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Mackey functors over fusion systems

Marco Praderio Bova

Abstract

In this thesis we study the properties of Mackey functors over fusion systems as opposed
to Mackey functors over groups. Given a fusion system F we start by defining the
Mackey algebra of 7. We then use it in order to provide definitions for Mackey functors
over F and F-centric Mackey functors (also known as F°-restricted Mackey functors)
which coincide with those in the literature. We go on to proving that several results
such as Higman's criterion and the Green correspondence can be translated from Mackey
functors over groups to F-centric Mackey functors. We also show that the methods used
to perform this translation cannot be used to prove similar results for Mackey functors

over fusion systems in general.

In the second part of this thesis we focus our efforts on the sharpness conjecture for
fusion systems. We do so by using spectral sequences in order to provide sufficient
conditions (in terms of fusion subsystems of F) for the conjecture to be satisfied for
F. We then use the developed tools in order to prove that the sharpness conjecture is
satisfied for all Benson-Solomon fusion systems thus completing previous work of Henke,

Libman and Lynd.
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Chapter 1

Introduction

This PhD thesis explores the properties that Mackey functors preserve when translated

from the context of finite groups to the context of fusion systems.

The main results of the research conducted during the duration of the author's PhD are
contained in the two articles that form Chapters 2 and 3. Chapter 4 briefly summarizes
the results obtained during these articles and outlines a research project that could
be pursued building on such results. Finally the present chapter serves to outline the
mathematical context surrounding this thesis (see Section 1.1) and introduce the results

obtained in Chapters 2 and 3 (see Section 1.2).

1.1 Fusion systems and Mackey functors

Fusion systems were introduced by Puig in [Pu06] as a common framework between
fusion of p-subgroups in finite groups and p-blocks of finite groups. The most recurrent

example of (saturated) fusion system is the following.

Example 1.1.1. Let p be a prime, let G be a finite group and let S € Syl, (G). The
(saturated) fusion system F = Fgs (G) over S is the category with:

objects all the subgroups of S,

morphisms between any two subgroups P, Q) < S defined by

Homz (P,Q) :={c, : z € Gs.t. “P:=zPz" <Q}

2



where ¢, (y) := %y := xyz~! for every y € P, and

composition rule given by the standard composition of group morphisms. That is

CyCy = Cyz.

A precise definition of fusion system is provided in Sections 2.2.1 and 3.2.1 and the
interested reader is referred to [Li07] for introductory notes on them. For the purpose
of this chapter it suffices to say that any fusion system over a finite p-group S is a
category F with objects the subgroups of S and morphisms injective group morphisms.
Additionally F must contain Fg(S) as a subcategory and its morphisms must satisfy

two saturation axioms (see Definitions 2.2.6 and 3.2.6 for details).

Since their appearance fusion systems have received much interest in both algebra
and topology (see [AKO11; Cr11]). Of particular relevance to this thesis is the work
conducted by Broto, Levi and Oliver in [BLOO03] where centric linking systems where
introduced. These categories lead to topological spaces that “behave like” the “classifying
space’ of the underlying fusion system and it was proven by Chermak in [Ch13] that
every fusion system has a unique associated centric linking system. These results are at

the base of the homotopy theory for fusion systems.

Mackey functors are algebraic structures possessing operations which “behave like”
the induction, restriction and conjugation mappings in group representation theory.
These same operations seem to appear in a variety of different contexts such as group
cohomology, algebraic K-theory of group rings and algebraic number theory amongst
others. As a result the theory of Mackey functors can be applied to multiple branches

of mathematics.

There are multiple equivalent methods for defining Mackey functors but the ones most
relevant to this thesis are due to Dress (see [Dr71]) and to Thénevaz and Webb (see
[TWO95]). The former allows us to view Mackey functors as a pair of a covariant and
a contravariant functors while the latter describes them as modules over a certain ring
called the Mackey algebra. We provide precise definitions of Mackey functors in Sections
2.2.2 and 3.2.2 and refer the interested reader to [We00] for an introductory guide to
Mackey functors. Such definitions however fall outside of the scope of this chapter. We

instead provide here a list of examples of Mackey functors to aid in building an intuition.



Example 1.1.2.

e The contravariant functor B (—) sending every finite group to its Burnside ring

(seen as a Z-module) is the contravariant part of a Mackey functor.

e For every integer n > 0 and every commutative ring R the contravariant functor
H" (—,R) sending every finite group to its n'" cohomology group with coefficients

in R is the contravariant part of a Mackey functor.

e With notation as before the covariant functor H,, (—, R) sending every finite group
to its nt" homology group with coefficients in R is the covariant part of a Mackey

functor.

We know from Example 1.1.1 that fusion systems can convey the p-local structure of a
finite group while, from Example 1.1.2, we know that Mackey functors can be used in
order to study finite groups. With this in mind it is natural to ponder if Mackey functors
can be used in order to study the p-local structure of a finite group by relating them with
fusion systems. This thesis is born from this idea and explores some of the differences
between Mackey functors over groups and Mackey functors over fusion systems (see
Chapter 2) and makes some progress towards solving an open problem concerning the

latter (see Chapter 3).

1.2 The articles

The core of this thesis resides in the two articles that form Chapters 2 and 3. In this
subsection we briefly describe their content, with special emphasis on the results they

prove.

1.2.1 Overview of “Green correspondence on centric Mackey

functors over fusion systems’

Let p be a prime, let G be a finite group of order divisible by p, let P be a p
subgroup of G and let R be a p-local ring. In [Gr64, Theorem 2] Green proves that



there exists a one to one correspondence (later named Green correspondence) between
finitely generated indecomposable RG-modules with vertex P and finitely generated
indecomposable R Ng (P)-modules with vertex P. Here N (P) denotes the normalizer
of P in G. In [Gr71] Green is able to translate this result to Green functors, in [Sa82]
Sasaki proves that a similar result applies to Mackey functors over groups and in [AK94]
Auslander and Kleiner prove what, to our best knowledge, is the most general version of

the Green correspondence.

Let F be a fusion system. In Chapter 2 we define Mackey functors over F and F-centric
Mackey functors (also known as F“-restricted Mackey functors). These definitions are
in fact equivalent to those given in [DP15]. We then explore the differences between
Mackey functors over fusion systems and Mackey functors over groups by translating the

methods used in [Sa82] to fusion systems in order to obtain the following.

Theorem (Green correspondence). Let R be a complete local and p-local (see Definition
2.2.40) PID , let P be a fully F-normalized object in F, let M € Mackg (F¢) (see
Definition 2.2.29) be indecomposable with vertex P (see Definition 2.3.7 and Notation
2.4.9) and let N € Mack], (N7 (P)) (see Example 2.2.8) be indecomposable with vertex
P. There exist unique (up to isomorphism) decompositions of M iﬁf( py and N Tﬁf( P)
(see Definition 2.2.28) into direct sums of indecomposable Mackey functors. Moreover,

writing these decompositions as

F Fooo_
M % p) = DM, N 1) = DN
i=0 =0

there exist unique i € {0,...,n} and j € {0,...,m} such that both M; and N; have
vertex P. We call these summands the Green correspondents of M and N and denote
them as My,.py and N7 respectively. Every indecomposable summand of M \Lﬁ]—'(P)
other than My, (py has vertex in ) (see Notation 2.4.9) while every indecomposable
summand of N 13 _ py other than N7 has vertex JF-isomorphic to an element in X (see
Notation 2.4.9). Finally, using the above notation for Green correspondents, we have

the isomorphisms (My,.)” = M and (N7) Ny SN

Since we necessarily have P € F¢ (see Definition 2.2.11), it follows from [Br05, Section

4] that the fusion system Nz (P) is in fact realizable (i.e. there exists a finite group G



such that Ng (P) € Syl, (G) and Nx (P) = Fng(p) (G)). Therefore, given any centric
indecomposable Mackey functor over F, the above theorem provides us with a unique

Mackey functor over a realizable fusion system which, moreover, characterizes it.

Since the induction (14,) and restriction (]%,,) functors form an adjoint pair (see Remark
2.2.35) the above theorem is in fact a particular case of [AK94, Theorem 1.10] although
the methods used for proving it differ and we believe they could be of some use on their
own. Due to the, previously explained, relative simplicity of the fusion system Nz (P)
respect to the fusion system F we believe Theorem 2.4.27 to be of particular interest
since it allows to decompose products in O (F¢)_ (see Definition 2.2.12) in terms of

products in O ((Nx)),,.

1.2.2 Overview of “Sharpness for the Benson-Solomon fusion

systems’

Due to the work of Broto, Levi and Oliver (see [BLO03]) and of Chermak (see [Ch13])
we know that for every fusion system F there exists a unique (up to mod p homology
isomorphism) topological space BF that “acts like” the classifying space of F. That is

BF is a topological space satisfying

BF ~hocolimprey (B (—)) and ol%gl) (H" (—,F,)) = H" (BF,F,)

where O (F°) is as in Definition 3.2.12. These results mimic the homotopy equivalence

and isomorphism (see [Dw98]) that, for any finite group G, are given by

BG ~hocolimog() (B (—)) modp and oh?(l;) (H"(—,F,)) =~ H" (G,F,).
Motivated by the above parallelism, the identities limg;(G) (H™(—,F,)) = 0 for every
n > 1, similar vanishings of higher limits (see [JM92]) and the fact that the cohomology
functor is the contravariant part of a Mackey functor (see Example 1.1.2), Diaz and Park

formulate in [DP15] the following

Conjecture (sharpness for fusion system). Let p be a prime, let S be a finite p-group,

let F be a fusion system over S and let M = (M., M*) be a Mackey functor over F



on I, (see Definition 2.2.26). Then limg £ <M* ¢8§§))> =0 for every n > 1.

This conjecture has seen a lot of recent activity (see [GL23; GM22; HLL23; Pr23; Ya22])

and, following this trend, we prove the following

Theorem. Let F be a fusion system over S, let I be a finite set, let F = {F;},_, be a

iel
collection of fusion subsystems of F and for each i € I let S; < S be the finite p-group
such that F; is a fusion system over S;. If the following 4 conditions are satisfied then

the sharpness conjecture is satistied for F:

(1) OF (see Definition 3.4.2) is an epimorphism.

(2) Foreveryi € I all F;-centric-radical subgroups of S; are F-centric (see Definitions

3.2.11 (1) and (3)).
(3) For every with i € I the sharpness conjecture is satisfied for F;.

(4) The family F satisfies the lifting property (see Definition 3.4.3).

Despite the seemingly large number of conditions needed to apply the above we prove

in Section 3.4 that Conditions (1)-(3) are satisfied in numerous situations.

By studying the case where I = {1,2} we prove that if both F; and F, are fusion
systems over S and they generate F then Condition 4 of the above is satisfied (see
Theorem 3.C). Using this fact we are able to complete the work started in [HLL23,

Theorems 1.1 and 1.4] by proving the following

Theorem. The sharpness conjecture is satisfied for all Benson-Solomon fusion systems

(see [LOO5, Definition 1.6]).

Since the Benson-Solomon fusion systems are the only known family of exotic fusions
systems over 2 groups (see [AKO11, Section I11.7]) then the above result together with
[DP15, Theorem B] prove that sharpness is satisfied for all known fusion systems over

2-groups.
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Chapter 2

Green correspondence on centric
Mackey functors over fusion

systems

Abstract

In this paper we give a definition of (centric) Mackey functor over a fusion system
(Definitions 2.2.26 and 2.2.29) which generalizes the notion of Mackey functor over
a group. In this context we prove that, given some conditions on a related ring, the
centric Burnside ring over a fusion system (as defined in [DL09]) acts on any centric
Mackey functor (Proposition 2.2.43). We also prove that the Green correspondence
holds for centric Mackey functors over fusion systems (Theorem 2.4.38). As a means to
prove this we introduce a notion of relative projectivity for centric Mackey functors over
fusion systems (Definition 2.3.1) and provide a decomposition of a particular product in

O (F¢),, (Definition 2.2.12) in terms of the product in O ((N£)),, (Theorem 2.4.27).

10



2.1 Introduction

A Mackey functor is an algebraic structure possessing operations which behave like the
induction, restriction and conjugation maps in group representation theory. The concept
of Mackey functor has been generalized to algebraic structures other than groups (see
for example [We93]). We are particularly interested on their generalization to fusion

systems.

Fusion systems, as defined by Puig in [Pu06] (where he calls them Frobenius Categories),
are categories intended to convey the p-local structure of a finite group G. Not all fusion
systems can however be derived from finite groups. This gives them an interest of their

own.

When generalizing to fusion systems, Mackey functors inevitably lose some properties.

One of these is the existence of a Green correspondence.

The Green correspondence first appeared in [Gr64] under the following form.

Theorem. ([Gr64, Theorem 2]) Let p be a prime, let R be a complete local PID with
residue field of characteristic p, let G be a finite group and let P be a p-subgroup of
G. There exists a one to one correspondence between finitely generated indecomposable

RG-modules with vertex P and finitely generated R N¢ (P)-modules with vertex P.

This result was later generalized in [Gr71] and [Sa82] to Green functors and Mackey

functors over groups respectively.

In this paper we prove that a Green correspondence like result can be found for centric
Mackey functors over a fusion system (see Definition 2.2.29 and Theorem 2.4.38)
although the same methods fail to provide such result for Mackey functors over fusion
systems in general. This result can be used in order to study centric Mackey functors
over a fusion system F in terms of Mackey functors over fusion systems of the form
Nz (P) (see Example 2.2.8) with P € F* (see Definition 2.2.11) and fully F-normalized
(see Definition 2.2.4). It is known (see [Br05, Section 4]) that fusion systems of this
form derive from finite groups. This makes them easier to work with than other fusion
systems and, therefore, motivates the interest in proving that the Green correspondence

holds for centric Mackey functors over fusion systems.

The paper is organized as follows.

11



In Section 2.2 we briefly recall the definitions of (saturated) fusion system (Definitions
2.2.1 and 2.2.6), of (centric) Mackey functor over a fusion system (Definitions 2.2.26
and 2.2.29) and of centric Burnside ring of a fusion system (Definition 2.2.38). In this
section we also recall some well known properties regarding these concepts and prove 3
further results. The first one (Proposition 2.2.33) describes a decomposition of certain
induced Mackey functors (see Definition 2.2.28). The second result (Lemma 2.2.36)
allows us to rewrite the composition of certain induction and restriction functors (see
Definition 2.2.28). The third one (Proposition 2.2.43) describes, under certain conditions
concerning a related ring, an action of the centric Burnside ring over a fusion system on

any centric Mackey functor over that fusion system.

In Section 2.3 we introduce the concept of relative projectivity of a Mackey functor
over a fusion system (Definition 2.3.1) and prove that Higman's criterion holds for
Mackey functors over fusion systems (Theorem 2.3.17). To do this we define the
trace and restriction maps (Definition 2.3.8) and list some of the properties they satisfy

(Proposition 2.3.9). These properties are needed in Subsections 2.4.3 and 2.4.4.

We conclude with Section 2.4 where we prove our two main results (Theorems 2.4.27
and 2.4.38). In Subsection 2.4.1 we state and prove Proposition 2.4.7 which generalizes
[Gr71, Proposition 4.34] (see Example 2.4.8) and is key too proving that the Green
correspondence holds for centric Mackey functors over fusion systems. Subsections
2.4.2-2.4.5 are dedicated to developing the tools necessary to prove that Proposition
2.4.7 can be applied in the context of centric Mackey functors over fusion systems.
More precisely, during these subsections, we study different compositions of the induction
and restriction functors (see Definition 2.2.28) and of trace and restriction maps (see
Definition 2.3.8) and prove Theorem 2.4.27 which allows us to write certain products
in O (F¢),, (Definition 2.2.12) in terms of products in O (Nx (P)),, for some fully F-
normalized (see Definition 2.2.4), F-centric (see Definition 2.2.11) group P. Finally,
we conclude in Subsection 2.4.6 where we use the developed tools in order to apply
Proposition 2.4.7 in the context of centric Mackey functors over fusion systems and
deduce from it Theorem 2.4.38 which shows that the Green correspondence holds in the

context of centric Mackey functors over fusion systems.

We conclude this introduction with a brief summary of some common notation that we

use throughout the paper

12



Notation 2.1.1.

e Given a unital ring R we denote by 15 its multiplicative identity element.
e Given a group G we denote by 1 the neutral element of G.

e Given groups G, H such that H < G we denote by 1§ (or simply by ¢ if H and G

are clear) the natural inclusion map from H to G.
e All modules over rings are understood to be left modules unless otherwise specified.

e Given rings R and S such that R C S and modules M and N over R and
S respectively we write M =z N to denote that M and N are equivalent as

R-modules.

e Given finite groups H and K and an (H, K)-biset X (e.g. we can take X := G
for some group G satisfying H, K < ) we denote by [H\X/K] any choice of

representatives of (H, K)-orbits of X.

e Let D C C be categories, unless otherwise specified, we write X € C to denote

that X is an object of C and X € C\D to denote that X € C and X ¢ D.

e Given a fusion system F, objects A, B € F and a morphism ¢ € Homz (A, B),
we denote by ¥ € Homp () (A4, B) the morphism in O (F) with representative ¢
(see Definition 2.2.10).

e Given a category C, objects X,Y,Z € C and a morphism ¢ € Hom¢ (X,Y) we

denote by ¢, and ©* the following induced maps between hom sets

Oy 1= Homc (Z7 —) (QD) :Homc (Z7 X) — Homc (Z7 Y)7
H

¥ ey
0" == Home (—, Z) (p) :Home (Y, Z) — Home (X, Z).
0 - 0

Acknowledgement. The author would like to thank his PhD supervisor Nadia Mazza for
her guidance on his research and the seemingly limitless amount of resources she is able
to provide. He would also like to thank Lancaster University for the funding provided

to conduct his PhD and the reviewers for their big help on improving the quality of the

paper.

13



2.2 Background and first results

In this section we review the concepts of fusion systems, of Mackey functors over a fusion
system and of centric Burnside ring of a fusion system. The main results shown in this

section are:

e Proposition 2.2.18: which provides us with ways of rewriting the sets [P x Q] (see

Definition 2.2.17). These are very useful for future calculations.

e Propositions 2.2.24 and 2.2.33 and Lemma 2.2.36: which translate [TW95,
Propositions 3.2 and 5.3] to the context of Mackey functors over fusion systems
thus providing us with some insight concerning the Mackey algebra (see Definition

2.2.20) and the induction and restriction functors (see Definition 2.2.28).

e Proposition 2.2.43: which translates [TW95, Proposition 9.2] to the context of
centric Mackey functors over fusion systems by first describing an action of the
centric Burnside ring of a fusion system (see Definition 2.2.38) on any centric
Mackey functor over a fusion system and then rewriting it in terms of the

morphisms 07 and 0p (see Definition 2.2.37).

The reader already familiar with fusion systems, Mackey functors over fusion systems
and centric Burnside ring of a fusion system may safely skip this section keeping in mind

the results mentioned above.

2.2.1 Fusion systems

What follows is a brief introduction to fusion systems which mostly aims to establish some
notation. For a more thorough introduction please refer to [Li07]. In this subsection we
also report the main results of [Pu06, Section 4] which, given a saturated fusion system
F, prove constructively the existence of products and pullbacks in the category O (F°) |
(see Definition 2.2.12 and Propositions 2.2.15 and 2.2.16). We conclude this subsection

with Proposition 2.2.18 which allows us to write products in O (F¢), in terms of other

[

products in the same category.

14



Definition 2.2.1. Let p be a prime and let S be a finite p-group. A fusion system
over S is a category F having as objects subgroups of S and satisfying the following

properties for every P,(Q < S:

(1) Every morphism ¢ € Homg (P, Q) is an injective group homomorphism and the
composition of morphisms in F is the same as the composition of morphisms in

the category of groups.

(2) Homg (P, Q) € Homg (P, Q). That is, every group homomorphism from P to Q
that can be described as conjugation by an element of S followed by inclusion is

a morphism in F.

(3) For every ¢ € Homg (P, Q) let ¢ : P — ¢ (P) be the isomorphism obtained by

looking at ¢ as an isomorphism onto its image. Both ¢ and ¢! are isomorphisms

in F.

Example 2.2.2. The most common example of fusion system is obtained by taking a
finite group G containing a p-group S and defining Fg (G) as the fusion system over
S whose morphisms are given by conjugation with elements of G followed by inclusion.
When S = G we often write Fg instead of Fg(S) although the latter is the more

common notation in the literature.

Definition 2.2.1 and Example 2.2.2 motivate the introduction of the following notation.

Notation 2.2.3. From now on, unless otherwise specified, all introduced groups are
understood to be finite, p denotes a prime integer, S denotes a finite p-group
and F denotes a fusion system over S. Moreover, given subgroups P,Q < S we
write P =7 Q if P and () are isomorphic in F, P <r Q if there exists J < () such that
P =7 Jandeither P<rQor P<rQif P<r(Q but P+#75Q.

When the term fusion system appears in the literature it is usually in reference to a
particular type of fusion system called saturated fusion system. These are fusion systems

that are built to generalize Example 2.2.2 in the case where S is a Sylow p-subgroup of

G.

Definition 2.2.4. Let P < S. We say that P is fully F-normalized if for every
Q) < S such that Q =z P we have that |[Ng (Q)| < |Ng (P)].
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Definition 2.2.5. Let P, < S and let p: P — @ be a morphism in F. We define

the ¢-normalizer as the following subgroup of Ng (P)
N, :={x € Ng(P) : 3z € Ng (¢ (P)) such that ¢ (“y) =" (y) Vy € P}.

Definition 2.2.6. A fusion system F is said to be saturated if the following 2
conditions are satisfied:
(1) Autg (S) is a Sylow p-subgroup of Autz (S).

(2) Forevery P < S andevery ¢ € Homz (P, S) such that ¢ (P) is fully F-normalized

there exists ¢ € Homyr (N, S) such that @ﬁ*’ = .

Example 2.2.7. The fusion system Fg (G) of Example 2.2.2 is saturated if S is a Sylow
p subgroup of G.

Example 2.2.8. Given a saturated fusion system F and a fully F-normalized subgroup
P < S, we define the saturated fusion system Nz (P) over Ng (P) by setting for every
A,B < Ng(P)

Hompy,(p) (4, B) := {¢ € Homz (A, B) |3 € Homz (AP, BP) st. 1j o = ¢4}

Definition 2.2.6 motivates the introduction of the following notation.

Notation 2.2.9. From now on, unless otherwise specified, all introduced fusion
systems are understood to be saturated. In particular F denotes a saturated

fusion system over a finite p-group S.

When dealing with Mackey functors over fusion systems (as we do throughout this
paper) it is convenient not to work with the fusion system directly but rather with its

orbit category.

Definition 2.2.10. We define the orbit category of a fusion system F as the

category O (F) having as objects the same objects as F and as morphisms

Hom(’)(]-') (P> Q) = Ath (Q) \HOIH]: (P7 Q) )

for every P, < S. Here Autg (Q) is acting on Homz (P, ) by composing on the left.
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An important subcategory of O (F) which we often work with is the centric subcategory.

Definition 2.2.11. Let P < S. We say that P is F-centric if Cs (Q) < @ for every
() < S such that Q =z P. The centric subcategory of F (denoted by F¢) is defined
as the full subcategory of F having as objects F-centric subgroups of S. Likewise, the
centric subcategory of O (F°) (denoted by O (F¢)) is the full subcategory of O (F)

having as objects the F-centric subgroups of S.

We are in fact particularly interested in the additive extension of O (F°).

Definition 2.2.12. (see [JM92, Section 4]) Let F be a fusion system. We denote
by O (F¢), the additive extension of O (F¢). That is O (F°), is the category
having as objects formal finite (possibly empty) coproducts of the form | |, P;, where

each P is an object in O (F¢), and as morphisms f : | [_, P — [ [, Q; tuples of

.....

,,,,,

i=1

We often abuse notation and consider objects in O (F¢) as objects in O (F¢), via the

natural inclusion of categories O (F¢) — O (F°),.

Remark 2.2.13. The additive extension can in fact be defined for any small category C.
In this situation we can define the additive extension C_0of C can be defined as the full
subcategory of the category of diagrams Set®” having as objects the constant functor to
the empty set and finite coproducts of contravariant functors of the form Hom¢ (—, X)
with X an object in C. Yoneda's Lemma assures us that the category obtained in this

way is equivalent to the one described in Definition 2.2.12 in the case C = O (F°).

Remark 2.2.14. Despite what the name might suggest the additive extension of a
category is not necessarily an additive category but rather a category in which all finite

coproducts exist.
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In [Pu06] Puig proves constructively that the category O (F°) , admits both products

and pullbacks. We report these results below.

Proposition 2.2.15 ([Pu06, Proposition 4.8]). The category O (F°) , admits pullbacks
which are distributive with respect to its coproducts. Moreover, given P,Q, J € F* such

ot L‘]
that P, < .J the pullback of the diagram P 5 J << Q is given by

Px;0Q:= |_| P*NQ, W}I;XJQ |_| ICy, WgXJQ |_| 7.

z€[P\J/Q)] z€[P\J/Q)] z€[P\J/Q)]
P*NQEF® P*NQEF® P*NQEF®

Proposition 2.2.16 ([Pu06, Proposition 4.7]). The category O (F°),, admits products

which are distributive with respect to its coproducts.

In [Pu06], Puig explicitly describes the product of Proposition 2.2.16. Since products
are distributive with respect to coproducts, in order to define the products in O (F°)

it suffices to describe the product of any two objects P, Q) € O (F°).
This product, denoted by P x = @), can be built as follows:
First take all pairs (A,%) with A € O (F°) satisfying A < P and § € Homor<) (4, Q).

Then define the preorder Xp on the set of all such pairs by setting (A, %) Zp (B,¢) if

and only if there exists x € P such that A* < B and ¢, = waAz.

Then take all pairs that are maximal under such preorder and define among them the

equivalence relation

def

(A,2) ~ (B,¢) <= (A.D) Zp (B.¥) and (B,¢) Zp (A,9) (2.1)

Finally fix any set [P Xz Q] containing exactly one representative for each equivalence

class of maximal elements under this relation and define

PxrQ:= |_| A, WJISX;Q = |_| E, PXFQ |_| D, (2.2)
o

(A9) (A?)

where the tuples (A,%) run over the set [P xr Q] and 75°7% : P x7 Q — P and
To bx7@ . P x7Q — Q denote the natural projections associated to the product. The

definition of the equivalence ~ ensures us that any choice of the set [P x = Q] leads to
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isomorphic constructions of P x r (). Whenever the fusion system F is clear we simply

write P x @) and [P x Q).

In order to reference the previous construction, it is worth introducing the following.

Definition 2.2.17. For every P,(Q € F¢ we denote by [P xx Q] (or simply [P x Q]
if F is clear) any choice of the set of representatives built as above. In other words
[P xr Q)] is any set of tuples (A, ) such that A € F¢, $ € Homp(re) (A, Q) and
Equation (2.2) is satisfied.

We conclude this subsection with a series of identities that allow us to write P x @ in

terms of other products in O (F°),,.

Proposition 2.2.18. For every P,() € F°¢

(1) We can take

Q= Pl={(¢(4),167) : (AP € [PxQl}.

Where we are viewing the representative p of B as an isomorphism onto its image.

(2) If F = Fs we can take
Pxr Q= [| {(@nPw)}.

z€[Q\S/ P]
Q*NPEFg

(3) For every isomorphism 1: Q) — 1 (Q)) we can take
[P x4 (Q)] ={(Avp) : (A,9) € [PxQl}.

(4) For every isomorphism 1): P — 1 (P) we can take
W (P)x Q= {(v().p07) : (A7) € [PxQ)}.

Where we are viewing 1) as an isomorphism between the appropriate restrictions.

(5) For every J € F¢ such that J < () we can take

PxJ= ] Ll {0 ne(4). )}

(Ap)e[PxQ] z€[\Q/p(A)]
J*Np(A)eFe
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Where we are fixing a representative ¢ of © and viewing it as an isomorphism

between the appropriate restrictions.

(6) For every J € F¢ such that J < P we can take

JxQl= || L] (A nJge)}.

(A)E[PxQ) 2€[A\P/J]
A*NJeFc©

(7) For every J € F¢ we can take

L] Ll {Bw)= [ L] {(>"ncan}.
(AP)e[PxQ] (B e[JxA] C.0)elIx P)2€E[D\J/C]
(%) (( 72 xqQ) PTNOER

Proof.

(1) With the notation of Item (1) we have that ¢ (4) < @ and, since A < P, we can

conclude that o~ € Hompr) (¢ (A) , P). We can now define

f= |_| o1 |_| ¢0(A) > PxQ:= |_| A.

(Ap)e[PxQ] (Ap)e[PxQ] (AP)E[PXQ]

With this setup we have that

= ] A= L w?

(AP)e[PxQ)] (AP)e[PxQ)]

and
PxQ p —r Q
o r= 4 er= U dw
(A@)E[PxQ] (AP)e[PxQ]
Since ) x P = P x @) and f is an isomorphism then the above identities prove

Item (1).

(2) All morphisms in Fg are, by definition, of the form ¢, for some x € S. Thus,
for any element (A,p) € [P Xz, @], there exists z € S such that “A < @
and P = i¢,. In particular we have that A < *. Since, by construction,
A < P we can conclude that A < Q* N P. Therefore we can take (9 QP ¢

Homo(]_.g) (A, Q" N P) and, viewing ¢, as an isomorphism from Q*NP to QN*P,
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we have that ¥ = Lgmzpc:,c 2P From maximality of the pair (A, %) we can

conclude that A = Q* N P. In other words, all elements in [P x x, Q] are of the
form (Q* N P,ic;) for some x € S. Notice now that, for every y € @), we have
QY NP = Q"N P and ic,, = ic,. Moreover, we know that [P X z, ()] contains
exactly one representative for each of the equivalence classes given by the relation
of Equation (2.1). It is therefore possible to choose [P Xz, @] and [Q\S/P] so

that

Pxr Q= |J {@%nPw)}. (2.3)
GpeR

For some appropriate z, € P. Assume now that there exist z,y € S and z € P
such that Q* N P = QY* N P € F§ and that 7¢c, = 7c,,. From this last identity
we can deduce that there exist u € @ and v € Cs (Q* N P) such that = = uyzv.
Since Q* N P € F§ then we have that Cs (Q* N P) < Q° N P and, in particular,
v € P. We can therefore conclude that y € QxP and, therefore, that the union
in Equation (2.3) is disjoint. Item (2) then follows by taking an appropriate choice

of the representatives [Q\S/P] (i.e. taking zz, instead of x).

Let C be a category, let X,Y,Z € C be objects and let a: Y — Z be an
isomorphism in C. We know from category theory that, if the product X x Y

exists in C, then the product X x Z also exists in C and satisfies

b

_ XxZ __ XxXY XxZ _ _XXY
XX Z=XXY, T, 7 = amy Ty =Ty .

where 74*5 denote the natural projections. With the notation of Item (3) we

have that ¢ € Homoz¢) (K, % (K)) is an isomorphism in O (F¢), and for every
(A, %) € [P x Q] we have that A < P and that 1 € Homor) (4,1 (Q)). We
can therefore apply the previous result taking C := O (F¢),, X := P, Y := (Q,
7 =1 (Q) and a = 1) thus proving Item (3).

The same arguments used to prove Item (3) can be used to prove Item (4).

Let C be a category admitting products and pullbacks, let X, Y, Z € C be objects,
let «: Z — Y be a morphism in C and let (X X Y) Xy Z be the pullback of the
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XxXY

diagram X x Y T Y <2 Z. We know from category theory that
(X xY)xy Z=XxZ, %= W(ZXXY)XYZ, mxf = Wigxng(xxxyy)xyz.

Where 74*F and 74 °? denote the natural projections. With the notation of Item
(5) we have that for every (A4,%) € [P x Q] and every = € [J\Q/¢ (A)] then
e (J"Ne(A) < A< Pand 7c,p € Hompr) (¢ (J* N (A)),J). Using
Proposition 2.2.15 we can now apply the previous result taking Y := Q, X := P,

Z:=Jand a:= E thus proving Item (5).
The same arguments used to prove Item (5) can be used to prove Item (6).

Let C be a category admitting products and pullbacks, let X, Y, Z € C be objects

WYXX 7rY><Z
and let (X x Y) xy (Y x Z) be the pullback of the diagram ¥ x X *— Y &—
Y x Z. We know from category theory that

Y xX)xy (Y xZ) =Y x (X x Z), mxXgll )xJrolid) _ pVxdx=2)

Y

YxX _(YxX)xy(YXZ) XxZ YX(XxZ)
Tx  Tyxx =Tx Txxz .

Where 74*Z and 747¢? denote the natural projections. For every (A,7) €
[P x Q), every (B, ) € [J x A], every (C,0) € [J x PJ, every (D,7) € [J x Q)]
and every z € [D\J/C] we have that B, D*NC < J, that 1 € Homopre) (B, P)
and that . € Homorey (D* N C, P). Using Propositions 2.2.15 and 2.2.16 we
can now apply the previous result taking C := O (F¢),, X := P, Z :== @ and
Y := J thus proving Item (7).

2.2.2 Mackey functors over fusion systems

In this subsection we define (centric) Mackey functor over a fusion system (Definitions

2.2.26 and 2.2.29) and the (centric) induction, restriction and conjugation functors

(Definition 2.2.28 and Proposition 2.2.30). Moreover we provide some tools for studying

certain induced Mackey functors (Proposition 2.2.33) and certain compositions of the

induction and restriction functors (Lemma 2.2.36).
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Through this subsection we will be using Notations 2.1.1, 2.2.3 and 2.2.9.

Let us start by defining the Mackey algebra of a fusion system. In order to do that we

use methods similar to those used in [Bol5; HTW10].

Definition 2.2.19. Throughout this definition we denote with an overline X the
isomorphism class of a biset X. Let P, () be subgroups of S such that P < () and denote
by ,Qq and ,Qp the group @ seen as a (P, Q)-biset and a (Q, P)-biset respectively.
We define the restriction from ) to P and the induction from P to @ as the

following isomorphism class of (P, Q))-bisets and (Q, P)-bisets respectively
RjQ; = PQQ7 Ig = QQP'

On the other hand, given an isomorphism ¢: P — ¢ (P), we can view P asa (¢ (P), P)-
biset by setting for every x,y € P and every z € ¢ (P) the actions z-z = ¢! (z) z and
z-y = xy. Let ,pPp be the group P viewed as a ( (P) , P)-biset biset in this manner.
We define the conjugation by ¢ as the isomorphism class of (¢ (P), P)-bisets given
by

C%p = gO(P)PP'
If the group P is clear we simply write c,, instead of ¢, p.
We want the Mackey algebra to be an algebra over a commutative ring R that is
generated by elements of the form Rg, Ig and ¢, with P < () < S and ¢ an isomorphism

in F. To do this we will follow ideas similar to those used by Bouc in [Bol0; Bol5;
HTW10].

