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Abstract

Cosmic inflation, a phase of accelerated expansion of the early Universe, not only

solves the horizon and flatness problems of the Hot Big Bang but also provides

the initial conditions for the density perturbations that source all structure in the

Universe. 9 billion years later, the Universe started engaging in another bout

of accelerated expansion, observed today, 13.8 billion years after the Big Bang.

This thesis is mainly concerned with quintessential inflation, a framework that

suggests that the same substance responsible for the period of primordial inflation,

the inflaton field, is also responsible for the current accelerated expansion. By

considering a simple and theoretically motivated setup in modified gravity, we

manage to bring back to life two of the most popular inflationary models, chaotic and

power-law inflation, hitherto discarded by the Planck data. We also achieve late-

time inflation for fairly natural parameter values, with significantly less fine-tuning

than in ΛCDM. Furthermore, we explore one specific limit of the modified gravity

setup, characterised by a period of quartic kinetic domination of the inflaton, and its

effects on the production of primordial gravitational waves by inflation. We find that

during this period, which we call hyperkination, the peak in the density spectrum of

gravitational waves corresponding to kination is truncated, thereby safely evading

Big Bang Nucleosynthesis constraints. This allows us to bring the gravitational

wave spectrum down to observable frequencies. If detected by future gravitational

wave interferometers, it would provide valuable insight into the underlying theory.

Lastly, mirroring the minimalist philosophy of quintessential inflation, we propose

a toy model of unified early dark energy and quintessence, which raises the value of

the Hubble constant inferred from the Planck data to values compatible with local

measurements. It simultaneously explains the current accelerated expansion of the

Universe, without significant additional fine-tuning than in ΛCDM.
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iv



List of Publications
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Chapter 1

Introduction

Out of the cradle

onto dry land

here it is

standing:

atoms with consciousness;

matter with curiosity.

Stands at the sea,

wonders at wondering: I

a universe of atoms

an atom in the universe.

Richard P. Feynman

Cosmology is the study of the Universe as a whole. Although humans have

wondered about the origin and structure of the Universe for millennia, cosmology

as a rigorous science is only a few decades old. It wasn’t until 1915 that Einstein

discovered the appropriate language to describe the evolution of the Universe, the

theory of general relativity. One hundred years ago, we did not know that the

Universe is expanding or that there exist galaxies beyond our own. Just twenty-

seven years ago we didn’t know of the existence of dark energy, the main constituent
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Chapter 1. Introduction

of the Universe at present.

During the current millennium, cosmology has experienced extraordinary de-

velopments. Perhaps most strikingly, we have measured the statistical properties

of the Cosmic Microwave Background (CMB), light that was emitted when the

Universe was about 370 000 years old and that has been travelling largely freely

until the present day, and discovered the perturbations in the primordial universe

that eventually grew into all the structure we observe today. The leading theory to

explain such primordial perturbations, that of cosmic inflation, suggests that they

have a quantum origin, stretched to cosmic scales just a billionth of a trillionth of

a trillionth of a second after the Big Bang in a period of accelerated expansion.

Another milestone was the discovery that after decelerating for 9 billion years, the

Universe engaged in another bout of accelerated expansion, still ongoing at present,

13.8 billion years after the Big Bang. However, the nature of this dark energy, which

accounts for around 70% of the contents of the present Universe, is still a mystery.

This thesis is mainly a study of inflation and dark energy. Since they are

the only two (known) periods of accelerated expansion, we consider the natural

possibility that they share a common origin, in what is called quintessential inflation.

We also study the effect of including theoretically motivated modifications to

the theory of general relativity, finding that it is helpful from a model-building

perspective. Finally, we study other phenomenological aspects, such as the

production of primordial gravitational waves (GWs) by inflation and the possibility

of quintessential inflation aiding us in relaxing recent tensions between different

cosmological datasets.

Chapter 2 provides a general introduction to the topics of FRW cosmology

required for adequately following the subsequent chapters and aiming at making the

text self-contained. We provide descriptions of the horizon and flatness problems,

derive the spectrum of inflationary primordial perturbations, making contact with

current observations of the CMB, and explain how the inflationary density can be

transferred to the baryonic matter, during the process of reheating. Related to the
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density of the Universe at present, we review the Hubble tension and explain the

physics of dark energy, covering topics such as the cosmological constant problem

and quintessence. We finish with quintessential inflation and its unique predictions.

Chapter 3 also contains background material, namely an introduction to f(R)

gravity, both in the metric and Palatini formalisms. Since all subsequent chapters

take place in the Palatini formalism, we explore in depth the main differences

between the two.

Chapters 4 through 7 are based on the original research by the author, in

collaboration with Lucy Brissenden, Konstantinos Dimopoulos, Alexandros Karam,

and Eeemeli Tomberg. Chapter 4 showcases how modified gravity can help with

model-building quintessential inflationary models. We consider a toy model, based

on the original potential proposed by Peebles and Vilenkin, and analytically

study the effect of adding a term proportional to the Ricci scalar squared to the

gravitational action. We are able to rescue inflationary models otherwise discarded

by the latest observational data of the CMB. More specifically, chaotic inflation with

a mass term, arguably the simplest model of inflation, is brought back to life in the

context of Palatini R2 gravity. The dynamics of kination and quintessence are also

studied, achieving successful dark energy with less fine-tuning than in ΛCDM. We

finish by showing how the setup evades observational bounds.

Chapter 5 refines the philosophy of Chapter 4, by considering a better

theoretically motivated potential and providing a more in-depth analysis. We

consider a single-branch exponential potential and modify the gravitational action

by including a non-minimal coupling between the field and gravity, expected from

quantum field theory in curved spacetime, as well as the αR2 term, where α is a non-

perturbative coupling constant. We provide a thorough analysis, both analytically

and numerically, throughout the history of the Universe, from inflation, through

kination and reheating, until the present time. Again, we are able to resurrect

the previously discarded exponential potential as a valid inflationary model and to

achieve successful dark energy with less fine-tuning than in ΛCDM. We ensure this
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is the case by performing a parameter scan of the model.

Chapter 6 takes the same setup in Palatini R2 gravity and studies the production

of GWs during the post-inflationary evolution of the Universe, in the limit where

α is very large. We find a new period of cosmic evolution, prior to kination,

which we name hyperkination. We calculate the density spectrum of GWs, both

analytically and numerically, and find that it is flat for modes that re-enter the

horizon during hyperkination. This truncates the infamous peak corresponding to

kination, allowing us to bring the spectrum to frequencies accessible by future GW

observations, such as LISA or ET. We perform a parameter scan of the model for all

relevant GW observations, locating the parameter values required for detectability

in each case and finding ample parameter space.

Chapter 7 does not follow the theme of the previous chapters in that it is not in

the context of modified gravity. Rather, it proposes a simple toy model of unified

early dark energy (EDE) and quintessence, in the context of α-attractors. EDE is

one of the leading proposals to alleviate the Hubble tension, the discrepancy between

the locally measured and cosmologically inferred values for the expansion rate today

H0. Were it to be discovered, one of the more pressing questions would be the

unification with dark energy. We do so by means of a simple scalar field, originally

frozen at an enhanced symmetry point, which briefly behaves as EDE before free-

falling and re-freezing, to later behave as thawing quintessence. After providing some

analytical estimates, we solve the dynamics numerically and perform a parameter

scan at the background level, finding parameter values without additional fine-tuning

than ΛCDM.

We conclude in Chapter 8, including an overview of the thesis as a whole in the

context of the current state of the research field, as well as commenting on ideas for

future work.
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Chapter 2

Acceleration in a Dynamical

Universe

The dynamics of the spacetime geometry and its matter content is governed by the

action

S = SEH + Sm =
m2

P

2

∫
d4x

√
−gR + Sm[gµν , ψ], (2.1)

where the first term is the Einstein-Hilbert (EH) action, g is the determinant of

the metric gµν , Sm is the action for the matter fields, collectively denoted by ψ,

such as the particles of the Standard Model (SM) and the inflaton, and R is the

curvature scalar, defined as the contraction between the metric and the Ricci tensor

Rµν , which, in turn can be written in terms of the connection Γαµν as

Rµν = ∂λΓ
λ
µν − ∂νΓ

λ
µλ + ΓλλρΓ

ρ
µν − ΓρµλΓ

λ
νρ. (2.2)

Note that a priori the connection may be a gravitational field independent from the

metric. This is so in the Palatini formalism [17, 18, 19]. Conversely, in the metric

formalism, the only independent gravitational field is the metric. In this scenario,

one usually assumes metric compatibility ∇αgµν = 0, where ∇α is the covariant

derivative. If one further assumes that the connection is torsionless Γαµν = Γανµ, it

can then be shown that the connection takes the Levi-Civita form

Γαµν =
1

2
gαβ (∂µgβν + ∂νgβµ − ∂βgµν) . (2.3)
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Importantly, both formalisms agree for an EH action, but differ when more

complicated functions of the Ricci scalar are considered. This is why it is important

to specify the gravitational degrees of freedom before studying a specific inflationary

model. In the present chapter, however, we limit ourselves to the EH action, so we

postpone a discussion regarding the differences between the metric and Palatini

formalisms, as well as details on modified gravity, to Chapter 3.

Extremising the action in Eq. (2.1) with respect to the metric we find the

Einstein field equations

Gµν ≡ Rµν −
1

2
gµνR =

Tµν
m2

P

. (2.4)

The left-hand-side of this equation is a measure of the spacetime curvature, while the

right-hand-side is a measure of the matter content, expressed through the energy-

momentum tensor Tµν , which is defined as

Tµν = − 2√
−g

δSm

δgµν
. (2.5)

In order to solve Eq. (2.4) we have to first specify the metric gµν . Since the

Universe (at cosmological scales) is homogeneous and isotropic to a very good

approximation, we are led to the Friedmann-Robertson-Walker (FRW) metric

ds2 = gµνdx
µdxν = −dt2 + a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]
, (2.6)

where t is the cosmic time, and r, θ and ϕ are the radial and angular coordinates,

respectively, of the spatial slices and k is the spatial curvature parameter. The latter

can be chosen to be k = 0 for a flat space, k > 0 for a spherical space and k < 0 for

a hyperbolic space. Note that the only dynamical degree of freedom is now the scale

factor a(t), which is a function of time only. It is standard practice to normalise it

at the present time t0 as a(t0) = 1.

Homogeneity and isotropy also constrain the energy-momemtum to be that of a

perfect fluid

Tµν = (ρ+ p)uµuν + pgµν , (2.7)
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where ρ and p are, respectively, the energy density and isotropic pressure of the fluid

in the rest frame and uµ is its comoving four-velocity. However, in order to solve the

dynamics one extra relation between ρ and p, which may also depend on a, needs

to be given. This is called the equation of state (EoS) and it reads

p = wρ, (2.8)

where w is the barotropic parameter.

The energy-momentum tensor should be conserved ∇µT
µν = 0 and the ν = 0

equation gives the continuity equation

ρ̇+ 3
ȧ

a
ρ(1 + w) = 0, (2.9)

where an overdot represents a time derivative. For a constant w, this equation can

be immediately integrated to obtain

ρ ∝ a−3(1+w), (2.10)

giving the usual scalings ρ ∝ a−3 for pressureless dust (w = 0), ρ ∝ a−4 for radiation

(w = 1/3), and ρ = const. for a cosmological constant (w = −1).

After plugging Eqs. (2.6)-(2.7) in the Einstein equation, its 00 component gives

the first Friedmann equation

H2 ≡
(
ȧ

a

)2

=
ρ

3m2
P

− k

a2
, (2.11)

where we have defined the Hubble parameter H. We can write the same equation

in conformal time, which is defined as

dη =
dt

a
. (2.12)

It reads

H2 = a2
(

ρ

3m2
P

− k

a2

)
, (2.13)

where

H ≡ a′

a
= aH (2.14)
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is the Hubble parameter in conformal time and a prime denotes a derivative with

respect to η.

The first Friedmann equation is often written in terms of the density parameters

Ωa ≡
ρa
ρc
, (2.15)

where the subscript “a” stands for any component that contributes to the total

energy density and ρc(t) = 3m2
PH

2 is the critical energy density. Indeed, taking into

account the different scalings of the relevant components, the Friedmann equation

can be rewritten as

H2 = H2
0

[
Ωm,0a

−3 + Ωr,0a
−4 + ΩΛ,0 + Ωk,0a

−2
]
, (2.16)

where the subscript “0” indicates that a quantity is evaluated at the present time

t0. For example, Ωk,0 is the density parameter of curvature, which reads

Ωk(t) = − k

(aH)2
, (2.17)

evaluated at t0.

Defining redshift as

z ≡ a(t0)

a(t)
− 1 =

1

a(t)
− 1, (2.18)

where we have used the normalization a(t0) = 1 at present, the Friedmann equation

in terms of z reads

H2 = H2
0

[
Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩΛ,0 + Ωk,0(1 + z)2

]
. (2.19)

Observations of the CMB temperature anisotropies suggest [8] that the contri-

bution of the spatial curvature term to the total energy density of the universe is

smaller than one part in a thousand Ωk,0 = 0.0007 ± 0.0019 (68%C.L.). From the

Hot Big Bang until the present time, the comoving Hubble radius grows (see below),

which means that Ωk(t) also grows, i.e., if Ωk,0 is so small at present, it had to be

even smaller in the past. Thus, it is a very good approximation to take the Universe
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2.1. Inflation

as flat so that the second term in the r.h.s of Eq. (2.11) can be safely ignored and

the FRW metric is simplified as

ds2 = a2(t)
[
−dη2 + δijdx

idxj
]
, (2.20)

where we have used the definition of conformal time in Eq. (2.12).

The spatial components of the Einstein equations lead to the Raychaudhuri

equation (also known as the second Friedmann equation)

ä

a
= − 1

6m2
P

(ρ+ 3p), (2.21)

which can also be obtained by taking a time derivative of the first Friedmann

equation and combining it with the continuity equation. Note that Eq. (2.21)

holds regardless of the spatial curvature parameter k. It is sometimes useful to

combine this with the first Friedmann equation to obtain

Ḣ = − 1

2m2
P

(ρ+ p). (2.22)

Conventional matter satisfies the Strong Energy Condition (SEC) ρ+3p ≥ 0. Thus,

from Eq. (2.21) follows that ä < 0. In this way, one would naively expect that the

Universe expansion has been decelerating since its birth. We are in for a ride...

2.1 Inflation

Inflation is a hypothetical cosmological period, occurring at very early times,

during which the Universe experiences accelerated expansion. It is prior to the

hot Big Bang and it explains the observed high degree of homogeneity and spatial

flatness. What is more, when treated quantum mechanically, it also provides the

primordial perturbations that act as seeds for structure. We observe this today in

the temperature anisotropies of the CMB and in the distribution of galaxies and

galaxy clusters, also known as large scale structure (LSS).

The first ideas of inflation can be traced back to the early works of, e.g., R.

Brout et al. [20], D. Kazanas [21], K. Sato [22] and L. Z. Fang [23], while the first

9



Chapter 2. Acceleration in a Dynamical Universe

model was proposed by A. A. Starobinsky [11] in 1980. The name inflation was

coined by A. H. Guth some months after in Ref. [24], where it is also shown how

inflation solves the horizon and flatness problems. Inflation was then developed into

a full-fledged model by A. D. Linde [25] and A. Albrecht and P. J. Steinhardt [26]

in 1981 and 1982, respectively. Since then, inflationary cosmology has become an

extremely active area of research. Some excellent reviews can be found in Refs.

[27, 28, 29, 30, 31, 32, 33, 34, 35].

2.1.1 Why inflation? The horizon and flatness problems

In order to explain the horizon problem, it is important to first understand the

difference between the particle horizon dh and the (comoving) Hubble radius (aH)−1.

The first is defined as the maximal comoving distance from which light can been

received. In other words, the particle horizon determines the size of a causally

connected patch of space. Since light follows null geodesics ds2 = 0, from Eq. (2.20)

follows that the particle horizon is equal to the amount of conformal time

dh = η − ηi =

∫ t

ti

dt′

a(t′)
=

∫ ln a

ln ai

(aH)−1d ln a. (2.23)

In this equation ai ≡ a(ti ≡ 0) = 0 corresponds to the Big Bang singularity.

The comoving Hubble radius (aH)−1 is the comoving distance that particles

can travel in one expansion time. In other words, it is the maximal distance below

which particles are causally connected at a given moment in time. Notice that if two

particles are separated by a distance larger than the particle horizon they could have

never been in causal contact, while if they are separated by a distance larger than

the comoving Hubble radius they are not in causal contact at this specific moment

in time. From the first Friedmann equation (with a(t0) = 1) and Eq. (2.10) we have

(aH)−1 = H−1
0 a(1+3w)/2. (2.24)

Plugging this in Eq. (2.23) gives

dh =
2

H0(1 + 3w)

[
a(1+3w)/2 − a

(1+3w)/2
i

]
. (2.25)

10



2.1. Inflation

Thus, for matter sources satisfying the SEC the comoving Hubble radius always

grows and the integral in Eq. (2.23) is dominated by late time contributions giving

dh ≃ (aH)−1. It also follows that the amount of conformal time between the Big

Bang singularity and the emission of the CMB is much smaller than the conformal

time between the singularity and today. In other words, most visible parts of the

CMB had non-overlapping past lightcones at recombination, i.e., when the CMB

was emitted. However, not only the Universe today is homogeneous (at cosmological

scales) to a very high degree of accuracy, but the tiny temperature anisotropies that

are measured in the CMB are correlated over acausal distances. This is the horizon

problem.

Before we continue with the discussion, let us emphasize that from now on we

use the terms horizon and comoving Hubble radius interchangeably. If we ever need

to refer to the particle horizon, we use its full name so that the distinction is clear.

To make the discussion more quantitative, we can estimate how many casually

disconnected patches there are in the sky. For our present purposes it is enough to

consider a universe filled with matter and radiation only. Indeed, the inclusion of

dark energy (see Sec. 2.2 for further details on dark energy) modifies the result only

by ∼ 10%. From Eq. (2.16), the comoving Hubble radius then reads

(aH)−1 =
1

H0

√
Ωm,0

a
√
a+ aeq

, (2.26)

where aeq = Ωm,0/Ωr,0 = 3388−1 [8] is the scale factor at the time of equality, i.e., at

the time at which the contributions from matter and radiation to the total energy

density became equal. It is then straightforward to obain the particle horizon today

dh(η0) = η0 =
1

H0

√
Ωm,0

∫ 1

0

da
√
a+ aeq

≃ 2

H0

√
Ωm,0

, (2.27)

where we have used that a0 = 1 ≫ aeq. Likewise, the particle horizon at

recombination reads

dh(ηrec) = ηrec =
2

H0

√
Ωm,0

[√
arec + aeq −

√
aeq
]
≃ 0.0176η0, (2.28)

11



Chapter 2. Acceleration in a Dynamical Universe

where we have used that the scale factor at recombination is arec = 1091−1 [8]. Using

the value of the Hubble parameter today H0 ≃ 70km s−1Mpc−1 = 2 × 10−4Mpc−1

and the fraction of matter today Ωm,0 = 0.31 [8] gives ηrec ≃ 314Mpc, which should

be compared with the distance from us to the last-scattering surface. The angle

subtended by the horizon at recombination then reads

θ =
2ηrec

η0 − ηrec
=

2× 0.0176

1− 0.0176
= 0.035 rad = 2.0◦. (2.29)

Thus, at last scattering the Universe was composed of ∼ 105 causally disconnected

patches. We emphasize that the CMB temperature anisotropies over these 105 a

priori causally disconnected patches are, in fact, correlated.

The flatness problem can also be explained in terms of the comoving Hubble

radius. Indeed, from Eq. (2.17) we see that the density parameter of curvature

is proportional to the comoving Hubble radius squared, so that for matter sources

that satisfy the SEC it can only grow. Since its observed value today is Ωk,0 =

0.0007 ± 0.0019 (68%C.L.) the initial conditions must have been highly fine-tuned.

This can be easily quantified by combining Eqs. (2.17) and (2.26) to obtain

Ωk(t) =
Ωk,0

Ωm,0

a2

a+ aeq
(2.30)

Evaluating this expression at matter-radiation equality (aeq = 3388−1), at the time

of Big Bang nucleosynthesis (BBN) (aBBN ≃ 2.5 × 10−9) and at the electroweak

phase transition (aEW ≃ 10−15) gives

|Ωk(teq)| < 10−6,

|Ωk(tBBN)| < 10−16,

|Ωk(tEW)| < 10−29. (2.31)

It is also instructive to study the evolution of the density parameter of curvature

from the point of view of a dynamical system. Taking a derivative with respect to

the number of e-folds N ≡ ln (a/ai) of Eq. (2.17) and using the first and second

Friedmann equations we obtain

dΩk

dN
= (1 + 3w)Ωk(1− Ωk). (2.32)
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2.1. Inflation

w=0

w=1/3

0 2 4 6 8 10 12 14
-3

-2

-1

0

1

N

Ω
k

w=-1

0 1 2 3 4 5 6 7

-1.0

-0.5

0.0

0.5

1.0

N

Ω
k

Figure 2.1: Left: Density parameter of curvature as a function of the elapsing

number of e-folds N ≡ ln (a/ai). Full lines have a positive initial condition Ωk(Ni) =

0.01 while dashed lines have a negative initial condition Ωk(Ni) = −0.01. Blue

lines correspond to a matter-dominated universe while orange lines correspond to

a radiation-dominated universe. Right: An analogous figure to the left panel, only

now the universe is dominated by a cosmological constant. The initial condition

for the full line is Ωk(Ni) = 0.7 while the initial condition for the dashed line is

Ωk(Ni) = −0.7.

It is now clear that Ωk = 0 is an unstable fixed point for matter sources that satisfy

the SEC. For any positive initial perturbation, the system evolves towards its second

fixed point Ωk = 1, which is stable. In other words, Ωk(N) grows until it becomes

the dominant component of the Universe, making it an empty universe filled by a

negative curvature component. Conversely, for small negative initial perturbations,

the growth of Ωk(N) accelerates and ends up diverging at the moment when the

Hubble rate becomes zero, indicating a turn-around point of the scale factor. This

corresponds to a k > 0 closed universe. We have numerically solved Eq. (2.32)

and plotted the results in the left panel in Fig. 2.1. There it can be seen that the

qualitative behaviour we have described for any source with w ≥ −1/3 indeed is the

same for both matter and radiation.

The solution to both the horizon and flatness problems seems now evident: a
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Chapter 2. Acceleration in a Dynamical Universe

shrinking comoving Hubble radius

d

dt
(aH)−1 = − ä

ȧ2
< 0, (2.33)

where we have used that aH = ȧ. It is clear that the comoving Hubble radius

decreases if and only if there is accelerated expansion, which is the usual definition

of inflation. Equivalently, we can express the comoving Hubble radius in terms of

the first slow-roll parameter

ϵH ≡ − Ḣ

H2
= 1− H′

H2
, (2.34)

since
d

dt
(aH)−1 = − ȧH + aḢ

(aH)2
= −1

a
(1− ϵ). (2.35)

Thus, accelerated expansion occurs if and only if

ϵH < 1. (2.36)

We emphasize that the three conditions (aH)−1 < 1, ä > 1 and ϵ < 1 are equivalent.

More specifically, from the second Friedmann equation we can see that only matter

sources with w < −1/3 lead to an accelerated expansion. With this, the second

addend in the particle horizon in Eq. (2.25) diverges as

lim
ai→0

2

H0(1 + 3w)
a
(1+3w)/2
i = −∞ (2.37)

In other words, the initial singularity has been pushed to ηi = −∞, while

η = 0 corresponds to the end of inflation. In this way, there is now much

more conformal time between the singularity and recombination, so that all the

different CMB patches in the sky do have overlapping past lightcones. This

is also why the perturbations in the CMB seem to be correlated over acausal

distances. At sufficiently large negative conformal times all the fluctuations were

inside the horizon. As the latter decreased in size, the fluctuations exited it. Then,

after inflation, the comoving Hubble radius started growing, and the fluctuations

progressively started re-entering it (see Fig. 2.2). Today, the particle horizon is

much larger than the comoving Hubble radius.
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2.1. Inflation

In a similar way, in Eq. (2.32), if w < −1/3 then Ωk = 0 is an attractor. We

show this in the right panel of Fig. 2.1 for the case of a cosmological constant.

Therefore, whatever the initial curvature is, if inflation lasts long enough the value

of Ωk will be driven close enough to zero such that the subsequent post-inflationary

evolution does not increase it above the observational bounds.
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Figure 2.2: Comoving Hubble radius (aH)−1 (in natural units) as a function of the

number of e-foldsN = ln a/ai, with the scale factor normalised at the end of inflation

as ai = 1. We have approximated the energy density of inflation as a constant, with

a value of ρ = 10−10m4
P (GUT scale). The inclusion of the kination era increases

the number of inflationary e-folds, as given by Eq. (2.45). Nreh signals the moment

of reheating, the temperature of which has been set to Treh = 1010GeV. The recent

dark energy domination has initiated a new epoch of inflation.

We can estimate the minimum duration of the inflationary phase in order for

it solve the horizon and flatness problems [36, 37]. To this end, we need to

assume a specific post-inflationary expansion history of the Universe. Although

for times between BBN and the present the details are well known, there is a lot
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Chapter 2. Acceleration in a Dynamical Universe

of uncertainty for times between the end of inflation and BBN. This is mainly

because the period of reheating, i.e., the period during which the inflationary energy

density is transformed into the matter and radiation of the hot Big Bang, is highly

model dependent. We parametrise our ignorance by assuming that the Universe is

dominated by a perfect fluid with barotropic parameter w, so that the energy density

scales as in Eq. (2.10). Furthermore, as we will see below, the spectrum of scalar

perturbations is almost scale invariant, in support of a quasi-de Sitter expansion

during inflation. Therefore, it is a good approximation to assume that the Hubble

parameter is constant during this period.

As we mention above, the scales k that are re-entering the horizon today should

have been inside the comoving Hubble radius during inflation. This means that

(a0H0)
−1 < (akHk)

−1, where k = akHk. Notice that we are using the comoving

Hubble radius rather than the particle horizon: inflation could have started many

e-folds before the scale k left the horizon, but have no access to this information.

Comparing the scale k with the comoving Hubble radius today gives

k

a0H0

=
akHk

a0H0

=
ak
aend

aend
areh

areh
aeq

Hend

Heq

aeqHeq

a0H0

, (2.38)

where end stands for the end of inflation, reh for reheating, eq for matter-radiation

equality, 0 for the present time and we have used that Hk ≃ Hend, since H ≃

cte during inflation. Remembering that during matter domination the Hubble

parameter scales as H ∝ a−3/2, we have

aeqHeq

a0H0

=

(
a0
aeq

)1/2

=
√
1 + zeq ≃ 58, (2.39)

where we have used zeq = 3387 [8] and ignored the negligible contribution from dark

energy. The other factor can be rewritten as

aend
areh

areh
aeq

Hend

Heq

=

(
ρreh
ρend

) 1
3(1+w) Teq

Treh

V
1/2
end

ρ
1/2
eq

, (2.40)

where have used that between the end of inflation and reheating the density scales

as ρ ∝ a−3(1+w), a ∝ 1/T after reheating and the Friedmann equation H ∝ √
ρ.
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2.1. Inflation

This expression can be further simplified by taking into account that the energy

density of radiation reads

ρ =
π2g∗
30

T 4, (2.41)

where g∗ is the relativistic number of effective degrees of freedom. The result reads

aend
areh

areh
aeq

Hend

Heq

=

(
π2g∗(Treh)

30

) 1
3(1+w)

(
Treh

V
1/4
end

) 1−3w
3(1+w)

√
30

π2g∗(Teq)

V
1/4
end

Teq
. (2.42)

Using that Teq ≃ 8.2 × 10−10GeV [8], g∗(Teq) = 3.36 and g∗(Treh) = 106.75, we

obtain that the number of e-folds reads

N = ln
aend
ak

= 61.77 +
1

3(1 + w)
ln (35.12) +

1− 3w

3(1 + w)
ln

(
Treh

V
1/4
end

)
+ ln

(
V

1/4
end

1016GeV

)
(2.43)

Of course, this expression could be refined, e.g., by taking into account a more

realistic inflationary quasi-de Sitter expansion so that Hend < Hk or by not

neglecting the recent period of dark energy domination. However, for our present

purposes Eq. (2.43) is accurate enough. For example, for GUT-scale inflation

V
1/4
end ≃ 1016GeV followed by a period of perturbative reheating, for which w = 0 (see

Sec. 2.1.5 for more details on reheating) with Treh = 1010GeV, the number of e-folds

is N ≃ 58. Of course, the number of e-folds is lower the lower Treh is. Nevertheless,

the Universe has to be dominated by radiation by the time BBN commences, at a

temperature of approximately 100 keV. Therefore, we have a hard bound on the

minimum reheating temperature allowed

Treh > 0.1MeV. (2.44)

The number of e-folds with Treh = 0.1MeV and GUT-scale inflation is N ≃ 50.

This the reason why in the literature the number of e-folds is typically taken to be

between 50 and 60.

N could be significantly increased if inflation was followed by some non-

conventional period of cosmic expansion. For example, during kination (see Sec.

2.2.5 for further details on kination and quintessential inflation) w = 1. If we change
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Chapter 2. Acceleration in a Dynamical Universe

the barotropic parameter of the Universe before reheating as 0 → 1, the prefactor

of the third term in the right-hand-side of Eq. (2.43) changes as 1/3 → −1/3 (and

as 1/3 → 1/6 in the second term, although this effect is subdominant). Therefore,

the number of e-folds is increased by

∆N = −2

3
ln

(
Treh

V
1/4
end

)
. (2.45)

Choosing again Treh = 1010GeV and GUT-scale inflation gives ∆N = 9. In Fig.

2.2 we show the comoving Hubble radius as a functions of the number of e-folds

in precisely this situation. It becomes visually obvious how the existence of the

kination period increases the number of inflationary e-folds. As a final comment,

note that the increase could be as much as ∆N = 30, corresponding to Treh = TBBN,

although this situation is obviously unrealistic.

In summary, inflation solves the horizon and flatness problems, provided it lasts

long enough, i.e., longer than the number of e-folds in Eq. (2.43). As we have seen,

this happens when ϵH remains small for a sufficient amount of e-folds (around 60

according to our estimation). To this end, we define the second slow-roll parameter

ηH ≡ d ln ϵH
dN

=
ϵ̇H
HϵH

. (2.46)

Inflation occurs when ϵH < 1 and persists when |ηH | < 1, i.e., when the fractional

change of the first slow-roll parameter is small.

2.1.2 The physics of inflation: the background

The simplest way to achieve inflation is by introducing a scalar field ϕ = ϕ(t,x),

named the inflaton, with its dynamics governed by the action in Eq. (2.1) and the

inflationary sector given by

Sϕ =

∫
d4x

√
−g
[
−1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
, (2.47)

where V (ϕ) is the potential energy density of the field. Using the definition in Eq.

(2.5), the associated energy-momentum tensor reads

T (ϕ)
µν = ∂µϕ∂νϕ− gµν

[
1

2
gαβ∂αϕ∂βϕ+ V (ϕ)

]
, (2.48)
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2.1. Inflation

while the equation of motion of the inflaton reads

δSϕ
δϕ

= 0 =
1√
−g

∂µ
(√

−ggµν∂νϕ
)
− V ′(ϕ), (2.49)

where a prime in the potential represents a total derivative with respect to its

argument. Plugging in the flat FRW metric gives the Klein-Gordon (KG) equation

ϕ̈+ 3Hϕ̇− 1

a2
δij∂i∂jϕ+ V ′ = 0. (2.50)

At the background level, homogeneity and isotropy make the field a function of

time only ϕ = ϕ(t). Thus, the Laplacian term in the KG equation vanishes. Likewise,

the energy density and pressure read can be read off from the energy-momentum

tensor to be

ρ =
1

2
ϕ̇2 + V, (2.51)

p =
1

2
ϕ̇2 − V. (2.52)

The barotropic parameter of the field is defined as

wϕ =
p

ρ
=
ϕ̇2/2− V

ϕ̇2/2 + V
. (2.53)

The dynamics of the system is then determined by

ϕ̈+ 3Hϕ̇+ V ′ = 0, (2.54)

and the Friedmann equations

H2 =
1

3m2
P

(
1

2
ϕ̇2 + V

)
, (2.55)

ä

a
= − 1

3m2
P

(
ϕ̇2 − V

)
. (2.56)

Note that the latter can be derived from the other two by taking a time derivative

of the first Friedmann equation and combining it with the KG equation. From the

second Friedmann equation it follows that accelerated expansion occurs when

V > ϕ̇2. (2.57)
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It is instructive to obtain the same condition from the first slow-roll parameter.

Plugging Eqs. (2.51)-(2.52) in Eq. (2.22) gives Ḣ = −ϕ̇2/(2m2
P). Using this in Eq.

(2.34) we have

ϵH =
ϕ̇2

2m2
PH

2
. (2.58)

Imposing ϵH < 1 we recover Eq. (2.57).

We have just found that a scalar field can sustain inflation when it is the dominant

contribution to the density of the Universe and its potential energy density is larger

than (twice) its kinetic energy density. But inflation should also last long enough.

At this point it is useful to define the dimensionless acceleration per Hubble time

δH ≡ − ϕ̈

ϕ̇H
= 1− ϕ′′

Hϕ′ . (2.59)

We can then obtain an expression for the second slow-roll parameter

ηH =
ϵ̇H
ϵHH

= −2
Ḣ

H2
+ 2

ϕ̈

Hϕ̇
= 2(ϵH − δH), (2.60)

where we have used Eq. (2.58). As we explain below, slow-roll inflation is in very

good agreement with observations. The slow-roll conditions read

ϵH ≪ 1 and |ηH | ≪ 1. (2.61)

From Eq. (2.60) we see that if {ϵH , |δH |} ≪ 1 then the slow-roll conditions

{ϵH , |ηH |} ≪ 1 are satisfied. In other words, if the speed of the inflaton in field

space is small inflation takes place and if the acceleration of the inflaton is small

inflation lasts for a long time.

So far all the presented results have been exact. However, the slow-roll conditions

help simplify the equations of motion. Indeed, from δH ≪ 1 we can safely neglect

the acceleration term in the KG equation, which now reads

3Hϕ̇+ V ′ ≃ 0, (2.62)

and from ϵH ≪ 1 we can neglect the kinetic energy term in the first Friedmann,

which reduces to

H2 ≃ V

3m2
P

. (2.63)
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These approximated equations are first order ordinary differential equations and

thus easier to solve than Eqs. (2.54)-(2.55). Of course, they are more accurate the

smaller δH and ϵH are. Importantly, they can also be used to express the slow-roll

parameters solely in terms of the potential. Indeed, plugging Eqs. (2.62) and (2.63)

in Eq. (2.58) gives

ϵH =
ϕ̇2

2m2
PH

2
≃ m2

P

2

(
V ′

V

)2

. (2.64)

It is now convenient to consider the combination

δH + ϵH ≃ V ′′

3H2
+

Ḣ

H2
− Ḣ

H2
= m2

P

V ′′

V
, (2.65)

where we have taken a time derivative of Eq. (2.62) and plugged it in the definition

of δH in the first step and used Eq. (2.63) in the second step.

We are led to define the potential slow-roll parameters

ϵV ≡ m2
P

2

(
V ′

V

)2

, (2.66)

ηV ≡ m2
P

V ′′

V
, (2.67)

which are related to the Hubble slow-roll parameters via

ϵV ≃ ϵH and ηV ≃ 2ϵH − 1

2
ηH . (2.68)

If {ϵV , |ηV |} ≪ 1 then {ϵH , |ηH |} ≪ 1 are satisfied. At this point it is important

to emphasize that the potential slow-roll conditions {ϵV , |ηV |} ≪ 1 are a necessary

condition for slow-roll inflation, but they are not a sufficient. Indeed, they determine

the slope and curvature of the potential, but they have nothing to say about the

velocity of the field in field space, which could initially be very large. However, if an

inflationary solution exists, all inflationary trajectories in field space approach each

other, even exponentially fast when in the linear regime [38, 39] This means that, if a

potential has a large enough region with {ϵV , |ηV |} ≪ 1, unless the initial conditions

of the inflaton are fine-tuned with very large velocity, the inflaton will always end

up in a slow-roll trajectory. In other words, slow-roll inflation is an attractor.
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The expression for the number of inflationary e-folds is also simplified by the

slow-roll conditions. It is easy to show that it can be written as

N =

∫ tend

t∗

dtH =
1

mP

∫ ϕ∗

ϕend

dϕ√
2ϵH

≃ 1

mP

∫ ϕ∗

ϕend

dϕ√
2ϵV

=
1

m2
P

∫ ϕ∗

ϕend

dϕ
V

V ′ , (2.69)

where ϕend is the field value at the end of inflation, determined by the condition

ϵH(ϕend) = 1 (ϵV (ϕend) = 1 is a good approximation if slow-roll lasts until the end of

inflation), and ϕ∗ is the field value at which the cosmological scales that we observe

today exited the horizon.

To gain some intuition regarding the dynamics of the inflaton it is useful to note

that Eq. (2.54) resembles the equation of a particle moving in a potential V subject

to friction 3H in field space, where the coordinate is ϕ. Slow-roll inflation takes place

when the potential density is much larger than the kinetic energy. From Eq. (2.63),

we see that the larger V is, the larger the H is. This means that we can picture the

inflaton as ball rolling down a potential in which the friction is larger the higher in

the potential it is. During slow-roll, the acceleration term in the KG equation can

be neglected and the evolution of the inflaton is determined by a balance between

the slope of the potential and the friction. Of course, the inflaton evolves in a way

that tries to diminish its potential density, so at some point the friction decreases

enough, its kinetic energy grows and slow-roll inflation ceases. Inflation lasting long

enough is guaranteed by a small enough second slow-roll parameter. Indeed, if the

second derivative of the potential is small, the slope does not change much, ensuring

the inflaton stays in the region with large V for a long time.

2.1.3 The physics of inflation: from quantum to classical

So far our treatment has been at the background level, with all quantities being

a function of cosmic time only. However, although the Universe is homogeneous

and isotropic to a very high degree, it is not perfectly so, which means that

the cosmological fields need to have some spatial dependence. The way this is

usually described is via cosmological perturbation theory (see, e.g., Ref. [40] or
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Refs. [41, 42] for a review), where the metric and energy-momentum tensor are

expanded as a perturbative series around the FRW solution. In this context, the

inflaton perturbations δϕ(η,x), after being quantized, act as the initial conditions

for the subsequent hot Big Bang evolution. Indeed, the exponential expantion

during inflation stretches the perturbations δϕ(η,x) to super-Hubble scales k ≪ H,

making them classical [43, 44, 45, 46, 47, 48]. Later, after the end of inflation, when

the comoving Hubble radius starts increasing, they re-enter the causally connected

patches and act as the seeds of structure. In this section we calculate the spectrum

of these quantum fluctuations. Further details on cosmological perturbation theory

can be found in Appendix A.1.

In cosmological perturbation theory, quantities are expanded as

χ(η,x) = χ̄(η) + δχ(η,x), (2.70)

where χ(η,x) stands for any cosmological field. For example, the most general FRW

metric perturbed to first order reads [49, 50]

ds2 = (ḡµν + δgµν) dx
µdxν

= a2(η)
[
−(1 + 2A)dη2 + 2Bidηdx

i + (δij + 2Eij) dx
idxj

]
, (2.71)

where the factors of 2 have been chosen for convenience. The perturbed energy-

momentum tensor can be written as

T 0
0 = −(ρ̄+ δρ), (2.72)

T i0 = −(ρ̄+ p̄)vi ≡ qi, (2.73)

T ij = (p̄+ δp)δij +Πi
j, (2.74)

where vi is the bulk velocity (notice it is a perturbation) and we have defined the

momentum density qi and anisotropic stress Πi
j, which is traceless Πi

i = 0. Since

the spacetime dependent perturbations are much smaller than the homogeneous

background, i.e., δχ ≪ χ̄, the perturbed Einstein and continuity equations,

δGµν = δTµν/m
2
P and ∇µδT

µν = 0, approximate well the full non-linear solution.
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Chapter 2. Acceleration in a Dynamical Universe

Another important property is that scalar, vector and tensor perturbations do not

mix at linear order [32]. This allows us to treat them separately by using the

scalar-vector-tensor (SVT) decomposition [51]. Importantly1, at second order, scalar

perturbations do, in fact, act as a source for tensor perturbations [70, 71, 72, 73] (see

also Ref. [74] for a review). However, for our present purposes this is not relevant.

The first step is to identify the physical degrees of freedom. To do so it

is important to realize that perturbations generally depend on our gauge choice.

Indeed, perturbations are defined as the difference between tensors in the physical

(perturbed) spacetime and a given background spacetime, δχ(η,x) = χ(η,x)− χ̄(η).

In other words, we are comparing tensors in two different manifolds, although for

this comparison to be meaningful it should be made at the same point of a given

manifold. This is the gauge problem [49]. Thus, a prescription identifying points

in the perturbed spacetime with points in the background spacetimes needs to be

given. This is called a gauge choice. A change in this correspondence (keeping

the background coordinates fixed) is called a gauge transformation, which can be

generally written as

xµ 7→ x̃µ = xµ + ξµ(t,x). (2.75)

In order to address the gauge problem there are two possible avenues. We can

either construct gauge invariant quantities [49], i.e., quantities that remain invariant

under gauge transformations, or we can fix a specific gauge and keep track of all

perturbations.

We now give a simple example to illustrate the gauge problem. Consider a

homogeneous energy density ρ̄(η) and a change in time slicing η 7→ η̃ = η+ ξ0(η,x).

In terms of the new coordinates the density reads ρ̄(η) = ρ̄(η̃− ξ0) = ρ̄(η̃)− ρ̄′(η̃)ξ0.

We see that the energy density is no longer homogenous, having a perturbation

1Although the amplitude of the scalar perturbations is tiny at CMB scales, at small scales it

may be enhanced, leading to the production of Primordial Black Holes (PBHs). In this way, the

production of GWs would also be enhanced at such scales [52, 53, 54, 55, 56, 57, 58, 59, 60, 61,

62, 63, 64]. This has recently lead to a surge of interest [65, 66, 67, 68, 69] since the GW spectrum

may inherit the small anisotropies found in the scalar spectrum.
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2.1. Inflation

given by δρ(η̃,x) = −ρ̄′(η̃)ξ0(η̃,x). Likewise, a physical perturbation can be hidden

away by choosing an appropriate time slicing (of course, we would not actually get

rid of the perturbation, as it would reappear in the metric).

A detailed analysis on how perturbations behave under gauge transformations

can be found in Appendix A.1. With these transformation properties in hand, we

are able to count the physical scalar degrees of freedom. During inflation there

are five scalar perturbations: four coming from the metric, i.e., A, B, C and E,

and one from the inflaton, i.e., δϕ. The freedom in choosing ξ and ξ0 allows

to set two perturbations to zero. Furthermore, the Einstein equations relate the

perturbations to each other, acting as constraint equations. This allows to set

another two perturbations to zero. We are left with one physical scalar degree of

freedom.

We choose to parametrize the only scalar degree of freedom by one of the

following two important gauge invariant quantities. The first one is the curvature

perturbation on uniform density hypersurfaces [75]

ζ = −C +∇2E +Hδρ

ρ̄′
, (2.76)

called this way since it reduces to the intrinsic curvature of spatial slices in the

uniform density gauge (δρ = 0). The second one is the comoving curvature

perturbation

R = −C +∇2E −H(v +B), (2.77)

where v is the scalar part in the SVT decomposition of the velocity vi. It is called this

way since it corresponds to the intrinsic curvature of spatial slices in the comoving

gauge (v = B = 0). Both curvature perturbations are related via the linearized

Einstein equations

−ζ = R+

(
k

aH

)2
2ρ̄

3(p̄+ ρ̄)
Ψ, (2.78)

where Ψ ≡ A+H(B −E ′) + (B +E ′)′ is one of the Bardeen potentials [49]. Thus,

on super-horizon scales k ≪ aH both curvature perturbations are equal and can

be used interchangeably. Furthermore, also on super-horizon scales, they are both
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constant if the matter perturbations are adiabatic [76], i.e., if

δpen ≡ δp−
˙̄p
˙̄ρ
δρ = 0, (2.79)

where we have defined the non-adiabatic or entropy perturbation δpen. Note that

δpen is gauge invariant. This critical feature makes them the best candidate to

describe the scalar perturbations.

Let us work in the comoving gauge with

δϕ = E = 0, (2.80)

and solve for B and C by using the Einstein equations. Thus, the perturbed metric

reads (we do not consider vector perturbations as they decay exponentially during

inflation)

ds2 = a2(η)
[
−dη2 + (1− 2R)δijdx

idxj
]
, (2.81)

where we have ignored the tensorial perturbations for now. Note that in this gauge

the inflaton is unperturbed, and all scalar degrees of freedom are parametrized by

the comoving curvature perturbation R(η,x). In order to obtain the equation of

motion for the latter, we need to expand the action to second order in R. This is

a somewhat technical calculation that involves the ADM formalism [77] (see Ref.

[78] for a more didactic presentation). The full derivation can be found in Ref. [79].

The result reads

S =
1

2

∫
d4x a3

ϕ̇2

H2

[
Ṙ2 − 1

a2
δij∂iR∂jR

]
+O(R3). (2.82)

Introducing the Mukhanov-Sasaki variable2 [80, 81]

v ≡ zR, (2.83)

where

z ≡ a
ϕ̇

H
= a

ϕ′

H
= a

√
2ϵHmP, (2.84)

2Note that the Mukhanov-Sasaki variable and the scalar part of the off-diagonal components

of the perturbed energy-momentum tensor are both denoted by v. The difference between them is

obvious by the context.
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2.1. Inflation

and switching to conformal time, Eq. (2.82) can be rewritten as

S =
1

2

∫
dηd3x

[
(v′)2 − δij∂iv∂jv +

z′′

z
v2
]

=
1

2

∫
dηd3k

[
(v′k)

2 −
(
k2 − z′′

z

)
v2k

]
, (2.85)

where we have switched to Fourier space in the second step by introducing

v(η,x) =

∫
d3k

(2π)3/2
vk(η)e

ik·x. (2.86)

The conjugate momentum to the canonically normalised variable v reads

π(η,x) =
δS

δ(∂ηv)
= v′(η,x). (2.87)

Extremising Eq. (2.85) gives the Mukhanov-Sasaki equation

v′′k +

(
k2 − z′′

z

)
vk = 0. (2.88)

This is the equation for a harmonic oscillator with a time dependent frequency

ω2
k(η) = k2 + z′′/z. Let us emphasize that all the couplings between the metric

and the inflaton (to first order in perturbation theory) are contained in this simple

equation. Also note that we have dropped the vector notation k → k, since Eq.

(2.88) only depends on the modulus of the wavenumber. Finally, note that the time-

dependent part of the frequency can be written in terms of the slow-roll parameters.

Indeed, differentiating z twice in Eq. (2.84) with respect to conformal time we

obtain
z′′

z
= 2H2

[
1 + ϵH − 3

2
δH +

(
ϵH − δH

2

)
(ϵH − δH)−

δ′H
2H

]
. (2.89)

No approximations have been made, we have simply rewritten the time dependent

part in terms of ϵH and δH .

