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Abstract

Transitivity is perhaps the most fundamental axiom in economic models of choice.

The empirical literature has regularly documented violations of transitivity, but

these violations pose little problem if they are simply a result of somewhat-noisy

decision making and not a reflection of the deterministic part of individuals’ prefer-

ences. However, what if transitivity violations reflect genuinely nontransitive pref-

erences? And how can we separate nontransitive preferences from noise-generated

transitivity violations–a problem that so far appears unresolved? To tackle these

fundamental questions, we develop a theoretical framework which allows for non-

transitive choices and behavioral noise. We then derive a non-parametric method

which uses response times and choice frequencies to distinguish genuine (and poten-

tially nontransitive) preferences from noise. We apply this method to two different

datasets, demonstrating that a substantial proportion of transitivity violations re-

flect genuinely nontransitive preferences. These violations cannot be accounted for

by any model using transitive preferences and noisy choices.

JEL Classification: D01 · D81 · D87 · D91

Keywords: Transitivity · Stochastic choice · Preference Revelation
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1 Introduction

The economic approach to decisions builds upon the assumption that choices can be

represented by (complete) transitive binary relations, that is, preferences. Transitivity

is hence, arguably, the most fundamental assumption behind economic models of choice.

Yet, the empirical literature has regularly documented systematic violations of transi-

tivity in the form of cyclical choices where, for example, a is chosen over b, b is chosen

over c, and c is chosen over a (e.g., Tversky, 1969; Loomes et al., 1989, 1991; Starmer,

1999, 2000; Humphrey, 2001).

The interpretation of this empirical evidence is strongly contested. The main ar-

gument is that choice is stochastic, and hence it is possible to observe nontransitive

choices even though preferences are transitive, because actual choices are noisy (Iverson

and Falmagne, 1985; Sopher and Gigliotti, 1993; Birnbaum, 2020). As Birnbaum and

Schmidt (2010) observed, “[a] problem that has frustrated previous research has been the

issue of deciding whether an observed pattern represents ‘true violations’ of transitiv-

ity or might be due instead to ‘random errors.’” In other words, observed transitivity

violations could be explained by, for example, random utility models which postulate

a transitive binary relation plus a noise term (McFadden, 1974, 2001; Anderson et al.,

1992). The current literature has long been at an impasse due to the impossibility of

disentangling preferences from noise.

In this contribution, we show how to disentangle preferences and noise to examine

whether cyclical choices are due to noise or true evidence of genuinely nontransitive

preferences. In this sense, we follow the views of Machina (1985), who already argued

that stochastic nontransitivity is compatible with transitive choice plus noise (or ran-

domization), and stated that “the ‘proper’ notion of intransitivity [. . . ] ought to be

the phenomenon of intransitive underlying preferences over the [options] themselves.”

Specifically, our theoretical approach and empirical analyses allow us to show the exis-

tence of nontransitive choice patterns which cannot be explained by anymodel built upon

transitive preferences and noisy choices. To do so, we consider not a specific model, but

rather a general framework encompassing any model (transitive or not) of noisy choice.

This is important because, were we to consider a specific model, it would be in principle

possible to argue that a different model might explain the transitivity violations we find

while assuming transitivity. In contrast, our approach settles the debate and provides

conclusive evidence for the existence of nontransitive preferences.

To accomplish this objective, we extend recent results by Alós-Ferrer et al. (2021),

which use response times to reveal preferences even when choices alone cannot do so, but

do not require any particular model or parametric assumption. Our approach thus allows

for preference revelation (as opposed to estimation, which requires a specific model) even

when the underlying binary relation is nontransitive. We then apply the results to two

existing datasets by Davis-Stober et al. (2015) and Kalenscher et al. (2010), hereafter

DSBC and KTHDP, respectively. Applying the new results, we find that both datasets
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exhibit substantial percentages of transitivity violations in the underlying preferences,

independently of any model of noise.

The revelation result we use is based on two robust empirical regularities of choices

and response times arising from psychology and neuroscience. The first is that easier

choice problems are more likely to elicit correct responses than harder problems. This

psychometric effect is one of the most robust facts in all of psychology (Cattell, 1893;

Dashiell, 1937; Laming, 1985; Klein, 2001; Wichmann and Hill, 2001). It has also been

established for economic decisions, with evidence dating back to Mosteller and Nogee

(1951) and including Fudenberg et al. (2018) and Alós-Ferrer and Garagnani (2022a,b).

The second regularity is that easier choice problems take less time to respond to than

harder problems. There is overwhelming evidence for this chronometric effect in a wide

variety of domains, starting with Cattell (1902), Moyer and Landauer (1967), Moyer

and Bayer (1976), and Dehaene et al. (1990). The finding extends to preferential choices

(e.g., Dashiell, 1937), and a growing number of contributions have demonstrated it for

intertemporal choice (Chabris et al., 2009), social preferences (Krajbich et al., 2015),

and decisions under risk (Moffatt, 2005; Konovalov and Krajbich, 2019; Alós-Ferrer and

Garagnani, 2022a,b).1

A simplified intuition for our analysis and our results is as follows. By the effects

described above, slow decisions are often more noisy than fast ones, because they corre-

spond to choices where the decision maker is closer to indifference (informally speaking)

and noise is more likely to offset the actual preference. Hence, if received transitiv-

ity violations were mostly due to noise, they should be associated with at least some

slow choices along the corresponding cyclical patterns. By the same logic, chains of

fast decisions should almost never lead to transitivity violations. In contrast, if received

transitivity violations mostly reflect genuinely nontransitive preferences, we should find

substantial numbers of violations where all involved choices are fast.

A simple reanalysis of the datasets of DSBC and KTHDP illustrates this rough intu-

ition. For this exercise, a decision for a given participant is “slow” (“fast”) if its average

response time across all repetitions of the decision is above (below) the participant’s

median response time across all decisions. We then rely on the standard measure of

transitivity violations used in the literature, violations of Weak Stochastic Transitivity

(WST; see below for details). In DSBC, on average, participants violated WST along

19.53 potential cycles out of 95 (20.56%). Of those, on average 10.62 were such that all

decisions along the cycle were fast in the sense defined above, and the remaining 8.91

were such that at least one of them was slow. That is, on average across participants,

54.38% of all transitivity violations are, intuitively, hard to explain as the result of noise.

This represents 11.18% of all potential cycles in the experiment. For KTHDP, the situa-

tion is even more extreme. Participants on average violated WST along 47.19 potential

1These effects were originally documented in discrimination tasks, where a decision is hard when the
difference between two stimuli is small. As argued by Fudenberg et al. (2018), large error rates and long
response times in this case might reflect the difficulty in separating the values of the options.
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cycles out of 306 (15.42%), and for 42.59 of those, all decisions along the cycle were fast

(and only 4.59 involved one or more slow decisions). Hence, in this experiment 90.25% of

all transitivity violations are hard to explain as the result of noise, representing 13.92%

of all the potential cycles in the experiment.

In our analysis, we go beyond this simple intuition. The theoretical approach that

we develop allows us to identify Revealed Transitivity Violations (RTVs) in datasets

including repeated choices and response times. RTVs are cyclical patterns of choices

such that, for each choice pair along the cycle and for any model of preference-based

choice (transitive or not) including noise (no matter which assumptions on the latter are

imposed, e.g. symmetric or not), the data reveals that the underlying preference is as

specified in the cycle. Hence, the observed preference cycle can only be explained by a

genuinely nontransitive preference, and not by choice noise.

This approach strongly differs from the previous literature, which has concentrated

on violations of WST and related properties (Tversky, 1969). Denoting by p(x, y) the

proportion of x choices from the pair {x, y}, a WST violation is a pattern in the data

where p(a, b) ≥ 1/2 and p(b, c) ≥ 1/2, but p(a, c) < 1/2. In contrast, an RTV is a

pattern in the choice and response time data which reveals preferences such that a � b,

b � c, but c ≻ a. We will show that RTVs are more demanding than WST violations in

the sense that every RTV implies a violation of WST (see Section 4.1), but the converse

is not true. This is because violations of WST could be explained through models of

noisy choice where preferences are transitive but noise is asymmetrically distributed,

while RTVs cannot be explained by any model of noisy choice.

Our objective is to falsify the transitivity hypothesis in arbitrary models with noisy

choices and hence be able to demonstrate the existence of genuinely nontransitive pref-

erences without relying on any particular model specification. We build upon the (de-

terministic) framework developed in the seminal paper of Shafer (1974). In a standard

utility model, x is (weakly) preferred to y if and only if u(x) − u(y) ≥ 0, where u is

a utility function. Shafer (1974) replaces utilities with general two-variable functions

v(x, y), which can be thought of as “strength of preference” (e.g. Dyer and Sarin, 1982;

Fishburn, 1988), such that x is (weakly) preferred to y if and only if v(x, y) ≥ 0. This

allows for nontransitive choices, as v(x, y) > 0 and v(y, z) > 0 do not necessarily imply

that v(x, z) > 0. The approach encompasses models allowing for nontransitive choices

such as (generalized) regret theory (Loomes and Sugden, 1982, 1987; Bleichrodt and

Wakker, 2015), salience theory (Bordalo et al., 2012), and Skew-Symmetric-Bilinear

utility (SSB; Fishburn, 1984a,b,c), which postulate specific functions v(x, y) capturing

particular phenomena (e.g., regret or salience).

We then enrich this framework allowing for noise along the lines of a generalized

version of random utility models (RUMs). In a RUM, x is chosen over y if and only if

u(x)−u(y)+εxy > 0, where εxy is a pair-specific noise term. This encompasses standard

additive RUMs, but also random parameter models as in, e.g., Loomes and Sugden (1998)

or Apestegúıa and Ballester (2018). In our Random Choice Models (RCMs), x is chosen
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over y if and only if v(x, y) + εxy > 0. Hence, RCMs encompass noisy-but-transitive

models as RUMs while allowing for genuinely nontransitive preferences. RCMs also

encompass nontransitive-but-deterministic models as regret theory or salience theory

while allowing for noisy choice.

We work in the universe of RCMs and derive a (possibly-nontransitive) preference

revelation result extending the main result of Alós-Ferrer et al. (2021), which we then

apply to the data. Our approach provides conditions which, if fulfilled, reveal the un-

derlying preference within a pair independently of any assumptions on the noise. Those

revealed preferences can in turn reveal nontransitive cycles. That is, contrary to WST

and related approaches, we do not look for violations of certain implied conditions (on

choice frequencies only), but rather examine when genuinely nontransitive preferences

are revealed by the choice and response time data. In this sense, an RTV does not

just suggest that the data might violate transitivity: it actually reveals nontransitive

preferences behind the data. Thus, we provide a framework where noise can be dis-

entangled from underlying (potentially nontransitive) preferences. If a nontransitive

preference cycle is revealed, we can conclude that there exists no model of noisy choice

relying on transitive preferences which can explain the data. Hence, our results allow to

demonstrate the existence of genuinely nontransitive preferences.

The previous literature is characterized by a back-and-forth between contributions

showing empirical violations of WST and related criteria, and responses arguing that

those might be explained by models taking noise into account (see Online Appendix A

for a more detailed review of this literature). Tversky (1969) reported WST violations,

but Iverson and Falmagne (1985) reanalyzed the data and argued that evidence was

compatible with transitive preferences plus noise. Loomes et al. (1989, 1991) invoked

transitivity violations as a potential explanation of anomalies in risky choice, but Sopher

and Gigliotti (1993) replicated their experiments and found choices to be captured by a

structural model with transitive preferences and random errors.

Regenwetter et al. (2010, 2011) argued that violations of WST might be caused

by stochastic preferences (Block and Marschak, 1960), that is, probability distributions

over transitive preferences. They suggested to analyze possible violations of transitivity

through violations of the Triangle Inequality instead: p(x, y) + p(y, z) − p(x, z) ≤ 1.

This property must be satisfied by any stochastic preference. Using both WST and

the Triangle Inequality, Butler and Pogrebna (2018) found evidence for nontransitive

preferences, but Birnbaum (2020, 2023) argued that those choice patterns could be

explained by allowing both for stochastic preferences and additional choice errors. Many

other contributions in the literature have exhibited choice patterns possibly reflecting

nontransitive preferences in multiple domains (see Online Appendix A). We refer the

reader to Starmer (2000) and to the recent review by Ranyard et al. (2020).

Our contribution, however, is a major conceptual departure from this previous litera-

ture. Our approach does not rest on any specific model, or on conducting a “horse race”

to see which of a given set of models explains data better (a common approach used,
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e.g., by Ranyard et al., 2020). On the contrary, we identify transitivity violations which

cannot be explained by any noisy-choice model which assumes transitive preferences, or

distributions over them. The class of models discarded by our analysis is far more general

than any class previously considered in the literature. In particular, it does not assume

that preferences are stable, since it encompasses RUMs which are equivalent to stochas-

tic preferences, i.e. probability distributions over different preferences. This is important

because, as mentioned above, it has been argued that violations of transitivity might

just be due to decisions being best described by a distribution over transitive preferences

(Regenwetter et al., 2011). Further, RCMs do not assume that noise is an additional

term added to utilities, as in standard RUMs. In particular, it includes models which

cannot be represented in that fashion, because noise terms are pair-specific and violate

the Axiom of Revealed Stochastic Preference (McFadden, 1974; McFadden and Richter,

1990). That is, if our method reveals a transitivity violation, the interpretation is not

that a certain nontransitive model “fits the data better.” Rather, the interpretation is

that there exists no model derived from transitive preferences (stable or not, determin-

istic or stochastic) and noise (additive or not, alternative-specific or pair-specific) which

can explain the data.