Define C' to be the category whose objects are subgroups of S and whose morphism

sets are defined inductively via the following rules:

e For every P < () < S and every isomorphism ¢ : P — ¢ (P) in F then

R% € Home (Q,P), 1% € Homg (P,Q), c¢,p € Home (P, (P)).

e With notation as in Definition 2.2.19, for every P,Q < S and every (Q, P)-bisets
X and X' if X, X’ € Home (P, Q) then X U X’ € Home (P, Q). That is the
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isomorphism class of the disjoint union of X and X' is also a morphism from P

to @ in C.

e With notation as in Definition 2.2.19, for every P, J.Q) < S, every (J, P)-biset X
such that X € Home (P, J) and every (Q, J)-biset Y such that Y € Hom (J, Q)
then Y x; X € Homeg (P,Q). Here Y x; X is the (Q, P)-biset obtained as a

quotient of the (@, P)-biset Y x X modulo the equivalence relation

(y-j) xz~yx(j-z),
where z € X, y € Y and j € J.

We can now use the category C' in order to define the Mackey algebra.

Definition 2.2.20. Let R be a commutative ring with unit, let C be the category
defined above and, using the notation of Definition 2.2.19 define I as the two sided ideal
of the category algebra RC generated by elements of the form X 4+ X’ — X U X’ where
X and X' are (Q, P)-bisets (for some P, @ < S) such that X, X’ € Home (P, Q). The
Mackey algebra of F on R is the quotient algebra ug (F) := RC/I.

The previous definitions motivate the introduction of the following notation.

Notation 2.2.21. From now, unless otherwise specified, R denotes a commutative

ring with unit.
The following relations on the elements of the Mackey algebra are useful in what follows.

Lemma 2.2.22. The elements Ig, sz and c, of the Mackey algebra px (F) satisfy
relations analogous to the similarly denoted elements in the Mackey algebra of a group

(see [TW9I5, Section 3]). More precisely, the following are satistied:

(1) Let P be a subgroup of S, and let x € P. We have that I5 = RL = c., p.

Moreover I5 is an idempotent in pg (F).
(2) Let P,Q and J be subgroups of S such that P < Q < J and let p: P — ¢ (P)
and{: ¢ (P) — ¢ (¢ (P)) be isomorphisms in F. We have that
RER) = R}, IpIg = 1t Cyp(P)Cip,P = Cyp,P-
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(3) Let P and QQ be subgroups of S such that P < ) and let 0: ) — 0(Q) be an

isomorphism in F. We have that

Q) 0(Q)
CQVQIIC;') 1 ((P) CQ‘P P, CG\PJ‘_’R]% = RQEP)Can'

Where 0,p : P — 0 (P) is the restriction of 0 to P.

(4) Let P, and J be subgroups of S such that P, < J. We have that

Ré[}i = Z [QQTP Ccz (Q*NP) R(szp
z€[Q\J/P]

(5) All other combinations of induction restriction and conjugation are 0.

Proof. See [Bol0, Section 2.3]. Alternatively notice that the elements I, R% and ¢,
of the Mackey algebra are, by definition, isomorphism classes of the bisets Ind,, Res,
and £, of [HTW10, Definition 6.8]. With this in mind the above relations follow from
[HTW10, Proposition 6.9 and Theorem 5.3]. O

As an immediate consequence of Lemma 2.2.22 we have the following.

Corollary 2.2.23. Let P and () be subgroups of S, let x € Q) and let p: P —
¢ (P) be an isomorphism in F such that ¢ (P) < Q. Then I o(P)Cea = IQ(P)cw

¢
and c¢_1cm_1RzQ¢(P) = cw—le(P). In particular, given p € Homor) (P,Q) and

representatives 1, oo € @ then, seeing ©1 and o as isomorphisms onto their images,

we can define

I° —J9
P1

. _ 7@ Q L Q _ Q
27 = A p)Cor = L0, Cens TG () = Cori I (p) = €t R, ()

©
Moreover, given J < S and 9 € Homor) (@, J), we have that
J _ Q J
Iz e = Lo colar oo i) = o lm T R gy

Proof. We only prove the statement for the case involving induction. The proof for
the case involving restriction is analogous. The first part of the statement follows from

Lemma 2.2.22 (1)-(3) via the identities below

Q _ 7@ _ Q
L5 by Cenp = Loty pyCenCop = Cor .

QrQ _ 7@
oo = 1015y 0e = Lo(p e

The second part of the statement follows from Items (2) and (3) of Lemma 2.2.22 via

the identities below

[J

Q J Q
va(P) o = cyl [ el

J »(Q)
Lyl o(P)Ce = L) Colap e

ol Coroem Co = L) Co
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]

Another important consequence of Lemma 2.2.22 is the following result which translates

[TWO95, Proposition 3.2] to the context of Mackey functors over fusion systems.

Proposition 2.2.24. The Mackey algebra 11z (F) admits an R-basis of the form BB :=

|_|A,B§s Ba,p), where

Bup = || L {LoyesRe}

C<A  p€[Autp(B)\Homz(C,B)/ Aut 4 (C)]
up to A-conj

In particular, ur (F) is finitely generated as an ‘R-module.

Proof. From Items (1), (2) and (5) of Lemma 2.2.22 we know that 1, () = > p s Ip
and that the 75 are mutually orthogonal idempotents. With this in mind we can obtain

the following R-module decomposition of uz (F)

pr (F) = @ Iiux (F)I.

A,B<S

Fix now A, B < S. From the above it suffices to prove that B4 p) is an R-basis of
I{ur (F) IB. Using Lemma 2.2.22 we can write any element in [4 % (F) I5 as an R-
linear combination of elements of the form 17 . c, o RE with C' < Aand : C — ¢ (O)
an isomorphism in F satisfying ¢ (C') < B. For i = 1,2 let C; be a subgroup of A, let
i € Homz (Cy, ; (C;)) be an isomorphism in F such that ¢; (C;) < B, view A (Cy, ;)
as a subgroup of B x A and define the representative X; := (B x A) /A (C;, ¢;) of
]g(ci)c%Réi. We know (see [Bol0, Lemma 2.3.4 (1)]) that each X, is a transitive
biset. Therefore we can use [Bol0, Lemma 2.1.9 and Definition 2.3.1] in order to
deduce that 17 (o 00 RE, = 15 ¢,

b € B such that Cy = Cf and ps = cypr1¢,. We also know (see [BolO, Lemmas

Cou,co RE, i and only if there exist a € A and

2.1.9 and 2.2.2]) that any finite (A, B)-biset can be written in a unique way (up to
isomorphism) as a disjoint union of finite transitive (A, B)-bisets. Let now M4 p) be
the commutative monoid generated by isomorphism classes of (A, B)-bisets of the form

B
]sO(C
2.2.19). We can deduce from the above that B4 p) (viewed as a subset of M4 p)) is

)cwﬁcRé with addition given by X +Y = X LY (see the notation of Definition
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an N-basis of M4 p). Recall now that Iz (F) If is, by definition, the Grothendieck
group of M4 ). Thus, we can deduce that B 5) (viewed as a subset of 1417 (F) If)
is a Z-basis of 14z (F)I5. Since tensor product preserves direct sum decomposition
and R®zZ = R for any commutative ring R, then we can deduce that B4 p) (viewed as

a subset of I4ux (F) I5) is an R-basis of 141z (F) I5 thus concluding the proof. [

Corollary 2.2.25. Let P < S and let F' be a fusion system over P satisfying F' C F.
There exists a natural inclusion of Mackey algebras jr (F') C ur (F) and this inclusion

preserves unit if and only if P = S.

Proof. From Proposition 2.2.24 we know that ux (F’) is generated, as an R-module,
by elements of the form If(c)c@Ré such that A, B,C' < P and ¢ is an isomorphism in
F'. Since F' C F we know that any isomorphism in F’ is also an isomorphism in F and
since P < S we know that every subgroup of P is also a subgroup of S. Therefore, with
A, B,C and ¢ as before, we have that I/ c, R € pg (F). This gives us the natural
inclusion ug (F') C ugr (F). For this inclusion to preserve the unit we need to have

Lup(r) = ZQgS Ig = ZQ,SP Ig,/ = 1, () which happens if and only if P = S. O

We are now ready to define what a Mackey functor over a fusion system is.

Definition 2.2.26. A Mackey functor over F on R (or simply Mackey functor if
and R are clear) is a finitely generated left ur (F)-module. The category of Mackey
functors over F on R (denoted by Mackgx (F)) is the category ug (F)-mod.

Example 2.2.27. Any globally defined Mackey functor (see [We93, Section 1]) inherits
a structure of Mackey functor over any fusion system. Any conjugation invariant Mackey
functor over a finite group G with Sylow p subgroup S leads naturally to a Mackey functor
over Fg (G) (see [Bol5]). The Mackey algebra ur (F) is itself a Mackey functor over
F.

This definition of Mackey functor over a fusion system allows us to use some well known

results of ring theory in order to define the induction, restriction and conjugation functors.

Definition 2.2.28. Let P < S and let 7/ C F be a fusion system over P. From

Corollary 2.2.25 we have that pur (F') C pgr(F). This allows us to define the
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restriction from F to F’ functor as the functor |Z,: ur (F)-mod — ug (F')-mod,

that sends any g (F)-module M to the pgr (F')-module
M =5 (M) =1, (M.

Here 1.7 = > g<p 10 I8 denotes the identity of iz (F') seen as an element of i (F)

via the natural inclusion of Corollary 2.2.25.

Analogously, we can define the induction from F' to F functor as the functor
Mo pg (F')-mod — pg (F)-mod, that sends any pg (F')-module N to the ug (F)-

module

N 1%:=1% (N) = pr (F) Lug (71) @) N.

Finally, let @ < S and let ¢: P <» @ be a group isomorphism (not necessarily in F).

¢ induces an isomorphism of R-algebras ¢ : ur (Fp) <—» ur (Fq) obtained by setting

~ (7B A\ ._ 7e(B) w(A
(’0 (]LCCCJCRC) ] p(x) (C Lp(ar)R

for every A, B,C < P and x € P such that C < A and “C' < B. This allows us to

define the conjugation by ¢! functor as the invertible functor

r (Fg)-mod — ug (Fp)-mod,

AS)

I
RS
*

that sends any Mackey functor L over F( to the Mackey functor #"' L over Fp which
equals L as an R-module and such that for every IB.c.. R4 € ur (Fp) as before and
every y € ¥ L

B B) (A)
IzCCCwR -y = J%! ) 5(C) mew

Where, on the right hand side, we are viewing y as an element of L in order to apply
the action of jg (Fg) on it but we are viewing the result of this action as an element

of ' L.

Let’'s now take a moment to notice a key difference between Mackey functors over groups
and Mackey functors over fusion systems. Let GG be a finite group, let H, K < G and

let M be a Mackey functor over G on R. It is a well known result (see [We00, Section
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3]) that

MGG (K) = @ M(E"NH). (2.4)
z€[K\G/H|

It is also well known (see [TWO95, Proposition 5.3]) that for every Mackey functor N

over H the following equivalence of Mackey functors over K holds

N1EE @D (N Lean)) Theen - (2.5)

z€[K\G/H]
Equations (2.4) and (2.5) play a key role in the arguments used in [Sa82] in order to
obtain a Green correspondence for Mackey functors over groups. However, when trying
to obtain similar results in the context of Mackey functors over fusion systems, the
author was met with many complications. All of them can be traced back to the fact
that the category O (F) , does not in general admit products. In order to avoid such

complications, Proposition 2.2.16 suggests that we should introduce the following.

Definition 2.2.29. Let P < S, let 7/ C F be a fusion system over P and let M
be a Mackey functor over ' on R. We say that M is F-centric if ]g - M = 0 for
every @ € F'\ (F°NF'). The category of F-centric Mackey functors over F’
on R (denoted by Mack}, (F')) is the full subcategory of Mackz (F') whose objects

are F-centric Mackey functors over F'.

If P =S and F' = F we simply say that M is centric and denote by Macky (F¢) the

category of centric Mackey functors over F on R.

Let 7' be a fusion subsystem of F and let M be an F’-centric Mackey functor over
F'. The induced Mackey functor M 17, over F might not be F-centric since we don't

necessarily have F'¢ C F¢. However, we have the following result.

Proposition 2.2.30. Let P and Q) be subgroups of S such that P < () and let 7' and
F" be fusion systems over P and Q) respectively such that 7/ C F" C F. Then we

have that:

1) The functor |5 maps Mackl, (F") to Mackl, (F'). In particular 1%, maps
(1) F R R F
Mackg, (F¢) to Mack}, (F').

(2) The functor 1% maps Macky (F') to Macky (F"). In particular 1%, maps
Mack}, (F') to Mackg (F°).
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(3)

Proof.

(1)

(2)

For every isomorphism @: P — ¢ (P) in F the functor ¢- maps Mack}, (Fp) to

Mackz, (Forp))-

Let M € Macky, (F"). For every J € F'\ (F' N F¢) we have that J ¢ F¢ and,
therefore, I/ (M |%') = I7M = 0. This proves that M |7, € MackZ, (F).

Let M € Macky (F') and let J € F"\ (F" N F¢). From Proposition 2.2.24
and Definition 2.2.28 we know that any element in M 17, can be written as an

R-linear combination of elements of the form
A
y = 150y coRo () @

Where z € M and 15 c,RG € g (F"). Thus, it suffices to prove that Iy = 0
for every such y € M 1% From Lemma 2.2.22 (5) we can assume without loss

of generality that A < P and B = J. With this setup we have that

Iy = Ty B Ly 0 2
= [‘] CSDRC ® T,

= I;(C)cg@ ® RAx

Where, in the last identity, we are using the fact that the tensor product is over
pr (Fp) and R2 € pr (Fp) (see Corollary 2.2.25). Since J € F¢and ¢ (C) < J
then we can deduce from [Li07, Proposition 4.4] that ¢ (C') ¢ F*. From definition
of F-centric subgroup we can deduce that C' ¢ F¢. Since C' < P then we can
conclude that C' € F'\ (F'NF¢). Since M € Macky, (F') and z € M this
implies that R4z € ISM = 0. Therefore we can conclude once again that

I{y = 0 thus proving that M 1%, I\/Iack’T (F").

Let M € Macky, (Fp) and let J € For)\ (Fopy NF€) with ¢ as in the
statement. By definition of F-centric subgroup we know that ¢=!'(J) €
Fp\ (FpNF°). Then, by definition of the functor #- (see Definition 2.2.28),

we have that 179 M = I ((J))M = 0 thus proving that ¥ M € Mack ( p))
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Proposition 2.2.30 motivates the introduction of the following.

Notation 2.2.31. Let F', 7", F and ¢: P — ¢ (P) be as in Proposition 2.2.30. We use
the same notation to refer to the functors TJ;;/, y;ﬁ/ and ¢- of Definition 2.2.28 and their

restrictions given by Proposition 2.2.30.

With this setup we are now just one Lemma away from providing a result analogue to

Equation (2.4) in the context of centric Mackey functors over fusion systems.

Lemma 2.2.32. Let P,Q € F¢, let M € Macky, (Fp), let (A, %) € [P x5 Q], let
y € I4ugr (Fp)I4, let T be the two sided ideal of jix (F) generated by elements of
the form I with J € Fp\ (Fp N F¢) and let 7: ur (F) — pr (F) /I be the natural
projection. If m (I%A)c¢y> =7 (Ig(A)%) (see Corollary 2.2.25) then  (y) = m (11).
In particular, viewing the subset Ig( 0GR (Fp) of ug (F) as a right g (Fp)-module,
and defining

IS Qun(re) M = I3 4y cotir (Fp) @y () M.

we have an isomorphism of R-modules from I{M to ]g(A)CE ®ur (Fp) M that sends

Q
to I@(A)CE R x.

Proof. From Lemma 2.2.22, Proposition 2.2.24 and [Li07, Proposition 4.4] we know
that the ideal Z is spanned as an R-module by elements of the form Ig(J)%Rf}? such
that exists J' € Fp\ (Fp N F°) satisfying J =z J'. Define now J := Z N ug (Fp).
From the above we can conclude that 7 is spanned as an R-module by elements of
the form I€,c., R with J € Fp\ (FpNF¢) and x € P. Since M is F-centric, we
have that 7M = 0 (by definition). On the other hand, from the above description of
7T and J, we know that 7 (I%(A)cg/m (Fp)) is equivalent, as a right ux (Fp) module,
to (I‘%(A)c@mg (fp)) / (IJ(A)c¢j>. We can therefore conclude that

%)

m (IGJ(A)CE) Qur (Fp) M:=mx (I%(A)C@LLR (fp>) Qur (Fp) M= I%(A)C¢ Qur (Fp) M.

With this setup we obtain a surjective morphism of R-modules I' from I{M to
m (I‘%(A)c@) Rur(Fp) M that sends any z € I{M to 7 (]%(A)%) ® z. Assume that
s (I%(A)%) ® x = 0. Then there exists y € [{ug (Fp)I4 such that « (I%(A)c¢y> =
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T <I‘¢7(A)c¢> and yx = 0. Since JM = 0, if the first part of the statement were true,
we would have that yx = Ij;‘:zc = x. This would prove that = 0 and, therefore, that
I is an isomorphism of R-modules. In other words the second part of the statement

follows from the first.

Let's now prove the first part of the statement. Fori =1,2letx; € Pand B; < A%NA
such that B; € Fp N F¢ and that

Q _ Q
7 (12 e B ) = 7 (12 e B )

Since B; ¢ F° then we can deduce from the description of Z given at the start of the

proof, the above identity and Proposition 2.2.24 that

[Q

A _ 1Q
PlCzy (Bl)CSﬁLCmR = I — (BQ)CSOLCIQR

picy

From Items (1) and (3) of Lemma 2.2.22 and Proposition 2.2.24 we can conclude that

there exists a € A such that B := By = BS and ¢ i¢,,, = P iC,,. Since xia,xo € P we

also have that £ ic;., = .f = £ 7¢,,. From the universal properties of product we can

therefore conclude that (2 ;c,,0 = 14, gcu,. From definition of O (F¢) this implies that
there exists b € A such that ¢,,, = ¢, as an isomorphism from B to “>B. Therefore,
there exists z € Cp (B) such that brjaz = 5. Since B € F¢ we can conclude that
z € B < A and, therefore, 5 € Ax1A. Now let y be as in the statement. From

Proposition 2.2.24 we can write

Z > Aapliyee, Ry,

€[A\P/A] B<A*NA
up to A-conj.

for some A\, p € R. Since we are only interested in the projection 7 (y) then we can
assume without loss of generality that A\, 5 = 0 whenever B € Fp\ (Fp N F€). From
the above and Proposition 2.2.24 we can conclude that if y satisfies = (I‘%(A)c@y) =
T (I%(A)%) then A\, 5 = O unless B = A and = € A in which case A\, 5 = 1. In other

words we have that 7 (y) = 7 (I4) just as we wanted to prove. O

We can now prove an analogue to Equation (2.4) in the context of centric Mackey

functors over fusion systems.
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Proposition 2.2.33. Let P € F¢, let T be the two sided ideal of ur (F) generated by
elements of the form [g with Q € F\F°¢ and let : ug (F) — ur (F) /I be the natural
projection map. Then the set m (MR (F) 1ma(fp)) inherits from g (F) 1, (7p) a right

pir (Fp)-module structure and the following is a pr (Fp) basis of w (ur (F) 1p(Fp))

- U {= ()}

QeF° (Ap)e[PxFQ)

In particular, for any M € I\/Iackg (Fp), we have the following equivalence of R-modules

M= B B 2,z M =P f nm

QeFe (Ap)e[Px Q) QEFe (Ap)e[PxxQ]

Where each IZ ,co ® M is seen as an R-submodule of M 1%,

Proof. Throughout this proof we denote the right piz (Fp)-module 7 (g (F) 1ur (7p))
simply by m.

From Lemma 2.2.22, Proposition 2.2.24 and [Li07, Proposition 4.4] we know that the
ideal Z is spanned as an R-module by elements of the form ]B cwR with C € F\F°.
If A £ P we have that R21,(7p) ®un(Fr) M = 0. On the other hand, if A < P,
we have that C' < P and, therefore, C € Fp\ (Fp N F¢). Since M € Mack), (Fp)
this implies that R21,,. (rp) @ur ) M = IS @upFp) REM = 0. In either case we
have that 71, (r,) ®ur (7o) M = 0. Using right exactness of the tensor product functor
we can conclude from the above and definition of 17 (see Definition 2.2.28) that the

following isomorphism of piz (F)-modules holds
M T;:-'p = R (‘F>P Opur (Fp) M.

Assume now that B is a ug (Fp) basis of the right pg (Fp)-module pg (F)p. Since
tensor product preserves direct sums, we obtain from the previous equivalence the

following equivalences of R-modules

U @ D () i

QEF (AP)ElPx +Q)

=r EB @ Ig(A)CENR (FP) O (Fp) M.
QETFC (Ap)e[Px Q]
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Where, for the second identity, we are using that 71, (r,) ®ur(r) M = 0 and right
exactness of tensor product. The second part of the statement follows from Lemma
2.2.32 and the above by viewing each Ig(A)c@uR (Fp) ®pun(Frp) M as the R-submodule
]g(A)%@un(fp) M of M T“';P. This proves that the second part of the statement follows

from the first.

Let’s now prove the first part of the statement. From Proposition 2.2.24 and the previous

description of Z we obtain the following equivalence of right % (Fp)-modules

i (F)p = @ = (18) iw (P
QeFe

For every Q € F° we can now define

2e | ()

(A,@)E[PX]:Q]
In order to prove the statement it suffices to prove that BY is a right pur (Fp)-basis of

T <I§> pr (F)p. In other words we need to prove that for every () € F° there exists a

direct sum decomposition of right iz (Fp)-modules of the form

@ (18) pir (F)p = @ & (é@%) pir (F) ps (2.6)

(A,@) € [P X FQ]

Where the summands on the right hand side are seen as right ur (Fp)-submodules of
™ (18) ir (P

Fix Q € F¢. From Proposition 2.2.24 and the above description of Z we know that
T (]8) iz (F)p has an R-basis of the form

B = || L | {” (I%B)%Ré)} :

JEFpNFe BEF;NF®
ub s Feoni. VE[AutQ(@)\ Homzp, (B,Q)/ Aut, (B)]

For each 7 (IEQ(B)%R;Q) € BS wegetamap ¢ : B — Q and a map /5 : B —

P. From the universal properties of product we can then conclude that there exists a

unique <BP’Q, 1/1P7Q> € [P xx Q] and a unique 76’5%) € Homo(re) (B, B”?) such that

Lgp’nyé’BQﬂ) = (£ and that @DP’QV@%) = 7). From the first identity and definition of
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O (F) we can conclude that 7 ) € O (Fp). From the second identity and Corollary

/\

2.2.23 we can deduce that

¢ — 19 gl o 2.7
5(8)V T yrapre)re T B (i) (27)

This allows us to write BS = Ucagepx -0 BQ ?) where

7= | | | {7 (12est3) }-

JEFPNFE BEFINIS ye[Autq(Q)\ Homz, (B.Q)/ Aut s (B))]
up to J-conj. (BP*Q,TRQ):(A,E)

Fix (A,9) € [P xzQ]. From Equation (2.7) we know that Bg’(A’@ is contained in
T <I§(A)c¢> m. If we now prove that B%(A’@ is in fact a generating set of
T (%?(A)%) ur (F)p (seen as an R-module) then, since 7 (%?(A)%) ur (F)p is a right
pr (Fp)-submodule of = ([8)@ and B2 is an R-basis of 7 (Ig) ur (F)p,
we would obtain Equation (2.6) and the result would follow. From Proposition 2.2.24
and the above description of Z it suffices to prove that for every J € Fp N F¢, every
C € F;N Fe and every 6 € Homp(r,) (C, A) there exists m (]9 %Ré> € B%’(A ?)

¥(B)
such that 7 (I%B)CER;@ =7 (I (A)CSDI/} cﬂi’é). From the description of BY there
exist j € J and 7 (]g(B)%R;é> € BY such that ’B = C and ¢ = @fc;. Here we
are viewing c¢; as an isomorphism from B to C. Therefore, by definition, we have that
VZ?Q@) = 0c; and (BRQ,wP,Q> = (A,®). In other words 7 (Ig(B)%RJJB> € Bg’(A’@.
From Lemma 2.2.22 (3) we know that ¢; R}, = R/ and, therefore, from the identities
above and Corollary 2.2.23 we can conclude that Ig(B)%RB = I&A) Ié‘zc)c@R{j thus
completing the proof. O

Before proceeding it is worth introducing the following result motivated by the notation

of Proposition 2.2.33.

Lemma 2.2.34. Let P,(Q € F¢. Then we have that:

(1) For every (A, @) € [P xxQ)], every J € F¢ and every 0 € Homg. (Q, J) there

exist a unique (Aﬂ@) € [P x5 J| and a unique 7( ) € Homo(re) ( AG) such

that EyfA@ = 0% and LZGW(@A@ — F. Moreover 'y(A@) € O(Fp) and, given
J' € F¢ and § € Homg. (J,J') we have that A% = (Ae)é, that % = (9)°
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and that 7 ) = 7((5A9 9)7(A<p If 6 = 1, we write (Aﬂﬁ) = <A97E> and

Yaz = Naz):
(2) Let J € F¢ such that J > @ and let (A, D) € [P xr Q)]. The following identities
are satisfied

I8 eo=1- 1A
QBN T T (AN YT T () Vg

si%

QT im) | Mm@ e ()

(3) Let J € F€ such that J > @ and let I be the two sided ideal of jir (F) generated

by elements of the form IS such that C' € F\F¢. The following equivalences are

satistied
J 1t = Q AJ
Z RQIE(B)CE = Z IW(A WRT(A)’ mod T
(B¥)elPxrJ] (AP)E[Px #Q] (4% (4.2)
J J = AJ Q
Z CFRE(B)]Q - Z I EIA @(A)CmCFR@(A) mod 7
(B)elPxzJ] ApelPxrq
More precisely, for every (B, 1) € [P xx J] we have that
o1 o = Q o a7
RQIE(B)% - Z ]E(A)QPCWRW{’A — mod T
(AP)E[Px Q] @ ,
(41:7)=(5.3)
J J A 0
il = ) Iﬁ(A)%CFRwA)- mod Z

(Ap)e

[Px Q)
(4757)

e[Px
=(87)
(4) Let p: Q — p(Q) be an isomorphism in F, for every (A, p) € [P Xz Q)], the

morphism 7(” %) is an isomorphism and we have

]Q po— ]P(Q)

) _
PR T T T (an) P N gy CorlZ 4ot = C( , )*10—,1R"—( )

YA

For any representative 7{' Az) € vf’ AD)- In particular, from Proposition 2.2.18 (3)

Q _ p(Q)
Z Cplgayce = Z I@(B)%cy(p;%)’
(AP)E[PxFQ] (B%)elPxFp(Q)] ’
_pQ _ p(Q)
Z it a)Cpr = Z C“f(pB,w)Cw i o(B)’
(AP)E[Px Q] (B.¥)€lPxFp(Q)]

Proof. We only prove the first equation of each item since the proof of the second one
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is analogous.

(1)

Item (1) is an immediate consequence of the universal properties of products.

The fact that 7/, -, € O (Fp) follows from definition of O (F) and the identity

P .0 _ P
Lao Vag) = la-

)

Item (2) follows from the identity W’y{A@ = %@ and Corollary 2.2.23.

Let (B,E) € [P xr J], fix a representative 1/ € 1) and view it as an isomorphism
between the appropriate restrictions. Item (3) now follows from the identities

below

J7d _ Q B
RQ[E(B)C@ - Z 150 () Ceav By (Qerp(B)),  Lemma 2.2.22 (3) and (4)
z€[Q\J/¢(B)]

— Q B

= D gy CesRi-igrum) mod Z

z€[Q\J/Y(B)]

Q*MY(B)eF©

= _[9 C—( — RiAJ .
72 P(A)~P (’Y(‘]Af)> YA

(AP)E[Px#Q) ®

(49 27)=(5:9)

Proposition 2.2.18 (5)

Where, in the last identity, we are using the fact that the bijection of Proposition
2.2.18 (5), which sends every (B, ) € [P xr J]| and every z € [Q\J/¢ (B)] to
(A,9) = (01 (Q* Ny (B)))”, teyibey) for some y € P (which from Proposition
2.2.18 (5) we can assume to be 1g), satisfies (A‘CW) = (B, ) and % -

L{?Acy.

From uniqueness of the map 721‘?@ we know that 72%’@ — Id4. From ltem (1),

we can therefore deduce that va 2)

(4) now follows from the identity W’y(pA@

is an isomorphism with inverse 7/ 7) ltem

1
(A/J’gp/)
= pp and Corollary 2.2.23.

O

As a consequence of Proposition 2.2.33 we can recover a result that appears in Mackey

functors over groups and which is, in general, not true for Mackey functors over fusion

systems. We do not prove it in detail since it falls outside the scope of this paper but

it's worth sketching a proof.
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Remark 2.2.35. Let P € F*° and view the functors 1% and |7 as functors between the
categories Mack}, (Fp) and Mackg (F¢) (see Proposition 2.2.30). Then 1%, is both

right and left adjoint to |7 .

To prove this start by defining the coinduction Mackey functor ﬂfp as the functor that
sends any M € Mackg (Fp) to

M %, := Hom,,, 7,y (uw (F) 47, M) € px (F)-mod.

Here we are viewing M 1%, as a ug (F)-module by setting for every f € M {17,
every y € ug (F) and every = € g (F) 1%, the image (y - f) (z) == f (zy). Itis well
known that {17 is the right adjoint of the restriction functor |7 while 17 is its left
adjoint. Therefore, proving that 1% and {}%, coincide on Mack?, (Fp) would prove the
statement. The broad steps to prove this are as follows. First use the fact that M is

JF-centric in order to obtain the isomorphism

HomﬂR(]:P) (MR (‘F) \L§p7 M) = HomHR(]'—P) (/’LR (f) iip /I \L§p7 M) .

With Z as in Proposition 2.2.33. Using again Proposition 2.2.33 and the anti involution
* of pg (F) which sends every I, c, RG € pg (F) to <If(c)c¢,Ré> = I8¢, R
it can now be proven, using arguments dual to those of Proposition 2.2.33, that the

following is a i (Fp) basis of ur (F) 17, /T 1%,

o] U {rmrta)
QeFe (AR)E[PxFQ)
Where : g (F) 15, — pr (F) 1, /Z 1%, denotes the natural projection. Using this
we can now define for every Q € F¢, every (A,9) € [P x5 Q] and every x € I{M
the pr (Fp)-module morphism ftag €M 17, that sends every element in B to 0
except for 7 (CFRg(A)> which is sent to . With this notation it can be proven that
the f7, ) form an R-basis of M %, Finally an isomorphism from M 17 to M 1%,
can be obtained from Proposition 2.2.33 by sending any morphism of the form fiag) to
]g(A)%@x eM T]@P. Some care is needed in this last step to prove that this morphism

is in fact a morphism of uz (F)-modules but Proposition 2.2.18 and Lemma 2.2.34 can

be used to this end.
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As we show in Subsection 2.4.2 there are at least 2 ways of translating Equation (2.5)
to the context of Mackey functors over fusion systems. We are now ready to give the

first one.

Lemma 2.2.36. Let P,(Q € F¢, let G be a fusion system containing F and let M €

Macks, (Fp), for every (A, ) € [P xr Q) fix a representative o of B viewed as an

isomorphism onto its image and define M43 := <'O(M ¢;§ ). Each M4z is G-centric
and there exists an isomorphism
7Q L F O F
. @ M(A,E)TF¢(A) — M T.7'—1;'\1’.7'—(97
(Ap)elPxFQ] (2.8)
Ig(c)cy@uR (%(A))m - [5](0)%(8“72(53)36

where we are viewing @ as an isomorphism between the appropriate restrictions and
we are using Proposition 2.2.33 and the fact that M4 € Macksy, (Fpca)) to define
. - - - - - J -
I' via R linearity by setting its image on elements of the form Ig( %7 Our (Foray
M(A@)Tifw with J € FqNF¢, (C,0) € [¢(A) xx, J]| such that C € Fo N F* and

Oy
T € szl(C)M = [gM(A@).

)(EG

Proof. The fact that each M4z is G-centric follows from their definition and

Proposition 2.2.30.

From Propositions 2.2.18 and 2.2.33 we have the following isomorphism of R-modules

M Tgy;@ >~ @ @ ]@I(B)CE Rur(Fr) M, Proposition 2.2.33
JEFQNT* (B,p)e[Px £J]
=R @ @ [j,]mw(@(A))ch Qur(Fp) M, Proposition 2.2.18 (5)

JeEFQNFC ze[J\Q/p(A)]
(AP)E[Px Q] J*Np(A)eF®

=R @ EB 157(0)% @ (Fr) M. Proposition 2.2.18 (2)
JeFQNF© (C,@)e[go(A)x]:Q J]

(A@)G[PX]-‘Q] CE.FmeC
Where each ¢ is as in the statement. From Proposition 2.2.30 we know that
Mg 1%, is F-centric and, therefore, I7M4p) Tii(m: 0 for every J €
Fo\ (FoNFe). The same argument also tells us that I&Ma5 = 0 for every
C' € Fpm)\ (Fora) N F€). We can therefore use Proposition 2.2.33 in order to conclude
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that

FQ ~ J
M(A’@ Fo(a) R @ @ [g(c)cg(gﬂn(]‘};(m) M(A@)'
TEFQNTE (C8)€[p(A)x 7o J|
CeFgnF¢

By definition of the functor #- (see Definition 2.2.28) we now have that for every
J € FoN F° and every (C,0) € [p(A) xxz, J]| such that C € Fo N F¢ there
is an equivalence of R-modules ISM 45 =g I“D_l((C)M realized by sending every
T € IgM(A@ to x seen as an element in If:_ll(C)M. This leads in turn to an

equivalence of R-modules Ig(C)Cg D (For) Maz) =r Ie(C) 5 Qur(Fp) M realized

. 7 J
by sending every Ig(o)Cg ®#R<%(A)) T € [0(0) ®”R<IW(A>) Mag) to [é(C)% Qpur (Fp)
T € Ig(c)c@ Qur(Fp) M. Therefore, viewing each [5](0)05 ®MR(]:¢(A)) Maz) as an

R-submodule of M(A@)T;j(m and each 15](0)% Qur(Fp) M as an R-submodule of
M Tfpﬁ;@, we can conclude that the morphism I of the statement is a bijective R-
module morphism. We are now just left with proving that I" is a morphism of ug (Fg)-
modules. Take (A,p), J, (C’, 5) and z as in the statement and let J' € Fg N F* such

that J' < J. Then we have that

J J C
RJ{F <I§(C)C§ ®HR AP(A) > Z I (7 )_1R{Bw)(3)c¢ ®MR(}—P) .T)
(B.¥) ’

Z IJ c¢c—R ()5 O pr (Fp) T,

(B9) (o) e

c
= Z I’ 5(B)CoCe Our(Fp) Co 1c—R7 — )l T
(B.2) (")

_ J c ,
- Z U B o @ R (Fota)) (,YJ )IRW(JB,@(B) o1
(B.Y) (B.9)

_ Jogd o
= F (R /IE(C)CG ®/JIR(]:¢(A)) x) .