Since inflation is a period of quasi-de Sitter expansion (see below), we can analyze

the Mukhanov-Sasaki equation in the pure de Sitter limit in order to gain some

intuition. During de Sitter, the scale factor reads a(t) ∝ eHt, or, in conformal time,

a(η) = − 1

Hη
, (2.90)
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where η ∈ (−∞, 0), with minus infinity corresponding to the initial Big Bang

singularity at t = 0 and zero corresponding to the end of inflation. Note that it

is not possible for inflation to be a period of pure de Sitter expansion, since inflation

could have not ended. Using that the de Sitter limit corresponds to {ϵH , δH} → 0

in Eq. (2.89), Eq. (2.88) now reads

v′′k +

(
k2 − 2

η2

)
vk = 0. (2.91)

We can immediately identify two different limits. For modes with wavelength much

smaller than the comoving Hubble radius k−1 ≫ (aH)−1 = −η, or k|η| ≫ 1, the

Mukhanov-Sasaki becomes the equation of a massless scalar field in Minkowski space

v′′k + k2vk = 0, (2.92)

the solution of which is a superposition of plane waves

vk = c1e
−ikη + c2e

ikη. (2.93)

This makes sense, since modes deep inside the horizon do not feel the expansion of

the Universe. In the opposite limit, we have

v′′k
vk

=
z′′

z
=

2

η2
, (2.94)

which is solved by a superposition of growing and decaying modes

vk = c1η
−1 + c2η

2. (2.95)

In the super-horizon limit k|η| ≪ 1 this solution is dominated by the growing mode

vk = c1η
−1, which means that super-horizon perturbations are frozen. Indeed, using

Eq. (2.83), we have

lim
k|η|→0

Rk = lim
k|η|→0

vk
z

∝ η

η
= const. (2.96)

We conclude that Rk is constant on super-horizon scales during de Sitter expansion.

This gives a clear and intuitive picture of the evolution of the scalar perturbations

during inflation. Indeed, at sufficiently early times, many e-folds before the end
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of inflation, the scalar modes are insensitive to the expansion of the Universe and

behave as plane waves. Then, as the comoving Hubble radius shrinks, the modes

progressively exit the horizon and freeze.

However, from an analytical standpoint we can do much better. Let us now

derive the general solutions to the Mukhanov-Sasaki equation for constant slow-roll

parameters. We also work to first order in the slow-roll parameters. We start by

noting that for constant ϵH we can directly integrate Eq. (2.34) to obtain

H = − 1

(1− ϵH)η
. (2.97)

Plugging this in Eq. (2.89) we have

z′′

z
=

1

(1− ϵH)2η2
(2 + 2ϵH − 3δH) =

2 + 6ϵH − 3δH
η2

. (2.98)

It is convenient to make one further redefinition, given by

z′′

z
≡ ν2 − 1/4

η2
, where ν =

3

2
+ 2ϵH − δH . (2.99)

With this, and making the change of variables x = −kη, the Mukhanov-Sasaki

equation can be rewritten as

x2
d2vk
dx2

+

(
x2 − ν2 +

1

4

)
vk = 0. (2.100)

Finally, redefining the mode functions as vk =
√
xg, we have

x2
d2g

dx2
+ x

dg

dx
+ (x2 − ν2)g = 0. (2.101)

This is a Bessel equation, the most general solution to which is a linear combination

of Hankel functions g(x) = c1H
(1)
ν (x) + c2H

(2)
ν (x), where a Hankel function of the

first kind is given by H
(1)
ν = Jν + iYν and a Hankel function of the second kind

is given by H
(2)
ν = (H

(1)
ν )∗ = Jν − iYν . Jν and Yν are Bessel functions of the first

and second kind, respectively. Thus, the solution to the Mukhanov-Sasaki equation

reads

vk(η) =
√

−kη
[
c1H

(1)
ν (−kη) + c2H

(2)
ν (−kη)

]
. (2.102)
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To make further progress we need to quantize the theory. This is done in the

standard way, by promoting the canonically normalised variable v and its conjugate

momentum v′ to quantum operators, i.e., v → v̂ and v′ → v̂′, and imposing the

commutation relation

[v̂(η,x), v̂′(η,y)] = iδ(3)(x− y). (2.103)

Alternatively, we can promote the Fourier components of both fields to operators,

i.e., vk → v̂k and v′k → v̂′k, according to the decomposition

v̂k(η) = vk(η)âk + v∗kâ
†
−k, (2.104)

v̂′k(η) = v′k(η)âk + (v′)∗kâ
†
−k, (2.105)

where âk and â†k are annihilation and creating operators, respectively, and the mode

functions vk(η) satisfy the classical equation of motion (2.88). Note that because of

this the mode functions still only depend on the magnitude of the wavenumber, while

the ladder operators define initial conditions which might depend on direction. The

sign in the wavenumber of the creation operators in Eqs. (2.104)-(2.105) is negative

since v̂ and v̂′ are Hermitian, i.e., v̂† = v̂ and (v̂′)† = v̂′. Indeed, using Eq. (2.86),

this means that the Fourier components must satisfy v̂k(η)
† = v̂−k(η) (and likewise

for the conjugate momentum).

The ladder operators ak and a†k satisfy the usual commutation relations

[
âk, â

†
p

]
= δ3(k− p) and [âk, âp] = [â†k, â

†
p] = 0, (2.106)

if and only if the Wronskian of the mode functions satisfies the following constraint

W [vk, v
∗
k] ≡ vk(v

′
k)

∗ − v′kv
∗
k = i. (2.107)

This gives the first constraint on the integration constants c1 and c2 in Eq. (2.102).

At this point it is useful to remember that the derivatives of the Hankel functions

read

dH
(1,2)
ν (x)

dx
=

νH
(1,2)
ν (x)

x
−H

(1,2)
ν+1 (x), (2.108)
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and that their Wronskian is given by

W [H(1)
ν (x), H(2)

ν (x)] = − 4i

πx
. (2.109)

Plugging Eq. (2.102) in Eq. (2.107) then gives

|c1|2 − |c2|2 =
π

4k
. (2.110)

The second constraint, necessary to completely fix the solutions from the second

order ODE (2.88), comes from the choice of vacuum. We do this with the standard

prescription [82], which we quickly review here. For an unambiguous choice of

vacuum |0⟩, the mode functions vk(η) need to be fixed. Indeed, changing vk(η)

while keeping v̂ fixed would change ak and hence |0⟩, defined via ak |0⟩ = 0. In

Minkowski space the choice is straightforward: the mode functions vk(η) should

be selected such that the expectation value of the Hamiltonian in the vacuum is

minimized. However, this cannot be done for a general quasi-de Sitter spacetime,

where the frequency ω2
k(η) = k2 − z′′/z is time-dependent. Even if in principle

we could select the mode functions that minimize the vacuum expectation value of

the Hamiltonian instantaneously, at a given η0, the mode functions satisfying this

condition will generally be different at a later time, thereby changing the definition

of |0⟩. In order to find a solution we need to notice that at very early times, deep

inside the horizon, all modes satisfy k|η| ≫ 1. From Eq. (2.89) this means that

k2 ≫ z′′

z

1

2 + 2ϵH − 3δH + (2ϵH − δH) (ϵH − δH)−
δ′H
H

>
z′′

2z
. (2.111)

Thus, in this limit, the Mukhanov-Sasaki equation takes again the form given in Eq.

(2.92), i.e., the equation of a massless scalar field in Minkowski space. Accordingly,

we impose the initial condition3

lim
kη→−∞

vk(η) =
1√
2k
e−ikη. (2.112)

3We remind the reader that the mode function satisfying Eq. (2.92) and which minimizes the

vacuum expectation value of the Hamiltonian in Minkowski space reads vk(η) = e−ikη/
√
2k.
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This condition defines a unique vacuum, called the Bunch-Davies vacuum, as well

as a preferable set of modes. Remembering that the large argument limit of the

Hankel functions is

lim
x→∞

H(2)(x) =

√
2

πx
e−i(x−

1
2
νπ− 1

4
π), (2.113)

we can impose the Bunch-Davies initial condition in Eq. (2.102). The result reads

1√
2k
e−ikη =

√
2

π

[
c1e

−i(kη+νπ/2+π/4) + c2e
i(kη+νπ/2+π/4)

]
. (2.114)

From this, we find that c2 = 0 and c1 =
√
π/(4k)ei(νπ/2+π/4), giving

vk(η) = ei
π
4
(2ν+1)

√
π

4

√
−ηH(1)

ν (−kη), (2.115)

where ν is given by Eq. (2.99). Note that the condition (2.110) is also satisfied.

Now that the have the solution for the canonically normalised field, to first order

in the slow-roll parameters, we only need z(η) in order to find R. From Eq. (2.84)

we have
z′

z
= H (1 + ϵH − δH) =

1

η

(
1

2
− ν

)
, (2.116)

where we used Eq. (2.97) and expanded to linear order in the slow-roll parameters

in the second step. Integrating gives

z(η) = z∗

(
η

η∗

)1/2−ν

, (2.117)

where η∗ is an integration constant which can be conveniently associated with the

time of horizon crossing of the perturbations, i.e., k∗ = a∗H∗ or η∗ = −k−1
∗ , where

an asterisk denotes horizon crossing. Finally, the comoving curvature perturbation

mode functions read

Rk(η) =
vk(η)

z(η)
= eiπ(2ν+1)/4

√
π

4

(−k∗)ν−1/2

a∗
√

2ϵ∗HmP

ηνH(1)
ν (−kη), (2.118)

where, again, quantities with an asterisk are evaluated at horizon crossing.

Remembering that the small argument limit of the Hankel functions reads

lim
x→0

H(1)
ν (x) = − i

π
Γ(ν)

(x
2

)−ν
+

1

Γ(1 + ν)

(x
2

)ν
, (2.119)
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we can now take the super-horizon limit kη → 0 of the mode functions of the

comoving curvature perturbation

lim
k|η|→0

Rk(η) = eπ(2ν+1)/42
ν−1

√
π
Γ(ν)

k
−1/2
∗

a∗
√

2ϵ∗HmP

(
k

k∗

)−ν

. (2.120)

We conclude that, as for the de Sitter case (cf. Eq. (2.96)), Rk is constant

on super-horizon scales during inflation. Furthermore, it can be shown [76, 83]

that it is also constant on super-horizon scales after a general single-field slow-roll

inflationary phase. This property together with the fact that the comoving curvature

perturbation is gauge independent make it the ideal candidate to describe the scalar

spectrum from inflation. Indeed, since it becomes constant at horizon crossing

during inflation, and remains so until horizon re-entry at much later times, we can

safely ignore all the complex high-energy processes of the early Universe and make a

direct comparison between inflationary predictions and late-time observables, such

as the temperature anisotropies in the CMB.

We now compute the spectrum of inflationary perturbations, which, to linear

order, are fully determined by their 2-point correlation function. Indeed, we have

seen (cf. Eq. (2.89)) that the fluctuations follow the equation of motion of a

harmonic oscillator (with a time-dependent frequency). As we know, the wave

function corresponding to the ground state of a harmonic oscillator is a Gaussian,

and so we expect the initial inflationary perturbations to also follow a Gaussian

distribution. Because of this, all odd N -point functions vanish, while all even N -

point functions can be obtained from the 2-point function. Of course, it could be

that contributions coming from higher order terms in perturbation theory play a

role. The current observational constraints [84] for the leading order correction, or

non-Gaussianity, are compatible with zero. Although this is a promising direction

in order to learn about the microphysics of inflation, it is beyond the scope of the

present work.

We are interested in the quantum statistics of the operator

R̂(η,x) =

∫
d3k

(2π)3/2

[
Rk(η)ak +R∗

k(η)a
†
−k

]
eik·x, (2.121)
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where the mode functions Rk(η) are given by Eq. (2.118). The expectation value

of R̂ vanishes, i.e., ⟨0| R̂(η,x) |0⟩ = 0, but its variance does not

⟨|R̂|2⟩ = ⟨0| R̂(η, 0)R̂(η, 0) |0⟩ =
∫

d3k

(2π)3/2
d3p

(2π)3/2
Rk(η)R∗

p(η) ⟨0| âkâ
†
−p |0⟩

=

∫
d3k

(2π)3
|Rk(η)|2 =

∫
d ln k

k3

2π2
|Rk(η)|2 ≡

∫
d ln k∆2

R(η, k), (2.122)

where we have used the definition of the vacuum in the second step, the commutation

relations (2.106) in the third step and in the final step we have defined the

dimensionless power spectrum

∆2
R(η, k) ≡

k3

2π2
|Rk(η)|2. (2.123)

The variance of the comoving curvature perturbation is completely determined by

the modulus squared of the mode functions, which is often called the power spectrum

PR(η, k) ≡ |Rk(η)|2. (2.124)

The information contained in the power spectrum and in the 2-point function of the

perturbations is equivalent. Indeed, it is easy to see that the former is the Fourier

transform of the latter.

From Eq. (2.118), the dimensionless power spectrum of the curvature perturba-

tion reads

∆2
R(η, k) =

k3

16π

(−k∗)2ν−1

a2∗ϵ
∗
Hm

2
P

η2η
∣∣H(1)

ν (−kη)
∣∣2. (2.125)

In the super-horizon limit, using Eq. (2.120) and a∗ = k∗/H∗, we have

lim
k|η|→0

∆2
R(η, k) =

k322ν−4Γ(ν)2H2
∗k

−3
∗

π3ϵ∗Hm
2
P

(
k

k∗

)−2ν

. (2.126)

Note that the time dependence has disappeared. Using that 22νΓ(ν)2/π2 ≃ 2/π and

ν = 3/2 + 2ϵ∗H − δ∗H , we finally obtain

∆2
R(k) =

H2
∗

8π2m2
Pϵ

∗
H

(
k

k∗

)−4ϵ∗H+2δ∗H

. (2.127)

We remind the reader that inflation can only occur when {ϵH , |δH |} < 1. Therefore,

inflation generally predicts a weak scale dependence for the scalar perturbations.
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With {ϵH , |δH |} = 0, corresponding to de Sitter, we would have perfect scale

invariance. Deviations from de Sitter, needed for inflation to end, imply deviations

from scale invariance in the scalar spectrum, which are usually parametrised via the

scalar spectral index

ns − 1 ≡ −4ϵ∗H + 2δ∗H = −2ϵ∗H − η∗H , (2.128)

where we have used Eq. (2.60) and the number one is featured due to historical

reasons.

In summary, the power spectrum of the comoving curvature perturbation takes

the form of a power law given by

∆2
R(k) = As

(
k

k∗

)ns−1

, (2.129)

where the amplitude and spectral index read

As =
H2

∗
8π2m2

Pϵ
∗
H

, (2.130)

ns = 1− 2ϵ∗H − η∗H . (2.131)

The latest observational constraints [8] for these two quantities, evaluated at the

pivot scale k∗ = 0.05Mpc−1, are

As = (2.099± 0.101)× 10−9 (68%C.L.), (2.132)

ns = 0.9649± 0.0042 (68%C.L.), (2.133)

corresponding to zero or approximately zero tensors (see Figs. 2.4 and 2.5). We can

relate these results to the shape of the potential by using the slow-roll approximation,

in Eqs. (2.62)-(2.63), and relating the Hubble slow-roll parameters to the potential

ones, via Eq. (2.68). The amplitude and the tilt of the power spectrum in the

slow-roll approximation then read

As =
V (ϕ∗)

24π2m4
Pϵ

∗
V

, (2.134)

ns = 1− 6ϵ∗V + 2η∗V . (2.135)
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Observations around the pivot scale k∗ probe the shape of the potential around

the field value ϕ∗ = ϕ(t∗), where t∗ is the time at which the scale k∗ crossed the

horizon k∗ = a∗H∗. This time is usually given in terms of the remaining number of

inflationary e-folds, given by Eq. (2.69), where ϕend is determined via ϵV (ϕend) = 1.

For completeness, we also mention here the scale-dependence of the tilt, defined

as

αs =
dns
d ln k

. (2.136)

In the slow-roll approximation it reads

αs = 16ϵV ηV − 24ϵ2V − 2ξV , (2.137)

where we have defined the third potential slow-roll parameter

ξV = m4
P

V ′V ′′′

V 2
. (2.138)

The latest observational constraint [10] is

αs = −0.0069± 0.0069 (68%C.L.). (2.139)

Having dealt with the scalar perturbations, the treatment for their tensorial

counterpart is straightforward. The perturbed metric reads

ds2 = a2(η)
[
−dη2 + (δij + hij)dx

idxj
]
, (2.140)

where ∂ih
ij = hii = 0. The calculation of the action to second order in hij is

simpler than for R (for a pedagogical review see, e.g., Ref. [85]). We give a detailed

calculation in Appendix A.2. The result reads

S =
m2

P

8

∫
dηd3xa2

[
(h′ij)

2 − ∂mhij∂
mhij

]
(2.141)

=
∑
s=⊕,⊗

m2
P

4

∫
dηd3ka2

[
|hsk′|

2 − k2|hsk|
2
]
, (2.142)

where s denotes the two GW polarisations ⊕ and ⊗, and we have switched to Fourier

space in the second step by introducing

hij(η,x) =
∑
s=⊕,⊗

∫
d3k

(2π)3/2
ϵsij(k)h

s
k(η) e

ik·x , (2.143)
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where have defined a polarization tensor that satisfies (ϵs)ii = kiϵsij = 0 with the

normalization δimδjnϵsij(k)ϵ
s′
mn(k) = 2δss

′
. In this way, ϵsijh

s
k(η) describes oscillations

of a given polarization in directions perpendicular to the wave vector k.

In an analogous way to the scalar perturbations, we introduce the canonically

normalised variable

f sk =
mP√
2
ahsk, (2.144)

so that the action becomes

S =
∑
s=⊕,⊗

1

2

∫
dηd3k

[
(f sk

′)2 −
(
k2 − a′′

a

)
(f sk)

2

]
. (2.145)

This action is the sum of two copies, one for each polarization, of the same action as

for the scalar perturbations (2.85), only with z′′/z substituted by a′′/a. Extremising

it, we find that each polarization of the canonically normalised variable obeys the

following equation

(f sk)
′′ +

(
k2 − a′′

a

)
f sk = 0. (2.146)

Using Eq. (2.97), we find, to first order in the slow-roll parameters,

a′′

a
= H′ +H2 =

1

(1− ϵH)η2
+

1

(1− ϵH)2η2
=

2 + 3ϵH
η2

. (2.147)

Making again the redefinition

a′′

a
≡ µ2 − 1/4

η2
, where µ =

3

2
+ ϵH , (2.148)

and following the same steps as for the scalar perturbations, we find that the solution

to Eq. (2.146) reads

f sk(η) =
√

−kη
[
c1H

(1)
µ (−kη) + c2H

(2)
µ (−kη)

]
. (2.149)

Quantization also proceeds in a similar way. We promote f s and its conjugate

momentum f s′ to quantum operators as

f s → f̂ s(η,x) =

∫
d3k

(2π)3/2

[
f sk(η)â

s
k + f sk

∗(η)âs†−k

]
eik·x, (2.150)

f s′ → f̂ s′(η,x) =

∫
d3k

(2π)3/2

[
f sk

′(η)âsk + f sk
∗′(η)âs†−k

]
eik·x. (2.151)
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and impose the commutation relation[
f̂ s(η,x), f̂ r ′(η,y)

]
= iδsrδ(3)(x− y). (2.152)

The ladder operators satisfy the commutation relations[
âsk, â

r†
p

]
= δsrδ(3)(k− p) and [âsk, â

r
p] =

[
âsk

†, âr†p
]
= 0, (2.153)

if and only if the Wronskian of the mode functions satisfies

W [f sk , f
s
k
∗] ≡ f sk(f

s
k
′)∗ − f sk

′f sk
∗ = i. (2.154)

We again define the vacuum as the state annihilated by ask when the mode functions

satisfy the initial condition

lim
kη→−∞

f sk(η) =
1√
2k
e−ikη. (2.155)

Analogously to the scalar perturbations, we find that each polarization of the

canonically normalised field is given by

f sk(η) = ei
π
4
(2µ+1)

√
π

4

√
−ηH(1)

µ (−kη), (2.156)

where µ is given by Eq. (2.148). Of course, the metric perturbations also freeze in

the super-horizon limit. To show this, we first need to obtain the scale factor. By

integrating Eq. (2.97), we have

a(η) = a∗

(
η

η∗

)−1/(1−ϵH)

≃ a∗

(
η

η∗

)−1−ϵH
, (2.157)

where, again, starred quantities correspond to horizon crossing k∗ = a∗H∗. With

this, we find

lim
k|η|→0

hsk(η) =

√
2

mP

lim
k|η|→0

f sk(η)

a(η)
=
ei(1+ϵH)/2

mPk3/2
2ϵH

Γ(µ)

Γ(3/2)

k∗
a∗

(
k

k∗

)−ϵ

, (2.158)

where the time dependency has dropped out, as expected.

We are interested in the quantum statistics of the operator

ĥij(η,x) =
∑
s=⊕,⊗

∫
d3k

(2π)3/2
ϵsij(k)

√
2

mPa

[
f sk(η)â

s
k + f sk

∗(η)âs†−k

]
eik·x, (2.159)

38



2.1. Inflation

where the mode functions f sk(η) are given by Eq. (2.156). The expectation value of

ĥij vanishes, i.e., ⟨0| ĥij(η,x) |0⟩ = 0, but its variance does not

⟨|hµν |2⟩ = ⟨0|hij(η, 0)hij(η, 0) |0⟩ (2.160)

=
∑

s,s′=⊕,⊗

∫
d3k

(2π)3/2
d3p

(2π)3/2
δimδjnϵsij(k)ϵ

s′

mn(p)
2

m2
Pa

2
f sk(η)f

s′

p
∗(η) ⟨0| âskâs

′

−p
† |0⟩

=
∑
s=⊕,⊗

∫
d3k

(2π)3
4

m2
Pa

2
|f sk(η)|

2 =
8

m2
Pa

2

∫
d ln k

k3

2π2
|f sk(η)|

2 =

∫
d ln k∆2

h(η, k),

where we have defined the dimensionless power spectrum of the metric perturbations

∆2
h(η, k) in a completely analogous way to its scalar counterpart. Since the mode

functions for both polarizations obey the same Eq. (2.146), their contributions in

the integral are equal. This is where the extra factor of two comes from in the

fourth step. Using Eq. (2.158), the super-horizon limit of the dimensionless power

spectrum reads

∆2
h(k) =

2H2
∗

π2m2
P

(
k

k∗

)−2ϵ∗H

. (2.161)

In summary, we have found that tensor spectrum takes the form of a power law

given by

∆2
h(k) = At

(
k

k∗

)nt

, (2.162)

where the amplitude and the spectral index read

At =
2H2

∗
π2m2

P

(2.163)

nt = −2ϵ∗H . (2.164)

The observational constraints on the tensor perturbations are usually given in terms

of the tensor-to-scalar ratio, defined as

r ≡ At
As

= 16ϵ∗H = −8nt. (2.165)

The latest observational constraint [9] for this quantity, evaluated at the pivot scale

k∗ = 0.05Mpc−1, is

r < 0.036 (95%C.L). (2.166)
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Note that since As has been measured, r quantifies both the amplitude and the tilt

of the tensor perturbations. Furthermore, since r > 0, the spectrum is necessarily

red-tilted, i.e., nt < 0, meaning that the perturbations are larger at smaller scales.

We can relate Eqs. (2.163) and (2.165) to the shape of the potential by using

the slow-roll approximations. The result reads

At =
2

3π2

V (ϕ∗)

m4
P

, (2.167)

r = 16ϵ∗V . (2.168)

Detection of a primordial stochastic background of GWs, possibly via the B-

mode polarization of the CMB, is usually considered to be a smoking gun for

inflation. It would also tell us about the energy scale of inflation (at times around

horizon crossing). Indeed,

Einf ≡ ρ
1/4
inf = (3m2

PH
2
∗ )

1/4 = 4× 10−3
( r

0.01

)1/4
mP, (2.169)

where we have used Eqs. (2.163) and (2.165). Note that since Einf ∝ r1/4, we would

need a change by a factor of 104 in r to achieve an order of magnitude variation in

Einf . In order for tensor modes to be observable in the near future, with r ≃ 0.01,

inflation should have occurred at around the GUT scale Einf ≃ 1016GeV.

The tensor-to-scalar ratio is also related to the total field excursion, from the

time of horizon crossing to the end of inflation. Using Eq. (2.58) with dN = Hdt,

we can write

r =
8

m2
P

(
dϕ

dN

)2

. (2.170)

Integrating, we have

∆ϕ

mP

=

∫ N∗

0

dN

√
r

8
≃
√

r∗
0.01

∫ N∗

0

dN

60

√
r

r∗
, (2.171)

where r∗ is the tensor-to-scalar ratio at horizon crossing. Since r does not change

much during slow-roll evolution, and remembering that N∗ ≃ 60, we obtain the Lyth

bound [86]
∆ϕ

mP

= O(1)×
√

r∗
0.01

. (2.172)

Large values for r are correlated with super-Planckian field excursions.
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2.1.4 Contact with observations and inflationary model

building

As we have explained in the previous section, inflation predicts an almost scale-

invariant spectrum for the scalar and tensor perturbations. It also predicts a small

deviation from perfect scale invariance coming from the broken time-translation

symmetry required for inflation to end. This is parametrised in Eqs. (2.129) and

(2.162) via the the spectral indices ns and nt. Although tensor modes have not been

observed, from Eq. (2.164) follows that the tensor spectral index is necessarily

negative (something that may be used to distinguish inflation from alternative

theories of structure formation, such as string gas cosmology [87, 88]). This is a

priori not necessarily the case for the scalar modes, since ns depends on ηV (see Eq.

(2.135)), which may be positive or negative. However, the latest observations [8]

suggest that ns ≃ 0.97. Using the fact that the bound on the tensor-to-scalar ratio

(2.166) implies ϵ∗V ≃ ϵ∗H = r/16 < 0.002, we can conclude that concave potentials,

with ηV < 0, are favoured. Even more, after the publication of the first round of

results by Planck [89], in Ref. [90] a Bayesian study of many different models of

single-field slow-roll inflation is carried out, arriving to the conclusion that plateau-

like potentials are statistically favoured.

The power spectrum of both matter and radiation has been measured and it is

clear that the results agree with the predictions from inflation, a great success in

itself. However, “this is not what tingles our spines when we look at the data”,

as Dodelson says in Ref. [91]. Instead, it has to do with the peaks and troughs

structure in the temperature power spectrum of the CMB (see left panel of Fig.

2.3), which can only arise if all Fourier modes of the perturbations that re-enter the

horizon prior to recombination have the same phase. Inflation naturally provides a

mechanism for this to happen.

In comoving coordinates, the Fourier modes of the scalar perturbations Rk

progressively exit the horizon, and freeze when they do, as the comoving Hubble
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Figure 2.3: Temperature power spectrum (left) and TE power spectrum (right)

of the CMB, from Planck 2018. Both are shown as a function of angular scale.

The peaks and troughs structure in the left panel is a consequence of all Fourier

modes re-entering the horizon having the same phase. The anticorrelation between

temperature and polarization at 100 < l < 200 in the right panel corresponds

to scales that were outside the horizon at recombination. Since polarization is

generated before recombination, creating such a signal without inflation would

violate causality [7]. Figures taken from [8].

radius (aH)−1 decreases in size. We emphasize that after they leave the horizon

no causal physics can alter them. Then, at much later times, after inflation ends,

they again enter the horizon and start oscillating. However, since they are frozen,

they have very small R′
k when they do. Seeing Rk as a combination of sine and

cosine solutions, inflation excites the cosine only, or, in other words, all modes have

the same phase when they re-enter the horizon. As the horizon grows, modes with

smaller k re-enter earlier and have a longer time to oscillate before recombination

than those with larger k, which re-enter at later times. In this way, summing all

modes that have undergone half an oscillation before recombination, having maximal

amplitude at that moment, leads to the first peak in the power spectrum. Likewise,

summing all modes that have undergone 3/4 of an oscillation, having null amplitude,

leads to the first through of the power spectrum. And so on so forth.

It is important to emphasize that if the phases were random (and constant power
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across different scales), we would not see peaks or troughs in the CMB power

spectrum. Both the cosine and sine components of the Fourier modes would be

excited and summing all modes would lead a flat spectrum. The structure that

can be found in the left panel of Fig. 2.3 is a direct consequence of all modes that

re-enter the horizon being coherent. However, even if inflation provides a natural

mechanism for this coherence, one could still postulate another physical process to

achieve this. Indeed, the peaks and troughs are all at l > 200, i.e., at scales smaller

than one degree, meaning that they were in causal contact at recombination.

The most important piece of evidence in favour of inflation comes from the

cross correlation between temperature fluctuations and E-mode polarization of the

CMB (see the right panel in Fig. 2.3). One can find a negative correlation at

100 < l < 200, i.e., at scales larger than one degree, which were not in causal

contact at recombination. Since polarization is generated before recombination, via

Compton scattering of the radiation field, creating such a signal without inflation

would violate causality [7].

The peak structure in the temperature power spectrum of the CMB also reveals

information about isocurvature perturbations [92]. In our discussion of single-

field inflation there is only one scalar degree of freedom, which induces purely

adiabatic initial conditions. However, for more general models of inflation (such

as multi-field inflation) this is not necessarily the case. If isocurvature fluctuations

were produced, they would imprint distinctive features in the CMB spectrum

[93]. More specifically, adiabatic initial conditions generate cosine oscillation in

the pre-recombination plasma, while isocurvature initial conditions generate a since

oscillation [35]. This is incompatible with the peak structure of the temperature

power spectrum of the CMB and isocurvature perturbations are highly constrained.

For example, in the case that they are totally correlated with the adiabatic modes,

the matter isocurvature is proportional to the curvature perturbation Sm =
√
αR

[35]. The latest observational bound on the proportionally constant α is [10]

α < 0.0003+0.0016
−0.0012 (95%C.L).
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In summary, there is ample observational evidence that agrees with the most

generic instance of the inflationary picture. The power spectrum of the primordial

perturbations needs to be almost scale-invariant and all Fourier modes have to be

coherent. Inflation provides a framework where these two qualities are naturally

obtained. Furthermore, observations favor adiabatic initial conditions and small

levels of non-Gaussianity. This makes sense if we are to believe the single-field

slow-roll picture. Indeed, single-field models generate zero isocurvature modes.

Furthermore, slow-roll typically happens in a flat region of the potential, so the

self-interactions of the field are small. If this is the case, the linearised equation

of motion, which takes the form of that of a harmonic oscillator, is a good

approximation. But the wavefunction associated with the ground state of a harmonic

oscillator is a Gaussian, so it is expected that the statistics of the initial perturbations

also follow a Gaussian distribution.

Perhaps the aspect of this picture that is most lacking has to do with the

microphysics of inflation, which is still a mystery. To improve our understanding

in this respect, the detection of primordial tensor modes and non-Gaussianities are

two very promising directions. The former because, if detected, will tell us about

the energy scale of inflation. The latter because, even if small, non-Gaussianities are

related to the inflaton self-interactions. In any case, at present there exists a plethora

of models that agree with observations (see Figs. 2.4-2.5), something that has been

a source of criticism (although many other models have been discarded thanks to

ever-improving observations). Better or worse motivated, the strategy that is usually

followed in inflationary model building is to calculate the inflationary observables ns,

As, r and αs, evaluated at horizon crossing, in the slow-roll approximation, to then

compare them with the observational data. In order to exemplify this procedure,

we give here the specific examples of chaotic inflation [94] and power-law inflation

[95].

We start with chaotic inflation. Let the potential be

V (ϕ) = V0

(
ϕ

mP

)n
, (2.173)
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Figure 2.4: Marginalized joint 68% and 95% C.L. regions for ns and r at k =

0.002Mpc−1 from Planck alone and in combination with BK15 or BK15+BAO data,

compared to the theoretical predictions of a few inflationary models. αs = 0 is

assumed. Note that this figure is dated, as the tensor-to-scalar ratio has been

further constrained to r < 0.036 [9] since its publication (see Fig. 2.5). Figure taken

from Ref. [10].

where V0 is some constant density scale. Using Eqs. (2.66)-(2.67) we have

ϵV =
n2

2

(
mP

ϕ

)2

, and ηV = n(n− 1)

(
mP

ϕ

)2

. (2.174)

Inflation ends when the condition ϵV (ϕend) = 1 is met, which means that ϕend =

mPn/
√
2. Plugging this and the first slow-roll parameter in Eq. (2.69) we obtain

the field as a function of the number of e-folds

ϕ(N) =
√
2nmP

√
N +

n

4
. (2.175)

Combining this with Eq. (2.174), the inflationary observables in the slow-roll

approximation read

ns = 1− n+ 2

2
(
N + n

4

) , (2.176)
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Figure 2.5: Constraints in the r-ns plane for the Planck 2018 baseline analysis (green

contours), and when also adding BICEP/Keck data (blue contours). The constraint

on r is tightened to r < 0.036. The purple region corresponds to natural inflation.

Figure taken from Ref. [9].

r =
4n

N + n
4

, (2.177)

As =
V0

m4
P12π

2n2

[
2n
(
N +

n

4

)]−n/2−1

. (2.178)

The first two can be combined to give the consistency relation

r =
8n

n+ 2
(1− ns). (2.179)

Using ns ≃ 0.965 and r < 0.036 in this expression gives

n < 0.3. (2.180)

However, plugging Eq. (2.180) in Eq. (2.176) with ns ≃ 0.965 gives that the

number of inflationary e-folds is N < 32.8, which is hard to achieve, unless the

period of primordial inflation is followed by subsequent periods of thermal and fast-

roll inflation [27]. In any case, the historically celebrated models with n = 2 and
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n = 4 are observationally excluded. This can also be seen from Figs. 2.4-2.5, where

the predictions for n = 2/3, 1, 4/3, 2 are represented. They all lie above the marginal

value r = 0.036.

The potential for power-law inflation is given by

V (ϕ) = V0e
−λϕ/mP . (2.181)

The KG equation for this potential has the following exact solution [27]

ϕ(t) = −mP

λ
ln

[
2(6− λ2)

λ4V0

(mP

t

)2]
. (2.182)

It follows that the Hubble parameter reads

H(t) =
1

mP

√
3

√
1

2
ϕ̇2 + V (ϕ) =

2

λ2t
. (2.183)

Integrating this expression we obtain the scale factor

a(t) ∝ t2/λ
2

, (2.184)

which shows that for an exponential potential the inflationary expansion follows

a power-law behaviour, rather than quasi-exponential. The Hubble slow-roll

parameters can also be directly obtained from Eq. (2.183) as

ϵH = − Ḣ

H2
=
λ2

2
, and ηH =

ϵ̇H
ϵHH

= 0. (2.185)

This means that inflation occurs for

ϵH < 1 ⇔ λ <
√
2. (2.186)

The same condition for λ can be obtained from the barotropic parameter

wϕ =
ϕ̇2/2− V (ϕ)

ϕ̇2/2− V (ϕ)
=
λ2

3
− 1, (2.187)

by imposing wϕ < −1/3. However, since ϵH = const. inflation can never end, unless

the model is augmented, e.g., by adding another field with a hybrid mechanism [96].
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Even then, the predictions of power-law inflation are in conflict with observations.

Indeed, the scalar spectral index and the tensor-to-scalar ratio read

ns = 1− λ2, and r = 8λ2. (2.188)

Using ns ≃ 0.965 gives λ ≃ 0.19, which implies that r ≃ 0.28, clearly incompatible

with the observational bound in Eq. (2.166).

In the original research in Chapter 4 we consider a quintessential inflation model

with an inflationary sector governed by the potential in Eq. (2.173). By adding

an R2 term to the gravitational action, and working in the Palatini formalism, we

are able to rescue chaotic inflation with 2 < n < 4 by bringing it back within

observational bounds. In the same spirit, in the original research in Chapter 5 we

rescue the also discarded exponential potential, although the setup is slightly more

complicated.

2.1.5 Reheating

In the discussion made so far we have ignored the elephant in the room: the Universe

is filled with the particles of the SM, dark matter and dark energy. Even if the

inflaton is responsible for the current acceleration of the Universe (an intriguing

possibility that will be studied at length in this thesis), there still needs to be

a mechanism that transforms the inflationary energy density into the matter we

observe today4. Such a process is called reheating. In this section we start by

quickly reviewing the canonical example of perturbative reheating to then comment

on gravitational reheating [97]. Ricci reheating [98, 99] is discussed in Chapter 5.

Although other mechanisms exist such that the inflaton is allowed to survive until

the present, as instant preheating [100], we focus on these two since they are the

ones used in the original research in Chapters 4 and 5. Reheating is generally highly

4An exception is quintessential inflation (or, more generally, non-oscillatory inflation), where

the inflaton survives until the present day to account for dark energy observations. In this case,

reheating needs to take place via other means (see Sec. 2.2.5)
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Figure 2.6: Field evolution in the Starobinsky potential [11]. The field values ϕ∗

and ϕend correspond to the perturbations observed in the CMB and to the end of

inflation, respectively. After inflation ends the field oscillates around the minimum

of the potential and pertubatively reheats the Universe.

model dependent and it is a very active area of research. An in depth analysis

is beyond the scope of the present work. We refer the interested reader to Refs.

[101, 102, 103, 104, 105] for reviews.

In the canonical scenario, as the field ϕ rolls along the potential, the latter

becomes progressively steeper so that the kinetic energy of the field becomes more

and more important. Inflation ends when the condition ϵH(ϕend) = 1 is met and

after that ϕ oscillates the around the minimum located at ϕ0 (in Fig. (2.6) ϕ0 = 0),

where V (ϕ0) = 0 (or else the Universe would engage in a new bout of inflation).

Such a homogeneous oscillating field can be thought of as a collection of massive

particles, i.e., inflatons, with zero momenta (if V ′′ = const. > 0). If the Lagrangian

of the inflaton has a coupling to another field5, the collections of inflatons will decay

5Here we assume only one coupling for simplicity, but of course there could be many.
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into this field, with decay rate Γ. The equation of motion of the inflaton then reads

ϕ̈+ (3H + Γ)ϕ̇+m2ϕ = 0, (2.189)

where we have Taylor expanded the potential around its minimum V ′(ϕ) ≃

V ′′(ϕ0)(ϕ − ϕ0) ≡ m2ϕ and introduced the phenomenological term Γϕ̇. This is

the equation of motion of a damped harmonic oscillator. Since over the timescale

of a few oscillations, the Hubble parameter does not change much, we can use the

ansatz

ϕ ∝ exp

{∫
dt λ(t)

}
, (2.190)

leading to

λ(t) =
−3H − Γ

2
± im, (2.191)

where we have taken into account that the regime of interest is that of an under-

damped oscillator, with (3H + Γ)2 < 4m2. Thus, the solution can be written as

ϕ(t) = Φ(t) sin (mt+ c), (2.192)

where

Φ(t) ∝ exp

{
−1

2

∫
dt (3H(t) + Γ)

}
, (2.193)

and c is a constant phase determined by initial conditions. The kinetic and potential

energy density of the field immediately follow

ρkin =
ϕ̇2

2
=

1

2

[
Φ̇(t) sin (mt+ c) + Φ(t)m cos (mt+ c)

]2
, (2.194)

V (ϕ) =
m2ϕ2

2
=

1

2
Φ2(t)m2 sin2 (mt+ c). (2.195)

Noting that over one oscillation Φ(t) is basically constant, the averages per oscillation

are also easily obtained

ρkin = V (ϕ) =
1

4
Φ2(t)m2. (2.196)

Furthermore, in this limit, the first term in the brackets in Eq. (2.194) can be

neglected so that the total energy density reads

ρϕ =
1

2
Φ2(t)m2 = 2ρkin = 2V (ϕ). (2.197)
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This approximation is not as accurate over many oscillations, when the expansion of

the Universe changes the Hubble factor appreciably. The continuity equation may

now be obtained by noting

ρ̇ϕ =
d

dt

(
1

2
ϕ̇2 + V

)
= ϕ̇(ϕ̈+ V ′) = −ϕ̇2(3H + Γ), (2.198)

where we have used Eq. (2.189) in the last step. Using Eq. (2.197), on average

ϕ̇2 = 2ρkin = ρϕ, so that we finally obtain

ρ̇ϕ + (3H + Γ)ρϕ = 0. (2.199)

The solution to this equation reads

ρϕ = ρendϕ

(aend
a

)3
e−Γ(t−tend), (2.200)

where we have assumed that Γ is constant and tend is the time at which inflation

ends. We can distinguish two different regimes. For Γ ≪ H, ρϕ ∝ a−3. Thus, the

energy density of an inflaton oscillating around a quadratic potential decreases as

pressureless matter6. As time grows, the Hubble parameter H(t) = 2/(3t) decreases

and when H ∼ Γ the decay products grow faster than they can be diluted by the

Universe expansion. Finally, when Γ ≫ H, the Hubble friction term in Eq. (2.199)

is negligible, the energy density of the inflaton decays exponentially fast ρϕ ∝ e−Γt

and reheating is completed. As a side comment, it could be that Γ ≳ Hend. This

case is called prompt reheating and the duration of this period is negligible.

From the discussion above it is clear why the reheating epoch affects the number

of inflationary e-folds and therefore the inflationary observables. Indeed, different

reheating mechanisms lead to different expansion histories during this period. This

of course changes the amount of elapsing e-folds from the end of inflation until the

present time, which, in turn, changes the number of e-folds before the end of inflation

6In general, a field oscillating in a power-law potential V ∝ |ϕ|2n has a barotropic parameter

given by wϕ = (n− 1)/(n+1) [106]. The quadractic potential case, with n = 1, gives the expected

matter-like barotropic parameter wϕ = 0, while for a quartic potential, with n = 2, we have a

radiation-like barotropic parameter wϕ = 1/3.
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at which the CMB scales left the horizon, in order to match the observations today

(see Fig. 2.2).

As we have said, while Γ < H, the Universe is dominated by a coherently

oscillating inflaton condensate, with a matter-like barotropic parameter w = 0.

Then, when Γ ∼ H the inflaton particles start decaying efficiently, a process which

is fast since at the end, when Γ > H the energy density of the inflaton decays

exponentially fast. Thus, it a fair approximation to say that reheating occurs when

Γ ≃ Hreh. Using the first Friedmann equation and Eq. (2.41) we find that the

reheating temperature, defined as the temperature of the thermalised radiation bath

at the moment when it becomes the dominant component of the Universe, reads

Treh =

(
90

π2g∗

)1/4√
mPΓ ≃

√
mPΓ, (2.201)

where we have used that g∗ ≲ 100. The decay rate Γ may take different forms

depending on the interaction terms in the Lagrangian. For example, a fermionic

coupling of the form

Lint = −hϕψ̄ψ, (2.202)

where ψ is a generic fermionic field and h is a dimensionless coupling constant, leads

to a decay rate given by [107]

Γϕ→ψ̄ψ =
h2m

8π
. (2.203)

Considering GUT-scale inflation V
1/4
end ∼ 1016GeV, and noting that at the end

of slow-roll inflation 1 = |ηend| ⇒ m ≡
√
V ′′
end ≃

√
Vend/mP (where we have

Taylor expanded around the minimum of the potential), we have that the reheating

temperature is Treh ∼ h× 1015GeV.

Let us finish our discussion on perturbative reheating by mentioning that so

far we have considered decays of individual inflaton particles into other fields.

However, the inflaton condensate may act a coherent whole, leading to parametric

resonance effects. This non-perturbative decay is called preheating [108] and results

in explosive decay. In turn, if the decay particles decay fast enough, the mechanism
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is called instant preheating [100]. If (instant) preheating, takes place it is usually

much more efficient than perturbative reheating, so it is important to take it into

account. However, if the inflaton is not significantly coupled to any other field

in the Lagrangian, reheating proceeds via gravitational reheating [97], which does

not require the existence of any extra dynamical degree of freedom other than the

inflaton, or via Ricci reheating, which does.

Gravitational reheating can be heuristically understood by first noting that

the cosmological horizon during accelerated expansion is an event horizon. Then,

following a similar reasoning to the one that leads to the Hawking temperature of

the black body radiation emitted by black holes [109], one finds that during de Sitter

expansion a thermal bath of particles with temperature

T =
H

2π
(2.204)

is generated. In the case of black holes, creation and annihilation of virtual pairs

close to the event horizon can lead to one member of the pair to fall into the black

hole. But be cause of this, annihilation is no longer possible, resulting in the other

member of the pair becoming a real particle, escaping to infinity. The case of

inflation is similar. Virtual pairs are pulled apart over to acausal distances by

the accelerated expansion of the Universe, before they have a chance to annihilate.

In other words, they become real particles. This process occurs everywhere and

therefore all space is filled with Hawking radiation.

All non-conformally invariant light (m < H) fields gravitationally produce

particles. Combining Eqs. (2.41) and (2.204), their energy density is [97]

ρgr = q
π2g∗
30

(
H

2π

)4

≃ 10−2H4, (2.205)

where we have introduced an efficiency factor q ∼ 1 since the spectrum is not exactly

thermal and g∗ ∼ O(100) is the effective non-conformally invariant relativistic

degrees of freedom of the gravitationally produced particles.

In most cases, ρgr is negligible compared to the energy density of radiation

generated via other reheating mechanisms. However, if the inflaton survives until
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the present day and there are no other dynamical degrees of freedom, so that instant

preheating or Ricci reheating cannot occur, it is the only viable mechanism for the

generation of the Hot Big Bang radiation bath. In order for gravitational reheating

to be efficient enough, so that GWs are not overproduced during kination enough

to violate BBN bounds (see below), g∗ ≳ 300 is required.

2.2 Dark Energy

Having dealt with the physics of the very early Universe, we now turn our attention

to the present day. As is discussed in the introduction of this chapter, conventional

matter satisfies the SEC and so decelerated expansion would be a priori expected.

In order to have accelerated expansion, the energy density of the Universe needs

to be dominated by a component with barotropic parameter w < −1/3 (see Eq.

(2.21)). This is the case of inflation, a period of accelerated expansion at very early

times that could be sourced by a scalar field with energy density dominated by its

potential. However, after the end of inflation, with the horizon and flatness problems

solved, as well as with the initial perturbations that seed all structure provided for,

the expectation was that the Universe would have been decelerating until the present

day. This is why the discovery [110, 111] that the Universe has recently started to

accelerate again came in as a shock (although it solved the cosmic age problem).