Our main empirical point is the demonstration that a substantial amount of genuine

transitivity violations can be found in standard economic choice tasks, hence rejecting

the hypothesis that choices can be represented by transitive preferences plus behavioral

noise. This requires datasets where subjects made the same choice multiple times (as in

any experiment focusing on WST violations) and where response times were explicitly

and reliably measured, as in the datasets of DSBC and KTHDP. It is important to note

that none of these datasets was collected with our approach in mind, and hence they

also serve as a demonstration of the applicability of our techniques.

In addition to demonstrating revealed transitivity violations in the data, we also

compare them to violations of WST in both datasets. Not all violations of WST are

genuine violations of transitivity, and hence our approach provides a better estimate

of the extent of nontransitive preferences. In the Online Appendix E we also examine

which choice patterns give rise to nontransitivities more often in both datasets, and

hence which might be the mechanisms underlying genuinely nontransitive preferences.

The most frequent nontransitivities appear to involve chains of decisions accepting small

changes in the characteristics of the options which are then undone when considered

together. People seem to accept series of small tradeoffs in a way that does not scale up.

For example, they repeatedly accept small decreases in monetary payoffs in exchange

for small increases in the probability of a payoff, until a point is reached where they

accept a large decrease in probability in exchange for a large increase in the monetary

payoff, bringing them back to the starting point. Crucially, however, this is unrelated

to the traditional idea of “nontransitive indifference.” This argument points out that

apparent nontransitivities might be observed when decision makers are close to indif-

ference, because (by the psychometric effect) noise is maximal in this case. However,
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our approach disentangles preferences from noise, hence this kind of apparent nontran-

sitivities will by definition not result in revealed transitivity violations. In other words,

“nontransitive indifference” produces apparent nontransitivities due to noise, while the

typical nontransitivities we observe (chains of small changes which do not scale up) are

genuine and not due to noise derived from indifference.

The paper is structured as follows. Section 2 reviews the deterministic models which

allow for transitivity violations (Section 2.1), explains why the models we consider are

more general than standard (additive) random utility models (Section 2.2), and presents

our (nontransitive) preference revelation result based on response times (Section 2.3).

Section 3 presents our empirical analysis of two existing lottery-choice datasets and

applies the techniques to uncover the extent of revealed transitivity violations. Sec-

tion 4 compares those to violations of WST. Section 5 concludes. Additionally, the

Online Appendix collects robustness checks, examines the most frequent nontransitive

choice patterns in the data, and also presents a more detailed discussion of the previ-

ous empirical literature on transitivity violations and deterministic models allowing for

nontransitivities.

2 Distinguishing Noise from Nontransitive Preferences

To test whether choices are transitive, one needs to allow for the possibility that they are

not. Following Shafer (1974) and others, we refer to a complete but not necessarily tran-

sitive binary relation as a nontransitive preference. We build up the framework in three

steps. First (Subsection 2.1), we review deterministic models of nontransitive choice,

encompassing skew-symmetric bilinear (SSB) utility theory, generalized regret theory,

and salience theory. Second (Subsection 2.2), we review how to incorporate noise into

models of choice. We provide a generalization of standard, additive, random utility

models, and show that the standard conditions used in the literature to test for viola-

tions of transitivity are insufficient. Third (Subsection 2.3), we bring both (potentially

nontransitive) preferences and general models of noise together and proceed to extend

the (already generalized) random utility models to allow both for nontransitivities which

are simply due to noise and those which are due to underlying nontransitive preferences.

2.1 Deterministic Models of Nontransitive Preferences

If transitivity does not hold, choices can not be represented by utility functions. It

is, however, possible to represent nontransitive binary relations on a set X through

real-valued, two-argument functions as follows. Consider a skew-symmetric function

v : X2 7→ R, i.e. v(x, y) = −v(y, x) for all x, y ∈ X. We say that a nontransitive

preference � onX is represented by a function v : X2 7→ R if, for all x, y,∈ X, v(x, y) ≥ 0

holds if and only if x � y. For Euclidean spaces, Shafer (1974) proved that every strictly

convex and continuous nontransitive preference can be represented by a continuous,
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skew-symmetric function as above. This is a natural generalization of representation

results for transitive preferences, in which case one can set v(x, y) = u(x) − u(y) for a

utility function u. Interestingly, the function v has been interpreted as a “strength of

preference” (see, e.g. Fishburn, 1988, Chapter 3.9 and ff.), with values of v(x, y) close to

zero indicating a difficult decision (the decision maker is close to indifference).

A large number of important models are based on this idea (see Online Appendix B

for further details). A classical example is the additive difference model (Tversky, 1969),

which postulates a specific function of the form v(x, y) for multidimensional alternatives,

with the explicit purpose of studying nontransitivities. For the case of lottery choice,

Fishburn (1982, 1984b, 1986) studied skew-symmetric bilinear (SSB) representations

(originally proposed by Kreweras, 1961), which are based on a function of the form

v(x, y) with the added requirement of linearity in both arguments, yielding a natural

generalization of expected utility theory.

A number of prominent models have incorporated general behavioral phenomena

which result in nontransitive choice. All such models can be formulated in terms of

particular functions v(x, y) as in Shafer (1974), defined on the appropriate domains

(e.g., lotteries or acts). One important example is regret theory, introduced by Loomes

and Sugden (1982) (see Starmer, 2000, for a summary), which can be shown to deviate

from expected utility only by relaxing transitivity (Diecidue and Somasundaram, 2017).

Loomes and Sugden (1987) later extended this framework to generalized regret theory,

which is based on a function measuring the utility of choosing x net of the regret asso-

ciated with missing out on y. A second, important example is salience theory (Bordalo

et al., 2012, 2013), which takes into account the salience of state-dependent payoff dif-

ferences. Hence, the value attached to a lottery depends on the lottery it is compared

to, which allows for nontransitivities. The specific functional valuations proposed by the

theory describe a particular function v (defined over lottery pairs) as in Shafer (1974).2

Formally, these and other theories allow for nontransitivities because they can be de-

scribed as special cases of the fundamental representation of Shafer (1974). Specifically,

each theory provides a (structural, parametric) functional form for a skew-symmetric

function v(·, ·) defined on the space which is appropriate for the model, while Shafer

(1974) considers an abstract space and an arbitrary function.

2.2 Adding Noise: (Generalized) Random Utility Models

In an additive random utility model (McFadden, 1974, 2001, 2005), an agent is assumed

to have an underlying utility function u over a feasible set, but to be affected by random

utility shocks. Thus, given a choice between two alternatives x and y, realized utilities

are u(x) + εx and u(y) + εy, respectively, where εx, εy are mean-zero random variables

2Lanzani (2022) proposes a related model of correlation-sensitive choice, which yields formally similar
representations and naturally yields nontransitive choices. However, the object of choice are not pairs
of lotteries, but rather correlation structures.
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(not necessarily independent). Thus, a RUM generates choice probabilities, with the

probability of x being chosen when y is also available given by

p(x, y) = Prob(u(x) + εx > u(y) + εy) = Prob(u(x) − u(y) + εx − εy > 0).

where tie-breaking conventions are irrelevant for continuously-distributed errors. Under

specific assumptions on the distributions of the error terms, one obtains particular mod-

els, as logit choice (Luce, 1959) or probit choice (Thurstone, 1927). This general setting

has become one of the dominant approaches in economics to model the fact that choice

is empirically (and overwhelmingly) observed to be stochastic.

If the error term εxy = εx − εy is assumed to be symmetrically distributed around

zero, a preference for x over y is revealed if and only if p(x, y) ≥ 1/2. Since noise is not

directly observable, the assumption of symmetric noise is of course untestable and might

be unwarranted. If one is willing to accept it, however, a violation of transitivity in this

framework then consists of three (or more) alternatives x, y, z such that p(x, y) ≥ 1/2,

p(y, z) ≥ 1/2, and p(z, x) > 1/2. Hence, a large part of the literature tests for violations

of Weak Stochastic Transitivity, which is defined as the condition that if p(x, y) ≥ 1/2

and p(y, z) ≥ 1/2, then p(x, z) ≥ 1/2.

It is important to note, however, that WST fails to properly capture violations of

transitivity even in the restricted domain of additive random utility models. It is well-

known (Block and Marschak, 1960) that additive random utility models as just described

are equivalent to stochastic preferences, i.e. probability distributions over transitive pref-

erences. Regenwetter et al. (2010, 2011) and others have argued that violations of tran-

sitivity might be due to preferences being unstable in the sense that choices are best

described by a probability distribution over transitive preferences, i.e. a stochastic pref-

erence. By Block and Marschak (1960) stochastic preferences can also be represented by

additive random utility models, as long as error terms are not required to be indepen-

dent. In particular, such a model (which is included in the class of models we consider)

might produce violations of WST even though all involved preferences are transitive, as

the following (standard) example shows.

Example 1. There are three alternatives, x, y, and z. A decision maker is described by

a distribution over three alternative, transitive preferences: x ≻ y ≻ z, y ≻ z ≻ x, and

z ≻ x ≻ y, each with probability 1/3. That is, every time the decision maker makes a

choice, one of the three preferences is realized (with equal probabilities) and the decision

maker chooses following that preference. In this sense, the decision maker always has a

transitive preference, which however changes from decision to decision.

It is immediate to see that p(x, y) = p(y, z) = p(z, x) = 2/3, and hence WST is

violated. Thus WST might be violated even though preferences are described by a

standard additive random utility model with transitive preferences. Obviously, however,

the corresponding noise terms cannot be symmetric.
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The problem of whether a system of choice probabilities can be represented by a

stochastic preference (hence an additive random utility model) or not has a well-known

solution, with characterizations due to Block and Marschak (1960), Falmagne (1978),

McFadden and Richter (1990), and Barberá and Pattanaik (1986). One particularly

useful characterization is the Axiom of Revealed Stochastic Preference (ARSP; McFadden

and Richter, 1990; McFadden, 2005), which states that, for any finite collection of choices

(x1, y1), . . . (xn, yn), one must have that

n∑
i=1

p(xi, yi) ≤ max
≻∈P

n∑
i=1

p≻(xi, yi)

where P is the set of all possible strict preferences on the (finite) choice set, and, for any

≻∈ P, p≻(x, y) = 1 if x ≻ y and p≻(x, y) = 0 if y ≻ x. That is, the sum of choice proba-

bilities along any sequence of binary choices must be weakly smaller than the largest sum

or (degenerate) probabilities one could obtain for a deterministic (transitive) preference.

A collection of choice probabilities can be generated by a stochastic preference (or an

additive RUM) if and only if it fulfills the ARSP.

Regenwetter et al. (2010, 2011) and others have argued in favor of criteria other than

WST to test for stochastic transitivity. In particular, they have proposed to rely on the

Triangle Inequality (TI), which (although this fact seems to be largely unmentioned in

the literature) is a direct implication of the ARSP (but does not imply it). TI is the

condition that, for any three distinct alternatives x, y, z,

1 ≤ p(x, y) + p(y, z) + p(z, x) ≤ 2.

The right-hand inequality is immediately implied by the ARSP applied to the choices

(x, y), (y, z), (z, x). The left-hand inequality is equivalent to the statement that p(x, z) ≤

p(x, y) + p(y, z) (hence the name “Triangle Inequality”), which in turn is equivalent to

p(x, z) + p(z, y) + p(y, x) ≤ 2, which is again just the ARSP applied to the collection

of choices (x, z), (z, y), (y, x). Hence, the proposal to use TI is essentially equivalent to

testing whether choices can be explained by an additive RUM (although not completely,

since the ARSP has implications beyond the TI). The following example (inspired by

Birnbaum, 2023) shows that this is also insufficient.

Example 2. There are three alternatives, x, y, and z. A decision maker has a unique,

transitive preference: x ≻ y ≻ z. However, the decision maker makes mistakes. Specif-

ically, the decision maker makes a mistake with a 5% probability if confronted with

choices (x, y) or (y, z), and with a 25% probability if confronted with the choice (x, z).

It follows that p(x, y) = p(y, z) = 0.95 and p(z, x) = 0.25. this implies that p(x, y) +

p(y, z) + p(z, x) = 2.15 > 2, and thus the TI (and hence the ARSP) is violated.

This example serves two purposes. First, it exhibits a decision maker who has tran-

sitive preferences affected by behavioral noise, but whose choices violate TI. Hence vio-

lations of TI are not sufficient to identify genuinely nontransitive preferences in models
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with noise. Second, since the ARSP is violated, behavior in the above example can-

not be represented as an additive RUM. However, the behavior can be represented as

arising from a RUM in the sense of Alós-Ferrer et al. (2021), which assumes transitive

preferences but allows for pair-specific noise (see below).

Alós-Ferrer et al. (2021) introduced a more general class of RUM models where error

terms apply to the utility differences, i.e. the realized utility difference given a choice

{x, y} is u(x)− u(y) + εx,y for a mean-zero random variable εx,y and hence

p(x, y) = Prob(u(x) − u(y) + εx,y > 0).

For instance, Example 2 above can be represented by u(x) = 3, u(y) = 2, u(z) = 1

and continuous random variables εxy, εyz, εxz as follows. For any v ≥ 0 and any

q ∈ (0, 1), let εc(−v, q) be a continuous random variable with Prob(εc(−v, q) ≤ −v) = q

and E(εc(−v, q)) = 0.3 Let εxy and εyz be independently distributed as εc(−1, 0.05),

and let εxz be distributed as εc(−2, 0.25). Example 1 can be represented by an additive

RUM with correlated error terms, but it is also represented by a RUM in the sense of

Alós-Ferrer et al. (2021) with u(x) = 3, u(y) = 2, u(z) = 1 and zero-mean, independent

error terms εxy ∼ εc(−1, 1/3), εyz ∼ εc(−1, 1/3), and εxz ∼ εc(−2, 2/3). This illustrates

that the class of transitive models that we allow for encompasses arbitrary distributions

over transitive preferences plus arbitrary error terms, and is not limited to the classical

additive RUMs. Our results will allow us to identify empirical patterns that cannot be

generated by any transitive model in this class. Those empirical patterns will hence, in

particular, exclude that the data is generated by arbitrary RUMs, which also excludes

stochastic (unstable) preferences (Regenwetter et al., 2010).