Where the (B,E) are iterating over the elements in [P X 7o J] such that <BJ,W> =
(C,0), we are taking ¢ as in the statement, in the first and second identities we are
using Items (3) and (1) of Lemma 2.2.34 respectively, in the third identity we are using
the definition of M4 ) and in the last identity we are repeating the same operations

backwards.
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Let now J' € Fgo N F¢ such that J' > J and let p: J — p(J) be an isomorphism in
Fg. The same arguments used above but now replacing Item (3) of Lemma 2.2.34 with
Items (2) and (4) (which remove the sum thus making the operations simpler to carry)

we obtain the identities below

o 5 _ J 7
I;T (‘[5(0)05 ®MR(f¢=(A)) x) =1 <[J IE(C)% ®“R(}—v(A>) x) 7

J - J
L (1) D7) ©) = T (iter @ pn(5) ) -

This proves that I' is indeed an p% (Fg)-module morphism thus concluding the proof.
L]

Using Proposition 2.2.33 we can now define a morphism 07 from a centric Mackey
functor M over F to the centric Mackey functor M ijf_-PT]FEP by setting for every () € F°

and every x € ISM

O (@)= > I ®ceRg e
(Ap)elPxFQ]
Since the tensor product is over g (Fp) we know that 6 does not depend on the
choice of [P xz Q]. Thus we can conclude that it is well defined and an R-module
morphism. Let Q) € F¢, let z € ISM and let p: Q@ — p(Q) be an isomorphism in F.
Applying Items (1) and (4) of Lemma 2.2.34 we have that

c,ﬁ]@[ (.ZE) = Z [Q CWCWEJB,E) X CFRQ x,

_ Q Q
- Z L) o7 @ C( 1 )wwa(B)x’
(B#)elPx=Q] (59)

= Y. B @caREuer =0 (¢r).
(AB)ElPx (@)

With the same notation as above let J € F¢ such that J > () then we have that

P (1].\ _ J o TAY
0y, (IQx) = Z I= 74 CoT @ [’Y(A 99)(14)CKCT1R (AT
(Ap)elPxFQ]
= Z Ié]g(A)cg ® CFRE(A T = ]é@ff (x).
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Where, in the first identity, we are using Lemma 2.2.34 (3) together with the fact that
M is G-centric and, therefore, annihilated by the ideal Z of Lemma 2.2.34 and, in the
second identity, we are using Lemma 2.2.34 (1) to move things from one side of the
tensor product to the other and Lemma 2.2.34 (2) to simplify the equation. If J € F€is
such that J < Q then the exact same arguments (but starting with R¢0%, (z) instead of
o <R?x>) prove that 0% also commutes with restriction. We can therefore conclude
that 6%, is a morphism of j (F)-modules for every M € Mackz (F¢). This allows us

to give the following definition with which we conclude this subsection.

Definition 2.2.37. Let G be a fusion system (not necessarily over S) containing F, let
M € Mack$, (F) and let P € F¢. From Proposition 2.2.30 we know that the following

is a G-centric Mackey functor over F

Mp =M |57 1% .

Thus the above discussion allows us to define the Mackey functor morphisms
0¥ Mp — M, 0% M — Mp,
by setting for every y ® x € Mp, every Q € F¢ and every z € Ig]\/[

0N (y@x):=y-x, 0y (2) := Z Ig(A)cg ® CFRg(A)Z.
(Ap)elPxFQ]

If there is no possible confusion regarding M we write 0p := 0¥ and 67 := 6%

2.2.3 The centric Burnside ring over a fusion system

Through this subsection we will be using Notations 2.1.1, 2.2.3, 2.2.9, 2.2.21 and 2.2.31.

Let G be a finite group. It is known (see [TWO95, Proposition 9.2]) that the Burnside
ring of G can be embedded in the center of the Mackey algebra of G. In this subsection
we prove that there exists a similar embedding of the centric Burnside ring of F into

the center of a certain quotient of pz (F) (see Proposition 2.2.43).

Let us start by recalling the definition of centric Burnside ring of a fusion system.
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Definition 2.2.38 ([DL09, Definition 2.11]). The centric Burnside ring of F
(denoted by B”") is the Grothendieck group of the semigroup whose elements are
isomorphism classes of O (F¢), and addition is given by taking the isomorphism class
of the coproduct of two representatives. This is doted with a ring structure by taking
multiplication of two isomorphism classes to be the isomorphism class of the product of
two of their representatives and extending by linearity. Given a commutative ring R we

also define the centric Burnside ring of F on R as

B} =R ®; B

An important distinction between the ring B~ and the Burnside ring of a group is that,
in general, the isomorphism class S of S is not the identity in B{;. However, we have

the following result due to Sune Reeh.

Proposition 2.2.39. If every integer prime other than p is invertible in R then the

isomorphism class S of S is invertible in Bf".
Proof. See [Pr16, Proposition 4.13]. O

This result motivates the following definition.

Definition 2.2.40. We say that a ring R is p-local if all integer primes other than p

are invertible in R.

Remark 2.2.41. The definition of p-local ring does not specify if p is invertible or not.
This distinction is not relevant towards the results shown in this paper. It is however
worth noting that, if R is a field of characteristic 0, then arguments analogous to those
of [TW90, Theorem 9.1] can be used in order to prove that ug (F) is a semisimple R-
algebra. The exact condition is in fact for R to be a field where |Autz (P)] is invertible
for every P < S.

Before proceeding let us recall precisely how the Burnside ring of a finite group G
embeds into the center of the Mackey algebra. Let G be a finite group and let R be a
commutative ring, [TW95, Proposition 9.2] describes the above mentioned embedding
as the map that, for every H < @, sends the isomorphism class G/—H of the transitive
G-set G/H to

43



G/H — Z Z IgrenRicren € Z (pr (G)) .

K<G z€[K\G/H]

This embedding leads to an action of the Burnside ring of G on any Mackey functor
over G. When trying to obtain a similar result for the case of Mackey functors over
fusion systems many difficulties arise. These can, once again, be traced back to the fact
that the category O (F)  does not in general admit products. However, we have the

following results with which we conclude this section.

Lemma 2.2.42. Let T be the two sided ideal of jir (F) defined in Proposition 2.2.33,
define ug (F¢) = ur(F) /I and denote by mw: ur (F) — upgr (F€) the natural
projection. The R-algebra ug (F€) is naturally equipped with a jg (F)-module structure
given by setting y - 7 (x) = w(y) 7 (z) for every x,y € ug (F). Moreover, for every
P € F\F¢ we have that 15 € T and, therefore, I5ur (F¢) = 0. Thus we can view

ur (F¢) as a centric Mackey functor over F and, using Definition 2.2.37, we can define

[ (P) = 05" (0 7o) (Lunr)) € pir (F°)
for every P € F°¢. With this setup we have that:

(1) T (P) is in the center of the R-algebra ur (F¢) and

= Y w(IiRY).

JeFe (Ap)e[Jx P

(2) For every P' =z P (see Notation 2.2.3) we have that I' (P') =T (P).

(3) For every Q) € F¢ we have that
r@rey= > I,

(AP)el@xP]

Proof.

(1) For every P € F¢, we have that

Z Z ™ (I (4)CpCo 1R@(A ) = Z Z ™ (IgRg) .

QEF© (AB)E[PXQ] QEF® (B,p)€lQxP]

S . . _ Q
Where, for the first identity, we are using the fact that 1, (z) = > gcre ™ (IQ>

and Corollary 2.2.23 in order to take ¢ to be any representative of ¥ and view it
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as an isomorphism onto its image. For the second identity we are using Items (1)
and (2) of Lemma 2.2.22 in order to remove c,c,-1 and Proposition 2.2.18 (1) in
order to rewrite the sum. This proves the second part of Item (1). For the first
part recall from Definition 2.2.37 that both 9573(?6) and OéﬁR(F) are morphisms
of Mackey functors and, since the projection 7 is an R-algebra morphism, we
also know that 7 (1, (7)) = Lz (7). We can therefore conclude that, for every

x € pur (F), we have

R (@)L (P) = 2057 (00 o (7 (L)) = 0557 (0o (7 ()

The fact that I' (P) is in the center of ug (F¢) now follows from definition of

07 (Fe and 6“%7) yia the identities below

I'(P)w(z) = Z Z [&A)c@c@—le(A) - (Ig) 7 (z),

QEFe (A)E[PXQ)

_ Q Q Q
=X X e By (18r) ).

QEFe (A)E[PXQ)

= g (%m (r(2))) =7 ()T (P).

(2) Let ¢b: P <—» HP be an isomorphism in F. ltem (2) follows from Item (1) and

Proposition 2.2.18 (5) via the identities below

-y Y A=Y Y« (88) -,

QEFe (Ap)e[QxP] QeFe (A,W)E[QXP’}

(3) ltem (3) follows from the identities below

=Y Y w(IRLIRY).
JEFe (Ap)E[IxP]
(B¥)elIxQ)

= Z Z Z ]BmARBmA)

JeFe (Ap)e[JxP] z€[B\J/A]
(B w)E[JXQ] B*NAeF©

= > XY > wmy)= > T,

(C.0)e[PxQ] JEF* (DME[IxC] (C.0)elPxQ]
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Where, for the first identity, we are using the fact that 7 is a morphism of R-
algebras and Lemma 2.2.22 (5), for the second identity, we are using Lemma 2.2.22

(4) and definition of Z and, for the third identity, we are using Proposition 2.2.18

(7).
O

Proposition 2.2.43. Let p be a prime, let S be a finite p-group, let F be a saturated
fusion system over S, let R be a commutative ring with unit and let Z, ug (F°¢) and
I' be as in Lemma 2.2.42. For every X € O (F°), (see Definition 2.2.12) denote by
X € Bf° (see Definition 2.2.38) its isomorphism class and define the (non necessarily
unit preserving) R-algebra morphism T : B — pg (F¢) by setting T (P) :=T'(P)
for every P € F¢ and extending by R-linearity. If B, contains a non-zero divisor then
T is injective and, if R is p-local (see Definition 2.2.40), then B3 contains a unit (see
Proposition 2.2.39) and T <1 B{;C) = 1, (r¢). Moreover, if R is p-local, then, for every
fusion system G containing F and every M € Mack$, (F) C Macky (F¢) (see Definition
2.2.29), the ring B acts on M by defining for every P € F¢

P =00t € End (M) .

Where we are using the notation of Definition 2.2.37.

Proof. From Items (2) and (3) of Lemma 2.2.42 we know that T is a well defined (non

necessarily unit preserving) R-algebra morphism.

Viewing ug (Fs) as a subset of ug (F) (see Corollary 2.2.25) we can define the
R-algebra morphism 7" from 7 (I§pur (Fs)I5) to End (B%") by setting for every
T (I§RE) € m (Iur (Fs) I5) and every P € F*

T(x(I5RS) (P)= Y. @0P
z€[Q\S/ P]
Q"NPEF*

From Proposition 2.2.24 and Items (1) and (3) of Lemma 2.2.22 we know that this is
sufficient to define 7" via R-linearity. From Lemma 2.2.42 (1) and definition of T we also
know that T’ (B%,") C 7 (ur (Fs)). Therefore we can define 7”: T' (B%") — End (B%")
by setting 17 (z) = 7 (w (I§) am (I§)) for every x € BE". With this setup we can
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conclude from Proposition 2.2.18 (5) and Lemma 2.2.42 (1) that 7" (I'(P)) (@) =
P x @ for every P,(Q) € F°.

Assume now that B3  admits a non zero divisor Q2. Then, for every U, ® € B%", we

have that

(@) (@) =T (C@) Q) =>Tx0=bx0=T =0

This proves that the composition 77T is injective and, in particular, that I" is injective.

Assume now that R is p-local. By Proposition 2.2.39 we know that B%" admits a unit.
Let us denote by 1g7c 1= 3" AoQ this unit. From Lemma 2.2.42 (1) and definition

of product in B we have that

T(isz) = > > A (IXRD) = 2 7 (1) = lunir.
PQEFe (Ap)€[PxQ)] PeFe
Finally, for every M € Mack% (F), we have that M € Mackg (F¢). Therefore, by
definition of Z, we have that ZM = 0. In particular M acquires a ug (F¢)-module
structure by setting 7 (y) -z = y - x for every y € ug (F) and every x € M. This leads
us to the equivalence of R-algebras End (M) := End,,# (M) = End,, ) (M).
Notice now that there exists a natural map ©: Z (ug (F¢)) — End (M) defined by
setting O (y) (x) = y -« for every y € Z (ur (F¢)) and every x € M. With this
notation we can define Q- := © (I' (Q)) € End (M) for every Q € B%". Then, for

every P € F¢ and every x € M, we have that

Poa=0F"0 00 s (L)) - .

= > (fé?(A)C@CF R%A)) =2

QEeFe (Ap)E[PxQ)]

Z Z [Q(A)cwc—R@(A x=0Y (9@ (x)) .

QEFe (AR)E[PXQ)

Where, in the last identity, we are using the fact that M € Mack$, (F) C Mackyg (F¢)

and, in particular ZQG]—'C Ig -2 = x. This concludes the proof. H
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2.3 Relative projectivity and Higman’s criterion

Through this section we will be using Notations 2.1.1, 2.2.3, 2.2.9, 2.2.21 and 2.2.31.

Let G be a finite group and let M be a Mackey functor over G on R. It is known
(see [We00, Section 3]) that there exists a minimal family Xy, of subgroups of G closed
under G-subconjugacy such that M is a direct summand of @y, M 1919 f R is
a complete local PID then the Krull-Schmidt-Azumaya theorem (see [CR81, Theorem
6.12 (ii)]) allows us to use this fact in order to obtain a decomposition of M of the form
M = @ e, N where each N7 is a (possibly 0) direct summand of M |15, From
this decomposition and minimality of X, it follows that, whenever M is indecomposable,
then X, is generated by a single element that we call vertex. This fact is essential in
order to describe the Green correspondence and, during this section, we prove that a
similar process can be applied to centric Mackey functors over fusion systems. Moreover
we prove that Higman's criterion (see [NT89, Theorem 2.2]) can be translated to the
context of centric Mackey functors over fusion systems (see Theorem 2.3.17). This
provides us with a link between the vertex of an indecomposable M € Mackg (F¢) and
certain ideals of End (M). Such link turns out to be essential towards proving the Green

correspondence for centric Mackey functors.

2.3.1 The defect set

During this subsection we translate the notion of relative projectivity (see [We00, Section
3]) to the context of centric Mackey functors over a fusion system (see Definition 2.3.1).
We also prove that, if R is p-local, the notions of defect set and vertex (see [We00,
Section 3]) can also be translated to the context of centric Mackey functors over fusion

systems (see Definition 2.3.7).

Definition 2.3.1. Let G be a fusion system containing F, let M € I\/Iack%c (F) and let
X be a family of F-centric subgroups of S. With notation as in Definition 2.2.37 we

define

My =@ Mp, 0¥ :=> 0} My—M, 03 :=> 60 : M— My.

pPeXx Pex pPex
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If there is no possible confusion regarding M we write 0y := 0% and 6% := 07,. We
say that M is projective relative to X' (or X-projective) if 0y is split surjective. If
X = {P} for some P € F*¢ we simply say that M is projective relative to P (or

P-projective).

There is a key difference between the above definition of relative projectivity and the
one given in the case of Mackey functors over finite groups (see [We00, Section 3]). Let
G be a finite group and let M be a Mackey functor over G. In this case we have that
Mg == M [5152 M and that g = Idy. In particular 6 splits and, therefore, any
Mackey functor over G is projective relative to G. This result is however lost in the case
of Mackey functors over fusion systems since, given N € Mackg (F°), we do not, in

general, have Ng = N (unless F = Fg). We do however have the following.

Lemma 2.3.2. Let G be a fusion system containing F, let R be p-local and let M €
Mack$, (F). Then M is S-projective.

Proof. Since F C G then all G-centric subgroups of S are also F-centric. In particular
we have that M € Mackg (F¢). Since R is p-local, from Proposition 2.2.39, we know
that the centric Burnside ring B%C contains an inverse of S. Then, with notation as in

Proposition 2.2.43 we have that
05655 " = (S.) (?‘1-) = 1pze = Idy.

This proves that g is split surjective or, equivalently, that M is S-projective thus

concluding the proof. O

This last result tells us that, whenever R is p-local, any centric Mackey functor is
projective relative to some family of F-centric subgroups of S (namely {S}). We would
now like for this family to be unique under certain minimality conditions and use this
uniqueness to define the defect set. In the case of Mackey functors over finite groups this
uniqueness follows from [We00, Lemma 3.2 and Proposition 3.3]. In order to translate
these results to the context of centric Mackey functors over fusion systems we first need

the following.

Lemma 2.3.3. Let M € Mackgr (F°), let X and ) be families of objects in F°¢, let

o: X — Y be a map between sets and let & = {Gp: P — 0 (P)}p .y be a family
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of morphisms in O (F¢). There exists a (non necessarily unique) morphism of g (F)-
modules 0 : My — My, such that 0y = 0y04. In particular, if M is X-projective, then

it is also Y-projective.

Proof. Because of the direct sum decomposition of My and My given in Definition
2.3.1 it suffices to prove the claim in the case where X := {P}, Y := {@Q} and
@ :={g: P = Q} for some P, € F° and some % € Homp(ze) (P, Q).

Fix a representative ¢ of ¥ and view it as an isomorphism onto its image. Then, for
every x € P we have that pc, = c )¢ as isomorphisms from P to ¢ (P). With this
in mind Items (2) and (3) of Lemma 2.2.22 tell us that, for every I? c.,RZ € Fp, we

have

— ]SO(B)

(4)
w(w)(w(c))cc ch Cp,A S ‘/—-‘P(P)C%A'

B A
CoplecCe, e o(2) 1Y (C)

Where we are viewing ¢ as an isomorphism between the appropriate restrictions and we
are viewing F(p)Cy 4 as a subset of pz (F). Because of Proposition 2.2.24 this allows us
to define the s (F)-module morphism 6,: Mp —» M, (p) that, for every y € pg (F),
every J € Fpand every x € I{M |7, sends y ® .. (7p) T 1O YCp1 u() Dy (Fopy) Corl
Notice now that F,p) C Fq. Because of Corollary 2.2.25 this inclusion allows us to
define HLQ( . Mypy — Mg as the natural iz (F)-module morphism that, for every
(P
! ! F / ! ! !
Y € ug (F) 1MR(&(P)) and every 2’ € M VF, iy sends y ®MR(%(P>)J: toy ®MR(]_-Q>£C .
With this setup we can finally define the pz (F)-module morphism 65: Mp — Mg as
0z :=0q 0, Then, with x,y and J as above, we have that
»(P)

Op (y Opur (Fp) x) = YT = YCu14())Cp,u T = g (95 (y Opr(Fp) 35)) :

Where we are viewing ¢ as an isomorphism between the appropriate restrictions and, for
the second identity, we are using Items (1) and (2) of Lemma 2.2.22 in order to add the

terms c,-1 ,(7)Cy,7. This proves that 0p = 005 thus concluding the proof. ]

Using Lemma 2.3.3 we can now translate [We00, Lemma 3.2] to the context of centric

Mackey functors over fusion systems.

Corollary 2.3.4. Let M € Mackg (F°), let X and ) be families of F-centric subgroups
of S and denote by X™* C X any family of maximal elements of X (under the preorder

<7 of Notation 2.2.3) taken up to F-isomorphism. We have that:
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(1) If M is X-projective and X C Y then M is J-projective.

(2) If M is X-projective then it is X™*-projective.

Proof. From definition of X™ for every P € X exists Jp € X™® such that P <7 Jp
or, equivalently, such that Home e (P, Jp) # (). On the other hand, for every P € X
we can take Qp := P € ) and we have |dp € Hompre) (P, Qp) # 0. The result now

follows from Lemma 2.3.3. O

Finally we can translate [We00, Proposition 3.3] to the context of centric Mackey functors

over fusion systems.

Proposition 2.3.5. Let M € Mackg (F°) and let X and Y be families of F-centric
subgroups of S closed under F-subconjugacy (i.e. Q € X and P <z Q imply P € X
and analogously with Y). If M is both X -projective and Y-projective then:

(1) M is X x Y-projective where

XxY={AcF|FPeX,QecYandp: A— Q st (AP €[PxQ]}.

(2) M is X N Y-projective.

Proof. For every A € X x ), there exist, by definition, P € X and Q € Y such that
A <7 P,Q. Since both X and Y are closed under F-subconjugacy this implies that
A€ XNY. In other words we have that X x ) C XN Y. From Corollary 2.3.4 (1) we

can now deduce that Item (2) follows from Item (1).

Let's prove Item (1). For every P € X, every @ € Y and every (A,9) € [P xz Q)] let
us fix a representative ¢ of ¥ and view it as an isomorphism onto its image. Using the

notation of Lemma 2.2.36 we have that

M= @ GB Mag) T§sa(A)g (M)y, = @ M ﬁpﬁPﬂQﬁQ,

PeX,QeY (Ap)e[Px Q] Pex,Qey

We can now define I'™": (My),, <» M’ to be the inverse of the isomorphism described

in Lemma 2.2.36 and define 7: M’ — Mgxyy by setting for every P € X, every
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Qe Y, every (A,p) € [PxQ), every J < A, every x € IfM |5 and every y €
pw (F) 1“72(]:99(1‘3))
(3 B n(5,00) T) = Vs Suniz)

where we are viewing ¢ as an isomorphism between the appropriate restrictions and,
on the left hand side, we are viewing = as an element of M4z while, on the right
hand side, we are viewing = as an element of M M;A. Notice that, for every x € P,
we have that c,pyp = cpp is an isomorphisms from P to ¢ (P). With this in mind
Proposition 2.2.24 and ltems (2) and (3) of Lemma 2.2.22 ensure us that the definition

of T does not depend on the choice of representatives of y ® ) Moreover it is

R (Fp(a)
immediate from definition that 7 commutes with the action of % (F) and, therefore,

it's a ur (F)-module morphism.

Finally, since M is both X-projective and )-projective, there exist Mackey functor
morphisms wy: M — My and uy: M — My such that 08 ur = 63/uy = Idy.

Applying restriction and induction functors to the morphisms uy and 6 we can define

yzzygggmmum%wmy

QeY

yi= D (Vi (03)) + (M) — My,

QeY

From functoriality of induction and restriction, we have that 0y yux y = Idyy,.

Let P € X, let Q,J € Y such that Q < J, let (A, %) € [P xxQ), let ¢ be the
previously fixed representative of 7 viewed as an isomorphism onto its image, let (C, 5) €
[0 (A) x5, J], let © € IEM and let y € 1HR(-FQ)MR (F) Lur(Fs)- Using the notation
of Corollary 2.2.23 we have that

M J M J J
0 (9 (4 @ () Ty Dm0 @) ) = O (U @1 (0) iy ) = e s
and that

J J
YIgc\Cap T = G (yfg(c)c% Qg (Fa) w) ;

QXXJ} (T <y[ (©)Ca ®n :U))
—ﬂ%%fﬁ®®u<>ﬂ>e®m ne)))-
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Where, in the second identity, we are viewing = as an element of M4 ). From Lemma

2.2.36 we know that every element in M |7, 1%, 1% 1%, can be written as a finite sum
J

72) ficy

prove that 0% ;7T ~! = 03/ . With this in mind we obtain

of elements of the form y D ( Co; @ur(Fp) T- Therefore the previous identities

Gﬁ\(/[XyTF_lumyu); = 0§}IQX7yUX7yUy = QJA}/[UJ; = Id]W .
This proves that Hﬂfxy is split surjective or, equivalently, that M is X x Y-projective

thus concluding the proof. O

We can now finally define the defect set of a centric Mackey functor over a fusion system.

Corollary 2.3.6. Let R be p-local and let M € Mackg (F€). There exists a unique
minimal family of F-centric subgroups of S that is closed under F-subconjugacy and

such that M is projective relative to it.

Proof. This is an immediate consequence of Lemma 2.3.2, Corollary 2.3.4 (1) and

Proposition 2.3.5 (2). O

Definition 2.3.7. Let R be p-local and let M € Mackg (F¢). We call the minimal
family of elements in F° given in Corollary 2.3.6 the defect set of M (denoted as X);).
Using the notation of Corollary 2.3.4 we call defect group of M any element in X[
(for any choice of X[, If |X[}®| = 1 we say that M/ admits a vertex and we call

vertex of M (and denote it by V) any fully F-normalized defect group of M.

2.3.2 Trace maps and Higman'’s criterion

The main goal of this subsection is translating Higman's criterion (see [NT89, Theorem
2.2]) to centric Mackey functors over fusion systems (see Theorem 2.3.17). This allows
us to relate the concept of relative projectivity of an indecomposable centric Mackey
functor M € Mackg (F¢) to the images of certain trace maps (see Definitions 2.3.8
and 2.3.12). In order to understand this relation we need to start by introducing some

notation.

Definition 2.3.8. Let G be a fusion system containing F, let M € Mack% (F), let

P € F¢and let o: P — ¢ (P) be an isomorphism in F. We define the conjugation
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map from Fp to F,p) on M as the R-algebra morphism . : End (M |%) —
End (M igm)’ obtained by setting for every f € End (M |} ), every Q € Fop)NF*

Q F
and every x € I5M VE,

Mf(2) = cppmii) (f (e ) -

Where we are viewing ¢ as an isomorphism between the appropriate restrictions and we

are viewing M |7 and M L;aw) as subsets of M.

We define the trace map from Fp to F on M as the R-module morphism

MorZ  End (M |%)) — End (M).

— y
; O I, 0%

where f 1% denotes the image of f via the induction functor 1% : Mackg (Fp) —
Mackg (F) (see Definition 2.2.28). More precisely, for every Q) € F¢, every x € ISM
and every f € End (M %) we have that

Yuf (@)= Y el (G RGe).

(Ap)e[Px Q]

Finally, given any fusion subsystem #H C F, we define the restriction map from F

to H on M as the R-algebra morphism
Mri: End (M) — End (M 17,).
L %

where f |7, denotes the image of f via the restriction functor |7: Mackg (F) —

Mackr () (see Definition 2.2.28).

Whenever there is no doubt regarding M we simply write

M, F F._MF o

F oo M,p
tI‘]_—P . tI‘]_—P, 1"7_[ . I‘H, C.— c.

Trace, restriction and conjugation maps satisfy the following properties which are
analogous to those satisfied in the case of Mackey functors over groups (see [Sa82,

Definition 2.7]).
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Proposition 2.3.9. Let M € Mackg (F°¢) then:

(1) Forevery P € F¢ and every x € P we have that trig = rgj =«.=1d

(2) For every fusion subsystems H C K C F we have that v}, rf = 17,.
(3) For every P < Q € F° we have that tr% tri}? = tr,.
(4) For every isomorphisms @, in F¢ such that o1 is defined we have that V- ¢ = V..

(5) For every P < ) € F° and every isomorphism ¢ € Homgz (Q, ¢ (Q)) we have
Fo _ ¢ Fe@
that #- try) = try” > 7.
(6) For every P < () € F° and every isomorphism ¢ € Homz (Q, v (Q)) we have

FQ
that . 1% =1
Fp Fo(P)

(7) For every P € F°¢ and every isomorphism ¢ € Homz (P, ¢ (P)) we have that

F 0. — tpF
trfv(P) =trg,.

(8) For every P € F°¢ and every isomorphism ¢ € Homz (P, ¢ (P)) we have that

R .
YFe = Ty

(9) For every P,QQ € F¢ we have

F o F E: Fo e TP
Iz, Wrp, = trfw(A) I'r, -

(AP)e[PxFQ]
Here o is any representative of p seen as an isomorphism onto its image.

(10) For every P € F¢, every f € End (M) and every g € End (M LJJ—;P) we have that

ftrr, (9) =tk (v, (f)g), and that try, (9) f =tk (915, (f)) -

(11) Let P € F¢. Using Notation 2.1.1 and the notation of Proposition 2.2.43 we have

that v} 1% = (P-)..
Proof.
(1) Let Q € FpNFe, let y € ISM |5, and let f € End (M }%,). By definition

of restriction we have that 1% (f)(y) = f(y). Since fis a g (Fp)-module

55



morphism we have that

“fy) =cef (Ccm—1 y) = Ce,Cepn f (y) = f(y).

Where we are viewing ¢, as an isomorhism from Q* to (). Finally, from Proposition
2.2.18 (2), we have that [P x5, Q] = {(Q,Idg)} and, therefore, from Lemma

2.2.22 (1), we can conclude that
6%, () () = 1§emg (f (cagBey) ) = 1 (v).

Since the restriction functor satisfies | |%=]7,, then Item (2) follows.

Let J € F¢ let € I7M and let f € End (M |%,). From Proposition 2.2.18

(6) we have that

tr;p (f) (@) = Z Z ey (AvnH) Cpey (f (CWRéTy(AmP)x)) :

(Ap)el@xFJ] ye[A\Q/P]
YNnPeF*©

Since M %, € Macky (Fp) we know that c(—RW(AmP) -z = 0 for every

(A, ) € [Q x7 J] and every y € [A\Q/P] such that AYN P € F&\ (F& N F°).
Thus, we can replace the second sum of the above equation as a sum over y €
[A\Q/P] such that AY N P € F§. Using Proposition 2.2.18 (2) we can now

rewrite.

wh (@)= Y > e (f (G Bawr))

(APERXFI] (BP)e[PxrqpA]

From Corollary 2.2.23 we know that the above is equal to tr]E (tr (f)> (x)

thus proving ltem (3).

Let P € F¢ let o: P — ¢ (P) and ¥: ¢ (P) — ¢ (P) be isomorphisms in F,
let J € Fyppy NFE, let z € ITM iﬁwwzﬂ) and let f € End (M 1%,). Item (4).

follows from Lemma 2.2.22 (2) via the identities below
Yf (@) = eup (f (cpm1pm12)) = ey (e f (cpmrcy12)) =V (°f) (2).
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(5) Let J € Fgo N Fe. Viewing [p(J)\¢(Q) /¢ (P)] as a subset of ¢ (Q)) we can

take [J\Q/P] = o7 ([ (J) \¢ (@) /¢ (P)]). Moreover, for every ¢ (A

we have that o (A) € F¢ o if and only if A € F§ and, for every ¢ (y) € ¢ (Q)
we have that ¢! (gp ()Y N (P)) = JYN P. From Proposition 2.2.18 (2) we

can therefore conclude that

Pxze )= [ {rnpPmt= | {(¢ ).}

?{,%H}Jéég (Ba)e[e(P)x7, 0]

Where, for the second identity, we are using that ¢, and ¢ 'c,,)¢ are equal
as automorphisms of () and viewing ¥ as an isomorphism onto its image. Let

T € Igéj;M iﬁw(@. Using the above identity we have that

Fo@) (o _ ©(J) o(J
wrOCN@= Y e (f (qgaRine).
(Ba)e[e(P)x 5, 0 ¢())]

= D lioe (f <05R3<C>%”>> B SD<tr§§ (f )> (®).

(CO)e[Pxry ]

Where, for the second identity, we are using Items (1) and (3) of Lemma 2.2.22 in

order to obtain the identities If;(( )) = c, I’ -1 and R“"(J = c,R’/

p=1y(B) e p(B) S

for any representative v of ). This proves Item (5).

Let J € Fypy N F¢ and let € I7M. Item (6) follows from the identities below
() @) = o (f (ep1) = #F (@) =132, (°F) (@),

Let Q € F¢, let 2 € ISM and let f € End (M |%,). Using Proposition 2.2.18
(4) we have that.

F _ Q ¢——RY
WL, CN@ = Y 2 s (7 (R ))
(RE)Q@(PV?Q]

S () - 0

(C.0)elPxFQ]

Where we are viewing ¢ as an isomorphism between the appropriate restrictions.
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This proves Item (7).

(8) Let Q € FopyNFe, let z € ISM and let f € End (M). Since f is a morphism

of pg (F)-modules we have that

05, () (@) = cof (o) = cpepr f (2) = [ (2).

Where we are viewing ¢ as an isomorphism between the appropriate restrictions.

This proves ltem (8).

(9) Let J € FoN Fe let x € IJM and let f € End (M |%,). From Proposition
2.2.18 (5) we have that

vf, (D@ = > Y Heweas (F (Gon Bivpwr))

(AR)E[PxFQIYE[I\Q/P(A)]
JYNp(A)eFe

Where we are fixing a representative ¢ of ¥ and viewing it as an isomorphism onto
its image. The same arguments employed to prove Item (3) allow us to replace
the second sum of the previous equation with a sum over [¢ (A) x5, J]|. This

leads us to the identities

ADIOEEEDY S B (F(cgrRinr))

(AR)EP* Q] (B,7)e[Ix 7y olA)]

%)
= Y e, ( (v2r (f))) ().
(Ap)elPxFQ]
Here we are viewing M iﬁ@ as a subset of M. With this inclusion in mind we also
have that trz, (f) (z) = 1%, (tr%, (f)) (2) and, therefore, the above identities

prove Item (9).

(10) We prove just the first identity since the second is proved similarly. Let Q € F°.
Since f is a morphism of ug (F)-modules, for every y € M |7 C M and every
(A, ) € [P x7 Q] we have that

I (18 aeay) = I8 aeaf ) = IS4y 0om 45 () ().

Let x € ISM. ltem (10) follows from the above via the identities below

FOE@@) = Y e (015 (9) (R 7))

(AP)E[PxFQ]

=, (r4F, (H)9) (@)
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(11) Let Q € F¢ let © € IEM and let f € End(M). Since f is a ug (F)-
module morphism, for every (A, ) € [P Xz )], we have that f (CFRg(A)w) =

Q

Cotia

the identities below

yf (z). Item (11) follows from this identity and Proposition 2.2.43 via

trip (rip (f)) (z) = Z Ig(A)CJCF g(A) (f (@),
(AR)elPxFQ)

= 0p (03 (f () = (P), () (2).

[]

Remark 2.3.10. Given a fusion system K contained in F the trace tr{ is in general not
defined. However, as we show in Subsection 2.4.5, something similar can be defined
when K = Nz (P) for some fully F-normalized P € F°. In this situation we obtain
a result similar to Proposition 2.3.9 (3) but replacing Fg with Nz (P) (see Lemma
2.4.29).