The substance responsible for the acceleration of the Universe was called dark

energy (DE), a term coined by Michael S. Turner [112], reflecting its mysterious

nature. Although since its discovery many mechanisms have been proposed

attempting to explain it (for a review see Ref. [113]), they all have to satisfy the

most up-to-date constraints on the density parameter and barotropic parameter,

which are [8]

Ωde = 0.6889± 0.0056 (68%C.L.), (2.206)

wde = −1.028± 0.031 (68%C.L). (2.207)

Importantly, the constraint in Eq. (2.207) assumes that dark energy has been
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2.2. Dark Energy

constant throughout the history of the Universe. However, this need not be the

case and deviations from this behaviour can be parametrized as a function of the

scale factor as (with the normalization at present a(t0) = 1)

wde(a) = w0 + (a− 1)
dw

da

∣∣∣
0
≡ w0 + (1− a)wa, (2.208)

in what is called the Chevallier-Polarski-Linder (CPL) parametrization [114, 115]

and we have defined wa ≡ dw/da|0. Note that Eq. (2.208) is simply a Taylor

expansion of w(a) around the present time a(t0). Assuming this parametrization,

the constraints now read [8]

w0 = −0.957± 0.080 (68%C.L) (2.209)

wa = −0.29+0.32
−0.26 (68%C.L.). (2.210)

Note that wa, also known as the running of the barotropic parameter, is compatible

with zero. Future experiments, such as the recently launched EUCLID [116] may be

able to resolve this uncertainty shedding light on the nature of dark energy. Finally,

imposing the restriction w0 > −1, as is the case for quintessence, leads to [8]

−1 < w0 < −0.95 (68%C.L.). (2.211)

The CMB temperature power spectrum also reveals information about the

critical density today, and, thus, about the energy density of dark energy. Indeed, the

Planck 2018 results [8] indicate that the Hubble parameter at present is (including

BAO)

H0 = 67.66± 0.42
km

s ·Mpc
= (5.912± 0.037)× 10−61mP (68%C.L.), (2.212)

where we have switched to natural units in the second step. This means that the

critical density today is

ρ0c = 1.048× 10−120m4
P. (2.213)

Combining this with Eq. (2.206) gives the energy density of dark energy today

ρ0de = 7.222× 10−121m4
P. (2.214)
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2.2.1 ΛCDM

The first solution one might think of when addressing the nature of dark energy is

having it correspond to a positive cosmological constant (see [117, 118, 119, 120] for

reviews). Indeed, there is the freedom of adding Λgµν , where Λ is a constant, to the

Einstein equations. From the point of view of the action this amounts to writing

S =
m2

P

2

∫
d4x

√
−g (R− 2Λ) . (2.215)

This action is, in fact, the most general covariant one that can be written in terms

of the metric and its first and second derivatives. Equivalently, the new term may

be thought as a source in the energy momentum tensor given by Tµν = −m2
PΛgµν .

Of course, its conservation ∇µT
µν = 0 is still satisfied. Since the energy density is

constant, ρΛ = m2
PΛ, its continuity equation leads to

wΛ = −1. (2.216)

The modified Friedmann equations read7

H2 =
ρ

3m2
P

+
Λ

3
, (2.217)

ä

a
= − 1

6m2
P

(ρ+ 3p) +
Λ

3
. (2.218)

It is clear that the cosmological constant acts as a negative pressure pΛ = −m2
PΛ

and therefore has a repulsive effect. As long as it is the dominant component of the

Universe, the expansion will be accelerated.

7The cosmological constant was originally introduced by Einstein in order to obtain a static

universe. Reinstating the spatial curvature term in Eq. (2.217), it is easy to see that a universe

dominated by dust (p = 0), with energy density ρ = 2m2
PΛ and curvature k = Λa2 is static.

Furthermore, since ρ > 0, the cosmological constant is also positive, which means that the universe

is closed k > 0. However, after the discovery that the Universe is, in fact, expanding [121],

Einstein was forced to drop the cosmological constant term in what he called “my biggest blunder”

(according to George Gamow [122]).
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2.2. Dark Energy

The assumption that dark energy, which accounts for about 69% of the energy

budget of the Universe, is a cosmological constant, together with the density

parameters of matter and radiation [8] at present

Ωm = 0.3111± 0.0056 (68%C.L.), (2.219)

is called ΛCDM or the concordance model. From the totality of matter in the

Universe, only 15.8% is baryonic, while the rest corresponds to cold dark matter

(CDM). In other words, 95% of the total of the energy density of Universe

corresponds to unknown substances!

2.2.2 The Cosmological Constant Problem

We have a measurement for the critical energy density, and we know what proportion

of the Universe corresponds to dark energy, so we could claim the cosmological

constant has been observed. Unfortunately, when one starts taking into account the

different contributions from fundamental physics that could act as a cosmological

constant, things do not go as planned. In this section we comment on these

contributions and lay out what is known as the cosmological constant problem

[123, 124].

Classically, there exist two contributions. The first one is of course the

cosmological constant Λ that is allowed in the Einstein equations. However, there is

no preferred choice for what its value might be. The second one has to do with the

energy density of the different fields that exist in the Universe. Take, for simplicity,

a scalar field with energy-momentum tensor given by Eq. (2.48). The lowest energy

configuration is one where the kinetic energy of the field vanishes while the field is

lying at the minimum of its potential

Tµν = −V (ϕ0)gµν , (2.220)

where ϕ0 is the field value at which V ′(ϕ0) = 0. There is a priori no reason for

the potential to vanish at the minimum and therefore a term like (2.220) acts as
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an effective cosmological constant. All in all, classically, the energy density of the

effective cosmological constant reads

ρΛ = m2
PΛ + V (ϕ0), (2.221)

where the last term should be interpreted as the sum of the potential densities of

all the relevant fields.

In quantum theory, a field may be thought as an infinite collection of harmonic

oscillators in momentum space. As in non-relativistic quantum mechanics, these

oscillators have a zero-point energy and the sum of all of them in principle gives

the energy density of the vacuum8. More specifically, taking again a scalar field for

simplicity, the Hamiltonian reads

H =

∫
d3k

(2π)3

√
k2 +m2

(
a†kak +

1

2
(2π)3δ(3)(0)

)
, (2.222)

where m is the mass of the field. As we learn in quantum field theory courses,

the divergence coming from the delta function can be dealt with by working with

energy densities rather than absolute energies. This is because in a finite volume

(2π)3δ(3)(0) is simply the volume. Therefore, the energy density of the vacuum reads

ρvac =
⟨0|H |0⟩

V
=

1

2

∫
d3k

(2π)3

√
k2 +m2 =

∫
dk

(2π)2
k2
√
k2 +m2, (2.223)

where in the second step we have switched to spherical coordinates in momentum

space. However, the theory is in general only valid until some ultraviolet momentum

kmax. Introducing this cutoff in the integral (2.223), i.e., discarding high-momentum

modes, we have

ρvac =

∫ kmax

0

dk

(2π)2
k2
√
k2 +m2 ≃ 1

16π2
k4max, (2.224)

where we have taken into account that the integral is dominated by the modes close

to the cutoff. In quantum field theory this energy is typically discarded (by normal-

ordering) under the grounds that we can not measure absolute energies: we can

8Vacuum energy was first experimentally measured by Casimir [125].
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only measure differences in energy. However, the situation changes when gravity

is included, as any kind of energy contributes to the gravitational interactions.

Choosing kmax to be the Planck scale, where quantum gravity effects are expected

to become relevant, gives

ρvac ≃
m4

P

16π2
∼ m4

P, (2.225)

where in the last step we have gotten rid of the numerical pre-factor as it depends

on the specific field theory under consideration and we expect contributions to the

vacuum energy from all the SM fields.

Comparing Eq. (2.225) with the experimental value of the density of dark energy

in Eq. (2.214), we find that the theoretical contribution is many orders of magnitude

larger than the experimental value. Taking also into account the bare cosmological

constant Λ, it could be that they all cancel out to give the precise value in Eq.

(2.214), but they would need to do so with a precision of 60 significant digits in

energy (the dimensions of Λ are [Λ] = E2). This is the cosmological constant

problem [123].

In the present work we take the approach that due to some unknown symmetry,

all contributions to the cosmological constant cancel out (as was routinely assumed

before the observation of dark energy). In this way, dark energy needs to be

explained via other means. In our case, it will be quintessence.

2.2.3 An Interlude: The Hubble tension

The Planck CMB measurements suggest a value for the Hubble parameter today

given by Eq. (2.212). This value is not only at odds with the vacuum energy density

expected from theoretical considerations, as detailed in the last section. For very

different reasons, it is also at odds with local measurements (although the difference

in magnitude is much less dramatic), in what is called the Hubble tension [126]. More

generally, the Hubble tension may be defined as the discrepancy between the locally

measured and cosmologically inferred values for the expansion rate today H0 (for

reviews on the Hubble tension see, e.g., Refs. [127, 128, 129, 130, 13, 131, 132, 133]
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and Refs. [13, 134] for a focus on the different models that have been proposed to

explain it). Let us first start by elucidating the difference between both.

Obtaining H0 involves the measurement of cosmological distances. These

measurements are difficult to carry out, although not impossible. The strategy

that is often followed is to take advantage of either standard candles, i.e., objects of

known intrinsic brightness, or standard rulers, i.e., objects of known size. With the

former, comparing the measured flux of light with the theoretical value and taking

into account the FRW geometry of the Universe as well as the redshift of light, one

can infer the distance to the source. As for the latter, if an object has a known

size, e.g., the typical separation between hot and cold spots in the CMB, it can be

compared to the observed angular size, which depends on distance.

More specifically, for local measurements, i.e., with redshift z < 1, one can

Taylor expand the scale factor around the present time t0 to second order in the

look-back time |t− t0|

a(t) = 1 +H0(t− t0)−
1

2
q0H

2
0 (t− t0)

2, (2.226)

where we have used the normalization a(t0) = 1 and q0 ≡ −ä(t0)/(a(t0)H2
0 ) is the

deceleration parameter today. The redshift then reads

z =
1

a
− 1 = H0(t0 − t) +

1

2
(q0 + 2)H2

0 (t0 − t)2. (2.227)

On the other hand, from the flat FRW metric (2.20), the radial comoving distance

reads

x(t) = c

∫ t0

t

dt

a(t)
= c

∫ t0

t

dt [1−H0(t− t0)] = c(t0 − t) +
cH0

2
(t0 − t)2, (2.228)

where we have reinstated the speed of light c. Noting that Eq. (2.227) can be

inverted to give H0(t0 − t) = z− z2(2+ q0)/2 and plugging this in Eq. (2.228) gives

the comoving distance as a function of redshift

x(z) =
c

H0

[
z − 1

2
(1 + q0)z

2

]
. (2.229)
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But, of course, we do not measure comoving distances. Rather, when using the

method of standard candles, the useful definition of distance is that of luminosity

distance

dL ≡ (1 + z)x =
c

H0

[
z +

1

2
(1− q0)z

2 +O(z3)

]
. (2.230)

Since the measured flux of light coming from, e.g., a Type Ia supernova (SN Ia), is

given by

F =
L

4π2d2L
, (2.231)

where L is the (known) luminosity, i.e., energy radiated per unit of time, relative

distances are easily obtained simply by measuring the brightness of different SN Ia.

This, in turn, leads to the determination of the deceleration parameter by using

Eq. (2.230). Note, however, that H0 drops out of the calculation. Indeed, in

order to obtain the expansion rate we need to measure absolute distances. This

can be done by constructing a distance ladder, starting with distances that can

be directly resolved by using parallax to then move to larger distances by using

Cepheid variables and SN Ia. Cepheids are bright (∼ 105 solar luminosities) stars

with brightness that changes periodically. In turn, this period is correlated with

their intrinsic brightness, due to the κ-mechanism, where the opacity κ of the gas

depends on its temperature [135]. The most recent implementation of this technique

by the SH0ES team yields a value for the expansion rate at present given by [136]

H0 = 73.04± 1.04
km

s ·Mpc
, (2.232)

and

H0 = 73.30± 1.04
km

s ·Mpc
, (2.233)

when including high-redshift SN Ia from the Pantheon+ data [137]. This value

disagrees at 5σ with the one obtained by the Planck collaboration (see below). Of

course, there are other values obtained by a variety of experiments, although all

early-time indirect measurements, such as CMB or BAO, which assume ΛCDM,

agree between themselves, and likewise for all the late-time ΛCMD-independent

measurements, such as distance ladders or strong lensing (see Fig. 2.7).
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Figure 2.7: Constraints on H0 coming from different cosmological probes (at 68%

C.L.). Figure adapted from Ref. [12] (which is based on Refs. [13, 14]).
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The value of the Hubble constant can also be inferred from cosmological

observations. The most notable example comes from the peak structure in the

angular power spectrum of the temperature anisotropies of the CMB (see Fig. 2.3).

The multiple moment ls of the first acoustic peak is tightly related to the angle

subtended by the sound horizon at last scattering θs. In fact, the latter has been

very precisely determined by Planck to be [8]

θs = (1.04109± 0.00030)× 10−2 rad. (2.234)

Since θs is small we can work in the small angle approximation to write

θs =
rs
DA

, (2.235)

where rs is the comoving sound horizon at last scattering and DA is the comoving

angular diameter distance to the surface of last scattering. The former is given by

rs =

∫ ∞

zls

cs(z)dz

H(z)
=

∫ ∞

zls

c dz√
3Hls

√
Ωm,ls(1 + z)3 + Ωr,ls(1 + z)4

, (2.236)

where zls = 1089.95± 0.27 [8] is the redshift of last-scattering, cs(z) ≃ c/
√
3 is the

sound speed of the photon-baryon fluid and Ωm,ls and Ωr,ls are the density parameters

at last scattering of matter and radiation, respectively. Here, the Hubble parameter

at last scattering is given by

H2
ls = H2

0

[
Ωm,0(1 + zls)

3 + Ωr,0(1 + zls)
4
]
, (2.237)

where we have omitted the contribution from dark energy as it is negligible at zls.

The comoving angular diameter distance is given by

DA =

∫ zls

0

c dz

H(z)
=

c

H0

∫ zls

0

dz√
Ωm,0(1 + z)3 + (1− Ωm,0)(1 + z)3(1+w)

, (2.238)

where we have assumed wCDM and neglected the contribution from radiation, since

the integral is dominated by its lower limit. For ΛCDM, w = −1. Combining, Eqs.

(2.235)-(2.238) we have

H0 =
√
3θsHls

∫ zls
0

dz√
Ωm,0(1+z)3+(1−Ωm,0)(1+z)3(1+w)∫∞

zls

dz√
Ωm,ls(1+z)3+Ωr,ls(1+z)4

. (2.239)
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It should be noted that, strictly speaking, this is an implicit equation forH0. Indeed,

in the right-hand-side, the quantities Ωm,0 ≡ ωm/h
2 and Ωr,0 ≡ ωr/h

2 depend on h =

H0/(100 km s−1Mpc−1)9. Furthermore, the density parameters at last scattering are

related to their counterparts evaluated at present time via a simple rescaling, so they

also depend on H0. In practice, however, all unknown cosmological parameters are

obtained simultaneously by numerically fitting the ΛCDM model to the data. The

value for the Hubble parameter obtained by the Planck collaboration using this

method is [8] (excluding BAO)

H0 = 67.36± 0.54
km

s ·Mpc
. (2.240)

This implies a 8% discrepancy with respect to the value obtained by the SH0ES

collaboration [136] (see Eq. (2.232)) at a confidence level of 5σ.

Although determining H0 via Eq. (2.239) is heuristic, it is a good approximation

and it serves well to gain some intuition regarding solutions to the Hubble tension.

Indeed, although ωm and ωb carry an h dependence, they mainly depend on the

characteristics of the CMB power spectrum and, in fact, it has been found [127]

that the fractional change of the Hubble parameter with these quantities is mild,

∆H0/H0 ≃ 0.1∆ωb/ωb and ∆H0/H0 ≃ −0.77∆ωm/ωm. Then, for example, the

value of the Hubble parameter can be increased by increasing the number of

additional relativistic degrees of freedom Neff . This is because Hls in the numerator

of Eq. (2.239) depends on Ωr,0, which, in turn, depends on the photon density

parameter Ωγ,0 via the relation

Ωr,0 =

[
1 +

7

8
Neff

(
4

11

)4/3
]
Ωγ,0. (2.241)

In ΛCDM we have Neff = 3.06 coming from the three neutrino mass eigenstates

[138]. However, if Neff were increased it would lead to a higher Hls and therefore to

a larger H0.

9Although we have used the approximation cs ≃ c/
√
3, cs(z) depends on Ωb ≡ ωb,0/h

2, i.e.,

the baryonic density parameter at present, so it indirectly depends on H0.
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2.2.3.0.1 Solving the Hubble tension

Assuming that the Hubble tension is not due to unknown systematic errors, its

resolution calls for the introduction of new physics [139, 140, 141, 142]. Since

local measurements of the Hubble constant are largely model independent, most

theoretical attempts involve the introduction of new physics, beyond the ingredients

of ΛCDM, such that the value of H0 inferred from CMB measurements is increased.

Looking at Eq. (2.239), these can be classified in early-time and late-time solutions,

depending on whether they change the denominator or the numerator of this

expression, respectively. Early-time solutions usually involve an increase in the

energy density before recombination such that the comoving sound horizon at last

scattering is decreased. For example, increasing Neff is an early-time solution.

Late-time solutions require that the energy density between recombination and

the present time is smaller than in ΛCDM, with the constraint that the current

energy density is fixed [143], i.e., ρ(z)/ρ0 < ρ(z)/ρ0|ΛCDM, such that the comoving

angular diameter distance to the last scattering surface is increased. Since the

redshift scaling of matter and radiation are known, this can be achieved by

introducing an exotic component with energy density that increases with time.

A popular candidate has been a phantom field [144] with barotropic parameter

w = p/ρ < −1 and, more specifically, dark energy with a phantom crossing

[145, 146, 147]. However, these models not only imply a violation of the dominant

energy condition (DEC), but lead to discrepancies in the sound horizon seen from the

galaxy correlation function [132, 148], as well as with constraints on the barotropic

parameter of dark energy coming from high-redshift SNe Ia data [137]. Other

possible late-time solutions include a vaccuum phase transition [149, 150, 151, 152] or

interacting dark energy [153, 154]. Late-time solutions, which seem to be disfavoured

[155, 156], are beyond the scope of the present work, so we do not further comment

on them.

One of the most promising early-time solutions for the Hubble tension is EDE,

a name coined in Ref. [157] (see also Refs. [158, 159, 160] for early works). The
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nature of EDE is well described by its name: it simply is a subdominant dark energy

component in the early Universe. In Ref. [161] it was first suggested that EDE

might alleviate the Hubble tension, but it was soon realised that the analysis was

too simplistic and another model that fully resolves the tension was proposed in Ref.

[162]. Since then, EDE in the context of the Hubble tension has become a very active

area of research (see, e.g., Refs. [163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173,

174, 175, 176, 162, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190]

for a non-comprehensive list).

EDE provides an increase to the energy density before recombination, leading to

a smaller comoving sound horizon at last scattering and therefore to a larger value for

H0 inferred from the CMB. It usually contributes ∼ 10% to the total energy density

for a brief time, to then quickly redshift away, leaving the subsequent evolution of

the Universe unchanged. More specifically, EDE is generally modelled as a frozen

scalar field ϕ that becomes dynamical at redshift zc, when its density parameter

is fzc ≡ Ωϕ(zc)/Ωtot(zc). In most of its successful realizations, ϕ then undergoes

oscillations, with its energy density decaying faster than radiation. Models are

parametrized by three quantities: zc, fzc and the effective sound speed c2s.

Of course, EDE is highly constrained by the peak structure of the angular power

spectrum of the CMB temperature anisotropies (see Fig. 2.3). Indeed, although

the multiple moment of the first peak is related to scales corresponding to last

scattering, the highest multiple moments, with ls ∼ 3000, correspond to scales the

re-entered the horizon at redshifts z ∼ 106, deep inside the radiation dominated era

and well before equality. Constraints vary depending on the specific model under

consideration. However, it is usual to find zc ≃ zeq and 0.015 ≲ fzc ≲ 0.107, so that

the contribution of EDE is enough to solve the tension while not impeding structure

formation. By last scattering, the density parameter should already be fzls < 0.015.

It has been argued [133, 191] that upcoming ground-based measurements of

the CMB, e.g., by the SPT and ACT collaborations or the Simmons Observatory,

providing independent measurements of intermediate angular scales and extending
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those of small scales, may uniquely probe EDE, possibly discarding it as a viable

model. However, if the evidence in favor of EDE became stronger, connecting it

with “late” DE would be one of the most pressing questions.

A toy model attempting to unify EDE and late DE is given in the original

research in Chapter 7. There, a scalar field with a non-minimal kinetic term,

in the context of α-attractors, acts as EDE to then free-fall with energy density

ρ ∝ a−6 and freeze. At late times the field becomes dominant and accounts for

the DE observations. Furthermore, it may even be possible to have the scalar

field be responsible for the period of cosmic inflation in the early Universe, as in

quintessential inflation [15].

2.2.4 Quintessence

After our digression into the Hubble tension, we return to the topic of dark energy.

In Sec. 2.2.2 we explained the extreme fine-tuning problem associated with a

cosmological constant, in what is called the cosmological constant problem. Our

approach in the present work is to ignore this issue by assuming that, due to some

unknown symmetry, all contributions to the cosmological constant cancel out. Dark

energy then needs to be explained via other means.

Among the plethora of proposed mechanisms, we focus on, arguably, the simplest:

a scalar field (see Ref. [113] for a review). And among the plethora of available scalar

field models10 we focus again on, arguably, the simplest: quintessence [208, 209] (see

also Ref. [210] and Ref. [211] for a review).

Quintessence is defined as a scalar field ϕ governed by the action

Sϕ =

∫
d4x

√
−g
[
−1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
. (2.242)

This is the same action as the one we introduced for the inflaton in Eq. (2.47). Thus,

the analysis given in Sec. 2.1.2 regarding the background dynamics directly applies

10A non-comprehensive list includes chameleon fields [192, 193], k-essence [194, 195, 196],

modified gravity [197, 198, 199], Chaplygin gas [200, 201, 202], tachyons [203, 204], Phantom

Dark Energy [144], the Cyclic Universe [205] and Ghost Condensates [206, 207].

67



Chapter 2. Acceleration in a Dynamical Universe

here, with the caveat that during inflation the dominant component of the energy

density is the inflaton. After the hot Big Bang, the Universe goes through periods

of radiation and matter domination, during which the quintessence field needs to be

subdominant, until it comes to dominate at the present time. Therefore, in order

to correctly study the dynamics of quintessence we need to study the dynamics of a

subdominant scalar field.

The Friedmann equations are modified as

H2 =
1

3m2
P

[
1

2
ϕ̇2 + V (ϕ) + ρb

]
, (2.243)

and

Ḣ = − 1

2m2
P

[
ϕ̇2 + (1 + wb)ρb

]
, (2.244)

where ρb is the density of a background perfect fluid with barotropic parameter

wb = pb/ρb and b is label standing for the possible different components, such as

pressureless dust or radiation. The energy density ρϕ and pressure pϕ of the field

remain as in Eqs. (2.51)-(2.52). Both the field and the background perfect fluid

obey continuity equations

ρ̇ϕ + 3Hρϕ(1 + wϕ) = 0, (2.245)

where wϕ = pϕ/ρϕ, and

ρ̇b + 3Hρb(1 + wb) = 0. (2.246)

The solution to Eqs. (2.243) and (2.246) in the case of a subdominant field

ρϕ ≪ ρb reads

ρb(a) ∝ a−n ⇒ a(t) ∝ t2/n ⇒ H(t) =
2

nt
, (2.247)

where, for convenience n ≡ 3(1+wb). With this, the KG equation takes the following

form

ϕ̈+
6

nt
ϕ̇+ V ′(ϕ) = 0. (2.248)

Let us obtain the potentials V (ϕ) that allow the density evolution of the field to

be

ρϕ ∝ a−m, (2.249)
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where m is a constant. Note that the power of the scaling behaviour of quintessence

is bounded as 0 ≤ m ≤ 6. The cases m = 0 and m = 6 correspond to the limiting

cases of potential and kinetic domination, with wϕ = −1 and wϕ = 1, respectively.

Furthermore, the scaling in Eq. (2.249) requires that the ratio of the kinetic density

of the field and its total density remains constant. This can be easily seen by taking

a time derivative of ρϕ and combining it with the KG equation to obtain

ρ̇ϕ = −3Hϕ̇2. (2.250)

Dividing this expression by ρϕ and noting that, from Eq. (2.249), ρ̇ϕ/ρϕ = −mȧ/a

we find
ϕ̇2/2

ρϕ
=
m

6
. (2.251)

We now can also find the time dependence of ϕ̇. Combining Eq. (2.251) with Eqs.

(2.247) and (2.249) gives

ϕ̇(t) ∝ t−m/n. (2.252)

Plugging this back in the KG equation it is straightforward to integrate for V (ϕ)

[209, 212].

Let us first focus on the m = n case. Integration of Eq. (2.252) gives

ϕ(t) =
2mP

λ
ln t/t0, (2.253)

and

t(ϕ) = t0e
λϕ/(2mP), (2.254)

where we have chosen the integration constant by convenience. Plugging Eq. (2.253)

in the KG equation gives

2mP

λ

(
6

n
− 1

)
1

t2
+ V ′(ϕ) = 0. (2.255)

Plugging Eq. (2.254) in Eq. (2.255) and integrating gives the exponential potential

V (ϕ) =
2m2

P

λ2t20

(
1− 6

n

)
e−λϕ/mP . (2.256)

69



Chapter 2. Acceleration in a Dynamical Universe

In the current limit of a subdominant field ρϕ ≪ ρ, this potential gives rise to

a scaling behaviour for the field such that its energy density mimics that of the

background. We prove this by showing that the density parameter of the field is

constant as well as by obtaining wϕ. First, combining (the time derivative of) Eq.

(2.253) and Eq. (2.256) we find the energy density of the field to be

ρϕ =
1

2
ϕ̇2 + V (ϕ) =

12m2
P

nλ2t2
. (2.257)

The energy density of the background can be obtained from the Hubble parameter

in Eq. (2.247) via the Friedmann equation as

ρ =
12m2

P

n2t2
. (2.258)

Thus,

Ωϕ =
ρϕ
ρ

=
n

λ2
=

3(1 + wb)

λ2
, (2.259)

which is constant. Then, combining (the time derivative of) Eq. (2.253) and Eq.

(2.257) we find

ϕ̇2/2

ρϕ
=
n

6
. (2.260)

Plugging this back in Eq. (2.251) gives

wϕ = wb, (2.261)

as we wanted to show. Note that in order for the process of BBN not to be disturbed,

the contribution of the field to the energy budget of the Universe should be small

enough. The bound reads [27]

Ωϕ(tBBN) < 0.045, (2.262)

which combined with Eq. (2.259) (and wb = 1/3) leads to

λ > 9.4. (2.263)

It is clear that, in the regime under consideration, it is not possible for a field

rolling along an exponential potential to behave as dark energy. Not only its density
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remains a constant fraction of the total, but its barotropic parameter is that of the

background and therefore can never fulfill the requirement for accelerated expansion

wϕ < −1/3, much less the observational bound wϕ < −0.95.

We have obtained the only potential that can give rise to the scaling behaviour

in Eq. (2.249), with n = m. However, the KG equation is non-linear and there is

no guarantee that given an exponential potential the field with generally follow the

assumed scaling solution. In other words, the phase-plane analysis of the system

should be carried out. This was first done in Refs. [213, 214], where it is found

that the solution we have obtained is indeed an attractor, for λ2 > 3(wb + 1).

Furthermore, there is another attractor for λ2 < 3(wb+1) where the energy density

of the field dominates the Universe Ωϕ = 1. Since in this dominant attractor the

barotropic parameter of the field is given by Eq. (2.187), accelerated expansion can

only occur for λ2 < 2.

Is it possible for exponential quintessence to successfully describe dark energy?

The scaling attractor is very attractive (no pun intended!) from a model-building

point of view, since given any initial conditions the field stays subdominant, while

having a constant non-negligble contribution to the total density, mimicking the

scaling of the background. However, precisely for this reason, the field can never

lead to accelerated expansion with wϕ < −1/3. On the other hand, the dominant

attractor corresponds to total domination of the field. This means that, since Ωde ≃

0.69, at present the field should have not reached this attractor yet, but be in

the transition between both attractors. Following this reasoning, in Ref. [215], T.

Barreiro, E. J. Copeland and N. J. Nunes proposed the potential

V (ϕ) = V1e
αϕ/mP + V2e

βϕ/mP , (2.264)

where V1 and V2 are constant density scales and α ≫ β. Therefore, at early times

the first term dominates over the second, while the opposite is true at late times.

In this way, the field follows the scaling attractor during the radiation and matter

domination eras, while towards the present it transitions to the dominant attractor.

From the BBN constraint in Eq. (2.263) we have α > 9.4, while V1 is basically a free
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parameter, since the scaling regime does not depend on the density scale. As for the

second exponential, we can impose the observational constraint for quintessence in

Eq. (2.211) to obtain β < 0.39, while the mass scale V2 should be comparable to the

critical density today V2 ∼ 10−120m4
P, in order for the transition between attractors

to happen close to the present, with V (ϕ0) = Ωdeρ0. Of course, this corresponds to

the same amount of fine-tuning as for ΛCDM, tarnishing the nice logic behind the

mechanism.

Finally, exponential quintessence could also work if the field overshoots both

attractors with λ ≪
√
2, transiently freezing to then unfreeze close to the present

time and approach the dominant attractor. This scenario is called thawing

quintessence. However, here one needs to give up the idea of an attractor as the

initial condition, i.e., the value ϕF at which the field freezes accounting for the

critical density today V (ϕF) = Ωdeρ0, needs to be explained.

In the original research in Chapter 5 we consider a quintessential inflation model

with a quintessential sector governed by the exponential potential (2.256), in the

context of modified gravity in the Palatini formalism. The inclusion of a running in

the coupling constant ξ of the non-minimal coupling between the field and gravity

ξϕ2R [82] generates a minimum in the potential at large field values. When the field

reaches this minimum, it essentially behaves as an effective cosmological constant,

accounting for dark energy. In this way, we are able to utilise the exponential as a

successful quintessence potential in a novel way, without using either the scaling or

the dominant attractors.

We now focus on the m ̸= n case. Integration of Eq. (2.252) gives

ϕ

ϕ0

= B

(
t

t0

)1−m/n

, (2.265)

and
t

t0
=

(
ϕ

Bϕ0

)n/(n−m)

, (2.266)

where ϕ0 is an arbitrary field value, t0 is an arbitrary time value, the integration

constant B is dimensionless and we have set the other integration constant to zero
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A = 0 since it leads to a potential that does not satisfy the constraint in Eq. (2.251).

The KG equation now reads

t−2
0 Bϕ0

(
1− m

n

)( 6

n
− m

n

)(
t

t0

)−(n+m)/n

+ V ′(ϕ) = 0. (2.267)

Plugging Eq. (2.266) in Eq. (2.267) and integrating gives the power-law potential

V (ϕ) = t−2
0 (Bϕ0)

2

[
2

q(q − 2)

](
6

n
+

q

2− q

)(
ϕ

Bϕ0

)q
, (2.268)

where

q ≡ 2m

m− n
. (2.269)

The power of the potential is positive q > 0 for m > n. In this case, the density of

quintessence diminishes faster than that of the background. Conversely, a negative

power q < 0, first investigated in Refs. [209, 216], corresponds to m < n, and the

density of the field diminishes slower than that of the background. Solving for m in

Eq. (2.269) gives

m =

(
q

q − 2

)
n. (2.270)

It follows that if q is positive then it must be q > 2, since both m and n are positive.

For negative powers, all values are allowed q < 0.

It is straightforward to fix the integration constant B. We simply use Eq. (2.270)

in Eq. (2.265) to rewrite the field as

ϕ

ϕ0

= B

(
t

t0

)2/(2−q)

. (2.271)

It is also important to note that given a potential V (ϕ) = V0ϕ
q, the constant

potential density V0 in front of the V ′ term in the KG equation can be absorbed

into a rescaling of time t 7→ t̂(t) =
√
V0t. With this, and plugging Eq. (2.271) in

the KG equation (2.248), we obtain

B =

[
1

q

(
2

q − 2

)(
6

n
− q

q − 2

)]1/(q−2)

. (2.272)

Finally, noting that
(
t−2
0 ϕ2−q

0

)1/(4−q)
has dimensions of mass, we rewrite the potential

as

V (ϕ) =M4−qϕq, (2.273)
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whereM is a mass scale. For negative values of q, this is typically called the inverse-

power-law potential.

We have now derived all potentials that lead to a scaling solution of the field

given by ρϕ ∝ a−m, assuming that the background scales like ρ ∝ a−n. However, as

we have commented for the exponential potential, the attractor structure should be

analysed out in order to find out how general these scaling solutions are. This was

first done in Ref. [217] for negative q and n = 3, 4 and in Ref. [212] for arbitrary q

and arbitrary n. For q < 0, it turns out that the scaling solution is an attractor if

q < 2

(
6 + n

6− n

)
. (2.274)

Since n is positive, this condition is always satisfied and scaling solutions are

attractors for all q < 0. Conversely, for q > 0 we have an attractor if

q > 2

(
6 + n

6− n

)
. (2.275)

Thus, during matter domination, with n = 3, the scaling solution is an attractor as

long as q > 6. During radiation domination the condition is q > 10.

Although positive power-law potentials are used in other contexts, such as in

EDE (see the discussion towards the end of Sec. 2.2.3) or inflation, they are not

so relevant in the context of dark energy. This is because they lead to a scaling

behaviour for the field with m < n, i.e., the energy density of the field diminishes

faster than that of the background, a property that is not desirable since dark

energy needs to approach domination towards the present time. Negative power-

law potentials are a priori better equipped to describe dark energy as they lead to

a similar field evolution as for positive power-law, only with m > n, so that the

density parameter of quintessence grows with time. However, precisely because of

this reason, there is a certain amount of tuning in these models. This has to do with

the fact that for the BBN process not to be disturbed, the density parameter of the

field at that time should satisfy [27] Ωϕ(tBBN) < 0.045. For the exponential potential,

the mass scale of the potential is unaffected by this bound, as the only condition

for the field to follow the scaling attractor is on the strength of the exponential
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λ. If λ is large enough, not only the field follows the scaling attractor, but its

density parameter is small (see Eq. (2.259)). This is not so in inverse-power-law

quintessence, for which the scaling solution is an attractor irrespective of the value q

takes. Therefore M should be appropriately tuned. Related to this issue is the fact

that the field should be starting to dominate at the present time. An estimate for

the corresponding field value can be calculated by noting that the density of the field

catches up with the background fluid when its mass squared becomes comparable

to the Hubble parameter (also known as the coincidence constraint)

ρϕ
ϕ2
0

≃ d2V

dϕ2
= m2

ϕ ≃ H2 ≃ ρϕ
m2

P

, (2.276)

which means that the value of the field at present is of the order of the Planck mass

ϕ0 = O(mP). (2.277)

Since V (ϕ0) ≃ Ωdeρ0 ≃ 10−120m4
P (see Eq. (2.214)), we obtain the mass scale

M ≃ 10−120/(4−q)mP. (2.278)

For example, if q = −4, we have M ≃ 103GeV, close to the electroweak scale. It

seems the severe fine-tuning of ΛCDM is alleviated.

There is a more serious problem when considering the barotropic parameter of

the field. From Eqs. (2.268) and (2.271), after a bit of algebra, it is straightforward

to obtain

wϕ =
qwb + 2

q − 2
=

|q|wb − 2

|q|+ 2
. (2.279)

For a background dominated by pressureless dust, with wb = 0, the observational

constraint wϕ < −0.95 leads to

|q| < 0.1, (2.280)

which, from Eq. (2.278) leads to M ≃ 10−12GeV, a mass scale difficult to find

in particle physics. We conclude that trying to explain dark energy via inverse-

power-law quintessence in the scaling attractor leads to an amount of fine tuning

comparable with ΛCDM.
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However, Eq. (2.279) has been calculated under the assumption that the field

is subdominant ρϕ ≪ ρ. Since the field is beginning to dominate at present, it is

reasonable to expect it to be undergoing slow-roll in its potential. In this regime,

the barotropic parameter reads [27]

wϕ =
q2m2

P − 6ϕ2

q2m2
P + 6ϕ2

. (2.281)

Imposing the constraint wϕ < −0.95 at present gives ϕ0 > 2.55|q|mP, which is

consistent with our estimation in Eq. (2.277) for reasonable values of q. Of course,

the field is neither in the scaling nor in the dominant attractor, but transition

between both. However, as mentioned above, the scenario where the scaling

attractor brings the field to dominate today is not feasible due to the amount of

fine-tuning involved. In contrast, it could be that the field overshoots the attractor,

transiently freezing to later unfreeze close to the present time and approach the

dominant attractor. In this scenario, just as we explained for the λ ≪
√
2 case

in exponential quintessence, the idea of an attractor has to be given up and the

initial condition for the field, i.e., the value ϕF at which the field freezes, needs to

be explained. Again, this behaviour is called thawing quintessence.

In the original research in Chapter 4 we consider a quintessential inflation model

with a quintessential sector governed by the potential in Eq. (2.273). On top of

the ingredients described so far, we add an R2 term to the gravitational action and

work in the Palatini formalism. We obtain successful dark energy in the scenario

of thawing quintessence, for q = 4 and a mass scale close to the electroweak scale,

which are rather natural values.

2.2.5 Quintessential Inflation

In the previous section we found that, although it is possible to endow quintessence

models with attractor properties, it is generally hard to successfully satisfy the

observational constraints on dark energy without either giving up the idea of an

attractor or including an amount of fine-tuning comparable to ΛCDM. For example,
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the scenario of thawing quintessence does not seem to lead to unreasonable amounts

of fine-tuning on the parameters. However, the value ϕF at which the field freezes

becomes a free parameter. It seems the fine-tuning has reappeared via the initial

conditions of the field. But, what if we could explain the value ϕF?

Quintessential inflation is a framework that identifies the inflaton and quintessence

scalar fields11. In principle this is a natural idea, since in both cases the acceleration

of the Universe is driven by a potential-dominated scalar field. In its original

form, proposed by P. J. E. Peebles and A. Vilenkin [15] in 1999 (see Refs.

[220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236,

237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254,

255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 16, 269, 270, 271,

272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283] for a non-comprehensive

list of successful quintessential inflation models and Refs. [284, 285] for reviews),

the potential reads (see left panel in Fig. 2.8)

V (ϕ) =

λ(ϕ
4 +M4), ϕ < 0

λM8

ϕ4+M4 , ϕ ≥ 0

, (2.282)

whereM is a constant mass scale and λ is the self-coupling of the inflaton. For large

negative values of the field |ϕ| ≫M the potential reduces to quartic chaotic inflation,

which, as we described by the end of Sec. 2.1.4, is discarded by observations,

unless, e.g., the gravitational action is extended with an R2 term in the Palatini

formalism (see Chapter 4 for further details). Conversely, for large positive values

of the field ϕ≫M , the potential reduces to quartic inverse-power-law quintessence.

As described in the previous section, the attractor properties of this potential

cannot be utilised and we are basically left with a thawing quintessence scenario.

However, the situation is now different. Crucially, due to the identification of the

inflaton and quintessence fields, the value at which the field freezes ϕF is not a free

parameter anymore, but is given by a combination of the inflationary attractor and

the mechanism that generates the radiation of the hot Big Bang. We show this, but

11The idea of unifying inflation and quintessence can be traced back to Refs. [218, 219].
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in order to do so we first need to understand the dynamics of kination, a new period

of expansion of the Universe typical of quintessential inflation.
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Figure 2.8: Left: Original Peebles-Vilenkin potential [15] (see Eq. (2.282)) in

arbitrary units. Quartic chaotic inflation has been discarded by observations, so

the model is no longer valid. Right: Typical quintessential inflation potential, in

arbitrary units. It features an inflationary plateau, which is observationally favoured.

Kination, a name coined in Ref. [286], takes place after the end of inflation, as

the potential becomes very steep. It was first considered as a means of terminating

inflation in Ref. [287] and later as a source for a strongly first-order electroweak

phase transition that could enhance baryogenesis in Ref. [288]. During this period

the energy density of the Universe is still dominated by that of the inflaton field. The

defining property is that the inflaton becomes kinetically dominated, oblivious to

the potential. Importantly, as a consequence, the properties of the kination period

are model-independent. The total energy density of the Universe ρ reads

ρ = ρϕ =
ϕ̇2

2
⇒ H =

ϕ̇√
6mP

. (2.283)

It immediately follows that the barotropic parameter (see Eq. (2.53)) is w = 1.

Since the field still obeys its continuity equation, it follows that its energy density

scales as

ρ = ρϕ ∝ a−6. (2.284)
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Using Eq. (2.283), the KG equation during kination reads

ϕ̈+

√
6

2mP

ϕ̇2 = 0. (2.285)

Assuming that the start of kination happens at the end of inflation, this expression

can be readily integrated between then until some arbitrary time during kination to

obtain
1

ϕ̇
− 1

ϕ̇end

=

√
6

2mP

(t− tend) , (2.286)

where “end” stands for the end of inflation. If kination lasts long enough, i.e., if

t ≫ tend, then, since ϕ̇ ∝ a−3, it is a good approximation to use that ϕ̇end ≫ ϕ̇(t).

With this and integrating Eq. (2.286) we obtain

ϕ(t) = ϕend +

√
2

3
mP ln

(
t

tend

)
. (2.287)

Of course, even if the inflaton survives until the present day, the Universe needs

to be somehow reheated, e.g., via gravitational reheating [97], Ricci reheating [98,

99, 289], curvaton reheating [290, 291], instant preheating [100, 228], primordial

black hole evaporation [267] or in the context of warm quintessential inflation [272].

Here we assume this is the case, without choosing one specific mechanism. Since the

radiation density scales slower (ρr ∝ a−4) than the field density (ρϕ ∝ a−6), it will

at some point become dominant. We call this moment reheating. After reheating,

since H = 1/(2t), the KG equation reads

ϕ̈+
3

2t
ϕ̇ = 0. (2.288)

Integrating this expression from reheating until some later time during the radiation

domination epoch, we obtain

ϕ̇ = ϕ̇reh

(
treh
t

)3/2

=

√
2

3

mP

√
treh

t3/2
, (2.289)

where “reh” stands for reheating and in the second step we have evaluated the time

derivative of Eq. (2.287) at reheating in order to obtain ϕ̇reh. Integrating again we

find

ϕ(t) = ϕreh + 2

√
2

3
mP

(
1−

√
treh
t

)
. (2.290)
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It is obvious that for times t≫ treh, the field freezes at a value given by

ϕF = ϕreh + 2

√
2

3
mP. (2.291)

We can express ϕreh as a function of the field value and the density parameter of

radiation, both at the time at which radiation is generated. The latter is usually

referred to as the reheating efficiency. As we say above, we assume that reheating

happens via some unspecified mechanism. Let the moment at which radiation is

created be trad, with tend < trad < treh. We can integrate Eq. (2.285) between trad

and treh twice to obtain

ϕreh = ϕrad +

√
2

3
mP ln

(
treh
trad

)
, (2.292)

where we have assumed that ϕ̇reh ≪ ϕ̇rad, as before. The ratio treh/trad can be

estimated by using that the density of parameter of radiation Ωr during kination

scales as

Ωr =
ρr
ρ

∝ a−4

a−6
= a2. (2.293)

Since at reheating the dominant component of the Universe is radiation, we then

have

1 = Ωreh
r = Ωrad

r

(
areh
arad

)2

= Ωrad
r

(
treh
trad

)2/3

, (2.294)

where in the last step we have used that during kination a ∝ t1/3. Thus,

treh
trad

=
(
Ωrad

r

)−3/2
. (2.295)

Putting everything together, the value at which the field freezes reads

ϕF = ϕrad +

√
2

3

(
2− 3

2
lnΩrad

r

)
mP. (2.296)

Note that the smaller Ωrad
r is, the larger ϕF is. Indeed, smaller values of the reheating

efficiency mean that radiation takes longer to dominate. Since the field starts slowing

down after radiation becomes dominant, it has a longer time to free-fall and freeze

at larger values.
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As an example, for gravitational reheating trad = tend. In this case, the value

at which the field freezes is given by the inflationary attractor and the reheating

efficiency

ϕF = ϕend +

√
2

3

(
2− 3

2
lnΩend

r

)
mP, (2.297)

where “end” stands for the end of inflation. For prompt reheating, with Ωend
r = 1,

the field transverses the lowest possible distance in field space, given by

ϕF = ϕend + 1.63mP. (2.298)

The opposite is true for gravitational reheating, the most inefficient of all reheating

mechanisms. For GUT-scale inflation, the reheating efficiency reads Ωend
r ≃ 10−13

(see below), leading to

ϕF = ϕend + 36.82mP. (2.299)

Needless to say, due to these super-Planckian field displacements, quintessential

inflation generically suffers from the same problems that plague quintessence (see

end of Sec. (2.2.4)).

The existence of the kination period also increases the number of inflationary

e-folds. According to our result by the end of Sec. 2.1.1, the increase with respect

to, e.g., a period of an oscillating condensate with w = 0 is

∆N = −2

3
ln

(
Treh

V
1/4
end

)
. (2.300)

We can estimate the maximum allowed value for the total number of e-folds if

inflation is followed by kination, by using Eq. (2.43). For this, we need to consider

the lowest possible reheating temperature, coming gravitational reheating.

Combining Eq. (2.205) with the Friedmann equation at the end of inflation

gives the density parameter of the gravitationally produced radiation at the end of

inflation

Ωend
r =

ρr(tend)

ρ(tend)
=

10−2H4
end

3m2
PH

2
end

≃ 10−2

(
Hend

mP

)2

. (2.301)

Since the density parameter of radiation during kination scales as Ωr ∝ a2, we have

aend
areh

=
√
Ωend

r ≃ 10−1Hend

mP

, (2.302)
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where we have used that Ωreh
r = 1. With this, and using again Eq. (2.205), the

radiation density at reheating reads

ρr(treh) = ρr(tend)

(
aend
areh

)4

≃ 10−6H
8
end

m4
P

. (2.303)

Combining this with Eq. (2.41), we finally obtain the reheating temperature of the

gravitationally produced radiation

Treh = 10−2H
2
end

mP

≃ 10−2

3

Vend
m3

P

, (2.304)

where we have used that for gravitationally produced radiation g∗ ∼ 102 and the

slow-roll approximation. Plugging this in Eq. (2.43) gives

N = 64.26− 1

3
ln

(
V

3/4
end

m3
P

)
+ln

(
V

1/4
end

1016GeV

)
= 64.26+ln

( mP

1016GeV

)
= 70. (2.305)

We conclude that the usual 50-60 e-folds of inflation considered in the literature in

the canonical case is raised to 60-70 e-folds if inflation is followed by kination.

To end our discussion of quintessential inflation, we address one last consequence

of the existence of the period of kination, having to do with the overproduction

of GWs. Briefly put, the density parameter of GWs during kination is inversely

proportional to scale. Therefore, we expect that GW modes that re-enter the

horizon soon after inflation ends to have a large contribution to the energy density,

possibly challenging BBN. In what follows we give a summarised account of this

phenomenom, leaving most technical details to Appendix A.3. We emphasize that

this problem is unique to the period of kination, while the problems associated with

a super-Planckian ϕF are also ubiquitous in most models of quintessence.

The quantity we need to consider is the spectral energy density of the primordial

GW background, defined as

ΩGW(k, η) ≡ 1

ρ(η)

dρGW(k, η)

d ln k
, (2.306)

where ρ(η) is the total energy density of the universe and dρGW(k, η) is the

contribution to ΩGW(k, η) from the tensor modes in the interval d ln k. In the
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literature, Eq. (2.306) is typically evaluated at present, and we simply write

ΩGW(k) ≡ 1

ρc

dρGW(k, η0)

d ln k
. (2.307)

Since the energy density of the tensor modes reads (see Chapter 6 for a full

derivation)

⟨ρ̂GW⟩ ≃
∫
k=aH

d ln k

π2

k4

a4
|α−|2, (2.308)

where α− are the coefficients that multiply the negative frequency modes, Eq.

(2.307) can be rewritten as

ΩGW(k) =
1

ρc

k4

π2a4(η0)
|α−|2. (2.309)

This equation can be simplified even further by noting that the energy density of

radiation scales as

ρr(η) = ρr(ηend)a
−4(η) = Ωend

r ρenda
−4(η), (2.310)

where we have used the normalization condition a(ηend) = 1 at the end of inflation.

