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Abstract

Classification of gene trees is an important task both in the analysis of multi-locus
phylogenetic data, and assessment of the convergence of Markov Chain Monte
Carlo (MCMC) analyses used in Bayesian phylogenetic tree reconstruction. The
logistic regression model is one of the most popular classification models in sta-
tistical learning, thanks to its computational speed and interpretability. However,
it is not appropriate to directly apply the standard logistic regression model to a
set of phylogenetic trees, as the space of phylogenetic trees is non-Euclidean and
thus contradicts the standard assumptions on covariates.
It is well-known in tropical geometry and phylogenetics that the space of phyloge-
netic trees is a tropical linear space in terms of the max-plus algebra. Therefore,
in this paper, we propose an analogue approach of the logistic regression model
in the setting of tropical geometry.
Our proposed method outperforms classical logistic regression in terms of Area
under the ROC Curve (AUC) in numerical examples, including with data gen-
erated by the multi-species coalescent model. Theoretical properties such as
statistical consistency have been proved and generalization error rates have been
derived. Finally, our classification algorithm is proposed as an MCMC conver-
gence criterion for Mr Bayes. Unlike the convergence metric used by Mr Bayes
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which is only dependent on tree topologies, our method is sensitive to branch
lengths and therefore provides a more robust metric for convergence. In a test
case, it is illustrated that the tropical logistic regression can differentiate between
two independently run MCMC chains, even when the standard metric cannot.

Keywords: coalescent model, classifications, gene trees and species trees, tropical
geometry, ultrametrics

Introduction

Phylogenomics is a new field that applies tools from phylogenetics to genome
datasets. The multi-species coalescent model is often used to model the distribution of
gene trees under a given species tree [1]. The first step in statistical analysis of phyloge-
nomic data is to analyze sequence alignments to determine whether their evolutionary
histories are congruent with each other. In this step, evolutionary biologists aim to
identify genes with unusual evolutionary events, such as duplication, horizontal gene
transfer, or hybridization [2]. To accomplish this, they compare multiple sets of gene
trees, that is, phylogenetic trees reconstructed from alignments of genes, with each
gene tree characterised by the aforementioned evolutionary events. The classification
of gene trees into different categories is therefore important for analyzing multi-locus
phylogenetic data.

Tree classification can also help in assessing the convergence of Markov Chain
Monte Carlo (MCMC) analyses for Bayesian inference on phylogenetic tree recon-
struction. Often, we apply MCMC samplers to estimate the posterior distribution of
a phylogenetic tree given an observed alignment. These samplers typically run mul-
tiple independent Markov chains on the same observed dataset. The goal is to check
whether these chains converge to the same distribution. This process is often done
by comparing summary statistics computed from sampled trees. These statistics often
only depend on the tree topologies, and so they naturally lose information about the
branch lengths of the sampled trees. Alternatively, we propose the use of a classifi-
cation model that classifies trees from different chains and uses statistical measures
such as the Area under the ROC Curve (AUC) to indicate how distinguishable the
two chains are. Consequently, high values of AUCs indicate that the chains have not
converged to the equilibrium distribution. Currently, there is no classification model
over the space of phylogenetic trees, the set of all possible phylogenetic trees with a
fixed number of leaves. In this paper, we propose a classifier that is appropriate for the
tree space and is sensitive to branch lengths, unlike the summary statistics of most
MCMC convergence diagnostic tools.

In Euclidean geometry, the logistic regression model is the simplest generalized
linear model for classification. It is a supervised learning method that classifies data
points by modeling the log-odds of having a response variable in a particular class as a
linear combination of predictors. This model is very popular in statistical learning due
to its simplicity, computational speed and interpretability. However, directly applying
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such classical supervised models to a set of sampled trees may be misleading, since
the space of phylogenetic trees does not conform to Euclidean geometry.

The space of phylogenetic trees with labeled leaves [m] is a union of lower dimen-
sional polyhedral cones with dimension m−1 over Re where e =

(
m
2

)
[3, 4]. This space

is not Euclidean and even lacks convexity [4]. In fact, [3] showed that the space of phy-
logenetic trees is a tropicalization of linear subspaces defined by a system of tropical
linear equations [5] and is therefore a tropical linear space.

Consequently, many researchers have applied tools from tropical geometry to sta-
tistical learning methods in phylogenomics, such as principal component analysis over
the space of phylogenetic trees with a given set of leaves [m] [5, 6], kernel density
estimation [7], MCMC sampling [8], and support vector machines [9]. Recently, [10]
proposed a tropical linear regression over the tropical projective space as the best-fit
tropical hyperplane. However, our logistic regression model is built from first principles
and is not a trivial extension of the aforementioned tropical regression model.

In this paper, an analog of the logistic regression is developed over the tropical
projective space, which is the quotient space Re/R1 where 1 := (1, 1, . . . , 1). Given a
sample of observations within this space, the proposed model finds the “best-fit” tree
representative ωY ∈ Re/R1 of each class Y ∈ {0, 1} and the “best-fit” deviation of the
gene trees. This tree representative is a statistical parameter and can be interpreted
as the corresponding species tree of the gene trees. The deviation parameter is defined
in terms of the variability of branch lengths of gene trees. It is established that the
median tree, specifically the Fermat-Weber point, can asymptotically approximate
the inferred tree representative of each class. The response variable Y ∈ {0, 1} has
conditional distribution Y |X ∼ Bernoulli(S(h(X))), where h(x) is small when x is
close to ω0 and far away from ω1 and vice versa.

In Section 1 an overview of tropical geometry and its connections to phylogenetics
is presented. The one-species and two-species tropical logistic models are developed in
Section 2. Theoretical results, including the optimality of the proposed method over
tropically distributed predictor trees, the distance distribution of those trees from their
representative, the consistency of estimators and the generalization error of each model
are stated in Section 2 and proved in Supplement A. Section 3 explains the benefit
and suitability of using the Fermat-Weber point approximation for the inferred trees
and a sufficient optimality condition is stated. Computational results are presented in
Section 4 where a toy example is considered for illustration purposes. Additionally,
a comparison study between classical, tropical and BHV logistic regression is con-
ducted on data generated under the coalescent model. In both the toy example and
the coalescent gene trees example, our model outperforms the alternative regression
models. Finally, our model is proposed as an alternative MCMC convergence criterion
in Section 4.3. The paper concludes with a discussion in Section 5. The code developed
and implemented for the proposed model can be found in [11].

The dataset can be found at DRYAD with DOI: 10.5061/dryad.tht76hf65.
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1 Tropical Geometry and Phylogenetic Trees

1.1 Tropical Basics

This section covers the basics of tropical geometry and provides the theoretical
background for the model developed in later sections. The concept of a tropical metric
will be used when defining a suitable distribution for the gene trees. For more details
regarding the basic concepts of tropical geometry covered in this section, readers are
recommended to consult [12].

A key tool from tropical geometry is the tropical metric also known as the tropical
distance defined as follows:
Definition 1 (Tropical distance). The tropical distance, more formally known as
the Generalized Hilbert projective metric, between two vectors v, w ∈ (R ∪ {−∞})e is
defined as

dtr(v, w) := ∥v − w∥tr = max
i

{
vi − wi

}
−min

i

{
vi − wi

}
, (1)

where v = (v1, . . . , ve) and w = (w1, . . . , we).
Remark 1. Consider two vectors v = (c, . . . , c) = c1 ∈ Re and w = 0 ∈ Re. It is
easy to verify that dtr(v, w) = 0 and as a result dtr is not a metric in Re. The space
in which dtr is a metric treats all points in {c1 : c ∈ R} = R1 as the same point. The
quotient space (R ∪ {−∞})e/R1 achieves just that.
Proposition 1. The function dtr is a well-defined metric on (R∪{−∞})e/R1, where
1 ∈ Re is the vector of all-ones.

1.2 Equidistant Trees and Ultrametrics

Phylogenetic trees depict the evolutionary relationship between different taxa. For
example, they may summarise the evolutionary history of certain species. The leaves
of the tree correspond to the species studied, while internal nodes represent (often
hypothetical) common ancestors of those species and their ancestors. In this paper,
only rooted phylogenetic trees are considered, with the common ancestor of all taxa
based on the root of the tree. The branch lengths of these trees are measured in
evolutionary units, i.e. the amount of evolutionary change. Under the molecular clock
hypothesis, the rate of genetic change between species is constant over time, which
implies genetic equidistance and allows us to treat evolutionary units as proportional
to time units. Consequently, phylogenetic trees of extant species are equidistant trees.
Definition 2 (Equidistant tree). Let T be a rooted phylogenetic tree with leaf label
set [m], where m ∈ N is the number of leaves. If the distance from all leaves i ∈ [m]
to the root is the same, then T is an equidistant tree.

It is noted that the molecular clock hypothesis has limitations and the rate of
genetic change can in fact vary from one species to another. However, the assumption
that gene trees are equidistant is not unusual in phylogenomics; the multispecies coa-
lescent model makes that assumption in order to conduct inference on the species tree
from a sample of gene trees [13]. The proposed classification method is not restricted
to equidistant trees, but all coalescent model gene trees produced in Section 4.2. are
equidistant.
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To conduct any mathematical analysis, a vector representation of trees is needed.
A common way is to use BHV coordinates [14] but in this paper distance matrices are
used instead, which are then transformed into vectors. The main reason is simplicity
and computational efficiency; it is much easier to compute gradients in the tropical
projective torus than in the BHV space.
Definition 3 (Distance matrix). Consider a phylogenetic tree T with leaf label set
[m]. Its distance matrix D ∈ Rm×m has components Dij being the pairwise distance
between a leaf i ∈ [m] to a leaf j ∈ [m]. It follows that the matrix is symmetric with
zeros on its diagonals. For equidistant trees, Dij is equal to twice the difference between
the current time and the latest time that the common ancestor of i and j was alive.

To form a vector, the distance matrix D is mapped onto Re by vectorizing the
strictly upper triangular part of D, i.e.

D 7→ (D12, . . . , D1m, D23, . . . , D2m, . . . , D(m−1)m) ∈ Re,

where the dimension of the resulting vector is equal to the number of all possible
pairwise combinations of leaves in T . Hence the dimension of the phylogenetic tree
space is e =

(
m
2

)
. In what follows, the connection between the space of phylogenetic

trees and tropical linear spaces is established.
Definition 4 (Ultrametric). Consider the distance matrix D ∈ Rm×m. Then if

max{Dij , Djk, Dik}

is attained at least twice for any i, j, k ∈ [m], D is an ultrametric. Note that the
distance map d(i, j) = Dij forms a metric in [m], with the strong triangular inequality
satisfied. The space of ultrametrics is denoted as Um.
Theorem 1 (noted in [15]). Suppose we have an equidistant tree T with a leaf label
set [m] and D as its distance matrix. Then, D is an ultrametric if and only if T is an
equidistant tree.

Using Theorem 1, if we wish to consider all possible equidistant trees, then it is
equivalent to consider the space of ultrametrics as the space of phylogenetic trees
on [m]. Here we define Um as the space of ultrametrics with a set of leaf labels [m].
Theorem 5 (explained in [5, 16]) in Supplement B establishes the connection between
phylogenetic trees and tropical geometry by stating that the ultrametric space is a
tropical linear space.