Corollary 2.3.11. Let M € Mackg (F°), let P € F¢ and let p: P — ¢ (P) be an

isomorphism in F then 197. = Id ) and ¥- is an isomorphism.

End (M¢§;

Proof. Let Q € Fp N F€, let x € ISM and let f € End (M Lf;). From definition of

conjugation map and Lemma 2.2.22 (1) we have that

U f (@) = ewpf (capr) = £ (2).

Thus we have that 7. =1d_ /= -c\. Using Proposition 2.3.9 (4) we can now deduce
o <M¢IP>
that
K e ) e
IdEnd(M¢§;) '
This proves that - has an inverse and, therefore, is an isomorphism. ]

Definition 2.3.12. Let M € Mackg (F°¢), let P € F¢ and let X’ be a family of objects
in F¢. We define the trace image from P to F on M and the trace image from

X to F on M respectively as

"E =tk (End (M %)), and "my= Y Ym
Pex
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M

: : : : : M
If there is no possible confusion we simply write Tr7, := " Tr}, and Tr} := = Tr}.

Lemma 2.3.13. With notation as in Definition 2.3.12, both Tr}, and Tr?%, are two sided
ideals of End (M).

Proof. This is an immediate consequence of Proposition 2.3.9 (10). O

We now have the following result reminiscent of Lemma 2.3.3.

Lemma 2.3.14. Let X and Y be families of objects in F¢, let c: X — ) be a map
between sets and let & = {pp : P — 0 (P)} pco be a family of morphisms in F¢. Then,

we have that Tr}, C TI"§ regardless of the associated centric Mackey functor.

Proof. From definition of Tr% and Tr3 it suffices to prove the statement in the case
where X := {P}, VY = {Q} and & := {p: P — @)} for some objects P,Q) € F°
and some morphism ¢ € F. In what follows we view ¢ as an isomorphism onto its
image. From Proposition 2.3.9 (7) we have that Tr}, = trE ("(End (M 1£))).
From Corollary 2.3.11 we can conclude that Tr7, = Tri(P). Finally, using Proposition
2.3.9 (3) on the groups ¢ (P) < Q we can conclude that Tr}, C Tr/, just as we wanted

to prove. O

We can now provide the following definition which, as we show in Theorem 2.3.17, is

closely related to Definition 2.3.1.

Definition 2.3.15. Let M € Mackg (F¢), let f € End (M) and let X be a family
of objects in F¢. We say that f is projective relative to X' (or X-projective) if
feTrh. If X = {P} for some P € F¢ we simply say that f is projective relative

to P (or P-projective).

Let G be a finite group, let H < G and let M be a Mackey functor over G. Using
Equation (2.5) we can define ), as the natural projection of M 1%1% onto the summand
(lG (M Lg)) 1T5= M. By composing it with the natural inclusion, the morphism ),
can be seen as an endomorphism of M [$1%. In order to prove Higman's criterion for
Mackey functors over finite groups (see [NT89, Theorem 2.2]) Hirosi and Tsushima use
the identity tr§ (mar) = Idyzg where trf; denotes the trace map for Mackey functors

over finite groups (see [Sa82, Definition 2.7]). In order to prove Higman's criterion
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for centric Mackey functors over fusion systems (and thus relate Definitions 2.3.1 and

2.3.15) we need a similar result.

Lemma 2.3.16. Let P € F¢, let M € Macky (Fp) and let 7y € End (M 1% 1%)
be the composition of the projection onto the summand (IdP (M 15" )) 19022 M (see

Lemma 2.2.36) and the natural inclusion. Then we have that tr7, (my) = Idyz .
P

Proof. From Definition 2.2.28 we know that every element in M T;P is of the form
y @z for some y € g (F) and some x € M. Therefore, since tr%, (mas) is a morphism
of yir (F)-modules, it suffices to prove that trZ (m) (IS ® x) = IS ® x for every
Q € FpNJF°and every z € ISM. Fix = and @) as described. From definition of 7,

we have that

wk, () (1§ © 7) = > IweseaBRgm e
(AR)elPx Q)

CFRg(A)G#R(]:P)

Since Q < P by assumption, then we have that CFR%A) € ur (Fp)ifand only if p €
O (Fp). For every (A, ) € [P xx Q) satisfying © € O (Fp) we can assume without
loss of generality that A < () and that g = E (see Definition 2.2.17). From maximality
of the pair (A, %) (see again Definition 2.2.17) the previous description implies that
A = Q. We can therefore conclude that there exists a unique (A, %) € [P xx Q]
such that CFR%A) € ur (Fp). Moreover [P X Q] can be taken so that this element

satisfies CFR%A) = Ig. The result now follows from the equation above. O

We are now finally ready to translate Higman's criterion to the context of centric Mackey

functors over fusion systems.

Theorem 2.3.17 (Higman's criterion). Let G be a fusion system containing F, let
M € Mack, (F) C Mackg (F¢) (see Definition 2.2.29) be an indecomposable Mackey

functor and let P € F¢. The following are equivalent:

(1) There exists N € Mack$, (Fp) such that M is a summand of N 1%, (see
Definition 2.2.28).

(2) There exists N € Mack), (Fp) such that M is a summand of N 1%,
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(3) 1dys is P-projective (see Definition 2.3.15).
(4) End (M) = Tr}, (see Definition 2.3.12).

(5) Op (see Definition 2.2.37) is an epimorphism and, given N, L € Mackg (F°¢) and
Mackey functor morphisms ©: N — L and ¢: M — L with o surjective, if
there exists a Mackey functor morphism ~: M |5 — N | such that ¢ |7

v =1 Lip then there exists a Mackey functor morphism 4 : M — N such that
ey =19

(6) 6F (see Definition 2.2.37) is a monomorphism and, given N, L € Mackz (F°) and
Mackey functor morphisms p: L — N and ¢): L — M with ¢ injective, if there

exists a Mackey functor morphism y: N |7 — M |7 such that yo |7 = |7,

then there exists a Mackey functor morphism 7: N — M such that Yo = 1).

(7) Op is an epimorphism and, given N € Mackz (F°¢) and an epimorphism of Mackey
functors p: N — M, if ¢ |7 splits then ¢ splits.

(8) 6% is a monomorphism and, given N € Mackg (F¢) and a monomorphism of

Mackey functors p: M — N, if V;P splits then o splits.
(9) Op is split surjective (equivalently M is P-projective see Definition 2.3.1).
(10) 67 is split injective.

(11) M is a direct summand of Mp (see Definition 2.2.37).

Proof. The proof is analogous to that of [NT89, Theorem 2.2] except for some details
in the proof of implications (2)=-(3), (7)=-(9) and (8)=-(10) for which we need to use
Lemmas 2.2.36 and 2.3.16 in order to replace analogous results for Mackey functors over
finite groups.

(1)=(2).

Since F C G, then Fp N G°¢ C Fp N F€ and, therefore, Mack% (Fp) C Mack%c (Fp).
The implication follows.

(2)=(3).

Let N € Mack), (Fp) such that there exists L € Macky, (F) satisfying N 1= MoL,

Let 7y, be the endomorphism of N T]FEP given by the natural projection onto M followed

62



by the natural inclusion and let 7y € End (N 1%, 1%, ) be the endomorphism of Lemma
2.3.16 satisfying Ntrfp (rn) = IdNTjEP' Since restriction preserves direct sums then
we have that N 1% |7 = M |7 &L |7, and that the endomorphism Nrfp (mar) of
N 1%1%, is the projection onto M |7 followed by the natural inclusion. We can now

define f € End (M %) by setting for every x € M |7

f (@) ="vE, (mar) (mw ().

Here we are seeing M |7 as a subset of N 1% | in order to apply my. With this

setup, for every Q € F° and every = € ISM C ISN T]fEP, we have that.
Mtrép (f)(z) = Ntrﬁp (Nr§P (m1) 7TN> () =mm Ntrip (mn) () = mpr () = .

where the first identity follows from definition, for the second identity we are using
Proposition 2.3.9 (10), for the third we are using Lemma 2.3.16 and for the last we are
using the fact that x € M and definition of 7,;. From the above we can conclude that

Mtrfp (f) = Idps which implies that Id,, is H-projective thus proving the implication.
(3)=(4).

By definition we have that Id,; is P-projective if and only if Id,; € Tr%.. From Lemma
2.3.13 we know that Tr7 is an ideal of End (M). Therefore Tr, = End (M) if and only
if Idy; € Tr7.. This proves that Items (3) and (4) are equivalent.

(3)=(5).

If Item (3) is satisfied then there exists f € End (M %) such that tr7 (f) :=
0F f 1%, 03, = Idy (see Definition 2.3.8). Therefore 0, is a split injective and
6M is split surjective. In particular 0% is surjective. Let N, L, ¢, and ~y be as in the
statement of item (5) and define 5 := 63 (vf) 1%, 01;. Then, for every z € N and

every y € ug (F), we have that

o (0 (V15 W) =yelf, (v(2) =yv 15, (2) =0 (Y115, h©1)).

Where, for the first identity, we are using the fact that ¢ is a g (F)-module morphism

in order to get ¢ (yv () = yo (v (x)) = ye 1%, (v (x)). The above equation proves
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that 0N~y T“';P: OM) ¢§PT§P. The implication now follows from the identities below

oy = lp (Vf) 15, 00 = O0p (¥ U5, f) 15, 00 = trz, (17, () f) = v, (f) = 0.

Where, for the third identity, we are using Definition 2.3.8 while, for the fourth identity,

we are using Proposition 2.3.9 (10).
(3)=(6).

Let f be as in the previous implication. As before we have that 6% is split injective and,
in particular, it is injective. Let N, L, ¢, and + be as in the statement of Item (6) and
define 4 := 0} (fv) 1%, 0. Then, for every Q € F* and every x € ISM, we have
that

(115 080 @) = Y I8 ca0ve i, (k) = (0 IEF, 60) (@).
(A@)E[PxFQ)

Where, for the second identity, we are using the identity v ijfrpz Y %@P while, for
the first identity, we are using that ¢ is a morphism of g (F)-modules in order to get
CFR%A)@ (x) = <CFR§(A)$> and we are using that CFRg(A)]J € M |F, in order
to write ¢ |7 instead of ¢. The above equation proves that v 1%, 0h¢ = ¢ |7 1%,

0%;. The implication now follows from the identities below

Fo =03 (f1) 1%, One = 03 (fo 15,) 1%, 00 = ek, (frF, (V) = trk, (f) ¢ = 9.

Where, for the third identity, we are using Definition 2.3.8 while, for the fourth identity,
we are using Proposition 2.3.9 (10).

(5)=(7).

With the notation of Item (5) let L := M and ¢ := Idy. Since ¢ |%, splits then
there exists v: M |7, — N |7 such that ¢ |7 ~ = Iy z =9 1%, Therefore, by

P

hypothesis, there exists 4 : M — N such that ¢y =1 = Id);. In other words ¢ splits.
(6)=(8).

With notation as in Item (6) let L := M, ¢ := Idy and v: N — M such that

Yo 15, = Idyz =9 1%, Then, by hypothesis, there exists 4: N — M such that
P

Y = Idys. In other words ¢ splits.
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(7)=(9).

Let f: M |% < Mp |}, be the g (Fp)-module morphism given by Lemma 2.2.36
and that sends M |7 isomorphically into the summand (IdP (M M;P)) T;i of Mp 1% .
With this setup we have that 6p |7, f = Idy |%,. Item (9) now follows from Item (7)
by taking N := Mp and ¢ = 0p.

(8)=(10).

From Lemma 2.2.36 we can take 7: Mp | — M |7 to be the natural projection onto
the summand M |z = <IdP (M iﬁp)) f—‘? Dually to the previous implication we have
that 70" |7 = Idy, %, Item (10) now follows from Item (8) by taking N := Mp and
o = 0F.

(9)=-(11) and (10)=-(11).

The fact that M is a summand of Mp is an immediate consequence of either 6p being

split surjective (Item (9)) or 0 being split injective (ltem (10)).

(11)=(1).
From Proposition 2.2.30 we know that N := M LfEP is G-centric and, from Item (11)

we have that M is a summand of N 17 = Mp. O

Remark 2.3.18. The equivalence (2)<>(1) of Theorem 2.3.17 can be proven indepen-

dently from the rest.

We conclude this section with the following result which allows us to always talk about

the vertex of an indecomposable centric Mackey functor over a fusion system.

Corollary 2.3.19. Let R be a complete local and p-local PID, let G be a fusion
system containing F and let M € Mackj, (F) be an indecomposable Mackey functor.
Then M admits a vertex (see Definition 2.3.7). Moreover Vy € F N G and, for any
N € Mackg (F€) such that M is a summand of N, we have that V), € X.

Proof. By definition of defect set we know that the map 0% : @y Mp — M is
split surjective, in particular M is a summand of @PGXM Mp. Since R is a complete
local PID and M is indecomposable, then we can apply the Krull-Schmidt-Azumaya
theorem (see [CR81, Theorem 6.12 (ii)]) in order to deduce that there exists P € X,

such that M is a summand of Mp. Because of Theorem 2.3.17 this implies that M is
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P-projective. Since M is G-centric then Mp = 0 for every P € F\ (F N G°). Therefore
we necessarily have P € F N G°. Define Xp := {Q € F° : Q <z P}. Since M is
P-projective we can deduce from Corollary 2.3.4 (1) that M is also X'p-projective. From
minimality of X, (see Definition 2.3.7) this implies that X, C Xp. Since X); is
closed under F-subconjugacy and P € X, we also have that Xp C X); and, therefore,
Xp = X);. By construction of Xp this is equivalent to saying that M admits a vertex

(namely any fully F-normalized Q =» P).

Let IV be as in the statement and let L € Mackg (F°) such that N = M & L. Since
induction and restriction preserve direct sum decomposition we have that Ny, = My, ®

Ly

~- Immediately from the definition of 8 we also have that 6% (Mx,) € M and

that 0% (Lx,) C L. Moreover, the restrictions of #Y to My, and Ly, coincide with
0%, and 0% respectively. In other words we have that 0% = 0% my + 0% 7w where
7y and 7y, denote the natural projections onto My, and Ly, respectively. On the other
hand, from definition of defect set, we know that there exists a Mackey functor morphism
u: N — Ny, such that 0% u = Idy. Denote by us; : M — Ny, the restriction of u
to M followed by the natural inclusion into Ny, . Since % mapsto L and LNM = {0}
then we can conclude that Id,; = (Q%VWM + Qf(NWL) upnr = 0%, Tarup. In particular
Gf,\fN is split surjective or, equivalently, M is Xy-projective. From minimality of the defect

set we can then conclude that V3, € Xy. O

2.4 Green correspondence

Through this section we will be using Notations 2.1.1, 2.2.3, 2.2.9, 2.2.21 and 2.2.31.

In this section we prove the main result of this paper. More precisely we prove that
a Green correspondence holds for centric Mackey functors over fusion systems (see

Theorem 2.4.38).

We start in Subsection 2.4.1 by proving Proposition 2.4.7 which gives us a list of sufficient
conditions to prove a Green correspondence like result in the context of endomorphisms.
Subsections 2.4.2 to 2.4.5 are dedicated to building the tools needed in order to prove that

Proposition 2.4.7 can be applied to endomorphism rings of F-centric Mackey functors.

Finally we conclude with Subsection 2.4.6 where we use Proposition 2.4.7 together with
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Theorem 2.3.17 in order to translate Green correspondence to the context of centric

Mackey functors over fusion systems (see Theorem 2.4.38).

2.4.1 Correspondence of endomorphisms

The goal of this subsection is that of stating and proving Proposition 2.4.7. This result

is one of the cornerstones for proving Theorem 2.4.38.

Let's start with some notation.

Definition 2.4.1. Let A and B be rings (not necessarily having a unit) and let f: A —
B be a surjective ring morphism. We say that f is a near isomorphism if Aker (f) =

ker (f)A=0.

The following Lemmas are useful in later sections and provide examples of near

isomorphisms.

Lemma 2.4.2. Let A and B be rings (not necessarily having a unit) and let f: A — B
be a ring morphism. If f is an isomorphism then it is a near isomorphism and if [ is a

near isomorphism and A has a unit then f is an isomorphism.

Proof. If f is an isomorphism it is surjective and ker (f) = 0. In particular Aker (f) =
ker (f) A = 0 and, therefore, f is a near isomorphism. Assume now that f is a near
isomorphism and A has a unit. Then, for every x € ker (f), we have that 14, = 0 and,
therefore, ker (f) = 0. Thus f is injective. Since f is also surjective by definition of

near isomorphism then it is an isomorphism thus concluding the proof. H

Lemma 2.4.3. Let A be a ring (not necessarily having a unit) and let I and J be two
sided ideals of A such that I C J and JA, AJ C I. Then the natural surjective ring

morphism f: A/l — A/J is a near isomorphism.

Proof. For every C' C A denote by C' the image of C under the natural projection onto
A/I. Then, by construction, we have that ker (f) = J. Since A.J, JA C I we have that
AJ=JA=1=0 thus concluding the proof. O

Lemma 2.4.4. Let A, B and C be rings (not necessarily having a unit) and let f: A —
B and g: B — C be ring homomorphisms. If gf is a near isomorphism and [ is

surjective then both f and g are near isomorphisms.
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Proof. First of all notice that ker (f) C ker (¢f). Since gf is a near isomorphims then
we have that Aker (f) C Aker (¢gf) = 0 and that ker (f) A C ker (¢f) A = 0. Since f

is surjective by hypothesis then we can conclude that f is a near isomorphism.

On the other hand, since ¢gf is a near isomorphism, then it is surjective and, therefore,
g is also surjective. Since f is surjective, then we have that ker (¢) = f (ker (¢f)) and
B = f(A). Therefore we can conclude that Bker (g) = f (Aker(gf)) = 0 and that
ker (g) B = f (ker (gf) A) = 0 thus concluding the proof. O

Lemma 2.4.5. Let A, B and C be rings (not necessarily having a unit), let f: A —
B be a near isomorphism and let g: B <—» C' be an isomorphism then gf is a near

isomorphism.

Proof. Since both f and g are surjective, then h := gf is also surjective. The result

follows from applying Lemma 2.4.4 to f = g~ 'h. O

The importance of near isomorphisms comes from the following well known lemma due

to Green which we state without proving.

Lemma 2.4.6 ([Gr71, Lemma 4.22]). Let A and B be R-algebras and let f: A — B
be a near isomorphism. Denote by E (A) and E (B) the sets of idempotents of A and

B respectively. Then the following are satisfied

(1) f induces a bijection from E (A) to E (B).

(2) Let x € E(A) be a local idempotent. Then f(x) € E(B) is also a local

idempotent.

(3) Let x,y € E(A) be idempotents. Then x and y are conjugate in A if and only if
f(z) and f (y) are conjugate in B.

With this in mind we can now prove the main result of this subsection.

Proposition 2.4.7. Let A and B be R-algebras, let C, J be two sided ideals of A, let
I and K be two sided ideals of C' and B respectively (C seen as a ring with potentially
no unit) and let f: C — B and g: B — C + J be R-linear maps. Assume that the

following are satisfied:
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(1) (CnJ)Cc,c(CnJ)ycIccnl,
(2) g(K)C J,

3) fI) C K,

(4) f is surjective.

(5) g sends idempotents to idempotents.

(6) The R-linear maps f: C/I — B/K and §: B/K — (C +.J)/J induced by f
and g respectively commute with multiplication (i.e. f(zy) = f(x) f(y) and

g (vw) = f (v) f (w) for every z,y € C/I and every v,w € B/K).

(7) The natural isomorphism s: C'/ (C'NJ) — (C + J) /J and the natural projection
q: C/I — C/(CnN.J) satisty sq =G f.

(8) For every idempotent x € A there exists a unique (up to conjugation)

decomposition of x as a finite sum of orthogonal local idempotents.

Let b € B be a local idempotent such that b ¢ K. Then g (b) € C + J C A and, from
Conditions (5) and (8), there exists a unique n € N and a unique (up to conjugation)

set of orthogonal local idempotents {ay,...,a,} C A such that

n

g(b) =Y a;

1=0

There exists exactly one value j € {0,...,n} such that a; € C\ (C'NJ). Moreover, if

we define a := a;, we have that
g(b) =a mod J, f(a)=b mod K.

Proof. Since both C' and J are two sided ideals of A then C + J is also a two sided
ideal of A. With notation as in the statement, since all the a; are pairwise orthogonal,
for every i = 0,...,n, we have that a; = a;g(b) and, since g (b) € C + J, we can
conclude that a; € C + J. Since C' + J is a two sided ideal of A we can conclude that
a;Aa; C a; (C'+ J)a;. Since C' 4+ J C A we obtain the other inclusion and, therefore,
we obtain the identity

a; (C'+ J)a; = a;Aa;.
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In particular, since each a; is a local idempotent of A, we have that a; (C'+ J)a; is a
local ring and, since a; € C' + J, we can conclude that each «; is a local idempotent of

C + J (and not just of A).

Since, by hypothesis, b & K then the projection b of b onto B/K is non zero. Since, by
hypothesis, b is a local idempotent then we can conclude that b is also a local idempotent
(because quotients of local rings are still local rings). Likewise, for every i = 0,...,n,
we have that the projection @; of a; onto (C' + J) /J is either 0 or a local idempotent
of (C+J)/J.

From Lemma 2.4.3 and Condition (1) we know that the natural projection g of Condition
(7) is a near isomorphism. From Lemma 2.4.2 we know that s is also a near isomorphism.
From Lemma 2.4.5 and Condition (7) we can conclude that g is also a near isomorphism.
Finally, from Lemma 2.4.4 and Condition (4), we can conclude that f and 7 are near
isomorphisms. Since b is a local idempotent then we can conclude from Lemma 2.4.6 (2)
that g (l_)) = > " ,G; is also a local idempotent. Since local idempotents are primitive
we can conclude that there exists exactly one j € {0,...,n} such that @; # 0. We can
assume without loss of generality that j = 0 and define a := ag. In other words we have
that g (5) = a (equivalently g (b) = a mod (J)) while for every i = 1,...,n we have
that @; = 0 (equivalently a; € J). This proves the first equivalence in the statement.
Since a ¢ J (because @ # 0), in order to complete the proof, we just need to prove that

a € C and that the second equivalence of the statement is satisfied.

Since both C' and J are two sided ideals of A then we can deduce that aCa and aJa are
two sided ideals of a (C' + J)a. Since a is a local idempotent of C' + J, by definition,
we have that a (C' 4 J) a is a local ring. Notice also that, from the distributive property
of the product, we have that aCa + aJa = a (C + J)a. From definition of local ring

we can conclude that either
a(C+J)a=aCaCC, or a(C+J)a=aJaC J

Since a is an idempotent and a ¢ J then we can conclude that the identity on the right
in the above equation is not possible. Therefore the identity on the left must be satisfied

and we can conclude that a € C\ (C'N J).

In order to complete the proof we are just left with proving that f (a) is equivalent to
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b modulo K. Denote by @ the projection of @ on C'/I. Since a is an idempotent then
@ must also be an idempotent and, from Condition (6) we can deduce that f (@) is an
idempotent. On the other hand, from the first part of the proof, we know thata =g (I_))

Thus, from Condition (7), we can deduce that

Since g is a near isomorphism (as already proven), from the above identities and Lemma
2.4.6 (1), we can conclude that f(a) = b. From Condition (3) and definition of f
this is equivalent to saying that f (a) is equivalent to b modulo K. This concludes the

proof. H

Let’'s conclude this subsection by giving an example where Proposition 2.4.7 is used in
order to prove that Green correspondence holds for Green functors (see [Gr71, Proposition

4.34]).

Example 2.4.8. Let R be a complete local PID, let G be a finite group, let D, H < G
be subgroups such that N¢ (D) < H and let M be a Green functor over G on R (see

the first definition of [Gr71, Subsection 1.3]). With the notation of Proposition 2.4.7 we

can define
A:=End (M l§), B =t (End (M 15)),
C = trh (End (M Lg)) , K = Z tr % (End (M ing)) ,
reG—H
Ii= Y trfnp (Bnd (M 1Gap)), Ji= Y trjeny (Bnd (M 1G..y))
zeG—H xeG—H
fo=1t", g =19,

With this setup the Green correspondence for Green functors (see [Gr71, Proposition

4.34]) follows from Proposition 2.4.7 and the first remark after [Gr71, Hypothesis 4.31].

2.4.2 Composing induction and restriction

We have seen in Subsection 2.2.2 that, when working with Mackey functors over finite

groups, there exists a way of rewriting the composition of induction and restriction
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functors (see Equation (2.5)). In that same subsection we have proven that a similar
result holds for centric Mackey functors over fusion systems when composing induction
functors of the form T;P with restriction functors of the form iﬁQ for some P, Q) € F¢
(see Lemma 2.2.36). However, we haven't shown any result regarding compositions
of induction and restriction functors when the fusion systems Fp and Fg of Lemma
2.2.36 are replaced with other fusion subsystems of F. That is precisely the goal of this
subsection. More precisely, let P € F* be fully F-normalized, let M € Mack%c (Fp) and
let N € Mack}, (Nz(P)) (see Example 2.2.8), in this subsection we study the F-centric
Mackey functors of the form M 17, 1{_ p) (see Lemma 2.4.11) and N 15 _ p) %, (p)

(see Lemma 2.4.12).

Before proceeding let us introduce some notation that is used throughout the rest of

this document.

Notation 2.4.9. From now on and unless otherwise specified P denotes a fully F-
normalized, F-centric subgroup of S, we denote the normalizer of P in S
(i.e. Ng(P)) simply as Ng, we denote the normalizer fusion system Nx (P) (see

Example 2.2.8) simply as Nz and X and ) denote the following sets

Y ={Q<rP:Q<Ng Q€F and Q# P},
X ={Q<P:QeF}={Qe) :Q<P}.

Lemma 2.4.10. Let (A, %) € [P X Ng], fix a representative ¢ of g, let Q € F° NNy,
let (B,v) € [ (A) Xn, Q] such that B € F,4yNF* and denote by ¢: $~' (B) — B
the morphism ¢ seen as an isomorphism between the given subgroups (i.e. the unique
morphism such that @Lg,l( B) = Lgs @). From the universal properties of products we

know that there exist a unique (Bf"",wf#’) € [P xz Q] and a unique morphism

fy@%) : "1 (B) — B7% such that Lgfwfyg‘%) = Lf:_l(B) and zpfv%yg’%) = p. With
this setup the morphism 7@‘%) belongs to O (Fp) and the morphism 1)*% belongs to

O (Ng) if and only if  belongs to O (Nx).

Proof. Throughout this proof, contrary to Notation 2.1.1, we write @ € O (Nz) to

denote that @ is a morphism in O (Nx) instead of an object in O (Ng).

The fact that 7@“%) is a morphism in O (Fp) follows immediately from the identity
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Lgfwyé’;%) = 1513 and definition of the orbit category (see Definition 2.2.10).

Assume that & O (Nz). Since o' (B) < P, by definition of Nz, If $ € O (N#)

there would exist » € Homo(x,) (P, Ns) such that ELg_l(B) = EE By definition of

@ this would imply that Eaibé,lw) = @L;‘,l(B). From [Li07, Theorem 4.9] we would
deduce that % is an epimorphism and, therefore, we would conclude that 5& = 0.
In particular we would have that o € O (Nx) which contradicts our assumption. We can
therefore deduce that ¢ & O (Nz). Since ¢ € O (N) this implies that @ & O (Nx).

On the other hand, since O (fp) C O (Ng), then we have that 7( 7) € O (Nx). Thus,

, we can conclude that %% & O (N7x).

from the identity ¢7 ¢’7( )=
(Nz). In this situation we have that @ € O(N#) and,
€ O(Nx). Since p~1(B) < P, by definition of Nz,

Assume now that € O

therefore, 1@ = wﬂpy(é@

there exists a morphism 0: P — Ng in O (N#) such that ng,l(B) = LQTswfv%nyf”‘L

(B.2)’

Since 7@%) € O(Fp) then there exists x € P such that o~!'(B)" < B”*¥ and

7@%) = Lgf{fB)wa Using both these identities and the definition of the orbit category
we can deduce that QLqu, ffl“(’B)w = LQS¢F¢L§F1fB) . From [Li07, Theorem 4.9] we

know that Ll?fl"(” is an epimorphism and, therefore, we can conclude from the previous

B)®
identity that GLBH, = Lgsz/f#’ € O (Ngz). In particular »7¢ € O (Nx) thus concluding

the proof. H

Using Lemma 2.4.10 we can now give the first of the two main results of this section.

Lemma 2.4.11. Let R be a complete local and p-local PID, let G be a fusion system
containing F and let M € Mack3, (Fp). Then

M o @M= M 1,15,
Qey

where, for every Q € ), we have that M € Mack$, (Nx) is Q-projective. Moreover the

isomorphism realizing the above equivalence can be taken so that the summand M T%f:

on the left hand side is mapped isomorphically to the ur (Nz)-submodule pr (Nz) @ M

of M 1% 1%,. Here we are using Corollary 2.2.25 in order to view g (N5) ® M as a
F O F
submodule of M 17,1,

Proof. In order to simplify notation we define M7 := M 1% |1 . From Proposition
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2.2.30 we know that MY is G-centric and, therefore, every M (if exists) must

necessarily be G-centric.

For every (A, ) € [P xx Ng| fix a representative ¢ of % and view it as an isomorphism
onto its image. Since MNF iﬁﬁsz M T§P¢§NS we can use Lemma 2.2.36 in order
to obtain a decomposition of MN7 igﬁs as a direct sum of g (Fn,)-modules.
Applying the additive functor Tgﬁs to the resulting decomposition we can conclude that
(MNF)NS = MP @ MY (see Definition 2.2.37) where, using the notation of Lemma
2.2.36, we define

P .__ N L N
MP = P Mugy P MYi= P Muy F
(AP)E[PX FNsg] (AP)E[PX £Ng]
PeO(NF) PZO(Nr)

Here we are viewing the right hand sides of the above definitions as submodules of
(MNF)NS via the isomorphism described in Lemma 2.2.36. From Proposition 2.2.33

we know that all the elements in QJ\N/ISNS (M(A@ ¢£;T(A)) (see Definition 2.2.37) can be

written as finite sums of elements of the form Ig(B)

— —1
(B,v¥) € [¢(A) xn, Q] such that B € F4) NG and some z € ]sf*l((g))M' Here
@: ¢ 1 (B) — B denotes the morphism ¢ seen as an isomorphism between the given

Crz® for some Q € NrNG°, some

subgroups. From Lemma 2.4.10 we can now conclude that, for every Q € Nr N G°,
the elements of ]SQ%SNS (M?*) can be written as finite sums of elements of the form
150)65 ® x for some @ € ISM and some (C,6) € [P xz Q] such that § € O (Nx).
Notice that the tensor product is over ug (Fp) and not ug (Fng) since Igic)

an element of M™7 := M 1% 17,. Likewise, the elements of ISQ%SNF (M?) can be

cg R is

written as finite sums of elements of the form Igfc)c§® x for some z € IE M and some
(C,@) € [P x7 Q] such that & ¢ O (Nx). Applying again Proposition 2.2.33 we can
conclude that 03" (M7) NoM"7 (MY) = {0}. On the other hand, since R is p-local,
we have from Lemma 2.3.2 that 0%:7 is split surjective and, in particular, surjective.

Since (MNF)NS = MP @ MY, from the previous result, we can conclude that

MNF = o3 (MP) @ 037 (M) (2.9)

By definition of O (Nx) (see Example 2.2.8) we have that for every A < P and every
?: A — Ng in O(Ny) there exists a morphism ¢: P — Ng in O (Nz) such that

74



&1 = 5. We also have that O (Nz) C O (F). Therefore, for every (A, %) € [P x5 Ng]
such that € O (Nx), we can deduce from maximality (see Definition 2.2.17) that
A = P and ¥ € Autpr) (P). From Proposition 2.2.18 (4) and the above description
of elements in HJJ\V,]SNF (M(A@ T%’:) we can then conclude that, for every Q € N N G°,
the elements in I304"° (M?) are finite sums of elements of the form [g(B)% ®
for some (B,E) € [P xy, Q] and some z € IEM. From Proposition 2.2.33 we can
then conclude that Q%SNF (Maz) Tﬁﬁ) is precisely the submodule pr (Nz) ® M of

M 1%, 1%, which is, by definition, isomorphic to M Tg}f

From Equation (2.9) and the fact that H%SN’T is split surjective, we conclude that the
restriction of 03" as a map from MY to 637 (M?) is also split surjective. In
particular we have that H%SNF (M?) is isomorphic to a summand of M?. Notice now
that, for every (A,9) € [P xx Ng|, we have that ¢ (A) <z P and, if p(A) = P,
then we necessarily have that A = P and @ € Autor) (P) = Auton,) (P). We can

therefore conclude that

MY = EB M'? where Me .= @ M) T%’; .
Qey (AP)€[Px £N5]
©(A)=Q

Since R is a complete local PID we can now apply the Krull-Schmidt-Azumaya theorem
(see [CR81, Theorem 6.12 (ii)]) in order to write 03" (M?Y) = P ey M where each
M€® is a summand of M'?. From Theorem 2.3.17 we know that each M’ is Q-
projective. Therefore since each M© is a summand of M’? we can conclude, again from

Theorem 2.3.17, that M % is Q-projective thus concluding the proof. H

Using Lemma 2.4.11 we can now obtain the following result with which we conclude this

subsection.

Lemma 2.4.12. Let R be a complete local and p-local PID, let G be a fusion system
containing F and let M € Mack%c (Nz) be P-projective. Then, there exists an Y-

projective M' € Mack3, (Nz) such that
FF ~
Proof. From Proposition 2.2.30 we know that if such a direct sum decomposition exists
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then M’ is necessarily G-centric. From Theorem 2.3.17 we know that there exist V €
Mack$, (Fp) and U € Mack$, (Nz) such that M @ U = N Tg}f Since induction
and restriction preserve direct sum decomposition, from Lemma 2.4.11, we obtain an
isomorphism

foMALL, e UL k= N1 e N

QeYy

Where each N9 is Q-projective. Lemma 2.4.11 also tells us that f sends the sub-module
M & U of M 15,.1%, ®U 14,4, isomorphically onto the summand N Tg}f of the
right hand side. Using this we obtain the following equivalence of uz (Nx)-modules

Mo PN = (M@U@@NQ> JU,

Qey Qey
= (M 13,45, ®U T3,4%,) /U,

= M AL A%, @ (U4, /U).