Thus,

ΩGW(k) =
Ω0

r

ρendΩend
r

k4

π2
|α−|2. (2.311)

The basic method we use in order to obtain the coefficients α−, after imposing the

Bunch-Davies vacuum as an initial condition, is to match the mode functions and

their derivates at the transitions between the different cosmological epochs. We

carry out this procedure in detail in Appendix A.3 for kination (see Ref. [292]

for the original work of V. Sahni and Refs. [293, 294] for subsequent early works

specific to kination) and in the original research in Chapter 6 for the novel period of

hyperkination. Plugging Eq. (A.88) in Eq. (2.311), we find that the GW spectrum

for a period of kination followed by a period of radiation domination, in the scale-
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invariant limit, reads12

ΩGW(k) =
Ω0

r

π2

H

mP


k

3Ωend
r πmP

kend > k > kreh

H
12mP

kreh > k > kBBN

(2.312)

where kend = H and kreh = 1/(2ηreh) = Ωend
r H. Decreasing the value of Ωend

r makes

kination last longer, i.e., decreases the value of kreh, and leaves the amplitude of

the branch of the spectrum corresponding to radiation domination unchanged. The

amplitude of the latter depends solely on the energy scale at the end of inflation. To

showcase this behaviour we plot the spectrum in Fig. 2.9 for a few different values

of H and Ωend
r . In the left panel we fix H at the GUT scale and we find that indeed

decreasing the value of Ωend
r shifts the kination peak to lower frequencies. In the

right panel we fix Ωend
r and we find that decreasing H indeed lowers the amplitude of

the radiation branch of the spectrum. Note that in Fig. 2.9 we show the spectrum

as a function of frequency, which is related to the wavenumber via

f =
k

2πa0
=

1

2π

(
Ω0

rH
2
0

Ωend
r H2

)1/4

k , (2.313)

where we have used Eq. (2.310) and Ω0
r = 9.15× 10−5. We also show the frequency

corresponding to BBN, which reads

fBBN =
1

2π

aBBNHBBN

a0
=

1

2π

(
ρ0r
ρBBN

)1/4(
ρBBN

3m2
P

)1/2

≃ 1.36× 10−11Hz, (2.314)

where we used ρBBN ≃ 3× 10−86m4
P.

The process of BBN places strong bounds on the energy density parameter

of GWs. Indeed, the contribution of GWs at the time of BBN ΩBBN
GW =

ρGW(ηBBN)/ρ(ηBBN) should be small enough so as not to disturb the process. Using

12Since our aim is to study the spike in the spectrum generated by kination, we do not take into

account the period of matter domination. We simply calculate the spectrum at some time deep into

the radiation-dominated era, chosen to be BBN for convenience, and redshift it until the present

time. In any case, although the spectrum is boosted during matter domination as ΩGW(k) ∝ k2,

the corresponding frequencies are too small to be detected by any upcoming experiment, such as

LISA or ET, to name a couple.
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Figure 2.9: GW density spectrum as a function of frequency for a period of kination

followed by a period of radiation domination (see Eq. (2.312)), for different values

of H and Ωend
r , superimposed with the power law integrated curves of different

gravitational-wave experiments. Left: H = 1013GeV and Ωend
r = 10−17 (blue),

Ωend
r = 10−10 (orange) and Ωend

r = 10−3 (green). Right: Ωend
r = 10−10 and H =

1013GeV (blue), H = 5×1012GeV (orange) andH = 1012GeV (green). The vertical

dotted line represents the frequency corresponding to BBN in Eq. (2.314) and the

horizontal dotted line represents the approximate BBN bound in Eq. (2.316). The

different spectra have a high-frequency cutoff given by fend = H/(2πa0).

Eqs. (2.306) and (2.311) we can relate ΩBBN
GW to present-day quantities. Using the

latest observational constraints [295], the BBN bound reads

h2Ω0
GW =

∫
df

f
h2ΩGW(f) < 1.12× 10−6 . (2.315)

If the spectrum does not feature a very narrow peak, we can approximate

h2ΩGW(f) < 1.12× 10−6. (2.316)

This is the bound that we show in Fig. (2.9), as a horizontal dotted line. We can

be a bit more careful and compute the integral by using Eq. (2.312). The results

reads (barring the negligible contribution coming from modes k < kBBN)

1.12× 10−6 > h2Ω0
GW =

h2Ω0
rH

π2mP

[
kend − kreh
3Ωend

r πmP

+ ln

(
kreh
kBBN

)
H

12mP

]
≃ 1.28× 10−6

(
H

mP

)2{
1

Ωend
r π

+
1

8
ln

[
(Ωend

r )3/2
H

mP

]
+ 12.38

}
, (2.317)
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where we have used Ω0
r ≃ 8.37 × 10−5, h ≃ 0.67, kend = H, kreh = Ωend

r H, kBBN =

(ρr(ηend)/ρr(ηBBN))
1/4(ρ(ηBBN)/(3m

2
P))

1/2 and Ωend
r < 1. Eq. (2.317) directly relates

the model parameters to the BBN bound. For typical parameter values, the last

two terms approximately cancel each other, and the BBN bound takes the simple

form
1

πΩend
r

(
H

mP

)2

< 1. (2.318)

As an example, the blue line in the left panel of Fig. (2.9) has H2/(πm2
PΩ

end
r ) =

1.06 × 106, which clearly violates the condition in Eq. (2.318), while the the green

line has H2/(πm2
PΩ

end
r ) = 1.06×10−8 in agreement with Eq. (2.318), as they should.

Figure 2.10: Regions in the (H/mP,Ω
end
r ) plane (in logarithmic units) such that the

BBN bound in Eq. (2.318) is satisfied (light green) and such that the (approximate)

observability condition in Eq. (2.320) is satisfied (dark green). Both conditions are

met simultaneously in the locus of points where both regions intersect.

Let us estimate the parameter values needed for the spectrum to be simul-

taneously detected by most of the upcoming GW observations, including LISA,

ET and DECIGO. Looking at Fig. (2.9), it is a good approximation to set
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fmin = 10−5Hz = 2.70 × 10−48mP as the frequency such that if freh < fmin the

signal is observable (note that freh cannot be much smaller than this, otherwise the

signal would have been already detected by LVK O3). We then have

freh =
1

2π

(
Ω0

rH
2
0

Ωend
r H2

)1/4

Ωend
r H < 2.70× 10−48mP = fmin. (2.319)

Simplifying gives

(Ωend
r )3

(
H

mP

)2

< 2.82× 10−63. (2.320)

We show the conditions in Eqs. (2.318) and (2.320) superimposed with each other

in the (H/mP,Ω
end
r ) plane (in logarithmic units) in Fig. 2.10. It is clear that it

is hard to obtain an observable signal that does not clash with the BBN bound.

For this, it is needed both low-scale inflation and a small reheating efficiency. For

example, for GUT-scale inflation, with H ≃ 10−5mP, the signal is only observable

for Ωend
r < 10−17, while it clearly violates the BBN bound.

In the original research in Chapter 6 we propose a novel period of cosmic

expansion, named hyperkination, after inflation and prior to kination. The defining

property of hyperkination is that the inflaton, which still is the dominant component

of the density of the Universe, is dominated by a quartic kinetic term. Such a setup

can be obtained by adding an R2 term to the gravitational action and working in

the Palatini formalism (although it can also be motivated by k-essence). We find

that hyperkination truncates the peak corresponding to kination, thereby making it

possible to bring the spectrum within observable frequencies, without violating the

BBN bound.
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Chapter 3

Modified Gravity

This chapter is based on the introductory sections of the original research articles

published in Physical Review D and Journal of Cosmology and Astroparticle Physics,

and Galaxies [1, 2, 3] by the author, in collaboration with Konstantinos Dimopoulos,

Alexandros Karam and Eemeli Tomberg.

3.1 Introduction

In this chapter we present the background material regarding modified gravity

required to follow the original research in Chapters 4, 5 and 6. Our aim is to make

the presentation self-consistent, without going into unnecessary detail. Modified

gravity is a vast area of research and we do not attempt to give a comprehensive

review.

We focus on f(R) theories of gravity (for reviews see Refs. [199, 296, 297, 298,

299]), which was first studied in Ref. [300]. This means that the action now reads

S =
m2

P

2

∫
d4x

√
−gf(R) + Sm[gµν , ψ], (3.1)

where f can be any function of the Ricci scalar R and ψ collectively denotes all

matter fields. Note that, for f(R) = R, Einstein-Hilbert gravity is recovered. In

Chapter 5 we focus on f(R,φ), but the results are straightforwardly generalised.

88



3.1. Introduction

General relativity is one of the most successful physical theories in history, having

passed all experimental tests to date, so why should we consider modifications? As

explained in Secs. 2.2.1 and 2.2.2, ΛCDM provides an excellent fit to the data, but it

does not explain the nature of dark matter or of the inflaton field. Furthermore, the

cosmological constant is subject to an extreme amount of fine tuning. Introducing

quintessence in order to alleviate the cosmological constant problem also does not

provide very satisfactory answers. As we saw in Sec. 2.2.4, it is difficult to endow

quintessence with attractor properties without including an amount of fine tuning

comparable to ΛCDM. However, could it be that general relativity provides a good

description of gravity at the scales it has been put to test, but not at the scales

relevant for the description of the dark components of the Universe? This possibility,

coupled to the fact that questioning the gravitational theory will lead to a better

understanding of it, warrants further investigation of modified theories of gravity.

Importantly, the metric formalism of general relativity is not the only possible

choice. The Palatini formulation of gravity (originally introduced by Einstein [18])

has recently gained considerable popularity as an alternative to the usual metric

formulation. It treats the metric and the connection as independent variables, which

means that one has to vary the action with respect to both of them. For a minimally

coupled scalar field and an action linear in R the two formulations result in the

same equations of motion and the connection turns out to be the Levi-Civita one.

However, when the field is non-minimally coupled to gravity [301, 302, 303, 304, 305,

306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322,

323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339,

340, 341, 342, 343] and/or quadratic or higher curvature terms are included [298,

344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361,

362, 363, 364, 365, 366, 367, 2, 368, 369], significant differences arise. In the case of

the non-minimal coupling, the difference can be readily seen when one transforms

the Jordan frame action to the Einstein frame one. Because the Riemann tensor

only depends on the connection in the Palatini formalism, this means that the Ricci
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scalar (which is a contraction of the metric with the Riemann tensor) transforms

differently under a Weyl transformation in the two formalisms. As a result, the

scalar picks up an extra coefficient in its kinetic term which is absent in the Palatini

version of the theory. Therefore, the field redefinition which renders the scalar field

canonical is different and the resulting Einstein frame potential is usually flatter in

the Palatini formulation. Similarly, when an αR2 term is added to the action, the

auxiliary field which is usually introduced in order to eliminate this term turns out

to be non-dynamical in the Palatini formulation, in contrast to the metric version.

Consequently, while the metric theory becomes two-field and therefore complicated

to analyze, in the Palatini version the auxiliary field can be eliminated through its

equation of motion and the resulting action is single-field, albeit modified. The main

modification concerns the inflaton potential which is divided by a factor that again

renders it asymptotically flat.

In the present chapter we study the differences between metric and Palatini f(R)

gravity at the level of the gravitational action, while in Chapters 4 and 5 we include

in the analysis a scalar field that acts as the inflaton and as the quintessence field,

in the context of quintessential inflation.

3.2 Metric vs. Palatini formalisms

In order to obtain the gravitational field equations, we must apply the variational

principle to the action in Eq. (3.1). To do so, we first need to specify what are

the gravitational degrees of freedom. Typically, in the metric formalism, the only

independent gravitational field is the metric and the field equations read

δS

δgµν
= 0. (3.2)

Assuming metric compatibility ∇αgµν = 0, the connection takes the usual Levi-

Civita form

Lαµν =
1

2
gαβ (∂µgβν + ∂νgβµ − ∂βgµν) . (3.3)
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However, a priori, there is no reason why the connection could not be an independent

quantity. This is so in the Palatini formalism, where connection and metric are taken

to be independent. For example, the Riemann and Ricci tensors are functionals of

the connection only, i.e.,

Rλ
µλν [Γ] = Rµν [Γ] = ∂λΓ

λ
µν − ∂νΓ

λ
µλ + ΓλλρΓ

ρ
µν − ΓρµλΓ

λ
νρ, (3.4)

while the Ricci scalar also depends on the metric via the contraction

R[g,Γ] = gµνRµν . (3.5)

The field equations read

δS

δgµν
= 0 and

δS

δΓµαβ
= 0. (3.6)

Importantly, it is assumed that matter only couples to the metric, so that

Sm does not depend on the independent connection1. Since the matter action

generally includes covariant derivatives of the matter fields, this assumption means

that the independent connections does not define parallel transport or the covariant

derivative [371]. Instead, these are defined with respect to the Levi-Civita connection

as

∇µA
ν = ∂µA

ν + LνµγA
γ, (3.7)

where Aν is a given 4-vector and analogous expressions hold for different rank

tensors. Below we use covariant derivatives with respect to the independent

connection, which we denote with a bar as

∇̄µV
ν = ∂µV

ν + ΓνµγV
γ, (3.8)

where V ν is a general 4-vector, unrelated to the matter action.

For simplicity, we also assume that the theory is torsionless, meaning that the

torsion tensor, defined as

Sµµν ≡
1

2

(
Γµαβ − Γµβα

)
, (3.9)

1Such a coupling is allowed in the metric-affine formalism [370], but this possibility lies beyond

the scope of the present work.

91



Chapter 3. Modified Gravity

is zero. This means that the connection is taken to be symmetric in its lower indices

Γµαβ = Γµβα, (3.10)

something that is a priori also not required.

When f(R) is a linear function of R, as in general relativity, both metric and

Palatini formalisms agree (this is the reason why Einstein preferred the metric

formalism). However, for any other function of the Ricci scalar they do not, leading

to the different theories of metric f(R) gravity and Palatini f(R) gravity [300].

We can first do some manipulations irrespective of the chosen formalism.

Variation of Eq. (3.1) gives

δS =
m2

P

2

∫
d4x

√
−g
[(
fRR(µν) −

1

2
gµνf

)
δgµν + fRg

µνδRµν

]
+ δSm, (3.11)

where parenthesis around indices indicate the symmetric part of a tensor, fR ≡ ∂Rf ,

and

δRµν = ∇̄λδΓ
λ
νµ − ∇̄νδΓ

λ
λµ , (3.12)

which follows from elemental manipulations of Eq. (3.4) and the covariant derivative

of δΓµαβ (notice that Γµαβ is not a tensor but δΓµαβ is). Importantly, the reader should

note that, in the Palatini formalism, the covariant derivatives in Eq. (3.12) are with

respect to the independent connection. Of course, in the metric formalism ∇̄µ = ∇µ.

Let I =
∫
d4x

√
−gfRgµνδRµν . Using Eq. (3.12) and integrating by parts gives

I =

∫
d4x∇̄λ(

√
−gAλ)−

∫
d4x

[
∇̄λ(

√
−gfRgµν)− ∇̄γ(

√
−gfRgγ(µ)δν)λ

]
δΓλνµ,

(3.13)

where Aλ is a 4-vector given by

Aλ = fR
(
gµνδΓλνµ − gµλδΓσσµ

)
. (3.14)

Using that ∇̄λ

√
−g = ∂λ

√
−g − Γσλσ [372], we have

∇̄λ(
√
−gAλ) = ∂λ(

√
−gAλ). (3.15)
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At this point we must choose between metric and Palatini formalisms. We first

cover the metric formalism, i.e., Γαµν = Lαµν . Using Eq. (3.3), it is easy to find the

variation of the Levi-Civita connection under gµν → gµν + δgµν to be

δLαµν = −1

2
[gγµ∇ν(δg

γα) + gγν∇µ(δg
γα)− gµσgνρ∇α(δgσρ)] . (3.16)

Ignoring the subtleties related to finding an analogous surface term to the Gibbons-

Hawking-York term [373][374] in f(R) gravity (see Ref. [375] for more details), the

boundary term (3.15) is set to zero. Thus,

I =

∫
d4x

√
−g [δνλgµγ∇γfR − gµν∇λfR] δL

λ
νµ

=

∫
d4x

√
−g
[
gµγ∇γ(δgµν)∇νfR − gµν∇λ(δgµν)∇λfR

]
=

∫
d4x

√
−g [gµν∇σ∇σfR −∇µ∇νfR] δg

µν , (3.17)

where we used Eq. (3.16) in the second step and integrated by parts in the third.

Putting everything together, we arrive at the metric f(R) field equations

fRRµν −
1

2
gµνf + (gµν∇σ∇σ −∇µ∇ν) fR =

Tµν
m2

P

, (3.18)

where, as usual,

Tµν = − 2√
−g

δSm

δgµν
. (3.19)

Since matter is minimally coupled to the metric, the energy-momentum tensor is

covariantly conserved

∇µT
µν = 0. (3.20)

The same result can be obtained by showing that the covariant derivative of the

left-hand-side of Eq. (3.18) vanishes [376].

Taking the trace of Eq. (3.18) gives

fRR− 2f + 3∇σ∇σfR =
T

m2
P

, (3.21)

which shows that R is dynamically related to T , rather than algebraically as in

GR, where R = −T/m2
P, or in the Palatini formalism (see below). We can find
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out more about the dynamical structure of metric f(R) gravity by using the Brans-

Dicke representation of the theory [377, 378, 379] (see Refs. [380, 381, 382] for early

works). We proceed by rewriting the action (3.1) in a dynamically equivalent form

S =
m2

P

2

∫
d4x

√
−g [f(χ) + f ′(χ)(R− χ)] + Sm[gµν , ψ]. (3.22)

Variation with respect to χ gives

f ′′(χ)(R− χ) = 0, (3.23)

which implies that, as long as f ′′(χ) ̸= 0, χ = R. Plugging this back in Eq. (3.22)

the original action is recovered. Now, making the field redefinition

φ = f ′(χ) = fR, (3.24)

and defining

V (φ) = χ(φ)φ− f(χ(φ)), (3.25)

where χ(φ) is obtained by inverting Eq. (3.24)2, we have that the action reads

S =
m2

P

2

∫
d4x

√
−g [φR− V (φ)] + Sm[gµν , ψ], (3.26)

which is a Brans-Dicke theory with Brans-Dicke parameter ω = 0 [384], i.e., the

kinetic term of the field in the Jordan frame vanishes. The field equation are

obviously equivalent to Eq. (3.18).

The action in Eq. (3.26) can be brought to the Einstein frame, where the field

is minimally coupled to gravity and the gravitational action is simply given by the

Einstein-Hilbert term, by performing the conformal transformation

gµν → ḡµν = φgµν = fRgµν . (3.27)

The new action (see, e.g., Appendix G of Ref. [385] for the transformation properties

of the Ricci scalar under conformal transformations) reads

S =
m2

P

2

∫
d4x

√
−ḡ
[
R̄− 3

2φ2
ḡµν∂µφ∂νφ− V (φ)

φ2

]
+ Sm[ḡµν/φ, ψ], (3.28)

2Note that f ′′(χ) ̸= 0 is a sufficient condition for φ = f ′(χ) to be invertible. A necessary

condition is that f ′(R) be continuous and one-to-one [383].
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where barred quantities are in terms of the Einstein frame metric (3.27) (note that

the a priori independent connection is the Levi-Civita connection in the Einstein

frame). Finally, performing the field redefinition

dϕ

dφ
=

√
3

2

mP

φ
⇒ φ = e

√
2
3

ϕ
mP (3.29)

gives

S =

∫
d4x

√
−ḡ
[
m2

P

2
R̄− 1

2
ḡµν∂µϕ∂νϕ− U(ϕ)

]
+ Sm[e

−
√

2
3

ϕ
mP ḡµν , ψ], (3.30)

where

U(ϕ) =
m2

P

2

RfR − f

f 2
R

, (3.31)

where R = R(ϕ). In this representation, the dynamical degree of freedom is the

scalar field ϕ, usually called the scalaron. It is related to the Ricci scalar via

ϕ = mP
3

2
ln fR. (3.32)

In conclusion, metric f(R) gravity introduces an additional degree of freedom.

This can be seen either from the dynamical relation between R and T in the trace

equation (3.21) or from the Brans-Dicke representation of the theory (3.30).

Let us now deal with the Palatini formalism. Variation of Eq. (3.11) with respect

to the metric gives

fRR(µν) −
1

2
gµνf =

Tµν
m2

P

, (3.33)

where the energy-momentum tensor is defined as in Eq. (3.19). We emphasize that

Rµν is given by Eq. (3.4) and is a function of the independent connection Γαµν only,

while R also depends on the metric, as shown in Eq. (3.5). Variation of Eq. (3.11)

with respect to the connection gives

∇̄λ(
√
−gfRgµν)− ∇̄γ(

√
−gfRgγ(µ)δν)λ = 0. (3.34)

Note that the surface term, given by Eqs. (3.14)-(3.15), depends only on the

gravitational field (the connection) at the boundary; it does not depend on its

derivatives, as it happens in the metric formalism. Therefore, there is no need
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to add a total divergence, in the sense of the Gibbons-Hawking-York term, to the

action in the Palatini formalism.

We can further simplify the field equation coming from the variation with respect

to the connection. Acting with δλµ on Eq. (3.34) gives

∇̄γ(
√
−gfRgγµ) = 0. (3.35)

Thus, Eq. (3.34) is simplified to

∇̄λ(
√
−gfRgµν) = 0. (3.36)

From this equation, we can see why when f(R) is a linear function of R both Palatini

and metric formalisms agree. Indeed, in such a case, fR = const. and we are left with

∇̄λ(
√
−ggµν) = 0, which is the definition of the Levi-Civita connection. Note that in

the Palatini formalism this is a dynamical characteristic, rather than an assumption.

Importantly, however, both formalisms differ when considering any other function

f(R) [300, 386, 387, 388, 389], as can be seen from comparing the field equations

(3.18) and (3.45).

The energy-momentum tensor is again conserved with respect to the Levi-Civita

connection

∇µT
µν = ∂µT

µν + LµµγT
γν = 0. (3.37)

This follows from the fact that, by assumption, the matter action does not depend

on the independent connection. Indeed, Eq. (3.37) follows from diffeomorphism

invariance, as in the metric formalism. The same result can be show by brute force

by taking the covariant derivative of the left-hand-side of the field equations (3.33)

[376]. The reader should note that if the matter action was allowed to depend on

the independent connection we would not recover the Einstein field equations even

for f(R) = R, since Eq. (3.36) would acquire a new term of the form

Hαβ
µ =

δSm

δΓµαβ
, (3.38)

leading to a different connection than the Levi-Civita one and therefore to

modifications in Eq. (3.33) when plugging the connection back in the Ricci tensor.
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For the FRW metric, Eq. (3.37) takes the same standard form as in GR

ρ̇+ 3H(ρ+ p) = 0. (3.39)

Taking the trace of Eq. (3.33) gives

fRR− 2f =
T

m2
P

. (3.40)

It is evident that this equation relates R and T algebraically, as for GR in the metric

formalism. The reader should compare with the analogous equation in the metric

formalism (3.21), where R is dynamically related to T . This is an indication that

considering modifications to the Einstein-Hilbert action in the Palatini formalism

does not lead to the introduction of additional dynamical degrees of freedom,

something that can also be seen by using the Brans-Dicke representation of the

theory. However, before doing so, we need to rewrite the field equations in terms of

gµν .

Let us consider the conformal transformation

gµν 7→ ḡµν = fRgµν . (3.41)

Since
√
−ḡḡµν =

√
−gfRgµν , Eq. (3.36) simply states that the “independent”

connection is compatible with ḡµν , i.e.,

Γµαβ =
1

2
ḡµσ (∂αḡσβ + ∂β ḡσα − ∂σḡαβ)

=
1

2fR
gµσ [∂α (fRgσβ) + ∂β (fRgσα)− ∂σ (fRgαβ)]

= Lµαβ +
1

2

[
∂α (ln fR) δ

µ
β + ∂β (ln fR) δ

µ
α + ∂µ (ln fR) gαβ

]
. (3.42)

Since, from Eq. (3.40), R (and therefore fR) is algebraically related to T , we have

shown that the a priori independent connection can actually be written as the Levi-

Civita connection of the metric plus some derivatives of the matter fields.

Plugging Eq. (3.42) in Eq. (3.4) we find

Rµν [Γ] = Rµν [g] +
3

2f 2
R

∇µfR∇νfR − 1

fR

(
∇µ∇ν −

1

2
gµν2

)
fR, (3.43)
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where Rµν [Γ] is given by Eq. (3.4) and Rµν [g] is the usual Ricci tensor given by the

Levi-Civita connection. Taking the trace of this equation gives

gµνRµν [Γ] = R[g] +
3

2f 2
R

∇µfR∇µfR +
3

fR
2fR. (3.44)

Putting everything together back in the field equations (3.33) yields

Rµν [g]−
1

2
gµνR[g] =

Tµν
m2

PfR
− 1

2
gµν

(
R− f

fR

)
+

1

fR
(∇µ∇ν − gµν2) fR

− 3

2f 2
R

[
∇µfR∇νfR − 1

2
gµν (∇fR)2

]
. (3.45)

We emphasize that all quantities on the right-hand-side of this equation are a

function of the matter sources, via the trace equation (3.40). We have thus

eliminated the “independent” connection and obtained that Palatini f(R) gravity

simply changes the relation between geometry and the matter sources, via the new

derivatives of the energy-momentum tensor in the right-hand-side of Eq. (3.45).

Furthermore, the a priori independent connection behaves as an auxiliary field,

rather than being a fully fledged dynamical degree of freedom.

Again, if f(R) = R, Eq. (3.45) reduces to GR, as expected. Note that if T = 0,

from Eq. (3.40), we have that R (and f and fR) is a constant
3. Letting this constant

be R0, Palatini f(R) gravity in the vacuum (or with a background of conformally

invariant matter) is equivalent to GR with a cosmological constant given by

Λ =
1

2

(
R0 −

f(R0)

fR(R0)

)
=
R0

4
, (3.46)

where we have used Eq. (3.40). In this way, Eq. (3.45) is reduced to

Gµν = −Λgµν . (3.47)

To conclude this section, we analyze the lack of additional degrees of freedom by

studying the Brans-Dicke representation of the theory. Following the same steps as

3Unless f(R) ∝ R2. In this case, the left-hand-side of the trace equation (3.40) is identically

zero and, therefore, only conformally invariant matter, which has T = 0, can be coupled to gravity.

This is not a suitable description of low energy gravity, since matter is not generically conformally

invariant and so we do not consider this case in the present work.
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in Eqs. (3.22)-(3.26) we obtain that Eq. (3.1) is dynamically equivalent to

S =
m2

P

2

∫
d4x

√
−g {φR[Γ]− V (φ)}+ Sm[gµν , ψ]. (3.48)

The difference betweent this equation and Eq. (3.26) is that the Ricci scalar is now

a function of Γµαβ only. Plugging Eq. (3.44) in Eq. (3.48) and neglecting surface

terms gives

S =
m2

P

2

∫
d4x

√
−g
[
φR +

3

2φ2
gµν∇µφ∇νφ− V (φ)

]
, (3.49)

where, as for the metric formalism, φ = fR and V (φ) = χ(φ)φ− f(χ(φ)). This is a

Brans-Dicke theory with Brans-Dicke parameter ω = −3/2. The field equations are

obviously equivalent to Eq. (3.45). After performing a conformal transformation

gµν → ḡµν = φgµν = fRgµν , (3.50)

the action in the Einstein frame reads

S =

∫
d4x

√
−ḡ
[
m2

P

2
R̄− U(φ)

]
+ Sm[φ

−1ḡµν , ψ], (3.51)

where

U(φ) =
m2

P

2

RfR − f

f 2
R

. (3.52)

The reader should note how the kinetic term of φ dissappears in the Einstein frame.

We emphasize that U(φ) is a function of the energy-momentum tensor, via the trace

equation (3.40).

In conclusion, Palatini f(R) gravity does not introduce additional dynamical

degrees of freedom. This can be seen either from the algebraic relation between R

and T in the trace equation (3.40) or from the Brans-Dicke representation of the

theory (3.51).

Finally, it is also possible to express the Einstein equations in terms of the metric

ḡµν = fRgµν (below it is explained that this metric is the one corresponding to the

Einstein frame). They read [298]

Gµν(h) =
1

m2
PfR

Tµν − Λ(T )ḡµν , (3.53)
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where

Λ(T ) =
RfR − f

2f 2
R

, (3.54)

where R and fR are functions of the matter content, as explained above.
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Chapter 4

Power-law Quintessential Inflation

in Palatini f (R) Gravity

This chapter is based on the original research article published in Physical Review

D [1] by the author, in collaboration with Konstantinos Dimopoulos. At the time of

publishing, the observational bound on the tensor-to-scalar ratio was r < 0.056 and

is therefore used throughout the present chapter.

4.1 Introduction

Apart from employing a scalar field with a suitable potential in Einstein gravity,

inflation can also be achieved by suitably modifying gravity, as was discovered early

on by Starobinsky, in his seminal paper [11], where he introduced a higher-order term

in the gravitational action, schematically R+ αR2, where R is the scalar curvature

(Ricci scalar) and α is a non-perturbative coupling. Even though it is possible to

model primordial inflation is this way, a la Starobinsky inflation or Higgs inflation

[390] for example, the task is much harder for late-time inflation. Indeed, many

attempts to consider modified gravity theories, e.g. with a term proportional to 1/R
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in the gravitational action [198], were shown to be unstable1 [392]. Moreover, the

recent observation confirming that the speed of propagation of GWs is exactly light-

speed (to precision of 15 orders of magnitude) [393], as suggested by Einstein gravity,

excludes the contemplation of many otherwise motivated modifications of gravity at

work in the late Universe, like the Gauss-Bonnet term [394] (see also Refs. [395, 396]

for Gauss-Bonnet models in the Palatini formalism). While work still continues in

this front [397], in this chapter we investigate a blended quintessential inflation

model, which achieves primordial inflation via f(R) gravity, but late-time inflation

via a suitable scalar potential of quintessence. However, our approach cannot be

clean-cut in that modifications of gravity are expected to affect the kination era,

after primordial inflation, and the recent history of the Universe, after the end of

the radiation era.

In metric R + αR2 gravity, the higher order gravity term introduces an extra

degree of freedom, which can be rendered in the form of a scalar field, the scalaron.

Starobinsky inflation is very successful, but if it were to be considered as part of a

quintessential inflation model, the scalaron would need to survive until today and

become quintessence. In this case though, experimental tests of gravity [398] cannot

allow successful primordial inflation. Therefore, we consider Palatini gravity, where

the R + αR2 model does not introduce a scalaron and the theory does not conflict

with the experimental tests of gravity. The inflaton field is not the scalaron (for the

latter does not exist) but it is explicitly introduced, as in conventional inflation.

However, Palatini gravity does affect our scenario. Firstly, it “flattens” the

inflaton scalar potential [346, 347, 354, 358, 352] so that the desired inflationary

plateau can be attained even with an originally steep scalar potential. Secondly,

the theory is expected to introduce modifications to the kination period, after

primordial inflation, and also in the late Universe, when the inflaton field becomes

1There are still many other viable models of f(R) gravity in the metric formalism that

successfully generate late-time acceleration, such as f(R) = R − µRp with p ∈ (0, 1), originally

proposed in [391].
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quintessence. We investigate in detail what these effects are, considering a family of

models, which is a generalised version of the original Peebles-Vilenkin quintessential

inflation potential.

For the inflationary sector, we assume chaotic power-law inflation with V (φ) ∝

φn, for any n > 0. As discussed at the end of Sec. 2.1.4, for this class of inflationary

models the Planck constraints can only be satisfied if n < 0.3 (and N ≲ 32), ruling

out the historically celebrated models n = 2 and n = 4. For the quintessential

sector we assume inverse-power-law quintessence, with V (φ) ∝ φ−q, for any q >

0. By the end of Sec. 2.2.4, we showed that, in the scaling attractor, during

which the quintessence field is subdominant, imposing the observational constraints

on the barotropic parameter of dark energy leads to q < 0.1 and a mass scale

M ≃ 10−12GeV. In this way, these recent observations seem to undermine tracker

quintessence. Of course, at present, quintessence is not subdominant anymore, so

these considerations are expected to be modified when solving the full dynamics

accurately. It could also be that the field overshoots the tracking regime, transiently

freezing to later unfreeze, close to the present time, and approach the dominant

attractor. However, this thawing quintessence requires an explanation for its initial

condition, i.e., the value at which the field freezes.

Chaotic inflation is ruled out and the tracking behaviour of inverse-power-law

quintessence has to be given up, so why should we consider them? In this chapter,

we rescue chaotic inflation, bringing it back within observational constraints by

including a term proportional to R2 in the gravitational action, in the Palatini

formalism. We also find other attractive properties in this setup, such as a sub-

Planckian field displacement, a feature that may help with radiative corrections of

the potential as well as with 5-th force problems. Furthermore, we consider thawing

quintessence, with the value at which the field is frozen given by the inflationary

attractor.

This chapter is structured as follows. In Sec. 4.2 we introduce R+αR2 Palatini

gravity with a scalar field and background matter/radiation, with emphasis on the
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interaction between them. In Sec. 4.3, we present our family of quintessential

inflation models and how they are affected by the assumed modified gravity setup,

focusing on the period of primordial inflation. In Sec. 4.4, the period of kination

in the context of Palatini R + αR2 gravity is investigated, in a way which is

independent on the form of the scalar potential. To obtain concrete inflationary

predictions we assume gravitational reheating, but our results are easy to reproduce

when considering another, more efficient mechanism, as only the relevant number of

inflationary e-folds is affected. In Sec. 4.5, we investigate quintessence in our setup

and look for the amount of tuning needed to satisfy the coincidence requirement. In

Sec. 4.6, we show how experimental gravity tests are not challenged by the modified

gravity theory considered. Finally, we end in Sec. 4.7 with a brief discussion of our

findings and our conclusions.

4.2 The Model

We work in f(R) gravity with a Starobinsky term, as in [346, 347, 354]. In this way,

we have

f(R) = R +
α

2m2
P

R2, (4.1)

so that the action reads

S =

∫
d4x

√
−g
[
m2

P

2
R +

α

4
R2 − 1

2
gµν∇µφ∇νφ− V (φ)

]
+ Sm[gµν , ψ]. (4.2)

Note that, since Palatini f(R) gravity does not introduce any additional

dynamical degrees of freedom, we introduce the inflaton field in the action by hand.

As a remark, although Sm[gµν , ψ] = 0 during inflation, we keep this term explicit

in what follows since the treatment is also valid for the kination and quintessential

sectors of the theory, when matter and radiation fields are present.

It is straightforward to calculate the matter dependence of the Ricci scalar. The

derivatives of the f(R) function read

fR(R) = 1 +
α

m2
P

R (4.3)
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and

fRR(R) =
α

m2
P

. (4.4)

Taking into account the two main contributions to the energy density of the

Universe come from the inflaton (or quintessence, depending on the cosmological

era under consideration) and from regular pressureless mater and radiation, the

energy momentum tensor can be written as, assuming the background matter and

radiation behave as a perfect fluid,

T tot
µν = T (φ)

µν + TB
µν , (4.5)

where

T (φ)
µν = ∂µφ∂νφ− gµν

[
1

2
∂αφ∂αφ+ V (φ)

]
(4.6)

and

TB
µν = (ρ+ p)uµuν + pgµν , (4.7)

where uµ is the four-velocity of a comoving observer with respect to the fluid (so

that −1 = ηµνuµuν).

It follows that the trace of the energy momentum tensor, remembering φ = φ(t),

reads

T tot = T (φ) + TB, (4.8)

where

T (φ) = gµνT (φ)
µν = −∂αφ∂αφ− 4V (φ) = φ̇2 − 4V (φ), (4.9)

where in the last equation we have taken φ as homogeneous, and

TB = gµνTB
µν = −ρ+ 3p = −ρ(1− 3w), (4.10)

where ρ and p are the density and the pressure of the background perfect fluid

respectively, and w ≡ p/ρ is its barotropic parameter.
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Assuming the Universe is filled up with radiation (wr = 1/3) and pressureless

matter (wm = 0) we have

TB = −ρm. (4.11)

Thus, Eq. (3.40) reads

fRR− 2f =

(
1 +

α

m2
P

R

)
R− 2R− α

m2
P

R2 = −R

=
1

m2
P

(
−ρm + φ̇2 − 4V (φ)

)
. (4.12)

The curvature scalar is then obtained as a function of the matter content of the

Universe as

R =
1

m2
P

(
ρm − φ̇2 + 4V (φ)

)
. (4.13)

Depending on the cosmological era under consideration, some approximations

can be made to simplify Eq. (4.13). During slow-roll inflation ρm = 0 and φ̇2 ≪ V (φ)

so that the Ricci scalar reads

RSR =
4

m2
P

V (φ). (4.14)

During kination, remembering the inflaton is kinetically dominated φ̇2 ≫ V (φ)

and the other contribution to the energy-momentum tensor is radiation, which is

traceless, we have

Rkin = − φ̇2

m2
P

. (4.15)

During the radiation dominated era, ρr ≫ ρ(φ) = 1
2
φ̇2 + V (φ). However, since

the energy-momentum tensor of a perfect fluid with w = 1/3 is traceless, we have

RRD =
1

m2
P

(−φ̇2 + 4V (φ)). (4.16)

At reheating, the moment at which radiation becomes the dominant component in

the Universe, the field is still in free fall as during kination (see below), so that we

still have RRD ≃ −φ̇2/m2
P. However, not long after reheating, the field stops and
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freezes (see Eq. (4.148) below), so that RRD ≃ 4V (φ)/m2
P, which is extremely small

since V ∼ 10−120m4
P because of the coincidence requirement (see below).

During the matter dominated era, the Ricci scalar reads

RMD =
ρm
m2

P

. (4.17)

Note also that during this era the energy density of the quintessence field is ρ ≃ V (φ)

since it stops its roll-down the potential and freezes during the radiation dominated

era, as explained above.

During the quintessence era, the Ricci scalar still obeys Eq. (4.13). However, we

consider thawing quintessence (see below), which means the inflaton is only starting

to unfreeze today, so that

Rquin =
1

m2
P

(ρm + 4V (φ)) . (4.18)

Finally, in vacuum, where Tµν = 0, we have

Rvac = 0. (4.19)

It is interesting that Palatini f(R) gravity with a Starobinski term does not lead

to gravity-driven inflation [369], as in its metric f(R) counterpart. As explained in

Chapter 3, Palatini f(R) theories do not introduce a new degree of freedom and

the change in the gravitational dynamics (compared to conventional GR) can be

interpreted as a change in the matter sources. In this way, when ρm = ρr = 0,

we re-obtain the conventional Friedmann equation with H = 0, and inflation does

not take place in the absense of an inflaton field. If we do introduce a minimally

coupled scalar field φ in Palatini f(R) gravity with a Starobinsky term, the standard

inflationary dynamics (in the Jordan frame) is not affected when the inflaton is in

the slow-roll regime [368] at the level of the background evolution. However, the

generation of perturbations, which is behind the inflationary observables, is indeed

affected.

Following the procedure through which we obtained the action in Eq. (3.22), the
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action in Eq. (4.2) is dynamically equivalent to

S =

∫
d4x

√
−g
[
1

2
m2

P

(
1 +

α

m2
P

χ

)
R− 1

4
αχ2 − 1

2
(∇φ)2 − V (φ)

]
+ Sm[gµν , ψ]. (4.20)

We emphasize that the original action in Eq. (4.2) can be obtained by imposing

the constraint on the auxiliary field

δS

δχ
= 0 (4.21)

in the action in Eq. (4.20).

We now perform a conformal transformation2

gµν → ḡµν = f ′(χ)gµν =

(
1 +

α

m2
P

χ

)
gµν , (4.22)

so that

dt̄ =
√
f ′(χ)dt

ā(t̄) =
√
f ′(χ)a(t). (4.23)

After some algebra, the action in the Einstein frame can be found to be

S =

∫
d4x

√
−ḡ

[
1

2
m2

PR̄− 1

2

m2
P(∇̄φ)2

(m2
P + αχ)

−
m4

P(V (φ) + α
4
χ2)

(m2
P + αχ)2

]
+ Sm[(f

′(χ))−1ḡµν , ψ], (4.24)

where barred quantities are calculated using the Einstein frame metric given by Eq.

(4.22). Note the new coupling between χ and the matter fields in the matter action.

Now, imposing the condition in Eq. (4.21) on the auxiliary field χ, we have

χ =
4V (φ) + (∇̄φ)2

m2
P − α

m2
P
(∇̄φ)2

, (4.25)

which implies that

f ′(χ(φ)) =
m4

P + 4αV (φ)

m4
P − α(∇̄φ)2

. (4.26)

2As opposed to f(R) gravity in the metric formalism, the Ricci tensor now only depends on the

connection, so that it does not transform under the conformal transformation in Eq. (4.22).
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Substituting back in the action in Eq. (4.24), one obtains

S =

∫
d4x

√
−ḡ

[
1

2
m2

PR̄−
1
2
(∇̄φ)2

1 + 4α
m4

P
V (φ)

− V (φ)

1 + 4α
m4

P
V (φ)

+
α

4m4
P

(∇̄φ)2(∇̄φ)2

1 + 4α
m4

P
V (φ)

]
+ Sm

[
(f ′(φ))−1ḡµν , ψ

]
, (4.27)

where (f ′(φ))−1 is given by Eq. (4.26) and the prime denotes a derivative with

respect to χ = χ(φ).

Since we study the behaviour of the inflaton during slow-roll and of quintessence

today, when its potential is becoming shallow, higher than quadratic powers of ∇̄φ

are not expected to play a role. Furthermore, it can be shown [368] that during a

kinetic energy dominated era, such a kination, the kinetic energy of the inflaton (in

the Jordan frame) is bounded as

1

2
φ̇2 <

m4
P

2α
. (4.28)

As it is shown below, during kination the kinetic term in the action is canonical

to a very good approximation (since the potential is negligible compared to m4
P

during this epoch). This means the canonical field in the Einstein frame ϕ is equal

to the canonical field in the Jordan frame φ. Therefore, Eq. (4.28) holds in the

Einstein frame during kination and the quartic kinetic term in Eq. (4.27) is negligible

compared to the quadratic kinetic term, in the same way as it is during slow-roll

inflation and during the quintessence tail. Thus, this term is ignored in what follows.

4.2.1 Coupling to Matter

The conformal transformation in Eq. (4.22) introduces a coupling between the field

φ and the matter action in the Einstein frame, as can be seen in, e.g., Eq. (4.27).

In this section we investigate the effects of such coupling.

The relation between the energy-momentum tensor in the Jordan and in the

Einstein frames reads (remember barred quantities correspond to the Einstein frame
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while unbarred quantities correspond to the Jordan frame)

T̄B
µν = − 2√

−ḡ
δSm
δḡµν

= − 2√
−ḡ

∂gαβ

∂ḡµν
δSm
δgαβ

=
f ′(φ)

(f ′(φ))2

(
− 2√

−g
δSm
δgµν

)
=

1

f ′(φ)
TB
µν ,

(4.29)

where we have used

∂gαβ

∂ḡµν
= f ′(φ)δαµδ

β
ν (4.30)

and

√
−ḡ = (f ′(φ))2

√
−g, (4.31)

which follow from Eq. (4.22). Following Refs. [198, 399], it is then convenient to

define the energy-momentum tensor for a perfect fluid in the Einstein frame as

T̄B
µν = (ρ̄+ p̄)ūµūν + p̄ḡµν , (4.32)

where, comparing with Eq. (4.7) and using Eq. (4.29),

ūµ =
√
f ′(φ)uµ,

ρ̄ =
ρ

(f ′(φ))2
,

p̄ =
p

(f ′(φ))2
. (4.33)

During inflation, Sm[gµν , ψ] = 0, and so the new coupling in the matter action

between φ and the matter fields does not change the dynamics. However, after

inflation ends and the Universe is reheated, the matter action is not zero anymore.

Indeed, the equation of motion for the inflaton field now reads

δS

δφ
+
δSm
δφ

= 0, (4.34)

where the result of the first term depends on the specific form the potential takes.

Let us investigate the second term. We have

δSm
δφ

=
∂gµν

∂φ

δSm
δgµν

= f ′
φ(φ)ḡ

µν

(
−1

2

√
−gTB

µν

)
=

f ′
φ(φ)

f ′(φ)
ḡµν
(
−1

2

√
−ḡT̄B

µν

)
= −

f ′
φ(φ)

2f ′(φ)

√
−ḡT̄B, (4.35)
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where f ′
φ = ∂f ′/∂φ (recall that the prime denotes derivative with respect to χ(φ))

and we have used Eqs. (4.22) and (4.29)-(4.31).

Analogously to Eq. (4.10), the trace of the energy-momentum tensor in the

Einstein frame reads

T̄B = ḡµνT̄B
µν = −ρ̄+ 3p̄ = −ρ̄(1− 3w̄), (4.36)

where w̄ = p̄/ρ̄ is the barotropic parameter of the background perfect fluid. Note

that Eq. (4.33) implies the barotropic parameter is the same in both the Jordan

and Einstein frames. Indeed,

w̄ =
p̄

ρ̄
=
p

ρ
= w. (4.37)

Furthermore, the prefactor in the right-hand-side of Eq. (4.35) reads, from Eq.

(4.26),

f ′
φ(φ)

f ′(φ)
=

4α

m4
P

∂V

∂φ

1

1 + 4α
m4

P
V (φ)

. (4.38)

Putting everything together, we finally have

δSm
δφ

=
√
−ḡ 2α

m4
P

∂V (φ)

∂φ

ρ̄(1− 3w̄)

1 + 4α
m4

P
V (φ)

. (4.39)

It immediately follows that during the radiation dominated epoch (w̄ = 1/3)

δSm
δφ

∣∣∣
RD

= 0, (4.40)

and the dynamics of φ is unaffected by the new coupling in the matter action.

Likewise, during kination, although the dominant contribution to the energy density

of the Universe is that of the inflaton and the barotropic parameter of the Universe

is w̄ = 1, the only other matter field present during this epoch is radiation, so that

w̄ = 1/3 in Eq. (4.39) and the dynamics of the inflaton during kination is also

unaffected.

As a remark, below is defined a new canonical field ϕ which is identified as the

inflaton. Obtaining its equation of motion

δS

δϕ
+
δSm
δϕ

= 0 (4.41)

111



Chapter 4. Power-law Quintessential Inflation in Palatini f(R) Gravity

is straightforward by simply using the chain rule

δSm
δϕ

=
dφ

dϕ

δSm
δφ

. (4.42)

Finally, it has been explained above (see Eqs. (3.53)-(3.54)) that the Einstein

equations in the Einstein frame read

Ḡµν =
1

m2
Pf

′(T )
Tµν −

R(T )f ′(T )− f(T )

2(f ′(T ))2
ḡµν , (4.43)

where the Ricci scalar and the function f ′(R) depend on the matter content of the

specific cosmological epoch under consideration.