2 Method

Our logistic regression model is designed to capture the association between a
binary response variable Y ∈ {0, 1} and an explanatory variable vector X ∈ Rn,
where n is the number of covariates in the model. Under the logistic model, Y ∼
Bernoulli(p(x|ω)) where

p(x|ω) = P(Y = 1|x) = 1

1 + exp (−hω(x))
= σ (hω(x)) , (2)
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where σ is the logistic function and ω ∈ Rn is the model parameter that needs to be
estimated and h is a function that will be specified later. The log-likelihood function
of logistic regression for N observation pairs (x(1), y(1)), . . . , (x(N), y(N)) is

l(ω|x, y) = 1

N

N∑
i=1

y(i) log p(i)ω + (1− y(i)) log(1− p(i)ω ), (3)

where p
(i)
ω = p(x(i)|ω). It is the negative of the cross entropy loss. The training model

seeks a statistical estimator ω̂ that maximizes this function.

2.1 Optimal Model

The framework described thus far incorporates the tropical, classical and BHV
logistic regression as special cases. In this section, we show that these can be distin-
guished through the choice of the function h. In fact, this function h can be derived
from the conditional distributions X|Y , as stated in Equation (4) of Lemma 1, below,
by simple application of the Bayes’ rule.

If X|Y is a Gaussian distribution with appropriate parameters, the resulting model
is the classical logistic regression. Alternatively, if X|Y is a “tropical” distribution,
then the resulting classification model is the “tropical” logistic regression. Examples
1 and 2 illustrate this for non-tropical and tropical distributions respectively, and
Remark 2 discusses the choice of tropical distribution in more detail.

Furthermore, the function h from (4) also minimizes the expected cross-entropy
loss according to Proposition 2. Therefore, the best model to fit data that have been
generated by tropical Laplace distribution (6) is the tropical logistic regression. We
conclude this section showing how the tropical metric and tropical Laplace distribution
may be applied to produce two intuitive variants of tropical logistic regression, our
one- and two-species models.

Lemma 1. Let Y ∼ Bernoulli(r) and define the random vector X ∈ Rn with condi-
tional distribution X|Y ∼ fY , where f0, f1 are probability density functions defined in
Rn. Then, Y |X ∼ Bernoulli(p(X)) with p(x) = σ(h(x)), where

h(x) = log

(
rf1(x)

(1− r)f0(x)

)
. (4)

Proposition 2. Let Y ∼ Bernoulli(r) and define the random vector X ∈ Rn with con-
ditional distribution X|Y ∼ fY , where f0, f1 are probability density functions defined
in Rn. The functional p that maximises the expected log-likelihood as given by equation
(3) is p(x) = σ(h(x)), with h defined as in equation (4) of Lemma 1.
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Example 1 (Normal distribution and classical logistic regression). Suppose that the
two classes are equiprobable (r = 1/2) and that the covariate is multivariate normal

X|Y ∼ N (ωY , σ
2In),

where n is covariate dimension and In is the identity matrix. Using Lemma 1, the
optimal model has

h(x) = −∥x− ω1∥2

2σ2
+

∥x− ω0∥2

2σ2
=

(ω1 − ω0)
T

σ2
(x− ω̄), (5)

where ∥ · ∥ is the Euclidean norm and ω̄ = (ω0 + ω1)/2. This model is the classical
logistic regression model with translated covariate X − ω̄ and ω = σ−2(ω1 − ω0).

Example 2 (Tropical Laplace distribution). It may be assumed that the covariates are
distributed according to the tropical version of the Laplace distribution, as presented
in [8], with mean ωY and probability density functions

fY (x) =
1

Λ
exp

(
−dtr(x, ωY )

σY

)
, (6)

where Λ is the normalizing constant of the distribution.

Proposition 3. In distribution (6), the normalizing factor is Λ = e!σe−1
Y .

Proof. See Supplement A.

Remark 2. Consider µ ∈ Rd and a covariance matrix Σ ∈ Rd×d. Then the pdf of a
classical Gaussian distribution is

fµ,Σ(x) ∝ exp

(
−1

2
(x− µ)tΣ−1(x− µ)

)
(7)

where x ∈ Rd and yt is the transpose of a vector y ∈ Rd. When σY = 1, the tropical
Laplacian distribution in (6) is tropicalization of the left hand side in (7) where Σ is
to the tropical identity matrix

0 −∞ −∞ . . . −∞
−∞ 0 −∞ . . . −∞
...

...
...

...
...

−∞ −∞ −∞ . . . 0

 .

Tran [17] nicely surveys the many different definitions of tropical Gaussian distri-
butions. Since the space of ultrametrics is a tropical linear space [3], it is natural to use
tropical “linear algebra” for the definition of tropical “Gaussian” distribution defined
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in (6) in this research. Clearly not all desirable properties of the classical Gaussian
distribution are necessarily realised in a tropical space.

For example, as Tran discussed in [17], we lose some natural intuition of orthogo-
nality of vectors. This means that we lose a nice geometric intuition of a correlation
between two random vectors. Even with the loss of some nice properties of the classi-
cal Gaussian distribution, the tropical Laplacian (7) is a popular choice. It has been
applied to statistical analysis of phylogenetic trees: as a kernel density estimator of
phylogenetic trees over the space of phylogenetic trees [7], and as the Bayes estimator
[18] because this distribution is interpretable in terms of phylogenetic trees.

In particular, the tropical metric dtr represents the biggest difference of divergences
(speciation time and mutation rates) between two species among two trees shown in
Example 3. This is a very natural and desirable interpretation in terms of phyloge-
nomics. The smaller difference of divergences between two species among the tree with
an observed ultrametric x and the tree with the centriod has higher probability. There-
fore, it is natural to apply a sample generated from the multi-species coalescent model
where the species tree has the centroid as its dissimilarity map. It is worth noting that
we do not know much about a well-defined distribution over the space of phylogenetic
trees, despite many researchers’ attempts [19].

Example 3. [Tropical Metric] Suppose we have equidistant trees T1 and T2 with leaf

Fig. 1 Example for an interpretation of the tropical metric dtr in Example 3.

labels {A,B,C,D} shown in Fig. 1. Note that leaves A and C in T1 and T2 are
switched. Thus, the pairwise distances from A and D in T1 and T2, as well as he
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pairwise distances from C and D in T1 and T2 are the largest and second largest
differences among all possible pairwise distances.

Let u be a dissimilarity may from T1 and v be a dissimilarity map from T2:

u = (2, 2, 2, 1.4, 1.4, 1)
v = (1.6, 2, 0.6, 2, 1.6, 2).

Then we have

u− v = (2− 1.6, 2− 2, 2− 0.6, 1.4− 2, 1.4− 1, 1− 2) = (0.4, 0, 1.4,−0.6, 0.4,−1).

Therefore
dtr(u, v) = (u− v)A,D − (u− v)C,D

which means the tropical metric measures the difference of divergence between A and
D and difference of divergence between C and D.

Combining the result of Proposition 3 with Equations (4) and (6) yields

hω0,ω1(x) =
dtr(x, ω0)

σ0
− dtr(x, ω1)

σ1
+ (e− 1) log

(
σ0

σ1

)
. (8)

In its most general form, the model parameters are (ω0, ω1, σ0, σ1) so the parameter
space is a subset of (Re/R1)2 × R2

+ with dimension 2e. Two instances of this general
model are particularly practically useful and interpretable. We call these the one-
species and two-species models and they will be our focus for tropical logistic regression
in the rest of the paper.

For the one-species model, it is assumed that ω0 = ω1 and σ0 ̸= σ1. If, without loss
of generality, σ1 > σ0, equation (8) becomes

hω(x) = λ (dtr(x, ω)− c) , (9)

where λ = (σ−1
0 −σ−1

1 ) and λc = log (σ1/σ0). Symbolically, the expression in equation
(9) can be considered to be a scaled tropical inner product, whose direct analogue in
classical logistic regression is the classical inner product hω(x) = ωTx. See Section C
in the supplement for more details. The classifier is C(x) = I(dtr(x, ω̂) > c), where ω̂ is
the inferred estimator of ω∗. Note that the classification threshold and the probability
contours (p(x)) are tropical circles, illustrated in Figure 2.

For the two-species-tree model, it is assumed that σ0 = σ1, and ω0 ̸= ω1. Equation
(8) reduces to

hω0,ω1
(x) = σ−1(dtr(x, ω0)− dtr(x, ω1)), (10)

with a classifier C(x) = I(dtr(x, ω̂0) > dtr(x, ω̂1)), where ω̂y is the inferred tree for class
y ∈ {0, 1}. The classification boundary is the tropical bisector which is extensively
studied in [20] between the estimators ω̂0 and ω̂1 and the probability contours are
tropical hyperbolae with ω̂0 and ω̂1 as foci, as shown in Figure 4(right).
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The one-species model is appropriate when the gene trees of both classes are con-
centrated around the same species tree ω with potentially different concentration rates.
When the gene trees of each class come from distributions centered at different species
trees the two-species model is preferred.

2.2 Model selection

In the previous subsection, we established the correspondence between the covari-
ate conditional distribution and the function h which defines the logistic regression
model. According to Proposition 2, the best regression model follows from the distri-
bution that fits the data. The family of distributions that best fits the training data of
a given class can indicate which regression model to use. The question that naturally
arises is how to assess which family of conditional distributions has the best fit.

One issue is that the random covariates are multivariate and so the Kol-
mogorov–Smirnov test can not be readily applied. Moreover, the four families
considered, namely the classical and tropical Laplace and Gaussian distributions, are
not nested. Nonetheless, it is observed that for all these families the distances of the
covariates from their centres are Gamma distributed. This is stated in Corollary 1
which is based on Proposition 4. Note that the distance metric corresponds to the
geometry of the covariates. However, the arguments used in the proof of Corollary 1
do not work for distributions defined on the space of ultrametric trees Um, because
these spaces are not translation invariant. For a similar reason, the corollary does not
apply to the BHV metric.

Proposition 4. Consider a function d : Rn → R with αd(x) = d(αx), for all α ≥ 0.
If X ∼ f with f(x) ∝ exp(−di(x)/(iσi)) being a valid probability density function, for
some i ∈ N, σ > 0. Then, di(X) ∼ iσiGamma(n/i).

Corollary 1. If X ∈ Re with X ∼ f ∝ exp (−di(x, ω∗)/(iσi)), where d is the
Euclidean metric, then di(X,ω∗) ∼ iσiGamma(e/i). If X ∈ Re/R1 with X ∼
f ∝ exp (−ditr(x, ω

∗)/(iσi)), where dtr is the tropical metric, then ditr(X,ω∗) ∼
iσiGamma((e− 1)/i).

The suitability of the tropical against the classical logistic regression is assessed
for the coalescent model and the Mr Bayes trees, by visually comparing the fits of the
theoretical Gamma distributions to Euclidean and tropical distances of the gene trees
to the species tree.

2.3 Consistency and Generalization Error

In this subsection, the consistency of the statistical estimators (in Theorem 2) and
of the tropical logistic regression as a learning algorithm (in Propositions 5 and 6)
are established. Finally, the generalization error (probability of misclassification for
unseen data) for the one-species model is derived and an upper bound is found for
the generalization error of the two-species model. In both cases the error bounds are
getting better as the estimation error ϵ shrinks to zero. It is worth mentioning that
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in the case of exact estimation, the generalization error of the one-species model can
be computed explicitly by equation (11). Moreover, there is a higher misclassification
rate from the more dispersed class (inequality (12)).