In particular we can conclude that M 1_|%_ is a summand of M @ @, N©.
Moreover, again from the description of f, we have that M 1% |, contains the
summand M. Since R is complete local and p-local then we can use this and the
Krull-Schmidt-Azumaya theorem in order to conclude that there exists a summand
M of Dyey N@ (which is necessarily V-projective from Theorem 2.3.17) such that
M %, = M & M'. This concludes the proof. O

2.4.3 Composing trace and restriction
Through this subsection we will be using Notations 2.1.1, 2.2.3, 2.2.9, 2.2.21, 2.2.31
and 2.4.9.

Let G be a finite group, let H, K and .J be subgroups of G such that J < K and for
every x € [K\G/H)| define

(ANK/(KN*H)|z:={yre€G :ye[J\K/(KN"H)|}.

It is well known that the following decomposition of double cosets representatives holds

(N\G/H = || [\K/(Kn"H)x. (2.10)

w€[K\G/H)
Denoting by tr§ and 1% the trace and restriction maps of the Endomorphism Mackey
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functor End (M) (see [Sa82, Definition 2.7]) Equation (2.10) can be used in order to
prove that for any Mackey functor M over G

& trf = Z L (2.11)

z€[K\G/H)]

We know from Proposition 2.3.9 (9) that a similar result holds in the case of the trace
and restriction maps of Definition 2.3.8. However, Proposition 2.3.9 (9) only involves
composition of trace and restriction maps of the form r]er tr%, for some P,Q € F* and
tells us nothing regarding compositions of trace and restriction of the form r} trf for
other fusion system G contained in F. Attempting to obtain a decomposition similar to
that of Proposition 2.3.9 (9) in this situation leads to several complications. These can be
traced back to the lack of a result analogous to Proposition 2.2.18 (6) in the case where
P is replaced with G and [A\P/J] is replaced with [A xg J]. Some experimentation
leads us to believe that such a result is possible when P = @) and G = Nz (i.e. a result
dual to Theorem 2.4.27), however we were unable to prove it. Nonetheless we were
able to obtain a result analogous to Equation (2.11) for the composition 1, _tr% (see
Proposition 2.4.16) and this subsection is dedicated to proving it. In order to do so we

first need to develop some tools.

Lemma 2.4.13. Let R be a p-local ring, let M € Mackg (F°) and let Ng € B7(€Nf)c
be the isomorphism class of Ng. From Proposition 2.2.39 we know that Ng admits an

inverse in B%Nf " With this setup we have that

F . F oL N F
(Ap)e[Px FNg]
where we are using Notation 2.1.1 as well as the notation of Proposition 2.2.43 and
Definition 2.3.8 and we are viewing the representative ¢ of © as an isomorphism onto
its image. Equivalently, using the same notation, we have that
N F o E Nr o Fp
(NS )* Iy, trg, = Z trz” T TE,
(A@)G[PX}‘NS]

Proof. Since the first and second identities of the statement are equivalent we just prove
the second identity. Notice that we can rewrite

N F F _ 1.V Ny _F F o _ .NF FNs ¢ Fp
(Ns )*erter_trINS rfNSerter_trFNS E trfw(A) Iy

(Ap)e[PxFNs]
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Here we are using Item (11) of Proposition 2.3.9 for the first identity and Items (2)
and (9) of the same proposition for the second identity. The Lemma follows after

applying Proposition 2.3.9 (3) to the identity above. O

Lemma 2.4.14. Let P € F° be such that F = Nx (P) and let Q € Fp N F°. Then

we have that
[Q x7 5] ={(Q.%) |? € Homo(r) (Q,S)}, and Homor (Q,S) = Homex) (P, 5).
In particular we have the following bijection of finite sets

(@ x7 S| = [P xrS] = Hompr) (Q,S).

Proof. Since Q < P, for any subgroup A < @, we have that PA = P. Analogously we
also have that PS = S. Since F = Nz (P), by definition (see Example 2.2.8), we can
conclude that for every A < @ and every morphism @: A — S in O (F) there exists
a morphism ¢: P — S in O (F) such that EEE = EE = ». From maximality of
the pairs (A,7) € [Q x# S] (see Definition 2.2.17) we can conclude that A = @ and,

therefore, we have that

[Q x7 5] ={(Q,?) | ¥ € Hompx) (@, S)} = Homp(#) (Q, S).

Thus we are only left with proving that Homor) (@, S) = Home(r) (P, S).

It suffices to prove that the map <E)* from Homo(r (P, S) to Homo(r) (@, S) (see
Notation 2.1.1) is bijective. From [Li07, Theorem 4.9] we know that E is surjective. On
the other hand it is well known that the contravariant Hom functor Homor) (—, ) is
left exact and, in particular, sends surjective morphisms to injective morphisms. Joining

—\ ¥
both these facts we can conclude that (L5> is injective.

On the other hand, as mentioned at the beginning of the proof, for every morphism
%:Q — Sin O(F) there exists a morphism ¢ : P — S in O (F) such that g = EE

This proves that (E) is also surjective thus concluding the proof. ]

We can now finally obtain the last ingredient needed in order to prove Proposition 2.4.16.
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Lemma 2.4.15. Let P € F° be such that F = N (P), let M € Mackg (F¢), let R
be a p-local ring and let S € B%° be the isomorphism class of S. From Proposition
2.2.39 we know that S has an inverse in B . With this setup the following equivalent

identities are satisfied

> (5w =ud,, Y uh = (5, %

peHomo (F)(P,5) peHome (F)(P,5)

Where we are viewing the representative v of P as an isomorphism onto its image and

we are dropping the left superindex M in order to keep notation simple.

Proof. We only prove the second identity since both identities are equivalent. From

Proposition 2.3.9 (11) we know that (S-) = tr7 1% . Combining this with Proposition
. . . - f

2.3.9 (9) we obtain the identity (S-) trF, = tr% 3" 4 5)cipx og) 7 £ The result now

follows from Proposition 2.3.9 (3) and Lemma 2.4.14. O

We are now finally able to give a result for centric Mackey functors over fusion systems

analogous to that of Equation (2.11) in a case not covered by Proposition 2.3.9 (9).

Proposition 2.4.16. Let R be a p-local ring, let M € Mackr (F¢) and for every
(A, 9) € [P xr Ng| fix a representative ¢ of ¢ seen as an isomorphism onto its image.
From Proposition 2.2.39 we know that the Nr-conjugacy class Ng € BY"7)" of Ng
has an inverse in B%Nf " and, using the notation of Proposition 2.2.43, we have that
Ng ' € End (M 1%,). Forevery f € End (M |%,) and every Q € Y (see Notation

2.4.9) we can now define

for= > (% (W) 76% () € Bud (M UZ,).

(AP)E[Px FNs]
p(A)=Q

and the following identity holds

o (05, () = 32 () + > trh (fo).

Qey

Different choices of [P x z Ng| and representative p € p can lead to different definitions

of each individual fq but the result holds for any such choice.
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Proof. Applying Proposition 2.3.9 (10) to trﬁg (fo) for every Q € ) we obtain

Surta=Y X (%) (w2 (e ).

QeY QeY (A E[PX]:Ns}
P(A)=Q

- (). ()

(AP)E[Px FN5s]
p(A)ey

Subtracting the above identity to the one in the statement and applying Lemma 2.4.13
to 1%, (tr%, (f)) we obtain that the following identity is equivalent to the one in the

statement —1
Z <NS ) trff ®. rip—tr

(AP)E[Px 7Ng]
p(A)gY

Because of Lemma 2.4.15 it now suffices to prove the identity

{(A,9) € [P xz Ns] | (A) € Y} = {(P,®) | ¥ € Homo,) (P, Ns)} .

For every (A, ) € [P Xz Ns] we have that ¢ (A) <z Ng and, therefore, by definition
of ) (see Notation 2.4.9), we have that ¢ (4) ¢ Y if and only if ¢ (A) = P. Since ¢
is an isomorphism, A < P and the groups A and P are finite then the identity ¢ (A) =
P implies that A = P and, therefore, ¢ € Autr(P) = Auty, (P). Equivalently
® € Homo(n,) (P, Ng). This proves one inclusion. On the other hand, for every
» € Homon,) (P, Ng), we know from the universal properties of product that there
exist a unique (B,1) € [P xz Ng] and a unique 7: P — B such that ¥ = % and
EW = @ = Idp. From these identities we can conclude that (B,%)) = (P,%). This

proves the second inclusion thus completing the proof. a

2.4.4 Decomposing the product in O (F°),
Through this subsection we will be using Notations 2.1.1, 2.2.3, 2.2.9, 2.2.21, 2.2.31

and 2.4.9.

Let G be a finite group, let H, K and J be subgroups of G such that J < K and for
every z € [H\G/K] define

2[(H* N EK)\K/J) = {zy € G : y € [(H* N K)\K/J]}.

It is well known that the following identity, dual to Equation (2.10), holds
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[H\G/J]= || =«[H NnK)\K/J]. (2.12)
z€[H\G/K]

In the case of Mackey functors over finite groups, this can be used to prove that
tr& tr = t1§ where trf denotes the trace map of the endomorphism Mackey functor
End (M) for some Mackey functor M over G (see [Sa82, Definition 2.7]). Proposition
2.3.9 (3) proves that a similar result holds for fusion systems. However, in the case
of Mackey functors over fusion systems, given M € Mackg (F¢) and a fusion system
H, such that Fp C H C F the trace trf;: End (M |f) — End (M) is in general
not defined. We show with Definition 2.4.28 and Lemma 2.4.29 that the trace tr7,
can be defined when H = Njx (see Notation 2.4.9) and that, in this case, we have
trﬁf tr%f = trﬁp. However, in order to prove such a result, we first need to translate
Equation (2.12) to the context of fusion systems. More precisely, we need to prove that,
for every Q € F¢, we can write [P Xz ()] in terms of sets of the form [P Xy, A] with

A € Ny N Fe. This section is dedicated to proving exactly that (see Theorem 2.4.27).

Let us start by finding what can replace the groups H* N K of Equation (2.12) in the

context of fusion systems.

Lemma 2.4.17. Let A,QQ € F° with A < Ng and let ¢ € Homzx (A, Q). Using

Notation 2.4.9 we define the normalizer after o in Nr as

VIN = {z € No(p(4) : ¢ eop € Aut, (4)}

where, on the right hand side, we are viewing  as an isomorphism onto its image. Then

NZN s the unique maximal subgroup of Ng (¢ (A)) such that

AUtNﬁN (¢ (A)) < PAuty, (A).

Moreover there exist a fully Nr-normalized subgroup A’ < Ng, an isomorphism 0 €

Homy, (A, A) and a subgroup N;\gf of Ny, (A’) containing A" such that

Autry (2 (4)) = WAutN;vef (4).

More precisely we can take 0 such that

NYF — {:z: € Nng (A') : ¢p € Autwy (¢ (A))W} :

pd

We call any morphism of the form 0 with 6 as before Nx-top of ¢ and denote it by
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©N7. We also call normalizer before ™7 in Nx any group of the form N;V{f.

Proof. First of all notice that go_lclNK(w(A))cp = Idy, that for any = € N@N we
have o~ lc,-10 = (@ lc,) " and that for any other y € NZN we have ple, 0 =
(o7 ewp) (97 reyp). Since Auty, (A) is a subgroup of Aut (A) the previous equations
prove that 1y, € V5N, that 27! € M N and that zy € "IN respectively.
We can therefore conclude that N@N is indeed a subgroup of Ny (¢ (A)). Moreover,
from definition of NgN, we have that Autzvj;N (¢ (A))7 is a subgroup of Auty, (A).
Equivalently, AutN{TpN (p(A)) is a subgroup of YAuty, (A). On the other hand,
for every @ € Ng(p(A)) such that ¢, € “Auty, (A) we have by definition that
o e € Auty, (A) and, therefore, that z € NZN. This proves that NZN is indeed

the unique maximal subgroup of Ng (¢ (A)) with the desired properties.

Let's now prove the second half of the statement. Let A’ =y, A be fully Nxz-normalized
and let o : A” — A be an isomorphism in Nz. Since N;N < S and S is a p-group
then "7 N is also a p-group. It follows that AutNﬁN (p (A))?" is also a p-group. On

the other hand, from construction of A’ and a have that
Autrz (9 (A)7 < Auty, (A).
©

Since Auty, (A’) is a Sylow p-subgroup of Auty, (A’) (see [St03, Proposition 2.5]) we

can apply second Sylow theorem in order to obtain 5 € Auty, (A’) satisfying
Autny (10 (A)7* < Auty, (4'). (2.13)

We can now define 6 := a5 and let Ns%f be as in the statement. The same arguments
used to prove that N@N is @ subgroup of Ny (¢ (A)) can be used to prove that N;\gf
is a subgroup of Ny, (A'). For every z € A’ we have wfc, ()" = Coo(z) €
AutNJ;N (¢ (A)) and, therefore, the inclusion A" < Nﬁgf follows. It is also immediate
from definition that s‘jeAutN;v(f (A’) is contained in AUth,N (p(A)). The converse

inclusion follows from Equation (2.13) and definition of N;V(f. This concludes the

proof. ]

Corollary 2.4.18. With the notation of Lemma 2.4.17 assume that ¢ = V7. If there

N
exists o € Homy (N7, S) such that 1.&p = @L%@f then ¢ (NN7) = NJ;N.
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Proof. By definition, we have that N7 < Ny, (A) and that ¢ (A) = ¢ (A). Therefore
we can deduce that ¢ (N27) < Ny, (¢ (A)). Moreover, from Lemma 2.4.17 we have

that
AUtNﬁN (p(A)) = S[)Aut]\thvf (A) = Aut¢(NN;) (p(A)).

From these identities we can conclude that
NENCs (9 (A)) = ¢ (NJ7) Cs (¢ (A)) -

Recall now that, by hypothesis, we have A € F¢. Therefore we also have p (A) € F°. In
particular Cs (¢ (A)) < ¢ (A). Finally, from Lemma 2.4.17 we have that ¢ (A) < NéN
and that A < Ngf. Putting all this together we obtain the following identities from

which the result follows.
NEN =N2NCs (9 (A)) = ¢ (N27F) Cs (9 (A) = ¢ (N)7) .

]

Corollary 2.4.19. With notation as in Lemma 2.4.17, for every A’ € F¢ and

isomorphism 6 € Homy, (A’, A) we have that NZN = ]\%N-

Proof. Since 0 is an isomorphism in Nz then we have that Auty, (A) = °Auty, (4').

With this in mind the result follows from the identities below.

N = {z € N (¢0 (4)) « (90) " caph € Auty, (A},
= {r e No (o (4)) + ¢l € (At (4}

={z e No(p(A) : ¢ lesp € Auty, (A)} = 2N,

Corollary 2.4.20. With the notation of Lemma 2.4.17:

(1) We can always take (goNf)NF = N7,

(2) If o = N7 then for every x € P we have that oc, = (pc,)"” where ¢, : A* — A

is seen as an isomorphism in Nx.
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Proof.

(1) The result follows from definition of (¢™*)"™ and the identities below

7 Aut N_7_- (A') = Autny (9 (A) = Aut vy (77 (A7)

Nr @ oNF
Here we are using Corollary 2.4.19 for the second identity.

(2) With the notation of Item (2) we have that

Autny  (pe, (A7) = AuthoN (p(A)) = g"Aut]\azavf (A) = @CZAut<NivF>z (A*).

pex

Where, for the first identity, we are using Corollary 2.4.19, while, for the second
identity, we are using the fact that ¢ = ©¥*. Using the above and the description

of Nfovf given in Lemma 2.4.17 we obtain

T

(N27)" = {y € Nwg (4) = ¢ € Auty (9 (A7}
= {Z I~ NNS (Ax) . Czy c Auth;N (QDC;,; (Aw))<ﬂ}x’
— {z € Nng (A%) @ ¢, € AutN{,,N (pcs (Ax))wz}ma

_ {z € Ny, (A7) : c. € Autn, (e, (AI))“’C“}QE.

A
Where we are using Corollary 2.4.19 for the last identity. The result follows by
defining N7 := (N27)".

Finally we obtain the following ]

Lemma 2.4.21. With the notation of Lemma 2.4.17 for every x € () we have that

m(NgN) = N7. Moreover, if ¢ = "7, we also have that c,p = (cop)” and that
Nr _ NN

N7 =N.7.

Proof. First of all notice that

o N ={y € Ng("(¢(4))) : (cap) " eyeatp € Auty, (A)},
={y €' (Ng(¢(A))) : ¢ eprp € Aut, (A)},
={"2: 2€ Ng(p(A)) and p~'c.p € Auty, (4)} = x(NgN).
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This proves the first half of the lemma. For the second part we can use the above and

the identity ¢ = ¢©™* to obtain the identities below
P At (A) = (AutNJ;N (¢ (A))) = Aute oz (cap (4)) = Aut e (o (4)).

This proves both that ¢, = (¢,0)"” and that N7 = NNz [

Lemma 2.4.21 allows us to introduce the following definition.

Definition 2.4.22. Let A, Q) € F¢ with A < Ng, let $ € Homx (A, Q) if there exists
a representative ¢ of @ such that ¢ = ©¥* then, from Lemma 2.4.21, this happens
for every representative of . If this is the case we write = ©"* and define the
normalizer before ¥ in N as Ngf := N)7. Because of Lemma 2.4.21 we know

that Ngf does not depend on the choice of representative ¢ of 3.

As we show in Theorem 2.4.27, for every P,() € F° and every (A, %) € [P x ] such
that » = %" the groups Ngf play, in the context of fusion systems, a role analogous

to the one that the groups H* N K play in Equation (2.12).

Let’s now look into what objects play, in the context of fusion systems, a role analogous

to that of the biset representatives © € [H\G/ K] of Equation (2.12).

Definition 2.4.23. Let ) € F¢. We define an equivalence relation ~ in [P Xz Q] by
setting (A, ) ~ (B, 1) if and only if there exists an isomorphism § € Homo(x ) (4, B)
such that @ = 0. Lemma 2.4.17 ensures us that for each equivalence class in
[P x Q] / ~ we can choose one representative (A, ) such that A is fully Nz-normalized
and p = p"7. We define the product of Nr and Q in F to be any subset

[Nz x Q] C [P Xz Q)] formed by such representatives.

We want the elements [Nz x Q] and Ngf to play, in the context of fusion systems, the
same role that the elements [H\G/K] and H* N K play in Equation (2.12). In order
to do so we need to be able to define something analogous to the set 2 [H* N K\ K/J]
of Equation (2.12). In other words, for every (A, %) € [Nz x ()] we need to be able to

lift the morphism % : A — Q in a unique way to a morphism ¢ : Ngf — Q.

Proposition 2.4.24. Let Q € F¢, let (A, ®) € [Nr x Q] and let © be a representative

Nr
of p. There exists a morphism ¢ : Nfovf — @ in F such that ¢ = @Lﬁ“’ . In particular,
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from Corollary 2.4.18, we have that ¢ (Né,vf) = NfON < Ng (¢ (A)). Moreover there
— _ iV]:
exists a unique morphism ¢ : Ngf — Q in O (F°) such that @LZ” =P and ¢ is

necessarily a representative of .

Proof. If the first part of the statement is satisfied then the morphism (% in O (F¢) having
_ nNNF NF
representative ¢ satisfies @LZ‘P = ®. From [Li07, Theorem 4.9] we know that LX“”

is an epimorphism. Therefore, for any morphism ): Né,vf — Q in O(F°) satisfying

Nr

N
— N,7 _ =N . - = . . =
Yi,* =P =¢L,” , we must necessarily have ) = . This proves uniqueness of ¢.

We are now only left with proving that there exists a morphism ¢ as in the statement.

We know from definition of [Nz x @] that A € F°. Therefore we must also have
¢ (A) € F¢ and, in particular, ¢ (A) is fully F-centrialized. From [St03, Proposition
4.4] (see also [Li07, Proposition 2.7]) we can now deduce that there exists a morphism
Nbsw .o
¥: N, =5 (see Definition 2.2.5) such that 1v, ©* = 1. By definition of N7 (see
Lemma 2.4.17) we have that Nfovf < NL%@. Therefore we can apply Corollary 2.4.18
Ns
(taking ¢ = wLNgf;) to deduce that v (Névf) = N@N. In particular we have that
¢ (N)Y7) < Q. This allows us to define the morphism ¢: NY7 — @Q in F by setting

Nr
Ny

A

N
& (x) == () for every z € N(f)vf. Since 91, Q7 — ngp then we have that ¢ = @i,

thus completing the proof. O

Notice that maximality of the pairs (A,%) € [N x Q] does not imply that the pair
(Ngf,é) given by Proposition 2.4.24 satisfies (Ngf,é) = (A, ®) since we might have

that Ngf £ P. However, we have the following corollary.

Corollary 2.4.25. Let Q € F¢ and let (A, ) € [Nr x Q] then A = Ng}' nP.

Proof. From Lemma 2.4.17 we know that A < Ngf and from Definitions 2.2.17 and

2.4.23 we know that A < P. Therefore we can deduce that A < Ngf N P. Then, using

. . . . .. NYF NYFAp .
the notation of Proposition 2.4.24, we obtain the identity ('OLN%?QP i = . Since
7

NY7NP < P then we can deduce from maximality of the pair (A, %) that A = NgFﬂP

thus concluding the proof. O

From Corollary 2.4.25 we now obtain the following.

86



Lemma 2.4.26. Let Q € Nr N F* and let (A,p) € [Ny x Q|. For every (B,¢) €
[P xn, N27| and every representative i) of 1 we have that 1 (B) = NJ7 N P = A.

Proof. Because of Corollary 2.4.25 we just need to prove that ¢ (B) = Ngf N P for any
representative ¢ of 1. Since v is a morphism in Nz and, by definition, every morphism on
Nz sends subgroups of P to subgroups of P, then ¢ (B) < P. Therefore we must have
Y (B) < Ngf N P. From definition of Nz this implies that there exists ¢ € Auty, (P)
such that ¢ (z) = ¢ (z) for every 2 € B. Define now 0: C' := 1)~} (Ngf NP) — Ngf
by setting 6 () := ¢ (z) for every 2 € C. Then we have that B < C and 9@ = 1. Since
6 is a morphism in Nz and C' < P, from maximality of the pair (B,@) (see Definition
2.2.17), we can conclude that (C,0) = (B, ). In particular we have that v (B) = 6 (C)
and since 0 (C) = 1 <z@*1 (Ngf N P)) = Ngf N P the result follows. O

We have now gathered all the ingredients needed to prove Theorem 2.4.27 with which

we conclude this subsection.

Theorem 2.4.27. Using Notation 2.4.9 let () € F° (see Definition 2.2.11) and for every
(A, ) € [Nr x Q] (see Example 2.2.8 and Definition 2.4.23) let ¢ be as in Proposition
2.4.24. Then, for every (A, %) € [Nx x Q] we can take [P Xy, Ngf] (see Definition
2.2.17 and Lemma 2.4.21) so that

[P x7Q]= |_| & [P xny NJ7T,
(AP)EINFXQ]

where

P[P xns NG7] o= L] {(B,20)}.

(B,E)G[PfoNgf]
Proof. Let (A, ) € [Ny x Q], let (B,¥) € [P xn, NJ7], let ¢ be a representative
of Y and let ) : B — Y (B) be the morphism 1) seen as an isomorphism onto its
image. From Lemma 2.4.26 we know that ¢ is in fact an isomorphism from B to
A. From definition of Nr (see Example 2.2.8) we can now choose an automorphism
) € Auty, (P) satisfying 15 = 151, For every D < P we denote by ¢p: D — ) (D)

the isomorphism in Nz obtained by restricting ¢ to D.

From the universal property of products, we know that there exist a unique (C,) €

[P x7 Q] and a unique 7: B — C such that §5 = $1 and %7 = 5. From the
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second identity we can deduce that ¥ € O (Fp) (see Example 2.2.2 and Definition

2.2.10). Therefore we can choose [P Xy, Ngﬂ so that B < C and 7 = /§. With

this setup the first identity can be rewritten as 5@ = Q1 = EZ. Using this and

the notation introduced at the start we obtain the identity 5@251&(0) = . Since

(C,0) € [P xzQ] we know from Proposition 2.2.18 (4) that there exists z € P
satisfying <1ﬂ (C)x,9¢510m> € [P xx@Q]. With this setup we obtain the identities

P(C

=005 c, cx—uf; ) and AT ch—wﬁ(c). Since (A,9) € [Nr x Q] C [P xr Q]

P(C)
we can conclude from the previous identities and the universal properties of product that

(A, p) = (1/3 (C)* ,9@/35—101,) and ¢,—1 A Id,. In particular we have that A = ¢ (C)
and, from Lemma 2.4.26, we can conclude that B = C. This implies that /5 = Idp
which allows us to deduce from the identity 6.5 = $¢ that (B,py) = (C.0) €
[P x 7 Q] thus proving that

U U {(B,¢v)} C[PxFQ]. (2.14)

(AP)EINFX FQ] (B,@)e[prngﬂ

Let’s now prove the other inclusion. By definition of [Nz x Q)] (see Definition 2.4.23) we
know that for every (C,6) € [P xz Q)] there exist a unique (4,%) € [Nr x Q] and an

NF

isomorphism 7 : C' — A in O (Nx) such that § = 57 = $L§¢ 7. From the universal
properties of products we know that there exist a unique (B,ﬂ) € [P X Ny Névf] and
a unique map ¢ : C — B such that ES = % and that 6 = ngf 5. Joining
the second identity with the previous one we obtain the identity § = $¢ 5. Since
(B,E@) € [P Xz Q)] as shown in the first part of the proof we can conclude from the
universal properties of products that 6 = Idz and that (B,EE) = (C’, 5). This gives

us the inclusion converse to that of Equation (2.14) thus leading us to the identity

PxrQ= U {(B.2v)}-

(A,Q)E[N]:X]:Q] (B,E)G {PXN]__Ng]:]

We are now only left with proving that the above unions are disjoint.

Let (A,@),(A’,a) € [Nr xQ)], let (B,@) S [P X Ny Ngf] and let (B’,W) €
[P X Ny Ngf] such that (B’,;W) = (B,EE) Fix representatives, 1) and ¢’ of
¢ and ¢ respectively, let ¢ and ¢’ be the isomorphisms obtained by viewing ¢ and v
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respectively as isomorphisms onto their images and let ¢ and ¢’ be as in Proposition

2.4.24. With this setup we have that ¢ 1) = @E and that EW = JJ Thus, from the

identity p o) = av we can conclude that @ = EJF Since @@b—l is an isomorphism
in O (Nx), by definition of [Nz x @], we can conclude that (4,%) = (A4',¢).

Take now a representative ¢ of @ and let : A — ¢ (A) be the isomorphism obtained by

viewing ¢ as an isomorphism onto its image. With this setup we have that @Z = Lg(A)&E

and that @@ = Lg(A)Eﬁ. Thus we obtain the identity Lg(A@Z = Lg(A)EJ and we can
deduce that there exists x € @ such that ¢,y = @’ as isomorphisms from B to
¢ (A). Since i) is an isomorphism from B to A, from the previous identity, we can
conclude that = € Ny (¢ (A)). Always from the previous identity we obtain the identity
¢ e, = 't Since both ¢ and ¢ are isomorphism in Nz we can deduce from
Lemma 2.4.26 that @Z)’@E*l € Auty, (A). Thus, from Lemma 2.4.17, we have that
x € N;N. Now let ( be a representative of ¢ as in Proposition 2.4.24. From Corollary
2.4.18 we know that there exists a unique y € Ngf such that x = ¢ (y). With this
setup we can deduce that "¢, » = ¢~ ¢, = c,. Thus we can conclude that ¢, = 7
and, since y € Ngf we can conclude by definition of the orbit category (see Definition

2.2.10) that ¢ = L(‘jcyz/? = ngﬂ’ = 1)’ thus concluding the proof. O

2.4.5 The trace from Nr to F

Through this subsection we will be using Notations 2.1.1, 2.2.3, 2.2.9, 2.2.21, 2.2.31
and 2.4.9.

As we already explained at the beginning of Subsection 2.4.4 given a fusion system H C
F and a Mackey functor M € Mackg (F*) the trace tr;: End (M |,) — End (M)
is, in general, not defined. However, just like Equation (2.12) can be used in the case
of Mackey functors over finite groups in order to prove that trace maps compose nicely,
Theorem 2.4.27 can be used in the case of centric Mackey functors over fusion systems
in order to define trf_ and prove that trfj_trY* = tr7 (see Examples 2.2.2 and 2.2.8

for notation). More precisely we have the following.

Definition 2.4.28. Let R be a p-local ring and let M € Mackg (F€). From Proposition
2.2.39 we know that the isomorphism class S € B%" of S has an inverse in BZ". Thus,

using the notation of Examples 2.2.2 and 2.2.8 and of Proposition 2.2.43, we define the
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trace from Nr to F as the R-module morphism

M ——1 M ML
wl, = (5 Y ek ey + End (MUF,) = End (M).
APeiNzxs] 7 4

From Items (7) and (8) of Proposition 2.3.9 we know that Mtrﬁf does not depend on
the choice of the set [Nz x S] (see Definition 2.4.23). Whenever there is no confusion

regarding M we simply write try := Mtrﬁf.

Lemma 2.4.29. Let R be a p-local ring. Regardless of the centric Mackey functor

involved we have that tr%,_tr}” = tr%. . In particular trf _ sends Trp” surjectively onto

Tr}, (see Definition 2.3.12).

Proof. For every (A,3) € [Nz x S] fix representatives ¢ of @ and ¢ of & as in
Proposition 2.4.24 and for every (B,E) € [P X Ny Névf] fix a representative v of 1.
Let @, ¢ and ¢ denote the isomorphisms obtained by viewing ¢, ¢ and ¥ respectively
as isomorphisms onto their images. With this notation and the notation of Proposition

2.2.43 we have that

'l N. > N N.
(&), ol o = Y % ey TE T
(A,B)E[N£xS] *‘( 3 ) 3
- F Nr
_ v potr? . T
- Z Z trf(;@y;) LSRR A
(A,p)E[N£rxS] (B,E)G[PfoNgf] ?

= F @, Fp
o Z Z tr]:@(i;(B)) TFp -

(A,Q)E[N]:XS] (B,E)E {PXN]__Ng]:]

Where we are using Item (7) of Proposition 2.3.9 for the first identity, Item (9) for the
second identity and Items (3) and (5) for the third identity. From Theorem 2.4.27 we
can now replace the two sums in the last line of the previous equation with a sum over
the pairs (C,0) € [P xx S] and replace the isomorphisms ¢ with the isomorphisms
6 where 6 is a representative of § and 0 is the isomorphism obtained by viewing 6 as
an isomorphism onto its image. With this change in mind we can apply Items (3) and
(9) of Proposition 2.3.9 in order to obtain the identity (S"), try tr} = trf 1% trf .
Applying now Item (11) we obtain from here the identity (S-) trf tr}* = (S-) trf .

Finally, from Propositions 2.2.39 and 2.2.43, we know that (E)* is invertible and,
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therefore, we can deduce from the previous identity that trf tr%{ = try, thus

concluding the proof. O

Corollary 2.4.30. Let R be a p-local ring and let M € Mackg (F€). For every family

X of elements in Fp N F¢ we have that trf; (Try”) = Trf.

Proof. Because of linearity of tr}_ it suffices to prove the statement when X = {Q}
for some Q € Fp N F¢. From Proposition 2.3.9 (3) we know that trf trig = trfTQ
and that trglf trig = tr%{; Thus, from definition of Tré?T and Trgf (see Definition
2.3.12), we have that TI"Z; = tr]@P (Trgp) and that Trgf = tr%f (Trgp). Since Trgf C

End (M H\E,F) the result now follows from the above and Lemma 2.4.29 after applying

tr%, to Tri”. O

Corollary 2.4.30 allows us to give the following definition.

Definition 2.4.31. Let R be a p-local ring, let M € Mackg (F¢), let X be as in
Notation 2.4.9 and let E}” := End (M %) / Tr¥” and E% := End (M) / Tr%. We
define the quotient trace from Nz to F as the R-module morphism trﬁf : Eﬁf —
EY, obtained by setting tr_ (f) := trf, (f) for every f € End (M 1% ). Here we are
using the overline (%) to denote the projections onto the appropriate quotients. Corollary

2.4.30 assures us that trf_(f) does not depend of the chosen preimage f of f.

An important property of the R-module morphism trﬁf of Definition 2.4.31 is the

following.

Lemma 2.4.32. With notation as in Definition 2.4.31 view tr},_ as a morphism from

Nr ._ m.Nr Nr F . F F L F g ;
Trp” = Trp” / Try” to Trp := Trp /Try. Then try_ is surjective and commutes with

multiplication (i.e. tr}, (fg) = tr, (f) trf, (g) for every £, € TYN7). In particular,

if Try” has a multiplicative unit, then trfy is a surjective R-algebra morphism.

Proof. During this proof we use the overline symbol (*) in order to represent the
projection of an endomorphism on the appropriate quotient ring. From Corollary 2.4.30
we know that the map @ viewed as in the statement is surjective. If Tr}” has
a multiplicative unit (denoted 1Trgf) and commutes with multiplication then, from

surjectivenes, we necessarily have that try (1Trz;f> = lpz. Thus we only need to

prove that trﬁf commutes with multiplication.
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Let H € {Nx, F}, let (A, ®) € [P x4 P| and let ¢ be a representative of . Since
A < P, pis injective and both A and P are finite groups then we have that ¢ (A) < P
unless A = P. From definition of X' (see Notation 2.4.9), this is equivalent to saying that
¢ (A) € X unless ¢ € Auty, (P) = Autg (P). On the other hand, from maximality of
the pairs in [P x4 P] (see Definition 2.2.17), we have that (P, @) € [P x4 P] for every
? € Auton,) (P) = Autogr) (P). Let M € Mackg (F°) and let f € End (M |])).

From the above discussion and Proposition 2.3.9 (9) we can conclude that

rﬁp (trﬁp (f)) el f4 Trﬁp ) where FPf.= Z e

peAuto(F)(P)

From Proposition 2.3.9 (3) we also have that tr% (Tr}") = Tr’. Using the above and

Proposition 2.3.9 (10) we can conclude that

o, (Nt (9) = 0%, (Fr, (0, (9))) = ok, (f 7F9)

for every f,g € End (M L;P). On the other hand we know from Lemma 2.4.29 that
trdy (tr%f (a)) = trf, (@) for a € {f,g.f 7"y} and, therefore, we can conclude

that

ok, (7 () ok, (03 (9) = o, (037 (F7P9)) = o, (03 ()6 ().

Since all elements in Trgf are, by definition, of the form tr%fj (f) for some f €

End (M |%,) the result follows. O

2.4.6 Green correspondence for centric Mackey functors

Through this subsection we will be using Notations 2.1.1, 2.2.3, 2.2.9, 2.2.21, 2.2.31
and 2.4.9.