4.3 The Inflationary Sector

After the general treatment of the action given in the previous sections, we fix V (φ)

to be a generalised version of the Peebles-Vilenking potential [15], given by

V (φ) =


λn

mn−4
P

(φn +Mn), φ < 0

λn

mn−4
P

Mn+q

φq+Mq , φ ≥ 0,

where λ is a dimensionless constant fixed by the inflationary observables and

0 < M ≪ mP is a suitable energy scale that is fixed by requiring that the potential

energy density of the inflaton (see below) at its frozen value ϕF corresponds to the

vacuum energy density measured today (coincidence requirement). The parameters

n and q are of order unity. We will consider integer values of n and q to facilitate our

analytic treatment, but this is strictly speaking not necessary, as we elaborate in the

discussion section. The original potential of Ref. [15] is recovered when n = q = 4.

Remember, as we have said above, that Sm[gµν , ψ] = 0 during inflation.

The kinetic term in the action (4.27), when |φ| ≫M , reads

1
2
(∇̄φ)2

1 + 4α
m4

P
V (φ)

≃
1
2
(∇̄φ)2

1 + 4αλn

mn
P
φn
. (4.44)

It can be made canonical by means of the transformation

dϕ =
dφ√

1 + 4αλn

mn
P
φn

=
mP

λ(4α)1/n
dx√
1 + xn

, (4.45)
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where we have defined

x ≡ λ(4α)1/nφ

mP

(4.46)

and ϕ can be identified as the canonical inflaton. For now it is not necessary to

obtain ϕ = ϕ(x). We only need

dx

dϕ
=
λ(4α)1/n

mP

√
1 + xn. (4.47)

The potential in the Einstein frame reads

V̄ =
V (φ)

1 + 4α
m4

P
V (φ)

=
λnφn/mn−4

P

1 + 4αλn

mn
P
φn

=
m4

P

4α

xn(ϕ)

1 + xn(ϕ)
. (4.48)

The slow-roll parameters are calculated in terms of the canonical field ϕ, so that

ϵV =
1

2
m2

P

(
V̄ ′(ϕ)

V̄ (ϕ)

)2

=
1

2

m2
P

V̄ 2(x)

(
dx

dϕ

∂V̄ (x)

∂x

)2

=
1

2
λ2(4α)2/nn2 1

x2(1 + xn)
, (4.49)

where from now on the prime denotes a derivative with respect to ϕ, and

ηV = m2
P

V̄ ′′(ϕ)

V̄ (ϕ)
=

m2
P

V̄ (x)

dx

dϕ

d

dx

(
dx

dϕ

∂V̄ (x)

∂x

)
= λ2(4α)2/n

n(n− 1)− n(n
2
+ 1)xn

x2(1 + xn)
, (4.50)

where we have used Eq. (4.47). We can now calculate the remaining number of

inflationary e-folds after the cosmological scales exit the horizon as

N = − 1

mP

∫ ϕend

ϕ∗

dϕ√
2ϵV (ϕ)

= − 1

λ2n(4α)2/n

∫ xend

x∗

x dx

=
1

2λ2n(4α)2/n
(x2∗ − x2end), (4.51)

where ϕ∗ is the inflaton value at which the cosmological scales leave the horizon and

ϕend is the inflaton value at which inflation ends, i.e., ϵV (ϕend) = 1. The value of

the field x at the end of inflation xend ≡ x(ϕend) can be obtained, using Eq. (4.49),

through the condition

ϵV (ϕend) = 1 ⇔ x2end(x
n
end + 1) =

1

2
λ2(4α)2/nn2. (4.52)
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For the typical values of λ and α we consider, and for n not too large, we have

|xend| ≪ 1 (4.53)

so that3

x2end ≃ 1

2
λ2(4α)2/nn2 for all n. (4.54)

The value of the field x when the cosmological scales leave the horizon x∗ = x(ϕ∗)

then reads, from Eq. (4.51),

x2∗ = x2end + 2λ2n(4α)2/nN = 2λ2n(4α)2/n
(
N +

n

4

)
. (4.55)

4.3.1 Inflationary Observables

We can constrain the parameters of our theory by imposing the observational data

obtained by Plank [8], listed in Eqs. (2.132)-(2.133). As for the tensor-to-scalar

ratio, it is constrained to be

r =
Ah
As

< 0.056. (4.56)

Let us start with the curvature power spectrum. In the slow-roll approximation,

which is valid at the time at which the cosmological scales exit the horizon, it reads

As =
V̄ (ϕ∗)

24π2m4
PϵV (ϕ∗)

=
xn+2
∗

48π2n2λ2α(4α)2/n
=

2n/2nn/2−1

6π2
λn
(
N +

n

4

)n+2
2
, (4.57)

where we have used the first Friedmann equation and Eq. (4.55) for the value of the

field x at horizon exit. It follows that As is independent of α. Note that the total

number of e-folds N depends on the specific details of the kination period. See Fig.

4.1 for graphs representing the constant λn for different values of n as a function

3In the opposite limit |xend| ≫ 1, the term n/4 in the parenthesis in Eq. (4.55) is replaced by

the complicated expression 2
−n−4
n+2 n

−n+2
2+n (λ2(4α)2/n)

−n
2+n . Using the limit |xend| ≫ 1 it can be shown

this expression is bounded from above by n/4. Taking into account that N ≫ n for reasonable

values of n, this means that our results are insensitive to whether |xend| ≫ 1 or |xend| ≪ 1.

However, we emphasize that, for the typical values of λ and α, |xend| ≪ 1 holds.
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Figure 4.1: Constant λn for n = 1 (top left), n = 2 (top right), n = 3 (bottom left)

and n = 4 (bottom right) as a function of the number of e-folds N in the range of

interest for quitenssential inflation.

of the number of e-folds N . Note that in quintessential inflation, we typically have

N ∈ [60, 70].

The scalar spectral index reads

ns = 1− 6ϵV (ϕ∗) + 2ηV (ϕ∗) = 1− λ2(4α)2/n
n(n+ 2) + n(n+ 2)xn∗

x2∗(1 + xn∗ )

= 1− λ2(4α)2/n
n(n+ 2)

x2∗
= 1− n+ 2

2
(
N + n

4

) , (4.58)

where we have used Eqs. (4.49), (4.50) and (4.55). It follows that the scalar spectral

index depends only on the number of e-folds (and on n) and does not depend on

the parameters of the theory α, M and λ. Remember the remaining number of

inflationary e-folds N depends on the details of the kination period.

Finally, the tensor-to-scalar ratio reads

r = 16ϵV (ϕ∗) = λ2(4α)2/nn2 8

x2∗(1 + xn∗ )
=

4n(
N + n

4

)
(1 + xn∗ )

=
4n(

N + n
4

) 1[
1 + 4(2n)n/2λnα

(
N + n

4

)n/2] , (4.59)
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where we have used Eq. (4.55).

Figure 4.2: Left: Lower bound on α as a function of the number of e-folds N for

n = 1 (red dotted line), n = 2 (green dashed line), n = 3 (black solid line) and n = 4

(blue dash-dot line) obtained by imposing r = 0.056. The lower bound is roughly

α ∼ 108 for all values of n for the typical number of e-folds in quintessential inflation

models N ∈ [60, 70]. Right: Lower bound on α as a function of n for N = 60 (blue

dash-dot line) and N = 70 (black solid line), obtained by imposing r = 0.056. The

bound quickly becomes insensitive to the specific value of n taken, independently of

the number of e-folds within the range of interest in quintessential inflation.

To better understand the role α plays in the observational bound r < 0.056, one

can solve for λn in Eq. (4.57) and plug it in Eq. (4.59) to obtain

r =
16n

(4N + n)

1[
1 + 96π2n

(4N+n)
αAs

] . (4.60)

Therefore, α in terms of r reads

α =
16
r
−
(
1 + 4N

n

)
96π2As

. (4.61)

This means that α can be small (of order unity) when

r ≃ 16

1 + 4N
n

. (4.62)

For n = 2 and taking taking into account that the existence of a kination period

means that the total number of e-folds is typically within the interval N ∈ [60, 70],

α is small (of order unity) when the scalar-to-tensor ratio is approximately in the

interval

r ∈ [0.113, 0.132]. (4.63)
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The 1σ bound r < 0.056 does not allow this, but it might be marginally allowed

at 2σ, where r < 0.114 [8].

For n = 1 accompanied by a long period of kination such that N ≃ 71, we have

r = 0.055, (4.64)

which is marginally within the 1σ bounds. See the top left panel of Fig. 4.3 for the

r − ns graph in the n = 1 case. Note however, that we expect N ≲ 70 or so, for

otherwise kination lasts too long and there is danger that a spike in the spectrum

of primordial GWs, corresponding to the scales which reenter the horizon during

kination, threatens to destabilise Big Bang Nucleosynthesis [254].

When the tensor-to-scalar ratio takes the value given by Eq. (4.62), α can be

very small (of order unity). However, as we have explained above, this in general

not the case (when n = O(1) we have α ≳ 108 as can be seen in Fig. 4.2). Indeed,

using N = 60 and As = 2 × 10−9, we have the following bounds for some values of

n by imposing r < 0.056

n = 2 ⇒ α > 0.87× 108

n = 4 ⇒ α > 1.18× 108

n = 8 ⇒ α > 1.34× 108. (4.65)

Note that α is a non-perturbative coefficient that can be much larger than unity

without a problem. Note also that these bounds are a direct consequence of the

observational value of the scalar power spectrum and cannot be realaxed via the

choice of a suitable value of λn.

We end this section with a remark regarding the Lyth bound [400]. By expressing

the equation of motion of the inflaton (during slow-roll) as a function of the number

of e-folds, with the help of Eq. (4.60), it is straightforward to obtain the variation

of the inflaton from the time at which the cosmological scales exit the horizon until

the end of inflation as

∆ϕ ≡ ϕend − ϕ∗ = −mP

√
2n

∫ Nend

N∗

dN√
4N + n+ 96π2nαAs

. (4.66)

117



Chapter 4. Power-law Quintessential Inflation in Palatini f(R) Gravity

We consider two different limits. Firstly, for α at least one order of magnitude

larger than A−1
s , e.g., the higher bound α = 1010 in Fig. 4.3, r is very small (cf. Eq.

(4.60)) and the third term in the square root in Eq. (4.66) dominates. It can then

be easily found that the displacement of the inflaton, taking N∗ − Nend ≃ 70, as is

usual in quintessential inflation, reads

∆ϕ ∼ 0.7mP. (4.67)

Note that for arbitrarily large α, ∆ϕ can be made arbitrarily small, e.g., for α ∼ 1013

we have ∆ϕ ∼ 10−2mP.

In the opposite limit, when the value of α is around the lower bound given by

Eq. (4.65), all terms in the square root in Eq. (4.66) are comparable. However, the

integration can easily be carried out, yielding, for n ∼ O(1) and N = 70,

∆ϕ ∼ 6mP. (4.68)

In order to obtain the displacement of the canonical field in the Jordan frame φ,

for a given n, we would need to integrate Eq. (4.45) to obtain the relation between

φ and ϕ. In general it is not possible to obtain an analytic expression, except for

the n = 2 case. This case is studied in detail below and the displacement of φ is

calculated there.

4.4 Kination

4.4.1 Dynamics in the Jordan and Einstein Frames

After the inflaton reaches the value given by Eq. (4.54) and inflation ends, a new

cosmological era called kination starts. During kination, the dominant contribution

to the energy density of the Universe is still that of the inflaton. Furthermore, as

the slope the potential becomes larger in magnitude, the inflaton becomes oblivious

to the potential and its energy density is dominated by the kinetic part. Varying the

action (4.2) with respect to φ we obtain the usual Klein-Gordon equation (remember
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in the Jordan frame the field is minimally coupled to gravity). Thus, during kination,

the equation of motion of the inflaton reads

φ̈+ 3Hφ̇ ≃ 0. (4.69)

In the Palatini formalism, new effective matter sources are introduced as a

consequence of the addition of the αR2 term to the gravitational action. We can

see this by calculating the 00-th component of the Einstein equations (3.45). Using

Eq. (4.15) and remembering that during a kinetic dominated era the kinetic energy

density of the inflaton is bounded as [368]

1

2
φ̇2 <

m4
P

2α
, (4.70)

which means that

f−1
R (R) =

(
1− α

m4
P

φ̇2

)−1

≃ 1 +
α

m4
P

φ̇2, (4.71)

the 00-th component of the Einstein equations reads

3H2 =
φ̇2

2m2
P

+
6Hα

m4
P

φ̇φ̈+
3α

4m6
P

φ̇4+
3α2

m8
P

φ̇2φ̈(2Hφ̇− φ̈)− α2

4m10
P

φ̇6− 6α3

m12
P

φ̇4φ̈2. (4.72)

This equation can be further simplified by using Eq. (4.69) to obtain

3H2m2
P =

1

2
φ̇2 − 2α

m2
P

φ̈2 +
3α

4m4
P

φ̇4 − 5α2

m6
P

φ̇2φ̈2 − α2

4m8
P

φ̇6 − 6α3

m10
P

φ̇4φ̈2

=
1

2
φ̇2

[
1 +

3α

2m4
P

φ̇2

(
1− α

3m4
P

φ̇2

)]
− 2α

m2
P

φ̈2

[
1 +

5α

2m4
P

φ̇2

(
1 +

6α

5m4
P

φ̇2

)] (4.73)

If α is not very large, Eq. (4.70) can be strongly satisfied, especially as the kinetic

energy density decreases rapidly after the end of inflation. Then, the above is

reduced to

3H2m2
P ≃ 1

2
φ̇2 − 2α

m2
P

φ̈2 ≃ 1

2
φ̇2

(
1− 36α

H2

m2
P

)
, (4.74)

where we also used Eq. (4.69)4. H is diminishing with time, so H2 < H2
inf ∼

10−10m2
P. Thus, if α is not too large, the second term in the parenthesis above very

4Rearranging Eq. (4.74) we obtain (φ̇/H)2 = 6m2
P + 36αφ̇2/m2

P, where one can see that H is

not zero for any finite value of α, that is the brackets in Eq. (4.74) are always positive.
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soon becomes negligible compared to unity. It follows that the main contribution to

the energy density of the Universe is the kinetic energy density of the inflaton

3H2m2
P ≃ 1

2
φ̇2. (4.75)

The following expressions immediately follow

ρ = ρφ =
1

2
φ̇2 ∝ a−6 ⇔ w = 1 ⇔ a ∝ t1/3 ⇔ H =

1

3t
, (4.76)

where w is the barotropic parameter of the Universe.

We conclude that the modifications to the kination dynamics coming from the

introduction of a αR2 term in Palatini f(R) gravity are subdominant and the typical

situation is recovered.

Equivalent conclusions can be obtained in the Einstein frame. Indeed, close to

the origin, the modified Peebles-Vilenkin potential reads

V (φ) ≃ λnMn

mn−4
P

, (4.77)

so that the field redefinition (4.44) for the (non-canonical) kinetic term in the action

(4.27) now reads

dϕ =
dφ√

1 + 4αλnMn

mn
P

≃
(
1− 2αλnMn

mn
P

)
dφ, (4.78)

where we have used that M ≪ mP and αλn ≪ 1 (see below). It follows that

the kinetic term of φ is canonical to a very good approximation, i.e., ϕ ≃ φ.

Furthermore, the coupling in the matter action does not affect the dynamics (see

the discussion after Eq. (4.39)). Thus, since the inflaton is still oblivious to the

potential, in the Einstein frame we have the equation

ϕ̈+ 3H̄ϕ̇ ≃ 0. (4.79)

As for the 00-th component of the Einstein equations, from Eq. (4.43) and Eq.

(4.71) we have

3H̄2m2
P =

1

2
ϕ̇2 +

3αϕ̇4

4m4
P

+
α2ϕ̇6

2m8
P

. (4.80)
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where barred quantities are calculated using the metric in the Einstein frame (4.22)

and dots represent d/dt̄. Again, using Eq. (4.70) and ϕ ≃ φ during kination, the

Friedmann equation reads, to a very good approximation,

3H̄2m2
P ≃ 1

2
ϕ̇2. (4.81)

4.4.2 Reheating and Number of e-folds

When there is a cosmological era after inflation with a stiff equation of state with

barotropic parameter w, the number of inflationary e-folds is increased by (cf. Eq.

(2.43))

∆N =
3w − 1

3(1 + w)
ln

(
V

1/4
end

Treh

)
. (4.82)

In common inflationary models, after inflation ends, the Universe is perturbately

reheated when the inflaton oscillates around the minimum of its potential. It is easy

to show that in this situation the effective barotropic of the Universe is w = 0,

so that the prefactor in Eq. (4.82) is −1/3 and the remaining e-folds of inflation

are actually decreased. In contrast, during kination, the barotropic parameter of

the Universe is w = 1 (see Eq. (4.76)), so that the prefactor is +1/3. Thus, the

remaining number of inflationary e-folds is increased by

∆N =
1

3
ln

(
V̄ 1/4(ϕend)

Treh

)
, (4.83)

where Treh is the temperature of the radiation bath at reheating and V̄ (ϕend) is

the potential at the end of inflation. In this way, in what follows we consider that

the remaining number of inflationary e-folds after the cosmological scales exit the

horizon is given by

N = 60 + ∆N. (4.84)

The lowest value for Treh, and, therefore, the highest for ∆N , is obtained through

gravitational reheating (for which reheating occurs at the end of inflation treh =
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tend)
5. For this reheating mechanism, we have obtained (see Eq. (2.304)) that

T gr
reh ∼ 10−2H

2(ϕend)

mP

. (4.85)

Assuming that the slow-roll approximation is still valid at the end of inflation,

we have

T gr
reh = 10−2 V̄ (ϕend)

3m3
P

. (4.86)

Thus, the increase in the number of e-folds reads

∆N =
1

3
ln

(
3m3

PV̄
1/4(ϕend)

10−2V̄ (ϕend)

)
≃ 2 + ln

(
mP

V̄ 1/4(ϕend)

)
. (4.87)

The potential at the end of inflation V̄ (ϕend) can be obtained by evaluating Eq.

(4.48) at xend, given by Eq. (4.54). It reads

V̄ (ϕend) =
m4

P

4α

xn(ϕend)

1 + xn(ϕend)
=

m4
Pn

nλn

2n/2 + 4αnnλn
, (4.88)

and the remaining number of e-folds is increased by

∆N = 2 +
1

4
ln

(
2n/2 + 4αnnλn

nnλn

)
. (4.89)

Note that, by virtue of Eq. (4.53), Eq. (4.88) is simplified as

V̄ (ϕend) =
m4

Pn
nλn

2n/2
, (4.90)

so that Eq. (4.89) is simplified as

∆N = 2 +
n

4
ln

(√
2

nλ

)
. (4.91)

We emphasize that Eq. (4.53), and thus the approximated expressions in

Eqs. (4.90) and (4.91), only hold when we work near the lower bound for α (as

we do in the present work).

5It is important to mention that modifications to the gravitational particle production, due to

the R2 term in the action, are possible. However, during inflation this term and the Einstein-

Hilbert one are comparable. Therefore, any possible modifications are of order unity. This is why,

for simplicity, we assume the dominant contribution comes from the latter. The study of particle

production due to an event horizon in Palatini f(R) gravity will be addressed in a future work.
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From Eq. (4.58), taking into account that the remaining number of inflationary

e-folds is N = 60 + ∆N we have

ns = 1− n+ 2

2
(
60 + ∆N + n

4

) . (4.92)

At this point, in order to obtain analytical results we need to choose specific

values for n.

Figure 4.3: r − ns graph where the predictions derived from our model, for n = 1

(top left), n = 2 (top right), n = 3 (bottom left) and n = 4 (bottom right), are

compared to the experimental data. The number of e-folds represented range from

60 (left side) to 70 (right side). The parameter α ranges from its lower bound

αmin = 2.36× 107 (blue) to α = 1010 (yellow). Figure adapted from Ref. [8].

123



Chapter 4. Power-law Quintessential Inflation in Palatini f(R) Gravity

4.4.3 n = 2

In this section we focus on the n = 2 case. The potential in the Jordan frame,

remembering φ≫M during inflation, reads

V (φ) = λ2m2
Pφ

2. (4.93)

We can redefine the coupling constant as

λ2m2
P ≡ 1

2
m2, (4.94)

where m is a suitable mass scale.

It is worth mentioning that for n = 2 it is possible to obtain an analytical

expression for the potential in the Einstein frame. Indeed, the field redefinition

(4.45) now reads

dϕ =
mP

2λ
√
α

dx√
1 + x2

. (4.95)

Integrating this expression we obtain

ϕ(x) =
mP

2λ
√
α
sinh−1 x⇒ x(ϕ) = sinh

(
2λ

√
α

mP

ϕ

)
. (4.96)

Using this in Eq. (4.48) we obtain the potential in the Einstein frame

V̄ (ϕ) =
m4

P

4α
tanh2

(
2λ

√
α

mP

ϕ

)
. (4.97)

Choosing n = 2 in Eqs. (4.57)-(4.59), the inflationary observables now read

As =
m2

24π2m2
P

(2N + 1)2, (4.98)

ns = 1− 4

2N + 1
, (4.99)

and

r =
16

(2N + 1)
[
1 + 4m2α

m2
P
(2N + 1)

] , (4.100)

124



4.4. Kination

where N = 60 + ∆N is the total number of inflationary e-folds. Furthermore, Eq.

(4.54) now reads

x2end = 4
m2

m2
P

α, (4.101)

while the increase in the number of e-folds is

∆N = 2 +
1

4
ln

1 + 4αm2

m2
P

m2

m2
P

. (4.102)

The above is reduced to ∆N = 2 + 1
2
ln (mP/m) when |xend| ≪ 1.

In order to obtain the most accurate value for ∆N , one can solve for m2/m2
P in

Eq. (4.98) and use it in Eq. (4.102) to obtain the equation

∆N = 2 +
1

4
ln

[
(121 + 2∆N)2 + 96απ2As

24π2As

]
. (4.103)

Using the lower bound for alpha α ∼ 8.7 × 107, given by Eq. (4.65), and the

observational value for the amplitude of the scalar power spectrum, this equation

can be numerically solved to obtain

∆N = 8.103 ≃ 8, (4.104)

which means that the total number of inflationary e-folds is

N ≃ 68. (4.105)

Using this result in Eq. (4.99) immediately gives

ns = 0.9708, (4.106)

which is just above the upper 1σ bound and can be easily accommodated by the

2σ bounds [8]. This can be understood as follows. From Eq. (4.99), the number of

e-folds in terms of ns reads

N =
1

2

(
2

1− ns
− 1

)
, (4.107)
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so that the 1σ bounds correspond to

N ∈ [52, 66]. (4.108)

Thus, the extra 6 e-folds at the upper bound could be explained by a period of

kination, although ∆N = 8 would be too large to be within the 1σ bounds.

The mass scale m2 is fixed by the amplitude of the power spectrum. For N = 68,

using Eq. (4.98), we obtain

m2

m2
P

∈ [2.518, 2.773]× 10−11, (4.109)

so that m ∼ 10−11/2mP ∼ 1013GeV. This range of values is in agreement with what

was obtained in the top right panel of Fig. 4.1.

We have already obtained (see Eq. (4.65)) that as long as

α > 8.7× 107 (4.110)

the observational bound r < 0.056 is satisfied. Indeed, using the obtained values for

N and m2 and the lower bound for α in Eq. (4.100) gives

r ∈ [0.050, 0.053], (4.111)

which is within observational bounds, as expected.

The results obtained in this subsection are summarized in the r − ns graph in

the top right panel of Fig. 4.3.

We can also obtain the displacement of the canonical field in the Jordan frame

φ, as was discussed at the end of Sec. 4.3.1. Using Eq. (4.96) with the obtained

value for m2/m2
P, the displacement of the inflaton field ∆ϕ = 0.7mP, in the limit

when α ∼ 1010 (represented by the yellow color in the top right panel of Fig. 4.3)

corresponds to

∆φ ∼ 0.7mP. (4.112)

In this limit ∆φ behaves as ∆ϕ, in the sense that for arbitrarily large α, ∆φ becomes

arbitrarily small. We conclude that in this regime, the potential V (φ) = m2φ2/2

belongs to the small-field class of inflationary models.
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In the opposite regime, when α takes a value around its lower bound α ∼ 108,

the displacement of the inflaton ∆ϕ ∼ 6mP (cf. Eq. (4.68)) corresponds to

∆φ ∼ 6mP. (4.113)

To end this subsection, we can verify that the approximations made above are

valid. With the obtained values for m2 and α, the value xend at the end of inflation

is

x2end = 4
m2

m2
P

α = 0.0091 ⇒ xend = 0.095, (4.114)

and the approximation made in Eq. (4.54) is valid.

Finally, the potential (4.88) with the obtained values of m2 and α is

V̄ (xend) =
m2m2

P

1 + 4αm2

m2
P

≃ m2m2
P ∼ 2.5× 10−11m4

P, (4.115)

which is similar to the typical inflationary energy scale V ∼ 10−13m4
P and in the last

step we used Eq. (4.53).

4.4.4 n = 4

In this section we focus on the n = 4 case, following the same steps as in the

last subsection. The potential in the Jordan frame, remembering φ ≫ M during

inflation, reads

V (φ) = λ4φ4. (4.116)

Choosing n = 4 in Eqs. (4.57)-(4.59), the inflationary observables now read

As =
8

3π2
λ4(N + 1)3, (4.117)

ns = 1− 3

N + 1
, (4.118)

and

r =
16

(N + 1) [1 + 256αλ4(N + 1)2]
, (4.119)
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where N = 60 + ∆N is the total number of inflationary e-folds. Furthermore, Eq.

(4.54) now reads

x2end = 16λ2
√
α, (4.120)

while the increase in the number of e-folds is

∆N = 2 +
1

4
ln

(
1 + 256αλ4

64λ4

)
. (4.121)

The above is reduced to ∆N = 2− ln
(
2
√
2λ
)
when |xend| ≪ 1.

In order to obtain the most accurate value for ∆N , one can solve for λ4 in

Eq. (4.117) and use it in Eq. (4.121) to obtain the equation

∆N = 2 +
1

4
ln

[
(61 + ∆N)3 + 96απ2As

24π2As

]
. (4.122)

Using the lower bound for alpha α ∼ 1.18 × 108, given by Eq. (4.65), and the

observational value for the amplitude of the scalar power spectrum, this equation

can be numerically solved to obtain

∆N = 8.825 ≃ 9, (4.123)

which means that the total number of inflationary e-folds is

N ≃ 69. (4.124)

Using this result in Eq. (4.118) immediately gives

ns = 0.9571, (4.125)

which is outside the 1σ bounds but could be accommodated by the 2σ bounds [8].

Using the number of e-folds in Eq. (4.124) and the observational value for the

amplitude of the scalar power spectrum, it follows from Eq. (4.117) that the value

the coupling constant takes is

λ4 ∈ [2.153, 2.371]× 10−14. (4.126)
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This range of values is in agreement with what was obtained in the bottom right

panel of Fig. 4.1.

As for the parameter α, we have already obtained (see Eq. (4.65)) that as long

as

α > 1.18× 108, (4.127)

the bound r < 0.056 is satisfied. Indeed, using the obtained values for N , λ4 and

the lower bound for α in Eq. (4.119) gives

r ∈ [0.0507, 0.0546], (4.128)

which is within observational bounds, as expected.

The results obtained in this subsection are summarized in the r − ns graph in

the bottom right panel of Fig. 4.3.

With these values for λ4 and α, the value xend at the end of inflation is

x2end = 16λ2
√
α = 0.026 ⇒ xend = 0.16, (4.129)

and the approximation made in Eq. (4.54) is valid.

Finally, the potential (4.88) with the obtained values of λ4 and α is

V̄ (xend) =
64λ4m4

P

1 + 256αλ4
≃ 64λ4m4

P ∼ 10−12m4
P, (4.130)

which is similar to the typical value of the inflationary energy scale V ∼ 10−13m4
P

and in the last step we used Eq. (4.53).

It is important to emphasize that the results obtained above are indicative only.

The parameter n can assume other order unity values, for example n = 1 and n = 3,

or even non-integer values inbetween. In the top and bottom left panels of Fig. 4.3

the cases n = 1 and n = 3 are also considered. We find that the best results are

obtained for n ≃ 2− 3, which suggests that modelling the inflationary plateau as a

power-law is a successful choice.
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4.5 Quintessential Sector

We have already analysed inflation and kination in this model. In this section we

focus on the positive branch of the modified Peebles-Vilenkin potential in Eq. (4.44)

to study quintessence.

The kinetic term in the action (4.27) for the field φ in the Einstein frame, at

large field values φ≫M , reads

1
2
(∇̄φ)2

1 + 4α
m4

P
V (φ)

≃
1
2
(∇̄φ)2

1 + 4αλn

mn
P

Mn+q

φq

. (4.131)

It can be made canonical by means of the transformation

dϕ =
dφ√

1 + 4αλn

mn
P

Mn+q

φq

=

(
4αλnMn+q

mn
P

)1/q
dy√

1 + y−q
, (4.132)

where we have defined

y ≡
(

mn
P

4αλnMn+q

)1/q

φ, (4.133)

and ϕ can be identified as the quintessence field, or, in other words, as the inflaton

field at large positive values in field space.

The potential in the Einstein frame reads

V̄ =
V (φ)

1 + 4α
m4

P
V (φ)

=
λnMn+q/mn−4

P φq

1 + 4αλn

mn
P

Mn+q

φq

=
m4

P

4α

1

yq(ϕ) + 1
. (4.134)

Note that in order to obtain an expression of the potential in terms of the inflaton

V̄ (ϕ) we need to solve Eq. (4.132) to obtain y = y(ϕ) and then plug this result in

Eq. (4.134).

4.5.1 Corrections Coming From the Matter Action

In this section we study the influence of the coupling between the inflaton and the

matter action in the Einstein frame (cf. Eq. (4.27)), following the results obtained
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in Sec. 4.2.1. After making the field redefinition given by Eq. (4.132), the equation

of motion for the inflaton reads, using Eqs. (4.41), (4.42) and (4.39),

ϕ̈+ 3H̄ϕ̇+ V̄ ′(ϕ) +
dφ

dϕ

2α

m4
P

∂V (φ)

∂φ

ρ̄m
1 + 4α

m4
P
V (φ)

= 0, (4.135)

where we have taken into account that during this era w̄ = 0. Using Eq. (4.132),

this equation can be recast as

ϕ̈+ 3H̄ϕ̇+ V̄ ′(ϕ) +
2αρ̄m
m4

P

1√
1 + 4α

m4
P
V (φ)

∂V (φ)

∂φ
= 0. (4.136)

Furthermore, the third term on the left-hand-side can be written as, using again

Eqs. (4.132) and (4.134),

V̄ ′(ϕ(φ)) =
dφ

dϕ

∂V̄ (φ)

∂φ
=

√
1 +

4α

m4
P

V (φ)
∂V (φ)

∂φ

×

 1

1 + 4α
m4

P
V (φ)

− 4α

m4
P

V (φ)[
1 + 4α

m4
P
V (φ)

]2
 . (4.137)

Putting everything together, Eq. (4.136) now reads

ϕ̈+ 3H̄ϕ̇+

(
1 +

2αρ̄m
m4

P

)
1√

1 + 4α
m4

P
V (φ)

∂V (φ)

∂φ
− 4α

m4
P

V (φ)[
1 + 4α

m4
P
V (φ)

]3/2 ∂V (φ)

∂φ
= 0

(4.138)

The second term inside the parenthesis, coming from the coupling of the inflaton

in the matter action in the Einstein frame is Planck suppressed and, unless α is

unrealistically large6, is many orders of magnitude smaller than unity (see below the

discussion concerning Eq. (4.190) in relation to experimental constraints). Thus,

the equation of motion for the inflaton during the quitessence era reads

ϕ̈+ 3H̄ϕ̇+ V̄ ′(ϕ) ≃ 0, (4.139)

where we have used Eq. (4.137) to combine back together the derivatives of V (φ).

6α >
m4

P

ρ̄m
≳
(

mP

1 eV

)4 ∼ 10108.
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We conclude the coupling in the matter action is negligible during the quintessence

era and is ignored in what follows. Furthermore, note that this conclusion also holds

for the matter dominated era. Indeed, the difference between both eras is that during

the matter dominated era the matter energy density is the dominant contribution

to the total energy density of the Universe, while during the quintessence era it

is a subdominant component (accounting for ∼ 30% of the total energy density).

However, in both cases w̄ = 0, whether the energy density of the quintessence field

dominates the Universe or not, and the second term in the parenthesis in Eq. (4.138)

is negligible in both cases. Furthermore, during kination and during the radiation

dominated era w̄ = 1/3, so that the coupling term (given by Eq. (4.39)) vanishes.

Lastly, Sm[gµν , ψ] = 0 during inflation. Thus, the non-minimal coupling with the

inflaton in the matter action in the Einstein frame does not affect the dynamics of

the inflaton throughout the whole cosmological history of the Universe.

As for the Friedmann equation in the Einstein frame, remembering R = −T/m2
P

from the trace equation (3.40), it is easy to show that Eq. (4.43) takes the form

3H̄2m2
P = T00 +

αT

m4
P

(
T00 +

T

4

)
+
α2T 3

2m8
P

, (4.140)

where

T00 =
1

2
ϕ̇2 + V̄ (ϕ) + ρm (4.141)

and

T = ϕ̇2 − 4V̄ (ϕ)− ρm. (4.142)

Remember barred quantities are calculated using the metric in the Einstein frame

(4.22) and dots represent d/dt̄.

Working to first order in O(1/m2
P), the Friedmann equation reads

3H̄2m2
P ≃ T00 =

1

2
ϕ̇2 + V̄ (ϕ) + ρm ≃ V̄ (ϕ) + ρm, (4.143)

where in the last step we have taken into account that we work with thawing

quintessence and the scalar field is only starting to roll down its potential today.
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Thus, the new effective matter sources that appear due to the treatment of our

f(R) function in the Palatini formalism (the terms proportional to powers of α) are

negligible compared to T00 unless α is unrealistically large, and the usual Friedmann

equation is recovered.

4.5.2 Frozen Inflaton

In this section we calculate the value at which the canonically normalized field

ϕ freezes after the period of kination. It is important to mention that, although

there exist other reheating mechanisms, such as instant preheating [100, 259],

curvaton reheating [290, 401, 291], Ricci reheating [98, 99] or considering warm

quintessential inflation [258, 402, 277], in the present work we consider gravitational

reheating [97, 403, 404]. The reason is twofold. First, it simplifies the calculations

and allows for the reader to have a clearer picture of the mechanisms behind

quintessential inflation in Palatini f(R) gravity. Second, this reheating mechanism

propels the field the furthest after kination, so that it freezes at a value such that

the residual potential energy easily fits the observed vacuum energy density. Note

that gravitational reheating corresponds to the lowest possible value for Treh, so

that the increment in the number of e-folds given by Eq. (4.89) is maximised. In

this way, other reheating mechanism would correspond to a lower value of ∆N and,

specifically, the results obtained for n = 2 would be closer to the 1σ bounds for the

scalar spectral index (see Eqs. (4.104)-(4.108)).

Since Eqs. (4.79) and (4.81) are the standard Klein-Gordon and Friedmann

equations in the kination limit, when ϕ̇2/2 ≫ V̄ ′(ϕ), we can use the results obtained

in Sec. (2.2.5). There, we found that, for gravitational reheating, the value at which

the inflaton freezes is given by

ϕF = ϕend +

√
2

3
mP

(
2− 3

2
lnΩend

r

)
. (4.144)

In order to obtain an expression for the radiation density parameter at the end

of inflation Ωend
r we remember that the density of particles created by the event
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horizon in de Sitter space at the end of inflation reads

ρendr = q
π2

30
ggr∗

(
Hend

2π

)4

∼ 10−2H4
end, (4.145)

where q ∼ 1 and ggr∗ = O(100) is the effective relativistic degrees of freedom.

Dividing this expression by the Friedmann equation ρend = 3H2
endm

2
P gives

Ωend
r =

ρendr

ρend
∼ 10−2

(
Hend

mP

)2

∼ 10−2V (ϕend)

m4
P

, (4.146)

where in the last step we assumed that the slow-roll approximation is valid at the

end of inflation. Plugging Eq. (4.146) in Eq. (4.144) gives

ϕF = ϕend +

√
2

3
mP

[
2 + 3 ln 10− 3

2
ln

(
V (ϕend)

m4
P

)]
. (4.147)

Using the obtained an expression for V (ϕend) given by Eq. (4.88) we have

ϕF = ϕend +

√
2

3
mP

[
2 + 3 ln 10− 3

2
ln

(
nnλn

2n/2 + 4αnnλn

)]
. (4.148)

When α takes a value close to its lower bound, using Eqs. (4.53) and (4.90), this

equation is simplified as

ϕF = ϕend +

√
2

3
mP

[
2 + 3 ln 10 +

3n

2
ln

(√
2

nλ

)]
. (4.149)

Note that in order to obtain ϕend we need to solve the (generally complicated)

integral (4.45) and plug the resulting x = x(ϕ) in the equation for xend given by

(4.54). However, in most cases ϕend is negligible compared to the second term in the

right-hand-side of Eq. (4.148). To illustrate this we can choose the simplest case for

which Eq. (4.45) can be solved, i.e., for n = 2. Indeed,

dϕ =
mP

λ(4α)1/2
dx√
1 + x2

⇒ ϕ =
mP

λ(4α)1/2
sinh−1 x. (4.150)

Thus,

ϕend =
mP

λ(4α)1/2
sinh−1 xend ≃ mP

λ(4α)1/2
xend =

√
2mP, (4.151)
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where we have used Eq. (4.54) and taken into account that unless α ≳ 1011, |xend| ≪

1. Then, remembering (see Eq. (4.109)) that inflation fixes 2λ2 = m2/m2
P ∼ 10−11

and taking α ∼ 108, the inflaton freezes at

ϕF = −
√
2mP +

√
2

3
mP (2 + 3 ln 10 + 15 ln 10) ≃ 35mP ≫ ϕend. (4.152)

Notice that the above is a super-Planckian displacement of the canonical inflaton ϕ

and not of φ, which appears in the scalar potential of this model, in Eq. (4.44).

4.5.3 Residual Potential Energy

If we were to obtain the residual potential energy for a general q we would need

to solve Eq. (4.132) in order to obtain y = y(ϕ) and substitute it in the potential

(4.134) to finally use the value at which the inflaton is frozen after kination, given

by Eq. (4.148). Although Eq. (4.132) is in general difficult to solve, we can take

into account that when the inflaton stops being kinetically dominated, i.e., when

it freezes, the potential energy has become many orders of magnitude smaller than

the Plank scale (we are on the quintessential tail). In this way, we are in the regime

where

4αV (φ) ≪ m4
P ⇔ 4αλnMn+q ≪ mn

Pφ
q ⇔ y−q ≪ 1, (4.153)

where we have used Eq. (4.133). Thus, Eq. (4.132) can be approximated by

dϕ =

(
4αλnMn+q

mn
P

)1/q (
1− 1

2
y−q
)
dy. (4.154)

This equation can be immediately integrated to obtain, for q ̸= 1,

ϕ(y) =

(
4αλnMn+q

mn
P

)1/q

y

(
1 +

1

2(q − 1)yq

)
. (4.155)

Raising the above to the power of q and using the approximation (4.153) again

we have

ϕq(y) =
4αλnMn+q

mn
P

(
yq +

q

2(q − 1)

)
. (4.156)
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Therefore, the analytical expression for y(ϕ), in the regime defined by Eq.

(4.153), is

yq(ϕ) =
mn

Pϕ
q

4αλnMn+q
− q

2(q − 1)
. (4.157)

Evaluating this expression at ϕF and plugging it in Eq. (4.134), after some

algebra, we obtain the residual potential density

V̄ (ϕF )

m4
P

=

(
mn

Pϕ
q
F

λnMn+q
+

2α(q − 2)

q − 1

)−1

, (4.158)

where ϕF is given by Eq. (4.148). Note that for most values of α, and for q ̸= 1,

such that the limit mn
Pϕ

q
F ≫ 2αλnMn+q holds, the potential can be approximated

to first order as

V̄ (ϕF ) =
λnMn+q

mn−4
P ϕqF

[
1− 2(q − 2)αλnMn+q

(q − 1)mn
Pϕ

q
F

]
. (4.159)

Also note that to zeroth order this is the same as the original Peebles-Vilenkin

potential [15] in the Jordan frame in the limit φ ≫ M , only with φF replaced by

ϕF . Of course, this was expected since we assumed the limit in Eq. (4.153) in the

first place.

4.5.3.1 q = 1

Before calculating the residual potential energy density for specific values of n and

q we focus on the special case q = 1. Eq. (4.154) now reads

dϕ =
4αλnMn+1

mn
P

(
1− 1

2y

)
dy. (4.160)

Integrating, we have

ϕ =
4αλnMn+1

mn
P

(
y − 1

2
ln y

)
. (4.161)

It is not possible to obtain an analytic expression for y = y(ϕ). However, in the

limit y ≫ 1, to a good approximation

y(ϕ) ≃ mn
P ϕ

4αλnMn+1
, (4.162)
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so that the residual potential energy reads

V̄ (ϕF ) ≃
λnMn+1

mn−4
P ϕF

. (4.163)

Note this coincides with the 0-th order approximation in Eq. (4.159). Of course,

the approximation made in Eq. (4.162) is equivalent to neglecting the second term

in Eq. (4.157). We can conclude that similar results to the ones obtained for a

general q are obtained for q = 1.

4.5.4 q = 2 and n = 2

An exception for the treatment given above is q = 2. Note that in this case the

corrections in Eq. (4.159) cancels out and the form of the potential for ϕ is the same

as for the non-canonical field φ. Furthermore, an analytical expression for y(ϕ) can

be obtained. It reads, using n = 2,

dϕ =
2
√
αλM2

mP

dy√
1 + y−2

⇒ ϕ =
2
√
αλM2

mP

√
1 + y2. (4.164)

Solving for y we have

y2F =
m2

Pϕ
2
F

4αλ2M4
− 1, (4.165)

so that the potential at the value of the frozen inflaton reads

V̄ (ϕF ) =
m4

P

4α

4αλ2M4

m2
Pϕ

2
F

=
λ2M4

1225
∼ 10−14M4, (4.166)

where we have used ϕF ≃ 35mP (see Eq. (4.152)) and that inflation fixes 2λ2 =

m2/m2
P ∼ 2.6 × 10−11 (see Eq. (4.109)). Note that the residual potential energy is

independent of α.

The vacuum energy density today is ρ0 ∼ 10−120m4
P, so that the mass scale M

is fixed to be

M ∼ 3.5× 10−26mP ∼ 8.5× 10−8GeV. (4.167)
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4.5.5 q = 4 and n = 2

In this section we study the case where q = 4 and n = 2. We consider the lower

bound α ∼ 108, the fact that inflation fixes 2λ2 = m2/m2
P ∼ 2.6 × 10−11 and the

value at which the inflaton freezes ϕF ≃ 35mP. Thus, using the approximation

obtained for the potential in Eq. (4.159), we have

V̄ (ϕF ) =
λ2m2

PM
6

ϕ4
F

(
1− 4αλ2M6

3m2
Pϕ

4
F

)
= 8.7× 10−18M

6

m2
P

(
1− 10−9M

6

m6
P

)
. (4.168)

The residual potential energy should be comparable to the vacuum energy density

today ρ0 ∼ 10−120m4
P. In this way the mass scale M is fixed by

8.7× 10−18M
6

m2
P

(
1− 10−9M

6

m6
P

)
= 10−120m4

P. (4.169)

It is straightforward to solve this quadratic equation to obtain

M ∼ 10−17mP ∼ 10GeV. (4.170)

4.6 Constraints Coming From Experimental Tests

f(R) theories in the Palatini formalism should be treated in the same way as general

relativity, in the sense that they should agree with experiments and observations

on all scales in order to be viable. In this way, f(R) theories proposed to explain

cosmic speedup should coincide with the dynamics of the solar system and laboratory

experiments. In this section we summarize the most salient results found in the

literature, mainly following Ref. [298].

In scales comparable to that of the solar system, the Universe does not behave

as a perfect fluid (as opposed to cosmological scales), and it makes sense to make a

distinction between the interior and exterior of matter sources. Outside of matter

sources ρm = 0 and, in the thawing quintessence scenario we consider, the inflaton

freezes at ϕF so that V (ϕF ) accounts for the vacuum energy density measured today7.

7Remember that during the quintessence era ϕ ≃ φ to a very good approximation (cf.
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Thus, the Ricci scalar today outside of matter sources reads (cf. Eq. (4.13))

Rout ≡ R(0) =
4V (ϕF )

m2
P

= constant. (4.171)

This means that the Einstein equations in the exterior of matter sources reduce

to the form

Gµν =
1

m2
PfR

Tµν − Λeffgµν , (4.172)

as suggested by Eq. (3.45) with fR(R) = constant, where Tµν = −gµνV (ϕF ) and Λeff

is given by Eq. (3.46)

Λeff =
1

2
Rout −

1

2

f(Rout)

fR(Rout)
. (4.173)

In the above, in view of Eqs. (4.1), (4.3) and (4.171) we have

f(Rout) ≡ f(0) =
4V (ϕF )

m2
P

+
8αV 2(ϕF )

m6
P

=
4V (ϕF )

m2
P

(
1 +

2αV (ϕF )

m4
P

)
, (4.174)

and

fR(Rout) ≡ fR(0) = 1 +
4αV (ϕF )

m4
P

. (4.175)

Since V (ϕF ) ≃ 10−120m4
P accounts for the vacuum energy density today and

assuming that α is not unrealistically large, we have 4αV (ϕF ) ≪ m4
P. Thus, the

effective cosmological constant is simplified to

Λeff ≃ 2V (ϕF )

m2
P

− 2V (ϕF )

m2
P

(
1 +

2αV (ϕF )

m4
P

)(
1− 4αV (ϕF )

m4
P

)
≃ 4αV 2(ϕF )

m6
P

. (4.176)

Considering the 00-component of the Einstein equations in Eq. (4.172) we obtain

the Friedman equation, which reads

3H2m2
P =

T00
fR

+m2
PΛeff ≃ V (ϕF )

(
1− 4αV (ϕF )

m4
P

)
+

4αV 2(ϕF )

m4
P

= V (ϕF ). (4.177)

Thus, the vacuum density is V (ϕF ), which is much larger than m2
PΛeff since

V (ϕF )

m2
PΛeff

=
m4

P

4αV (ϕF )
≫ 1 . (4.178)

Eq. (4.157)). Also, we are ignoring the fact that quintessence is thawing so, technically, it is

unfreezing at present, which means that it has a non-zero kinetic energy density, which, however,

is subdominant 1
2 ϕ̇

2 ≪ V (ϕ) ≃ V (ϕF ).
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This means that V (ϕF )/m
2
P is the “true” cosmological constant, as we assumed

in the previous section, while the contribution due to Palatini gravity m2
PΛeff is

negligible. In the following we redefine Λeff as Λeff = V (ϕF )/m
2
P.

4.6.1 Solar System

In Chapter 3 we found (see Eq. (3.47)) that the vacuum equations of motion in

Palatini f(R) theories are equivalent to those of GR with a cosmological constant,

given by Eq. (4.173). Furthermore, we found that in the quintessential inflation

scenario with the f(R) function given by

f(R) = R +
α

2m2
P

R2, (4.179)

the equations of motion are also equivalent to those of GR with a cosmological

constant, now given by Λeff = V (ϕF )/m
2
P. It follows that, if one considers a

spherically symmetric non-rotating mass distribution, such as the Sun, the metric

outside is the Schwarzschild-de Sitter solution

ds2 = −A(r)dt2 + dr2

A(r)
+ r2dΩ2, (4.180)

where A(r) = 1 − 2GM/r − Λeffr
2/3, with M identified as the mass of the star

and Λeff is the cosmological constant. In the vacuum case, some authors [405, 406]

conclude that Palatini f(R) theories are compatible with solar system observations,

based on the fact that for a suitable region in the parameter space of the theory

Λeff can be made small enough and predictions are virtually indistinguishable from

those of the Schwarzschild solution in general relativity (which pass all experimental

tests). In the quintessential inflation case, Λeff = V (φF )/m
2
P is obviously very small

and the metric effectively takes the Schwarzschild form.

