. Although the medium- and long-term price is higher 

than the spot price in some typical scenarios, the volatility-free nature of the medium- and long-term 

price caters more to the conservative attitude of the IEM in energy purchase decisions. Buying medium- 

and long-term energy in bulk mitigates the risk associated with the uncertainty of spot price fluctuations 

and limits the loss of energy purchase to an acceptable level. As a result, sharp fluctuations in spot prices 

can drive increased energy purchases in the medium- and long-term market. In this scenario, the intense 

volatility of natural gas spot prices prompts risk-averse IEM to augment procurement from the medium- 

and long-term natural gas market, aiming to hedge their risk. The lower price of natural gas compared to 

electricity makes it a more cost-effective option for the IEM, despite both the medium- and long-term 

electricity and natural gas markets serving equally in risk mitigation. Consequently, these result in a 

significant increase in the quantity of natural gas purchased in the medium- and long-term market. 
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Fig. 8. Energy purchase cost and CVaR of the IEM under different risk aversion factors. 

Fig. 8 presents the impact of various risk aversion factors on the energy cost and the CVaR. From a 

macro perspective, there is a rise in the cost as the risk aversion factor increases, accompanied by a 

decrease in the CVaR. With a lower value for this factor, the IEM takes an optimistic attitude toward risk 

and tries to purchase spot energy, seeking periods when the spot price is lower than the medium- and 

long-term price, which brings a large CVaR. On the contrary, a risk-averse attitude leads the IEM to 

prefer purchasing medium- and long-term energy to reduce its CVaR, but it also causes an increase in 

cost. In summary, the proposed method helps the IEM optimally coordinate cost and risk by sacrificing 

some benefits for security. 

5.3.2. Influence of demand response incentives 

 

Fig. 9. Changes in the purchase quantity of various markets under different demand response incentives. 

Fig. 9 illustrates that as demand response incentives increase (manifested by higher discounts), there 

is a decrease in the IEM energy procurements, particularly in the medium- and long-term markets. The 

rise in incentives motivates users to engage in more proactive load management, yielding a more 

balanced ratio of electric, thermal, and cooling load and improving energy efficiency, thus reducing 

energy purchases. The substantial reduction in load occurs during peak energy consumption hours, which 

coincides with the primary deployment period of medium- and long-term energy, leading to a quantity 

decline in this market. Enhancements in energy efficiency and incentives to direct loads towards lower-

priced hours effectively reduce the acquisition of high-priced energy during peak hours, ultimately 

resulting in lower overall energy purchase costs. Notably, higher incentives do not necessarily guarantee 

better benefits. The optimization result of the discount based on Scenario II is 0.124. 

5.4. Optimization results of loads 
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Fig. 10. Loads before and after IDR on a given day. 

As shown in Fig. 10, there is a notable change in the loads before and after IDR. The peak periods for 

electricity and cooling loads predominantly occur during the daytime, with the loads decrease of 23.3% 

and 11.8% compared to the pre-IDR, respectively. During the valley periods, the electric load increases 

by 13.9%, and the cooling load increases by 17.8%. In terms of thermal load, the peak periods during the 

night exhibit a decrease of 10.4%, while the valley periods experience a 4.1% increase. The IEM ensured 

that the total load remained within the coverage provided by medium- and long-term contracts as much 

as possible during post-IDR electricity peak hours, requiring only minimal energy supplementation 

during specific periods. Such load increase during the electricity valley period improves the IEM’s 

consumption of renewable energy and low-price energy. 

 

Fig. 11. Load similarity for each period under IEM implemented different energy sales strategies. 

Fig. 11 presents the similarity of the whole loads for each period under IEM implemented different 

demand response incentives. Compared with the original similarity, the similarities in some periods 

decrease rather than increase after the implementation of TOU prices alone. Then the similarities of most 

periods acquired improvement through the conscious ratio guidance of user loads by the incentives 

designed by this paper. Therefore, the combination of discounts and TOU prices mechanism reduces the 

deviation between load and IEM energy supply and mitigates the pressure on energy purchase and supply. 
The ratio of IEM optimal energy supply powers for each period can be found in Table A2, Appendix A. 

2 4 6 8 10 12 14 16 18 20 22 24

1000

2000

3000

4000

5000

6000

7000

P
o
w

er
/k

W

Time/h

 Electric load before IDR

 Electric load after IDR

 Thermal load before IDR

 Thermal load after IDR

 Cooling load before IDR

 Cooling load after IDR

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00

0.05

0.10

0.15

0.20

0.25

0.30

S
im

il
ar

it
y

Time/h

 Original

 TOU only

 Incentives in this paper



 

Fig. 12. Response volume of thermal load for different users. 