In this subsection we follow similar ideas as those Sasaki uses in [Sa82, Proposition 3.1]
in order to prove that the Green correspondence holds for centric Mackey functors over
fusion systems (Theorem 2.4.38). To do so we need to replace some results valid for
Mackey functors over finite groups with the analogue results developed in Subsections

2.4.2 to 2.4.5. First however we need to prove that Proposition 2.4.7 can be applied to
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centric Mackey functors over fusion systems just like it can be applied to Green functors

(see Example 2.4.8).

Let R be a complete local and p-local PID and let M € Mackg (F¢) be indecomposable

with vertex P (see Corollary 2.3.19). Using Notation 2.4.9 we can define

A:=End (M 1%,), B :=Tr} = End (M),
C = Trgf, K = Tri,

I := Trgf, J = Trgf,

f= trﬁf, qg:= rﬁf.

Here we are using Theorem 2.3.17 and the fact that M has vertex P to define B and
we are viewing f as a morphism from Tr}” to Tr} (see Lemma 2.4.29) and Iy, as a
morphism from Tr% to Tr” —i—Trgf (see Proposition 2.4.16). With this setup we can

now provide the following.

Lemma 2.4.33. With notation as above the conditions needed to apply Proposition

2.4.7 are met. Moreover Idy; is a local idempotent of End (M) satisfying v}, (Ida) =

Proof. Since R is a complete local PID and M is indecomposable we can apply [CR81,
Proposition 6.10 (ii)] to deduce that End (M) is a local ring. In particular Id,, is a local
idempotent of End (M). The identity r3_ (Idy) = Idzvuﬁf follows immediately from
Definition 2.3.8.

Therefore, if we prove the first part of the statement, the second part follows.

Let us start by proving that A, B,C, K, I, J, f and g are as defined in Proposition 2.4.7.
First of all notice that End (M |% ) and End (M) are both R-algebras. From Lemma
2.3.13 we also know that Tr% is a two sided ideal of End (M) and that Tr}”, Tr}” and
Trgf are two sided ideals of End (M | ). By definition of X (see Notation 2.4.9) we
know that for every @ € X then Homz (Q, P) # (). Therefore, from Lemma 2.3.14 we
can conclude that Tr}” C Tr}” and since Tr}” is a two sided ideal of End (M 1%,)
then we can view Tr}” as a two sided ideal of Tr}¥” (seen as a ring with potentially

no unit). As mentioned in the statement we can use Lemma 2.4.29 to view tr}_ as a
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morphism of R-modules from Tr}” to Tr}. Finally, writing Eg := End (M L;Q) for
any @ € F¢, we have from Proposition 2.4.16 that

rﬁf (Tr}) = rﬁf (tr%, (Ep)) C tr]E Z tr = TelV7 + Ter
Qey

Thus, we can view rﬁf as an R-module morphism from Trg to Trgf +Trgf

With this setup we just need to prove that the Conditions (1)-(8) of Proposition 2.4.7
are met for our choices of A, B,C, K, I, J, f and g.

(1) For Condition (1) we need to check that the following inclusions are satisfied

(Trgf ﬁTr ) Trgf C Tr Trgf (Trgf ﬂTer) C Ter

Trﬁf C Trgf ﬂTrgf .

From definition of X and ) (see Notation 2.4.9) we know that X C ) and that
every element in X' is a subgroup of P. Therefore, from Lemma 2.3.14 we can
conclude that Try” C TrN” and Try” C Trgf. This proves the bottom inclusion.
Let's now prove the top right inclusion (the top left inclusion follows similarly).
Let f € End (M |%,) and for every Q € Y let go € End <M Lﬁ@) such that
>0y trgg (90) € Trp” NTr7. Then, from Items (9) and (10) of Proposition

2.3.9, we have that

) (f) (Z tr}” (gq) ) > 3 (£ (657 (9)))

Qey Qey

=Y Y e (e, (5 )

Qey( 7<p)e|:Q><N]: ]

Where ¢ is a representative of ¥ seen as an isomorphism onto its image. Fix now
Q €Y and (A, %) € [@ Xn, P] and take ¢ as before. Since M is F-centric,
if A ¢ F° we have that M @EA: 0 and, in particular, r]{i (90) = 0. We can
therefore assume without loss of generality that A € F¢. Since A € Fo N F*
and @ € Y then we can conclude from definition of ) (see Notation 2.4.9) that
A € Y. From this we can deduce that ¢ (A) € Y and since ¢ (A) < P we can

conclude that ¢ (A) € X. With this in mind, applying Items (3) and (10) of
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Proposition 2.3.9, we obtain that

Yl F Yl oF
tr%f (f tr];i(A)( <rf‘j (g@)))zﬁ%(m <r§5<A) (f) (r;j (gQ)>> ETr;V&) C Tri” .
Therefore Trp” (Trp”NTr)” ) C Try” thus proving that Condition (1) is satisfied.

For Condition (2) we need to check that 17, (Tr%) C Trgf . For every Q €
X we have that Q < P and, therefore, from Proposition 2.3.9 (3), we have
that Tr}, = tr%, (Tr"). From Proposition 2.4.16 we can then deduce that
I (Tx}) C trgg (Trgp) + Trgf. Applying Proposition 2.3.9 (3) once again we
obtain that tr]}flf (TrgP) = Trgf and, since Q € X C Y, we can deduce that
Trgf - Trgf. Thus we can conclude that rﬁf (Trg) - Trgf. Since this works

for every (Q € X the result follows.

For Condition (3) we need to check that tr%_ (Try”) C Tr%. This follows from

Corollary 2.4.30.

For Condition (4) we need to check that try, , seen as a morphism from Tr}” to

Tr7, is surjective. This is given by Lemma 2.4.29.

For Condition (5) we need to check that r3,_ sends idempotents to idempotents.

This follows immediately from definition of 17 _.

For Condition (6) we need to check that the R-linear maps tr} _: Trj” / Triy” —
Ty, / Trh and ﬁ cTrp ) Trh — (Trgf +Trg7) /Trgf commute with multi-
plication. From Lemma 2.4.32 we know that tr{; - commutes with multiplication.

On the other hand it is immediate from definition that 1{, commutes with

multiplication and, therefore, so does rﬁf.

For Condition (7) we need to check that the natural isomorphism

s:Trp” / (Trgf ﬂTrgf) —» (Trgf —i—Tr)A,[f) /Trgf

and the natural projection

q: Tep” [ Teh7 — Teh7 ) (Trgir N Trgf )

satisfy sq = 1 tr}, . Abusing a bit of notation we denote with an overline (7) the

projection of an endomorphism on the appropriate quotient. With this notation,
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for every f € End (M |%,), we have that

For (0 (035 (D)) = 1 (07, (D) = 037 (D) =5 (a (w57 (1))

Where we are using Lemma 2.4.29 for the first identity, we are using Proposition
2.4.16 and the fact that Trgir = 0 for the second identity and we are using the
definitions of ¢ and s for the third identity. Since every element in Tr” / Tri” is

of the form trﬁlf (f) for some f € End (M |7%,) the result follows.

(8) For Condition (8) we need to prove that for every idempotent f € End (M |{;))
there exists a unique (up to conjugation) decomposition of f as a finite sum of
orthogonal local idempotents. From Proposition 2.2.24 we know that the R-
algebra uxr (Nz) is finitely generated as an R-module. Therefore we can apply
the Krull-Schmidt-Azumaya theorem (see [CR81, Theorem 6.12 (ii)]) together with
[CR81, Proposition 6.10 (ii)] to conclude that Condition (8) is satisfied.

Since all conditions are verified we can conclude the proof. ]

Corollary 2.4.34. With notation as in Lemma 2.4.33 there exists a unique way (up to

conjugation) of writing
n
ldyz =) &
i=0

where each ¢; is a local idempotent in Trgf and they are all mutually orthogonal.
Moreover there exists a unique j € {0, ... ,n} such thate; € Trgf — Trgf and, defining

(Idar) . = €; the following hold
try, ((Idy)y,) =1dy  mod Try, v}, (Idy) = (Idy)y, mod Try”.

Proof. This is an immediate consequence of applying Proposition 2.4.7 to the setup of

Lemma 2.4.33. O

Corollary 2.4.35. Let R be a complete local and p-local PID and let M € Mackg (F°)
be indecomposable with vertex P (see Corollary 2.3.19). There exists a unique (up to
isomorphism) decomposition of M iﬁf as a direct sum of indecomposable F-centric

Mackey functors

M 13, = é M.
i=0
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With this notation, there exists exactly one j € {0,...,n} such that M; has vertex P
while, for every other i € {0,...,n} — {j}, we have that M, has vertex in Y. We call

M; the Green correspondent of M and denote it by My, .

Proof. Applying Corollary 2.4.34 we know that there exists a unique (up to conjugation)

decomposition of Id,,; = of the form
NF

Idjvuﬁf = (IdM)Nf + Zl €

where the &; and (Idy)y, are mutually orthogonal local idempotents satisfying
(IdM)Nf € Trgf — Trgf andg; € Trgf foreveryi =1,...,n. From this decomposition
and [CR81, Proposition 6.10 (ii)] we can deduce that there exists a unique (up to
isomorphism) decomposition of M iﬁf as a direct sum of indecomposable Mackey

functors and it is given by
Fo_ F T F
M %= (du)y, (M%) & @ (ML)
i=1

Since (IdM)Nf € Trgf — Trgf, using Theorem 2.3.17, we can conclude that
(Idar) w, (M |f;,) has vertex P. On the other hand, since ¢; € Trgf and Trgf is
an ideal (see Lemma 2.3.13) we have that ¢; € ¢; Trgf ei = ¢;End (M ) &;. Since
g; 1s a local idempotent of End (M iﬁf) then we can conclude that ¢; Trgf g; is a local
ring and, therefore, there exists () € ) such that ¢; Trgf g; = ¢; End (M Lﬁf) g;. In
particular ¢; is Q-projective and, from Theorem 2.3.17, we can conclude that &; (M | ))
is also Q-projective. Since ) € ) we can conclude from minimality of the defect set that
ei (M %) has vertex in ). The result follows by setting My, := (Ida)y, (M 1F,)
and M; :=¢; (M |f,). O

Corollary 2.4.35 gives us the first half of the Green correspondence. Let's now get the

other half.

Lemma 2.4.36. Let R be a complete local and p-local PID, let N € Mack}, (Nr)
be indecomposable with vertex P. Using the notation of Corollary 2.4.35 there exists an
indecomposable M € Mackg (F¢) with vertex P such that My, = N. Moreover M is

a summand of N 13,2 My, 1%,
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Proof. From Proposition 2.2.24 we know that uz (F) is finitely generated as an R-
module. Therefore we can apply the Krull-Schmidt-Azumaya theorem (see [CR81,
Theorem 6.12 (ii)]) in order to write N 172 @."  M;. Where each M; € Mackg (F*)
(see Proposition 2.2.30) is indecomposable. From Lemma 2.4.12 we know that N is a
summand of N 1% 1. Since the restriction functor is additive we can now use the fact
that NV is indecomposable and uniqueness of the Krull-Schmidt-Azumaya theorem (now
applied to N 1_|%,) in order to chose j € {0,...,n} such that N is a summand of
M; Lﬁf. To simplify notation let us define M := M;. We are now only left with proving
that M has vertex P. Since N is P-projective and M is a summand of N Tﬁf then
we can deduce from Theorem 2.3.17 that M is P-projective. From minimality of the
defect set (see Corollary 2.3.6) we can now conclude that the vertex V), of M satisfies
Vi <z P (see Notation 2.2.3). Assume that V), <z P. From Corollary 2.3.4 (2) we
can deduce that there exists () < P such that M is Q-projective. From Theorem 2.3.17
we can then deduce that there exists L € Macks, (Fq) such that M is a summand of
L' 1, where L' :== L ng. Since N is a summand of M |} we can deduce that
N is a summand of L' 4 |, . From Lemma 2.4.12 we can now deduce that there
exists an V-projective K € Macky, (Nz) such that L' 1% _|{ = L'@K =L ng DK.
Since ) < P by hypothesis then we can conclude that Q € X C Y and, therefore, that
L T%f; @ K is Y-projective. Since N is an indecomposable summand of L T££ B K we
can then conclude from Corollary 2.3.19 that the vertex of N liesin ). Since P ¢ ) this
contradicts the hypothesis that N has vertex P. Therefore we cannot have V); <r P.
Since we have proven that V3, <z P we can therefore conclude that V3; =7 P. Since
P is fully F-normalized (see Notation 2.4.9) then we can conclude that M has vertex
P. We can therefore apply Corollary 2.4.35 to M in order to conclude that there exists
a unique (up to isomorphism) indecomposable summand My, of M iﬁf with vertex P.

Since N is a summand of M | and has vertex P the result follows. O

Lemma 2.4.37. Let R be a complete local and p-local PID, let M € Mackg (F°)
be indecomposable with vertex P and let My, be as in Corollary 2.4.35. Since jig (F)
is finitely generated as an R-module (see Proposition 2.2.24) we can apply the Krull-
Schmidt-Azumaya theorem (see [CR81, Theorem 6.12 (ii)]) together with Lemma 2.4.36

in order to write

My, 1%,= M o @ M.
=1
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Where each M; is indecomposable. With this notation we have that each M; is F-centric

and has vertex F-isomorphic to an element in X (see Notation 2.4.9).

Proof. From Proposition 2.2.30 we know that M; € Mackg (F€) for every i = 1,...,n.
From Corollary 2.4.35 we know My, has vertex P. Therefore, from Theorem 2.3.17,
we know that there exists N € Mack}, (Fp) such that My, is a summand of N T%{
Since induction preserves direct sum decomposition then we can conclude that each M;
is a summand of N T];P. From Theorem 2.3.17 this implies that each M, is P-projective.
Assume now that there exists j € {1,...,n} such that M, has vertex P. Since restriction
preserves direct sum decomposition we can conclude, using Corollary 2.4.35 that, My, @
(Mj)y, is a summand of My, 14 _1{,. However, from Lemma 2.4.12, we know
that there exists an V-projective L € Macky, (Nr) such that My, 1% 14, = My, &
L. From uniqueness of the Krull-Schmidt-Axumaya theorem we can then deduce that
(M;)y, is a summand of L. Thus, from Corollary 2.3.19, we can conclude that (M;)
has vertex in ). This contradicts Corollary 2.4.35. Thus we can deduce that none of
the M, has vertex in P. Since they are all P-projective then we can conclude from
minimality of the defect set and Corollary 2.3.4 that they are all X-projective. From
Corollary 2.3.19 this implies that each M; has vertex F-isomorphic to an element in X

thus concluding the proof. O

Putting the previous results together we can prove that the Green correspondence holds

for centric Mackey functors over fusion systems.

Theorem 2.4.38 (Green correspondence). Let R be a complete local and p-local P1D
(see Definition 2.2.40), let M € Mackgr (F¢) (see Definition 2.2.29) be indecomposable
with vertex P (see Definition 2.3.7 and Notation 2.4.9) and let N € Mack], (Nr)
(see Example 2.2.8) be indecomposable with vertex P. There exist unique (up to
isomorphism) decompositions of M |3, and N 11, (see Definition 2.2.28) into direct

sums of indecomposable Mackey functors. Moreover, writing these decompositions as

Miﬁf = @Mi, NTﬁf = @Nja
i=0 Jj=0

there exist unique i € {0,...,n} and j € {0,...,m} such that both M; and N;
have vertex P. We call these summands the Green correspondents of M and N and

denote them as My, and N7 respectively. Moreover every indecomposable summand of
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M Lﬁf other than My, has vertex in Y (see Notation 2.4.9) while every indecomposable
summand of N 14, other than N7 has vertex F-isomorphic to an element in X (see

Notation 2.4.9). Finally we have that (My,)” = M and that (NF)NF =~ N.

Proof. From Lemma 2.4.36 we know that there exists an indecomposable L €
Mackg (F¢) with vertex P such that N = Ly,. It follows from Lemma 2.4.37 that
there exists a unique (up to isomorphism) decomposition of N Tﬁf as the one in the

statement and that L = N7 In particular (Nf)NF ~ N.

From Corollary 2.4.35 we know that there exists a unique (up to isomorphism)
decomposition of M |} as the one in the statement. From Lemma 2.4.37 and the first

part of the statement we have that (My,)” 2 M which concludes the proof. O

Before concluding this paper let us see an example where Theorem 2.4.38 can be applied.

Example 2.4.39. Let R be a complete local and p-local PID and let F be a fusion
system. For example, we can take R = Z, and, using the notation of Example 2.2.2, we
can take the fusion system F := F; := Fp, (GL2 (3)), or the Ruiz-Viruel exotic fusion
system F := JF, on 7% having two Fy-orbits of elementary abelian subgroups of rank 2
the first of which has 6 elements while the second has 2 elements (see [RV04, Theorem

1.1]).

Choose now P € F¢ fully F-normalized and minimal under the preorder <jx (see
Notation 2.2.3). For F; we can take P := P, to be any one of the two characteristic
elementary abelian subgroups of rank 2 of Dg. For F; we can take P := P, to be one
of the two elementary abelian subgroups of rank two whose Fs-orbit contains only 2

elements (make sure to take one that is fully F,-normalized).

In order to visualize this example it might help to notice the following identities

]\/:7:1 (Pl) :.Fpg (54), ]\/:7:2 (PQ) :./—'.7}~_+2 (L3 (7) 3)

The first one follows after a straightforward calculation while the second one follows

from [RV04, Theorem 1.1] and [Br05, Section 4.

Let Z be as in Proposition 2.2.33 and for every = € ugr (F) denote by T € ugr (F) /T its
image via the natural projection. From Proposition 2.2.24 we know that px (F) is finitely

generated as an R-module. As a consequence ug (F) /Z is also finitely generated as
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an R-module. Therefore we can apply the Krull-Schmidt-Azumaya theorem (see [CR81,
Theorem 6.12 (ii)]) together with [CR81, Proposition 6.10 (ii)] in order to conclude
that, for every P € F¢, there exists a unique (up to conjugation) decomposition of ﬁ
in yur (F) /T as a sum of orthogonal local idempotents. Let 17 = > oo T; be such
decomposition. Define now T := T. For example, for F; we have that Autz, (P) = S
and, therefore, we can take ¢ € Autz (P;) to be one of the two elements of order 3
and T := %]_511— 18, —

AC, — 3,2 is a local idempotent in the decomposition of Ifjll.

Since IFxI5 =T by construction, from Proposition 2.2.24, we know that
T= Z )\jlz(z“j)c“’f RZ/'

for some \; € R, some A; < P and some isomorphisms ¢;: A; — ¢, (A4;) in F such
that ¢, (4;) < P. Since P is minimal F-centric, by definition of Z, we can conclude that
m = 0 unless A; = P. When this is the case then we necessarily have that
w; € Auty (P) = Auty, (P). Viewing ug (Nx) as a subset of ug (F) (see Corollary
2.2.25), we have in particular that T € sig (N7). Define now the two sided ideal J of
pur (Nz) as J :=Z N ur (Nx). We know that pug (Nx) /T = (ur (Nx) +Z) /Z and,
therefore, we can view ur (Nz) /J as a subset of ug (F)Z and T as an idempotent
in ur (Nx) /J. Since T is a primitive idempotent of ug (F) /Z (recall that every local
idempotent is primitive), it is also a primitive idempotent of pur (Nxz) /7. In particular
we have that M := (ur (F) /Z)ZT and N := (ur (Nx) /J) T are indecomposable as left
pr (F) /T and pr (Nx) /J-modules respectively. In particular they are indecomposable
as ur (F) and pur (Nz) modules respectively (i.e. as Mackey functors over F and Nx
respectively). From definition of Z and J we can also conclude that M € Mackg (F°)

and N € Macky, (Nx).

From Lemma 2.2.22, Proposition 2.2.24 and [Li07, Proposition 4.4] we know that Z is
spanned as an R-module by elements of the form If(c)c@Ré with C' € Fa\ (FaNF°).
In particular R2 € g (F4) NZ and we can write any element in ZI5 (resp. JIL)
as a finite sum of elements of the form be with b € ugr (F) (resp. g (Nz)) and
c € pg (Fp) NZ. Therefore, for every y ®,.(rp) T € Mp (resp. y @ur(F+) T € Np)
such that y € Z (resp. y € J) we have that y ®,,(7,) T = 0. This allows us to

define the morphisms of Mackey functors u¥ : M — Mp and u® : N — Np by setting
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udl (@) = alf ® T and uf (b) = bl @ T for any representative a € ug (F) of a € M
and any representative b € s (N7z) of b € N. Since T is an idempotent and ?E =T
by construction, using the previous notation we have that aI5Z = @ and that bIET = b.
In other words we have that 0% u¥ = Id,; and that 68 uy = Idy. Equivalently both M
and N are P-projective. Since P is minimal F-centric and fully F-normalized we can
conclude from minimality of the defect set and Corollary 2.3.19 that P is in fact the vertex
of both M and N. We now have by construction that M = N Tﬁf which proves that
M = N7 From Theorem 2.4.38 we can then conclude that N = My, and, therefore,
that there exists an Y-projective N’ € Mack}, (Nz) such that M W2 N@&N. In
the case F := Fi, since P, is characteristic and P, is minimal F-centric, then we have
that ) = () and, therefore, N’ = 0 and M iﬁfg N. On the other hand, in the case
of F := F,, we have that ) = {@Q} where @ is the only other group in the F; orbit of
P,. Thus N’ is (Q-projective. Since P; is minimal F-centric then so is () and since N is
F-centric then N, = 0 for every J < () and, therefore, we can conclude from Theorem

2.3.17 that N’ has vertex Q.
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Chapter 3

Sharpness for the Benson-Solomon

fusion systems

Abstract

We develop tools to prove Diaz and Park’s sharpness conjecture (see [DP15]) for fusion
systems admitting tame families of fusion subsystems (see Theorem 3.A). We use such
tools to prove the conjecture for all Benson-Solomon fusion systems (see Theorem 3.B)

thus completing the work started in [HLL23, Theorems 1.1 and 1.4].
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3.1 Introduction

Let G be a finite group, let p be a prime number, let C' be a small category and let
F : C — Top be a functor sending every object in C to the classifying space BH of
a subgroup H of G. A (mod p) homology decomposition of BG is a mod-p homology
equivalence of the form

hocolime (F') = BG.
P

Due to a result of Bousfield and Kan (see [BK87, Chapter Xl Section 4.5]) we know
that any such a homology decomposition leads to a first quadrant cohomology spectral

sequence

lim H’ (F (-),F,) = H™" (G,F,). (3.1)

In [Dw97, Theorem 1.6 and Example 1.17] Dwyer proves that an homology decomposi-
tion of G can be obtained by taking C to be the p-centric orbit category 05 (G) of G and
defining F' (H) := BH for every subgroup H < G in Oy (G). Building on this Dwyer
proves in [Dw98, Theorem 10.3] that the spectral sequence of Equation (3.1) deriving
from such homology decomposition is in fact sharp (i.e. 1iméf)g(G) (H (—,F,)) =0
for every i > 1). It follows that for every n > 0 the isomorphism of abelian groups

limog(g) (Hn (—,Fp)) =~ H" (G,Fp) holds.

On the other hand, work of Broto, Levi and Oliver (see [BLOO03]) and of Chermak (see
[Ch13]) leads to the description, existence and uniqueness of classifying space of a fusion
system F

BF ~ hocolimp(re) (B (—)) . (3.2)

Moreover, from [BLOO3, Lemma 5.3] we know that, analogously to the case of finite
groups, the isomorphism limp(re) (H™ (—,F,)) = H™ (BF,F,) holds. This parallelism
naturally leads to the following question which was first formulated by Aschbacher,
Kessar and Oliver in [AKO11, Section I11.7] and later generalized by Diaz and Park in
[DP15].

Conjecture 3.1.1 (Sharpness for fusion system). Let S be a finite p-group, let F be
a fusion system over S and let M = (M., M*) be a Mackey functor over F on IF,, (see
Definition 2.2.26). Then limg . (M* ¢g§?)) =0 for everyn > 1.

106



Although still unresolved there have recently been several developments regarding this
conjecture (see [GL23; GM22; HLL23; Ya22]) which add to the results in [DP15]. In
this paper we aim to add to these efforts by developing some tools that can be used to

approach Conjecture 3.1.1. More precisely we prove the following.

Theorem 3.A. Let S be a finite p-group, let F be a fusion system over S, let I be a

finite set, let F' := {F;}._, be a collection of fusion subsystems of F, for each i € [

icl
let S; < S be the finite p-group such that F; is a fusion system over S;, let &O(’T °)
be the right RO (F¢)-module associated to the constant contravariant functor sending
every object of O (F¢) to the F,-module IF,, (see [We07, Proposition 2.1] and Definition
3.2.18), for every i € I let Oc (F;) be the full subcategory of O (F;) with objects all
F-centric subgroups of S;, define IFJ?(? V=@, Flo(f %) Lizgiff))ﬁzgiff)) and let
OF : &i(fc) — ]Flo(fc) be the natural map (see Definition 3.4.2).

If the following 4 conditions are satisfied then Conjecture 3.1.1 is satistied for every

Mackey functor over F on F),:

(1) OF is an epimorphism.

(2) Foreveryi € I all F;-centric-radical subgroups of S; are F-centric (see Definition
3.2.11 (3)).

(3) For every with i € I Conjecture 3.1.1 is satistied for F;.

(4) For every RO (F¢)-module M and every morphism f : ker (0r) — M there exists
a morphism f : ]FP;J(F ) — M lifting f. In other words the family F satisfies the

lifting property (see Definition 3.4.3).

The conditions needed to apply Theorem 3.A might seem too restrictive. However, as
we show in Section 3.4, for any given fusion system there exist several families of fusion
subsystems satisfying Conditions (1)-(3) and, therefore, the only real problem is given

by Condition (4) (see Conjecture 3.4.6).

As an application of Theorem 3.A we complete the work started in [HLL23, Theorems

1.1 and 1.4] by proving

Theorem 3.B. Conjecture 3.1.1 is satisfied for all Benson-Solomon fusion systems (see

[LOO05, Definition 1.6]).
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More generally we prove that
Theorem 3.C. Let S be a finite p-group, let F,F, and F5 be fusion systems over S

such that:

(1) Fi,F5 C F and F is generated by F, and F, (i.e. all morphisms of F can be

written as a composition of finitely many morphisms in F, and F).
(2) For every i = 1,2 all F;-centric-radical subgroups of S are F-centric.
(3) For every i = 1,2 Conjecture 3.1.1 is satisfied for F;.
Then Conjecture 3.1.1 is satisfied for F.

We conclude this section with a list of common notation that we use throughout this

chapter.

Notation 3.1.2.
e The letter p denotes a prime number.

e Every module is understood to be a right module. All arguments can however be

adapted to left modules.
e All rings are understood to have a unit.

e For any ring R we denote by R-Mod the category of right R-modules and by

R-mod the category of finitely generated right R-modules.

e Let C be a small category, let A, B and M be objects in C and let f €
Home (A, B). We denote by f* : Home (B, M) — Home (A, M) the set
map (or morphism of abelian groups if C is abelian) sending every morphism

g € Home (B, M) to the composition gf € Home (A, M).

e With notation as above we denote by f. : Hom¢ (M, A) — Home (M, B) the
set map (or morphism of abelian groups if C is abelian) sending every morphism

g € Home (M, A) to the composition fg € Home (M, B).
Acknowledgement. The author would like to thank Nadia Mazza for the guidance she
provided during the author's PhD and the seemingly limitless amount of resources she's
been able to provide. The author would also like to thank Lancaster University for its

financial support.
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3.2 Preliminaries

During this section we briefly recall the definitions of fusion systems (Definition 3.2.6),
Mackey functors (Definition 2.2.26), Cartan-Eilenberg resolutions (Definition 3.2.23)
and other related concepts. We also state, without a proof, some known results that are
relevant for later sections. For a more detailed introduction we refer the interested reader
to [Li07] for fusion systems, to [We00] for Mackey functors and to [We94, Chapter 5.7]

for Cartan-Eilenberg resolutions.

3.2.1 Fusion systems

Fusion systems were first devised by Puig in [Pu06] as a common framework between p-
fusion of finite groups and p-blocks of finite groups. Intuitively they can be thought of as
categories that collect the p-local structure of a finite group. In this subsection we recall
the definitions of fusion system and orbit category (Definitions 3.2.6 and 3.2.10), provide
an example of particular notice (Example 3.2.9) and highlight certain full subcategories

of the orbit category (see Definition 3.2.12).

Definition 3.2.1. Let S be a finite p-group. An S-category is a category F having

as objects all subgroups of S and such that the following conditions are satisfied:

(1) Every morphism in F is an injective group morphism.

(2) For every P,Q < S we have that Homg (P,Q)) C Homgz (P, Q). Where
Homg (P, Q) denotes the set of morphisms from P to () obtained by conjugating

with an element in S.

(3) The composition of morphisms in F coincides with the composition of morphisms
in the category of groups. In particular if two morphisms in F can be composed

then their composition is also a morphism in F.

(4) For every P, < S and every ¢ € Homz (P, Q) both the isomorphism ¢ : P —
¢ (P), obtained by viewing ¢ as an isomorphism onto is image, and its inverse

¢~ : ¢ (P)— P are morphisms in F.
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Example 3.2.2. Let GG be a group and let S be a finite p-subgroup of G. The category

Fs (G) having as objects subgroups of S and as morphisms

Hom () (P, Q) = Homg (P, Q).

is an S-category.

Example 3.2.3. Let S be a finite p-group, the category having objects all subgroups

of S and as morphisms all injective group morphisms is an S-category.

Fusion systems are particular types of S categories. In order to describe these we first

need to introduce some further notation.

Definition 3.2.4. Let S be a finite p-group and let F be an S-category. We say that
P < Sis fully F-normalized if for every ¢ € Homgz (P, S) we have |Ng(P)| >

[Ns (v (P))]

Definition 3.2.5. Let S be a finite p-group, let F be an S-category, let P,Q) < S and
let ¢ € Hom (P, Q). We define the normalizer of ¢ in S to be

N, :={y € Ng(P) : 3z € Ng (¢ (P)) s.t. ¢ (Yz) ="p(z) Vz € P}.

We are now ready to state the following.

Definition 3.2.6. Let S be a finite p-group, a fusion system over S is an S-category

F satisfying:

(1) Auts (S) € Syl, (Autz (5)).

(2) Forevery P < S andevery ¢ € Homz (P, S) such that ¢ (P) is fully F-normalized
there exists ¢ € Homyr (N, S) such that ¢ (z) = @ (x) for every z € P.

Remark 3.2.7. It is not uncommon in the literature to use the term fusion system to refer
to S-categories and the term saturated fusion systems to refer to fusion systems. Our
use of the term fusion system is however equally common and simplifies the notation of

this paper.
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Example 3.2.8. With notation as in Example 3.2.2, if G is finite and S € Syl (G)

then Fg (G) is a fusion system over S.

Example 3.2.9. Let S be a finite p-group, let F be a fusion system over S and let

P < S. We define Nz (P) as the Ng (P)-category whose morphism sets are given by

Homy,(p) (4, B) := {¢ € Homz (A, B) : 35 € Homy (AP, BP) s.t
¢ (a) =¢(a) Ya € Aand $(P) = P}.

It is a result of Puig (see also [Li07, Theorem 3.6] for a proof) that, whenever P is fully

F-normalized, then Nz (P) is a fusion system over Ng (P).

Throughout this paper we don't often work with fusion systems directly but rather with

their orbit categories.

Definition 3.2.10. Let S be a finite p-group and let F be a fusion over S. The orbit
category of F is the category O (F) whose objects are subgroups of S and whose

morphism sets are given by

Homo(r) (P, Q) := Autq (@) \ Homz (P, Q)
where Autg (Q) acts on Homz (P, ()) by left composition.

In this paper we often use certain subcategories of O (F) which we now introduce.

Definition 3.2.11. Let S be a finite p-group and let F be a fusion system over S. We

say that P < S'is:

(1) F-centric: If for every Q < .S isomorphic to P in F we have that Cs (Q) < Q.
(2) F-radical: If the p-core of Autr (P) satisties O, (Autr (P)) = Autp (P).
(3) F-centric-radical: If P is both F-centric and F-radical

Definition 3.2.12. Let S be a finite p-group, let F be a fusion system over S and
let C be a family of subgroups of S closed under F-overconjugation (i.e. for every

P,.Q < Sif PeC and Homz (P,Q) # () then Q € C). We denote by Oc (F) the full
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subcategory of O (F) having as objects the elements of C. Whenever C is the family
of F-centric subgroups of S (which we know from [Li07, Proposition 4.4] to be closed

under F-overconjucation) we write O (F¢) := O¢ (F) instead.

3.2.2 Mackey functors

A Mackey functor is an algebraic structure with operations that resemble the induction,
restriction and conjugation maps in representation theory. In this subsection we recall
the definition of Mackey functor over a fusion system (Definition 2.2.26) as well as some
known results that will allow us to view them as pairs of left and right modules over a

certain ring (Proposition 3.2.17).

Definition 3.2.13. Let S be a finite p-group, let F be a fusion system over S and let R
be a commutative ring. A Mackey functor over F on R is a pair M = (M,, M*) of a
covariant functor M, : O (F) — R-mod and a contravariant functor M* : O (F)® —

R -mod such that:
(1) M (P):= M, (P)= M*(P) for every P < S.
(2) M. (p) = M* (1) for every isomorphism % in O (F).

(3) For every A, B < C < S then

M* (g) M, <E> = Z M, <Lgmmcx> M* <L§zm>

2€[B\C/A]

where, for every morphism ¢ in F, we denote by  the image of ¢ in O (F)(see
Definition 3.2.10), for every x € C' the map ¢, : B*"NA — BN*A is the morphism

which sends every a € B* N A to zaz~! and /% denotes the natural inclusion.

Remark 3.2.14. Definition 3.2.13 might at first glance seem different from the definition
of Mackey functor given in Chapter 2 (see Definition 2.2.26) but they are in fact

equivalent.

More precisely, for every Mackey functor M = (M., M*) as in Definition 3.2.13, we
can define a left ur (F)-module M by setting M := P p.g M (P). Here we define
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the action of ur (F) on M by setting for every P < @ < S, every isomorphism
@: P — p(P)in F and every x € M

13 -w=M(3) (@), RY-wi=M (i) (ro(@), cor-o =M. (@),

where w4 : M — M (A) denotes the natural projection and @ € Homoz) (P, ¢ (P)) is

the isomorphism in O (F) with representative .

On the other hand for every left pr (F)-module M we can define a Mackey functor
M = (M,, M*) by setting M (P) = M, (P) = M* (P) := IEM for every P < S and

defining for every P < Q < S and every isomorphism ¢ : P’ <» P

M, (13¢) (@) i= IReppr -, M (1) (9) == cpr pRE -y,

for every x € M (P’) and every y € M (Q). Once again, for every morphism 1 in F we

denote by 1) the morphism in O (F) with representative 1.