Theorem 2 (Consistency). The estimator (ω̂, σ̂) = (ω̂0, ω̂1, σ̂0, σ̂1) ∈ Ω2 × Σ2 of the
parameter (ω∗, σ∗) = (ω∗

0 , ω
∗
1 , σ

∗
0 , σ

∗
1) ∈ Ω2×Σ2 is defined as the maximizer of the logis-

tic likelihood function, where Ω ⊂ Re/R1 and Σ ⊂ R+ are compact sets. Moreover, it
is assumed that the covariate-response pairs (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are inde-
pendent and identically distributed with Xi ∈ Re/R1, dtr(X,ωY ) being integrable and
square-integrable and Yi ∼ Bernoulli(S(h(Xi, (ω

∗, σ∗)))). Then,

(ω̂, σ̂)
p→ (ω∗, σ∗) as n → ∞.

In other words, the model parameter estimator is consistent.

Proposition 5 (One-species generalization error). Consider the one-species model
where ω = ω0 = ω1 ∈ Re/R1 and without loss of generality σ0 < σ1. The classifier is
C(x) = I(hω̂(x) ≥ 0), where h is defined in equation (9) and ω̂ is the estimate for ω⋆.
Define the covariate-response joint random variable (X,Y ) with Z = σ−1

Y dtr(X,ω∗
Y )

drawn from the same distribution with cumulative density function F . Then,

P(C(X) = 1|Y = 0) ∈ [1− F (σ1 (α+ ϵ)), 1− F (σ1 (α− ϵ))] ,

P(C(X) = 0|Y = 1) ∈ [F (σ0 (α− ϵ)), F (σ0 (α+ ϵ))] , where

α =
log σ1

σ0

σ1 − σ0
, and ϵ = (e− 1)

dtr(ω̂, ω
∗)

σ1σ0
.

The generalization error defined as P(C(X) ̸= Y ) lies in the average of the two inter-
vals above. In particular, note that if ω̂ = ω∗, then ϵ = 0 and the intervals shrink
to a single point, so the misclassification probabilities and generalization error can be
computed explicitly.

P(C(X) ̸= Y ) =
1

2
(1− F (σ1α) + F (σ0α)) (11)

Moreover, if ω̂ = ω∗ and Z ∼ Gamma(e− 1, 1), then

P(C(X) = 1|Y = 0) < P(C(X) = 0|Y = 1). (12)

Proposition 6 (Two-species generalization error). Consider the random vector X ∈
Re/R1 with response Y ∈ {0, 1} and the random variable Z = dtr(X,ω∗

Y ). Assuming
that the probability density function is fX(x) ∝ fZ(dtr(x, ω

∗
Y )), the generalization error

satisfies the following upper bound

P (C(X) ̸= Y ) ≤ 1

2
FC
Z (∆ϵ) + h(ϵ), (13)
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where ϵ = dtr(ω̂1, ω
∗
1)+dtr(ω̂0, ω

∗
0), 2∆ϵ = (dtr(ω

∗
1 , ω

∗
0)− ϵ), FC

Z is the complementary
cumulative distribution of Z, and h(ϵ) is an increasing function of ϵ with 2h(ϵ) ≤
FC
Z (∆ϵ) and h(0) = 0 assuming that P(dtr(X,ω∗

1)) = dtr(X,ω∗
−1)) = 0. Moreover,

under the conditions of Theorem 2, our proposed learning algorithm is consistent.

Observe that the upper bound is a strictly increasing function of ϵ.

Example 4. The complementary cumulative distribution of Gamma(n, σ) is FC(x) =
Γ(n, x/σ)/Γ(n, 0), where Γ is the upper incomplete gamma function and Γ(n, 0) = Γ(n)
is the regular Gamma function. Therefore, the tropical distribution given in equation
(6) yields the following upper bound for the generalization error

Γ
(
e− 1,

dtr(ω
∗
0 ,ω

∗
1 )

2σ

)
2Γ(e− 1)

, (14)

under the assumptions of Proposition 6 and assuming that the estimators coincide
with the theoretical parameters. This assumption is reasonable for large sample sizes
and it follows from Theorem 2.

In subsequent sections, these theoretical results will guide us in implementing our
model. Bounds on the generalization error from Propositions 5 and 6 are computed
and the suitability of Euclidean and tropical distributions, and as a result of classical
and tropical logistic regards, is assessed using the distance distribution of Proposition
4.

3 Optimization

As in the classical logistic regression, the parameter vectors (ω̂, σ̂) maximising the
log-likelihood (3), are chosen as statistical estimators. Identifying these requires the
implementation of a continuous optimization routine. While root-finding algorithms
typically work well for identifying maximum likelihood estimators in the classical
logistic regression where the log-likelihood is concave, they are unsuitable here. The
gradients of the log-likelihood under the proposed tropical logistic models are only
piecewise continuous, with the number of discontinuities increasing along with the
sample size. Furthermore, even if a parameter is found, it may merely be a local
optimum. In light of this, the tropical Fermat-Weber problem of [21] is revisited.

3.1 Fermat-Weber Point

A Fermat-Weber point or geometric mean ω̃n of the sample set (X1, . . . , Xn) is a
point that minimizes the sum of distances from to sample points, i.e.

ω̃n ∈ argmin
ω

n∑
i=1

dtr(Xi, ω). (15)
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This point is rarely unique for finite n, indeed there will often be an infinite set
of Fermat-Weber points [21]. However, the proposition below gives conditions for
asymptotic convergence.

Proposition 7. Let Xi
iid∼ f , where where f is a distribution that is symmetric around

its center ω∗ ∈ Re/R1 i.e. f(ω∗ + δ) = f(ω∗ − δ) for all δ ∈ Re/R1. Let ω̃n be any

Fermat-Weber point as defined in equation (15). Then, ω̃n
p→ ω∗ as n → ∞.

The significance of Proposition 7 is twofold. It proves that the Fermat-Weber
sets of points sampled from symmetric distributions tend to a unique point. This
is a novel result and ensures that for sufficiently large sample sizes the topology of
any Fermat-Weber point is fixed. Additionally, using Theorem 2 and Proposition 7,

ω̂n − ω̃n
p→ 0 as n → ∞. Furthermore, empirical evidence in Figure 5, see the fol-

lowing section, suggests that dtr(ω̂n, ω
∗) = Op(1/

√
n) and dtr(ω̃n, ω

∗) = Op(1/
√
n).

These statements are left as conjectures and proofs of them are beyond the scope of
this paper. Assuming they hold and applying triangular inequality, it follows that
dtr(ω̂n, ω̃n) = Op(1/

√
n). As a result, for a sufficiently large sample size we may use

the Fermat-Weber point as an approximation for the MLE vector. Indeed, there are
benefits in doing so.

Instead of having a single optimization problem with 2e−1 variables, three simpler
problems are considered; finding the Fermat-Weber point of each of the two classes,
which has e − 1 degrees of freedom and then finding the optimal σ which is a one
dimensional root finding problem. The algorithms of our implementation for both
model can be found in Supplement D.

There is also another another benefit of using Fermat-Weber points. Proposition
8 provides a sufficient optimality condition that the MLE lacks, since a vanishing
gradient in the log likelihood function merely shows that there is a local optimum.

Proposition 8. Let X1, . . . , Xn ∈ Re/R1, ω ∈ Re/R1 and define the function

f(ω) =

n∑
i=1

dtr(Xi, ω).

i. The gradient vector of f is defined at ω if and only if the vectors ω − Xi have
unique maximum and minimum components for all i ∈ [n].

ii. If the gradient of f at ω is well-defined and zero, then ω is a Fermat-Weber point.
In [21], Fermat-Weber points are computed by means of linear programming, which

is computationally expensive. Employing a gradient-based method is much faster, but
there is no guarantee of convergence. Nevertheless, if the gradient, which is an integer
vector, vanishes, then it is guaranteed, as above, that the algorithm has reached a
Fermat-Weber point. This tends to happen rather frequently, but not in all cases
examined in Section 4.

13



Remark 3. Our choice of Fermat-Weber points to represent centers is not the only
practical option, however it is an especially desirable choice due to the interpretability
of its resulting solutions.

Recently, Comǎneci and Joswig studied tropical Fermat-Weber points obtained
using the asymmetric tropical distance [22]. They found that if all Xi are ultrametric,
then the resulting tropical Fermat-Weber points are also ultrametric, all with the same
tree topology. On the other hand, Lin et al. [4] show that a tropical Fermat-Weber point
defined with dtr of a sample taken from the space of ultrametrics could fall outside of
the ultrametric space.

Despite this, the major drawback of using the asymmetric tropical distance, is that
it would result in losing the phylogenetic interpretation of the distance or dissimilarity
between two trees held by the tropical metric dtr - see Remark 2.

4 Results

In this section, tropical logistic regression is applied in three different scenarios.
The first and simplest considers datapoints generated from the tropical Laplace distri-
bution. Secondly, gene trees sampled from a coalescent model are classified based on
the species tree they have been generated from, and finally it is applied as an MCMC
convergence criterion for the phylogenetic tree construction, using output from the
Mr Bayes software. The models’ performance in terms of misclassification rates and
AUCs on these datasets is examined.

4.1 Toy Example

In this example, a set of data points is generated from the tropical normal
distribution as defined in Equation (6) using rejection sampling.

The data points are defined in the tropical projective torus Re/R1, which is iso-
morphic to Re−1. To map x ∈ Re/R1 to Re−1, simply set the last component of x to 0,
or in other words x 7→ (x1 −xe, x2 −xe, . . . , xe−1 −xe). For illustration purposes, it is
desirable to plot points in R2, so we use e = 3 which corresponds to phylogenetic trees
with 3 leaves. Both the one-species model and the two-species model are examined.

In the case of the former, ω = ω0 = ω1 and σ0 ̸= σ1. The classification bound-
ary in this case is a tropical circle. If σ0 < σ1, the algorithm classifies points close to
the inferred centre to class 0 and those that are more dispersed away from the cen-
tre as class 1. For simplicity, the centre is set to be the origin ω = (0, 0, 0) and no
inference is performed. In Figure 2 a scatterplot of of the two classes is shown, where
misclassified points are highlighted. As anticipated from Proposition 5 there are more
misclassified points from the more dispersed class (class 1). Out of 100 points for each
class, there are 7 and 21 misclassified points from class 0 and 1 respectively, while the
theoretical probabilities calculated from equation (11) of Proposition 5 are 9% and
19% respectively.

Varying the deviation ratio σ1/σ0 in the data generation process allows exploration
of its effect on the generalization error in the one-species model. The closer this ratio
is to unity, the higher the generalization error. For σ0 = σ1 the classes are indistin-
guishable and hence any model is as good as a random guess i.e. the generalization

14
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Fig. 2 Scatterplot of 200 points - 100 dots for class 0 and 100 Xs for class 1, black for misclassified
and grey otherwise - imposed upon a contour plot of the probability of inclusion in class 0, where the
black contour is the classification threshold. The deviation parameters used in data generation were
σ0 = 1, σ1 = 5 and the centre of the distribution (white-filled point) is the origin. The centres of the
two distributions are ω0 = ω1.

error is 1/2. The estimate of the generalization error for every value of that ratio is the
proportion of misclassified points in both classes. Assuming an inferred ω that differs
from the true parameter, Fig. 3(left) verifies the bounds of Proposition 5.