However, as it is pointed out in Ref. [298], Eq. (3.45) departs from GR with an

effective cosmological constant in the regions of space where R, and therefore fR, is

no longer constant (and the ∂fR in the right-hand-side of Eq. (3.45) are no longer

zero), such as in the interior of stars. In this way, the transition from the interior
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to the exterior solution is, in general, not as simple as in GR, due to the modified

dynamics in the interior of the sources.

We now give a brief overview of the study of the transition from the interior

to the exterior solution in Palatini f(R) theories. The reader is referred to Ref.

[298] for further details. It is convenient to perform a conformal transformation

gµν → hµν = γ(T )gµν ≡ fR(T )
fR(0)

gµν under which Eq. (3.45) reads8

Gµν(h) =
1

m̃2
Pγ(T )

Tµν − Λ̃(T )hµν , (4.181)

where we have relabelled fRout ≡ fR(0) (see Eq. (4.175)), m̃2
P = m2

PfR(0) and

Λ̃(T ) = (RfR − f)/(2fR(0)γ
2), so that Λ̃(0) = Λeff.

We now focus on spherically symmetric pressureless bodies, for which an

analytical solution for an arbitrary f(R) can be obtained [407] by using the ansatz

ds2 = gµνdx
µdxν =

1

γ(T )
hµνdx

µdxν =
1

γ(T )

[
−B(r)e2Φ(r)dt2 +

1

B(r)
dr2 + r2dΩ2

]
.

(4.182)

The explicit form of B(r) and Φ(r), obtained from the field equations (4.181), can

be found in Ref. [407]. For our current purposes it suffices to say that both functions

are well defined and provide a complete solution for a nonrotating, pressureless,

spherically symmetric body. Furthermore, in the exterior of matter sources, where

γ(0) = 1, the line element in Eq. (4.182) is the same as the Schwarzschild-de Sitter

one given by Eq. (4.180), just by absorbing the e2Φ factor with a time coordinate

redefinition and identifying A(r) with B(r). As for the interior of the body, the

usual GR expressions are recovered by choosing γ = 1 and Λ̃ = 0. In this way, the

Newtonian limit of the general solution (4.182) can be studied. In particular, we

focus on the time-time component of the metric9

gtt = − 1

γ(T )

[
1− 2G̃M(r)

r

]
e2(Φ(r)−Φ0). (4.183)

8Note Eq. (4.181) is the same as Eq. (3.53), only with ḡµν replaced by hµν , fR(T ) by γ(T ) and

mP by m̃P. Indeed, ḡµν = fR(0)hµν , but the Einstein tensor is invariant under constant rescalings

of the metric Gµν(ḡ) = Gµν(fR(0)ḡ).
9We have redefined B(r) = 1− 2G̃M(r)/r.
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The conclusions presented in Ref. [298] imply that, for a Palatini f(R) theory

to be viable, the function f(R) has to be chosen such that γ(T ) (or fR(T )) is

not very sensitive to density variations over the range of densities accessible to

the corresponding experiments. In other words, γ(T ) must be almost constant

since then, with a simple constant rescaling of the metric, the constant γ(T ) ≃

γ0 + corrections can be brought to the form γ̃(T ) = 1 + corrections. This, in turn,

implies that the metric has the standard form gµν = ηµν + corrections.

From a more analytical perspective, we require that a change ∆γ relative to γ

induced by a change ∆ρ relative to ρ must be small∣∣∣ρ
γ

∂γ

∂ρ

∣∣∣ =∣∣∣ ρ
fR

∂fR
∂ρ

∣∣∣≪ 1. (4.184)

This condition is equivalent to [408]∣∣∣ ρ

m2
PRfR

∣∣∣∣∣∣ 1

1− fR/(RfRR)

∣∣∣≪ 1. (4.185)

We now have the tools to determine whether our f(R) function, given by

f(R) = R +
α

2m2
P

R2, (4.186)

satisfies Solar System bounds or not. Using Eqs. (4.3), (4.4) and (4.18) we have the

following expressions inside the matter sources

f(T ) =
1

m2
P

[ρm + 4V (φF )] +
α

2m6
P

[ρm + 4V (φF )]
2 ≃ ρm

m2
P

(
1 +

αρm
2m4

P

)
, (4.187)

fR(T ) = 1 +
α

m4
P

[ρm + 4V (φF )] ≃ 1 +
α

m4
P

ρm, (4.188)

and

fRR(T ) =
α

m2
P

, (4.189)

where we have taken into account that V (φF ) ≪ ρm inside matter sources. Plugging

these results in Eq. (4.184) gives

αρm
m4

P

≪ 1. (4.190)
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It is obvious that this bound is satisfied for most values of the coupling constant

α, and in particular for the lower bounds given by Eq. (4.65). For example, the

density of the Sun is ρ = 1.41g/cm3 = 1.3× 10−91m4
P, so that

10−91α ≪ 1. (4.191)

We conclude that our model passes the Solar System constraints. However, this

is not the end of the story: We have overlooked one important subtlety by taking the

approximation that the considered matter distributions are perfectly homogeneous.

Indeed, the real structure of matter is discrete and our results could be modified.

Specifically, the condition that γ(T ) has to be almost constant does not necessarily

hold when one considers microscopic experiments, since it would be always possible

to find regions of space where γ(T ) could take any possible value.

4.6.2 Microscopic Experiments

In this section we make use of the results found in Refs. [298, 409, 410]. The first

experimental constraint is obtained by considering the non-relativistic Schrödinger

equation for an electron in an external electromagnetic field, derived from the

equation for a Dirac field in curved space-time. It is found that the γ(T ) term

in the metric in Eq. (4.182) induces a miss-match in m̃ ≡ mγ−1/2, where m is the

mass of the electron, calculated in vaccuum and in the interior of sources. This miss-

match in turn corresponds to a change in the potential in the outermost part of the

atom, which could induce a probability flux towards infinity reducing its half-life.

In order for the miss-match to be small enough, any viable f(R) theory must have

a negligible [409]

∆m = m0

(√
fR(∞)

fR(0)
− 1

)
, (4.192)

where m0 is a constant of the order of the mass of the electron m and fR(∞) is fR

evaluated in the regions of space where the matter energy-density is much larger
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than the vacuum energy-density. From the results obtained in the previous section,

we have

∆m = m0

(√
1 +

αρe
m4

P

− 1

)
≃ m0αρe

2m4
P

. (4.193)

Since the vacuum-density scale m2
P/α is much larger than any matter-density

scale that the wavefunction of the electron can reach, unless α is unrealistically large,

we conclude that our choice for the f(R) function is compatible with experiments

related to the stability of the Hydrogen atom.

Another constraint was obtained in Ref. [410] from the variation in the energy

levels of Hydrogen, for models in which the constraint given by Eq. (4.192) is

satisfied, i.e., ∆m is negligibly small, such as ours. It reads∣∣∣fRR(0)H2
0

fR(0)

∣∣∣ ≤ 4× 10−40. (4.194)

Using the results obtained in the previous section and the first Friedmann

equation we obtain ∣∣∣ αρ0
3m4

P

∣∣∣ ≤ 4× 10−40, (4.195)

where ρ0 is the energy-density of the Universe today, which value is

ρ0 ≃ 8.5× 10−30 g

cm3
≃ 10−120m4

P. (4.196)

The bound in Eq. (4.195) is obviously satisfied unless, again, α is unrealistically

large.

This concludes the section about constraints coming from experimental tests.

We have found that our choice for f(R) passes the constraints coming from both

Solar System and microscopic experiments. Furthermore, they are compatible with

the bound in Eq. (4.127) coming from inflationary dynamics.

4.7 Discussion

The emphasis in this work is put on investigating quintessential inflation in the

context of an R + αR2 Palatini modified gravity theory. In the Palatini formalism,
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R + αR2 gravity does not introduce an extra dynamical degree of freedom (the

scalaron) as is the case in the metric formalism. Instead, inflation is driven by an

explicitly introduced inflaton field. What the Palatini setup does is it “flattens” the

scalar potential leading to an effective inflationary plateau even though the original

inflaton potential might be steep. As such, we have shown that a theory with e.g.

V ∝ φ2 is successful in accounting for the inflationary observables.

However, thus far this is not a new result, as inflation in the Palatini context

has been studied before. In our work we have also investigated other implications

of our Palatini modified gravity theory after inflation. During radiation domination

R = 0, which implies that our R + αR2 Palatini modified gravity does not really

differ from standard Einstein gravity. However, this is not true during kination and

subsequently during the recent history of the Universe, after the end of the radiation

era. In principle, these periods may be affected and we have studied this in detail.

We have shown that the Palatini corrections are largely subdominant to negligible

during the kination era if the coupling α of the R2 term in our theory is not too

large10. We also showed that, as far as the Universe dynamics is concerned, the

recent matter era is also unaffected.

There is an additional level on which our Palatini setup outperforms R + αR2

modified gravity theory in the metric setup, and it has to do with constraints from

experimental tests on the coupling α of the R2 term. The inflationary observables

are satisfied when α ≳ 108 or so. In the metric formalism, such values are excluded

by solar system observational constraints and other microscopic experimental tests.

The tightest constraint comes from time-delay effect of the Cassini tracking for the

Sun, enforcing a stringent bound on post-Newtonian parameter |γ− 1| < 2.3× 10−5

[398]. This implies α < 5.8×10−6. However, this is not so in the Palatini formalism,

where experimental tests allow for large values of α without problems. Thus, R+αR2

quintessential inflation is possible only in the context of the Palatini and not the

metric formalism.

10Recall that the Lagrangian density of gravity is actually L = 1
2m

2
PR+ 1

4αR
2.
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To obtain specific predictions and demonstrate the analytic treatment of

quintessential inflation in our Palatini modified gravity theory, we have investigated

a family of models based on a generalised version of the original Peebles-Vilenkin

quintessential inflation model [15], introduced in Eq. (4.44). This model is not to

be taken too seriously though. The reason is that only two small regions of the

scalar potential are really relevant. During inflation, the observable part of the

scalar potential corresponds to the region traversed in slow-roll of the canonical

inflaton field ϕ in no more than about 10 e-folds. For the non-canonical field φ

(cf. Eq. (4.45)), this region is even smaller. For thawing quintessence, the region

traversed corresponds to the field unfreezing and starting to roll. This region is

again rather small. The model approximates the two regions as power-laws, with a

positive power n for inflation and a negative power −q for quintessence.

For inflation, we have shown that the correct spectral index of the primordial

curvature perturbation is obtained when n = 2− 3, in the case when reheating is

due to gravitational particle production. This is the least effective mechanism for

reheating, which corresponds to about N ≃ 68 e-folds of remaining inflation when

the cosmological scales exit the horizon. The problem of gravitational reheating is

that the subsequent kination period is so long that the amplification of primordial

gravitational waves challenges the process of Big Bang Nucleosynthesis. A more

efficient mechanism would reduce N somewhat down to N ≃ 65 or so. This would

mean that n ≃ 2 or even less. The observed amplitude of the primordial curvature

perturbation determines the value of the constant λ. When n = 2 we find that

λ ∼ 10−6. Finally, regarding the generated primordial tensors, we find that we are

within the observational limits if α ≳ 108. If we are near this value, the produced

primordial tensors are within reach of observations in the near future (e.g. by the

BICEP3 or Simons observatories).

For quintessence, we have shown that coincidence can be achieved by avoiding

the extreme fine-tuning of ΛCDM. Indeed, for q = 4 we found M ∼ 10GeV, which

is rather reasonable. We have shown that this value substantially grows if q becomes
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larger (M ∼ 10−7GeV when q = 2). However, the negative power q cannot be much

larger because the barotropic parameter of thawing quintessence today would be too

large [258], the observational bound being −1 ≤ w < −0.95 [8]. Future observations

(e.g. Euclid or the Nancy Grace Roman missions), will pinpoint w further, resulting

in a better estimate of q. It will be interesting if w = −1 was excluded and ΛCDM

was in trouble. We should note that the power-law approximations of the scalar

potential in the inflation and quintessence regions are only indicative. In this sense,

one can envisage non-integer powers.

After inflation there is a period of kination where the inflaton field is oblivious of

the scalar potential. Our treatment of kination within the Palatini setup is therefore

independent of the specific model chosen for the scalar potential. We found that

the canonical field ϕ is propelled over super-Planckian distances. However, the non-

canonical field φ for both inflation and quintessence (cf. Eqs. (4.45) and (4.132)) is

expected to vary much less, as is the case of α-attractors [258]. This means that the

radiative stability of the quintessential tail is protected and the 5th force problem

of quintessence is overcome [259].

Summing up, we have investigated quintessential inflation in the context of

an R + αR2 Palatini modified gravity theory. We have shown that inflation is

successful with a quadratic scalar potential for the inflaton field, while quintessence

is successful with a quartic inverse power-law potential without the extreme fine-

tuning of ΛCDM. He have found that the Palatini setup introduces subdominant

corrections to the kination and quintessence periods and does not lead to violations

on experimental tests of gravity. Our treatment is able to provide concrete

predictions for the primordial tensors and the barotropic parameter of dark energy,

which will be tested in the near future.
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Chapter 5

Exponential Quintessential

Inflation in Palatini f (φ,R) Gravity

This chapter is based on the original research articles published in Journal of

Cosmology and Astroparticle Physics [3] and in Galaxies [2] by the author,

in collaboration with Konstantinos Dimopoulos, Alexandros Karam, and Eemeli

Tomberg.

5.1 Introduction

In this chapter, we study a model of quintessential inflation in the context of R+R2

Palatini gravity where the scalar field has a running non-minimal coupling to gravity.

Employing Palatini gravity to study quintessential inflation was first considered in

Chapter 4, considering a variation of the original quintessential inflation model in

Ref. [15]. This toy-model investigation demonstrated that modeling quintessential

inflation with Palatini gravity is promising. In this, much more elaborated and

realistic approach, we consider a simple negative exponential potential in the Jordan

frame. When we transform the action to the Einstein frame, the potential becomes

flat for both negative and positive field values with a steep transition region in-

between, resembling a step function. The two flat regions are suitable for inflation

148



5.2. Setup

and quintessence. Working in the Palatini formulation allows us to modify the

inflationary plateau, in particular, through the R2 term. The running of the non-

minimal coupling allows us to obtain the correct quintessence behaviour. To study

the full time evolution of the system throughout its cosmic history, we provide the

equations of motion of the scalar field and an ideal fluid component representing

other matter sources in the universe. We solve these equations numerically and

scan over the parameter space, finding working scenarios matching both the CMB

and late-time observations for parameter values that are free of fine-tuning. A

preliminary study of the model can be found in Ref. [2]. In the present chapter, our

treatment and findings are more complete and comprehensive.

This chapter is structured as follows. In the next section, we describe our model

and perform the Jordan to Einstein frame transformation. Then, in Sec. 5.3, we

describe the model’s time evolution in a cosmological setup. We employ the slow-

roll approximation and discuss the inflationary behaviour of the model, adopt Ricci

reheating as the mechanism responsible for reheating the Universe and describe

its details, and outline the post-inflationary expansion history, namely, kination,

radiation/matter domination, and quintessence. Numerical results for inflationary

and late-universe observables are presented in Sec. 5.4, and we conclude in Sec. 5.5.

Further computational details are relegated to the appendices.

5.2 Setup

In this section, we first present the action of the model in the Jordan frame. After

a frame transformation we bring the action to its Einstein frame form. Then, we

compute the equations of motion in both Jordan and Einstein frames and show how

one can easily transition between them.
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5.2.1 The model

We start by considering the action in the Palatini formalism

S =

∫
d4x

√
−g
[
m2

P

2
f(φ,R)− 1

2
gµν∂µφ∂νφ− V (φ)

]
+ Sm[gµν , ψ] , (5.1)

wheremP is the reduced Plank mass, ψ collectively represents the matter fields other

than the inflaton φ, and we take them to behave as an ideal fluid. The function

f(φ,R) takes the form

f(φ,R) =

(
1 +

ξ

m2
P

φ2

)
R +

α

2m2
P

R2 . (5.2)

We let the non-minimal coupling ξ run as

ξ(φ) = ξ∗

[
1 + β ln

(
φ2

µ2

)]
, (5.3)

with ξ∗ > 0 and β < 0 constants, and µ an arbitrary reference scale.

In the Palatini formalism, the connection Γ is independent of the metric gµν .

The connection features in the Ricci tensor, which is a function of the connection Γ

only, with

R = gµνRµν(Γ) . (5.4)

The form of the connection is determined by constraint equations obtained by

varying the action with respect to Γ, and, in the presence of the non-minimal

gravitational physics introduced by the non-zero ξ and α, it will differ from the

standard Levi-Civita form.

The real scalar field φ, which plays the role of the inflaton and quintessence in

quintessential inflation, is governed by an exponential potential

V (φ) =M4e−κφ/mP . (5.5)

The exponential form is well-motivated in particle physics (it usually appears in

string theory and supergravity models, e.g. in gaugino condensation [411, 412, 413]).

It can produce quintessence in agreement with observations in its flat tail at φ > 0,
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and it is also suitable for quintessence from a theoretical point of view: we do not

introduce a fine-tuned cosmological constant by hand, but instead V → 0 for large

φ, and the late time dark energy density arises dynamically from the equations of

motion.

The action (5.1) is dynamically equivalent (as long as ∂2χf ̸= 0) to

S =

∫
d4x

√
−g
[
f(φ, χ) + ∂χf(φ, χ)(R− χ)− 1

2
gµν∂µφ∂νφ− V (φ)

]
+ Sm[gµν , ψ] ,

(5.6)

as can be seen by obtaining the equation of motion for the auxiliary field χ and

plugging it back in Eq. (5.6). Using this, the action can be cast in the form

S =

∫
d4x

√
−g
[
m2

P

2

(
1 +

ξ

m2
P

φ2 +
α

m2
P

χ

)
R− α

4
χ2 − 1

2
gµν∂µφ∂νφ− V (φ)

]
+Sm[gµν , ψ] .

(5.7)

As is standard, we employ a conformal transformation (note that, in the Palatini

formalism, this does not change Γ)

gµν → ḡµν = Ω2gµν ≡
(
1 +

ξ

m2
P

φ2 +
α

m2
P

χ

)
gµν (5.8)

to express the action in the Einstein frame where the gravitational part takes the

standard Einstein–Hilbert form:

S =

∫
d4x

√
−ḡ

[
m2

P

2
R̄− 1

2

m2
P(∂̄φ)

2

(m2
P + ξφ2 + αχ)

−
m4

P

(
V (φ) + α

4
χ2
)

(m2
P + ξφ2 + αχ)

2

]
+Sm[Ω

−2ḡµν , ψ] .

(5.9)

Note that, essentially, Ω2 = ∂Rf(φ,R) ≡ fR. We have introduced the short-hand

notation (∂̄φ)2 ≡ ḡµν ∂̄
µφ∂̄νφ, where ∂̄ denotes a derivative with respect to the

Einstein frame coordinates. Throughout the chapter, we will use an overbar to

denote Einstein frame quantities. Due to the standard form of the gravity sector,

we will interpret all the usual cosmological observations in the Einstein frame.

To make the calculations that follow less cluttered, we define

h(φ) ≡ m2
P + ξφ2 . (5.10)

We then get rid of the auxiliary field by obtaining its equation of motion. Let us,
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for a moment, ignore all matter except for the inflaton; then, we have

δS

δχ
= 0 ⇔ χ =

4m2
PV + h(φ)(∂̄φ)2

h(φ)m2
P − α(∂̄φ)2

, (5.11)

giving

Ω2 =
h2 + 4αV

hm2
P − α(∂̄φ)2

. (5.12)

Plugging both expressions back into the action gives [345, 346]

S =

∫
d4x

√
−ḡ
[
m2

P

2
R̄− 1

2

(∂̄φ)2hm2
P

h2 + 4αV
+
α

4

(∂̄φ)4

h2 + 4αV
− V m4

P

h2 + 4αV

]
. (5.13)

Note that, because we were able to get rid of the non-dynamical auxiliary field

through its equation of motion, the above action contains only one scalar field.

This is in contrast to the metric version of the theory, where the auxiliary field is

dynamical and the Einstein frame action contains two fields.

The field can be made canonical via the redefinition

dϕ

dφ
=

√
h(φ)m2

P

h(φ)2 + 4αV (φ)
. (5.14)

Note that for large negative φ, this gives dϕ/dφ ∝ eκφ/(2mP), which, after integration,

shows that ϕ approaches a constant as φ → −∞. We choose this constant to be

equal to zero, so that ϕ is restricted to take positive values.

The field redefinition leads finally to

S =

∫
d4x

√
−ḡ
[
m2

P

2
R̄− 1

2
(∂̄ϕ)2 +

α

4

h2 + 4αV

h2m4
P

(∂̄ϕ)4 − V m4
P

h2 + 4αV

]
. (5.15)

Note the appearance of the higher-order kinetic terms for the scalar. As we will see

below, they are negligible for most of cosmological evolution. Note also the form of

the Einstein frame potential,

V̄ (ϕ) ≡ V m4
P

h2 + 4αV
=

m4
PM

4e−κφ(ϕ)/mP

(m2
P + ξφ(ϕ)2)2 + 4αM4e−κφ(ϕ)/mP

, (5.16)

which chiefly determines the cosmological evolution of the model. An example case

is depicted in Fig. 5.1. The appealing features of the model are evident in the

potential. For φ < 0, the potential decreases with increasing φ, but only slowly: the
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α term makes the potential flat and suitable for slow-roll inflation. For φ > 0, the α

term is subleading, and the potential decreases quasi-exponentially, modified by the

change of variables (5.14). The ξ contribution modifies the potential; its running

enables it to fix both the inflationary CMB observables and the late-time dark energy

to values that match observations. For large enough φ, ξ runs to negative values,

causing V̄ to first flatten and then start growing, forming a local minimum and a

nearby peak when 1 + ξ(φ)φ2/m2
P becomes zero. For the parameters in Fig. 5.1,

the zero occurs at φ = 890.99mP, and at this point the height of the Einstein frame

potential is V̄ (890.99) = 1.14×10−94m4
P (notice the second term in the denominator

in the potential regularizes the peak). Beyond the peak, the kinetic term in (5.13)

changes sign. In practice, as we will see below, dynamics never probe this region.
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Figure 5.1: Potential in the Einstein frame V̄ as a function of the field φ (in Planck

units), with the presented parameter values, in two regions: around the inflation

scale, φ ∼ 0 (left), and around the point at which 1 + ξ(φ)φ2/m2
P becomes zero,

i.e., φ = 890.99mP (right). The height of the potential at this point is V̄ (890.99) =

1.14× 10−94m4
P.

5.2.2 Equations of motion in the Jordan frame

While the Einstein frame discussed in the previous section is useful for physical

interpretation of the results, the equations of motion are easier to formulate in
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the Jordan frame, especially when we wish to include the non-inflaton matter

contribution from (5.1) and thus go beyond the simplified Einstein frame action

(5.15). To obtain the equivalent of Einstein equations for our system, we follow the

same steps as in Sec. 3.2.

We take the matter energy-momentum tensor to be of the ideal fluid form with

energy density ρ and pressure p, T
(m)
µν = (ρ + p)uµuν + pgµν . We define the fluid’s

barotropic parameter as w ≡ p/ρ. The energy-momentum tensor of the field takes

the standard form T
(φ)
µν = ∂µφ∂νφ− gµν

(
1
2
(∂φ)2 + V

)
.

Using Eq. (5.2), the trace equation (3.40) becomes

R = − T

m2
P + ξφ2

, (5.17)

and the R-derivative of the f function reads

fR =

(
1 +

ξ

m2
P

φ2

)
− αT

m4
P + ξm2

Pφ
2
, (5.18)

where trace of the energy-momentum tensor reads

T = −gµν∂µφ∂νφ− 4V (φ)− ρ(1− 3w) . (5.19)

Adopting now the flat FLRW metric, the metric Einstein tensor Gµν can be

written in terms of the scale factor a and its time derivatives such as the Hubble

parameter H ≡ ȧ/a in a standard way. Dot refers to a derivative with respect to

the cosmic time. The zeroth-zeroth component of Eq. (3.45) then reads

3H2 =
1

m2
PfR

T00 +
1

2

(
R− f

fR

)
− 3H∂0fR

fR
− 3

4f 2
R

(∂0fR)
2 , (5.20)

while the ij components read

Ḣ = − 1

2m2
PfR

(p+ ρ+ φ̇2)− f̈R
2fR

+
3

4f 2
R

(ḟR)
2 +

HḟR
2fR

, (5.21)

where R and fR are given in terms of the matter content by Eq. (5.17) and (5.18)

and

T00 = ρ+
1

2
φ̇2 + V (φ) . (5.22)
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Eq. (5.20) is a second-order algebraic equation for H, which can be solved in terms

of the field and fluid variables φ, φ̇, ρ, and w. A complication arises from the

time derivatives of fR: these contain also factors such as φ̈ and ρ̇, which must be

eliminated using the field and fluid equations introduced below. The procedure is

explained in detail in Appendix B.1.

As discussed in Sec. 3.2, the energy-momentum tensor of the fluid is conserved

[376], so that

∇µT
µν
(m) = 0 ⇒ ρ̇+ 3Hρ(1 + w) = 0 . (5.23)

Finally, varying the action with respect to φ, we have

φ̈+ 3Hφ̇+ V ′(φ)−
(
ξ(φ) +

ξ′(φ)φ

2

)
φR = 0 , (5.24)

which, using Eq. (5.3), becomes

φ̈+ 3Hφ̇+ V ′(φ)− ξ̃φR = 0 , (5.25)

where we have defined

ξ̃ ≡ ξ∗

[
1 + β

(
1 + ln

φ2

µ2

)]
. (5.26)

Equations (5.23) and (5.25), with (5.17) and (5.20) for R and H, form a complete

set of equations from which the dynamics of the system can be solved.

5.2.3 Between the Jordan and Einstein frames

To give a physical interpretation for the dynamics, we want to relate the Jordan

frame quantities to the Einstein frame ones. In both frames, we use a flat

FLRW coordinate system with the metrics gµν = diag(−1, a2, a2, a2) and ḡµν =

diag(−1, ā2, ā2, ā2). We remind the reader that we use an overbar to denote

the Einstein frame quantities. The spatial coordinates of these two flat FLRW

coordinate systems match, but the time coordinates are rescaled. As per our

convention, we call the Jordan frame coordinates xµ = (t, xi) and the Einstein

frame coordinates x̄ = (t̄, xi), and the conformal transformation gives for spacetime
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intervals

ds2 = dxµdxνgµν = dx̄µdx̄ν ḡµνΩ
−2

⇔ (dxi)2a2 = (dxi)2ā2Ω−2 , −dt2 = −dt̄2Ω−2 ,
(5.27)

where Ω2 = fR depends on time only. We obtain the relationships

dt̄

dt
=
√
fR , ā = a

√
fR (5.28)

as the master equations for moving between the two frames. With these, we can

express various Einstein frame quantities in terms of the Jordan frame ones. In

particular,

d

dt̄
ϕ ≡

◦
ϕ =

1√
fR

dϕ

dφ
φ̇ , H̄ ≡

◦
ā

ā
=

H√
fR

+
1

2

ḟR

f
3/2
R

, (5.29)

where a dot still denotes a derivative with respect to the Jordan frame time, and

we introduced a circle over a symbol to indicate a derivative with respect to the

Einstein frame time, so that
◦
x = f

−1/2
R ẋ.

The relation between the fluid energy-momentum tensors in the Jordan and

Einstein frames is [1]

T̄ (m)
µν = − 2√

−ḡ
δSm

δḡµν
= − 2√

−ḡ
∂gαβ

∂ḡµν
δSm

δgαβ
=

f

f 2

(
− 2√

−g
δSm

δgµν

)
=

1

f
T (m)
µν , (5.30)

where we used ∂gαβ/∂ḡµν = fδαµδ
β
ν and

√
−ḡ = f 2

√
−g.

The Jordan frame ideal fluid is still ideal fluid in the Einstein frame; following

Refs. [198, 399], we write its energy-momentum tensor as

T̄ (m)
µν = (ρ̄+ p̄)ūµūν + p̄ḡµν , ūµ =

√
fuµ , ρ̄ =

ρ

f 2
, p̄ =

p

f 2
, (5.31)

where the last equations relate the Jordan and Einstein frame quantities. It follows

that the barotropic parameter has the same expression in both frames:

w̄ ≡ p̄

ρ̄
=
p

ρ
= w . (5.32)

Below, we will always refer to the Einstein frame when talking of the barotropic

parameter; we will omit the bar for simplicity of notation.
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5.2.4 Equations of motion in the Einstein frame

We are now ready to examine the Einstein frame equations of motion. Their full form

is complicated—in the Einstein frame action (5.9), the field and fluid components are

coupled through the conformal factor Ω−2 inside Sm. In a general case with α ̸= 0,

the fluid may even modify the χ constraint equation (5.11) and, as a consequence,

the field transformation (5.14). We only present here approximate forms of the

equations, free of some of these complications and valid during specific cosmological

eras. Exact expressions can always be obtained by starting from the Jordan frame

equations of Sec. 5.2.2 and applying the transformations of Sec. 5.2.3.

During inflation and right after it, the fluid is subdominant and can be ignored

in the field equations. Varying the action (5.15) then gives [345][
1 + 3α

(
1 +

4αV

h2

) ◦
ϕ2

m4
P

]
◦◦
ϕ+ 3

[
1 + α

(
1 +

4αV

h2

) ◦
ϕ2

m4
P

]
H̄

◦
ϕ

+3α2

◦
ϕ4

m4
P

d

dϕ

(
V

h2

)
+

d

dϕ
V̄ = 0 ,

(5.33)

with h defined in (5.10). The energy density and pressure of the field read [362]

ρ̄ϕ =
1

2

[
1 +

3

2
α

(
1 +

4αV

h2

) ◦
ϕ2

m4
P

]
◦
ϕ2 + V̄ ,

p̄ϕ =
1

2

[
1 +

1

2
α

(
1 +

4αV

h2

) ◦
ϕ2

m4
P

]
◦
ϕ2 − V̄ ,

(5.34)

and the Hubble parameter can be written as 3m2
PH̄

2 = ρ̄ϕ. The higher-order kinetic

terms are the only complication compared to a standard canonical scalar field.

At later times, the fluid becomes important, but the α terms turn out to be

negligible. In this limit, the field transformation (5.14) can be solved explicitly to

yield1 √
ξφ = mP sinh

(√
ξϕ/mP

)
, (5.35)

1Note that, when α = 0, we have ϕ → −∞ as φ → −∞, contrary to the discussion below

Eq. (5.14). When working in the α = 0 limit, we normalize the field so that ϕ = 0 when φ = 0.
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with the Einstein frame potential

V̄ (ϕ) =M4
exp

[
− κ√

ξ
sinh

(√
ξ

mP
ϕ
)]

cosh4(
√
ξ

mP
ϕ)

≡ Ṽ (ϕ) . (5.36)

The field is coupled to the fluid; action (5.15) with the fluid contribution added in

gives in the α → 0 limit:

◦◦
ϕ+ 3H̄

◦
ϕ+

dV̄

dϕ
− 1

2fR

dfR
dϕ

(1− 3w)ρ̄ = 0 , (5.37)

where fR is given by (5.18), so that ∂ϕfR/(2fR) =
√
ξ tanh

√
ξϕ, and we used

1√
−ḡ

δSm

δϕ
=
∂Ω2

∂ϕ
ḡµν
(

1√
−ḡ

δSm

δgµν

)
= − 1

Ω2

∂Ω2

∂ϕ
T̄m , T̄m = −(1− 3w)ρ̄ . (5.38)

Throughout the cosmic history, the fluid continuity equation in the Einstein frame

can be obtained from the Jordan frame version (5.23), using the transformations of

Sec. 5.2.3. The result is

◦
ρ̄+ 3H̄ρ̄(1 + w) +

1

2fR

◦
fR(1− 3w)ρ̄ = 0 . (5.39)

Multiplying the field equation (5.37) by
◦
ϕ gives the continuity equation for the field

energy density. The inflaton-fluid coupling terms there and in (5.39) are identical

but have opposite signs: the coupling simply transfers energy from one component

to the other. The coupling vanishes in the early universe when the fluid behaves

like radiation, w = 1/3, but it can be non-negligible during matter domination. We

will discuss the effects of this coupling in more detail in Sec. 5.4.

Note that these expressions are still written partly in terms of the Jordan frame

field φ, hidden in quantities like h, V , and fR. In a general case, it is not possible

to solve the field ϕ from φ analytically. This is why, in our practical numerical

computations, we work in the Jordan frame. The Einstein frame expressions of this

section are for the benefit of developing a physical intuition of the system.

5.3 Cosmic history with quintessential inflation

Let us now turn to the time evolution of our model in a cosmological setup. In this

section, we explore the cosmic history qualitatively through its many stages, starting
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from inflation and ending with quintessence domination. To make contact with the

standard formalism discussed in the literature, we mostly work in the Einstein frame.

5.3.1 Inflation

We start with the field at the plateau with φ < 0 and high V̄ , with other

matter components being negligible. We assume the high potential energy density

dominates over the scalar’s kinetic energy, giving rise to cosmic inflation, where the

expansion of space accelerates. The plateau in V̄ is suitable for slow-roll inflation,

where the field slowly moves towards positive values so that the potential gradient

is balanced by Hubble friction. In this limit, the Einstein frame equations of motion

(5.33) take the standard form

3H̄
◦
ϕ+

dV̄

dϕ
= 0 , 3H̄2m2

P = V̄ , (5.40)

where we neglected higher-order kinetic terms as subleading slow-roll corrections

[345]. The evolution is characterized by the slow-roll parameters:

ϵV ≡ 1

2

(
dV̄

dϕ

mP

V̄

)2

, ηV ≡ d2V̄

dϕ2

m2
P

V̄
. (5.41)

For slow roll to be possible, we must have ϵV < 1 and |ηV | < 1 at the corresponding

field values. We can compute the slow-roll parameters for our potential (5.16) in the

limit of constant ξ, that is, with β = 0. To make the computation simpler, we use

a result from [345] that relates ϵV and ηV to their counterparts in the α = 0 limit

(here ϵ̃ and η̃, respectively). The results, by using Eq. (5.14) and the chain rule,

can be expressed terms of the Jordan frame field φ as

ηV = η̃ − 3
4αṼ

1 + 4αṼ
, ϵV =

ϵ̃

1 + 4αṼ
,

ϵ̃ =
1

2

[
κ
(
1 + ξφ2

m2
P

)
+ 4ξ φ

mP

]2
1 + ξφ2

m2
P

, η̃ =
7κξ φ

mP

(
1 + ξφ2

m2
P

)
+ κ2

(
1 + ξφ2

m2
P

)
− 4ξ + 16ξ2 φ

2

m2
P

1 + ξφ2

m2
P

,

(5.42)

and Ṽ is defined in (5.36). The expression for ϵV reveals possible extrema with

Ṽ ′ = 0 at κφ/mP = −2±
√

4− κ2/ξ. We demand that the potential is monotonic,
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i.e. Ṽ ′ < 0 everywhere; this sets the restriction κ2 > 4ξ on the allowed parameter

space.

Asymptotically, ϵ̃ ∼ φ2, diverging for both positive and negative φ. However, ϵV

is suppressed by the exponential αṼ contribution so that ϵV ≪ 1 for φ ≪ −mP/κ.

This allows the system to undergo inflation even for large negative φ. Indeed, this

was the motivation for us to introduce the αR2 term to our model (5.1) in the

first place. The asymptotic behaviour ηV ∼ η̃ ∼ φ also reveals divergences for

|φ| → ∞, this time not removed by the α terms, making slow roll impossible for

φ ≪ −mP/(κξ). This leaves us with a range of field values near φ = 0 that are

compatible with slow-roll inflation. We start our inflationary evolution in slow-roll

in this field range. As we will see in Sec. 5.4, typical values of the model parameters

support the 60 or so e-folds of inflation needed for a successful inflationary scenario.

As discussed in Chapter 2, the motivation for slow-roll inflation is that it

produces a nearly scale-invariant spectrum of perturbations, compatible with the

CMB observations [10, 9]

As = 2.1× 10−9 , ns = 0.9649± 0.0042 , αs = −0.0045± 0.0067 , r < 0.036 .

(5.43)

Here As is the scalar power spectrum amplitude, ns is the scalar spectral index, αs its

running, and r is the tensor-to-scalar ratio at the CMB pivot scale k∗ = 0.05Mpc−1.

In the slow-roll limit, the perturbations read

As =
V̄

24π2m4
P ϵV

=
H̄2

8π2m2
P ϵH

,

ns = 1− 6ϵV + 2ηV = 1− 4ϵH + 2ηH , r = 16ϵV = 16ϵH ,

(5.44)

where we also gave the forms based on the Hubble slow-roll parameters,

ϵH ≡
◦
ϕ2

2H̄2m2
P

≈ ϵV , ηH ≡ −
◦◦
ϕ

H̄
◦
ϕ
≈ ηV − ϵV , (5.45)

where the approximations apply during slow roll. The expression for αs depends on

higher-order slow-roll parameters, which we omit for brevity; these can be found in
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e.g. [39]. Using the results (5.42), we can also write down the full expression

ns − 1 = −κ2
(
1 +

ξφ2

m2
P

)
− 10ξκ

φ

mP

− 8ξ
1 + 2 ξφ

2

m2
P

1 + ξφ2

m2
P

. (5.46)

In our numerical results, we have β ̸= 0, so the results (5.42), (5.46) will be

modified slightly. We will use these expressions as guidance when scanning over

the parameter space, but we will compute the CMB observables from the Hubble

slow-roll parameters as laid out in (5.44). The modifications of inflation due to a

non-zero β turn out to be minor; β is more important for the later evolution of the

system, in particular, for fixing the final dark energy density.

5.3.2 Kination

Inflation ends when the field rolls down from the inflationary plateau to positive φ

values. As the field drops off the potential ‘cliff’, see Fig. 5.1, its velocity increases

and the kinetic terms in the action (5.15) start to dominate over the potential.

During this stage, the extra kinetic terms proportional to α
◦
ϕ4 may play a role in the

evolution (see Chapter 6). However, as the field velocity decreases due to Hubble

friction, these terms die out quicker than the canonical
◦
ϕ2 kinetic term, which soon

dominates. Analogously, in the Jordan frame, the αR2 term becomes subdominant

compared to the linear R term as the energy density of the universe, and thus its

curvature, decreases, and it stays subdominant until today. Thus, the α term is only

important during and right after inflation.

After a transition period (lasting less than 10 e-folds according to the numerics

of Sec. 5.4), the scalar field follows standard kination [287, 288, 286, 239, 240, 245]

with the equations of motion

◦◦
ϕ+ 3H̄

◦
ϕ = 0 , 3H̄2m2

P =
1

2

◦
ϕ2 , (5.47)

with the solution
◦
ϕ ∝ ā−3 , ρ̄ϕ = p̄ϕ =

1

2

◦
ϕ2 ∝ ā−6 . (5.48)
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Note that the exponentially suppressed potential does not play a role during this

stage. The evolution (5.48) corresponds to a barotropic parameter w = 1, which is

quite distinct from the standard radiation or cold matter domination (w = 1/3 and

0, respectively). The period of kination leads to a non-standard expansion history

of the universe, which, in particular, shifts the number of e-folds of inflation left at

the Hubble exit of the CMB pivot scale k = 0.05Mpc−1 from the standard 50–60

to 60–70. We will return to this point in Sec. 5.4, where we match the CMB scale

based on the full expansion history.

5.3.3 Reheating

In many conventional models of inflation, reheating occurs through the inflaton

decaying into matter particles, which then take over the energy density and start

the standard Hot Big Bang era. In quintessential inflation2, the field condensate

must be preserved and serve as dark energy later on. Therefore, radiation has to be

created in some other way. There are many mechanisms which can facilitate this.

As an example, we consider one such mechanism, called Ricci reheating. Ricci

reheating was first considered by Ref. [98]. Then, it was refined first by Ref. [99],

which also coined the name, and further by Ref. [289]. In a nutshell, the idea behind

Ricci reheating is as follows. The mechanism is based on the fact that, for a flat

FRW Universe, the Ricci scalar (in the Einstein frame) is R̄ = 3(1− 3wtot)H̄
2, where

wtot is the barotropic parameter of the whole Universe. During slow-roll inflation we

expect wtot = −1, while after the end of inflation during kination we have wtot = 1.

This implies that the sign of R̄ changes in the transition from inflation to kination.

If one considers also a spectator scalar field ψ with non-minimal coupling to gravity

∝ R̄ψ2, then this change of sign in R̄ would correspond to a change of sign in the

effective mass-squared of ψ generated due to the non-minimal coupling. Assuming

that this effective mass-squared is positive during inflation, we can safely consider

that the expectation value of ψ is zero by the end of inflation. However, as we switch

2and in general in non-oscillating inflation models
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to kination, the effective mass of ψ becomes tachyonic and the field is displaced from

zero (which corresponds to a potential hilltop, after inflation) and begins oscillations

in its effective potential. The oscillating ψ has a particle interpretation and can decay

into radiation, which eventually reheates the Universe, because its density is diluted

less efficiently by the expansion than that of the free-falling inflaton during kination.

The mechanism has a number of advantages compared to other reheating

mechanisms considered in quintessential inflation. It can be very efficient, in contrast

to gravitational reheating [97, 403], which means it would not challenge Big Bang

Nucleosynthesis (BBN); it does not require a coupling between the spectator field

and the quintessential inflaton in an enhanced symmetry point, as would be the case

of instant preheating [100, 228]; it does not need tuning of initial conditions for the

spectator field, as does the curvaton reheating mechanism [290, 291] and finally it

does not presuppose a quintessential inflaton with dissipating properties as in warm

quintessential inflation [272] or the generation of primordial black holes [414]. It

only employs the fact that renormalisation in curved spacetime results generically

in a non-minimal coupling of scalar fields to gravity.

The additional Lagrangian density of the scalar field is

δL̄ = −1

2
ξ̂R̄ψ2 − 1

2
ḡµν ∂̄µψ∂̄νψ − V (ψ) , (5.49)

where V (ψ) is the part of the scalar potential which involves ψ and ξ̂ is a non-

perturbative coupling, which should not be confused with ξ, the non-minimal

coupling of the quintessential inflaton field.

Technically, the addition of the above in the Lagrangian density of the theory

is yet another modification of gravity, which must be taken into account when

switching between the Jordan and Einstein frames. However, we consider that√
ξ̂|ψ| ≪ mP always, which means that the influence of ψ on gravity remains always

negligible. Thus, in effect, we can consider that the only effect of the above non-

minimal coupling is to provide a contribution to the effective mass-squared of the

spectator field. Additionally, the condition

√
ξ̂|ψ| ≪ mP allows us to consider a

perturbative scalar potential, which around the expectation value of the field during
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inflation, can be written as

V (ψ) =
1

2
m2ψ2 +

1

4
λψ4 + · · · , (5.50)

where the ellipsis denotes higher-order non-renormalisable terms, presumed negligi-

ble. We will consider at first that the non-minimal coupling overwhelms the bare

effective mass-squared |m2| ≪ |ξ̂R̄| so we can ignore the first term on the right-hand-

side above. This sets a limit on the mass which we discuss in Appendix B.2. We will

also consider a positive perturbative self-coupling 0 < λ < 1, so that the potential

is stabilised by the quartic term and not by non-renormalisable terms, although a

modification of our results in the latter case is straightforward.

In Ref. [289] it was shown that after the end of inflation, the field ψ oscillates

as determined by the terms in (5.50) that stabilize V (ψ), while the effect of the

central potential hill (generated by the non-minimal coupling) is diminishing (and

negligible) because R̄ ∼ H̄(t) is decreasing after inflation. If the stabilising potential

is quartic, as is the case of Eq. (5.50), then the density of the oscillating condensate

decays as radiation, ρ̄ψ ∝ ā−4 [106]. However, if the potential were stabilised by

a non-renormalisable term, this would not have been so. Fortunately, Ref. [289]

demonstrated that it is largely irrelevant which term stabilises the potential V (ψ).

This is because in Ref. [289] it was shown that the primary reheating effect is not

the perturbative decay of the coherently oscillating ψ condensate, but the non-

perturbative particle production on the hilltop, right after the end of inflation.

At this moment, the field finds itself on top of a potential hill, leading to ample

production of radiation due to a tachyon instability. In Ref. [289], it was claimed

that the produced radiation dominates over the one corresponding to the oscillating

condensate. Because the latter is diluted (at least) as fast as radiation, it never

becomes important, at least as long as the quadratic term in Eq. (5.50) remains

negligible. These considerations simplify our treatment, because they suggest that

radiation is immediately produced at the end of inflation, and the further evolution

of the oscillating ψ condensate is irrelevant. The only question is how much radiation

is produced.
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An estimate of the size of the spread of a scalar field condensate on top of a

potential hill is given by ⟨ψ2⟩ ≃ |meff |2 [415], where the effective mass squared in

our case ism2
eff = −6ξ̂H̄2 during kination, which takes place near the end of inflation.

Therefore, the density of radiation at the end of inflation is

ρ̄endr =
1

2
|m2

eff |⟨ψ2⟩ ≃ 18 ξ̂2H̄4
end , (5.51)

where ‘end’ denotes the end of inflation. Thus, we obtain

Ωend
r =

ρ̄endr

ρ̄endtot

≃ 18 ξ̂2H̄4
end

3H̄2
endm

2
P

= 6 ξ̂2
(
H̄end

mP

)2

. (5.52)

During kination, the total density of the Universe decreases as ρ̄tot ∝ ā−6, while for

radiation we have ρ̄r ∝ ā−4, which means that ρ̄r/ρ̄tot ∝ ā2. Therefore,

ρ̄r
ρ̄tot

∣∣∣∣
end

=

(
āend
āreh

)2
ρ̄r
ρ̄tot

∣∣∣∣
reh

⇒
(
āend
āreh

)2

≃ 6 ξ̂2
(
H̄end

mP

)2

, (5.53)

where ‘reh’ denotes reheating, which is the moment that radiation takes over and

we have ρ̄r ≃ ρ̄tot. The density of the Universe at reheating is straightforward to

find, by considering that ρ̄tot ∝ ā−6. Indeed, we get

ρ̄rehtot =

(
āend
āreh

)6

ρ̄endtot ≃ 648 ξ̂6
H̄8

end

m4
P

, (5.54)

where we used Eq. (5.53) and ρ̄endtot = 3H̄2
endm

2
P . Therefore, using that at reheating

ρ̄tot ≃ ρ̄r =
π2

30
g∗T

4, the reheating temperature is

Treh ≃ 6

(
15

π2g∗

)1/4

ξ̂3/2
H̄2

end

mP

, (5.55)

where g∗ is the number of effective relativistic degrees of freedom at reheating.