Remark 1. A “trembling-hand model” (e.g. Loomes et al., 2002) assumes that a decision

maker is endowed with a fixed (transitive) strict preference but that a pair-specific error

might occur. Thus, if x ≻ y, there is a trembling probability exy ∈ (0, 1) that y is chosen.

Example 2 is an example of a trembling-hand model.

We claim that any trembling-hand model can be represented as a RUM in the sense

of Alós-Ferrer et al. (2021). To see this, consider a trembling-hand model where the

preference is represented by a utility function u and the error probabilities exy ∈ (0, 1)

are as above. For each pair x, y with x ≻ y (hence (u(x) > u(y)), define a zero-mean

continuous random variable εxy which takes values below u(y) − u(x) with probability

exy (e.g., εxy = εc(u(y) − u(x), exy) as defined above). The utility function u together

with the noise terms εxy define a RUM in the sense of Alós-Ferrer et al. (2021).

In “true and error” models (see, e.g., Birnbaum and Schmidt, 2008; Birnbaum, 2023),

a decision maker is described by a distribution over preferences (transitive or not) plus

pair-specific (but preference-independent) error terms. The selected preference is as-

sumed to stay fixed along a given experimental session, and change only across sessions.

3For instance, let εc(−v, q) have constant density q on the interval [−v− 1,−v] and constant density
(1− q)/(K + v) on the interval [−v,K], where K = v + (q/(1− q))(2v + 1).
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Hence, for a given session, a true and error model is a trembling-hand model as above,

and in particular is encompassed in the class of models we consider.

Remark 2. Random utility models as in Alós-Ferrer et al. (2021) also encompass the class

of random parameter models (e.g., Loomes and Sugden, 1998; Apestegúıa and Ballester,

2018) as a special case. In those models, a one-parameter functional form for the utility

u is fixed. For each choice pair (x, y), a value of the parameter is randomly drawn from

a distribution and used to evaluate the choice. This cannot be captured as a standard,

additive random utility model, but defines a model in the class considered by Alós-Ferrer

et al. (2021). This is because noise in the parameter can be equivalently written as a

pair-specific noise term εxy, which will generally be non-symmetric.

2.3 Random Choice Models and Response Times

We now show how response times can be used to identify genuinely nontransitive pref-

erences. In a framework which assumed transitivity, Alós-Ferrer et al. (2021) provided

sufficient conditions on the distributions of response times conditional on each possible

choice (x or y for a given pair {x, y}) which ensure the revelation of a preference for, say,

x over y without making any assumptions about the utility function and the distribution

of error terms. More precisely, if the conditions are satisfied, the formal results ensure

that u(x) > u(y) for any underlying u and any distribution of noise which fits the data

(in terms of choices and response times). The importance of these results relies on the

fact that they guarantee that an option is preferred to another for any utility function

and any distribution of the error term that the analyst might consider, and hence the re-

sults are completely non-parametric and independent of functional forms. The message

is that the properties of the empirical distribution of response times allow to recover

the underlying preferences in random utility models without imposing any substantive

assumptions on the distribution of random terms.

In this subsection, we extend the main result of Alós-Ferrer et al. (2021) to allow

for nontransitivities. For this purpose, we go one step forward and consider any skew-

symmetric function v : X2 7→ R (not necessarily arising from a utility function). That

is, we consider models where noise is captured by mean-zero random variables εx,y and

choice probabilities are given by

p(x, y) = Prob(v(x, y) + εx,y > 0).

We consider abstract options, which could e.g. be themselves lotteries (this will be

the case in our empirical analyses). That is, our functions u and v are defined on an

abstract space. For a space of lotteries, our approach is agnostic with respect to whether

decisions are best represented by expected utility theory, cumulative prospect theory, or

any other model of preferences among lotteries. For example, u might be expected utility

and v might be any of the functions V SSB, V R, V S described in Section 2.1. We merely

test the class of models generating transitive choices, where the function above can be
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written as v(x, y) = u(x)− u(y), against the class of models allowing for nontransitivity

lottery choices, where the function v(x, y) cannot be written as a difference of utilities

independently of the considered alternatives. The former class includes expected utility

theory, rank-dependent utility theory, cumulative prospect theory, and others, while the

latter includes generalized regret theory, salience theory, and SSB utility theory.

To derive our result, we need to define what we understand by a dataset. Given

the set of alternatives X, denote by C = {(x, y) | x, y ∈ X,x 6= y} the set of all binary

choice problems, so (x, y) and (y, x) both represent the problem of choice between x and

y. Let D ⊆ C be the set of choice problems on which we have data in the form of direct

choices, assumed to be non-empty and symmetric, that is, (x, y) ∈ D implies (y, x) ∈ D.

A dataset (including response times) is modeled as follows (Alós-Ferrer et al., 2021).

Definition 1. A stochastic choice function with response times (SCF-RT) is a pair of

functions (p, f) where

(i) p assigns to each (x, y) ∈ D a frequency p(x, y) > 0, with the property that

p(x, y) + p(y, x) = 1, and

(ii) f assigns to each (x, y) ∈ D a strictly positive density function f(x, y) on R+.

In an SCF-RT, p(x, y) is interpreted as the frequency with which a decision maker

chose x when offered the binary choice between x and y. The assumption that p(x, y) > 0

for all (x, y) ∈ D implies that choice is noisy, that is, every alternative is chosen at least

a small fraction of the time. The density f(x, y) describes the distribution of response

times conditional on the instances where x was chosen in the binary choice between x

and y. The corresponding cumulative distribution function is denoted by F (x, y). The

following definition extends the concepts in Alós-Ferrer et al. (2021).

Definition 2. A random choice model with a chronometric function (RCM-CF) is a triple

(v, ṽ, r) where v : X2 → R is a skew-symmetric function and ṽ = (ṽ(x, y))(x,y)∈C is a

collection of real-valued random variables, with each ṽ(x, y) having a density function

g(x, y) on R, fulfilling the following properties:

(RCM.1) E[ṽ(x, y)] = v(x, y),

(RCM.2) ṽ(x, y) = −ṽ(y, x), and

(RCM.3) the support of ṽ(x, y) is connected.

Further, r : R++ → R+ is a continuous function that is strictly decreasing in v

whenever r(v) > 0, with limv→0 r(v) = ∞ and limv→∞ r(v) = 0.

A RUM-CF is a particular case of RCM-CF where the function v is derived from a

utility function, v(x, y) = u(x)−u(y), and hence transitivity is guaranteed. The random

variables ṽ(x, y) and their densities g(x, y) capture noisy choice. Condition (RCM.1)

requires that noise is unbiased (equivalent to assuming mean zero for an additive term
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εxy = ṽ(x, y) − v(x, y)). Condition (RCM.2) reflects that the choice between x and

y is the same as the choice between y and x, and condition (RCM.3) is a regularity

condition requiring connected support, i.e. without gaps. Last, r represents the chrono-

metric function, which maps realized values of v into response times r(|v|). Specifically,

easier choices (where the value ṽ(x, y) is larger) are faster. This is in keeping with the

interpretation that the function v captures a strength of preference.

Given an RCM-CF (v, ṽ, r) and a pair (x, y) ∈ C, the random variable describing the

response times predicted by the model conditional on x being chosen over y is given by

t̃(x, y) = r(|ṽ(x, y)|),

conditional on ṽ(x, y) > 0.

The result we seek will be in terms of preference revelation for all RCM-CFs which

rationalize (explain) the data. The following definition pins down the formal meaning

of the latter.

Definition 3. An RCM-CF (v, ṽ, r) rationalizes an SCF-RT (p, f) if

(i) p(x, y) = Prob[ṽ(x, y) > 0] holds for all (x, y) ∈ D, and

(ii) F (x, y)(t) = Prob[t̃(x, y) ≤ t | ṽ(x, y) > 0] holds for all t > 0 and all (x, y) ∈ D.

In other words, an RCM-CF (the model) rationalizes an SCF-RT (the data) if it

reproduces both the choice frequencies and the conditional response time distributions

in the latter. Obviously, fixing the set D, every RCM-CF predicts an SCF-RT through

the equations given in (i) and (ii) above. Thus an alternative definition is that an RCM-

CF rationalizes an SCF-RT if the predicted SCF-RT coincides with the actual SCF-RT.

We say that an SCF-RT is rationalizable if there exists an RCM-CF that rationalizes

it. Note that an SCF-RT might be rationalizable by an RCM-CF even though it is not

rationalizable by a RUM-CF.

The last definition captures preference revelation in a potentially nontransitive frame-

work.

Definition 4. A rationalizable SCF-RT reveals that x is preferred to y if all RCM-CFs

that rationalize it satisfy v(x, y) ≥ 0. It reveals that x is strictly preferred to y if all

RCM-CFs that rationalize it satisfy v(x, y) > 0.

The following Theorem provides our preference revelation result allowing for non-

transitive preferences. The proof is in Appendix A.

Theorem 1. Consider random choice models. A rationalizable SCF-RT (p, f) reveals

that x is preferred to y if

p(x, y)F (x, y)(t) ≥ p(y, x)F (y, x)(t)

for all t ≥ 0, and that x is strictly preferred to y if the inequality holds for all t and is

strict for some t.
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The sufficient condition in this result essentially spells out that errors should be slow

in a well-defined sense. An intuition is provided in Section 2.4 below. A Revealed Tran-

sitivity Violation (RTV) exists in the data whenever application of Theorem 1 reveals a

preference cycle with x1 � x2 � . . . � xn and xn ≻ x1. An RTV reveals a nontransitivity

which cannot be explained by noise, and thus disentangles noise from genuine transitiv-

ity violations. That is, Theorem 1 provides the missing tool that the literature needed

to conclude that an apparent transitivity violation does reflect genuinely nontransitive

preferences, instead of just being due to behavioral noise. Suppose that a dataset seems

to point at nontransitive behavior, e.g. due to a violation of Weak Stochastic Tran-

sitivity. That is, the data identify a cycle of, say, three alternatives x, y, z such that

p(x, y) ≥ 1/2, p(y, z) ≥ 1/2, and p(z, x) > 1/2. While a researcher might take this as

evidence of a transitivity violation, another researcher might argue that those population

frequencies have arisen due to noise (as in a random utility model) even though underly-

ing preferences are transitive. If the dataset includes response times, the researcher can

instead apply the “Time Will Tell” (TWT) method derived from Theorem 1 to each of

the pairs (x, y), (y, z), and (x, z). If the condition in the Theorem is fulfilled for pairs

(x, y) and (y, z), and strictly for (x, z), the researcher can now conclude that nontran-

sitive preferences are revealed, i.e. x � y, y � z, and z ≻ x (an RTV). That is, there

exists no random choice model which can explain the data with transitive preferences

and behavioral noise, no matter how noise is modeled.

2.4 Intuition for the Revelation Result

Theorem 1, relies on the well-established psychometric and chronometric effects discussed

in the introduction. A large literature in psychology, neuroscience, and, more recently,

also in economics, has shown that these effects are extremely robust and appear both in

perceptual choice (discrimination tasks) and value-based (preferential) choice. They are

also standard implications of sequential sampling models from the cognitive sciences as

the well-known drift-diffusion model (Ratcliff, 1978; Fudenberg et al., 2018; Webb, 2019;

Baldassi et al., 2020).

The psychometric effect is the observation that choices are noisier (and error rates are

larger) when alternatives are more similar or, in preference terms, when decision makers

are closer to indifference (e.g., Cattell, 1893; Dashiell, 1937; Mosteller and Nogee, 1951;

Laming, 1985; Klein, 2001; Wichmann and Hill, 2001; Fudenberg et al., 2018; Alós-Ferrer

and Garagnani, 2022a,b). This is implicitly incorporated in standard random utility

models, simply because it is more likely that (additive) noise will offset an underlying

preference of x over y if the utility difference u(x) − u(y) is small than if it is large. In

RCMs, the psychometric effect is captured while allowing for nontransitive choices by

replacing the utility difference by the strength of preference v(x, y).

The chronometric effect is the fact that choices are slower when alternatives are

more similar or, again in preference terms, when decision makers are closer to indiffer-
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ence (e.g., Cattell, 1902; Dashiell, 1937; Moyer and Landauer, 1967; Moyer and Bayer,

1976; Dehaene et al., 1990; Moffatt, 2005; Chabris et al., 2009; Krajbich et al., 2014,

2015; Fudenberg et al., 2018; Konovalov and Krajbich, 2019; Alós-Ferrer and Garagnani,

2022a,b). This was first incorporated in random utility models in Alós-Ferrer et al. (2021)

and is the basis for the revelation result there. In our framework, the chronometric effect

is captured by the assumption that the chronometric function r is strictly decreasing in

the strength of preference v(x, y).

The intuition for Theorem 1 is as follows. By the chronometric effect, slow choices

are more likely to be associated with harder decisions, which in turn result in larger error

rates by the psychometric effect. There is, hence, an association between larger noise

levels and longer response times. In other words, if an option is chosen systematically

more slowly than another one, it is likely that the choice of this option is an error,

that is, it contradicts the underlying preference. Essentially, Theorem 1 captures the

intuition that, for a preference-based decision, slower choices tend to be errors (see, e.g.,

Fudenberg et al., 2018, for a discussion of “slow errors”).