It is easy to check that the above described maps between left px (F)-modules and

Mackey functors over F on R is in fact natural.

Example 3.2.15. For any finite p-group S, any fusion system F over S and any

commutative ring R:

e The cohomology functor H™ (—; R) restricted to O (F) is the contravariant part

of a Mackey functor over F on R.

e The homology functor H, (—;R) restricted to O (F) is the covariant part of a

Mackey functor over F on R.

e The Burnside functor B (—;R) that sends every subgroup of S to the underlying
R-module of its Burnside ring with coefficients on R defines a Mackey functor

over F on R.

It is often useful to view the covariant and contravariant parts of a Mackey functor as

left and right modules over a certain ring. To this end we introduce the following.

Definition 3.2.16. Let R be a commutative ring and let C be a small category. The

category algebra of C over R is the R-algebra RC that is freely generated as an

113



R-module by the set of morphisms in C' and with product given by

5 1 if the composition of ¢ and v is defined
. 90 = .

0 otherwise

The relevance of this Definition in our context is given by the following result which we
report without a proof. The interested reader can refer to [We07, Proposition 2.1] for a

proof.

Proposition 3.2.17 ([We07, Proposition 2.1]). Let C be a small category with finitely
many objects and let R be a commutative ring. The category of right RC-modules is
isomorphic to the category of contravariant functors from C to R-Mod. Equivalently

the category of left RC-modules is isomorphic to the category of covariant functors

from C to R -Mod.

The following is a particularly relevant RC-module that we use repeatedly in Section

3.4.

Definition 3.2.18. Let R and C be as in Proposition 3.2.17. The constant RC-
module (denoted EC) is the RC-module corresponding, via Proposition 3.2.17, to the
constant contravariant functor sending every object to the trivial R-module R and every

morphism to the identity. If there is no confusion regarding the category C we write

R :=RC.

Let S be a finite p-group, let F be a fusion system and let R be a commutative ring.
Since S is finite then it has finitely many subgroups. Equivalently O (F) has finitely
many objects. Therefore, Proposition 3.2.17, allows us to view any Mackey functor
M = (M., M*) over F on R as a pair of a left and right RO (F)-modules respectively.
This viewpoint has two main advantages. First, for every family C of subgroups of
S closed under F-overconjugation, if we denote by ¢ : O¢ (F) — O (F) the natural
inclusion of categories we obtain the isomorphism of abelian groups limg,, z (M*1) =
ExtRoq () (EOC(}—),M*L) (see [We07, Corollary 5.2]). Another advantage is that, for
any small category C with finitely many objects and any subcategory D C C' we obtain
a pair of adjoint functors between the diagram categories R -Mod€ and R -Mod?. More

precisely we have the following.
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Lemma 3.2.19. Let R be a commutative ring, let C be a small category with finitely
many objects and let D C C be a subcategory. There is a natural inclusion of rings
RD C RC. In particular the change of ring operations between the rings RD and RC
lead to an induction 15: R D -Mod — RC -Mod and a restriction |$: RC -Mod —

RD -Mod functors such that 1§ is left adjoint to |$,.

Proof. Since every morphism in D is also a morphism in C then there exists a natural
inclusion of the R-basis of RD into the R-basis of RC' (see Definition 3.2.16). This

leads to a natural inclusion of RD into RC. The result follows. (]

We conclude this subsection with the following trivial but useful insight on the restriction

functor.

Lemma 3.2.20. Let R,C and D be as in Lemma 3.2.19. Then R€ 1$= RP.

Proof. This is immediate from the definition. O

3.2.3 Cartan-Eilenberg resolution

Cartan-Eilenberg resolutions are, intuitively speaking, projective (resp. injective)
resolutions for chain complexes (resp. cochain complexes). During this subsection we
recall the definition of Cartan-Eilenberg resolution (Definition 3.2.23) as well as some

known sufficient conditions for their existence (Proposition 3.2.25).

Definition 3.2.21. Let A be an abelian category. A double chain complex in A
is a family of triples {(CivJ"de?de)}i,jez (often abbreviated to C, .) where, for every
i,j € 7, OZ'J is an object in A and d;),j : C@j — Ci,j—l and dZ] : Ci,j — Ci—l,j are
morphisms in A satisfying

dv

7,7—1

dy; = drodh=qv dh Y

7‘717] ,L)j Zﬁl»] [2¥} 7’)]’71

di; = 0.

A double cochain complex in A can be defined in an analogous way just by inverting
the directions of arrows. Double cochain complexes are denoted as {(C Jody . dy )}i,jEZ
(often abbreviated to C**) with C% objects in A and d%/ : C% — C**! and d7

C* — C*™1J morphisms in A.
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For each double chain complex there exist two (potentially isomorphic) chain complexes.
These complexes are related (see [We94, Section 5.6]) and play a fundamental role in

Section 3.3.

Definition 3.2.22. Let A be an abelian category and let C., . be a double chain complex.
We define the total sum chain complex (Tot?) and total product chain complex

(Tot™) of C. . by setting for every n € 7Z
Totyy (Ces) = €D Cin-s ot} (Cun) = [ Cinss
i€z i€Z

and taking defining the differentials d© : Tot® (C.,) — Toty , (C..) and dll :

Tot! (C...) — Totl | (C..) component-wise by setting

d® =dl.=d' .+ s,

i,n—i

for each component C;,,_; C Tot (C,..) C Totl (C,..). If Tot® (C,.) = Totll (C,..)

for every n € Z then we define the total chain complex of C, , as
Tot (C,.) := Tot® (C..,) = Tot" (C...) .

For a double cochain complex C** the total sum cochain complex (Totg (C**)),
total product cochain complex (Toty(C**)) and total cochain complex

(Tot (C**)) of C** are defined analogously.

A Cartan-Eilenberg resolution of a chain complex is a particular type of double chain

complex.

Definition 3.2.23. Let A be an abelian category and let C, be a chain complex in
A with differentials d; : C; — C;_;. A Cartan-Eilenberg projective resolution of
C, is a pair (P..,{e.};c,) (often abbreviated as P.. = C.) where P, is a double
chain complex in A, for every i € Z, the augmentation map ¢; : Fy; — C; is an

epimorphism in A and the following conditions are satisfied:

(1) e.: Py — C, is a chain map.
2) For every i,j € 7Z the object P, ; is projective.
ytJ J J )
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(3) If C; =0 for some j € Z then P, ; = 0 for every i € Z.
(4) P.; % C; is a projective resolution of C; for every i € Z.

(5) The projective resolution of Condition (4) induces for every i € Z a projective

resolution im (d? ;) — im (d;).

(6) The projective resolution of Condition (4) induces for every i € Z a projective

resolution ker (d?;) — ker (d;).

(7) The projective resolution of Condition (4) induces for every i € Z a projective

resolution ker (d?;) /im (d%,,,) — H; (C.).

For any cochain complex C* a Cartan-Eilenberg injective resolution of C* is defined
analogously by inverting arrows and replacing homology and projective objects with

cohomology and injective objects respectively.

Remark 3.2.24. Conditions (4) and (5) are usually omitted from the definition of Cartan-

Eilenberg resolution as they can be derived from the rest (see [We94, Exercise 5.7.1]).

Despite the numerous properties that Cartan-Eilenberg resolutions possess there are quite

lax sufficient conditions for their existence. More precisely we have the following.

Proposition 3.2.25 ([We94, Lemma 5.7.2 and Paragraph 5.7.9]). Let A be an abelian
category and let C, be a chain complex in A. If A has enough projectives then there
exists a Cartan-Eilenberg projective resolution of C,. The same result holds for Cartan-

Eilenberg injective resolutions and cochain complexes if A has enough injectives.

We conclude this section with three examples of categories admitting Cartan-Eilenberg

projective resolutions.

Corollary 3.2.26. Let R be a ring. The category R -Mod admits both Cartan-Eilenberg

projective and injective resolutions.

Proof. We know from [CR88, Theorem 57.8] that R-Mod has enough injectives and
it is well known that it has enough projectives. The rest of the statement follows from

Proposition 3.2.25. O
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Corollary 3.2.27. Let R be a finite ring. The category R-mod is abelian and has
enough injectives and projectives. In particular R -mod admits both Cartan-Eilenberg

projective and injective resolutions.

Proof. Since R is finite then it is Artinian. Since all Artinian rings are Noetherian we

can conclude from [We94, Example 1.6.3 (1)] that R -mod is an abelian category.

Since R is an Artinian ring we know from [ARS97, Theorem 1.4.2] that R -mod has

enough projectives.

Finally let & < R denote the subring of R that is generated by the multiplicative identity.
That is k = Z/char (R) Z. Then k is a finite (and therefore Artinian) commutative ring.
Moreover we can view R as a finite k-algebra. We can therefore apply [ARS97, Corollary
I1.3.4] to conclude that R -mod has enough injectives. The rest of the statement follows

from Proposition 3.2.25. ]

Remark 3.2.28. Let k be a field. If R is a finite dimensional k-algebra then it is Artinian

and the same arguments used to prove Corollary 3.2.27 still hold.

3.3 [Extp groups of cokernels

In this section we develop the main techniques used to prove Theorem 3.A. Namely
we prove Proposition 3.3.7 and Corollary 3.3.8. To do so we start by taking a ring
R, R-modules A, B and M and an R-module morphism f : A — B. We then
construct a 2-term chain complex C, having A and B as elements and coker (f) as
an homology R-module (see Lemma 3.3.1). Thereafter we take a Cartan-Eilenberg
projective resolution of C, and use spectral sequences associated to this resolution (see
[We94, Proposition 5.7.6 and Paragraph 5.7.9]) in order to obtain a short exact sequence
involving Exty, (coker (f), M) (see Corollary 3.3.4). Under certain conditions we can
then use this short exact sequence in order to prove that Exty, (coker (f), M) = 0 (see
Proposition 3.3.7). With this in mind we are finally able to prove that, under stronger
conditions, Ext% (coker (f), M) = 0 for every n > 1 (see Corollary 3.3.8).

Let us start by defining the above mentioned chain complex and studying how its elements

relate to those of its related spectral sequence.
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Lemma 3.3.1. Let R be a ring, let M, A, B be R-modules, let f : A — B be an
R-module morphism and let v : ker (f) < A be the natural inclusion. We define the
chain complex C, in R -Mod by setting C; := 0 foreveryi # 0,1, C; := Aand Cy .= B
and by taking differentials d; = 0 ifi # 1 and dy == f : C1 — Cy. Fix P, i C, a
Cartan-Eilenberg projective resolution of C, (see Corollary 3.2.26). Finally define D**
as the first quadrant double cochain complex obtained by applying the contravariant
functor Homg (—, M) to P, .. From [We94, Proposition 5.7.6 and Paragraph 5.7.9] we

know that there exists a first quadrant cohomology spectral sequence
By’ = Exth, (H, (C.), M) = H"™ (Tot (D**)). (3.3)

which is obtained from the double cochain complex D** by first computing cohomology
with respect to the vertical differentials and then with respect to the horizontal

differentials (i.e. the spectral sequence corresponding to the filtration F" Tot" :=
Ditjnjor D% of Tot (D**)).

If Exty, (B, M) = 0 then there exists an isomorphism of R-modules
im (¢*) = ker (alg’1 EYN ES’O) .
Proof. In order to simplify notation throughout this proof we write for every i, j € Z

Ho; j := Homg (P ;, M) and K := ker (f7) Nker (di,) -

Where f; : P,1 — P;( are the non zero vertical differentials of P, , and d, ; : P11 —

P, ; be its horizontal differentials. From Proposition 3.A.3 we have that

501 {(p.) € Hogy ®Hog : dj; (¢) + fi () =0}
2 {(fg‘(oz),dao(a)—i-ﬂ) : (« B)EHO(LO><1<er(j‘“1)}7
EQ,O,E{HGHOZ,O:f;():d;o —0}
: {dio(7) : v eker (f)}

= (ker (fQ*) N ker (d;’o)) /dio (ker (fl*)) .

Denote by (¢, 1) the element in Ey" with representative (¢, 1) € Hop; @ Hoy o and by

0 the element in £5° with representative 6 € ker (f3) Nker (dj,). Proposition 3.A.3
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tells us that the differential @' : ES" — E3° of the spectral sequence in Equation (3.3)

is given by setting d5' ((go, w)) :=dj 5 (¥). We can therefore conclude that

{(¢,9) € Ho : 30 € ker (f7) s.t. dj, (p) + f7 () = di o (6 + 1) =0}
{(f5 (@), djo (o) +B) : (a,8) € Hogp x ker (f7)}

ker (dg’l) =

Where Ho := Hog; @ Hoy . Since (3,0 € ker (f{) we can redefine ¢ = 6 + 1 and use

the third isomorphism theorem in order to obtain
. 1(p.¥) € Hogi @ Hoig = dy, () + f7 () = di o (¥) = 0}

ker (dy") {(f5 (@), d5o(a) +B) : (o, ) € Hopp x K}

From Property (4) of Definition 3.2.23 we know that P, g = B'is a projective resolution
of B. Since Exty, (B, M) = 0 we can conclude that for every ¢ € ker (dj ;) there exists
a € Hogg such that ¢ = dj, (o). This allows us to redefine ¢ = ¢ — dg, () = 0.

Then, using the third isomorphism theorem again, we obtain
€ H s dh =0
ker (dg’l) = {90 o1 %oa (QO) - } ,
{fi(a) : @ € Hopg s.t. 38 € K satisfying di (a) + 3 =0}

N ker (dj ;)
o ({a € Hog @ djp(a) € K})7
= ker (dg,) /fo (ker ((doof1)7)) (3.4)
= ker (dg,) /f7 (ker ((fodoa)™))

= ker (dg1) / (im (f3) Nker (d5,)) -

Where, for the third isomorphism, we use the fact that djj, (a) € ker (di ) for every
a € Hog o while, for the fourth isomorphism, we use anti-commutativity of double chain

complexes (see Definition 3.2.21).

From Properties (3) and (7) of Definition 3.2.23 we know that coker (fy) = FPoo/im (fo)
is projective. Therefore the short exact sequence 0 — im (fy) — Foo — coker (fy) — 0
splits. In particular im (fy) is a summand of Py . Let ¢/ : im (fy) — Py be the inclusion
in the previous short exact sequence, let 7 : Fyy — im (fy) be the natural projection
and let f : Py1 — im (fy) be the unique morphism such that /' fo = fo. Then we have

that 7fo = 7/ fo = fo and, therefore

im (f3) =im (fim7) Cim(f),  im () =im (5 @)) Cim ().
Therefore we obtain the identity im (fj) = im (f(’;). This allows us to rewrite the
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isomorphism in Equation (3.4) as
ker (dy') = ker (ds1) / <im <f0*> N ker (dal)) . (3.5)

On the other hand, denoting by ¢o : ker (fy) — Fo1 the natural inclusion, we obtain
the short exact sequence 0 — ker (fo) = Py, £\ im (fp) — 0. Since the Hom(—, M)

contravariant functor is left exact the above leads to the short exact sequence

PR

0 — Homg (im (fo) , M) —2> Hop; —2~ Homg (ker (fo), M)

In particular we have that im (fo*) = ker (15). Applying the first isomorphism theorem

we can deduce that for every K’ C Hoyg
(K 2 K/ (ker (i) N K') = K’/ (im ( f;) N K') .

In particular, taking K’ := ker (dj;;) we can deduce from the above and Equation (3.5)
that
ker (dg’l) > 45 (ker (dj,)) -

On the other hand, from Property (4) of Definition 3.2.23 we know that the sequence
d : : :

P, 2 Poa A = 0 s exact. Applying the left exact contravariant Homg (—, M)

to this sequence we can deduce that ker (dj,) = im (7). Therefore we can rewrite the

previous equation as
ker (dy') = ¢ (im (€})) = im ((e120)") -

Let £, : ker (fy) — ker (f) be the appropriate restriction of £; and let ¢ : ker (f) — A
be as in the statement. By construction we have that ;00 = (£, and, therefore, we

obtain from the previous equation that

ker (dg’l) > im ((¢€1)") = im (£70%) = &} (im (¢*)) .

Finally, from Property (6) of Definition 3.2.23 we know that ker (fy) % ker (f) is an

epimorphism. Applying once again left exactness of the contravariant Homg (—, M)

121



functor we can then deduce that £7 is injective. From the first isomorphism theorem we

can conclude that £} (im (+*)) = im (¢*). The result follows. O

As a consequence of Lemma 3.3.1 we obtain a short exact sequence involving

Exty, (coker (f), M).

Lemma 3.3.2. Let R, M, A, B, D**, f and 1 be as in Lemma 3.3.1. If Exty, (B, M) =

0 then there exists a short exact sequence
0 — Exty, (coker (f), M) — H' (Tot (D**)) — im (+*) — 0.

Proof. With notation as in Lemma 3.3.1 we have that Ey7 = H*J (Tot (D**)) is a first
quadrant cohomology spectral sequence. In particular we have that Eg”_l = Ez_l’1 =

Ey** = 0. It follows from Definition 3.A.1

Ey° 2 ker (B, — By ') /im (By W' — Ey°) = By = Exty, (H, (C.), M),
Byt 2 ker (Ey' — E5°) /im (By > — E9') 2 ker (dy' : Byt — E37).

[

From Lemma 3.3.1 and the second equation we obtain that Ey" = im (+*). On the
other hand, by construction of C, we have that C; = 0 for every i # 0,1. We can
therefore conclude that Hy (C,) = coker (f) and that H; (C,) = 0 for every i # 0, 1.

Combining this with the first equation we obtain
E3° = Exth, (coker (f), M) and EY =0VYj#0,1.

The result now follows from the short exact sequence of Proposition 3.A.4 taken with

n = 1. [l
The following allows us to describe the term H' (Tot (D**)) appearing in the short

exact sequence of Lemma 3.3.2.

Lemma 3.3.3. Let R, M, A, B, D** and f be as in Lemma 3.3.1. If Ext) (B, M)=0
then
H*' (Tot (D**)) = Homg (A, M) /im (f*).
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Proof. Let C, be as in Lemma 3.3.1. Since Homg (—, M) is a left exact contravariant
functor we know from [We94, Proposition 5.7.6 and Paragraph 5.7.9] that there exists

a first quadrant cohomology spectral sequence
By = H' (Ext} (C\, M)) = H™ (Tot (D**)).

Where H' (Ext;z (Cs, M)) denotes the i*" cohomology group of the cochain complex
Ext?, (C., M) obtained by applying the contravariant functor Ext?, (—, M) to the chain

complex C,.

Since C; = 0 for every i # 0,1 then we can conclude that ExtJ, (C;, M) = Ey? = 0 for
every i # 0,1. We can therefore apply Proposition 3.A.5 with n = 1 in order to obtain

the short exact sequence
0 — Ey° — H'(Tot (D**)) = Ey* — 0.
On the other hand, since B = Cj and Ext}, (B, M) = 0 by hypothesis, we have that
Byt = H° (Extk (C., M)) = Exty (B, M) = 0.
Combining this with the previous short exact sequence we obtain the isomorphism
H' (Tot (D**)) = E,°.

Recall that for every R-module N there exists a natural isomorphism of abelian groups
Ext% (N, M) = Homg (N, M). Since the only non zero terms in the chain complex C.,

are Cy := B and C; := A with differential f : A — B we can then conclude that
By .= 0" (Ext% (C,, M)) = H' (Homg (C,, M)) = Homg (A, M) /im (f*).
The result follows. O

We can now rewrite the short exact sequence of Lemma 3.3.2.

Corollary 3.3.4. Let R, M, A, B, D**  f and 1 be as in Lemma 3.3.1. IfExty, (B, M) =
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0 then there exists a short exact sequence
0 — Exty, (coker (f), M) — Homg (A, M) /im (f*) — im (:*) — 0.
Proof. This is an immediate consequence of Lemmas 3.3.2 and 3.3.3. H

We know from [We07, Corollary 5.2] that there exists an equivalence between certain
Ext% groups and higher limits. It therefore stands to reason that, in order to study
Conjecture 3.1.1, we should study the conditions under which Exty, (coker (f), M) =
0. Corollary 3.3.4 tells us that this happens precisely when the epimorphism from
Hom (A, M) /im (f*) to im (.*) is in fact an isomorphism. The following provides us

with some insight regarding sufficient conditions for this to happen.

Lemma 3.3.5. Let R, M, A, B and . be as in Lemma 3.3.1 and let f : A — Im (f)
be the R-module morphism obtained by viewing f as an epimorphism onto its image.
If im (f*) = im (f*) then the morphism * : Homp (A, M) — Homg (ker (f), M)

induces an isomorphism of R-modules
Homp (A, M) /im (f*) S im (v*) € Homg (ker (f), M).

Proof. Applying the left exact contravariant Homyg (—, M) functor to the short exact

sequence 0 — ker (f) = A 4 im (f) — 0, we obtain the short exact sequence
0 — Hompg (im (f), M) 55 Hompg (A, M) <5 Homg (ker (f), M).

This leads to an injective morphism Homg (A, M) /im (f*) — Homg (ker (f), M)
which factors through im (¢*). Since im (f*) = im (f*) by hypothesis then the result

follows. O

From now on we concentrate on finitely generated modules. It is therefore useful before

proceeding to recall the following well known result which prevents confusions.

Proposition 3.3.6. Let R be a Noetherian ring, let M and N be finitely generated
R-modules, let n > 0 and denote by Exty .4 (M, N) and Ext \ioq (M, N) the Ext”

groups in the categories R -mod and R -Mod respectively. There exists an isomorphism
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of abelian groups
Extiy (M, N) i= Ext} ypoq (M, N) 2 Exth o (M, N)

Proof. Since R is Noetherian then every finitely generated module is finitely presented.
We can therefore take a projective resolution P, % M in R-Mod where each P, is free
and finitely generated. In particular we have that P, = M is also a projective resolution
in R -mod. The result follows from computing Exty, . (M, N) and Exty 3;.q (M, N)

using this resolution. m

We are now ready to provide sufficient conditions for the group Exty, (coker (f), M) of

Lemma 3.3.2 to vanish.

Proposition 3.3.7. Let R be a finite ring, let M, A and B be finitely generated R-
modules, let f : A — B be an R-module morphism, and let f : A — im (f) be as in
Lemma 3.3.5. Ifim <f*> = im (f*) and Exty, (B, M) = 0 then Exty, (coker (f), M) =
0.

Proof. Since M, A and B are all finitely generated modules over a finite ring then
they are all finite. In particular we have that Homg (ker (f), M), Homg (A, M) and
Homg (B, M) are finite and, therefore, im (+*) and Homg (A, M) /im (f*) are also
finite.

We know from Lemma 3.3.5 that there exists an isomorphism Homg (A, M) /im (f*) =
im (¢*). In particular we have that |Homg (A, M) /im (f*)| = |im (+*)].

Let 0 — Ext}, (coker (f), M) — Homg (A, M) /im (f*) 2 im (+*) — 0 be the short
exact sequence of Corollary 3.3.4. Since g is surjective, Homg (A, M) /im (f*) and
im (.*) are finite and |Homg (A, M) /im (f*)| = |im(¢*)| we can conclude that ¢
is also injective. From exactness of the sequence in Corollary 3.3.4 this implies that

Exty, (coker (f), M) = 0 just as we wanted to prove. O

We conclude this section with an application of Proposition 3.3.7 which provides us with

sufficient conditions to obtain Ext% (coker (f), M) = 0 for every n > 1.
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Corollary 3.3.8. Let R, M, A, B, f and f be as in Proposition 3.3.7. IfExt, (B, M) =
0 for every n > 1 and f* (Homg (im (f),N)) = f* (Homg (B, N)) for every finitely
generated R-module N then Ext% (coker (f), M) =0 for every n > 1.

Proof. From Corollary 3.2.27 there exists an injective resolution 0 — M — Iy — - --
of M in R-mod. Let d, : I, — I,;1 be the differentials of this resolution and let
d_y : M — I, be the augmentation map. For every n > 0 we have an injective
resolution 0 — coker (d,,_1) — I,+1 — --- of coker (d,_1) in R-mod. We conclude

that for every R-module N and every n > 0 then
Exty, (N, coker (d,,_1)) = ker ((dyy2),) /im ((dni1),) = Extit™ (N, M).
In particular, for every n > 0 we obtain
Exty, (B, coker (d, 1)) = Extiyt? (B, M) = 0.

We can now apply Proposition 3.3.7 with M = coker (d,,_;) to deduce that for every

n > 0 then
Ext/tt? (coker (f), M) = Ext}, (coker (f), coker (d,_;)) = 0.

From Proposition 3.3.7 we also know that Exty (coker (f), M) = 0 thus concluding
the proof. [

3.4 Sharpness from fusion subsystems

In this section we use the tools developed in Section 3.3 in order to prove Theorem 3.A.

Let us start by introducing some notation appearing in the statement of Theorem 3.A.

Definition 3.4.1. Let D C C be small categories with finitely many objects and let
R be a commutative ring. With notation as in Definition 3.2.18 and Lemma 3.2.19
we define the constant module induced from RD to RC as the RC-module
RS := RP 15, Moreover we define the identity morphism induced from RD to

RC' as the morphism (97%[, : RS — R that, for every 2 € RP and every y € RC
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sends © ®y to x - y. If there are no doubts regarding the ring R and the category C we

simply write 0p := 05 p,.

We are mostly interested in the above definitions in the case where C' is of the form

O (F°) (see Definition 3.2.12). It is therefore useful to introduce the following notation.

Definition 3.4.2. Let S be a p-group, let S’ < S, let F be a fusion system over S, let
F' C F be a fusion system over S’, let C be a family of subgroups of S closed under
JF-overconjugation (see Definition 3.2.12), define C' := {P < S’ : P € C} and let R be
a commutative ring. With notation as in Definition 3.4.1 we define E??(F) = RSC(Q/)
and Gg‘fﬁr) = H%(g?(f,). If Oc(F) and R are clear we simply write 8z := chf, ),
Moreover, given a family F' := {F;},_, of fusion subsystems of 7 we define ’ROC(F =
D REY) and 0257 = @, 0557+ RV — RO If R and O¢ (F) are

clear we simply write O := Ggflff).

Finally we introduce the remaining notation stated in Theorem 3.A.

Definition 3.4.3. Let F be a fusion system, let F' be a family of fusion subsystems of
F, let R be a commutative ring and let ¢ : ker () — E?"TC) be the natural inclusion.
We say that F' satisfies the R-lifting property (or simply lifting property if R is
clear) if for every RO (F¢)-module M the equality ¢* (HomR@(F) (Eg(fc),M>> =
Hompo(re) (ker (0F) , M) holds. This is equivalent to saying that for every morphism

f ker () — M there exists f Eg(fc) — M such that f = fu.

Let S be a finite p-group, let F be a fusion system over S, let F' be a family of fusion
subsystems of F satisfying the IF,-lifting property and let M = (M, M*) be a Mackey
functor over F on F,. The main idea behind the proof of Theorem 3.A is to apply
Corollary 3.3.8 with R :=F,O (F°), M := M* iggc (see Proposition 3.2.17), B :=
Flg(]n), A = ker (0p) and f : ker (0p) — @2(}- the natural inclusion. However,

in order to interpret the results thus obtained with Theorem 3.A we need to relate the

Exty (coker (f), M~ iggg) groups with the higher limits lime ey (M* igg%)
To do so the following adaptation of [Ya22, Proposition 4.5] is necessary.

Lemma 3.4.4 ([Ya22, Proposition 4.5]). Let R be a commutative ring, let S be a

finite p-group, let F be an S-category, let S’ be a subgroup of S, let F' C F be an
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S’-category, let C be a family of subgroups of S closed under F-overconjugation (see
Definition 3.2.12) and let C' := {P € C : P < S'}. With notation as in Definitions
3.2.12 and 3.2.16 the functors TOC f), and ¢OC f), of Lemma 3.2.19 are both exact.
Moreover, for every P < S and every ROc/ (F')-module M we have the following

isomorphism of R-modules

Mg dp= @ M-ldg,,
(go:PiQ<p> EI;-‘:’,P

where 17, p is a (necessarily finite) set of representatives of the isomorphisms in F of

the form ¢ : P = Q, (for some Q, < S) modulo the equivalence relation

o~ & =1y for some isomorphism 1) in F'.

Proof. Exactness of the restriction functor is immediate. The rest of the statement
follows from [Ya22, Proposition 4.5] after taking (non necessarily finite) groups G and
H realizing F and F’ respectively (see [LS07]) and applying the equivalence of categories
described in [Ya22, Lemma 2.5]. O

As a consequence of the above we obtain the following particular case of [Ya22,

Proposition 4.8].

Lemma 3.4.5. Let R,F,F',C and C' be as in Lemma 3.4.4, let M : O¢ (F)”* —
R -Mod be a contravariant functor and let n > 0 be an integer. With notation as in

Definition 3.2.18 the following isomorphism of abelian groups holds

Extro. ) (E?—./C(f), M ) = limp (M ¢ ) )

Proof. From Lemma 3.4.4 and [Ya22, Proposition 3.7] we have that

Extirop (RS, M) 2 Bxthoy, ) (RO, M 1ET)Y.

The result follows from [We07, Corollary 5.2]. O
We are now finally ready to prove Theorem 3.A.

Proof. (of Theorem 3.A). Since the functor Extg o) (—,—) is additive on both
variables for every n > 0 we can apply Lemma 3.4.5 in order to obtain the isomorphism

of abelian groups
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n ¢ O(F) ~ on O(F
Bxti o) (B2, N IGE, ) = @ limg, i) (N 1070)) - (36)

icl

Where O (F¢) is as in Definition 3.2.17, N is any F,O (F)-module and for every i € [

we define C; to be the set of F-centric subgroups of S;.

Let . : F),-Mod — Z,-Mod be the natural inclusion of categories. From Corollary 3.B.4
we know that the following equivalences of abelian groups hold for every i € I and every

n and N as above

hm@c (Fi (N i(9c ) = limo, (7 i (Fi <LN iOc (F3) )
i r7) (N ¢2<;)> = limo ) (LN ¢2§§})> |

From Condition (2) and [Ya22, Proposition 10.5] we can then conclude that for every

i,n and N as above there exists an isomorphism of abelian groups
. OF) \ ~qion O(F)
i ) (V1687 ) = iy (V17 ).

Therefore, using Condition (3) we obtain that for every Mackey functor M = (M., M*)

over F on ), every i € I and every n > 1 then

. n x | O(F) _
hm@ci (Fi) (M \LOCi(}—i)) =0.

: n ) 2w | OF
We conclude from Equation (3.6) that Exty . (&g(F ) M iogfl)) = 0 for every
n > 1 and M as before. Using this result and Condition (4) we can now apply Corollary
3.3.8 with A := ker (0r), B := Fpg(fc) and f : A < B the natural inclusion in order

to deduce that for every such n and M then

Extg, o) (_ )/ ker (0p), M* igg ) = 0. (3.7)

From Condition (1) and the first isomorphism theorem we know that ]Fp?(fc)/ ker (0p) =

F,°7"). The result now follows from Equation (3.7) and [We07, Corollary 5.2]. O

The four conditions required to apply Theorem 3.A might seem too restrictive. However,
there are several families of fusion subsystems satisfying Conditions (1)-(3). Let S be
a finite p-group, let F be a fusion system over S, let I be a finite indexing set, let
S € {P;},.; be a family of fully F-normalized and F-centric subgroups of S, for every
i € I define F; := Nz (P;) (see Example 3.2.9) and let F' be as in Theorem 3.A. From
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Definition 3.4.2 and Lemma 3.4.4 we know that 0 (Fpg(f(;o = TF,°7) (see Definition
—NF

3.2.18) and, therefore, Condition (1) is satisfied. From [Ya22, Lemma 10.4] we can

deduce that F' satisfies Condition (2). Finally, from [Br05, Proposition C] and [DP15,
Theorem B], we know F' satisfies Condition (3). Thus the only condition of Theorem

3.A that we need to show is Condition (4). We therefore formulate the following.

Conjecture 3.4.6. Let F be a fusion system over a p-group S, let F¢ be the set of
fully F-normalized and F-essential subgroups of S (see [Li07, Detfinition 5.1 (ii)]), and

define F = {Nz(S)YU{Nxz(P) : Pe F}.

Then F satisfies the lifting property.

Since all F-essential subgroups of S are F-centric we know from the above dis-
cussion that Conditions (1)-(3) of Theorem 3.A are satisfied when taking F =
{N7 (P)}pereuysy- Conjecture 3.4.6 claims that F' also satisfies Condition (2) of 3.A.
It follows, by applying Theorem 3.A that Conjecture 3.4.6 implies Conjecture 3.1.1.

3.5 Sharpness for the Benson-Solomon fusion sys-

tems

In [HLL23, Theorems 1.1 and 1.4] Henke, Libman and Lynd prove that Conjecture 3.1.1
is satisfied for all Benson-Solomon fusion systems Fg,; (¢") such that ¢" = £3 (mod 8).

In this section we aim to extend this result to all Benson-Solomon fusion systems.

Let us start by recalling a few key facts regarding the construction of the Benson-Solomon
fusion systems. Let ¢ be an odd prime, let n be a positive integer and let S (¢") €
Syl, (Spin; (¢")). From [LO02, Definition 2.2 and Proposition 2.5] we know that there
exists an elementary abelian group U of rank 2 such that U < S (¢"). In [LOO2,
Definition 2.6] Levi and Oliver introduce a group Sy (¢") which satisfies Sy (¢") < S (¢")
and Sy (¢") € Syl, (Cspin, (gm) (U)) (see [LOO2, Proposition 2.5 and Lemma 2.7]). Since
S (q") € Syl, (Spin; (¢")) we can deduce from these facts that Sy (¢") = Cy(gn) (U).
Finally in [LOO05, Definition 1.6] Levi and Oliver define the Benson-Solomon fusion system
over S (q") as the fusion system Fg, (¢") generated by a group of automorphisms

I (¢") < Aut (Cs(gn) (U)) and the fusion system Fg(gn) (Spin; (¢")).
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In order to keep notation simple we introduce the following.

Definition 3.5.1. Let ¢,n,U, S (¢") and Fs, (¢") be as above. With notation as in

Example 3.2.9 we define the following fusion subsystems of Fsq (¢")

Fi(q") == Fsgm (Spin; (¢")), Fo(q") = Nrgqmy (Csgmy (U)) -

Since I'(¢") < Autz,, ) (Csn) (U)) then F, (¢") contains the automorphisms of
I'(¢™). Thus, from [LOO05, Definition 1.6] we immediately obtain the following.

Lemma 3.5.2. Let ¢ be an odd prime and let n be a positive integer. The Benson-

Solomon fusion system Fso (¢") is generated by its fusion subsystems Fi (¢") and

Fa(q).