The allowed reheating efficiency for successful reheating is

10−18 ≲ Ωend
r < 1 . (5.56)

The lower bound in the range of the reheating efficiency in Eq. (5.56) is obtained from

gravitational reheating [97, 403], which challenges the process of BBN due to an over-

enhancement of primordial GWs during kination. Indeed, gravitational reheating
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suggests ρ̄grr ∼ 10−2H̄4
end, where H̄end ∼ 10−8mP and we used that V̄

1/4
end ∼ 10−4mP ,

as the numerical scans of Sec. 5.4 give. The value of V̄
1/4
end roughly corresponds to

mP/(4α)
1/4, that is, V̄ 1/4 on the plateau during inflation. Using Eq. (5.52), we

obtain the range of the non-minimal coupling of the spectator field

0.1 ≲ ξ̂ < 108 . (5.57)

This range includes values of ξ̂ ∼ 1, which means that no fine-tuning is required for

our mechanism to work. A similar lower bound on ξ̂ is obtained when considering

the density of the primordial GWs generated by inflation. Indeed, the density of the

gravitational radiation at the end of inflation is ρ̄end
GW

≃ 1
4π2 H̄

4
end (see appendix B.3).

We require that ρ̄r/ρ̄GW
> 20 at BBN, but because both ρ̄r and ρ̄GW

decrease with

the expansion as ā−4, we have the same requirement at the end of inflation. In view

of Eq. (5.51), this requirement becomes ξ̂ > 1/6
√
2 π ≃ 0.038, which agrees with the

range in Eq. (5.57).

Equations (5.55) and (5.57) suggest that the reheating temperature ranges as

10 GeV ≲ Treh < 1014GeV . (5.58)

5.3.4 Radiation and matter domination

After reheating, the universe is dominated by hot radiation, and the barotropic

parameter settles to w = 1/3. As the univserse cools, particles in the thermal bath

start to become non-relativistic, and this cold matter eventually takes over. We

approximate this to happen instantaneously when ρ̄r ≃ 10−110m4
P , corresponding to

a temperature of ∼ 0.8 eV [39].

At the same time, the field follows the equation of motion (5.37), veering away

from kination once radiation starts to take over. While the fluid is relativistic,

w = 1/3, the field and fluid don’t mix directly. However, in the presence of radiation

the Hubble parameter is larger than it would be if induced by ϕ alone, and this

increases the importance of the friction term. The field velocity
◦
ϕ starts to decrease

dramatically, until the field essentially freezes to a near-constant value ϕfr. Using
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the known scalings of the scalar and radiation energy densities, and assuming a

negligible scalar potential, we can write

ρ̄tot = ρ̄kinϕ

(
ā

ākin

)−6

+ ρ̄kinr

(
ā

ākin

)−4

, (5.59)

where ‘kin’ refers to a moment at the beginning of standard kination with ρ̄kinr /ρ̄kinϕ ≡

Ωkin
r ≪ 1. With this and 3H̄2m2

P = ρ̄tot, we can solve the frozen field value as

ϕfr − ϕkin =

∫ ∞

t̄kin

dt̄
◦
ϕ =

∫ ∞

ākin

dā

◦
ϕ

āH̄

=

∫ ∞

ākin

dā

ākin

√
2ρ̄kinϕ (ā/ākin)

−4√[
ρ̄kinϕ (ā/ākin)−6 + ρ̄kinr (ā/ākin)−4

]
/(3m2

P )

=
√
6mP sinh−1

(
1/
√

Ωkin
r

)
≈ mP

√
6 ln 2−mP

√
3

2
lnΩkin

r .

(5.60)

As the kinetic energy of the field drops, the potential again starts to play an

important role in field evolution, complicating the dynamics. Two basic behaviours

emerge: the field may completely freeze, so that its potential energy comes to

dominate over the kinetic one and the field’s barotropic parameter becomes −1,

or the field may start to follow a scaling attractor with slow time evolution

[208, 416, 213]. To estimate which fate is more likely, we can approximate the

potential locally around ϕ = ϕ0 with the exponential

V̄ (ϕ) ≈M4
effe

−κeffϕ/mP ,

M4
eff ≡ e

− κ√
ξ(ϕ0)

sinh
(√

ξ(ϕ0)ϕ0/mP

)
+κϕ0 cosh

(√
ξ(ϕ0)ϕ0/mP

)
cosh4(

√
ξ(ϕ0)ϕ0/m2

P )
, κeff ≡ κ cosh

(√
ξ(ϕ0)ϕ0/mP

)
.

(5.61)

If κeff is approximately a constant, then κeff <
√
2 leads to freezing, and κeff >

√
2

gives the scaling solution. In our model in the examples below, we find κeff to be

small and slowly changing, leading indeed to a freezing behaviour.

After matter becomes non-relativistic with w ̸= 1/3, time evolution is further

complicated by the direct coupling between the fluid and the field in (5.37), (5.39).

In practice, the dynamics have to be solved numerically; we do this in Sec. 5.4.
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5.3.5 Quintessence domination

As the field rolls, ξ from Eq. (5.3) runs to smaller and smaller values, and the

Einstein frame potential (5.16) becomes flatter and flatter, becoming more suitable

for quintessence with a slowly rolling field. Indeed, as mentioned in Sec. 5.2.1,

eventually ξ runs to negative values; around this point, the Einstein frame potential

develops a local minimum and then starts to grow again, with a high positive peak

near ξ(φ)φ2 = −m2
P. The coupling to matter can cause the field to overshoot the

minimum and oscillate around it a few times, but eventually, as the fluid energy

density dilutes away, the field will settle into the potential minimum at φ ≡ φfin.

Its barotropic parameter wϕ = −1 and its energy density, given by the height of the

potential, become constant. The quintessence field then behaves as dark energy. To

match observations, we need V̄ (φfin) = 7.23 × 10−121m4
P , computed assuming that

H̄ = 67.66km/s/Mpc and that roughly 70% of the energy density of the universe

today is in dark energy. To be more precise, the dark energy fraction today is [8]

Ωϕ = ΩDE = 0.6889± 0.0056 . (5.62)

Since we live in the transition period where both dark energy and matter have non-

negligible roles, the quintessence field is not necessarily completely frozen yet. In

our numerical results, we demand that the barotropic parameter of the field today

respects the observational bounds of the CPL parametrisation [114],

wDE = w0
DE + wa

(
1− ā

ā0

)
, wa ≡ −dwDE

dā

∣∣∣∣∣
ā0

, (5.63)

where ‘0’ refers to today, and the limits are [8]

−1 ≤ w0
DE < −0.95 and wa ∈ [−0.55, 0.03] . (5.64)

5.4 Numerical results

In this section, we explain the details concerning the numerical side of our work. As

it is explained above, in order to numerically solve the dynamics of the system, we
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work in the Jordan frame. It is then straightforward to obtain the corresponding

quantities in the Einstein frame, where our intuition applies, by following the

discussion in Sec. 5.2.3. To be more explicit, we need to solve for the scale factor

a(t), the inflaton field φ(t) and the fluid density ρ(t) (remember that, at a classical

level, homogeneity and isotropy impose that the fields depend on time only), since

every other quantity depends on these. In principle this could be done by solving

the system of ordinary differential equations given by Eqs. (5.21), (5.23), and (5.25).

However, the Hubble factor can be algebraically solved to be

H = − A

B + 2fR
+

√
3fR(4T00 + αR2)

3(B + 2fR)
, (5.65)

where the specific forms of A and B, as well as the details of the calculation, can be

found in Appendix B.1. For our current discussion it suffices to know that A and B

depend on φ(t) (and its first derivative) and ρ(t) only. This means that the initial

system of ordinary differential equations given by Eqs. (5.25), (5.21) and (5.23) is

reduced to Eqs. (5.25) and (5.23), where H is given by Eq. (5.65). These are the

equations that we numerically solve.

It is also worth commenting on our choice of the Jordan frame over the Einstein

frame. One obvious advantage of working in the Einstein frame is that the

gravitational sector of the action is simply the Einstein–Hilbert term. However, were

we to work in the Einstein frame, Eq. (5.14) would need to be solved and inverted in

order to obtain φ(ϕ), to then be plugged back in the action (5.13) in order to express

all the quantities in terms of the canonical Einstein frame field ϕ. Furthermore, the

action in the Einstein frame features a quartic kinetic term and a coupling between

the inflaton and the background matter fields through a conformal factor in the

matter action. Although during inflation the matter action is zero, during the

subsequent cosmological eras this extra coupling is present, complicating the setup.

Likewise, the quartic kinetic term, which complicates the equations of motion even

further, cannot be a priori discarded (although after solving the dynamics it is found

to be in general negligible, see Fig. 5.8). All of these considerations outweigh the

only hurdle in the Jordan frame: gravity is non-linear. As a matter of fact, due to
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working in the Palatini formalism, we can profit from further simplifications as the

one explained above, where the Hubble factor can be algebraically solved in terms

of the inflaton and the background fields. In this way, we find the solution of the

system to be much more approachable in the Jordan frame than in the Einstein

frame. Finally, it is important to keep in mind that, as we have mentioned, once the

dynamics is solved in the Jordan frame it is straightforward to obtain the analogous

quantities in the Einstein frame by following the discussion in Sec. 5.2.3.

5.4.1 Initial conditions

During the inflationary era the only existing field is the inflaton (even if some matter

fields existed they would be inflated away), so that ρ(t) = 0. Therefore, the only

equation to solve for is Eq. (5.25) (with H given by Eq. (5.65)), which is a second

order ordinary differential equation. Thus, only two initial conditions are needed,

φ(ti) and φ̇(ti). We choose φ(ti) sufficiently negative to capture all the possible

evolution histories when scanning over the parameter space, while respecting the

bound that imposes that the field should not be much smaller than −mP/(κξ) (c.f.

Sec. 5.3.1), for which slow-roll is not possible. This usually amounts to having

φ(ti) ∼ −30mP and as it can be seen from Fig. 5.3 (see also the discussion in Sec.

5.4.3), using a smaller value would be of no help, since the region of the parameter

space compatible with observations restricts φ(ti) > −30mP. Furthermore, for

simplicity, since the field will eventually reach the slow-roll attractor, we choose

φ̇(ti) such that slow-roll is satisfied. Effectively this means neglecting the second

order derivative in Eq. (5.25). With φ(ti) fixed, this equation only depends on φ̇(ti),

for which we can (numerically) solve to obtain the initial value.

The end of inflation gives way to kination. During this era, some reheating

mechanism transfers the energy density of the inflaton to the particles of the SM,

which are modelled in our setup by a perfect fluid with energy density ρ(t). In this

way, the last needed initial condition is the initial energy density of radiation, at
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the end of inflation, ρ(tend). It can be found by the following simple calculation

eN̄ ≡ āend
ā∗

=
āend
ā0

ā0
ā∗

=
āend
ā0

H̄∗

ā∗H̄∗
=

T0
Tend

k−1
∗ H̄∗ , (5.66)

where ∗ corresponds to the time at which the CMB pivot scale exits the horizon

during inflation (with k∗ = ā∗H̄∗ = 0.05 Mpc−1), “end” corresponds to the end of

inflation, and ‘0’ corresponds to the present time. We have also set ā0 = 1 and made

the approximation ā ∝ T−1 from the end of inflation until today, where T is the

temperature of radiation. Using Eq. (5.28), we can relate the number of e-folds in

the Einstein and Jordan frames as [417, 418]

N̄ = N +
1

2
ln
f end
R

f ∗
R

. (5.67)

Thus,

eN =
T0
Tend

k−1
∗

√
f ∗
R

f end
R

H̄∗ , (5.68)

where T0 ≈ 2.7K. The initial energy density of radiation at the end of inflation can

be written as

ρ̄ =
π2

30
g∗T

4 , (5.69)

where g∗ = 106.75 is the number of relativistic degrees of freedom. Relating ρ̄ to ρ

via (5.31) and gathering the above results together, we get

ρ(tend) = (f ∗
R)

2π
2g∗
30

[
T0
eN
k−1
∗ H̄∗

]4
, (5.70)

written in terms of quantities that are either known or fixed by inflation. Note

the cancellation of (f end
R )2 due to the extra factor of f 2

R coming from expressing

the energy density in the Jordan frame. It is important to mention that when

scanning over the parameter space we require that ρ̄(tend) satisfies two bounds,

the upper one such that the inclusion of the radiation fluid at the end of inflation

is a small perturbation to the overall dynamics, i.e., Ωend
r < 0.1, and the lower

one corresponding to the gravitational reheating limit, which is the least efficient

reheating mechanism. Thus, we impose ρ̄(tend) > ρ̄grav = qg∗(H̄end)
4/(480π2) ≃

2.25 × 10−2(H̄end)
4 [27], where we have introduced q ∼ 1 because the spectrum is

not exactly thermal.
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5.4.2 The parameter space

The model has six parameters, namely κ, ξ∗, β, µ, α, and M4. It would

be computationally costly to perform a scan over such a six-dimensional space.

However, there are some simplifications that allow us to reduce the dimensionality

of the parameter space.

The first thing to notice is the scaling law the model obeys. Indeed, let us rescale

the coordinates, background density and parameters in the Jordan frame as3

xµ → λxµ, ρ→ λ−2ρ, α→ λ2α and M4 → λ−2M4 . (5.71)

From Eq. (5.17) it immediately follows that under this transformation the Ricci

scalar scales as

R → λ−2R . (5.72)

Likewise, from Eq. (5.1), the action scales as

S → λ2S . (5.73)

Of course, the equations of motion are invariant under such a rescaling of the action.

Furthermore, the quantity αM4 is also invariant. Looking at the expressions for the

inflationary observables in Eq. (5.45), one can see that the parameters α and M4

only enter the expressions for ns and r through the combination αM4, i.e., they

are invariant under the rescaling (5.71). It is not so for As, where M
4 enters its

expression alone.

From this discussion we conclude that it is enough to scan over the quantity

αM4. For each value of αM4 we can fix M4 such that As satisfies the observational

requirements from (5.43). In this way we have reduced the dimensionality of the

parameter space to five.

There is one extra simplification that can be made by taking into account that

µ in Eq. (5.3) is an arbitrary scale that can be changed by reabsorbing it into

3Note that here λ is just a constant factor and should not be confused with the ψ field self-

coupling in Eq. (5.50).
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ξ∗. Therefore it can be chosen to take the most convenient value, which, for us,

is the field value at which the cosmological scales leave the horizon, φ∗. This way,

around this scale the effect of the running is minimal and the non-minimal coupling

is roughly just ξ∗. The dimensionality of the parameter space is now four.

Having defined the degrees of freedom of the system, i.e., φ(t), a(t) and ρ(t), the

initial conditions, i.e., φ(ti), φ̇(ti), and ρ(tend), and the parameters over which to

scan, i.e., κ, αM4, ξ∗ and β, we first focus on the inflationary regime of the theory. In

this way, we start with the initial conditions discussed above and numerically solve

the system until the end of inflation, defined by the condition4 ϵH ≡
◦
ϕ2/(2H̄2m2

P) =

1. We take discrete slices in αM4, ranging from 0.0143 to 1.43 × 106 in steps of

factor 10 and a region in β around the central value of −0.1 with a resolution

of 10−3 and scan over the parameters κ and log10 ξ∗ with values in the intervals

[0.2, 0.7] and [−2.5,−0.9], respectively, with resolutions of 5 × 10−3. The reason

behind choosing such a central value for β is that we have found that a correct

behaviour for quintessence is strongly peaked around it.

As the values for the field and its velocity at the end of inflation will serve as the

initial conditions for the beginning of the next cosmological era, we impose a set of

conditions on the points obtained from the scan through which we obtain the valid

region in the parameter space. In addition to fixing As = 2.1 × 10−9 as discussed

above, we require that:

• The value of the scalar spectral index is equal to the central value obtained

by Planck [8], i.e., ns = 0.9649.

• The value of the tensor-to-scalar ratio is within the latest observational bounds

[9], i.e., r < 0.036.

• The value of the running of the scalar spectral index is within the 2σ bounds

obtained by Planck [8], i.e., −0.0179 < αs < 0.0089.

4Note that the first slow-roll parameter in Eq. (5.42) is only an approximation. In the numerical

study we also take into account the presence of the running in ξ.
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• The initial energy density of radiation at the end of inflation, obtained via Eq.

(5.70), amounts to a small perturbation of the system, i.e., Ωend
r < 0.1.

• The initial energy density of radiation at the end of inflation is larger than

the energy density corresponding to gravitational reheating, i.e., ρ̄(tend) >

2.25× 10−2(H̄end)4.

The last two conditions translate to the available range in the number of e-folds from

the time at which the cosmological scales exit the horizon until the end of inflation

(see the right panel in Fig. 5.2). It is usually between 60 and 75. Also note that we

have not imposed a correct value for the amplitude of the power spectrum As as a

condition since every single point in the parameter space already satisfies this, by

exploiting the scaling property of the model explained above.

When inflation ends, and after imposing the above set of conditions to obtain

the valid region of the parameter space, we use the final values of the field and its

velocity as the initial conditions for the next cosmological era, as well as Eq. (5.70)

for the radiation energy density, in order to solve Eqs. (5.23) and (5.25), with H

given by Eq. (5.65). The barotropic parameter of the fluid is of course 1/3 up until

the transition to the matter domination era, when it becomes w = 0. We model this

transition by a jump from 1/3 to 0 in the barotropic parameter of the background

at the time when the energy density of radiation is equal to its value at matter-

radiation equality, ρ̄eq = 1.27 × 10−110m4
P [8]. The simulation is finished when the

energy density ratio of the field, corresponding now to dark energy, is equal to the

central value obtained by Planck [8] of its value today, i.e., Ω0
ϕ = 0.6889. At this

point we impose another set of conditions, which we list here.

• The temperature of the universe at the onset of radiation domination is above

TBBN ≃ 0.1MeV.

• The barotropic parameter of the field is within the latest observational bounds

[8], i.e., w0
ϕ < −0.95.
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• The running of the barotropic parameter of the field in the CPL parametriza-

tion is within the latest observational bounds [8], i.e., −0.55 < w0
a < 0.03.

• The energy density of the field at present is within one order of magnitude

from the central value obtained by Planck, ρ̄PlanckDE = 7.26× 10−121m4
P [8].

Importantly, we also consider the bound on the density parameter of GWs

coming from BBN constraints, 20Ωend
GW

< Ωend
r , as discussed in Sec. 5.3.3. By using

Eq. (5.52) this bound translates to an allowed range of values for the non-minimal

coupling between the reheaton and gravity ξ̂. The successful values of ξ̂ for each

point in the parameter space are presented in Table 5.1. The two points, for which

ξ̂ is the largest (ξ̂ ∼ O(1)), are highlighted in black in Fig. 5.11 (while the rest are

in red).

The points that satisfy this extra set of conditions are the successful points of our

model. For them we have successful inflation, with correct inflationary predictions,

as well as a correct evolution during the expansion history of the universe, with

successful dark energy at the present time.

5.4.3 Numerical results for inflation

In this section, we present and analyze the obtained results for inflation. We remind

the reader that the power spectrum strength at the pivot scale, As, is fixed to its

observed value in all our results. In the left panel in Fig. 5.2 we show an example

slice of the parameter space in the (log10 ξ∗, κ) plane with fixed β = −0.1 and

αM4/m4
P = 1.43. The blue points have a correct value for ns while the orange

points satisfy the full set of conditions for inflation stated in Sec. 5.4.2. In order

to understand the shape of the parameter space let us consider the β = 0 case,

for simplicity. First, we remember we have imposed the potential to be monotonic,

i.e., κ2 > 4ξ = 4ξ∗. The lower boundary of the parameter space region corresponds

to this requirement. The other consideration to take into account is Eq. (5.46),

which, since in the β = 0 case the expressions for the slow-roll parameters in Eq.
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Figure 5.2: Left: Slice of the parameter space in the (log10 ξ∗, κ) plane with β = −0.1

and αM4/m4
P = 1.43. The blue points have a correct value of the scalar spectral

index, while the orange points satisfy all observational constraints for inflation.

Right: A zoomed-in slice with β = −0.098 and αM4/m4
P = 1.43×104, depicting the

bounds in parameter space corresponding to the bounds in the number of inflationary

e-folds. The red region is close to saturating the gravitational reheating bound

ρ̄(tend) > 2.25 × 10−2(H̄end)4 (which corresponds to the upper limit in the number

of e-folds), while the green region is close to saturating the bound Ωend
r < 0.1 (which

corresponds to the lower limit in the number of e-folds).

(5.42) are exact, is an exact expression for the scalar spectral index (in the slow-

roll approximation). Since this is a quadratic equation in κ, it can be algebraically

solved for, giving an expression depending on ξ∗ and φ∗ (the field at horizon exit),

κ = κ(ξ∗, φ∗). In Fig. 5.3 we plot in green the curve κ(ξ∗)|ns=0.9649, for many values

of the field at horizon exit, ranging from −30mP to 0 (in steps of 0.5mP). We can

see that the upper boundary of the parameter space coincides with the asymptotic

upper bound that the top curves form. In other words, above the upper boundary

of the blue region, the value of the scalar spectral index is incorrect, for any φ∗.

Increasing the range for φ∗ does not change the shape of the upper boundary

of the parameter space in the (log10 ξ∗, κ) plane. Indeed, we also plot more

κ(ξ∗)|ns=0.9649 curves, now in purple, with φ∗ ranging from −200mP to −30mP.

We find that in the range −30mP to 0 we cover almost the entirety of the shown
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parameter space, while approaching more negative values simply covers a region of

the parameter space discarded by observations, located at smaller and smaller values

of κ.
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4=1.43

β=0

Figure 5.3: Slice of the parameter space in the (log10 ξ∗, κ) plane with β = 0 and

αM4/m4
P = 1.43, where we plot many curves κ(ξ∗)|ns=0.9649 with φ∗ ranging from

−30mP to 0 (green) and from −200mP to −30mP (purple), as well as the curve

κ2 = 4ξ(= 4ξ∗) (red), so that the condition for a monotonic potential κ2 > 4ξ(=

4ξ∗) is satisfied above it. The upper boundary of the parameter space coincides

with the asymptotic upper bound from the green curves. Increasing φ∗ to more

negative values explores a region of the parameter space that is not in agreement

with observations, towards smaller and smaller κ, as can be seen from the purple

curves. The parameter space of the theory lies between the asymptotic upper bound

from the κ(ξ∗)|ns=0.9649 curves and the condition κ2 = 4ξ(= 4ξ∗), as it should.

It could also be that changing αM4 would change the shape of the parameter

space. However, we find that the main effect of this is on r. Indeed, there exists a

bound, given by αM4/m4
P ≃ 0.143 below which the size of the orange region in the

parameter space is reduced in size (although it never fully disappears, see the left

panel in Fig. 5.5), and above which its position shifts towards larger values of κ and

ξ. This can be seen by comparing the middle and right panels in Fig. 5.5. It is also
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straightforward to see from Eqs. (5.42) and (5.44) that r can be made arbitrarily

small by making αM4 larger, as we have obtained in our numerical study (see Fig.

5.4). However, it is important to note that the shift in the orange region of the

parameter towards larger κ and ξ can change the subsequent cosmological evolution

after inflation ends, since these points serve as the initial conditions for the later

evolution.
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Figure 5.4: The tensor-to-scalar ratio r as a function of log10 α for different values

of αM4, with fixed β = −0.0995. Blue points have a correct ns, αs and N while

orange points also have a correct r. As we make αM4 larger we lower the values r

takes. Below the threshold value of αM4/m4
P ≃ 0.143 there still exists an orange

region (left), while above it all blue points become orange (middle and right).
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Figure 5.5: Slices of the parameter space in the (log10 ξ∗, κ) plane with β = −0.0995

and αM4/m4
P = 1.43 × 10−6 (left), αM4/m4

P = 1.43 (middle) and αM4/m4
P =

1.43× 105 (right). The shape of the parameter space is identical for both the panels

in the center and right, although the region with correct observational predictions

is shifted toward larger κ and ξ∗ as we make αM4 larger. Even for very small values

of αM4 the orange region never disappears (left).
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We conclude that the shape of the blue region shown in Fig. 5.2 is an universal

feature of the model, with the caveat that the analysis concerning Fig. 5.3 is for the

β = 0 case. We expect only minor modifications to this figure when studying the

general non-zero β case, since during slow-roll inflation the value of the field barely

changes and we choose the scale µ to be approximately equal to the field value at

horizon exit φ∗, making the running in ξ negligible. In the same spirit, it is obvious

that the shapes of the blue and orange regions in Fig. 5.3, for which β = 0, are very

similar to the analogous regions in Fig. 5.2, for which β = −0.1.

To conclude this section, in Fig. 5.6, we show an example plot of the scalar

spectral index as a function of the number of e-folds before the end of inflation in

the Einstein frame. The shape of ns(N̄) in Fig. 5.6 is general and for most of the

valid points of the parameter space, the equation ns(N̄) = 0.9649 has two solutions,

e.g., N̄ = 73.7 and N̄ = 110.8 in the specific case of the figure under consideration.

Of course, only one of the two is selected via the bounds imposed on the initial

radiation energy density. We have not found a trend where only the first (or the

second) of the solutions are the correct ones. Indeed, depending on the region of

the parameter space under consideration we can have one or the other giving the

correct value for the number of e-folds.

5.4.4 Numerical results for post-inflationary evolution

In order to gain some understanding about the model, we start this section by

studying one specific benchmark point of the parameter space which leads to

correct dark energy predictions. After this we show the full parameter space of

our quintessential inflation model.

Let us look at the point in parameter space with parameter values given by

κ = 0.284 , log10 ξ∗ = −1.960 , α = 7.73× 1012 ,

M4/m4
P = 1.85× 10−9 , β = −0.100 , and µ = −6mP ,

(5.74)

which satisfies all the conditions listed above required for correct inflation and dark

energy. This can be immediately confirmed by looking at Figs. 5.7 and 5.8. In the
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Figure 5.6: Scalar spectral index as a function of the number of e-folds before the

end of inflation in the Einstein frame, for αM4 = 1.43m4
P, β = −0.1, κ = 0.30 and

log10 ξ∗ = −2.09. N̄ = 0 corresponds to the end of inflation. The horizontal dashed

line is located at ns = 0.9649, and it intersects ns(N̄) at N̄ = 73.7 and at N̄ = 110.8.

left panel in Fig. 5.7 we show the barotropic parameter of the inflaton and of the

whole universe, which are given by

wϕ =
p̄ϕ
ρ̄ϕ

and wtot =
wr,mρ̄r,m + p̄ϕ
ρ̄r,m + ρ̄ϕ

, (5.75)

where wr,m is equal to either 1/3 or 0 for a radiation (r) or a pressureless dust

(m) background with energy density ρ̄r,m, respectively, and ρ̄ϕ and p̄ϕ are given by

Eq. (5.34). At the present time, which corresponds to N̄ = 0 in both figures, the

energy fraction of the field is Ω0
ϕ = 0.6889 (see the right panel in Fig. 5.7) and

its barotropic parameter and running are w0
ϕ = −0.95895 and w0

a = −0.17034, in

agreement with dark energy observations. As for the energy densities at present it

can be confirmed by looking at the right panel in Fig. 5.8, that the energy density of

the field is ρ̄ϕ = 1.7×10−120m4
P while that of the fluid is ρ̄m = 7.5×10−121m4

P, which

are within an order of magnitude of observations. Finally, the temperature of the

universe at the onset of radiation domination, i.e., when wtot = 0.36 and Ωϕ = 0.05,

is T = (30ρ/(π2g))1/4 ≃ 2.49× 10−23mP = 0.15MeV, which is slightly above TBBN.

180



5.4. Numerical results

wtot

wϕ

-50 -40 -30 -20 -10 0 10 20
-1.0

-0.5

0.0

0.5

1.0

N

Ωr,m

Ωϕ

-50 -40 -30 -20 -10 0 10 20

0.0

0.2

0.4

0.6

0.8

1.0

N

Figure 5.7: Left: Barotropic parameter of the universe (blue) and of the inflaton

(orange) as a function of the elapsing number of e-folds in the Einstein frame. Right:

Energy density parameter of the background fluid (blue), which is radiation (r)

before and pressureless dust (m) after equality, and of the field (orange) as a function

of the elapsing number of e-folds in the Einstein frame. The horizontal dashed line

is located at 0.6889. For both graphs N̄ = 0 corresponds to the present time and

N̄ = −7.5 to matter-radiation equality.

As a far as inflationary observables and dark energy predictions go, the point

given by Eq. (5.74) is fine. However, as the careful reader might have noticed, there

are two issues with the matter dominated era. As it can be seen in the left panel

in Fig. 5.7, its duration N̄mat = 7.5 is below what would be expected in a standard

cosmology, where N̄mat ∼ 8. Furthermore, the barotropic parameter of the universe

is not exactly zero (although it stays below 0.1). We can explain this behaviour by

taking a closer look at our model. We remind the reader that, as shown in Eqs.

(5.37) and (5.39), there is a coupling between the inflaton and the fluid (the last

term in both equations) coming from the conformal factor that appears in the matter

action after the conformal transformation to the Einstein frame. During inflation

we have ρ̄r,m = 0 and during kination and the radiation dominated era we have

that the barotropic parameter of the fluid is w = 1/3, so that the coupling is not

present until matter-radiation equality. However, as soon as we have a pressureless

dust-dominated universe, with w = 0, the coupling is turned on. In order to better
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Figure 5.8: Left: Contributions from the kinetic energy energy density ρ̄kinϕ =
◦
ϕ2/2

(blue), potential energy density V̄ (orange) and quartic kinetic term ρ̄quarϕ =

3α(1 + 4αV/h2)
◦
ϕ4/4 (green) to the total energy density of the inflaton in the

Einstein frame in Planck units, as a function of the elapsing number of e-folds

in the Einstein frame. These contributions correspond to the first, second and third

terms in the action (5.15), respectively. Right: Einstein frame energy densities of

the background fluid (blue), which can be either radiation (r) or pressureless dust

(m), and of the inflaton (orange) as a function of the elapsing number of e-folds in

the Einstein frame. The horizontal dashed lines are located at log10(ρ̄/m
4
P) = −120,

N̄ = 0 corresponds to the present time, and N̄ = −7.5 corresponds to matter-

radiation equality.

understand this, after some simple algebra, one can rewrite Eq. (5.39) as

◦
ρ̄+ 3H̄ρ̄(1 + weff) = 0 , (5.76)

where

weff = w +
(1− 3w)

3
(

2fRH

ḟR
+ 1
) =

1

3
(

2fR
f ′R

+ 1
) , (5.77)

where the last equality follows from working in the matter dominated era and a

prime denotes a derivative with respect to the Jordan frame number of e-folds.

Thus, weff will only be close to zero when the rate of change of fR satisfies

f ′
R

fR
≪ 1 . (5.78)
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However, looking at the expression for fR in Eq. (5.18), and remembering that the

terms coming from the α contribution are negligible at late times, the rate of change

from Eq. (5.78) is approximately f ′
R/fR ∼ φ′/φ. By noticing that the field is in free

fall, and, thus, has a non-negligible rate of change, during the matter dominated era

(its barotropic parameter is one5 as can be seen in Fig. 5.7) it immediately follows

that f ′
R/fR cannot be very small and weff will be generally larger than zero, as we

find.

As for the number of e-folds of the matter dominated era N̄mat, noting that from

Eq. (5.76) follows that ρ̄ ∝ ā−3(1+weff), a simple calculation reveals

N̄mat = log
ā0
āeq

=
1

3(1 + weff)
log

ρ̄eq
ρ̄0

≃ 1

3
log

ρ̄eq
ρ̄0

− weff

3
log

ρ̄eq
ρ̄0

, (5.79)

where we have taken into account that weff ≲ 0.1, as is the case for most of the valid

parameter space. Thus, N̄mat will generally be smaller than its canonical value in

standard Einstein–Hilbert gravity, where there is no coupling between the fluid and

the inflaton so that weff = 0. Introducing the values of the energy density of the fluid

at equality, ρ̄eq = 1.27× 10−110m4
P, and at the present time, ρ̄0 = 3.28× 10−121m4

P,

we find that N̄mat could be decreased by as much as about one e-fold. We take this

into account in the parameter space scans, not neglecting points that a priori would

have been considered to have a too short matter dominated era. In this way, we

choose six as the smallest value N̄mat can take when scanning over the parameter

space, although, as we will see below, for all valid points N̄mat will always be larger

than seven, in agreement with the approximation weff ≲ 0.1 that we have taken

above.

In conclusion, we have obtained that the barotropic parameter of the universe

during the matter dominated era will generally be larger than zero and that the

length of this era will generally be shorter than in Einstein–Hilbert gravity. These

5It could be that the higher order kinetic terms that appear in the Einstein frame modify the

barotropic parameter of the field from its usual expression wϕ = ( 12
◦
ϕ2 − V̄ )/( 12

◦
ϕ2 + V̄ ). This is

not the case, as can be seen in Fig. 5.8, where it is clear that the quartic kinetic term plays a

subdominant role throughout the expansion history of the universe.
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Figure 5.9: Barotropic parameter of the universe (blue) and of the inflaton (orange)

as a function of the redshift in the Einstein frame. The vertical dashed line is

located at z̄ = 4, corresponding to galaxy formation. The barotropic parameter of

the universe is very close to zero around this redshift, making structure formation

largely unimpeded.

effects are an inevitable consequence of working in our modified gravity setup.

However, we find that for most of the parameter space weff ≲ 0.1 (and discard

the points which do not satisfy this), and in fact, around redshifts corresponding to

galaxy formation, i.e., z̄ ∼ 4 (where z̄ ≡ ā−1 − 1) [419], the barotropic parameter is

very close to zero, thereby not significantly impeding structure formation (see Fig.

5.9).

Having discussed the effect of the inflaton-fluid coupling, modified gravity

manifests itself in the Einstein frame through one other effect: the existence of

a quartic kinetic term in the action (see the third term in Eq. (5.15)), which a

priori cannot be discarded. However, as it can be seen from the left panel in Fig.

5.8, it remains subdominant throughout the expansion history of the universe. This

is a general behaviour in all the valid parameter space. In what follows we neglect

this term.
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Let us next examine the evolution of the system more carefully, stage by stage.

As the field approaches the end of the inflationary plateau and its velocity starts

increasing, the condition ϵH = 1 is satisfied and inflation ends. After the end

of inflation there is a transition period where the field is gaining kinetic energy

although its total energy density is still not dominated by it. This can be seen from

Fig. 5.10, where we show the energy density ratios

ρ̄kinϕ
ρ̄ϕ

=
1
2

◦
ϕ2

1
2

◦
ϕ2 + V̄

and
ρ̄potϕ

ρ̄ϕ
=

V̄
1
2

◦
ϕ2 + V̄

. (5.80)

Indeed, after the end of inflation, at N̄ = −50.6, it is not until N̄ ∼ −40 that the

ρϕ
kin

ρϕ

ρϕ
pot

ρϕ
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Figure 5.10: Kinetic energy density of the field over its total energy density (blue)

and potential energy density of the field over its total energy density (orange) in the

Einstein frame as a function of N̄ , from the end of inflation, at N̄ = −50.6 to the

present time, at N̄ = 0. The end of kination (reheating) occurs at N̄ = −19.6 and

matter-radiation equality at N̄ = −7.5.

energy density of the inflaton is kinetically dominated, while the energy density of

the universe is still dominated by that of the field (Ωϕ is still equal to one as can

be seen from the right panel in Fig. 5.7), giving way to the kination era. This can

also be seen from the left panel in Fig. 5.7, where the barotropic parameter of the

field does not become equal to one until N̄ ∼ −40. Of course, at the moment when
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the field becomes kinetically dominated, remembering the quartic kinetic terms are

negligible, we have

wϕ =
1
2

◦
ϕ2 − V̄

1
2

◦
ϕ2 + V̄

=
1
2

◦
ϕ2

1
2

◦
ϕ2

= 1 . (5.81)

During kination, the radiation energy density fraction approaches that of the field,

until it takes over and approaches one around N̄ = −19.6, see Fig. 5.7. This

moment corresponds to reheating. It is important to note that the scaling of the

energy density of the universe between N̄ = −50.6 and N̄ = −40 is not ρ̄ ∝ ā−6

(but slower), and thus the exponent 6 on the right-hand-side of Eq. (5.54) is only

an approximation. Effectively this means that we are able to have a reheating

temperature close to TBBN without violating the bound on Ωend
GW

discussed in Sec.

5.3.3.

After reheating, the universe is dominated by the background radiation, while

the field is still in free-fall, with its energy density being kinetically dominated. This

can be seen from the left panel in Fig. 5.7, where the barotropic parameter of the

field is still equal to one, as well as from the left panel in Fig. 5.8 and from Fig.

5.10. This behaviour continues until briefly before matter-radiation equality, when

the field runs out of kinetic energy and starts to freeze (see Eq. (5.60)). Indeed, its

barotropic parameter approaches minus one (this can also be seen from Fig. 5.10,

where the kinetic density ratio goes from one to zero and vice versa for the potential

density ratio). However, the field never fully freezes. This is due to the change

in the barotropic parameter of the background from 1/3 to 0 at matter-radiation

equality. As explained above, at this point the coupling between the field and the

fluid is turned on and there is an energy transfer between the components. One

way to understand this is by noting that weff is larger than zero, meaning that the

background dilutes faster than in the canonical case, feeding its energy into the

kinetic energy of the field. Indeed, the barotropic parameter of the field jumps back

to unity and the inflaton goes back into free-fall during the entirety of the matter-

dominated era, only to run out of kinetic energy and freeze again (its barotropic

parameter going back to minus one) at the end of it.
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Figure 5.11: Slices of the parameter space in the (log10 ξ∗, κ) αM
4/m4

P = 1.43 (up

left), αM4/m4
P = 14.3 (up right), αM4/m4

P = 143 (down left) and αM4/m4
P =

1.43× 103 (down right). Points in the blue region have a correct value of ns, while

points in the orange region satisfy the whole set of constraints for inflation. Red

points satisfy the constraints for dark energy, while black points also satisfy strongest

the bound on Ωend
GW

coming from BBN (where ξ̂ ∼ O(1) ). In the blue and orange

regions β takes values from the interval [−0.108,−0.099] in steps of 10−3, while

points giving rise to correct dark energy are only found when either β = −0.099 or

β = −0.105.

Finally, the field does not simply slow down and freeze. If it did, we would not

find the small bump in its barotropic parameter after N̄ = 0 in Fig. 5.7. The

same bump can be found in Fig. 5.10. This is due to the local minimum of the

potential in the Einstein frame, located slightly before the local maximum around
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1 + ξ(φmax)φ
2
max/m

2
P = 0 (see discussion in Sec. 5.2.1). Indeed, the field overshoots

the minimum and gains some kinetic energy, only to fall back to the minimum at

φmin = 884.03mP and finally freeze. The present time N̄ = 0 corresponds to some

time briefly after overshooting the minimum but before turning back.

Having characterised the dynamics of a typical valid parameter space point,

including the effects of the modified gravity terms, let us now turn our attention to

the location and shape of the full valid parameter space. We show some example

slices in the (log10 ξ∗, κ) plane for different values of αM4 in Fig. 5.11. We also

scan over the parameter β, which in the orange and blue regions in the figure takes

values in the interval [−0.11,−0.098] in steps of 10−3. We find that points giving

rise to correct dark energy (shown in red and black), which satisfy the whole set of

constraints given above, are only found for β = −0.099 and β = −0.105. We also

show in Tab. 5.1 the actual parameter values all of the successful points take. We find

they form no specific shape in the (log10 ξ∗, κ) plane, but expect a higher-resolution

scan to reveal more working points. Lowering the required minimum temperature

of the universe at the onset of the radiation dominated era, such that it is no longer

larger than TBBN, makes the valid parameter space follow a curved area inside the

orange region. However, imposing the appropriate bound spoils this behaviour. It

is worth mentioning that although our selection criteria regarding the length of the

matter dominated era is for it to be longer than 6 e-folds, allowing for a non-zero

weff to decrease N̄mat, all valid points actually have at least 7 e-folds, although they

are always below 8 e-folds. It is possible that the rest of constraints regarding the

energy density and the barotropic parameter make the parameter space to lie in this

interval.

To conclude, in this section we have characterised the behaviour, both for the

field dynamics and for the modified gravity effects, of a typical successful point in

the parameter space. We have also found the location of the valid points in the

(log10 ξ∗, κ) plane, having scanned over β in the [−0.11,−0.098] interval in steps of

10−3 and over αM4/m4
P in the interval [1.43, 1.43 × 103] in steps of factor 10. We
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Successful Parameter Space Points

κ log10 ξ∗ αM4 β HCMB/mP 10120ρ̄0 w0
ϕ w0

a ξ̂

1 0.36 -1.96 1.43 -0.105 9.22·10−6 2.31 -0.954 -0.185 0.36

2 0.36 -1.98 1.43 -0.105 9.17·10−6 6.69 -0.960 -0.168 0.48

3 0.36 -1.97 1.43 -0.105 9.17·10−6 6.05 -0.969 -0.149 0.39

4 0.36 -1.98 14.3 -0.105 2.95·10−6 1.26 -0.955 -0.179 0.35

5 0.36 -1.99 14.3 -0.105 2.96·10−6 3.66 -0.959 -0.168 0.45

6 0.27 -1.96 143 -0.099 9.78·10−7 2.44 -0.951 -0.184 1.01

7 0.36 -1.99 143 -0.105 9.56·10−7 1.92 -0.960 -0.166 0.39

8 0.27 -1.92 1430 -0.099 2.89·10−7 3.63 -0.951 -0.194 0.90

Table 5.1: Parameter values for the parameter space points which give rise to

successful inflation and dark energy. For each point we also show the value of ξ̂,

the Hubble parameter at the time at which the cosmological scales exit the horizon

(in Planck units), energy density of the universe (in Planck units), the barotropic

parameter of the field and its running, all at the present cosmic time. The two

points which satisfy strongest the lower bound on ξ̂ are highlighted in bold. αM4

and ρ̄0 are given in Planck units.

obtain definite predictions for all of the parameters of our model except from αM4,

which just needs to be larger than a given lower bound αM4 ∼ 0.16. Indeed, the

most successful points have κ = 0.27, log10 ξ∗ = −1.9 and β = −0.099.

5.5 Discussion

In this chapter we studied a relatively simple model of quintessential inflation where

a single scalar field can unify the two epochs of accelerated expansion in the history

6This can be understood by remembering that r = 16ϵV , with ϵV given by Eq. (5.42), and

noting how αM4 enters the denominator, so that r can be made arbitrarily small by making αM4

arbitrarily large.
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of the Universe: inflation and dark energy domination. We worked in the framework

of Palatini gravity where the metric and the connection are treated as independent

variables. The three main ingredients in our action are:

• An exponential potential of the formM4e−κφ/mP which for large positive values

of the scalar field produces the quintessential tail.

• An αR2 term which asymptotically flattens the potential for large negative

values and produces inflation in agreement with observations.

• A non-minimal coupling ξφ2R between the quintessence/inflaton field and

gravity, where ξ ≈ ξ∗ is approximately constant and positive during inflation

but then runs to negative values with a slope β in order to reproduce the

correct late-time dark energy. Note that the region where ξ(φ) is negative is

never probed since the field freezes before that.

The main advantage of employing the Palatini formalism is that the auxiliary field

introduced in order to parametrise the R2 term turns out to be non-dynamical

and can therefore be eliminated through its equation of motion. The resulting

action is then single field, but contains a quartic kinetic term and a modified

effective potential. For sufficiently large values of α, the effective potential is always

asymptotically flat and can therefore accommodate slow-roll inflation.

In addition to the quintessence/inflaton field, we considered an ideal fluid

representing the matter and radiation content of the universe. We began our analysis

by examining the equations of motion for the field and the fluid in both the Jordan

and Einstein frames, while at the same time relating the quantities of interest in

the two frames. We determined the Jordan frame equations to be easier to solve

numerically. We then studied separately all the phases arising during the time

evolution of our model in a cosmological setup, namely, inflation, kination, reheating,

radiation and matter domination, and finally quintessence. To produce the radiation

component after inflation, we considered as an example Ricci reheating [98, 99, 289],

where an additional scalar field with a non-minimal coupling to gravity reheats the
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universe during a period of kination. For quintessence, we showed that the Einstein

frame scalar field potential develops a local minimum where the field eventually gets

stuck, behaving like dark energy afterwards. The minimum is generated by the non-

minimal coupling of the scalar field running to negative values. The dark energy

density there is generated through the interplay of the different parameters, all

taking natural values, avoiding the extreme fine-tuning of the cosmological constant

in the standard ΛCDM scenario.

In the end, we presented a thorough analysis of our numerical procedure and

results. We scanned over the inflationary parameter space and showed that, for

correct choices of the parameter values, the inflationary predictions of the model

match the Planck observations [10]. For late-time evolution, we noted the emergence

of a coupling between the fluid and the scalar field, present in the Einstein frame

during matter domination. This coupling turned out to be the biggest obstacle

for our model building, threatening to disrupt the standard cosmic evolution by

transferring energy from the matter fluid to the rolling field. Nevertheless, we

found example points that satisfy all the criteria we set for a successful cosmological

scenario, in particular for the present-time energy density and barotropic parameter

of the quintessential dark energy component. We obtain definite predictions for all

of the parameters of our model. The preferred parameter values which give rise

to successful results are κ = 0.27, log10 ξ∗ = −1.9 and β = −0.099. We did not

find a preference for any specific value for the combination αM4, as long as it is

above the threshold αM4/m4
P ∼ 0.1, below which the tensor-to-scalar ratio is too

large to be compatible with observations. In addition to satisfying all the available

observational constraints, our model also offers testable predictions, to be probed

in the future by experiments such as EUCLID [420]. Indeed, a non-zero derivative

of the barotropic parameter of dark energy with respect to the scale factor (wa in

the CPL parametrization), as is the case in our model, would favor dynamical dark

energy models over a cosmological constant (as in ΛCDM). Our model offers specific

predictions for wa, which will be useful to discern between dynamical dark energy
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models as measurements become more precise. It also features a non-zero barotropic

parameter of the universe, probing redshifts between galaxy formation and equality,

i.e., z̄ ∼500–1500.

To conclude, our model produces successful inflation and quintessential dark

energy from the above-listed simple set of ingredients alone, without the extreme

fine-tuning of ΛCDM. Our model is the first one (barring the toy-model in Ref. [1])

to produce successful quintessential inflation using modified gravity as the main

ingredient.
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Chapter 6

Observable Gravitational Waves

from Hyperkination in Palatini

Modified Gravity and Beyond

This chapter is based on the original research article published in The European

Physical Journal C [6] by the author, in collaboration with Konstantinos Dimopoulos,

Alexandros Karam, and Eemeli Tomberg. In recognition of the fact that the author

made the primary contribution, his name is put first against alphabetical order.

6.1 Introduction

As we discuss in Chapter 2 (see Eq. (2.140) and below), the production of a

stochastic background of primordial GWs is a generic prediction of inflation. These

GWs, which are coming within reach of observability in the near future [421, 422,

423, 424, 425], are tensor perturbations of the spacetime metric, generated in much

the same way as the scalar curvature perturbations behind the primordial density

perturbations, for which there is overwhelming evidence in the CMB. Because of

this, great interest has been developed in recent years for the observability of the

inflation-produced GWs either indirectly, through the B-mode polarization of the
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CMB [421], or directly from interferometers [422].