The difficulty, however, lies in capturing the actual meaning of “slow choices.” Since

Theorem 1 provides a revelation result which is independent of the model of noise and the

underlying function v, “slower” does not correspond to a comparison of means, medians,

or any other summary statistic. Rather, the Theorem relies on a sufficient condition

which compares the distributions of response times for the two alternatives in a binary

choice, namely that

p(x, y)F (x, y)(t) ≥ p(y, x)F (y, x)(t)

for all t ≥ 0. The left-hand side term in this condition is the probability that x is chosen

over y and this choice is faster than t. The right-hand side term is the probability that

y is chosen over x and this choice is faster than t. Thus, the condition requires that,

for each given t, x is more likely to be chosen for all decisions that are faster than t. In

other words, revealing a preference for x over y requires that y choices are slower than x

choices in the sense that, for any fixed deadline t, among the decisions faster than this

deadline, there are more x choices than y choices.

Theorem 1 generalizes the main result in Alós-Ferrer et al. (2021), which was re-

stricted to a transitive framework. To see this, rewrite the sufficient condition as

F (y, x)(t) ≤
p(x, y)

p(y, x)
F (x, y)(t) for all t ≥ 0,

which can be seen as a weakening of first-order stochastic dominance, since the condition

can only hold if p(x, y)/p(y, x) ≥ 1. Alós-Ferrer et al. (2021) states this condition as

“F (y, x) q-first-order stochastically dominate F (x, y)” for q = p(x, y)/p(y, x), which

makes clear that the condition balances information from choices and response times.

For instance, if choices provide weak information on preferences, p(x, y) and p(y, x) are
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Figure 1: Example 3. Left: A WST violation which does not actually reveal a genuine
transitivity violation, i.e. is not an RTV. Right: A WST violation which is revealed to
be a genuine transitivity violation (RTV), hence any model of noisy choice rationalizing
the data must be nonransitive.

of similar magnitude and the condition approaches first-order stochastic dominance, i.e.

it becomes a stringent condition on response times. On the contrary, if choices provide

strong evidence on preferences, p(y, x) is close to zero and the condition is increasingly

easy to satisfy (becoming void in the limit), i.e. only weak information is required from

response times.

2.5 Using Theorem 1

In this subsection, we provide actual examples on how to use Theorem 1 to identify

transitivity violations, and how to interpret the results.

Example 3. The first two examples are based on actual data from Kalenscher et al.

(2010), whose dataset will be described in detail in Section 3 below. Subjects made

repeated binary choices involving the lotteries y1 = ($500, 0.29), y2 = ($475, 0.32), y3 =

($450, 0.35), y4 = ($425, 0.38), and y5 = ($400, 0.41), which paid the specified amount

with the given probability, and zero otherwise.

For subject nr. 26, the choice frequencies for (y1, y2), (y2, y3), and (y3, y1) were

p26(y1, y2) = 0.55, p26(y2, y3) = 0.80, p26(y3, y1) = 0.60.

For subject nr. 27, the choice frequencies for (y5, y4), (y4, y3), and (y3, y5) were

p27(y5, y4) = 0.65, p27(y4, y3) = 0.90, p27(y3, y5) = 0.60.

Both patterns are violations of Weak Stochastic Transitivity. Hence, a researcher

conducting a traditional analysis would conclude that two violations of transitivity have

been found. However, as discussed above (e.g., Example 1), violations of WST can

often be accounted for with transitive models, e.g. a distribution over transitive prefer-
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ences. Hence, a second researcher could argue that the data might be explained by some

transitive model and hence constitutes no evidence of transitivity violations.

The experiment of Kalenscher et al. (2010) measured response times, allowing us

to obtain the response time distributions F26(y1, y2), etc. (see Appendix B for details).

Hence, we can use Theorem 1 to ask whether cyclical patterns of preferences are actually

revealed. If this is the case, we can conclude that there exists no model explaining the

data without violating transitivity. In contrast, if this is not the case, such a conclusion

would be unwarranted.

For a preference y1 ≻ y2 to be revealed for subject 26, the condition given in The-

orem 1 is that H26(y1, y2)(t) = p26(y1, y2)F26(y1, y2) − p26(y2, y1)F26(y2, y1)(t) ≥ 0 for

all t, with the inequality being strict for at least some t. In other words, the function

H26(y1, y2) needs to be above the horizontal axis. Figure 1(left) depicts this function,

showing that the condition is indeed fulfilled. We conclude that any model (transitive or

not) of noisy choice which respects the elementary chronometric effect and rationalizes

the data must be such that y1 ≻ y2. Analogously, the figure also shows that H26(y2, y3)

is above the horizontal axis, and hence a preference y2 ≻ y3 is also revealed. Thus, any

model of noisy choice rationalizing the data must be such that the underlying prefer-

ence fulfills y1 ≻ y2 and y2 ≻ y3. If we could also conclude that y3 ≻ y1 is revealed,

hence obtaining a nontransitive cycle, this would mean that any model of noisy choice

rationalizing the data must be nontransitive. In other words, the conclusion would be

that there exists no transitive model of noisy choice (respecting the chronometric effect)

which can explain the data.

However, as Figure 1(left) shows, the function H26(y3, y1) does cross the horizontal

axis, hence the condition in Theorem 1 does not hold and the preference y3 ≻ y1 is not

revealed. In our analysis in Section 3, whenever we encounter a pattern like this in the

data, we classify the apparent violation of transitivity as inconclusive, i.e. a Revealed

Transitivity Violation is not obtained.

For subject nr. 27, as Figure 1(right) shows, the analogous function H27(y5, y4) is

above the horizontal axis, as are the functionsH27(y4, y3)(t) andH27(y3, y5)(t). Applying

Theorem 1, we conclude that any model of noisy choice which respects the chronometric

effect and rationalizes the data must be such that y5 ≻ y4, y4 ≻ y3, and y3 ≻ y5. We

have hence identified a genuinely nontransitive cycle. In other words, there exists no

transitive model of noisy choice respecting the chronometric effect which rationalizes

the data, and no hypothetical researcher will ever be able to argue that some transitive

model can account for this data. In our analysis in Section 3, whenever we encounter

a pattern like this in the data, we classify it as a genuine violation of transitivity, i.e. a

Revealed Transitivity Violation.

Example 4. The following example is a continuous version of Example 1. In that ex-

ample, a decision maker randomly selects one of three transitive preferences over three

alternatives x, y, z. The preferences have a cyclical structure and the resulting choice
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Table 1: The Random Choice Model in Example 4.

Prob. uk x y z vk(x, y) vk(y, z) vk(x, z) εkxy εkyz εkxz
1/3 u1 2 1 0 1 1 2 U [−1, 1] U [−1, 1] U [−2, 2]
1/3 u2 0 2 1 -2 1 -1 U [−2, 2] U [−1, 1] U [−1, 1]
1/3 u3 1 0 2 1 -2 -1 U [−1, 1] U [−2, 2] U [−1, 1]

probabilities violate WST. The point of that example was that a dataset with these char-

acteristics could not be unambiguously argued to demonstrate a violation of transitivity,

because there exists a model involving only transitive preferences which rationalizes the

choice probabilities, even though those violate WST.

Technically, that example violates (RCM.3) in Definition 2, because the distribution

of utility differences does not have a connected support. Consider, however, the example

illustrated in Table 1. The decision maker selects a utility function u1, u2, or u3, each

with probability 1/3. The utilities of the alternatives are as given in the table, and the

utility differences are also computed there, e.g. v1(x, y) = u1(x) − u1(y) = 2 − 1 = 1.

However, each utility difference vk(a, b) is perturbed with a pair-specific noise term εkab,

which is uniformly distributed on the interval [−vk(a, b), vk(a, b)]. This model generates

choice probabilities p(x, y) = p(y, z) = p(z, x) = 2/3, and hence WST is violated. This

is a random choice model, where v(a, b) = 0 for each pair and the distribution of utility

differences g(a, b) is a convex combination of two uniform distributions centered at 0.

Again, this model can be argued to be transitive, since it is just a continuously-perturbed

version of a stochastic preference where all involved preferences are transitive. This

theoretical construction is of course a knife-edge example, since (because v(a, b) = 0 for

all three pairs) it corresponds to a RUM with x ∼ y ∼ z.

Suppose, however, that in addition to the choice frequencies, we also observed the

conditional, pair-specific distributions of response times. Applying Theorem 1, we can

check whether the function H(a, b)(t) = p(a, b)F (a, b)(t) − p(b, a)F (b, a)(t) is always

above zero or not, for all three pairs (a, b) ∈ {(x, y), (y, z), (z, x)}. Suppose this is the

case. Then, a nontransitive cycle x ≻ y ≻ z ≻ x is revealed, which means that there

exists no transitive RCM generating the observed choice probabilities and response time

distributions. In particular, add an arbitrary (decreasing) chronometric function r to

generate response times from the transitive model in Table 1 and. By Theorem 1, the

condition on H(a, b) will be violated for at least one of the pairs (a, b), and hence we

cannot conclude that the data reveals a genuine transitivity violation.

In other words, a choice dataset with p(x, y) = p(y, z) = p(z, x) = 2/3 cannot be

argued to demonstrate a violation of transitivity, because there exist (admittedly knife-

edge) random choice models based exclusively on transitive preferences that rationalize

those choice frequencies. Once the dataset incorporates response times, generating an

SCF-RT, the picture changes. There are potential datasets of this type for which the
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condition in Theorem 1 fails at least once along the potential cycle, and hence it cannot

be concluded that transitivity has been violated. In particular, adding an arbitrary

chronometric function r to an appropriate transitive model will always generate datasets

of this type. There are, however, other potential datasets where (the strict version of)

the condition in Theorem 1 is fulfilled for all pairs along the potential cycle. For those

datasets, one can conclude that a genuine violation of transitivity has been found. In

particular, such a dataset can never be generated by adding an arbitrary chronometric

function to a transitive choice model.

2.6 Partial Converses to Theorem 1

Theorem 1 provides a sufficient condition for (potentially nontransitive) preference rev-

elation independently of the structure of the noise. For well-established subclasses of

models, however, this condition is necessary and sufficient, in the sense that if the true

data generating process belongs to those classes, the data will always fulfill the condi-

tion in Theorem 1. Notably, those subclasses include the most-commonly used models

in microeconometric analysis and also in psychology. We provide those results below

but omit formal definitions of the classes for the sake of brevity.

2.6.1 Symmetric RCMs

First, standard RUMs as used in microeconomics usually assume symmetric noise, e.g.

normally distributed or following a Gumbel distribution which generates logit-choice

probabilities. Any RUM with Fechnerian noise (Moffatt, 2015) belongs to this class.

Generalize this class to include all RCMs, hence allowing for nontransitivity and for

pair-specific (symmetric) noise around a strength of preference v(x, y) instead of a utility

difference u(x)− u(y), for each pair (x, y) ∈ C. The following result holds.

Proposition 1. Consider an SCF-RT that is generated by a symmetric RCM-CF. Then,

for any (x, y) ∈ D, if v(x, y) ≥ 0, the condition in Theorem 1 holds, and if v(x, y) > 0,

the condition is strict for some t.

The proof is a straightforward adaptation of the proof of Proposition 4 in Alós-Ferrer

et al. (2021, p. 1854). Hence, if data is generated by any RUM or RCM where noise

is actually symmetric (and any chronometric function), Theorem 1 will always bite,

revealing preferences even though the modeler does not assume neither transitivity nor

symmetric noise.

2.6.2 The Drift-Diffusion Model

The Drift-Diffusion Model (DDM; e.g., Ratcliff, 1978; Fudenberg et al., 2018) of psychol-

ogy and neuroscience postulates that binary choice is the result of an internal process of

evidence accumulation, formally a diffusion process driven by a drift parameter µ and

two (possibly functional) barriers, typically assumed to be either constant or decreasing.
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The process randomly drifts up and down, and a choice occurs when the upper or lower

barrier is first hit. Which barrier is hit determines the choice, and the time of this event

is the response time. This model generates datasets (including response times) which

can always be accounted for within our approach.

In particular, let µxy be the drift rate determining choices for the pair (x, y) through

the DDM. Define v(x, y) = µxy for each (x, y). This defines an RCM-CF, with potentially

nontransitive choices. The following result holds.

Proposition 2. Consider an SCF-RT that is generated by a DDM with constant or

decreasing boundaries, without any constraints on the underlying drift rates µxy. Then,

for any (x, y) ∈ D, if µxy ≥ 0, the condition in Theorem 1 holds, and if µxy > 0, the

condition is strict for some t.

The proof is a direct adaptation of the proof of Proposition 6 in Alós-Ferrer et al.

(2021, p. 1858). Thus, if the DDM is the true data generating process, the resulting

dataset always fulfills the conditions we identify in Theorem 1 below, and hence the sign

of v(x, y) is always revealed, even though the modeler does not assume that the DDM

is the correct model and transitivity might not hold.

Remark 3. Given the last observation, instead of considering a general class of models,

we could have particularized our entire approach to the analysis of the DDM as a spe-

cific decision-making process, and then our results would reveal whether data can be

explained through the DDM with a transitive structure, e.g. when µxy = u(x)−u(y) for

some utility function u or not. We refrain from this approach because then it could be

potentially argued that the violations of transitivity that we find might be explainable by

a transitive model based on a more general process model than the DDM. Our approach

does not rely on a specific model and hence escapes that potential critique.

3 Empirical Evidence for Nontransitivity

3.1 Description of the Datasets

In this section we apply Theorem 1 to two existing datasets, both of which were specifi-

cally collected to study transitivity violations. The selected datasets, from Davis-Stober

et al. (2015) (DSBC) and Kalenscher et al. (2010) (KTHDP), are ideal for our pur-

poses because they include response times and every participant repeated every choice

a reasonable number of times.