For the two-species model, tropical logistic regression is directly compared to
classical logistic regression. Data is generated using different centres ω0 = (0, 0, 0),
ω1 = (3, 2, 0) but the same σ = 0.5. The classifier is C(x) = I(h(x) > 0) for both
methods, using h as defined in equations (5) and (10) for the classical and tropical
logistic regression respectively. Fig. 4 compares contours and classification thresholds
of the classical (left) and tropical (right) logistic regression by overlaying them on top
of the same data. Out of 100 + 100 points there are 5 + 4 and 4 + 3 misclassifications
in classical and tropical logistic regression respectively. Fig. 3(right) visualizes the
misclassification rates of the two logistic regression methods for different values of
dispersion σ, showing the tropical logistic regression to have consistently lower gen-
eralization error than the classical, even in this simple toy problem.

Finally, we investigate the convergence rate of the Fermat-Weber points and of
the MLEs from the two-species model as the sample size N increases. Fixing ω∗

0 =
(0, 0, 0) and ω∗

1 = (3, 2, 0) as before, the Fermat-Weber point numerical solver and the

log-likelihood optimization solver are employed to find (ω̃0)N and ((ω̂0)N , (ω̂1)N , λ̂N )
respectively. From this, the error is computed for the two methods, which is defined
as dN = dtr((ω0)N , ω∗

0) for (ω0)N = (ω̃0)N and (ω̂0)N respectively. For each N , we
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Fig. 3 (left) Generalization error for 9 different deviation ratios. The estimator ω̂ = (0.3, 0, 3) differs
from the true parameter ω = (0, 0). The upper and lower bounds of Proposition 5 are plotted in
dashed lines and the generalization error for the correct estimator ω̂ = ω∗ plotted in solid line. The
dots represent the proportion of misclassified points from a set of 2000 points in each experiment, 1000
points for each class. (right) Generalization errors for 7 different dispersion parameters with black
markers for the two-species tropical logistic regression and white markers for the classical logistic
regression. The upper bound (14) of Proposition 6 is plotted in dashed line.
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Fig. 4 Scatterplot of points - dots for class 0 and X for class 1, black for misclassified according to
(left) classical logistic regression or (right) tropical logistic regression, and grey otherwise -
alongside a contour plot of the probabilities, where the black contour is the classification threshold.
The centres, drawn as big white dots, are ω0 = (0, 0, 0), ω1 = (3, 2, 0) and σ = 0.5.

repeat this procedure 100 times to get an estimate of the mean error rate rN = E (dN ).
Figure 5 shows that for both methods, rN

√
N → C as N → ∞, with CFW < CMLE.

Since E(
√
NdN ) → C, it follows that

√
NdN = Op(1) as N → ∞. This supports the

assumption of Section 3 that Fermat-Weber points can be used in lieu of MLEs, since
they converge to each other in probability at rate 1/

√
N . Interestingly, the MLEs

produce higher errors than FW points. This may be due to an imperfection of the
MLE solver, which may be stuck at a local optimum.
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Fig. 5 Expected asymptotic error for FW points (ω̃0)N (in black) and MLE points (ω̂0)N (in
grey) for different values of N . Error is defined as the tropical distance from the true centre ω∗

0
i.e. dtr(ωN , ω∗

0). The dashed lines are y ∝ N−0.5, so this figure illustrates that dtr((ω0)N , ω∗
0) =

Op(1/
√
N) as N → ∞.

4.2 Coalescent Model

The data that have been used in our simulations were generated under the mul-
tispecies coalescent model, using the python library dendropy [23]. The classification
method we propose is the two-species model because two distinct species tree have
been used to generate gene tree data for each class.

Two distinct species trees are used, which were randomly generated under a Yule
model. Then, using dendropy, 1000 gene trees are randomly generated for each of
the two species. The trees have 10 leaves and so the number of the model variables
is
(
10
2

)
= 45. They are labelled according to the species tree they are generated from.

The tree generation is under the coalescent model for specific model parameters.
Since the species trees are known, we conduct a comparative analysis between

classical, tropical and a BHV-based ([14]) logistic regression. In the supplement, we
show an approximation analog of our model to the BHV metric. The comparative
analysis includes the distribution fitting of distances and the misclassification rates
for different metrics.

In Fig. 6, the distribution of the radius d(X,ω) as given by Proposition 4, is fitted
to the histograms of the Euclidean and tropical distances of gene trees to their corre-
sponding species tree, along with the corresponding pp-plots on the right. According
to Proposition 4, for both the classical and tropical Laplace distributed covariates,
d(X,ω∗) ∼ σGamma(n), shown in solid lines in Fig. 6, where n = e = 45 and
n = e − 1 = 44 for the classical and tropical case respectively. Similarly, for nor-
mally distributed covariates, d(X,ω∗) ∼ σ

√
χ2
n, shown in dashed lines. It is clear that

Laplacian distributions produce better fits in both geometries and that the tropical
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Fig. 6 (Left) Histograms of the distances of 1000 gene trees from the species trees that generated
them under the coalescent model with R = 0.7. Coral and blue corresponds to tropical and euclidean
geometries respectively. The solid and dashed lines are fitted distributions σGamma(n) and σ

√
χ2
n

respectively; σ is chosen to be the MLE, derived in the supplement. Euclidean metric has worse fit
than the tropical metric. This can also be observed by the corresponding pp-plots (right).

Laplacian fits the data best. As discussed in Section 2.2, the same analysis can not be
applied to the BHV metric, because the condition of Proposition 4 does not hold.

Species depth SD is the time since the speciation event between the species and
effective population size N quantifies genetic variation in the species. Datasets have
been generated for a range of values R := SD/N by varying species depth. For low
values of R, speciation happens very recently and so the gene trees look very much
alike. Hence, classification is hard for datasets with low values of R and vice versa,
because the gene deviation σR is a decreasing function of R. We expect classification
to improve in line with R. Fig. H3 and Fig. H2 in Supplement H confirm that, by
showing that as R increases the receiver operating characteristic (ROC) curves are
improving and the Robinson-Foulds and tropical distances of inferred (Fermat-Weber
point) trees are decreasing. In addition, Fig. 7 shows that asR increases, AUCs increase
(left) and misclassification rates decrease (right). It also shows that tropical logistic
regression produces higher AUCs than classical logistic regression and other out-of-
the-box ML classifiers such as random forest classifier, neural networks with a single
sigmoid output layer and support vector machines. Our model also produces lower
misclassification rates than both the BHV and classical logistic regression. Finally,
note that the generalization error upper bound as given in equation (14) is satisfied
but it not very tight (dashed line in Fig. 7).
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Fig. 7 (left) Average AUCs against R. Five classification models which we considered are the tropical
two species-tree model (TLR), random forest classifier (RFC), support vector machines (SVM), neural
networks (NN) and classical logistic regression (CLR). We used default set up for TLR, SVM, NN
and CLR implemented by sklearn. (right) the x-axis represents the ratio R and the y-axis represents
misclassification rates. Black circles represent the tropical logistic regression, white circles represent
the classical logistic regression, grey points represent the logistic regression with BHV metric, and
the dashed line represents the theoretical generalization error shown in Proposition 6.

4.3 Convergence of Mr Bayes

Mr Bayes ([24]) is a widely used software for Bayesian inference of phylogeny
using MCMC to sample the target posterior distribution. An important feature of the
software is the diagnostic metrics indicating whether a chain has converged to the
equilibrium distribution. This is calculated at regular, specified intervals, set by the
variable diagnfreq, using the average standard deviation of split frequencies (ASDSF
introduced by [25]) between two independently run chains. The more similar the split
frequencies between the two chains are, the lower the ASDSF, and the more likely it
is that both chains have reached the equilibrium distribution.
Our classification model provides an alternative convergence criterion for MCMC con-
vergence. Consider two independently run chains; the sampled trees of the two chains
correspond to two classes and the AUC value is a measure of how distinguishable the
two chains are. High values of AUC are associated with easily distinguishable chains,
implying that the chains have not converged to the equilibrium distribution. At every
iteration that is a multiple of diagnfreq, the ASDSF metric is calculated and the
AUC of the two chains is found by applying tropical logistic regression to the trun-
cated chains that only keep the last 30% of the trees in each chain.
For our comparison study, the data used were the gene sequences from the
primates.nex file. This dataset comes with the Mr Bayes software and it is used as
an example in [26]. Figure 8 shows the two metrics at different iterations of the two
independent chains ran on this dataset. According to the Mr Bayes manual, the con-
vergence threshold for their metric is 10−2. This is achieved at the 800-th iteration,
when our method produces an AUC of 97%, which indicates that the chains may have
not converged yet, contrary to the suggestion of Mr Bayes. A likely explanation for this
discrepancy is the dependence of ASDSF on tree topologies instead of branch lengths.
The frequencies of the tree topologies may have converged to those of the equilibrium
distribution, even if the branch lengths have not. Eventually, the AUC values drop
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rapidly when iterations exceed 2 · 103, while the ASDSF metric is reduced at a much
slower rate. In this second phase, the branch lengths are calibrated, while the topology
frequencies do not change a lot. Finally, for iterations that exceed 105, neither metric
can reject convergence, with ASDSF being 10 lower than the threshold and the AUC
values finally dropping below 70%, which is a typical threshold for poor classification.
When our classification method is compared to other classifiers, it marginally outper-
forms classical logistic regression and neural networks with a single sigmoid output
but underperforms support vector machines and random forest classifiers. Despite
their simplicity, logistic regression models cannot capture the complexity of the chain
classification problem. More advanced statistical methods that conform to tropical
geometry (such as tropical support vector machines [27]) could be applied instead at
the cost of simplicity and interpretability.
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Fig. 8 (Left) Average ASDSF (in red) and AUC (in blue) values plotted against the number of
iterations of the MCMC chains. The coloured dashed lines correspond to the first and third quartile.
The grey dashed line indicates the Mr Bayes threshold for ASDSF and our provisional AUC threshold
of 80%. (Right) ASDSF and AUC values plotted against each other, with the iterations coloured
according to the colourbar and the dashed lines corresponding to the thresholds for each metric.

5 Discussion

In this paper we developed a tropical analog of the classical logistic regression
model and considered two special cases; the one species-tree model and two species-
tree model. In our empirical work the two-species model was most effective, but we
anticipate both are potentially impactful tools for phylogenomic analysis. The one-
species model’s principal benefit is having the same number of parameters as the
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Fig. 9 Average AUC values plotted against the number of MCMC iterations for the 5 supervised
learning methods considered.

number of predictors, unlike the two-species model which has almost twice as many.
Therefore, the one-species model more readily fits the standard definition of a gener-
alized linear model and could generalize to a stack of GLMs to produce a “tropical”
neural network, which is investigated in [28].