Taking Users 1 and 10 as illustrative examples, the electric/thermal/cooling load ratio of User 1 is 

close to the ratio of IEM optimal energy supply powers, and the thermal demand of User 10 is 

significantly higher than that for electricity and cooling. Fig. 12 depicts the response magnitudes of their 

respective thermal loads. It can be observed that both User 1 and User 10 responded throughout the entire 

scheduling process. Although the IDR behavior of both is similar, there is a big difference in the response 

power. The thermal load reduction during peak periods and the response power during valley periods of 

User 1 are lower than User 10. Due to the load response of User 1 being influenced by the TOU prices 

and the discount, User 1’s thermal load no longer operates independently but instead cooperates with the 

electricity/cooling load. This combined response allows for the adjustment of the load ratio to an optimal 

level that enables the user to obtain the maximum discount available. Users are provided with a higher 

level of cost satisfaction and energy use satisfaction compared to solely relying on blind adjustments in 

response power according to the TOU prices, which also achieves a win-win situation for both the IEM 

and the users. Combined with Table 4, User 10’s satisfaction remains unchanged under the demand 

response incentives. The big difference between User 10’s load ratio and the ratio of IEM optimal energy 

supply powers renders him unable to obtain the discount, only to respond following the TOU prices and 

improve overall satisfaction by increasing the amount of thermal load reduction. 

Table 4 

Different users’ utility. 

Users Demand response incentives in this paper TOU price 

User 1 1.071 1.024 

User 10 1.035 1.035 

6. Conclusion 

This paper presents a design of an energy purchase architecture for IEM across electricity and gas 

markets, focusing on medium- and long-term and spot markets for electricity and gas. Additionally, we 

put forward a two-stage energy purchase strategy and introduce demand response incentives based on 

energy ratios. Comparative analysis is carried out by case studies, to demonstrate the effectiveness and 

advantages of the proposed strategy. Based on the simulation results, the following conclusions are 

drawn: 

1) The proposed method proficiently facilitates optimal decision-making for the IEM amidst 

fluctuating energy prices, ensuring optimal portfolio allocation for electricity and natural gas purchases 

across the medium-, long-term, and spot markets. Compared to energy purchases in the spot market only, 

the IEM succeeds in improving returns while reducing risks. 

2) The risk-averse IEM exhibits a preference for augmenting their procurement of medium- and long-

term energy sources with lower price volatility. However, this risk mitigation comes at the cost of 

increased costs. Furthermore, the IEM improves the overall robustness and security of energy purchasing 

by diversifying energy sources and procurement channels. 

3) The guidance of user loads through the demand response incentives based on the 
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electricity/heat/cold ratio significantly reduces the deviation between load and energy supply and 

alleviates the cost of IEM energy supply and the risk of energy purchase, fostering a mutually beneficial 

paradigm. 

This study independently forecasts electricity and gas spot prices. However, as the Integrated Energy 

System evolves, the coupling between these prices will strengthen, necessitating joint forecasting of 

electricity and gas prices. Furthermore, leveraging historical data and employing artificial intelligence 

and big data technologies are crucial for developing a precise forecast model. In addition, the focus of 

this paper on demand-side management is on examining the optimal proportional allocation of various 

types of user loads, including electricity, heating, and cooling. With the widespread popularization of 

electric vehicles (EVs) and the advancement of V2G technology, EVs assume a critical role as an 

electricity load and demand-side resource for the IEM. Thus, analyzing the impact of EV fleet charging 

and discharging strategies on IEM energy purchase schemes becomes imperative. These considerations 

will be integrated into our future research. 
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Appendix A.  

Table A1 

IEM equipment parameters. 

Device Minimum power (kW) Maximum power (kW，m3) Capacity (kWh) 

CHP 100 6000 / 

EB 100 5000 / 

AC 0 2000 / 

EC 0 2000 / 

ESS 0 1000 5000 

HSS 0 1000 5000 

Table A2 

The ratio of IEM optimal energy supply powers. 

Time/h Electricity Heat Cold Time/h Electricity Heat Cold 

1 0.50 0.37 0.13 13 0.56 0.25 0.20 

2 0.46 0.41 0.13 14 0.56 0.25 0.19 

3 0.43 0.44 0.13 15 0.56 0.26 0.18 

4 0.42 0.43 0.14 16 0.55 0.29 0.16 

5 0.34 0.50 0.16 17 0.52 0.32 0.16 

6 0.41 0.43 0.16 18 0.53 0.33 0.14 

7 0.43 0.42 0.15 19 0.54 0.32 0.14 

8 0.48 0.41 0.10 20 0.53 0.34 0.13 

9 0.42 0.43 0.15 21 0.49 0.39 0.12 

10 0.46 0.38 0.16 22 0.56 0.34 0.10 

11 0.47 0.35 0.17 23 0.47 0.40 0.13 

12 0.52 0.29 0.19 24 0.56 0.25 0.20 

Appendix B.  



   

Fig. B1. Typical scenarios of spot electricity price on a certain day in Scenario I. 

 

Fig. B2. Typical scenarios of spot gas price on a certain day in Scenario I. 

 

Fig. B3. Typical scenarios of spot electricity price on a certain day in Scenario II. 

  



Fig. B4. Typical scenarios of spot gas price on a certain day in Scenario II. 

  

(a) Energy consumption composition of the electric load. 

  

(b) Energy consumption composition of the thermal load. 

  

(c) Energy consumption composition of the cooling load. 

Fig. B5. The energy consumption composition of loads on a certain day. 
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