In the dataset of DSBC, N = 60 subjects made binary choices among different

lotteries in a 2× 2 within-subject design. Specifically, the experiment varied the display

format of the lotteries (pies vs. bars) and whether participants faced a time constraint

when making their choices or not (4 seconds vs. no time limit). The choice pairs were

drawn from two sets of five lotteries each, with one lottery common to the two sets. All

possible combinations of the lotteries within each set were implemented, giving rise to 20
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Figure 2: List of lotteries and implemented pairwise comparisons in Davis-Stober et al.
(2015) (left) and Kalenscher et al. (2010) (right).

distinct choice pairs (see Figure 2, left). Each of these pairs was repeated 12 times in each

of the 4 possible conditions, for a total of 12×4×20 = 960 choices per participant. Each

participant took part in four sessions (in two non-consecutive days), with two (randomly

allocated) combinations of time limits and display format manipulations in each of them.

Sessions lasted an average of 45 minutes (multi-session experiments allowing for a large

number of choices and standard-length sessions are common; e.g., Hey, 2001). Choices

were incentivized (one decision from each condition was randomly selected and paid, in

addition to a show-up fee).

In the dataset of KTHDP, N = 30 subjects made binary choices among five different

lotteries.4 All lottery combinations were implemented (see Figure 2, right). Each of

the 10 resulting choice pairs was repeated 20 times, for a total of 200 trials per par-

ticipant. There was a time limit of 4 seconds, with misses resulting in missed trials.

Each participant took part in a single, individual-level session while being scanned in

an fMRI machine. Sessions lasted an average of 49 minutes. Choices were incentivized

(with dummy dollars translated into Euro with a conversion rate of 100:1), with one

randomly-selected decision paid in addition to a show-up fee.

In addition to the presence of repetitions, the measurement of response times, and

the fact that they were collected to study transitivity violations, the two datasets are also

interesting for other reasons. First, all lotteries involve only one non-zero outcome and

hence can be presented with only two variables (a single outcome and its probability).

This makes alternatives easy to compare for participants. Second, all magnitudes in

each of the experiments are comparable (without extreme differences), hence mitigating

possible concerns regarding range or outlier effects. Third, none of the lotteries involves

probabilities close to zero or one, which are known to generate their own regularities.

3.2 Revealed Transitivity Violations

We now investigate Revealed Transitivity Violations in the two datasets. That is, we

apply Theorem 1 to the two datasets to reveal preference cycles with x1 � x2 � . . . � xn

and xn ≻ x1. An RTV reveals a nontransitivity which cannot be explained by noise, and

4Further 240 filler lotteries were used, but they all were paired in a way which involved dominated
choices, and hence are not interesting for our purposes.
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thus disentangles noise from genuine transitivity violations. Since, within the universe of

RCMs, preferences revealed by our method are independent of any assumptions (i) about

noise and (ii) about functional forms regarding v(x, y), we conclude that transitivity

violations identified by our method cannot be due to any form of noise or functional

form assumption regarding v.

If subjects had transitive preferences, empirically-observed violations of the condi-

tions previously used in the literature, e.g. Weak Stochastic Transitivity, would be due

to noise. Then, once we identify the set of cycles of alternatives for which choices reveal

preferences, the subset of RTVs should be empty. On the other hand, if transitivity

violations arise from a genuinely nontransitive preference, then the subset of cycles of al-

ternatives where all preferences are revealed should still contain violations of transitivity,

i.e. RTVs.

We start by applying our method to reveal preferences. That is, for every (potential)

cycle of alternatives in the design

(x1, x2, . . . , xn, xn+1 = x1)

and every pair (xi, xi+1) of subsequent alternatives along the cycle, and for every par-

ticipant, we compute the actual choice proportions across repetitions and the response

time densities in the data, and check whether the condition in Theorem 1 holds (see

Appendix B for further details on the empirical procedure). For DSBC, the average

percentage of choices at the subject level for which the method reveals preferences is

56.67% (median 57.22%, SD= 6.15, min 44.66%, max 68.31%), while for KTHDP is

77.00% (median 75.00%, SD=15.57, min 40.00%, max 100.00%). Thus, in our datasets,

the method reveals preferences often enough for an analysis of revealed nontransitivities

to be conducted.5

Say that a cycle of alternatives (x1, x2, . . . , xn, xn+1 = x1) is a revealed cycle if all

preferences along the cycle are revealed, i.e. for every pair (xi, xi+1) of subsequent alter-

natives along the cycle, i = 1, . . . , n, the method reveals either xi � xi+1 or xi+1 � xi (or

the corresponding strict preferences). For example, a cycle of alternatives (x1, x2, x3, x1)

could be a revealed cycle if the method revealed x1 � x2, x2 � x3 and x1 � x3 (which

is compatible with transitivity), but it would also be a revealed cycle if the method

revealed x1 � x2, x2 � x3 and x3 ≻ x1 (which violates transitivity and hence is an

RTV).

The proportion of revealed cycles is obviously smaller than the proportion of choices

for which preferences are revealed, since all preferences along a cycle of alternatives must

be revealed for the cycle to be revealed. For DSBC, 20.82% of cycles of alternatives are

5For DSBC participants, we find no differences in the proportion of revealed preferences depending
on whether subjects had time limits or not (56.13% vs. 57.16%; WRS, N = 60, z = −0.942, p = 0.3505).
This is important, as it suggests that even though the method relies on response times, its capacity to
reveal preferences is not affected by (reasonable) time limits, and hence it is robust with respect to such
manipulations. In the Online Appendix we take advantage of the manipulations in DSBC (time limits
and graphical formats) to further investigate the robustness of the results.
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Figure 3: Distribution of the individual proportions of RTVs over all cycles of alternatives
where all preferences are revealed. Violin plots show the median, the interquartile range
and the 95% confidence intervals as well as rotated kernel density plots on each side. Fifty
percent of individuals exhibit 19.69% (9.09%) or more Revealed Transitivity Violations
in the DSBC data (KTHDP data).

revealed (median 22.08%, SD=7.61, min 0.00%, max 32.08%), and the number is 54.25%

(median 60.00%, SD=25.00, min 0.00%, max 100.00%) for KTHDP.

For each individual in each of the two datasets, we identified the set of revealed

cycles of alternatives and then checked for which of those the revealed preferences were

nontransitive. We found sizeable sets of Revealed Transitivity Violations. The average

individual proportion of RTVs, that is, the proportion of all revealed cycles of alternatives

which are RTVs, is 19.24% (SD=8.48) in DSBC and 13.83% (SD=15.41) in KTHDP.

Figure 3 plots the distribution of subject-level proportions of RTV over all revealed cycles

of alternatives for both datasets, revealing considerable heterogeneity. For DSBC, the

individual proportion of RTVs ranges from 2.25% to 40.00%, with a median of 19.69%.

For KTHDP, the individual proportion of RTVs ranges from 0.00% to 50.00%, with a

median of 9.09%. This also implies that Revealed Transitivity Violations are pervasive

in the two datasets, since fifty percent of individuals exhibit 19.69% (9.09%) or more

RTVs in the DSBC data (KTHDP data).

In summary, our approach identifies transitivity violations which cannot be explained

by noise (at least within the framework of RCMs), and hence the set of violations we

identify stand on conceptually solid ground as a demonstration that nontransitivities in

the data do occur.

We remark that the data also contains cycles of alternatives for which not all prefer-

ences along the cycle are revealed, for which we hence cannot unambiguously determine

whether preferences are nontransitive. The size of the set of RTVs we identify is hence

a lower bound on genuine transitivity violations. The important realization is that this
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lower bound is not zero, that is, genuinely nontransitive preferences are present in both

datasets.

3.3 Limitations of the datasets

Our empirical analysis is based on the two datasets of DSBC and KTHDP. These datasets

are ideal for our purposes because they provide a large number of decisions per individ-

ual and choice pair and also contain response times. Below we address some possible

limitations and criticisms.

3.3.1 Inattention

Since both datasets involve a large number of choices per participant, one might worry

whether part of the choice errors might arise from distraction or inattention and interact

with our conclusions. This is not the case.

First, as reported in Section 3.1, sessions in both experiments were within standard

limits in experimental economics and psychology. Sessions in DSBC lasted an average of

45 minutes, with each participant taking part in four sessions. In the fMRI experiment

of KTHDP, instructions, questionnaires, and payment were all administered outside of

the scanner, and the actual decision-making session lasted an average of 49 minutes.

Hence, data collection was well within standards in both cases.

Second, we can test for possible effects of subject-level attention by splitting the data

of each participant according to whether it was collected in the first or the second half

of the corresponding session. There are no statistically significant differences in (i) the

individual proportion of pairs where preferences are revealed according to Theorem 1,

(ii) the individual proportion of Revealed Transitivity Violations, or (iii) the individual

proportion of WST violations. Additionally, the dataset of KTHDP includes a number

of choice pairs where one option was first-order stochastically dominated. Violations of

stochastic dominance could be an indicator of individual-level inattention. However, we

found no significant correlation between the individual proportion of dominated choices

and the individual proportions (i), (ii), and (iii) listed above. Also, the individual pro-

portions of dominated choices in this dataset are not statistically significantly different

between the first and the second half of the session. All tests are given in Online Ap-

pendix C.

Third, the literature on the psychology of attention shows that inattention typi-

cally results in longer response times (Wilding, 1971; Luce, 1986; Novikov et al., 2017;

De Boeck and Jeon, 2019). Hence, if part of the intransitivities we observe are simply

errors due to distraction, this would make the associated response times longer. This

is hence just another version of the intuitive argument provided in the introduction: if

received transitivity violations were just due to noise, they should be associated with

slow choices. However, the analysis mentioned in the introduction finds precisely the

opposite (a substantial number of transitivity violations where all involved choices are
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fast). As discussed in Section 2.4, the preference revelation result in Theorem 1 formal-

izes the actual concept of “slow errors,” and hence possible distraction leading to more

and slower errors is not a problem for the approach.

Last, it is of course possible in any given experiment that some extraneous source of

noise, orthogonal to payoffs, affects a particular set of trials, generating data which does

not reflect underlying preferences. The condition in Theorem 1, however, is a sufficient

condition which guarantees preference revelation independently of the noise. If choices

are truly unrelated to preferences due to extraneous noise, the outcome in practice will

be a failure of the sufficient condition. That is, a noisy experiment will simply result

in a low proportion of revealed preferences. The point of our analysis above is that the

sufficient condition holds often enough to identify a significant amount of transitivity

violations which cannot be explained by any model of noise.

3.3.2 Time limits

The experiment of KTHDP, and some sessions in DSBC, involved time limits for the

decisions. This is a standard practice in experiments with repeated decisions to con-

trol session length. However, it does not qualify as time pressure unless a large part

of the decisions are actually constrained by the limits (which is usually ensured with

appropriate pre-measurements if time pressure is to be used). In the two experiments

we consider, the imposed time limits were typically non-binding. For DSBC the average

response time for the condition without time limits was 2.010 s, while the time limit in

the other condition was 4 s, and only 1.10% of observations failed to meet this deadline.

For KTHDP, all choices were under the same 4 s time limit, the average response time

was 1.484 s, and only 0.59% of observations missed the deadline. Hence, there was no

actual time pressure in any of the experiments.

Since DSBC included sessions with and without time limits, we can directly test

whether those had any effect on our variables of interest. This is not the case. There

were no significant differences between sessions with and without time limits for the

individual proportion of pairs where preferences are revealed according to Theorem 1, the

individual proportion of Revealed Transitivity Violations, or the individual proportion

of WST violations. All tests are given in Online Appendix D.

4 Comparing RTVs and WST

Our results in the previous section show that, when cycles of alternatives are revealed,

genuinely nontransitive preferences exist in a substantial number of cases. As just men-

tioned, there are also cycles of alternatives where the sufficient condition in Theorem

1 fails for at least one choice, and hence preferences are not revealed. However, there

appears to be little reason to believe that the share of genuine nontransitivities should

be different for those cycles of alternatives for which not all preferences are revealed.
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As an indication of this, in this section we show that the percentage of RTVs over all

revealed cycles of alternatives is not significantly different from the percentage of WST

violations among all cycles of alternatives.

4.1 Relation of RTVs to Weak Stochastic Transitivity

Up to now, the empirical literature has predominantly looked at violations of Weak

Stochastic Transitivity (WST) to study transitivity violations. This property states

that for all x1, x2, x3 such that p(x1, x2) ≥ 1/2 and p(x2, x3) ≥ 1/2, it must fol-

low that p(x1, x3) ≥ 1/2. Other concepts of transitivity in a stochastic setting ex-

ist, as e.g. strong stochastic transitivity (where the implication is that p(x1, x3) ≥

max{p(x1, x2), p(x2, x3)}), moderate stochastic transitivity (which replaces the maxi-

mum with the minimum in the previous implication; see He and Natenzon, 2022), or the

Triangle Inequality (recall Section 2). See Fishburn (1998) for an overview. However,

WST remains a natural choice as a benchmark given our theoretical framework, and

we will use it for ease of comparison to the literature. Further, since strong stochastic

transitivity implies moderate stochastic transitivity and the latter implies WST, every

violation of WST implies violations of the former two properties.

There is a relation between RTVs and violations of WST, which is derived from

the following observation. Note that the condition in Theorem 1 implies that p(x, y) ≥

p(y, x) (e.g., by taking limits as t → ∞) even if this were not stated as part of the

definition. That is, if Theorem 1 reveals a (nontransitive) preference for x over y,

if follows that p(x, y) ≥ 1/2. Conversely, if p(x, y) > 1/2 and a preference between

these two alternatives is revealed, only a preference of x over y can be revealed. That

is, preferences cannot be revealed “against” choice frequencies, but choice frequencies

do not imply preference revelation. This property delivers a link to Weak Stochastic

Transitivity, because the latter is stated in terms of choice frequencies.

First, it follows from this property that an RTV implies a violation of WST, except in

knife-edge cases. That is, the concept of RTV is in practice more stringent than violations

of WST. The argument is as follows. If a nontransitive preference cycle x1 � x2 �

x3 . . . xn ≻ xn+1 = x1 is revealed by Theorem 1, it follows from the comment above that

p(xi, xi+1) ≥ 1/2 for all i = 1, . . . , n. Hence, this cycle must also entail a WST violation,

except in the knife-edge case where p(x1, x2) = p(x2, x3) = . . . = p(xn, x1) = 1/2. That

is, every RTV where not all choice frequencies are 1/2 is also a WST violation, meaning

that the concepts are in practice naturally nested.