In this section we aim to show that Theorem 3.A applies to F := Fsq (¢"), I := {1,2}
and F; := F;(q") for every i € I. To do so we first need to prove that both F; (¢")
and F; (¢") satisfy Conditions (2) and (3) of Theorem 3.A. Let us start by proving that
this is true for F; (¢").

Lemma 3.5.3. With notation as in Definition 3.5.1 the following hold:

(1) Fi(q") is a fusion system over S (q").
(2) Every Fi (¢")-centric-radical subgroup of S (q") is Fsa (¢")-centric.

(3) Conjecture 3.1.1 is satistied for Fy (q™).

Proof. Part (1) follows from Definition 3.5.1. Part (2) holds since [LO02, Proposition
3.3 (a)] shows that any F;j (¢")-centric subgroup of S (¢") is Fso (¢")-centric. Finally
Part (3) follows from [DP15, Theorem B]. O

In order to obtain a result analogous to Lemma 3.5.3 for the fusion system F» (¢") we

first need some further work. The following is a well known result in group theory.

Lemma 3.5.4. Let S be a 2-group, let P < S be an elementary abelian subgroup of S
of rank 2. Then [S : Cs (P)] € {1,2}. In particular, since S is a 2-group we have that
Ns (Cs (P))=S.
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Proof. By definition we know that P = (3 x (5 and, therefore, Aut (P) = S3. In
particular, since Ng (P) = S we have that S/Cs (P) = Autg (P) < S3. Since S/Cs (P)
is a 2-group we can then conclude that it is isomorphic to either C5 or the trivial group.

It follows that [S : Cs (P)] = |S/Cs (P)| € {2,1} thus concluding the proof. O

As a consequence of the above we obtain the following.

Lemma 3.5.5. With notation as in Definition 3.5.1 we have that Cg(gny (U) is Fsoi (¢")-

centric.

Proof. Throughout this proof we write F = Fg,(¢"), F1 = Fi(¢") and Sy :=
Cs(gny (U). From Alperin’s fusion theorem we know that for every ¢ € Autr (Sp) there
exist a set Py,..., P, of F-centric subgroups of S and automorphisms ¢; € Autx (P)
such that ¢ () = ¢, (- 1 (z)) for every x € Sy. Notice that each P; contains a

subgroup S; := ¢; (- - - 1 (Sp)) isomorphic to Sy in F.

If Sy isn't F-centric then none of the S; is F-centric either. Since each P, is F-centric
we can conclude that P, > S, for every i = 1,...,n. From [LOO05, Definition 1.6] we
know that Autr (S) = Autz, (S). we can therefore conclude that ¢ € Autg (o).
Again from [LOO05, Definition 1.6] this implies that 7 = F; which contradicts the fact
that F is an exotic fusion system. We can therefore conclude that S; is F-centric just

as we wanted to prove. H

We can now provide a result analogous to Lemma 3.5.3 for the fusion system F, (¢").

Lemma 3.5.6. With notation as in Definition 3.5.1 we have that:

(1) F2(q") is a fusion system over S (q").
(2) Every F; (q")-centric-radical subgroup of S (q™) is Fso (q™)-centric.

(3) Conjecture 3.1.1 is satistied for F5 (q™).

Proof. From Definition 3.5.1 and Example 3.2.9 we know that F; (¢") is a fusion system
over Ng(gny (Cs(gny (U)). Part (1) now follows from Lemma 3.5.4. From Lemma 3.5.5
we know that Cg(gny (U) is Fsol (¢")-centric while from Lemma 3.5.4 we know that it is
fully Fso1 (¢")-normalized. Part (2) now follows from [Ya22, Lemma 10.4]. Finally Part
(3) follows from [Br05, Proposition C] and [DP15, Theorem B]. O
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Lemmas 3.5.3 and 3.5.6 tell us that, taking F := Fso (¢"), I = {1,2}, F1 := F1(q")
and Fy := F5 (¢") then Conditions (2) and (3) of Theorem 3.A are satisfied. Condition
(1) then follows from the following and either Lemma 3.5.3 (1) or Lemma 3.5.6 (1).

Lemma 3.5.7. Let R be a commutative ring, let C and D be small categories with
finitely many objects such that D C C and let 0p : RS — RE be as in Definition

3.4.1. If C and D have the same objects then 0p is an epimorphism.

Proof. It follows from Definitions 3.2.16 and 3.2.18 that the following are direct sum
decompositions of R and RP as R-modules
RC= P R 1x= P R R°= P R v H R
Xe0b(C) Xeob(C) Y €Ob(D) Y €Ob(D)
By definition, for each object Y € Ob (D) C Ob (C) the morphism 6p sends the R-
submodule RP -1dy ® Idy of RS, isomorphically onto the component RC - Idy of RC.

The result follows. O

Now it only remains to prove that Condition (4) of Theorem 3.A holds. This follows

from the following three results.

Lemma 3.5.8. Let R be a ring, let A,B and C be R-modules, let f : A — B
be an R-module morphism, let v : im (f) — B be the natural inclusion and let f -
A — im (f) be the unique epimorpism satisfying f = vf. Then f* (Homg (B,C)) =

f* (Homg (im (f),C)) if and only if * (Hom (B, C)) = Hom (im (f),C).

Proof. Since f = vf then we have that

f* (Homg (B, C)) = f* (v" (Homg (B, C))). (3.8)

Therefore, whenever * (Homg (B, C')) = Homg (im (f), C), then

f*(Homg (B,C)) = f* (Homg (im (f),C)).

On the other hand, if f* (Homg (B,C)) = f* (Homg (im (f),C)) then we can once

again use Equation (3.8) to obtain the identity

f* (Homg (im (f),C)) = f* («" (Homg (B, C))) .

133



Since f is an epimorphism and the functor Homg (—,C) sends epimorphisms to

monomorphisms we conclude that f* is a monomorphism. The result follows. ]

Lemma 3.5.8 provides us with a condition equivalent to Condition (4) of Theorem 3.A.

The next result is useful to prove this equivalent condition.

Lemma 3.5.9. let R, F,F',C and C' be as in Lemma 3.4.4. For each P € C' we
know that there exists a natural isomorphism of R-modules R . 1dp 5 R, Let
1p € ROV .1dp denote the image of the identity in R via this isomorphism. Then

every element \ € R e(F) (see Definition 3.4.2) can be written as A = 1g' ®@ro,, (F7) T

for some x, € RO¢ (F).

Proof. By definition of R%¢'7") (see Definition 3.2.18) we know that 1g-¢5 = 1p where
E : Homo,, (7 (P, S") denotes the equivalence class of the natural inclusion seen as an
element in RO (F') (see Definition 3.2.12). Moreover every element in RO ") is of
the form pn =, 1p-pup for some pp € R. Define y, := > p 0 upb_g € ROc (F').
Then we have that

n = Z 13/ . L%’,LLP = 15/ . yﬂ'
pPel’

(%)

On the other hand, we know that every element in \ € Eg,c can be written as a finite

sum of the form A = Y7 | \; ® z; for some \; € RO ) and some z; € RO, (F).

Therefore, with the above notation, we have that

A= Z Iy ®2z; =19 ® (Z?L\%) :
=1

i=1
The result follows by setting ) := > 7" | yx, 2. O

The fact that Condition (4) of Theorem 3.A is satisfied for the Benson-Solomon fusion

system is now just a special case of the following.

Proposition 3.5.10. Let R be a commutative ring, let S be a p-group, let F be a
fusion system over S, let Fy, Fy be fusion subsystems of F over S, let F := {Fy, F»},
let C be the collection of all F-centric subgroups of S and, with notation as in Definition

3.4.2, define f : ROC(JT — ROC by setting

f ($ ORO(Fs(S Z ‘x ORO(F) Y,
1=1
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for every x € ROVs9)) C RO ROc(F2) and every y € RO¢ (F). The following

are satisfied

(1) For every RO (F¢)-module N the image f* (HomR@C(;) (Rg(fc),]\f)) equals
the image f* (Homgoe 7 (im (f),N)) where f Eggg)) — im (f) is the

morphism obtained by viewing [ as an epimorphism onto its image.

(2) If Fi and F, generate F then im (f) = ker (0p) (see Definition 3.4.2). In
particular, from Lemma 3.5.8 and Part (1) we have that F satisfies the lifting

property (see Definition 3.4.3).

Proof. In order to simplify notation throughout this proof we will denote Homzo, (r)

simply as Hom.

(1) Let ¢ : im (f) — Eg(p) denote the natural inclusion. By definition of f we

have that f = .f and, therefore

fr (Hom (Eg(]ﬂ),]\f)) = f* (L* (Hom <Eg(fc),]\f)>> C f* (Hom (im (f), N)).

In order to prove the converse inclusion we need to prove that for every morphism ¢ €

Hom (im (f), N) there exists a morphism ¢ € Hom (Eg(fc), N) such that $f = of.
With notation as in Lemma 359 let 1y = 1lg € RO (H) for every H €
{Fs(S), F1, Fo, F} and define ¢ : RO — N by setting

(17 ®rocr) Ids) = ¢ (f (= 17s(5) ©ROc(Fs(5) 1d5)> ) and

¢ (17, ®roc() 1ds,) = 0.

From Lemma 3.5.9 this defines a morphism ¢ € Hom (Eg(fc),]\f). If we now view
ROc¢ (Fs (5)), RO¢ (Fi) and RO¢ (F2) as subrings of RO¢ (F) we have that 17,g) =

17, = 17, = 15 and therefore

2
@ (f (Lrs(s) ®roe(Fs(s)) 1ds)) = ¢ (Z (=1)" 15, ®roe(F) Ids) ;

=1
= ¢ (15 Oroe) Ids)
2

(f (17s(5) @roc(Fs(9) IdS)) :

From Lemma 3.5.9 the above proves that ¢f = f. Part (1) follows.
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(2) By definition of f and 6 we have that

2
Or (f (1}-5(5) QORO(Fs(S)) Ids)) = Z (—l)i lp, - Ids = -1+ 17 =0.

i=1
Because of Lemma 3.5.9 we can deduce from the above that im (f) C ker (6F).

In order to prove the converse inclusion observe that ker (0r) and im (f) decompose as

direct sums of R-submodules

ker (0r) = @D ker (6F) Idp and im (f) = @Pim (f)Idp.

pPeC peC

From this decomposition we deduce that, in order to prove the inclusion ker () C

im (f), it suffices to prove the inclusion ker (6r)Idp C im (f) Idp for every P € C.

Fix P € C and for every i = 1,2 let Ir, := I7. p be as in Lemma 3.4.4. Then we have

the following decomposition of Egdf) Idp as a direct sum of R-submodules

2
Ry 1dp = P @ ROV 1dy(p). (3.9)

=1 (,061]:7./

In other words, with notation as in Lemma 3.5.9 we can write every = € EgC(f) Idp in

2

i=1 (,DG[]:Z.

a unique way as

where for every i = 1,2 and every ¢ € Ir, we are taking zr,, € R and we define
lor = lyp) ® @ where © € RO¢ (F) is the R-basis element corresponding to the
morphism in O¢ (F) with representative ¢. It is now immediate from definition of 0p

(see Definition 3.4.2) that

2

ker (QF) Idp = T € EgC(f) Idp : Z Z TFio = 0
=1 cpEI]:i
Let us assume without loss of generality that Idp € Iz, N Ix,. From the above we
conclude that, in order to prove the inclusion ker () Idp C im (f)Idp, it suffices to

prove that 1, 7\ € liq, m A+im (f) for every A € R, every i = 1,2 and every p € I,

Using again the notation of Lemma 3.4.4 fix Ir (g := Ifs(s) p and for every ¢ € Ir (g
define 1, ry(s) € E?gg)) as before. We can assume without loss of generality that
Idp € Irys). Since both F; and F, are fusion systems over S then Fg (S5) C Fi, Fo.

Therefore, for every i = 1,2 and every ¢ € Ir (s there exist a unique ¢ € Ir and
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a unique isomorphism 1 in F; satisfying ¢ = 1. We conclude that for every A € R

and every o € Ir (s the following holds

2
f(Lozse) =D (1) Lo g\

=1

Fix A € R and ¢’ € Ir,. Since Fg(S) C F; then there exists ¢ € Iz, g) such that
©? = . Moreover, since F; and F, generate F we know that there exist n € N and

isomorphisms ¢, ; in F; for j =1,2and i = 1,...,n such that

Y= P2nPin " P2,1P91,1-

For every i = 1,...,n define

2 . 14 .
@ i=P2iP1,i 0 P2,1P1,1, @ =P P2,1P1,1-

By composing with isomorphisms in Fg (S) we can assume without loss of generality

that o', o*" € Ir s for every i = 1,...,n. Since ps; is an isomorphism in F; and
1 is an isomorphism in F; for every i = 1,...,n, by definition, we have that
2\ (2) /1 14\(2) 1,0 o251\ (1)
(™) = ("), (") = (™)

Here we take ¢*'~! = Idp. With this setup we can conclude that

190/7‘7_-2)\ = 190(2)7]:2)\ - 1(,0(2),]:2)‘ + 1im (f) ,
=1ome p A+ f (— Lot mys)A) +im(f),

=1 im@ 5 A+ Lmo 5 A = 1@ £, A +im(f),

Lpl’"
= 1(9017,1)(1)7]__1)\ + im (f) ,
— 1(w1,n)(1)7‘-7_—1)\ + f (1@2,’”*17;5(5))\) —|— 1m (f) ,

= 1(802’”,1)(2)’]_-2/\ -+ im (f) s

- 1(<P1,1)(1),]-'1)‘ + f <1IdP7}—s(S)/\) +1im (f) )
= 1Idp,J—‘2/\ +im (f) ,
= Lup e A+ f (—Liapres)A) +im(f),

= Liap,m A +im (f).
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The same arguments can be used in order to prove that 1, 5 A € 114, 7 A+ im (f) for

every ¢ € I, and every A € R. Part (2) follows from the previous arguments. ]
As a corollary of Proposition 3.5.10 and Theorem 3.A we can now prove Theorem 3.C.

Proof. (of Theorem 3.C). Assume the notation and hypothesis of Theorem 3.C. Let
I = {1,2}. Since each F; is a fusion system over S then Condition (1) of Theorem
3.A is satisfied by Lemma 3.5.7. Conditions (2) and (3) of Theorem 3.A are satisfied
because of Conditions (2) and (3) of Theorem 3.C. Finally Condition (4) of Theorem
3.A is satisfied because of Condition (1) of Theorem 3.C and Proposition 3.5.10 (2).

Hence we can apply Theorem 3.A and the result follows. O
We conclude this section with the proof of Theorem 3.B.

Proof. (of Theorem 3.B). Assume the notation of Definition 3.5.1. It suffices to prove
that we can apply Theorem 3.C with F := Fg, (¢"), F1 := F1 (¢") and Fy := F5 (¢").

From Lemmas 3.5.3 (1) and 3.5.6 (1) we know that both F; and F; are fusion systems
over S. From Lemma 3.5.2 we know that Condition (1) of Theorem 3.C is satisfied.
Finally from Lemmas 3.5.3 and 3.5.6 we know that Conditions (2) and (3) of Theorem

3.C are satisfied. The result follows by applying Theorem 3.C with the above setup. [

3.A Cohomology spectral sequences

In this appendix we recall the definition of a spectral sequence and prove some of the
results that are left as an exercise in [We94, Sections 5.1 and 5.2]. These will help
us provide a description of the page 2 differentials of a spectral sequence (see [We94,
Exercise 5.1.2]) and obtain short and long exact sequences relating page 2 and page 3

terms of certain spectral sequences (see [We94, Exercises 5.2.1 and 5.2.2]).

Let us start by recalling the definition of a spectral sequence.

Definition 3.A.1. Let A be an abelian category and let a be a non negative integer. A
cohomology spectral sequence in A starting at a is a family of objects { £} }:; rez
k>a

together with maps di’j ; E,ij — E,iJrk’j*kH for every i, j and k such that:
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(1) For every i, and k the composition d.,""/ " d7 is zero.

(2) For every i,j and k there is an isomorphism

k+1 —

Eb o ker (dij) /im <d2—k,j+k—1> ‘

For every k > a we call page k£ elements the elements E,i” and page k differentials
the maps dfg’j. We usually denote a cohomology spectral sequence in A starting at a with
elements E,’j and differentials dz’j : E,’j — E,i+k’j_k+l simply by its page a elements

(i.e. EU).

We are mostly interested in spectral sequences that converge in the following sense.

Definition 3.A.2. Let A be an abelian category, let a be a non negative integer, let
E!7 be a cohomology spectral sequence in A starting at a and let H* := {H"}, _, be a
family of objects in A. We say that £/ converges to H* (denoted as E%7/ = H'J)
if:

e For every i, j € Z there exists N/ € Z and E"J € A such that for every n > N*J

then E% = F}7.
e For every n € Z there exists a filtration of H”
CEMMCETHNC
such that
jim (3 H") =0, im (") = '
and for every i, j € Z there exists an isomorphism
R I el Yy e

i+J i+J

It would be quite impractical if, in order to describe any spectral sequence, it was

necessary to define the differentials at each individual page. The following Proposition
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tells us that, when a spectral sequence arises from a double cochain (resp. chain)

complex, it is in fact only necessary to describe the differentials at the first two pages.

Proposition 3.A.3 ([We94, Exercise 5.1.2]). Let R be a ring and let { (C*9, d%7, d;”) Viser
be a double cochain complex in R-Mod (see Definition 3.2.21). Define E;’ as the
cohomology spectral sequence in A starting at 0 and such that B}/ = C%1, i’ .= diJ,
B = ker (di7) /im (d%~Y) and dy - B}7 — E7*' is the map induced by ) (anti-
commutativity of the vertical and horizontal maps ensures that d’ is well defined). Then

we have an isomorphism of R-modules
i o L) € B x B < (@) = () + di9 () = 0)
2 {(d " (a) + dj, ™ (), d) " (a) +b) : (a,b,c) € K} 7

where K — Eé,jfl % ker (diJrl,jfl) « ker (diq,j) ,

and we can define dj’ : Ey7 — E37>77" by setting dy’ ((x, y)) = (d;"" " (y),0). For
all spectral sequences in R -Mod arising in this way from a double cochain complex we

take this to be the differential at page 2.

Proof. From Definition 3.A.1 we have that
Ey? = ker (dg’) /im (dg’ "),
={ze EY - di (z) = 0} /{d/ " (a) : a € Eé’j_l} :

. Ay e By x EyFYT L di (v) = 0}
(@7 (a),b) ¢ (a,b) € By x BTN

Using this isomorphism we can redefine d” by setting d%’ ((x, y)) = (df{j (z),0). With
this in mind we can now conclude that
{(2,y) € By? x Bg™7 + dif () = dy (2) + di97" (y) = 0}

ker (d}7) = —— _ U h St :
er (@) (@7 (a),0)(a.b) € B < Byt Vst df (& (a)+dy ' (b) = 0}

From anti-commutativity of the cochain complex differentials we now have that
09 (8571 (a)) + diF 9 (b4 4 (@) = AP () + 4 (@ () +
7 (0 @),

= i (b)
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Therefore, by redefining b := b+ d;’~' (a), we can rewrite

{(az, y) € By ox BV @b (2) = dz’j (z) + diTHi=t (y) = O}
{(de’" (a), ;" (a) +b) : (a,b) € Eg?"" x ker (&™)}

ker (dil’j ) =

The first part of the statement follows from the above, the third isomorphism theorem
and the isomorphism E57 = ker (d7’) /im (dlfl’j) given in Definition 3.A.1.

To prove the rest of the statement first notice that, whenever the differentials d;’ are well
defined, we have that d5™7~"d’ = 0. Therefore we are only left with proving that the
differential d5’ is well defined for every i,j € Z. For every z € Eé’j and y € Eé+1’j_1
such that @i/ (z) = d’ (z) + di*'7=' (y) = 0 we can use anti-commutativity of the

cochain complex differentials to deduce that

(7 ) = = (0 ) = 7 (8 ) =0

AP (@97 () + dy (0) = 0.

Therefore, denoting with an overline (%) the equivalence class of the appropriate elements,
we have that d}’ <(x, y)) € By for every (z,y) € Ey’. We are now only left with
proving that d5’ ((x, y)) does not depend on the choice of representative (z,y) of (x,y).
For every (a,b,c) € Eg?~" x ker (di'9=1) x ker (d5 ) let o/ := ¥ :=0 and ¢ :==b €

ker (dl(,i“)*l’j*l). Then we have that

(d, 71 (d7™ (@) + ) ,0) = (4,71 (b),0),
97 ),

= (&2 () + d, () AT (d) + V)

This proves that dé’j does not depend on the choice of representative thus concluding

the proof. H

If a convergent cohomology spectral sequence starting at 2 has only two non zero rows
then there exist a short exact sequence relating its page 3 elements and a long exact

sequence relating its page 2 elements. More precisely we have the following.

Proposition 3.A.4 ([We94, Exercise 5.2.2]). Let A be an abelian category, let E&’ be

a cohomology spectral sequence in A starting at 2 and let H* = {H"}, _, a family of
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elements in A such that By’ = H't. If E}7 = 0 whenever j ¢ {0, 1} then there exists

a long exact sequence of the form
—H" s By E"0—>H“ Ey ! E”““ M —s
Moreover, for every n € 7, there exists a short exact sequence of the form
0— Ey° — H* — By~ — 0.

Proof. We know by definition that for every i,j,k € Z with k > 2 the differential
dy’ maps the page k element E}” to the page k element E’+k’] M1 Since E =0
whenever j & {0, 1} this implies that the differential dk’ is the zero map for every k& > 3.
In particular we have that ker (d;’) = E,” and that im (d;ﬁk’jM*l) = 0 for every k > 3

and, therefore
B e (d2) fim (d749%4) = B9 fo= B9

We can therefore conclude that, with notation as in Definition 3.A.2, we have E%J = E;j

for every i, j € Z. In particular, for every n € Z there exists a filtration
— Fp v H" < U o (3.10)
such that
Iﬁ(F;H”) =0, ||_m>(FT’{H”) = H".
and for every i, j € Z there exists an isomorphism

Ei Fz(ij]) JHH—]/}?ZI;] —G=D it (3.11)

We can conclude from the above that for every j & {0, 1} and every n € Z then

0=Ey ™ = FriH"/Fri-gn,
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Equivalently, for every j ¢ {0,1} we have that
Frign = pr-U-bgn,

Since I'&n(F;;H") = 0 and ||_m>(F;'L‘H”) = H™ then we can rewrite the filtration of
Equation (3.10) as

i 30 0=F""H" — FPH" 5 F" 'H" = H" — H" — - . (3.12)
We can therefore conclude from Equation (3.11) that for every n € Z we have
Ey’ = FYH"/Fy T H" = FYH™ 0 = FrH".

Applying again Equation (3.11) with the filtration of Equation (3.12) we obtain the

isomorphism

Ey M e protHY FrH™ = HY B,
The short exact sequence of the statement follows

On the other hand we know by definition that
E;’O = ker (d;“o) /im (dg_Q’l) , Eg_l’l = ker (dg‘“) /im (dg“g’?) .

Since E3™*™' = E}™®? = 0 then we can conclude that ker (d5°) = E3° and

im (dy~*>?) = 0. Therefore, we can rewrite the above equivalences as
By = coker (dy "), By > ker (dy 1Y)
We can therefore rewrite the short exact sequences of the statement as
0 — coker (dy ") — H™ — ker (d5 ") — 0.

The long exact sequence of the statement follows from joining all such short exact

sequences. ]

Analogously to Proposition 3.A.4, whenever a cohomology spectral sequence has only
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two non zero columns, there exists a short exact sequence relating its page 2 elements.

More precisely we have the following results with which we conclude this appendix.

Proposition 3.A.5 ([We94, Exercise 5.2.1]). Let A, Ey’ and H* be as in Proposition
3A4. IfE)’ =0 for every i ¢ {0,1} then, for every n € 7 there exists a short exact
sequence of the form

0— Ey" ' — H" — EJ™ — 0.

Proof. With arguments analogue to those in proof of Proposition 3.A.4 we can deduce
that di’j = 0 whenever k > 2 and, therefore, E’J = E;j for every i, j € Z. In particular,

for every n € Z there exists a filtration
v FUH" s PUTHT s o
such that
lim (F;H"™) =0, limy (F;H") = H".
and for every i, j € 7Z there exists an isomorphism

By = Bl R H. (313)

We can conclude from the above that for every i ¢ {0,1} and every n € Z then

FiH™ = FIt1H™ We can therefore rewrite the filtration of Equation (3.13) as
i3 0= F2H" < FYH™ <5 FOH" = H" < -+ - . (3.14)
We can therefore conclude from Equation (3.13) that for every n € Z then
Ey" ' FlHY/F2H" = FYH" /0 = FTH™.
Applying once again Equation (3.13) we obtain from the above and Equation (3.14) that

Ey" = FOH"/FrH" = H"/E," "
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The short exact sequence of the statement follows. ]

3.B Higher limits over F,-modules and Z,-modules

Let p be a prime, let C be a small category with finitely many objects, let I’ : C —
[F,-Mod be a functor and let ¢ : IF,-Mod — Z,-Mod be the natural inclusion of categories.
In this appendix we prove that limg (F') = lim¢, (v o F') as abelian groups for every non
negative integer n. This seems to be widely used in the literature, but we were unable

to find any reference proving it. Therefore we include a proof in this paper.

Let us start by relating free resolutions of Z,-modules with free resolutions of F,-modules.

Lemma 3.B.1. Let C be a small category with finitely many objects, let R be a
commutative ring, let x € R be a non zero divisor, let M be an RC-module (see
Definition 3.2.16) such that m - x # 0 for every m € M, let F, = M — 0 be a free
resolution of M in RC' and define the quotient ring S :== R /xR. By viewing SC' as an
(RC,SC)-bimodule in the natural way we have that F, Rzc SC seldso M@rcSC —
0 is a free resolution of the SC-module M @rc SC.

Proof. For every free RC-module F = (RC)" we know that F' @rc SC = (SC)" is
a free SC-module. Therefore we only need to prove that the sequence in the statement

Is exact.

For every RC-module N let x- : N — N denote the endomorphism of RC-modules
corresponding to multiplication by x (seen as an element in RC'). Since z is not a zero
divisor of R, is not a zero divisor of RC' either (when seen as an element in RC).
Therefore, since each F; is free we can deduce that the endomorphisms z- : F; — F;
are injective for every i. By definition of M we also know that the endomorphism
x-: M — M is injective. Take now the chain complex C, defined by setting C_1 = M,
C; = I} for every i > 0 and C; = 0 for every j < —2. Since SC = RC/(RC<z) by
construction, viewing SC' as an (RC, RC)-bimodule in the natural way, we obtain the

exact sequence of chain complexes

0—C, 5 C,— (0, ®rc SC) — 0.
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This leads (see [We94, Theorem 1.3.1]) to the long exact sequence in homology

o= Hy (Cy ®re SC) — Hy (Cy) — Hy (Cy) = Hy (Cy @rc SC) — 0.

Since F, 5 M — 0 is a free resolution of M, we have that it is a long exact sequence.
Equivalently we have that H,, (C,) = 0 for every n € Z. From the above long exact
sequence we can therefore conclude that H, (C. ®rc SC) = 0 for every n € Z.

e®ldsc

Equivalently the sequence of RC-modules F, ®rc SC M ®@rc SC ' is exact.

The result follows from viewing this sequence as a sequence of SC-modules. H

The following result, together with Lemma 3.B.1 allows us to switch from free resolution
in Z,-Mod to free resolutions in F,,-Mod when applying a certain contravariant Hom

functor.

Lemma 3.B.2. Let R be a ring, let I be a two sided ideal of R, let S := R/I, let
t : §-Mod — R-Mod be the natural inclusion of categories, let M be an S-module
and let N be an R-module. Viewing S as an (R, S)-bimodule in the natural way there
exists an isomorphism of abelian groups Homg (N, ¢ (M)) = Homgs (N ®r S, M) which
is natural in both N and M.

Proof. The functor ¢ is in fact the restriction functor resulting from the projection  :
R — S. It is well known that such restriction functor is right adjoint to the functor
— ®r S : R-Mod — S-Mod. More precisely there exists a natural bijection of sets
I' : Homg (N, ¢ (M)) < Homg (N ®r S, M) which sends every f € Homg (N, ¢ (M))
to the morphism I' (f) € Homgs (N ®z S, M) defined by setting

L) (n@m(x) = fn) (),

for every n € N and every z € R.

For every f,g € Homp (N, ¢ (M)), every x € R and every n € N we have that

F(f+g)(ner (@)= (+g) ) m(x),
=f(n)-m(x)+g(n)- m (),
=I'(f)(n@r(2)+T(9) (n@m(z)).
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We can therefore deduce that I'(f+g¢g) = I'(f) + I'(g). Since T" sends the zero
morphism to the zero morphism this implies that I' is in fact a morphism of abelian

groups thus concluding the proof. ]

As a consequence of Lemmas 3.B.1 and 3.B.2 we have the following.

Proposition 3.B.3. Let R,C,z and S be as in Lemma 3.B.1 and let . : S-Mod —
R -Mod be the natural inclusion of categories. Then, for every non negative integer
n and every contravariant functor M : C°° — S-Mod there exists an isomorphism of

abelian groups lim¢ (M) = lim¢ (0 o M) which is natural in M.

Proof. Let RC be as in Definition 3.2.18, let F, = RE — 0 be a free resolution of R€
in RC -Mod, denote by d,, : F,,;1 — F,, its differentials and view toM : C°®* — R -Mod
as an RC-module (see Proposition 3.2.17). By definition of the Ext}~ groups, for every

integer n > 0 we have the isomorphism of abelian groups

ker (d¥ : Homg (F),,t 0 M) — Homg (Fy41,L0 M))
im (d¥_, : Homg (F,_1,¢0 M) — Homg (F,,.0 M))’

Exth e (EC, Lo M) =

where we take d_; := 0 and F_; = 0. Because of Lemma 3.B.2 we can obtain from the

above the following isomorphism of abelian groups
Exthe (R, 00 M) = ker ((d, ® Idsc)”) /im ((dn—1 ® Idsc)") (3.15)
where

(dn X Idgc)* . HOIHS (Fn RrcC SC, M) — HOIDS (Fn+1 RrC SC, M) s and

(dn—l X Idgc)* : HOIHS (Fn—l RrC SC, M) — HOHlS (Fn KRrC SC, M) .

Since R€ @rc SC = S€ as SC-modules, from Lemma 3.B.1 we obtain the free
resolution F, ®rc SC =¥ldgo S€ = 0 of S€ in SC-Mod. Therefore, from definition

of the Exts groups, we can rewrite Equation (3.15) as
Ext}o (R, 1o M) = Extle (8¢, M) .

The result follows from the above equivalence of abelian groups and [We07, Corollary
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5.2]. O

As a corollary of Proposition 3.B.3 we obtain the result that motivates the introduction

of this appendix.

Corollary 3.B.4. Let C be a small category with finitely many objects, let p be a
prime and let v : F,-Mod — Z,-Mod be the natural inclusion. Then, for every non
negative integer n and every contravariant functor M : C° — T, -Mod there exists an

isomorphism of abelian groups lim¢, (M) = limg (v o M) which is natural in M.

Proof. This is just a particular case of Proposition 3.B.3 taken with R := Z, and

x = D. O
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Chapter 4

Conclusions and further work

Let F be a fusion system. In this thesis we defined Mackey functors over F and F-centric
Mackey functors (also known as F¢-restricted Mackey functors) (see Definitions 2.2.26
and 2.2.29). These definitions are in fact equivalent to those given in [DP15]. We then
explored the properties of F-centric Mackey functors proving that results like Higman's
criterion and the Green correspondence, which are known to be satisfied for Mackey
functors over groups (see [Sa82]), can be translated to F-centric Mackey functors (see

Theorems 2.3.17 and 2.4.38).

Moreover we proved results which contribute to proving the sharpness conjecture for
fusion systems (see [DP15]) by both providing some tools to approach it (see Theorems
3.A and 3.C) and using such tools to prove that the conjecture is satisfied for the only

known family of exotic fusion systems over 2-groups (see Theorem 3.B).

We would like to conclude this thesis by outlining a research project that could be pursued

as a continuation of the results exposed during Chapter 3.

We believe there exist at least two potential methods of using Theorems 3.A and 3.C
in order to make further progress towards proving the sharpness conjecture for fusion

systems.

The first method was explained in Section 3.4. It is based on the observation that,
because of [Br05, Proposition C], [DP15, Theorem B] and [Ya22, Lemma 10.4], then for
any fusion system F over a p-group S and any family P := {F;},_; of fully F-normalized
and F-centric subgroups of S the set F' := {Nz(S)} U{Nx(F,) : P € P} satisfies
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Conditions (1)-(3) of Theorem 3.A. We suspect that, under some minimality conditions
on F', Condition (4) of Theorem 3.A is also satisfied. More precisely we conjecture that,
if P is taken to be the family of all fully F-normalized and F-essential subgroups of S
(see [Li07, Definition 5.1 (ii)]), then we can apply Theorem 3.A in order to prove that
the sharpness conjecture holds for F (see Conjecture 3.4.6). We think that the main
difficulty to overcome in attempting to prove the above is the varying nature and number
of F-essential subgroups depending on the fusion system F. This variety might in fact

lead to complications when attempting to obtain general results.

The second method is based on Theorem 3.C. With notation as before we know that
Conditions (2) and (3) of Theorem 3.C are satisfied for any F; € F and F; := Nz (5).
We conjecture that, with some extra work, we can apply Theorem 3.C with F; and F,
as above in order to prove the sharpness conjecture for the (non necessarily saturated)
fusion system F’ over S generated by F; and F,. Some additional work might then
allow us to repeat this process replacing F» with 7’ and F; with a different fusion system
in F. We know from Alperin’s fusion theorem that the fusion systems in F' generate
F. Therefore, repeating this process a finite number of times, we would prove that the
sharpness conjecture is satisfied for 7. We believe that the main difficulties to overcome

when trying to prove the above are:

e Unlike Nz (S) the fusion system F; might not be a fusion system over S. This
prevents us from applying Theorem 3.C with F, := Nz (S). In order to obtain a

similar result, major adaptations of the proof of Theorem 3.C might be necessary.

e The fusion system F’ defined above might not be saturated. It is therefore
necessary to retrace the steps leading to Theorem 3.C and adapt them to non

saturated fusion systems.

e The fusion system F’ defined above might not satisfy Condition (2) of Theorem

3.C. To solve this problem it might be necessary to replace Conditions (2) and (3)

O(F
OfC

i = 1,2 and every Mackey functor M = (M,, M*) over F". This relaxation of

by the weaker condition “limg, ., (M* i} EE_)> = 0 for every n > 1, every

conditions might lead to a less powerful result.
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