The two-species model implemented on data generated under the coalescent model
outperformed classical and BHV logistic regression models in terms of misclassification
rates, AUCs and fitness of the distribution of distances to their centre. It was also
observed that Laplacian distributions were better fitting than Gaussians, for both
geometries. Empirically selecting tropical distributions over Euclidean distributions
suffices for the scope of this paper, but further theoretical justification of the suitability
of such distributions is needed. Moreover, further research on the generalization error
for the two-species model would provide tighter bounds.

Finally, the AUC metric of our model is proposed as an alternative to the ASDSF
metric for MCMC convergence checking. Our metric is more conservative and robust,
taking branch lengths into account. Nonetheless, computing the ASDSF is less compu-
tationally intensive than running our method. There seems to be a tradeoff between the
reliability of the convergence criterion tool and computational speed. Further research
can shed light on the types of datasets where the ASDSF metric becomes unreliable.
Then, the two metrics could complement each other, with our methods applied only
when there is a good indication that ASDSF is unreliable.
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Appendix A Proofs

Proof of Lemma 1. A simple application of the Bayes rule for continuous random
variables yields

p(x) = P(Y = 1|X = x) =
f1(x)P(Y = 1)

f0(x)P(Y = 0) + f1(x)P(Y = 1)

=
1

1 + f1(x)(1−r)
f0(x)r

= S(h(x)).

Proof of Proposition 2. The expected log-likelihood is expressed as

E(l) = E (Y log(p(X)) + (1− Y ) log(1− p(X)))

= P(Y = 1)

∫
Rn

f1(x) log(p(x)) dx

+ P(Y = 0)

∫
Rn

f0(x) log(1− p(x)) dx

=

∫
Rn

L(x, p(x)) dx,

where L(x, p) = rf1(x) log(p) + (1 − r)f0(x) log(1 − p) is treated as the Lagrangian.
The Euler-Lagrange equation can be generalized to a several variables (in our case
there are n variables). Since there are no derivatives of p, the stationary functional
satisfies ∂pL = 0, which yields the desired result.

Proof of Proposition 4. The pdf of X is

fω(x) =
1

Cα
exp

(
−αi d

i(x)

i

)
, x ∈ Rn
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where α = σ−1 is the precision. Using the variable transformation y = αx with
Jacobian 1/αn and remembering that αd(x) = d(y),

Cα =

∫
Rn

exp

(
−αi d

i(x)

i

)
dx =

∫
Rn

exp

(
−di(x)

i

)
dy

αn
=

C1

αn
.

The moment generating function of di(X) is

Mdi(X) =

∫
Rn

exp
(
zdi(x)

) exp(−αi d
i(x)
i

)
Cα

dx

=
C i
√

αi/i−z

Cα
=

1(
i
√
1− iσiz

)n ,
which coincides with the MGF of Γ(n/i, iσi).

Proof of Proposition 3. From the proof of Proposition 4, it was established that
the normalizing constant is CσY

= C1σ
e−1
Y for the tropical projective torus, whose

dimension is n = e− 1.
The volume of a unit tropical sphere in the tropical projective torus Re/R1 is equal

to e. If the tropical radius is r, then the volume is ere−1 and hence the surface area is
e(e− 1)re−2. Therefore,

C1 =

∫
Re/R1

exp (−dtr(x,0))dx

=

∫ ∞

0

e(e− 1)re−2 exp (−r) dr

= e(e− 1)Γ(e− 1) = e!

It follows that the normalizing constant is CσY
= e!σe−1

Y .

Proof of Corollary 1. Suppose thatX comes from the Laplace or the Normal distri-
bution, whose pdf is proportional to exp (−di(x, ω∗)/(iσi)) for i = 1 and 2 respectively,
for all x ∈ Rn where d is the Euclidean metric. Then, X−ω∗ has a distribution propor-
tional to exp (−di(x,0)/(iσi)). Clearly, αd(x,0) = d(αx,0) and so from Proposition
4, it follows that di(X − ω∗,0) = di(X,ω∗) ∼ iσiGamma(n/i). Note that for the nor-
mal distribution (i = 2), di(X,ω∗) ∼ σ2χn/2. The same argument applies for tropical
Laplace and tropical Normal distributions, where the metric is tropical (d = dtr), the
distribution is defined on Re/R1 ∼= Re−1 and the dimension is hence n = e− 1.

Prerequisites for proof of Theorem 2
Theorem 3. (Theorem 4.2.1 in [29]) Let (Qn(θ)) be a sequence of random functions
on a compact set Θ ⊂ Rm such that for a continuous real function Q(θ) on Θ,

sup
θ∈Θ

|Qn(θ)−Q(θ)| p→ 0 as n → ∞.
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Let θn be any random vector in Θ satisfying Qn(θn) = infθinΘ Qn(θ) and let θ0 be a

unique point in Θ such that Q(θ0) = infθ∈Θ Q(θ). Then θn
p→ θ0.

Theorem 4. (Lemma 2.4 in [30]) If the data z1, . . . , zn are independent and iden-
tically distributed, the parameter space Θ is compact, f(zi, θ) is continuous at each
θ ∈ Θ almost surely and there is r(z) ≥ |f(z, θ)| for all θ ∈ Θ and E(r(z)) < ∞, then
E(f(z, θ)) is continuous and

sup
θ∈Θ

∣∣∣∣∣n−1
n∑

i=1

f(zi, θ)− E(f(z, θ))

∣∣∣∣∣ p→ 0.

Lemma 1. Consider two points x, y ∈ Re/R1. There exists η > 0 such that

dtr(x+ ϵEi, y) = dtr(x, y) + ϵϕi(x− y), ∀ϵ ∈ [0, η], ∀i ∈ [e], where

ϕi(v) =


1, if vi ≥ vj ∀j ∈ [e]

−1, vi < vj ∀j ∈ [e]\{i}
0, otherwise

, (A1)

and Ei ∈ Re/R1 is a vector with 1 in the i-th coordinate and 0 elsewhere.

Proof. By setting v := x− y, M := maxj∈[e]{vj} and m := minj∈[e]{vj},

dtr(x, y) = M −m

dtr(x+ ϵEi, y) = max
j∈[e]

{vj + ϵδij} − min
j∈[e]

{vj + ϵδij},

where ϵ ≥ 0, and δij = I(i = j) with I being the indicator function. Three separate
cases are considered.
i. If vi = M , then

max
j∈[e]

{vj + ϵδij} = vi + ϵ = M + ϵ, (A2)

min
j∈[e]

{vj + ϵδij} = m, (A3)

and so dtr(x+ ϵEi, y) = dtr(x, y) + ϵ. Note that equations (A2) and (A3) hold for
all ϵ > 0.

ii. If vi = m and vi < vk for all k ̸= i, i.e. if vi is the unique minimum component
of vector v, then

max
j∈[e]

{vj + ϵδij} = M, for all ϵ ≤ M −m (A4)

min
j∈[e]

{vj + ϵδij} = vi + ϵ = m+ ϵ, for all ϵ ≤ m′ −m, (A5)

where m′ := minj:vj>m{vj} > m is well-defined unless vj = m for all j ∈ [e] i.e. for
v = m · (1, . . . , 1) = 0, which falls under the first case. Clearly, M ≥ m′, so for all
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ϵ ∈ [0,m′ −m] equations (A4) and (A5) are satisfied and thence dtr(x+ ϵEi, y) =
dtr(x, y)− ϵ.

iii. Otherwise, if none of the first two cases hold then ∃k ̸= i such that m = vk ≤
vi < M and so

min
j∈[e]

{vj + ϵδij} = vk = m, for all ϵ > 0 (A6)

max
j∈[e]

{vj + ϵδij} = M, if ϵ ≤ M − vi (A7)

Define M ′ := maxj:vj<M{vj} < M which is well-defined for all v ̸= 0 (first case).
Since vi < M , it follows by definition that vi ≤ M ′ and so M − vi ≥ M −M ′ > 0.
As a result, for all ϵ ∈ [0,M − M ′], equations (A6) and (A7) are satisfied and
thence dtr(x+ ϵEi, y) = dtr(x, y).

If v = 0, set η = +∞. Otherwise, for v ̸= 0, with m′,M ′ being well-defined, set

η = min(m′ −m,M −M ′) > 0.

In all three cases and for all ϵ ∈ [0, η] the desired result is satisfied.

Lemma 2. Consider the function q : Re/R1 → R,

q(x) = λαdtr(x, α)− λβdtr(x, β)− λγdtr(x, γ) + λδdtr(x, δ)

+ log

(
λβ

λα

)
− log

(
λδ

λγ

)
,

where α, β, γ, δ ∈ Re/R1, λα, λβ , λγ , λδ > 0 and (α, λα) ̸= (β, λβ). A set X contains
neighbourhoods of α, β, γ, δ. If q(x) = 0, ∀x ∈ X then (α, λα) = (γ, λγ) and (β, λβ) =
(δ, λδ).

Proof. According Lemma 1, there exists η1 > 0 such that for all ϵ ∈ [0, η1]

dtr(x+ ϵEi, y) = dtr(x, y) + ϵϕi(x− y). (A8)

Moreover, dtr(x − ϵEi, y) = dtr(y, x − ϵEi) = dtr(y + ϵEi, x) and so using Lemma 1
again (but with x and y swapped), there exists η2 > 0 such that for all ϵ ∈ [0, η2]

dtr(x− ϵEi, y) = dtr(x, y) + ϵϕi(y − x), (A9)

for all ϵ ∈ [0, ϵ0(y − x)]. For all ϵ ∈ [0, η] where η := min(η1, η2), equations (A8), (A9)
are satisfied and so

q(x+ ϵEi) = q(x)+

ϵ (λαϕi(x− α)− λβϕi(x− β)− λγϕi(x− γ) + λδϕi(x− δ)) ,

q(x− ϵEi) = q(x)+

ϵ (λαϕi(α− x)− λβϕi(β − x)− λγϕi(γ − x) + λδϕi(δ − x)) .
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Consequently, for all ϵ ∈ [0, η],

q(x+ ϵEi) + q(x− ϵEi)− q(x) = 0 (A10)

= ϵ (λαsi(x− α)− λβsi(x− β)− λγsi(x− γ) + λδsi(x− δ)) ,

where

si(v) := ϕi(v) + ϕi(−v) = (A11)
2, if v = 0

1, if v ̸= 0 and vi is the non-unique maximizer or minimizer of v

0, otherwise

By summing equation (A10) over i ∈ [e] and defining s(v) =
∑e

i=1 si(v),

λαs(x− α)− λβs(x− β)− λγs(x− γ) + λδs(x− δ) = 0, (A12)

∀x ∈ X .
Here we try to prove by contradiction that S := {α, δ} ∩ {γ, β} is not empty.

Suppose that S := {α, δ} ∩ {γ, β} = ∅. Then, setting x = α in equation (A12) and
noting that s(0) = 2e and 0 ≤ s(v) ≤ e for v ̸= 0, we get 2eλα ≤ eλβ + eλγ ,
since β, γ ̸= α. Applying the same argument to x = β, γ, δ, the following system of
inequalities holds

2λα ≤ λβ + λγ

2λβ ≤ λα + λδ

2λγ ≤ λα + λδ

2λδ ≤ λβ + λγ .