In principle, however, some WST violations might not be RTVs, and we are inter-

ested in the proportion of empirical WST violations which are RTVs, and for which

the researcher is thus actually justified to infer the existence of genuinely nontransitive

preferences. Suppose a sequence of alternatives x1, x2, . . . , xn, xn+1 = x1 builds a vi-

olation of Weak Stochastic Transitivity, i.e. p(xi, xi+1) ≥ 1/2 for all i = 1, . . . , n − 1

and p(xn, x1) > 1/2. The researcher then applies Theorem 1 to the pairs along the
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Figure 4: Distributions of the individual proportions of Weak Stochastic Transitivity
violations, computed over all cycles of alternatives in the datasets. Violin plots show
the median, the interquartile range and the 95% confidence intervals as well as rotated
kernel density plots on each side. Fifty percent of individuals exhibit 20.61% (15.69%)
or more WST violations in the DSBC data (KTHDP data).

sequence. In view of the comment above, essentially only two outcomes are possible. In

the first case, preferences fail to be revealed for at least one of the pairs. In this case,

the researcher is not entitled to conclude that the observed violation of Weak Stochastic

Transitivity is actually due to a nontransitivity in underlying preferences; in other words,

the observed violation might well be due to noise.

In the second case, preferences are revealed for all pairs along the cycle. In practice

(and in our data), this case always implies an RTV. That is, every WST violation

for which all preferences along the cycle of alternatives are revealed is actually an RTV

except for knife-edge cases. Specifically, suppose the choice frequencies do not involve any

exact tie, p(xi, xi+1) > 1/2 for all i = 1, . . . , n. By the comment above, since preferences

cannot be revealed against choice frequencies, revealed preferences necessarily must form

a nontransitive preference cycle, i.e. an RTV, except in the knife-edge case of revealed

full indifference.

If a WST violation involves an exact tie in choice frequencies, it cannot be concluded

that an RTV will be obtained, even if all preferences are revealed. This is because

if p(x, y) = 1/2, the TWT method might reveal a strict preference either way, hence

allowing for WST violations involving frequency ties where all preferences are (even

strictly) revealed but a nontransitive cycle does not arise. In practice, such knife-edge

cases are empirically rare and they never occurred in our data.
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4.2 Empirical Comparison Between RTVs and WST Violations

We now compare RTVs to WST violations, as studied in the previous literature on tran-

sitivity. Figure 4 displays violin plots for the subject-level proportion of WST violations

computed over all cycles of alternatives, in both datasets. For DSBC, we observe that,

on average across individuals, 20.77% of all cycles of alternatives in the dataset result in

WST violations (median 20.61%, SD=5.28, min 9.04%, max 34.57%), while in KTHDP

the average is 15.42% (median 15.69%, SD=13.93, min 0.00%, max 49.02%). These pro-

portions are roughly representative of results in the literature, and indicate a sizeable

percentage of transitivity violations if WST is used as a criterion.

Recall that the concept of RTV is in practice more stringent than violations of WST

(Section 4.1). We are hence interested in the proportion of empirical WST violations

which are RTVs, and for which the researcher is thus actually justified to infer the

existence of genuinely nontransitive preferences, i.e., for which the nontransitivity cannot

be explained by any model of noise. To compare revealed nontransitivities according

to Theorem 1 with violations of WST, we first compute the proportion of all WST

violations that are actually RTVs. In practice, those coincide with the WST violations

where the cycle of alternatives is revealed (again, recall Section 4.1). We obtain that,

on average across subjects, 19.24% of all WST violations are actually RTVs for DSBC

(median 17.71%, SD=9.56, min 4.35%, max 43.42%). The average is 39.58% for KTHDP

(median 29.41%, SD=32.60, min 0.00%, max 100.00%). This means that for 19.24% of

all WST violations for DSBC, and 39.58% for KTHDP, application of Theorem 1 reveals

transitivity violations that uncover genuinely nontransitive preferences and that cannot

be due to noise. For the remaining (non-RTV) observed WST violations, it cannot be

discarded that they may be due to some sort of underlying noise, but it also cannot be

discarded that they may be due to genuinely nontransitive preferences.

We would also like to quantify the size of the set of transitivity violations at the

individual level, and compare it to previous measurements using WST. Since the number

of RTVs for a given subject is necessarily smaller than the individual number of WST

violations (Section 4.1), a direct comparison would just mechanically show that there

are less RTVs than WST violations. Thus, we compare the proportions relative to the

relevant sets in each case. That is, we compare the proportion of RTVs in relation to

cycles of alternatives with revealed preferences only (as discussed in Section 3.2 and

illustrated in Figure 3) with the proportion of WST violations in relation to all cycles

of alternatives, revealed or not (as illustrated in Figure 4). These proportions are not

mechanically related to each other, and hence this procedure allows a fair comparison

of the magnitudes of transitivity violations as suggested by RTV and WST.

If violations of WST would mainly arise from choices which are not revealed, we

should see a sharp decrease in the proportion of transitivity violations according to RTV

when computed in this way (since non-revealed cycles of alternatives are excluded), when

compared to WST violations. On the contrary, if violations of WST are orthogonal
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to whether preferences are revealed by Theorem 1 or not, the overall proportion of

transitivity violations according to WST and to RTV should be unaffected.

Recall that the individual proportion of RTVs in DSBC was 19.24%, compared to a

proportion of 20.77% of WST violations for the overall sample. The difference is small,

and a Wilcoxon Rank-Sum test reveals no significant differences at the 5% level (N = 60,

z = −1.811, p = 0.0705). In KTHDP the proportion of RTVs was 13.83%, compared

to a 15.42% of WST violations for the overall sample. Again there are no significant

differences at the 5% level (WRS, N = 29, z = −1.847, p = 0.0657). Hence, the evidence

is aligned with the interpretation that transitivity violations might be orthogonal to

whether preferences are revealed by Theorem 1 or not. However, of course, this is just

suggestive evidence and one cannot conclude that WST violations where preferences are

not revealed are actually transitivity violations.

5 Discussion

Are economic choices transitive? A long-standing discussion in economics has addressed

this fundamental issue. A negative answer would shake the very foundations of applied

microeconomic analysis, and empirical evidence to this effect has been, understandably,

subjected to detailed scrutiny. In particular, evidence in favor of transitivity violations

has been systematically criticized as deriving from behavioral noise.

In this paper we provide a new formal framework which allows to reveal “preferences”

even when they are not transitive, disentangling them from behavioral noise. We then

derive a non-parametric method which generalizes recent preference revelation results

using both choice frequencies and response times, but allows for nontransitive prefer-

ences. We apply this method to two distinct datasets and find conclusive evidence that,

even when one fully disentangles behavioral noise from underlying preferences, transi-

tivity violations are reduced but do not disappear. In this sense, transitivity violations

are not a mere artefact of the analysis or a consequence of behavioral noise, but rather

an actual feature of human behavior.

We view our results as a call for attention. The fundamental assumption that eco-

nomic choices can be explained by transitive preferences is useful but wrong, in the

sense that it does not always hold even if one allows for behavioral noise. Any model

that assumes that people evaluate alternatives independently of other alternatives and

tend to choose the option with the higher overall evaluation satisfies transitivity, and

hence stands on somewhat-shaky grounds. This includes of course normative models

as expected utility theory, but also descriptive models built to accommodate behavioral

anomalies as cumulative prospect theory (Tversky and Kahneman, 1992) and many oth-

ers. Ultimately, applied economics needs to embrace models allowing for violations of

transitivity. Those are still sparse (e.g. Shafer, 1974; Loomes and Sugden, 1982; Fish-

burn, 1982, 1986; Bordalo et al., 2012; Lanzani, 2022), but include some prominent

examples as salience theory and regret theory.
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APPENDICES

A Proof of Theorem 1

Proof. Let an SCF-RT (p, f) including data on a choice (x, y) be rationalized by an
RCM-CF (v, ṽ, r). Let G(x, y) denote the cumulative distribution function of g(x, y),
the density function of ṽ(x, y).

First we remark that

p(y, x)F (y, x)(t) − p(x, y)F (x, y)(t) = G(x, y)(r−1(t)) +G(x, y)(−r−1(t))− 1.

To see this, note that, by Definitions 1, 2, and 3, p(y, x) = G(x, y)(0), p(x, y) =
1 − G(x, y)(0), F (x, y)(t) = (1 − G(x, y)(r−1(t))/(1 − G(x, y)(0)), and F (y, x)(t) =
G(x, y)(−r−1(t))/G(x, y)(0). Thus,

p(y, x)F (y, x)(t) − p(x, y)F (x, y)(t) = G(x, y)(−r−1(t))− (1−G(x, y)(r−1(t)) =

G(x, y)(r−1(t) +G(y, x)(−r−1(t))− 1.

Second, by the integrated tail formula for expectations (Lo, 2019), and since G(x, y)
is the cumulative distribution function of the real-valued random variable ṽ(x, y),

v(x, y) = E[ṽ(x, y)] = −

∫ 0

−∞

G(x, y)(v)dv +

∫ +∞

0
(1−G(x, y)(v))dv =

−

∫ +∞

0
G(x, y)(−v)dv +

∫ +∞

0
(1−G(x, y)(v))dv =

∫ +∞

0
(1−G(x, y)(v) −G(x, y)(−v))dv

For any v > 0, let t = r(v). By the remark above, the condition that F (y, x)(t) ≤
(p(y, x)/p(x, y)) F (x, y)(t) can be rewritten as

G(x, y)(v) +G(x, y)(−v) ≤ 1

for any v with t = r(v) > 0. This inequality then also holds for v = 0 by conti-
nuity. For any v with r(v) = 0, G(x, y)(v) = 1 and G(x, y)(−v) = 0, as otherwise
the corresponding RCM-CF would generate an atom at response time zero. Hence
G(x, y)(v) + G(x, y)(−v) = 1 in this case. It follows that the term in the final integral
above is always positive, thus v(x, y) ≥ 0 and the conclusion follows.

If, additionally, the inequality F (y, x)(t) ≤ (p(y, x)/p(x, y)) F (x, y)(t) is strict for
some t, it must be strict for a nonempty interval by continuity, implying v(x, y) > 0.

B Empirical Implementation of the TWT Method

To reveal preferences using the TWT method, we proceed as follows (see also Alós-Ferrer
et al., 2021). Given a (panel) dataset containing binary choices and the associated re-
sponse times, we first compute the choice frequencies for each pair (x, y) and participant
i, pi(x, y).

The second step is to estimate the density of the distribution of response times of i
and (x, y). We used log-transformed response times for convenience, to avoid boundary
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problems and increase visibility of graphical illustrations, but this is largely inconsequen-
tial for the actual analysis. As in Alós-Ferrer et al. (2021), the kernel density estimates
were performed in Stata using the akdensity function, which delivers CDFs as output,
defined on a grid of time points t. This is a single-line command in Stata and other
standard statistical packages (R: Epa.kernel, Mathlab: ksdensity). The estimates use
an Epanechnikov kernel with optimally chosen non-adaptive bandwidth. If an option is
chosen only once (and hence only one response time is available) an optimal bandwidth
cannot be determined endogenously, so we set it to 0.1, yielding a distribution function
close to a step function at the observed response time.

Once the CDF estimates CDFi(x, y) are obtained, we proceed to checking the condi-
tion of Theorem 1 for each participant i and choice pair (x, y). Specifically, we compute

Hi(x, y)(t) = pi(x, y) · CDFi(x, y)(t) − pi(y, x) · CDFi(y, x)(t)

for all t in the grid and check whether this expression is always negative or always
positive (it is enough to check whether the minimum and maximum have the same
sign). If Hi(x, y)(t) is always positive (resp. always negative), a preference for x over
y (resp. for y over x) is revealed for participant i. For each dataset, this can also be
illustrated graphically by plotting the function Hi.
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A Previous Evidence on Nontransitivities

Systematic empirical evidence on transitivity violations goes back to May (1954), who

collected choice data for pairs of hypothetical marriage partners described according to

intelligence, looks, and wealth. However, the evidence was in the form of nontransitive

cycles when the choices of all participants were aggregated, and hence reduces to the

well-known observation that Condorcet cycles might appear when transitive preferences

are aggregated. Actual evidence on nontransitive preferences at the individual level was

first presented by Tversky (1969), using binary choices among simple monetary lotteries

and also among hypothetical job applicants. Almost all participants displayed at least

one weak stochastic transitivity violation. These descriptive findings were subsequently

replicated (Montgomery, 1977; Lindman and Lyons, 1978; Budescu and Weiss, 1987),

but the later literature cast doubts on the strength of the evidence. Iverson and Fal-

magne (1985) reanalyzed the data of Tversky (1969) and argued that the evidence was

compatible with transitive preferences and noisy choices. They further criticized the

original work’s statistical analysis and found that only one of Tversky’s participants

significantly violated transitivity using likelihood ratio tests, which of course implicitly

assume (a particular shape of) noise in actual choices. It has also been criticized that

participants in Tversky (1969) were pre-selected.