It follows that λα = λβ = λγ = λδ. Then, rewrite equation (A12) as

s(x− α)− s(x− β)− s(x− γ) + s(x− δ) = 0, (A13)

Note now equation (A13) can only hold at x = α iff s(α − γ) = s(α − β) = e
and s(α − δ) = 0. But s(v) = e if and only if all the components of v are non-
unique minimizers and maximizers or {vi : i ∈ [e]} = {ζ, κ}, where ζ < κ and
|{i : vi = ζ}| = nζ , |{i : vi = κ}| = nκ, such that nζ + nκ = e and nζ , nκ ≥ 2.

Consider z = v + ϵEi, where vi = ζ and 0 < ϵ < κ − ζ. The minimum and
maximum components of z are ζ and κ, and {zi : i ∈ [e]} = {ζ, ζ + ϵ, κ} with
|{i : zi = ζ}| = nζ − 1, |{i : zi = κ}| = nκ. It follows that,

s(z) = |{i : zi = ζ}|+ |{i : zi = κ}| = e− 1.
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Now consider z = v + ϵEi where vi = κ. The maximum is no longer unique, but
the nζ minima are still unique. Therefore, s(z) = nζ ≥ 2. Combining the two cases, it
is concluded that s(v + ϵEi) ≥ 2 for all i ∈ [e].

Set x = α+ ϵEi, where αi − βi = mink{αk − βk}. Then,

s(x− α) = s(ϵEi) = e− 1, (A14)

since there is a unique maximizer, but all the other e− 1 components are 0, which is
the minimum. Furthermore,

s(x− β) = s(α− β + ϵEi) = e− 1, (A15)

since for v = α − β with s(v) = e, it corresponds to the first case examined. It is
assumed that ϵ < κ− ζ = dtr(α− β). Moreover,

s(x− γ) = s(α− γ + ϵEi) ≥ 2, (A16)

for v = α−γ with s(v) = e. Finally, since s(α−δ) = 0 and so the components of α−δ
have a unique minimum and a unique maximum, there exists a neighborhood around
x = α such that x− α still has that property, i.e.

s(x− δ) = s(α− δ + ϵEi) = 0 (A17)

for all ϵ < η for some η > 0.
From equations (A14) – (A17), it is concluded that

s(x− α)− s(x− β)− s(x− γ) + s(x− δ) ≤ −2, (A18)

which contradicts equation (A13). Therefore S = {α, δ} ∩ {γ, β} ≠ ∅.
Define another set T = {α, β, γ, δ}. Since S ≠ ∅, |T | ≤ 3. Suppose that |T | = 3

with T = {τ, υ, ϕ}. Then, without loss of generality equation (A12) becomes

λτs(x− τ) + λυs(x− υ)− λϕs(x− ϕ) = 0 (A19)

Similarly to before, setting x = τ, υ, ϕ yields,

2λτ ≤ λϕ

2λυ ≤ λϕ

2λϕ ≤ λτ + λυ,

which is contradictory since λτ + λυ > 0. Therefore, |T | ≤ 2. There are 4 cases to
consider
i. α = δ ̸= β = γ, but then S = ∅,
ii. α = β ̸= γ = δ, but then equation (A12) can only be satisfied x = α, γ if λα = λβ

and λγ = λδ which violates the statement that (α, λα) ̸= (β, λβ),
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iii. α = γ ̸= β = δ and from equation (A12) at x = α, γ it follows that λα = λγ , λβ =
λδ and hence the desired result,

iv. α = β = γ = δ, in which case

q(x) = (λα − λβ − λγ + λδ)dtr(x, α) + log

(
λβ

λα

)
− log

(
λδ

λγ

)
,

which can only be uniformly 0 at X if and only if λα+λδ = λβ+λγ . Observe that
(λα, λδ) and (λβ , λγ) are the two roots of the same quadratic z2−(λα+λδ)z+λαλδ

and noting that in this case λα ̸= λβ , it follows that λα = λγ and λβ = λδ.

Lemma 3. Consider a compact set Σ ⊆ R+ = (0,∞). Then the set Λ = {σ−1 : σ ∈
Σ} ∈ R+ is also compact.

Proof. In metric spaces, a set is compact iff it is sequentially compact. Therefore, for
every sequence σn ∈ Σ, σn → σ ∈ Σ. Every sequence in Λ can be expressed as 1/σn,
which tends to 1/σ ∈ Λ. Therefore, Λ is sequentially compact and hence compact.

Proof of Theorem 2. This proof has been written for precision estimators λ = 1/σ
instead of deviation estimators. For the rest of the proof consider λy = σ−1

y for y = 0, 1
and define the set

Λ = {σ−1 : σ ∈ Σ} ∈ R+.

According to Lemma 3, Λ is also compact.
Define the functions f and h as

f : Re/R1× {0, 1} × Ω2 × Λ2 → R,
f((x, y), (ω, λ)) = y logS(h(x, (ω, λ))) + (1− y) logS(−h(x, (ω, λ))),

h : Re/R1× Ω2 × Λ2 → R,

h(x, (ω, λ)) = λ0dtr(x, ω0)− λ1dtr(x, ω1) + (e− 1) log
λ1

λ0
,

where S is the logistic function. Also denote the empirical (Qn) and expected (Q)
log-likelihood functions as

Qn(ω, λ) =
1

n

n∑
i=1

f((Xi, Yi), (ω, λ)) with

Qn(ω̂n, λ̂n) = sup
ω∈Ω2,λ∈Λ2

Qn(ω), and

Q(ω, λ) = E(X,Y ) (f((X,Y ), (ω, λ)))

= EX

(
S(h(X, (ω∗, λ∗))) log(S(h(X, (ω, λ))))

+ S(−h(X, (ω∗, λ∗))) log(S(−h(X, (ω, λ))))

)
.
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The last equation follows from conditioning on

Y ∼ Bernoulli(S(h(X, (ω∗, λ∗)))).

Before we move on, we need to prove that f((X,Y ), (ω, λ)) is integrable so that Q is
well-defined. Without loss of generality assume that λ1 ≥ λ0. It suffices to prove that
E(f((X,Y ), (ω, λ)), Y = y) is integrable for both y = 0, 1. Observe that

h(X, (ω, λ)) ≤ (λ0 − λ1)dtr(X,ω0) + λ1dtr(ω0, ω1) + const

≤ λ1dtr(ω0, ω1) + const.

Since h(X, (ω, λ)) is bounded above, f((X,Y ), (ω, λ)) is also bounded below on Y = 0
and is hence integral on Y = 0. Also, observe that

h(X, (ω, λ)) ≥ (λ0 − λ1)dtr(X,ω1)− λ0dtr(ω0, ω1) + const

and noting that log(S(x)) > x− 1 for all x < 0

log(S(h(X, (ω, λ)))) ≥ h(X, (ω, λ))− 1 ≥ (λ0 − λ1)dtr(X,ω1) + const.

Since dtr(X,ω1) is integrable on Y = 1, the LHS is integrable on Y = 1 too. It follows
that f(X, (ω, λ)) is integrable and hence Q is well-defined.

First, we prove that Q is maximised at (ω, λ) = (ω∗, λ∗) and that this maximizer
is unique. Consider the function

g : R → R, g(t) = S(α) logS(t) + S(−α) logS(−t),

where α ∈ R is some constant. The function g is maximised at t = α and applying
Taylor’s theorem yields

g(x) = g(α)− 1

2
S(ξ)S(−ξ)(x− α)2, for some ξ ∈ (α, x).

Setting α = h(X, (ω∗, λ∗)) and denoting ξ as a random variable

ξ(X) ∈ (h(X, (ω∗, λ∗)), h(X, (ω, λ)))

observe that

Q(ω, λ) = EX(g(h(X, (ω, λ))))

= EX(g(h(X, (ω∗, λ∗)))− 1

2
EX

(
S(ξ(X))S(−ξ(X))[h(X, (ω, λ))− h(X, (ω∗, λ∗))]2

)
(A20)

≤ Q(ω∗, λ∗),
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Hence, from the expression above it is deduced that (ω∗, λ∗) is a maximizer. Now,
consider the function q : X → R

q(x) = h(x, (ω∗, λ∗))− h(x, (ω, λ)),

where Ω ⊂ X ⊂ Re/R1 such that for some ζ > 0

X = {x ∈ Re/R1 : inf
ω∈Ω

dtr(x, ω) < ζ},

so that for any ω ∈ Ω there is a neighborhood of ω within X . Note that X is a bounded
set since Ω is bounded too.

We will prove by contradiction that q(x) = 0,∀x ∈ X . Suppose there exists x0 ∈ X
such that q(x0) > 0, then since q is continuous there exists a neighborhood U with
x0 ∈ U such that q(x) > 0 for all x ∈ U and so

E(q2(X)I(X ∈ U)) > 0,

where I is the indicator function. Since h(x, (ω, λ)) is continuous with respect to x
and X is bounded, the function takes values on a bounded interval and hence ξ(x) is
bounded in X i.e. there exists ϵ > 0 such that P(S(ξ(X)S(−ξ(X)) > ϵ|X ∈ U) = 1
and so equation (A20) becomes

Q(ω, λ) ≤ Q(ω∗, λ∗)− ϵ

2
E(q2(X)I(X ∈ U)) < Q(ω∗, λ∗),

since P(X ∈ U) > 0 (X has positive density everywhere). Therefore, for (ω, λ) to be
a maximizer, q(x) = 0 for all x ∈ X . Apply Lemma 2 with ω∗ = (α, β), ω = (γ, δ),
λ∗ = (λα, λβ) and λ = (λγ , λδ) with the set X containing neighbourhoods of α, β, γ, δ
and q(x) = 0 for all x in those neighbourhoods. It is concluded that ω = ω∗ and
λ = λ∗, thus proving the uniqueness of the maximizer.

Theorem 4 provides the uniform law of large numbers. The parameter space Ω2×Λ2

is compact since Ω and Λ are compact. Moreover, f((x, y), (ω, λ)) is clearly continuous
at each (ω, λ) ∈ Ω2 ∈ Λ2. Finally, consider the function

r(z) = sup
ω∈Ω2,λ∈Λ2

{|f(z, (ω, λ))|} = −f(z, ω(z), λ(z)),

since f is non-positive. The functions ω(z), λ(z) are chosen to minimize f . Using
equation (A20),

E(r(X)) ≤ −Q(ω∗, λ∗) +
1

2
E([h(X, (ω(X), λ(X)))− h(X, (ω∗, λ∗))]

2
),

since the sigmoid function is bounded by 1. Note that

E((Z +W )2) ≤ 2(E(Z2) + E(W 2)),
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and set W = log(λ1(X)/λ0(X)) − log(λ∗
1/λ

∗
0). Since λy(X) ∈ Λ ⊆ [a, b] for some

b ≥ a > 0, it follows that W 2 is integrable and so now we just have to prove that Z is
integrable, where Z = Z1+Z2+Z3+Z4 with the four terms corresponding to tropical
distance function λdtr(X,ω). It also holds

E((Z1 + Z2 + Z3 + Z4)
2) ≤ 2(E(Z2

1 ) + E(Z2
2 ) + E(Z2

3 ) + E(Z2
4 ))

and so E(Z2) is bounded above by

E

(
1∑

i=0

λ2
i d

2
tr(X,ωi(X))) + (λ∗

i )
2d2tr(X,ω∗

i (X))

)

≤ EY

[
2

(
1∑

i=0

λ2
i + (λ∗

i )
2

)
E
(
d2tr(X,ω∗

Y )|Y
)
+2

(
1∑

i=0

λ2
i d

2
tr(ωi(X), ω∗

Y ) + (λ∗
i )

2d2tr(ω
∗
i , ω

∗
Y )

)]
,

where the second inequality came from applying the triangular inequality four times
in the form dtr(X, τ) ≤ dtr(X,ω∗

Y ) + dtr(ω
∗
Y , τ). The final expression is finite because

Ω is compact and hence dtr(ωi(X), ω∗
Y ) is finite, dtr(X,ωY )|Y is square-integrable.