Later empirical demonstrations of nontransitive choice have been similarly criticized,

the core argument frequently being that data might be compatible with transitive but

noisy behavior. For example, Loomes et al. (1989, 1991) argued that the classical pref-

erence reversal phenomenon (Lichtenstein and Slovic, 1971; Grether and Plott, 1979;

∗Corresponding author. Lancaster University Management School, LA1 4YX Lancaster (U.K.).
E.mail: c.alosferrer@lancaster.ac.uk
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Tversky and Thaler, 1990), where choices systematically contradict elicited (monetary)

valuations, might be due to transitivity violations. That is, actual nontransitive choices

might build a preference cycle where a lottery A is preferred to a lottery B and this second

lottery is (of course) revealed indifferent to its own certainty equivalent, but the latter is

strictly preferred to the certainty equivalent of A. However, Sopher and Gigliotti (1993),

in a replication of Loomes et al. (1991), estimated an econometric model of choice with a

specific structure of random errors, and could not reject the null hypothesis of transitive

preferences and noisy choices. On the other hand, Starmer and Sugden (1998) further

replicated the work in Loomes et al. (1991) and observed the same cycling asymmetries,

suggesting that those are unlikely to be due to noise.

Regenwetter et al. (2010, 2011) argued that violations of transitivity are better

analyzed through violations of the triangle inequality, p(x, y) + p(y, z) − p(x, z) ≤ 1

(Marschak, 1960; Block and Marschak, 1960), instead of violations of Weak Stochastic

Transitivity. Those works found that the triangle inequality is often satisfied in (many)

existing publications, even when WST is violated. Cavagnaro and Davis-Stober (2014)

argued that the the behavior of the tested populations can be best described by a mixture

of different models of choice, with the resulting estimates suggesting that the majority

(but not all) of the people might satisfy transitivity.

Recent studies, however, keep bringing up empirical evidence which might indicate

violations of transitivity. Butler and Pogrebna (2018) provided new empirical evidence

using both WST and the triangle inequality. Their evidence showed that cycles can

be the modal preference patterns over simple lotteries even after considering transitive,

stochastic models. Their choices were designed to reproduce the “paradox of nontran-

sitive dice,” where a heuristic which favors the option (within a pair) with the largest

probability to beat the alternative produce cyclical choices (Savage Jr., 1994). As in

previous cases, however, critical work was close on the heels of Butler and Pogrebna

(2018). Specifically, Birnbaum (2023) argued that tests of Weak Stochastic Transitivity

and the triangle inequality do not provide a method to compare transitive and nontran-

sitive models that allow mixtures of preference patterns and random errors. Birnbaum

(2020) re-analyzed the data of Butler and Pogrebna (2018) using a “true and error”

model (Remark 1 in the main text) and still found evidence for significant transitivity

violations, but the latter are incompatible with the explanation proposed by Butler and

Pogrebna (2018) (see, however, Butler, 2020).

Following up on the general argument that apparent violations of transitivity could

be rationalized by transitive models if one focuses on choice frequencies only, Fosgerau

and Rehbeck (2023) study a specific class of models of nontransitive choice where choice

probabilities reflect strength of preference and characterize under which conditions they

can be rationalized within a class of noisy choice models with transitive preferences.

Observed violations of transitivity, whatever their origin, seem to be relatively sta-

ble. For example, Davis-Stober et al. (2019) and Park et al. (2019) report that neither

age nor, surprisingly, alcohol intoxication seem to play a major role in transitivity vio-
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lations for decisions under risk. Non-transitive choices have also been observed in other

domains. Li and Loomes (2022) report a substantial level of nontransitive choices in

respondents’ intertemporal decisions, i.e. decisions between pairs of monetary amounts

to be received at different points in time (see also Tversky et al., 1990). Birnbaum and

Schmidt (2008) find some evidence for transitivity violations for choices under uncer-

tainty, albeit for a limited number of participants. Moreover, people frequently violate

transitivity when choosing between multi-attribute consumers’ products (sound systems,

flight plans, and software packages; e.g. Lee et al., 2009; Müller-Trede et al., 2015; Lee

et al., 2015). Naturally, there are also some domains where evidence is less robust,

e.g. for hypothetical alternative treatments in the health domain (Schmidt and Stolpe,

2011), or when choosing between potential sexual partners (Hatz et al., 2020). Finally,

violations of transitivity are no exception to the rule that few behaviors, if at all, are

uniquely human: honey bees and gray jays have been shown to violate transitivity when

foraging for food (Shafir, 1994; Waite, 2001), and Túngara frogs behave nontransitively

when making mating choices (Natenzon, 2019).

A few contributions have also tested for particular forms of transitivity violations.

For instance, Starmer and Sugden (1998) documented transitivity violations which might

contradict a number of explanations, including regret theory. Starmer (1999) tested for

transitivity violations which might be compatible with the “editing phase” of original

prospect theory (Kahneman and Tversky, 1979). We refer the reader to Starmer (2000)

for a discussion.

We remark that, in this work, we follow the literature which favors testing transitivity

violations using binary choice probabilities instead of choice patterns (e.g., Birnbaum,

2020). For a discussion of these two alternative approaches, we refer the reader to

Cavagnaro and Davis-Stober (2014) and Butler (2020). This is a natural choice given

our theoretical framework, which reveals preferences using binary choices. Moreover,

the two approaches have been shown to provide largely consistent evidence (e.g., Butler

and Pogrebna, 2018; Birnbaum, 2020).

Part of the previous literature has concentrated on fitting data to particular models

and comparing the fit of transitive and nontransitive models in “horse race” exercises.

This approach is incomparable to ours, since we identify choice patterns that cannot be

explained by any model of transitive preferences with behavioral noise, in the sense of

Section 2 in the main text. However, the overall message of our findings, namely that

there are persistent transitivity violations but a majority of choice combinations respect

transitivity, is compatible with the recent literature, which finds consistent support for

nontransitive models of choice.

For example, using true and error models (recall Remark 1 in the main text), Birn-

baum (2023) reports that most participants in the experiment of Butler and Pogrebna

(2018) made decisions consistent with transitivity, but 7 out of 22 (about 30%) showed

evidence of nontransitive preference patterns at least part of the time. Brown et al.

(2015), reanalyzing the data from KTHDP, find that 7 out of 30 participants were best
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described by models which allow for intransitivities, while 8 participants were best ex-

plained by a trembling hand model (again, recall Remark 1 in the main text) and 6 other

participants were best explained by a stochastic preference model (hence equivalent to

a classical, additive RUM). Ranyard et al. (2020), reanalyzing the same dataset, found

that a model accounting for violations of WST (based on the additive difference model

of Tversky, 1969) was a good fit for 14 of the 30 participants.

Needless to say, this section is not and cannot be a complete review of the literature on

transitivity violations. We refer the reader to the recent review of Ranyard et al. (2020),

who also estimated a simplified additive-difference model based on the processing of

alternative dimensions (following Tversky, 1969). Similarly to Regenwetter et al. (2010,

2011), Ranyard et al. (2020) argue that people seem to behave according to different

models of choice, and many individuals are best explained by models which do violate

transitivity.

B Previous Deterministic, Nontransitive Models

For multidimensional alternatives, x = (x1, . . . , xn), Tversky (1969) introduced the addi-

tive difference model with the explicit purpose of studying nontransitivities. This model

postulates that x � y if and only if

n∑
i=1

φi(ui(xi)− ui(yi)) ≥ 0

where ui are real-valued factor utilities, and φi are skew-symmetric (φi(−r) = −φi(r)),

increasing and continuous real-valued functions. This expression becomes an example of

a function v as in Shafer (1974) for the multidimensional case.

In the domain of decisions under risk (lottery choice), Kreweras (1961) and Fishburn

(1982, 1984, 1986), among others, studied skew-symmetric bilinear (SSB) representa-

tions, which reduce choice to the sign of a function v as in Shafer (1974) with the

additional the requirement that v is linear in both arguments. Specifically, let L1, L2 be

simple lotteries on the set of outcomes X, i.e. L1(x), L2(x) denote the respective proba-

bilities of outcome x and those are only positive for finitely many outcomes. A function

v defined on outcomes can be extended bilinearly to simple lotteries by

V SSB(L1, L2) =
∑
x∈X

∑
y∈X

L1(x)L2(y) · v(x, y).

so that L1 is weakly preferred to L2 if and only V SSB(L1, L2) ≥ 0. This general-

izes expected utility, since if v(x, y) = u(x) − u(y) for a utility function u on X, then

V SSB(L1, L2) =
∑

x∈X L1(x)u(x) −
∑

y∈X L2(y)u(y). However, the SSB form does not

require transitivity and indeed allows for preference cycles and violations of the indepen-

dence axiom (see Fishburn, 1988 for an axiomatization of SSB nontransitive preferences).
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That is, the function V SSB is a particular example of the approach of Shafer (1974) for

a space of lotteries.

Some other prominent theories have incorporated regret and salience in decision

making under risk by capturing these phenomena in a skew-symmetric function over

outcomes and then extending that function to lotteries in a manner similar to SSB

models. These models, however, are formulated in terms of acts (Savage, 1954), that is,

mappings from a set of states to outcomes, and hence it is better to change notation

at this point. Let the (finite) set of states be denoted by S, and let p(s) denote the

probability of a state s ∈ S. A lottery Lx is then a vector of outcomes (xs)s∈S , with

the interpretation that outcome xs obtains if state s occurs. Loomes and Sugden (1982)

introduced regret theory as a particular model allowing for transitivity violations in the

risk domain (see Starmer, 2000, for a summary). Diecidue and Somasundaram (2017)

showed that regret theory deviates from expected utility only by relaxing transitivity.

Loomes and Sugden (1987) later extended this framework to generalized regret theory.

This theory considers monetary consequences, X ⊆ R, and starts out by postulating

a real-valued, two-argument function M , so that if x, y ∈ X, M(x, y) is interpreted

as the utility of choosing x net of the regret associated with missing out on y. Then

M(x, y) becomes the basis for defining the function vR by vR(x, y) = M(x, y)−M(y, x)

which is immediately skew-symmetric and hence a particular case of the approach of

Shafer (1974) for the space of outcomes. Analogously to SSB models, but within the

formalization of lotteries as acts, a lottery Lx is weakly preferred to a lottery Ly if and

only if V R(Lx, Ly) ≥ 0, where

V R(Lx, Ly) =
∑
s∈S

p(s)vR(xs, ys).

Loomes and Sugden (1987) further impose several assumptions on vR, namely that

vR(x, y) ≥ 0 if and only if x ≥ y (so that, for outcomes, more is better), that vR(x, z) >

vR(y, z) (resp. <,=) if and only if x > y (resp. <,=), and a “regret aversion” assumption

stating that vR(x, z) > vR(x, y)+vR(y, z) whenever x > y > z, meaning that large post-

decision regrets are worse than the sum of step-wise, smaller regrets. In particular, skew

symmetry and these conditions imply that v(x, y) > 0 if x > y, v(x, y) < 0 if x < y, and

v(x, x) = 0, for any outcomes x, y.

The comparison of regret theory and SSB theory is obscured by the fact that the for-

mer is formulated in terms of lotteries as acts, while the latter is formulated in terms of

lotteries as probability distributions. Loomes and Sugden (1987) show that, for stochas-

tically independent lotteries (where the set of states can be seen as a product of lottery-

specific sets of states), generalized regret theory is equivalent to SSB theory. Again, the

function V R becomes a particular example of the approach of Shafer (1974) for a space

of lotteries.

Bordalo et al. (2012, 2013) introduced salience theory by postulating a symmetric

function σ, i.e. σ(x, y) = σ(y, x) for all x, y ∈ X ⊆ R, with the interpretation that for
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a lottery pair (Lx, Ly), σ(xs, ys) is the salience of the state s. This function is assumed

to fulfill a number of properties capturing the idea of salience. In a “smooth” version of

the theory, salience values are transformed through an increasing, real-valued function

f which preserves salience rankings as derived from σ, yielding1

qs(L
x, Ly) =

f(σ(xs, ys))∑
r∈S f(σ(xr, yr))

.

The decision maker then attaches a value to lottery Lx which depends on the alternative

lottery Ly,

UST (Lx|Ly) =
∑
s∈S

qs (L
x, Ly) u(xs)

where u is strictly increasing with u(0) = 0.

Although (smooth) salience theory appears functionally different from generalized re-

gret theory and SSB models, it is worth observing that there is a relation. Under salience

theory, a lottery Lx is weakly preferred to a lottery Ly if and only if V ST (Lx, Ly) ≥ 0,

where

V ST (Lx, Ly) =
∑
s∈S

p(s)f(σ(xs, ys)) [u(xs)− u(ys)] .

This already shows that regret theory is a further particular case of the approach of

Shafer (1974) for a space of lotteries. Herweg and Müller (2021) further observe that the

two-argument function on outcomes wST defined by wST (x, y) = f(σ(x, y)) [u(x)− u(y)]

is skew symmetric, and hence salience theory can be written in the same terms as

generalized regret theory. Herweg and Müller (2021) also show that, assuming continuity

of u and f , the assumptions of (smooth) salience theory imply those of generalized regret

theory, that is, one can view salience theory as a particular case of the latter, and hence

(for stochastically independent lotteries) as a particular case of SSB theory. Interestingly,

the original regret theory of Loomes and Sugden (1982), which was a more specific model,

turns out to be a particular case of salience theory if an additional, mild condition is

imposed (Herweg and Müller, 2021, Theorem 2).2

All theories discussed above obviously allow for nontransitivities in lottery choice,

since they can be described as special cases of the fundamental representation of Shafer

(1974).3 That is, ultimately they provide a (structural, parametric) functional form for

1Bordalo et al. (2012) also provide a rank-based version of salience theory with similar insights. This
version is analytically more tractable for specific applications, but creates discontinuities in valuations
(Kontek, 2016).

2It can be shown that generalized regret theory (and hence smooth salience theory) fulfill a weaker
version of transitivity, called dominance transitivity by Diecidue and Somasundaram (2017): if Lx strictly
dominates Ly (yields better outcomes for all states, and strictly better for at least some states) and the
latter is preferred to L

z , then L
x must be strictly preferred to L

z (and analogously if Lx is preferred to
L

y and the latter strictly dominates L
z). This rather weak condition seems to be the only systematic

constraint on the kind of transitivity violations that these models can generate.
3Other models that allow for transitivity violations include lexicographic semiorders (Hausner, 1954;

Fishburn, 1971), similarity theory (Fishburn, 1991; Leland, 1994, 1998), the context-dependent model
of the gambling effect (Bleichrodt and Schmidt, 2002), and the stochastic difference model of González-
Vallejo (2002).