Therefore, E(r(X)) is finite.
All conditions of the theorem are satisfied and so

sup
ω∈Ω2

∣∣∣∣∣ 1n
n∑

i=1

f((Xi, Yi), ω)− E(f((X,Y ), ω))

∣∣∣∣∣ = sup
ω∈Ω2

|Qn(ω)−Q(ω)| p→ 0.

Finally, using Theorem 3 and combining the uniqueness of the maximizer with the

uniform bound result, it is concluded that ω̂
p→ ω∗.

Proof of Proposition 5. First, define ∆0 = {C(X) ̸= 1|Y = 0}. By definition of
C(X),

∆0 =

{
(σ−1

0 − σ−1
1 )dtr(X, ω̂)− (e− 1) log

(
σ1

σ0

)
≥ 0

∣∣∣∣Y = 0

}
= {dtr(X, ω̂) ≥ ασ0σ1|Y = 0} .

Triangular inequality dictates that

dtr(X,ω∗)− dtr(ω
∗, ω̂) ≤ dtr(X, ω̂) ≤ dtr(X,ω∗) + dtr(ω

∗, ω̂),

and so it follows that

∆0 ⊇ {dtr(X,ω∗) ≥ σ0σ1 (α+ ϵ) |Y = 0}
∆0 ⊆ {dtr(X,ω∗) ≥ σ0σ1 (α− ϵ) |Y = 0},

and since Z = σ−1
0 dtr(X,ω∗)|Y = 0 ∼ F ,

P(Z ≥ σ1(α+ ϵ)) ≤ P(∆0) ≤ P(Z ≥ σ1(α− ϵ)),
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which yields the desired result.
Similarly, for ∆1 = {C(X) ̸= 0|Y = 1} = {dtr(X, ω̂) ≤ σ0σ1α},

∆1 ⊇ {dtr(X,ω∗) ≤ σ0σ1 (α− ϵ) |Y = 1}
∆1 ⊆ {dtr(X,ω∗) ≤ σ0σ1 (α+ ϵ) |Y = 1},

and since Z = σ−1
1 dtr(X,ω∗)|Y = 1 ∼ F ,

P(Z ≤ σ0(α− ϵ)) ≤ P(∆1) ≤ P(Z ≤ σ0(α+ ϵ)),

which is the desired interval.
For the second part of the proposition, ω̂ = ω∗ and so ϵ = 0. Hence,

P(∆0) = 1− F (σ1α) = 1− F (xu(x))

P(∆1) = F (σ0α) = F (u(x)), where

x =
σ1

σ0
and u(x) = (e− 1)

log x

x− 1

Consider the function
g(x) = 1− F (xu(x))− F (u(x))

Proving that g(x) < 0 for all x > 1 is equivalent to proving the desired result that
P(∆0) < P(∆1) for σ1 > σ0. First,

lim
x→1

u(x) = lim
x→1

xu(x) = e− 1,

and so limx→1 g(x) = 1 − 2F (e − 1). It is a well-known fact that the median of the
Gamma distribution is less than the mean. Hence, for Z ∼ Gamma(e−1, 1) with mean
e− 1, F (e− 1) > 1

2 and so
lim
x→1

g(x) < 0. (A21)

Finally, the derivative of g is

g′(x) = −F ′(u(x))u′(x)− F ′(xu(x))(xu′(x) + u(x))

The following two inequalities

F ′(u(x)) ≥ F ′(xu(x)), (A22)

u′(x) + xu′(x) + u(x) ≥ 0, (A23)

imply that
g′(x) ≤ −F ′(xu(x))(u′(x) + xu′(x) + u(x)) ≤ 0. (A24)

From (A21) and (A24) it follows that g(x) < 0 for all x > 1.
For inequality (A22), remember that

F ′(x) =
xe−2 exp (−x)

Γ(e− 1)
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and so

F ′(u(x))− F ′(xu(x)) = F ′(u(x))
(
1− xe−2 exp(−(x− 1)u(x))

)
= F ′(u(x))

(
1− xe−2 exp(−(e− 1) log(x))

)
= F ′(u(x))(1− x−1) > 0,

for all x > 1.
For inequality (A23),

u′(x) + xu′(x) + u(x) =
e− 1

(x− 1)2
(
x− x−1 − 2 log x

)
,

is a non-negative function for x > 1 iff v is a non-negative function, where

v(x) = x− x−1 − 2 log x, with

v′(x) =
(x− 1)2

x2
≥ 0 and v(1) = 0.

Clearly, v is a non-negative function for x > 1, so inequality (A23) is satisfied.

Proof of Proposition 6. For symbolic convenience, in this proof class 0 is referred
to as class −1 and so Y ∈ {−1, 1}. Applying the triangular inequality twice,

DX = dtr(X,ω∗
Y )− dtr(X,ω∗

−Y )

≥ (dtr(X, ω̂Y )− dtr(ω
∗
Y , ω̂Y ))

−
(
dtr(X, ω̂−Y ) + dtr(ω

∗
−Y , ω̂−Y )

)
= dtr(X, ω̂Y )− dtr(X, ω̂−Y )− ϵ,

it follows that

{C(X) ̸= Y } = {dtr(X, ω̂Y )− dtr(X, ω̂−Y ) ≥ 0} ⊆ {DX ≥ −ϵ}

and so the generalization error has the following upper bound

P(C(X) ̸= Y ) ≤ P (DX ≥ −ϵ) . (A25)

Note that if dtr(X,ω∗
Y ) < ∆ϵ, then by the use of triangular inequality

DX = dtr(X,ω∗
Y )− dtr(ω

∗
−Y , X)

≤ dtr(X,ω∗
Y )−

(
dtr(ω

∗
−Y , ω

∗
Y )− dtr(ω

∗
Y , X)

)
< 2∆ϵ − dtr(ω

∗
1 , ω

∗
−1) = −ϵ.

Consequently,
P(C(X) ̸= Y ) ≤ P (DX ≥ −ϵ, ZX ≥ ∆ϵ) (A26)
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Since the distribution of X is symmetric around ω∗
Y , the random variable 2ω∗

Y − X
has the same distribution and so

P (DX ≥ −ϵ, ZX ≥ ∆ϵ) = P
(
D2ω∗

Y −X ≥ −ϵ, Z2ω∗
Y −X ≥ ∆ϵ

)
. (A27)

It will be proved that

Z2ω∗
Y −X = ZX , (A28)

DX +D2ω∗
Y −X ≤ 0, (A29)

and so {D2ω∗
Y −X ≥ −ϵ, Z2ω∗

Y −X ≥ ∆ϵ} ⊆ {DX ≤ ϵ, ZX ≥ ∆ϵ}. Then, using equation
(A27),

P (DX ≥ −ϵ, ZX ≥ ∆ϵ) ≤ P (DX ≤ ϵ, ZX ≥ ∆ϵ) ,

and substituting it to inequality (A26),

P(C(X) ̸= Y )) =
1

2
(P (DX ≥ −ϵ, ZX ≥ ∆ϵ)

+ P (DX ≤ ϵ, ZX ≥ ∆ϵ))

=P (ZX ≥ ∆ϵ) + h(ϵ)

where h(ϵ) = P(ZX ≥ ∆ϵ, |DX | ≤ ϵ) is an increasing function with respect to ϵ, which
completes the first part of the proof.
Equation (A28) follows from the observation that

dtr(2ω
∗
Y − x, ω∗

Y ) = dtr(x, ω
∗
Y ).

For equation (A29),

D2ω∗
Y −X +DX = Z2ω∗

Y −X − dtr(2ω
∗
Y −X,ω∗

−Y )

+ ZX − dtr(X,ω∗
−Y )

(A28)
= 2Z2ω∗

Y −X − dtr(2ω
∗
Y −X,ω∗

−Y )− dtr(ω
∗
−Y , X)

≤ 2Z2ω∗
Y −X − dtr(2ω

∗
Y −X,X) = 0,

where the last inequality comes from the triangular inequality. Finally, the consistency
of the learning algorithm is proved. Under the conditions of Theoreom 2, the maximum

likelihood estimator ω̂ = (ω̂0, ω̂1)
p→ (ω∗

0 , ω
∗
1) as n → ∞ where (X1, Y1), . . . , (Xn, Yn)

is the sample. For the rest of the proof, the test covariate-response pair (X,Y ) is
independent from the afore training sample. Define the classifier,

Cω(x) = sgn (dtr(x, ω0)− dtr(x, ω1))
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where ω = (ω0, ω1). The Bayes predictor is Cω∗
0 ,ω

∗
1
. Noting that Cω∗

0 ,ω
∗
1
(X) =

sgn(DX)Y , the Bayes (or irreducible) error is

BE = P(sgn(DX)Y ̸= Y ) = P(DX > 0) = P(DX ≥ 0),

since it is assumed that P(DX = 0) = 0. Using inequality A25 derived earlier, it follows
that the generalization error is bounded by

P(DX ≥ 0) = BE ≤ P(Cω̂(X) ̸= Y ) ≤ P(DX ≥ −ϵ(ω̂)),

where ϵ(ω̂0, ω̂1) = dtr(ω0, ω
∗
0) + dtr(ω1, ω

∗
1)

p→ 0. as the training sample size n → ∞
according to Theorem 2. The complementary CDF of DX , defined as

FC
DX

(x) = P(DX ≥ x),

is a continuous function and so it follows that FC
DX

(ϵ(ω̂))
p→ FC

DX
(0) = BE as n → ∞.

From the probability squeeze theorem,

P(Cω̂(X) ̸= Y |(X1, Y1), . . . , (Xn, Yn))
p→ BE as n → ∞.

This concludes the proof of the consistency of the algorithm.

Proof of Proposition 7. Consider the random variable dtr(X,α). From the trian-
gular inequality

dtr(X,α) ≤ dtr(X,ω∗) + dtr(α, ω
∗),

it is deduced that dtr(X,α) is integrable, bounded above by an integrable random
variable.

Now consider the function F : Re/R1 → R,

F (x) = dtr(x, ω) + dtr(2ω
∗ − x, ω)− 2dtr(x, ω

∗).

Noting that dtr(2ω
∗−x, ω) = dtr(x, 2ω

∗−ω), it follows that F (X) is integrable as the
sum of integrable random variables.

From triangular inequality and the fact that dtr(2ω
∗−x, x) = 2dtr(x, ω

∗) it follows
that F (x) ≥ 0 for all x ∈ Re/R1. Furthermore, F (ω∗) > 0 and since F is continuous,
there exists a neighbourhood U that contains ω∗ such that F (x) > 0 for all x ∈ U .
Moreover, the function has positive density in a neighbourhood V that contains the
centre ω∗. Therefore, there exists a neighbourhood W = U ∩ V such that F (x) > 0
for all x ∈ W and P(X ∈ W ) > 0. Hence, since F (X) ≥ 0,

E(F (X)) ≥ E(F (X)|X ∈ W )P(X ∈ W ) > 0.

In other words,

E (dtr(X,ω)) + E (dtr(2ω
∗ −X,ω)) > 2E(dtr(x, ω∗)) (A30)
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Moreover, consider the isometry y = 2ω∗ − x and note that for symmetric probability
density functions around ω∗, f(ω∗ − δ) = f(ω∗ + δ) and so for δ = ω∗ − x, we have
f(y) = f(x). Applying this transformation to the following integral yields

E(dtr(2ω∗ −X,ω)) =

∫
Re/R1

dtr(2ω
∗ − x, ω)f(x) dx (A31)

=

∫
Re/R1

dtr(y, ω)f(y) dy = E(dtr(X,ω)).

Combining equation (A31) with inequality (A30) shows that the function Q(ω) =
E(dtr(X,ω)) has a global minimum at ω∗.

From Theorem 4 (uniform law of large numbers), set f(x, ω) = dtr(x, ω) and
observe that f(x, ω) is always continuous w.r.t. ω. Setting r(x) = supω∈Ω dtr(x, ω),
which is finite since Ω is compact, observe that

r(x) := sup
ω∈Ω

dtr(x, ω) ≤ dtr(x, ω
∗) + sup

ω∈Ω
dtr(ω, ω

∗).

Since Ω is compact, the second term is finite and hence r(X) is integrable, since
dtr(X,ω∗) is integrable. All conditions of the theorem are satisfied so Q(ω) =
E(dtr(x, ω)) is continuous with respect to ω and

sup
ω∈Ω

|Qn(ω)−Q(ω)| p→ 0 as n → ∞,

where Qn(ω) = n−1
∑n

i=1 dtr(Xi, ω). Since Q(ω) has a unique minimum at ω∗, all
conditions of Theorem 3 are satisfied and so ω̃n → ω∗ as n → ∞.

Proof of Proposition 8. i. If ω−Xi has a unique maximum Mi = argmaxj{ωj−
(Xi)j} and unique minimum mi = argminj{ωj − (Xi)j}, then the gradient is

(∇f(x))j = |{i : Mi = j}| − |{i : mi = j}|. (A32)

For the converse, assume that the gradient is well-defined. From equations (A8)–
(A9) and following the first few sentences of Lemma 2

dtr(x+ ϵEj , y) + dtr(x− ϵEj , y)− 2dtr(x, y) = ϵsj(x− y),

where sj is defined in equation (A11) of Lemma 2. Consequently,

f(x+ ϵEj) + f(x− ϵEj)− 2f(x) = ϵ

n∑
i=1

sj(Xi − ωi)

Since f has a well-defined gradient,
∑n

i=1 sj(Xi − ω) = 0 i.e. sj(Xi − ω) = 0 for
all (i, j) ∈ [n] × [e]. This can only happen iff Xi − ω has unique maximum and
minimum component for all i ∈ [n].
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ii. Using equation (A32), the gradient of f vanishes at x = ω if and only if

|{i : Mi = j}| = |{i : mi = j}|. (A33)

Moreover,

f(ω + v) =

n∑
i=1

max
k

{ωk − (Xi)k + vk} −min
k

{ωk − (Xi)k + vk}

≥
n∑

i=1

ωMi
− (Xi)Mi

+ vMi
− ωmi

+ (Xi)mi
− vmi

= f(ω) +

n∑
i=1

vMi
− vmi

Finally, note that because of equation (A33),

n∑
i=1

vMi
=

e∑
j=1

vj |{i ∈ [n] : Mi = j}|

(A33)
=

e∑
j=1

vj |{i ∈ [n] : mi = j}| =
n∑

i=1

vmi ,

and so f(ω + v) ≥ f(ω) for all v ∈ Re/R1.

Appendix B Space of ultrametrics

Theorem 5 (explained in [5, 16]). Suppose we have a classical linear subspace Lm ⊂
Re defined by the linear equations xij − xik + xjk = 0 for 1 ≤ i < j < k ≤ m. Let
Trop(Lm) ⊆ Re/R1 be the tropicalization of the linear space Lm ⊂ Re, that is, classical
operators are replaced by tropical ones (defined in Section C in the supplement) in the
equations defining the linear subspace Lm, so that all points (v12, v13, . . . , vm−1,m) in
Trop(Lm) satisfy the condition that

max
i,j,k∈[m]

{vij , vik, vjk}.

is attained at least twice. Then, the image of Um inside of the tropical projective torus
Re/R1 is equal to Trop(Lm).

37



Appendix C Tropical Arithmetics and Tropical
Inner Product

In tropical geometry, addition and multiplication are different than regular arith-
metic. The arithmetic operations are performed in the max-plus tropical semiring
(R ∪ {−∞},⊕,⊙) as defined in [31].
Definition 5 (Tropical Arithmetic Operations). In the tropical semiring, the basic
tropical arithmetic operations of addition and multiplication are defined as:

a⊕ b := max{a, b}, a⊙ b := a+ b, where a, b ∈ R ∪ {−∞}.

The element −∞ ought to be included as it is the identity element of tropical addition.
Tropical subtraction is not well-defined and tropical division is classical subtraction.

The following definitions are necessary for the definition of the tropical inner
product
Definition 6 (Tropical Scalar Multiplication and Vector Addition). For any scalars
a, b ∈ R ∪ {−∞} and for any vectors v, w ∈ (R ∪ {−∞})e, where e ∈ N,

a⊙v := (a+ v1, . . . , a+ ve),

a⊙ v ⊕ b⊙ w := (max{a+ v1, b+ w1}, . . . ,max{a+ ve, b+ we}).

From the definitions above, it follows that the tropical inner product is ωT ⊙ x =
max{ω+x} for all vectors ω, x ∈ Re/R1. In classical logistic regression a linear function
in the form of a classical inner product hω(x) = ωTx, ω ∈ Rn is used. The tropical
symbolic equivalent is

hω(x) = ωT ⊙ x = max
l∈[e]

{ωl + xl}. (C34)

This expression is not well-defined, since the statistical parameter and covariate vec-
tors ω, u ∈ Re/R1 are only defined up to addition of a scalar multiple of the vector
(1, . . . , 1). To resolve this issue, we fix

−min
l∈[e]

{ωl + xl} = c, (C35)

where c ∈ R is a constant for all observations. Combining equations (C35), (C34), and
the definition of tropical distance (1),

hω(x) = dtr(x,−ω)− c.

For simplicity, under the transformation −ω → ω the expression becomes

hω(x) = dtr(x, ω)− c. (C36)
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Appendix D Tropical Logistic Regression
Algorithm

Algorithm 1 One-species tropical logistic regression

Input: distance matrix D ∈ RN×e
+ , labels Y ∈ {0, 1}N

ω̃ = FW point(D)
σ̂0, σ̂1 = argmaxσ0,σ1>0 l(ω̃, σ0, σ1)|D,Y ) with root solving.
Output: (ω̃, σ̂0, σ̂0)

Algorithm 2 Two-species tropical logistic regression

Input: distance matrix D ∈ RN×e
+ , labels Y ∈ {0, 1}N

ω̃0 = FW point(D[Y == 0])
ω̃1 = FW point(D[Y == 1])
σ̂ = argmaxσ>0 l(ω̃0, ω̃1, σ|D,Y ) with root solving.
Output: (ω̃0, ω̃1, σ̂)

Appendix E Fermat-Weber Point Visualization

As noted in Section 3, the gradient method is much faster than linear programming.
Unfortunately, there is no guarantee that it will guide us to a Fermat-Weber point.
However, in practice, the gradient method tends to work well. Figure E1 illustrates
just that. Given, ten datapoint X1, . . . , X10 ∈ R3/R1 ∼= R2, the Fermat-Weber set is
found to be a trapezoid. This is in agreement with [21], which states that all Fermat-
Weber sets are classical polytopes. The two-dimensional gradient vector, plotted as a
vector field in Figure E1, always points towards the Fermat-Weber set. Therefore, the
gradient algorithm should always guide us to a Fermat-Weber point.

Appendix F MLE Estimator for σ

If Zi
iid∼ Gamma(n, k), where n is constant and k is a statistical parameter, then it

is well-known that the maximum likelihood estimator is

k̂ = Z̄/n, (F37)

where Z̄ is the sample average. In our case Zi = d(Xi, ω
∗) and k = iσi. From Proposi-

tion 4, Zi ∼ Gamma(n/i, iσi) and by substituting these parameters in equation F37,
it follows that the MLE for σ is

σ̂i = Z̄/n,
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Fig. E1 Visualization of the function f(ω) =
∑10

i=1 dtr(Xi, ω) for Xi. The black circles are the
datapoints X1, . . . , X10, the solid lines are contours of f , the vector field is the gradient and the small
black trapezoid at (0.65, 0.55) is the Fermat-Weber set.

where Z̄ is the average distance of the covariates (gene trees) from their mean (species
tree). This results holds for all i ∈ N and both Euclidean and tropical metrics. The
only difference is that for Euclidean spaces X ∈ Re and so n = e, while for the tropical
projective torus Re/R1, n = e− 1.

Appendix G Approximate BHV Logistic
Regression

Similar to the tropical Laplace distribution, in [14] the following distribution was
considered

fλ,ω(x) = Kλ,ω exp (−λdBHV(x, ω)) ,
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where λ = 1/σ is a concentration/precision parameter, dBHV is the BHV metric and
Kλ,ω is the normalization constant that depends on λ and ω. We consider an adap-
tation of the two-species model for this metric, where the data from the two classes
have the same concentration rate but different centre. If X|Y ∼ fλ,ω∗

Y
, then

hω0,ω1
(x) = λ (dBHV(x, ω

∗
0)− dBHV(x, ω

∗
1)) + log

Kλ,ω∗
0

Kλ,ω∗
1

. (G38)

Unlike in the tropical projective torus or the euclidean space, in the BHV space
Kλ,ω∗

0
̸= Kλ,ω∗

1
, because the space is not translation-invariant. However, if we assume

that the two centres are far away from trees with bordering topologies, it may be
assumed that the trees are mostly distributed in the Euclidean space and as a result
Kλ,ω∗

0
≈ Kλ,ω∗

1
. Under this assumption, equation (G38) becomes

hω0,ω1
(x) ≈ λ (dBHV(x, ω

∗
0)− dBHV(x, ω

∗
1)) .

Therefore, the classification/decision boundary for the BHV is the BHV bisector
dBHV(x, ω

∗
0) = dBHV(x, ω

∗
1) and the most sensible classifier is

C(x) = I (dBHV(x, ω
∗
0) > dBHV(x, ω

∗
1)) ,

where I is the indicator function.

Appendix H Graphs for Simulated Data under the
Multi-Species Coalescent Model for
different R

Fig. H2 (left) Robinson-Foulds distances and (right) tropical distances of inferred species trees ω̂
from the actual species trees ω∗ for R = 0.1, 1, 10.
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Fig. H3 ROC curves for the tropical logistic regression with different values of R. Higher the value
of R is the closer an estimated ROC curve for the tropical logistic regression model gets to the point
(0, 1).
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