6



a function V (·, ·) defined on a specific space, while the general approach of Shafer (1974)

allows for any skew-symmetric function.

C Robustness Analysis: No Effects of Attention

To check whether possible distraction as the experiments progressed influenced the re-

sults, we split each dataset into “early” and “late” decisions. In KTHDP we simply

split the data of each individual in two halves. For DSBC, since data were collected in

four sessions, we compare the data collected in the first half of the sessions to the data

from the second half of the sessions, i.e. the split is carried out for each session. There

are no statistically significant differences in neither DSBC nor KTHDP when comparing

the first and the second half of the sessions. Specifically, this holds for the following

comparisons.

• Individual proportion of Revealed Transitivity Violations (RTVs) (KTHDP: first

half 12.24% vs. second half 14.63%, WSR test, N = 30, z = −0.575, p = 0.5745;

DSBC: 19.87% vs. 18.84%, WSR test, N = 60, z = 1.207, p = 0.2306).

• Individual proportion of pairs where preferences are revealed according to Theorem

1 (KTHDP: first half 77.85% vs. second half 75.99%, WSR test, N = 30, z = 1.602,

p = 0.1112; DSBC first half 56.52% vs. second half 56.82%, WSR test, N = 60,

z = −0.961, p = 0.3411).

• Individual proportion of WST violations (KTHDP: first half 14.86% vs. second

half 16.00%, WSR test, N = 30, z = −0.460, p = 0.6581; DSBC: 21.10% vs.

20.41%, WSR test, N = 60, z = 1.318, p = 0.1903).

Additionally, KTHDP included choice pairs were one alternative first-order stochas-

tically dominated the other. Violations of stochastic dominance could be an indicator of

individual-level inattention or distraction. However, we found no significant correlation

between the individual proportion of dominated choices and the three main outcomes

given above, that is,

• the individual proportion of WST violations (Spearman’s N = 30, ρ = 0.2806,

p = 0.1332),

• the individual proportion of Revealed Transitivity Violations (RTVs) (N = 30,

ρ = 0.2140, p = 0.2562),

• or the individual proportion of pairs where preferences are revealed according to

Theorem 1 (Spearman’s N = 30, ρ = −0.2810, p = 0.1325).

Also, the individual proportions of dominated choices in this dataset are not statis-

tically significantly different between the first and the second half of the session (first

half 22.27% vs. second half 22.06%, WSR test, N = 29, z = 0.303, p = 0.7698).
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D Robustness Analysis: Time Limits and Lottery Formats

In DSBC two within-subject treatments were implemented, time limits vs. no time limits

and pie vs. bar lottery format. We can hence investigate the possible influence of these

manipulations on our results.

There were no significant differences between sessions with and without time limits

for

• the individual proportion of WST violations (time limit 20.32% vs. no time limit

21.21%; WRSN = 60, z = −0.578, p = 0.5671),

• the individual proportion of Revealed Transitivity Violations (RTVs) (time limit

19.03% vs. no time limit 19.15%; WRS N = 60, z = −0.129, p = 0.9011),

• or the individual proportion of pairs where preferences are revealed according to

Theorem 1 (time limit 56.13% vs. no time limit 57.16%; WRS, N = 60, z =

−0.942, p = 0.3505).

We observe that using the bar representation is associated with a higher proportion

of revealed preferences (59.87%) compared to the pie representation (53.84%; WRS

N = 60, z = 3.872, p < 0.001). Pie representations also do lead to a larger proportion

of WST violations compared the bar representations, although the comparison misses

significance at the 5% level (21.35% vs. 20.19%; WRS N = 60, z = 1.716, p = 0.0866).

There are, however, no significant differences in the proportion of RTVs when comparing

pie and bar representations (18.52% vs. 20.04%; WRS N = 60, z = −0.648, p = 0.5222).

E Characteristics of Nontransitive Cycles

Our analysis in the main text (Section 3) shows the existence of transitivity violations

which are not due to noise. A natural question is whether specific collections of lottery

choices give rise to such violations often. To answer this question, we reanalyze the

data taking individual cycles of alternatives as the unit of observation. That is, in each

dataset and for each cycle of alternatives, we compute the percentage of participants

who display either an RTV or a WST violation.

The left-hand panel of Figure 1 represents the distribution of the proportion of par-

ticipants displaying RTVs across cycles of alternatives, computed over all participants

for which the cycle was revealed (DSBC: mean 18.93%, median 17.65%, SD=11.69, min

0.00%, max 60.00%; KTHDP: mean 11.22%, median 0.00%, SD=20.55, min 0.00%, max

100.00%). The right-hand panel shows the distribution of the proportion of participants

displaying WST violations across cycles of alternatives, computed over all participants

(DSBC: mean 20.56%, median 21.67%, SD=6.51, min 0.00%, max 36.67%; KTHDP:

mean 15.42%, median 0.00%, SD=20.03, min 0.00%, max 80.00%).4 As can be seen in

4Note that for DSBC the average is computed over N = 60 × 4 observations, as each participant
made the same choices in four different conditions.
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Figure 1: Distribution of the proportion of subjects displaying RTVs (on the left; relative
to the set of subjects for which preferences are revealed in the corresponding cycle of
alternatives) and WST violations (on the right; relative to all subjects) per each cycle
of alternatives.

the figure, the support of the distributions range from zero to relatively large numbers.

That is, some cycles of alternatives involve next to no violations while others involve

nontransitive choices for a sizeable part of the experiment’s participants.

To single out which constellations of choices produce a particularly large proportion

of violations, we then look at the cycles of alternatives which entail the most transitivity

violations. Table 1 lists the ten cycles (for both datasets) with the largest proportion

of RTVs, computed as the percentage of people for which the cycle of alternatives was

revealed who displayed an RTV. For DSBC, those range from 48% to 58%, and all of

them correspond to WST violations for at least a quarter of the sample. Notably, all ten

cycles involve just the five following lotteries (out of the nine in the experiment), which

correspond to the left-hand subset in Figure 1(left) in the main text.

x1 =

(
$25.43,

7

24

)
, x2 =

(
$24.16,

8

24

)
, x∗ =

(
$22.89,

9

24

)
,

x3 =

(
$21.62,

10

24

)
, x4 =

(
$20.35,

11

24

)

The fact that the most common transitivity violations in DSBC all involve the left-

hand subset in Figure 1(left) in the main text, and none of them involves the lotteries in

the right-hand set, is particularly revealing. The differences in outcomes across similar

lotteries in the right-hand set are noticeably larger (between $3.13 and $4.96) than those

for the other set (all $1.27), while differences in probabilities are always 1/24 in both

sets. That is, the most frequent nontransitivities involve choices whose evaluations are

presumably closer, i.e. such that the strength of preference is smaller. If one used WST

or a similar measure as a criterion for detecting nontransitivites, standard psychometric

effects (error rates are larger for closer valuations) would suggest that the increase in

nontransitivities is merely due to increased noise. However, our approach through RTVs
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Table 1: The ten cycles in DSBC and KTHDP with the most transitivity violations. The
second column indicates the proportion of experimental participants displaying the RTV
given in the first column, computed over all participants for which the corresponding
cycle of altenratives was revealed (numbers in brackets indicate how the proportion is
computed). The third column indicates the proportion of participants (out of 4× 60 for
DSBC, out of 30 for KTHDP) displaying a WST violation for the cycle of alternatives.

Cycle People with RTV People with WST

DSBC
x∗ ≻ x4 ≻ x3 ≻ x∗ 58.33% (28/48) 30.00% (72)

x∗ ≻ x4 ≻ x3 ≻ x2 ≻ x∗ 54.55% (24/44) 35.00% (84)
x∗ ≻ x1 ≻ x4 ≻ x3 ≻ x∗ 50.00% (12/24) 25.00% (60)
x∗ ≻ x4 ≻ x2 ≻ x3 ≻ x∗ 53.85% (28/52) 31.67% (76)
x∗ ≻ x2 ≻ x3 ≻ x4 ≻ x∗ 57.14% (32/56) 33.33% (80)

x∗ ≻ x2 ≻ x3 ≻ x1 ≻ x4 ≻ x∗ 47.62% (40/84) 36.67% (88)
x∗ ≻ x4 ≻ x1 ≻ x3 ≻ x2 ≻ x∗ 50.00% (24/48) 35.00% (84)
x∗ ≻ x1 ≻ x4 ≻ x2 ≻ x3 ≻ x∗ 50.00% (12/24) 26.67% (64)
x∗ ≻ x4 ≻ x1 ≻ x2 ≻ x3 ≻ x∗ 53.85% (28/52) 35.00% (84)
x∗ ≻ x4 ≻ x2 ≻ x1 ≻ x3 ≻ x∗ 57.14% (32/56) 33.33% (80)

KTHDP
y2 ≻ y4 ≻ y5 ≻ y2 66.67% (12/18) 40.00% (12)

y2 ≻ y3 ≻ y5 ≻ y4 ≻ y2 100.00% (6/6) 60.00% (18)
y3 ≻ y1 ≻ y2 ≻ y4 ≻ y3 66.67% (12/18) 60.00% (18)
y3 ≻ y4 ≻ y5 ≻ y1 ≻ y3 66.67% (12/18) 40.00% (12)
y4 ≻ y1 ≻ y2 ≻ y3 ≻ y4 66.67% (12/18) 60.00% (18)

y1 ≻ y4 ≻ y3 ≻ y2 ≻ y5 ≻ y1 75.00% (9/12) 30.00% (9)
y3 ≻ y1 ≻ y2 ≻ y4 ≻ y5 ≻ y3 66.67% (12/18) 60.00% (18)
y3 ≻ y4 ≻ y5 ≻ y1 ≻ y2 ≻ y3 66.67% (12/18) 40.00% (12)
y4 ≻ y1 ≻ y2 ≻ y3 ≻ y5 ≻ y4 66.67% (12/18) 60.00% (18)
y4 ≻ y5 ≻ y2 ≻ y1 ≻ y3 ≻ y4 66.67% (12/18) 40.00% (12)

has disentangled preferences from noise. Thus, the data suggests that the increase

in nontransitivities is due to the fact that evaluations are close, but not because this

results in noisier choices. Rather, it appears that empirical transitivity violations are

more frequent when they result from a gradual chain of small changes in the options.

Specifically, many of the examples in Table 1 suggest that small tradeoffs, which are

possible when lottery attributes are close enough, do not scale up monotonically. For

example, consider the shortest cycle for DSBC in Table 1, which is also the one with

the largest proportion of RTV violations, x∗ ≻ x4 ≻ x3 ≻ x∗. Twice along this cycle

(x4 ≻ x3 ≻ x∗), the decision maker accepts a one-step decrease in monetary payoff

($1.27) in exchange for a one-step increase in probability (1/24). Then, however, the

same decision maker accepts a two-steps decrease in probability (2/24) in exchange for

a two-step increase in monetary payoff ($2.54). The exact same phenomenon appears

in the cycles x∗ ≻ x4 ≻ x3 ≻ x2 ≻ x∗, x∗ ≻ x2 ≻ x3 ≻ x4 ≻ x∗, and (rewritten)

x1 ≻ x4 ≻ x3 ≻ x∗ ≻ x1, with three one-step tradeoffs being reversed by a three-step

tradeoff in the opposite direction, and similar but more complex patterns can be seen in
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Figure 2: Graphical representation of some of the most common preference cycles in
the datasets. All lotteries have a single non-zero outcome, depicted in the (outcome,
probability) space. Arrows indicate preference, i.e. x → y means y ≻ x. The two upper
pictures are from the DSBC data, the two lower ones from KTHDP.

the longer cycles. The two top panels of Figure 2 give a graphical representation of two

of these examples.

For KTHDP, the proportion of RTVs among revealed cycles of alternatives for the

ten topmost ones is always above two thirds. corresponding to between 40% and 60%

WST violations in the overall sample. The cycles involve all five lotteries in KTHDP,

y1 = ($500, 0.29) , y2 = ($475, 0.32) , y3 = ($450, 0.35) ,

y4 = ($425, 0.38) , y5 = ($400, 0.41)

The same phenomenon is observed in several of the KTHDP cycles. For example,

in the cycle y4 ≻ y1 ≻ y2 ≻ y3 ≻ y4, three times in a row the decision maker accepts a

one-step reduction in probability (0.03) in exchange for a one-step increase in monetary

payoff ($25), but then undoes it by accepting a three-step reduction in monetary payoff

($75) in exchange for a three-step increase in probability (0.09). A similar pattern can

be seen in the cycle y3 ≻ y4 ≻ y5 ≻ y1 ≻ y3, and similar phenomena appear in several

of the longer cycles. The two bottom panels of Figure 2 give a graphical representation

of two of these examples.
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We remark that the nontransitivities we discuss above (chains of small changes which

do not scale up) are not related to the classical idea of “nontransitive indifference.” The

latter argument points out that apparent nontransitivities might be frequently observed

whenever decision makers are close to indifference, because (by the psychometric effect)

noise is maximal in this case. However, our approach disentangles preferences from noise.

If a decision maker displayed an indifference cycle, many apparent nontransitivities would

be observed in the data, but, since the underlying preferences are not strict, if follows

that Theorem 1 cannot reveal a strict preference; in practice, the sufficient condition

would fail for at least one of the involved pairs. Hence, those apparent transitivity

violations would not be Revealed Transitivity Violations. In other words, our approach

disentangles genuine transitivity violations from “noisy ones” as would be the case for

those arising from nontransitive indifference.
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