GWs were predicted by Einstein’s general relativity at the beginning of the

twentieth century. Almost exactly a hundred years afterwards, GWs were directly

observed by LIGO (Laser Interferometer Gravitational-Wave Observatory) and

Virgo in 2015 [426, 427]. This seminal observation heralded the birth of GW

astronomy, which enables the study of compact objects, such as astrophysical black

holes, which are typically shrouded by opaque accretion disks. It also allows, in

principle, a glimpse of the very early Universe, well beyond the last-scattering

surface, where the CMB was emitted. As such, there is hope to detect the stochastic

primordial GW background from Cosmic Inflation. Such observations will allow the

study of inflation at scales much different than the ones which correspond to the

CMB primordial anisotropy, opening up a new window in the understanding of

fundamental physics at extremely high energies (comparable to the energy of grand

unification), which is behind the process of Cosmic Inflation and remains a mystery

to this day.

This has, in part, motivated a number of future GW detection missions.

In the near future, Advanced LIGO (plus Virgo and KAGRA) [428, 429, 430,

431, 432] (LVK) and the space interferometer LISA (Laser Interferometer Space

Antenna) [433, 434, 435] are coming online; the launch date of LISA is in

2037. Another space interferometer DECIGO (DECi-hertz Interferometer GW

Observatory) [436, 437, 438] is also planned to be launched in the 2030s. More are

to follow, such as BBO (Big Bang Observer) [439], a proposed successor to LISA.

It seems an ideal time to investigate GW production by inflation and its potential

observational signatures.

However, there is a challenge in the study of the inflation-produced primordial

GW background. The background signal is too weak for any currently operational

GW detector to observe, and it may be decades before such an observation can

be made. Indeed, were the early Universe dominated by radiation, as assumed by

the concordance model, the primordial GW spectrum would be flat, i.e. like white
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noise, where the GW density parameter per logarithmic frequency interval ΩGW(f)

is constant over the range of frequencies f corresponding to the GW modes that

re-enter the horizon during the radiation dominated period (they have been pushed

out of the horizon during inflation). The constant value of the flat spectrum is very

low, and the hope of detecting in the near future such inflation-generated primordial

GWs is little [423].

Fortunately, this is not the end of our hopes for detecting primordial GWs. While

there is observational evidence of the early Universe being radiation dominated,

provided by the delicate process of Big Bang Nucleosynthesis (BBN) taking place

a mere few seconds after the Big Bang itself, what the state of affairs was before

BBN is still unknown. If the Universe’s history before BBN was not dominated by

radiation, then the primordial GW spectrum does not need to be flat. This opens

up the possibility of a boosted GW spectrum, possible to detect even in the near

future.

An early realisation of this possibility was provided by modelling quintessential

inflation [15] (see Sec. 2.2.5 and Refs. [284, 285] for recent reviews). Quintessential

inflation aims to explain in a unified way both Cosmic Inflation in the early Universe

and Dark Energy at present. Most quintessential inflation models consider non-

oscillatory inflation [100, 440] driven by a scalar field (the inflaton) with a runaway

potential, which can play the role of quintessence at late times and explain the

accelerated expansion of the Universe at present [229, 239, 242, 441, 233, 442, 258,

257, 259, 260, 256, 16]. In such models, there is a period after the end of inflation but

before reheating (i.e. the onset of the radiation era) when the kinetic energy density

of the inflaton field dominates the Universe. This period is called kination [286] (see

also [443, 444, 445]), characterised by a stiff equation of state with a barotropic

parameter w = p/ρ = 1. In Sec. 2.2.5 (see Eq. (2.306) and below), we show that,

for GWmodes that re-enter the horizon during kination, the spectrum is peaked with

ΩGW(f) ∝ f [294, 293, 446, 447, 448, 449, 450, 451, 452]. Unfortunately, this peak

corresponds to very high frequencies, which will be unobservable in the near future.
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Extending the period of kination does extend the peak to lower, possibly observable

frequencies, but then the peak becomes too large and the resulting primordial GWs

cannot but affect and destabilise the BBN process [294, 293, 453, 229] (see Figs. 2.9

and 2.10).

After the direct detection of GWs, there has been much interest in considering

modifications of the history of the Universe, safely before BBN, to boost the

primordial GW signal at observable frequencies. In Ref. [454], it was shown that

ΩGW(f) ∝ f−2( 1−3w
1+3w

), where w is the barotropic parameter of the Universe (w = 1/3

for radiation domination). In Refs. [455] and [456] models were considered where

there is a period of matter domination followed by kination, which would create a

mountain-like peak in ΩGW (see also Ref. [454]). Another possibility is to consider a

stiff period after inflation that is not kination with w = 1, but has a milder value of

w ≈ 1/2 and can be extended down to observable frequencies without destabilising

the BBN because the peak is not so steep as in usual kination [457]. A realisation

of this in hybrid inflation with a non-canonical waterfall field was investigated in

Refs. [458, 459].

In this chapter, we consider a different possibility, motivated by Palatini

modified gravity. The cosmological consequences of Palatini modified gravity

with L ∝ R + αR2 and a non-minimally coupled scalar field in in the context of

quintessential inflation are considered in Chapters 4 and 5 (see also Refs. [460, 350])

and in Refs. [345, 346] in the context of inflation (see also Refs. [325, 461]

for reviews). When switching to the Einstein frame, the scalar field obtains an

additional quartic kinetic term1. In most cases considered, this term plays a

negligible role in the dynamics of the scalar field. However, there are models for

which this is not the case. We investigate in detail what happens when the scalar

field dominating the Universe is governed by the quartic kinetic term in a period

we call hyperkination. We show that the barotropic parameter of the Universe

1In Ref. [462] it was shown that the addition of the Holst and Holst2 terms in the usual Palatini

quadratic action can generate a modification of the higher-order kinetic term.
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during hyperkination is the same as that of radiation domination, w = 1/3. As

a result, in a realistic model of non-oscillatory inflation with a runaway inflaton

potential, we consider a post-inflationary period of hyperkination, followed by a

period of regular kination, when the kinetic energy of the inflaton is quadratic as

usual. Kination is followed by radiation domination after reheating. This evolution

results in a truncated peak in the GW spectrum, which can be safely extended down

to observable frequencies without destabilising BBN. We calculate analytically the

GW spectrum during all phases of hyperkination, kination and radiation and we

verify our findings numerically. We explore the parameter space and show that we

can obtain a boosted primordial GW signal with unique characteristics, which will

be well-detectable by forthcoming observations. If such a signal is indeed detected,

it will be a strong hint of non-canonical kinetic terms for the inflaton field from

Palatini modified gravity or some other appropriate k-inflation or k-essence model.

This chapter is organized as follows. In Sec. 6.2, we introduce hyperkination, in

the context of Palatini R2 gravity, and embed it into the full expansion history of

the Universe. In Sec. 6.3, we consider the primordial GWs, including their initial

conditions as fluctuations of the quantum vacuum. Sec. 6.4 details our analytical

computation of the GW evolution. We compare our GW spectra to observational

bounds in Sec. 6.5 and conclude in Sec. 6.6. Further technical and computational

details are relegated to the appendices.

6.2 Hyperkination

6.2.1 Quartic kinetic terms from Palatini R2 inflation

We consider the same action in the Jordan frame as in Eq. (5.1) and follow the

same procedure as in Sec. 5.2 to arrive at the action in the Einstein frame [345, 346]

S =

∫
d4x

√
−ḡ
[m2

P

2
R̄− 1

2
(∂̄ϕ)2 +

α

4

h2 + 4αV

h2m4
P

(∂̄ϕ)4 − U
]
+ Sm[Ω

−2ḡµν , ψ] , (6.1)
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where

U ≡ V m4
P

h2 + 4αV
, (6.2)

and we employed a field redefinition of the form

dϕ

dφ
=

√
h(φ)m2

P

h(φ)2 + 4αV (φ)
(6.3)

in order to render the quadratic kinetic term canonical, where the bars indicate

quantities in the Einstein frame. Note that the process of transforming from the

Jordan to the Einstein frame has generated a quartic kinetic term2 and a modified

potential U which will in general display a plateau for growing V , approaching

the asymptotic value m4
P/(4α) [345]. Also, importantly, in the present work, we

concentrate on the early era when the other matter components ψ are a perfect

fluid of radiation. In this limit, the coupling between the inflaton and the matter

action in the last term of Eq. (6.1) disappears [1, 3].

Neglecting the last term for the moment, we can rewrite the action as

S =

∫
d4x

√
−ḡ
[
m2

P

2
R̄ + P (ϕ,X)

]
, (6.4)

with

P (ϕ,X) = X + L(ϕ)X2 − U , (6.5)

where

X ≡ −(∂̄ϕ)2

2
and L(ϕ) ≡ α

4

h2 + 4αV

h2m4
P

. (6.6)

The action in Eq. (6.4) belongs to the general class of k-inflation [463] (where

inflation is kinetically driven) or k-essence [194, 195, 196] (where the non-canonical

kinetic terms can behave as quintessence).3

2Note that, in the context of Palatini gravity, models that contain a non-minimal derivative

coupling term Gµν∂
µφ∂νφ [334] or R(µν)R

(µν) terms [363, 365] in the Jordan frame, can lead

to actions similar to (6.1) in the Einstein frame after applying a disformal transformation of the

metric.
3In Ref. [352] it was shown that the Palatini R2 models share common features with k-inflation

models.
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Varying the action in Eq. (6.1) we can obtain the equation of motion for ϕ,

which reads [345][
1+3α

(
1 +

4αV

h2

)
ϕ̇2

m4
P

]
ϕ̈+3

[
1+α

(
1 +

4αV

h2

)
ϕ̇2

m4
P

]
H̄ϕ̇+3α2 ϕ̇

4

m4
P

d

dϕ

( V
h2

)
+

d

dϕ
U = 0 .

(6.7)

Then, from the non-zero components of the energy-momentum tensor we can

obtain the energy density and pressure of the field, which read [362]

ρ̄ϕ =
1

2

[
1 +

3

2
α

(
1 +

4αV

h2

)
ϕ̇2

m4
P

]
ϕ̇2 + U ,

p̄ϕ =
1

2

[
1 +

1

2
α

(
1 +

4αV

h2

)
ϕ̇2

m4
P

]
ϕ̇2 − U .

(6.8)

To complete the equations of motion, the Hubble parameter can be written as

3m2
PH̄

2 = ρ̄ϕ . (6.9)

Again, the above equations differ from those of a standard canonical scalar field due

to the higher-order kinetic terms. In the limit α → 0 they reduce to the minimal

case. The bars are dropped in what follows to avoid clutter. Unless otherwise stated

we always work in the Einstein frame.

The plateau in U mentioned above is ideal for slow-roll inflation, and can

easily produce CMB observables compatible with observations for simple forms of

the potential V [345, 346]. However, it restricts the inflationary—and thus post-

inflationary—energy density to values lower than m4
P/(4α). Unfortunately, this

severely restricts the parameter space considered in the following sections. One way

to overcome this problem is to consider an α that experiences a drastic change at the

end of inflation but remains constant afterwards. This is possible if α depends on a

degree of freedom that changes its value when inflation ends. A toy model discussing

this possibility is presented in C.1. Another example of a model describing the full

inflationary history may be the one studied in Chapter 5, as long as it is enhanded

with the hybrid mechanism discused in C.1. Moreover, we point out that the Palatini

R2 models considered here act as an inspiration for the extra quartic kinetic terms
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in the action, but our analysis is more general, and we do not specify the details of

the inflationary part of the model.

6.2.2 Kinetic domination

While the quartic kinetic terms in Eq. (6.1) are negligible during slow-roll

inflation [345], they may play an important role in the post-inflationary Universe.

We consider next such a scenario; a period of kinetic domination, where the potential

V is negligible and the field rolls forward freely. In this limit, Eqs. (6.7) and (6.9)

become (
1 + 3α

ϕ̇2

m4
P

)
ϕ̈+ 3

(
1 + α

ϕ̇2

m4
P

)
Hϕ̇ = 0 , 3H2m2

P = ρϕ , (6.10)

and the energy and pressure become

ρϕ =
1

2

(
1 +

3

2
α
ϕ̇2

m4
P

)
ϕ̇2 ,

pϕ =
1

2

(
1 +

1

2
α
ϕ̇2

m4
P

)
ϕ̇2 . (6.11)

It is instructive to change the time variable to the number of elapsing e-folds N =

ln a, with dN = Hdt, and eliminate H. We can assume ϕ̇ > 0 without loss of

generality. The field time derivatives are related as4

ϕ̇ = m2
P

√
2(6m2

P − ϕ′2)

3αϕ′2 . (6.12)

Note that, due to the scaling with the heavily ϕ̇-dependent H, the limit ϕ̇ → 0

corresponds to ϕ′ →
√
6mP, and ϕ̇ → ∞ corresponds to ϕ′ → 0. Eqs. (6.10) and

4A prime denotes a derivative with respect to N in this section only. In the rest of the thesis,

it denotes a derivative with respect to the conformal time η, dη = dt/a. As an exception, ϕ′0 in

Eq. (6.16), which is used throughout this chapter, is always equal to ϕ′0 = ϕ̇/H evaluated at the

end of inflation.
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(6.11) become

ϕ′′ =
ϕ′(6m2

P − ϕ′2)(12m2
P + ϕ′2)

6m2
P(12m

2
P − ϕ′2)

,

ρϕ =
2m6

P

αϕ′2

(
6m2

P

ϕ′2 − 1

)
,

pϕ =
2m6

P

3αϕ′2

(
6m2

P

ϕ′2 + 1

)
− 2m4

P

9α
,

wϕ =
1

9

(
3 +

ϕ′2

m2
P

)
, (6.13)

where wϕ ≡ pϕ/ρϕ is the barotropic parameter of the field. Note that α dropped

out of the equation of motion: changing α rescales the time and energy density but

leaves quantities like ϕ, N , and wϕ untouched.

dϕ/dN

ϕ0e
N

0 5 10 15

0

2

4

6

N

Nhyp=15

Ωr
end=10-10

H=1013GeV Nkin

Figure 6.1: N -derivative of the field obtained from the numerical simulation (full

blue line) and its initial approximation given in Eq. (6.16) (dashed orange line)

as functions of N . The dashed vertical line, labelled Nkin, corresponds to the time

at which kination starts in the numerical simulation, defined here as the moment

at which both addends inside the parenthesis in the energy density in Eq. (6.11)

become equal, while the dashed horizontal line corresponds to ϕ′ =
√
6mP. In the

legend, H denotes the Hubble parameter at the end of inflation Hend.

If ϕ̇ is small—that is, 3
2
αϕ̇2 ≪ m4

P and ϕ′ ≈
√
6mP—the quartic extra kinetic
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terms are small, and Eq. (6.13) give

ϕ′′ ≈ 6(
√
6mP − ϕ′) ⇒ ϕ′ ≈

√
6mP

(
1− ce−6N

)
,

ρϕ ∝ (6m2
P − ϕ′2) ∝ e−6N ∝ a−6 , wϕ ≈ 1 , (6.14)

where c is an integration constant and we are concerned with the large N limit. We

see that ϕ′ =
√
6mP is an attractor. It corresponds to standard kination [287, 288,

286, 239, 240, 245] with a quickly diluting energy density and wϕ ≈ 1.

In the opposite limit of 3
2
αϕ̇2 ≫ m4

P and ϕ′ ≈ 0, the quartic kinetic terms

dominate, and Eq. (6.13) gives

ϕ′′ ≈ ϕ′ ⇒ ϕ′ ≈ ceN ∝ a ,

ρϕ ∝ (ϕ′)−4 ∝ a−4 , wϕ ≈
1

3
. (6.15)

We name this phase hyperkination. The extra kinetic terms modify the dynamics

so that the energy density dilutes only as fast as radiation with wϕ ≈ 1/3.

Hyperkination only lasts for a limited time. As spatial expansion dilutes the

field’s kinetically dominated energy density, ϕ̇ decreases and ϕ′ grows. The quartic

kinetic terms are diluted faster than the quadratic ones, and eventually the latter

take over. Consequently, the field transitions into standard kination. We can use

Eqs. (6.14) and (6.15) to approximate the time evolution of ϕ′ as it approaches the

kination attractor as

ϕ′ ≈

ϕ
′
0e
N N < ln

(√
6mP/ϕ

′
0

)
,

√
6mP N > ln

(√
6mP/ϕ

′
0

)
,

(6.16)

where ϕ′
0 is the initial value of ϕ′ at N = 0, taken below to be the end of inflation.

Tuning ϕ′
0 lets us modify the length of hyperkination, which we define as5

Nhyp ≡ ln
(√

6mP/ϕ
′
0

)
. (6.17)

5With the restriction ρϕ < m4
P/(4α) discussed at the end of section 6.2.1, we would have

ϕ′0 > 2mP at N = 0, and Eq. (6.16) restricts hyperkination to last less than 0.20 e-folds, a

negligible amount. As mentioned, we omit this restriction in this paper.
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Figure 6.1 compares Eq. (6.16) to a numerical solution of Eq. (6.13) in an example

case.

Due to the exponential growth of ϕ′, the transition from hyperkination to

kination is fast. Let us define the beginning of standard kination Nkin as the moment

when both addends inside the parenthesis in the energy density in Eq. (6.11) become

equal. Using Eqs. (6.12) and (6.16), this condition reads

1 =
3αϕ̇2

2m4
P

= e2(Nhyp−Nkin) − 1 ⇔ Nkin = Nhyp − ln
√
2 . (6.18)

Thus, Nhyp ≃ Nkin and we conclude that it is a good approximation to assume an

instantaneous transition between hyperkination and kination.

We end this section with a relation between α, the energy density at the start of

hyperkination (end of inflation) ρend, and Nhyp. Equation (6.13) together with the

definition of Nhyp gives

αρend =
m4

P(1− e−2Nhyp)

3e−4Nhyp
≃ m4

Pe
4Nhyp

3
, (6.19)

where we have assumed a non-negligible duration for hyperkination O(Nhyp) ∼ 1 in

the last step. Note that Nhyp = 0 corresponds to α = 0, as it should.

6.2.3 Full cosmic evolution

Let us now embed a period of kination into a full history of the Universe. Initially,

during cosmic inflation, the field energy density is dominated by potential energy.

Once inflation ends, the potential drops to zero and the field’s velocity increases as

the potential energy is transformed into kinetic energy. In typical models, the field is

trapped into a potential minimum, oscillating there and decaying into a thermal bath

of particles, reheating the Universe. In our models of interest, the post-inflationary

potential is of the runaway type—that is, flat and low—and the field keeps rolling

onward under kinetic domination. If the quartic kinetic terms dominate, this phase

starts with hyperkination, transitioning into standard kination later, as described

above.
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Figure 6.2: Left: Logarithm of the energy density of the Universe (full black),

the field (dashed orange) and the background radiation fluid (dashed blue) as a

function of the number of e-folds calculated from the end of inflation, obtained

by numerically solving the system. Right: Barotropic parameter of the Universe

from the same computation. The vertical dashed lines correspond to the start of

kination, reheating, and the BBN. The parameters for both panels are Nhyp = 15,

Ωend
r = 10−10 and H = 1013 GeV.

To reheat the Universe, we assume a small amount of radiation is produced at the

end of inflation e.g. through Ricci reheating [98, 99, 289]. During hyperkination, the

radiation energy density is diluted as fast as that of the field, ρr,ϕ ∝ a−4, so radiation

stays subdominant. However, when standard kination starts, the field energy density

dilutes faster, ρϕ ∝ a−6, and the radiation fraction grows until it overtakes the field.

The Universe is reheated and radiation domination starts. We assume this to take

place at high energies, above the BBN temperature TBBN ≈ 1 MeV; afterwards, the

Universe follows the standard ΛCDM expansion history.

The behaviour of the system can be solved from the Friedmann equations

3H2m2
P = ρr + ρϕ , ρr = 3(Hend)

2m2
P × Ωend

r

(
a

aend

)−4

, (6.20)

combined with the first equations from Eqs. (6.10) and (6.11). Here Ωend
r is the

radiation energy density fraction (parameter) at the end of inflation and aend

and Hend are the scale factor and Hubble parameter at the end of inflation.
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Figure 6.2 shows the behaviour of the energy densities solved numerically; for

details on the numerical implementation, see Appendix C.2. It also shows the

corresponding evolution of the barotropic parameter w, defined as the ratio between

the total pressure and energy density of the Universe, taking values from w =

1/3 (hyperkination) to w = 1 (standard kination) back to w = 1/3 (radiation

domination).

In summary, we assume a cosmological evolution where inflation is followed by

two phases: hyperkination and kination, in this order. Reheating, which takes

places at temperatures larger than TBBN, signals the end of these phases. After

reheating, the conventional cosmic evolution with radiation and matter dominated

eras follows6.

The non-standard expansion history opens the door for new phenomenology. For

one, it changes the matching between scales in the early and late Universe. Indeed,

when inflation is followed by a stiff cosmological era with barotropic parameter w,

the number of inflationary e-folds is increased by [258, 445, 1, 272] (see Eq. (2.43))

∆N =
3w − 1

3(1 + w)
ln

(
V

1/4
end

Treh

)
. (6.21)

It follows that hyperkination, for which w = 1/3, has a vanishing contribution. This

is not the case for kination, with w = 1. Thus, in our scenario we have

∆N =
1

3
ln

(
ρ
1/4
kin

Treh

)
, (6.22)

where ρkin ≪ Vend is the energy density at the end of hyperkination and the onset

of kination proper. Typically, this increases the remaining number of inflationary

efolds after the cosmological scales exit the horizon to at most N∗ ≃ 65, which

implies ∆N ≲ 5, something that must be taken into account when calculating the

6Some authors (see Ref. [455] and the discussion on page 6 in Ref. [464]) have considered that

the stiff era takes place after BBN, but before recombination. This would relax the lower bound

for the temperature of the stiff phase to T < 6 keV. However, this possibility is not considered in

the present work.
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inflationary observables.7

All in all, the CMB scales exit the Hubble radius approximately 60–65 e-folds

before the end of inflation instead of the standard 50–60, see e.g. [1, 36]. This affects

inflationary model building, although the effects are mitigated with respect to the

standard kination scenario. In addition, the spectrum of primordial GWs is altered

in ways that are sensitive to the duration of hyperkination.

6.3 Gravitational waves

6.3.1 Tensor perturbations and quantization

In this section we review the quantization of the primordial GWs, mainly following

Sec. 2.1.3 (see Eq. (2.140) and below). To study the behaviour of GWs, we write

the metric tensor as gµν = a2 (ηµν + hµν), where ηµν is the Minkowski metric so

that a2ηµν ≡ ḡµν is the unperturbed FLRW metric, and hµν is a small perturbation.

We expand the action in Eq. (6.1) to second order in hµν , keeping only the tensor

modes8, which evolve independently of other perturbations in linear perturbation

theory. We obtain

δ(2)S =
∑
s=⊕,⊗

m2
P

4

∫
dη a2

∫
d3k

(
|hs
k⃗
′|2 − k2|hs

k⃗
|2
)
, (6.23)

where s indexes the two GW polarisations, and the polarization amplitudes hs are

defined through the Fourier decompositions

hs(x⃗) =

∫
d3k

(2π)3/2
hs
k⃗
eik⃗·x⃗ , (6.24)

so that hs
k⃗
describes oscillations of a given polarization in directions perpendicular

to the wave vector k⃗.

7Such an increase has some effect on the inflationary observables, but this effect is minimal.

For example, in Starobinsky inflation [11] or Higgs inflation [390] (or α-attractors [465]), the scalar

spectral index is ns ≃ 1− 2
N∗

. With N∗ = 60 this results in ns = 0.966. If we have N∗ = 65 instead,

then ns = 0.969, which is still within the 1-σ contour of the Planck satellite observations [10].
8The tensor perturbations obey ∂µh

µν = 0 and hµµ = 0.
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The amplitudes hs behave as massless scalar fields, up to normalization, following

the Klein–Gordon equation

hs′′ + 2Hhs′ +∇2hs = 0 (6.25)

with wave solutions. Here H ≡ a′/a and ∇2 ≡ ∂i∂i where i is summed over the

spatial indices. The corresponding energy-momentum tensor is

TGW
µν = − 2√

−ḡ
δ(δ(2)S)

δḡµν
=
∑
s=⊕,⊗

m2
P

2

(
∂µh

s∂νh
s − 1

2
ḡµν ḡ

αβ∂αh
s∂βh

s

)
, (6.26)

so that the GW energy density reads

ρGW = a−2TGW
00 =

∑
s=⊕,⊗

m2
P

4a2
[
(hs′)2 + (∇hs)2

]
. (6.27)

In order to quantize the primordial GWs, we first go to the canonically

normalized variables vs = mPah
s/
√
2, so that (after integration by parts) the action

in Eq. (6.23) becomes

δ(2)S =
∑
s=⊕,⊗

1

2

∫
dη d3k

[
|vs
k⃗
′|2 −

(
k2 − a′′

a

)
|vs
k⃗
|2
]
. (6.28)

This is the Minkowski space action for a free field with mass a′′/a, quantized the

standard way by writing

v̂s(η, x⃗) =

∫
d3k

(2π)3/2

[
vsk(η)â

s
k⃗
eik⃗·x⃗ + vs∗k (η)âs

†

k⃗
e−ik⃗·x⃗

]
, (6.29)

where âs
k⃗
, âs

†

k⃗
are the ladder operators following the canonical commutation relations

[âs
′

k⃗′
, âs

†

k⃗
] = δs

′sδ(3)(k⃗′ − k⃗) . (6.30)

Time evolution is delegated to the mode functions vsk, which follow the Mukhanov–

Sasaki equations derived from Eq. (6.28),

vsk
′′ +

(
k2 − a′′

a

)
vsk = 0 . (6.31)

Note that, due to the ladder operators, the mode functions vsk differ in normalization

from the classical Fourier modes vs
k⃗
. Abusing the notation slightly, we differentiate
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these by writing k instead of k⃗ as the mode function index—in an FLRW background,

the quantum mode functions only depend on the magnitude of the wave vector and

not its direction. Analogously, we define ĥs =
√
2v̂s/(amP), h

s
k =

√
2vsk/(amP).

Deep inside the Hubble radius, k ≫ H, the GWs do not feel the expansion of

space, the mass term a′′/a is negligible, and Eq. (6.31) has the standard vacuum

solution

vsk =
1√
2k
e−ikη , vsk

′ = −ikvsk . (6.32)

When the mode functions follow Eq. (6.32), the state annihilated by âsk is the Bunch–

Davies vacuum [82]; we take the perturbations to start in this vacuum state during

inflation. Over their cosmic evolution, the modes stretch and exit the Hubble radius,

evolving beyond Eq. (6.32). After inflation, they re-enter the Hubble radius, this

time following the general sub-Hubble form

vsk =
1√
2k

[
λ+(k)e

−ikη + λ−(k)e
ikη
]
. (6.33)

We will solve the coefficients λ±(k) for a given cosmic history in section 6.4.2; since

the Mukhanov–Sasaki equation conserves the Wronskian of its solutions, we have

|λ+|2−|λ−|2 = 1, set by the initial vacuum in Eq. (6.32). The coefficient λ− contains

the GW excitations, the part beyond the vacuum solution in Eq. (6.32).

Let us next consider the energy density of the GWs induced by the above process.

The late-time GW energy density is dominated by high-k, sub-Hubble modes, for

which Eq. (6.33) applies. Using this result, we replace hs by ĥs in the energy-

momentum tensor in Eq. (6.26) and compute its expectation value. The result is

⟨ρ̂GW⟩ =
∑
s=⊕,⊗

m2
P

2

∫
(d ln k) k3

4π2a2
(
|h′sk |2 + k2|hsk|2

)
≈
∫

k=H

(d ln k)

2π2

k4

a4
(
|λ+|2 + |λ−|2

)
=

∫
k=H

(d ln k)

π2

k4

a4

(
|λ−|2 +

1

2

)
, (6.34)

where we used the Wrosnkian condition, and the fact that the integration limit

k > H restricts us to sub-Hubble modes. In the last line, we have taken the

polarization sum (starting from the Bunch–Davies vacuum, λ± are identical for

both polarizations).
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Note that, regardless of λ±, the final term of 1/2 makes Eq. (6.34) diverge

for large k—this is the usual energy density vacuum divergence of quantum field

theory. One can regularize the result by normal ordering the ladder operators

in ρ̂GW. However, this has to be done with the late-time ladder operators which

annihilate the late-time Bunch–Davies vacuum. These are related to the original

ladder operators âsk by a Bogoliubov transformation; for a detailed discussion, see

e.g. Ref. [82]. The regularized energy density becomes

⟨ρ̂GW⟩ ≈
∫

k=H

(d ln k)

π2

k4

a4
|λ−|2 . (6.35)

In practice, all of our modes of interest are highly excited with |λ−| ≫ 1, so

that Eqs. (6.34) and (6.35) are approximately equal. In this limit, the vacuum

contribution is negligible and the GWs are essentially classical.

6.3.2 Energy density scaling and the problem with kination

From Eq. (6.35), we see that the sub-Hubble GWs scale as radiation, with ρGW ∝

a−4, as expected for massless degrees of freedom. In cosmology with a standard

expansion history, only a small amount of GWs are generated during inflation, and

they always stay subdominant compared to the background radiation energy density.

However, during kination, the background dilutes faster than radiation, and the GW

fraction grows. The resulting GW spectrum is peaked and tends to either clash with

bounds on the number of relativistic degrees of freedom during BBN or be hard to

observe in GW experiments [294, 293, 446, 447, 448, 449]. In the following sections,

we will demonstrate that adding a period of hyperkination helps with this issue,

opening a wider parameter space for allowed GW spectra.
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6.4 Analytical solution

6.4.1 Solving the background

Let us move on to solve the GW spectrum analytically. The first step is to solve the

background dynamics, in particular the scale factor a, in the presence of radiation,

as a function of the conformal time η. This provides us with a′′/a, allowing us to

later solve the Mukhanov–Sasaki equation for the GW mode functions.

The scale factor evolves through different epochs during the cosmic history:

inflation, hyperkination, kination, and radiation domination. The transitions

between the epochs, assumed to be instantaneous, happen at conformal times

ηend (end of inflation and start of hyperkination), ηkin (end of hyperkination and

start of kination), and ηreh (end of kination and start of radiation domination, i.e.,

reheating), which we will also solve in terms of the model parameters below. We use

the same indices to refer to various variables evaluated at these times. We require

the continuity of a(η) and its derivative at the transition times; between them, we

solve a(η) from

dη =
dt

a
=

da

a2H
=

da

a2

√
3m2

P

ρ
. (6.36)

If we know how the Universe’s energy density ρ scales in a, we can integrate and

invert Eq. (6.36) to obtain a(η) epoch by epoch. We will normalize the scale factor

so that

a(ηend) = 1 , (6.37)

and write a = eN , so that N counts the e-folds since the end of inflation.

For inflation, we assume a generic slow-roll inflationary phase, with the end of

inflation ηend < 0 determined by the usual condition

ϵ ≡ − Ḣ

H2
= 1 , (6.38)

where ϵ is the first Hubble slow-roll parameter. For the reader’s benefit, we will

express our GW mode functions as a function of ϵ, approximated to be constant. In
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the example spectra we consider in section 6.5, we work in the pure de Sitter limit

ϵ = 0. To avoid clutter (and slightly abusing the notation), we will use H, as for

pure de Sitter, to refer to the Hubble parameter at the end of inflation Hend.

For hyperkination, we get ρ(N) from Eq. (6.13), where ϕ′ follows the first branch

of Eq. (6.16) and we write the initial field velocity ϕ′
0 in terms of Nhyp as explained

below the equation. For kination and radiation domination, we use the standard

results ρ ∝ a−6 and ρ ∝ a−4. With these, the full behaviour of the scale factor

becomes

a =



[
− 1

(1−ϵ)Hη

]1/(1−ϵ)
, η ≤ ηend ,

eNhyp sin
[
e−Nhyp(Hη + 1) + sin−1 e−Nhyp

]
, ηend ≤ η ≤ ηkin ,

akin
√

2Hkin(η − ηkin) + 1 , ηkin ≤ η ≤ ηreh ,

areh[Hreh(η − ηreh) + 1] , ηreh ≤ η .

(6.39)

For the hyperkination expression, we used

ηend = − 1

(1− ϵ)H
≃ − 1

H
, (6.40)

which follows from Eq. (6.37) and the first line in Eq. (6.39). We also used Eq. (6.19)

with 3H2m2
P = ρend to eliminate α. For a long hyperkination period with Nhyp ≳ 1,

we can approximate the expression as

a(η) ≃ eNhyp sin
[
e−Nhyp(Hη + 2)

]
≃ Hη + 2 , (6.41)

where the right-hand-side is exactly the scale factor for a radiation-dominated

universe, compare to the last line in Eq. (6.39). Note that the last approximation

stops being valid at large times η ∼ eNhyp/H and one needs to use the middle

expression instead. This is the case below, when we obtain an analytical estimate

for ηkin.

For kination and radiation domination, the constants in Eq. (6.39) are to be read
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off from the end values during the previous phase. Using Eq. (6.41), we have

akin = eNhyp sin
[
e−Nhyp(Hηkin + 2)

]
,

areh = akin
√
2Hkin(ηreh − ηkin) + 1 , (6.42)

and

Hkin =
He−Nhyp

tan [e−Nhyp(Hηkin + 2)]
,

Hreh =
Hkin

2Hkin(ηreh − ηkin) + 1
. (6.43)

In practice, it is a good approximation to use

akin = Hηkin + 2 , Hkin =
H

Hηkin + 2
. (6.44)

Let us next estimate the conformal times for the rest of the transition points. We

do this by solving an equation where a is expressed in two different ways, through

Eq. (6.39) and through a condition related to our model parameters.

As a reminder, we define the beginning of kination as the time at which both

addends inside the parenthesis in the energy density in Eq. (6.11) become equal.

Since this happens at large times η ∼ eNhyp/H, we use the middle expression in

Eq. (6.41) together with Eq. (6.18) to obtain

akin = eNhyp sin
[
e−Nhyp(Hηkin + 2)

]
= eNkin =

eNhyp

√
2
, (6.45)

so that

ηkin =
π
4
eNhyp − 2

H
≃ πeNhyp

4H
. (6.46)

The time of reheating ηreh can be estimated by noting that the total energy

density during kination scales as ρ ∝ a−6, while that of the radiation scales as

ρr ∝ a−4. Thus, the density parameter of radiation during kination scales as Ωr ∝ a2.

By reheating, radiation is the dominant component, that is,

1 ≈ Ωreh
r ≈ Ωkin

r

(
areh
akin

)2

= Ωend
r

2H2ηkinηreh
e2Nhyp/2

, (6.47)
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so that

ηreh =
eNhyp

πΩend
r H

, (6.48)

where we used Ωkin
r ≈ Ωend

r , since the field and radiation redshift similarly during

hyperkination, together with the approximation |ηend| ≪ ηkin ≪ ηreh yielding areh ≈

H
√
2ηkinηreh from Eqs. (6.42) and (6.43). We also used Eq. (6.45) for akin and

Eq. (6.46) for ηkin.

6.4.2 The gravitational wave mode functions

The next step is to obtain expressions for the GW mode functions. We proceed

by matching the solutions and their derivatives at the transitions between epochs.

To simplify the expressions, we do the matching in the super-Hubble limit, which

gives an excellent approximation except for modes entering the horizon around the

transitions. Our goal is to obtain the coefficients λ−(k) from Eq. (6.33) for each

mode so that we can read off their asymptotic, sub-Hubble behaviour. We report

the details of the somewhat technical calculations in Appendix C.3, while in the

present section we simply give the main results, as well as a comparison between

the analytical and numerical solutions in Fig. 6.3 (for details on the numerics see

AppendixC.2).

We can summarize the scale factor time dependence from the last section as

a =

(
η

ηc

)1/2−ν

, ν ≡ 3(w − 1)

2(1 + 3w)
, (6.49)

where w is the corresponding barotropic parameter of the Universe, so that ν = 3/2

(w = −1) for de Sitter, ν = 3/2+ ϵ ≡ νI for a more realistic quasi-de Sitter inflation

[425], ν = 0 (w = 1) for kination and ν = −1/2 (w = 1/3) for hyperkination and

radiation domination. We then get

a′′

a
= −

(
1

4
− ν2

)
1

η2
. (6.50)
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The constants ηc can be read from the previous section, giving

a′′

a
=



2+3ϵ
η2

, η ≤ ηend,

0 , ηend ≤ η ≤ ηkin,

− 1
4z2

, ηkin ≤ η ≤ ηreh,

0 , ηreh ≤ η,

(6.51)

where we defined for kination

z ≡ η − ηkin
2

+
1

H
. (6.52)

Note that a′′ = 0 during hyperkination. This feature is shared with the period of

radiation domination, during which the spectrum is flat, a result that was originally

derived in Ref. [292]. Therefore we expect the peak from kination to be truncated

by a secondary plateau.

With this, we can proceed to solve the Mukhanov–Sasaki equation (6.31).

Making the change of variables x = kη (x = −kη during inflation when η < 0)

and redefining the mode functions as v =
√
xg, it can be recast as a Bessel equation

x2
d2g

dx2
+ x

dg

dx
+ (x2 − ν2)g = 0 , (6.53)

the most general solution of which is given by

g(x) = c1H
(1)
ν (x) + c2H

(2)
ν (x) , (6.54)

where H
(1)
ν and H

(2)
ν are Hankel functions of the first and second kind respectively.

Using the values of ν from above, the solutions during inflation, hyperkination,

kination, and radiation domination become

vsk(η) =



√
π
4k

√
−kηeiπ4 (1+2νI)H

(1)
νI (−kη) , η ≤ ηend ,

1√
2k

[
α+(k)e

−ikη + α−(k)e
ikη
]
, ηend ≤ η ≤ ηkin ,√

πz
4

[
β+(k)e

−iπ/4H
(2)
0 (kz) + β−(k)e

iπ/4H
(1)
0 (kz)

]
, ηkin ≤ η ≤ ηreh ,

1√
2k

[
γ+(k)e

−ikη + γ−(k)e
ikη
]
, ηreh ≤ η ,

(6.55)
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where we fixed the coefficients c1,2 during inflation so that in the initial sub-Hubble

regime, −kη ≫ 1, the mode functions obey the Bunch–Davies vacuum conditions

in Eq. (6.32). The constants and phases in the other branches have been chosen so

that the coefficients α±, β±, and γ± correspond to the λ± of Eq. (6.33) in the late

sub-Hubble limit kη ≫ 1. Their values are fixed by requiring the continuity of vsk

and its derivative at the transition times ηend, ηkin, and ηreh. Matching the branches

in the super-Hubble limit yields

α±(k) = ∓f(ϵ)
2

(
H

k

)2+ϵ

, (6.56)

β±(k) = 2ie±iπ/4α−(k)

√
kηkin
π

, (6.57)

γ±(k) = ∓α−(k)

√
ηkin
2zreh

, (6.58)

where

f(ϵ) ≡ eiπϵ/2
Γ(3/2 + ϵ)

Γ(3/2)
2ϵ , (6.59)

and zreh ≃ ηreh is z from (6.52) evaluated at ηreh. For the scale-invariant case with

ϵ→ 0, f(ϵ) → 1, the moduli squared of the coefficients take the simplified forms

|α−(k)|2 =
H4

4k4
,

|β−(k)|2 =
H4

πk4
kηkin ,

|γ−(k)|2 =
H4

4k4
ηkin
2ηreh

. (6.60)

Note that since we did the matchings at the super-Hubble limit, the expressions

in Eqs. (6.56)–(6.58) and (6.60) only apply for modes that are super-Hubble during

the corresponding transition. To find the final behaviour of a mode, we take the

last transition where this applies, track the following mode function from Eq. (6.55)

to the sub-Hubble limit, where it takes the form in Eq. (6.33), and equate the α−,

β−, or γ− with the coefficient λ−. Indeed, after a mode has settled to its asymptotic

sub-Hubble behaviour, its evolution is trivial—redshfiting gently like radiation—and

it won’t be sensitive to further changes in the equation of state of the Universe.
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From the Mukhanov–Sasaki solutions in Eq. (6.55) we can also deduce the metric

perturbations hsk. Using the scale factor expressions, a ≃ Hη, a ≃ H
√
2ηkinη, and

a ≃ H
√
ηkin/(2ηreh)η during hyperkination, kination, and radiation domination,

respectively, and using Eqs. (6.56)–(6.58), we get

hsk(η) =


iH

mPk3/2
f(ϵ)

(
k
H

)−ϵ
j0(kη) , ηend ≤ η ≤ ηkin ,

iH
mPk3/2

f(ϵ)
(
k
H

)−ϵ
J0(kz) , ηkin ≤ η ≤ ηreh ,

iH
mPk3/2

f(ϵ)
(
k
H

)−ϵ
j0(kη) , ηreh ≤ η ,

(6.61)

where j0(kη) =
√
π/(2kη)J1/2(kη) = sin kη/(kη) is a spherical Bessel function of

the first kind and J0 is a Bessel function of the first kind. For a comparison with

the numerical solutions in the scale-invariant case, see Fig. 6.3. We do not include

the inflationary metric perturbations in Eq. (6.61) as they do not simplify as nicely

as the others.

Note that in the super-Hubble limit, all the expressions in Eq. (6.61) freeze to

hsk(η)
k|η|→0−−−−→ iH

mPk3/2
f(ϵ)

(
k

aH

)−ϵ
ϵ→0−−→ iH

mPk3/2
, (6.62)

where the last one is the standard scale-invariant result. Note that this result holds

also for inflation. In principle, one can use this as an initial condition and solve the

Klein–Gordon equation (6.25) to obtain Eq. (6.61) separately in each phase without

the matching procedure described above9. One can then use Eq. (6.34) to obtain the

unregularized GW energy density. We use this method in our numerical solutions.

The expressions for α±, β±, and γ± are still needed to regularize the integral in

Eq. (6.34), and they are the conventional way to express the GW excitations in the

literature.

9In particular, GWs at the CMB scales stay frozen throughout the kination and hyperkination

periods and are thus not affected by the non-standard background evolution. The same is true for

the curvature perturbation R—see [466] for a linear treatment of R in a model with a non-standard

kinetic sector, Appendix B of [362] for an application to Palatini R2 models, and [467] for a general

proof that R freezes at super-horizon scales.
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Figure 6.3: Comparison between the analytical solution (solid blue lines) and its

numerical counterpart (dashed orange) of the imaginary part of the mode functions

hsk as a function of the elapsing number of e-folds when the mode enters the horizon

during the hyperkination (top left), kination (top right) and radiation domination

(bottom left) periods. The match is excellent, except when the wavenumber of the

mode is comparable to the horizon size at a transition (bottom right). The vertical

dashed lines represent the time of horizon crossing k = aH and the times at which

kination starts Nkin and reheating happens Nreh. The parameters for all panels are

Nhyp = 15, Ωend
r = 10−10 and H = 1013 GeV.

6.5 Gravitational wave observations

6.5.1 Gravitational wave spectrum

We are finally in a position to calculate the spectral energy density of the primordial

GW background. It is defined as

ΩGW(k, η) ≡ 1

ρ(η)

dρGW(k, η)

d ln k
=

1

ρ(η)

k4|λ−(k)|2

π2a4(η)
, (6.63)
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where ρ is the total energy density of the Universe and ρGW(k, η) is the contribution

to the GW energy density from modes around k, given by Eq. (6.35) for the

dominant, sub-Hubble modes. Here λ− is to be matched to α−, β−, or γ− as

explained above.

To evaluate Eq. (6.63) at a specific time, we note that the radiation energy

density can be written as (remember our normalization aend = 1)10

ρr(η) = Ωr(η)ρ(η) = Ωend
r ρenda

−4(η) , (6.64)

so that

ρ(η)a4(η) = ρend
Ωend

r

Ωr(η)
. (6.65)

In particular, using the current radiation temperature and total energy density,

T0 = 2.7 K = 0.23 × 10−9 MeV and ρ0 = 1.05 × 10−120m4
P [8], we obtain ρ0r =

8.79 × 10−125m4
P and Ω0

r = 8.37 × 10−5. We use the index ‘0’ to refer to quantities

today. With this and the de Sitter limit results in Eq. (6.60) together with Eqs. (6.46)

and (6.48), the GW spectrum today becomes

ΩGW(k, η0) =


Ω0

r

96

(
H
mP

)2
, k < kreh,

Ω0
r

12π2Ωend
r

(
H
mP

)2
k
H
eNhyp , kreh < k < kkin,

Ω0
r

12π2Ωend
r

(
H
mP

)2
, kkin < k < kend.

(6.66)

Below, we will refer to the different branches as Ωrad
GW, Ωkin

GW, and Ωhyp
GW. The

boundary values are given by k = H at the end of inflation and at the transition

times. Using Eqs. (6.42) and (6.43), we get

kend = H ,

kkin ≃ 1

ηkin
=

4H

πeNhyp
,

kreh ≃ 1

2ηreh
=
πΩend

r H

2eNhyp
, (6.67)

10We neglect the change in the effective number of relativistic species contributing to the entropy

g∗S(T ) and to the energy density g∗(T ). This introduces an additional mild scale dependence into

the spectrum. For further details, we refer the reader to Ref. [468], and in particular to Fig. 4

therein.
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where we approximated |ηend| ≪ ηkin ≪ ηreh.

In our figures, we show the spectrum as a function of f , the GW frequency today.

To relate f to our wavenumber11 k, we use Eq. (6.64) and ρ = 3H2m2
P, yielding

f =
k

2πa0
=

1

2π

(
Ω0

rH
2
0

Ωend
r H2

)1/4

k . (6.68)

An important frequency is the one that corresponds to BBN. It does not depend on

the early expansion history, and we can solve it explicitly as

fBBN =
1

2π

aBBNHBBN

a0
=

1

2π

(
ρ0r
ρBBN

)1/4(
ρBBN

3m2
P

)1/2

≃ 1.36× 10−11Hz , (6.69)

where we used ρBBN ≃ 3 × 10−86m4
P. We present fBBN as a vertical dotted line in

our graphs.

We show a comparison between the numerical and analytical spectra, for an

example set of parameters, in Fig. 6.4. We see that the analytical expressions for

the spectrum are very accurate. In Fig. 6.5 we present some example analytical

spectra superimposed with the power-law integrated curves (PLICs) for future GW

experiments.

From Eqs. (6.66) and (6.67), we can straightforwardly understand the shape of

the spectrum. The height of the first plateau, corresponding to hyperkination, is

given by the combination H2/(Ωend
r m2

P), i.e., the larger the energy density at the

end of inflation and the smaller the reheating efficiency, the larger the energy density

spectrum amplitude will be. The third free parameter of our theory, the number

of e-folds of hyperkination Nhyp, controls the length of the boosted spectrum; the

longer the hyperkination period lasts, the more stretched the boosted spectrum is.

In contrast, the height of the second plateau depends on H2/m2
P, i.e., it depends

on the energy scale at the end of inflation only, the standard result from a scenario

11Note that, since we have set a = 1 at the end of inflation instead of today as is customary, the

numerical values of our k differ from those of the usual comoving wavenumber. Equation (6.68)

takes this into account.
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Figure 6.4: Analytical spectral energy density of the primordial GWs (dashed

orange) and its numerical counterpart (full green). For details on the numerical

solution, we refer the reader to Appendix C.2. The vertical dotted lines represent

the frequencies associated with the start of kination, reheating and BBN, while the

horizontal dashed line represents the BBN bound on the spectrum. The numerical

spectral energy density is not well resolved at the largest frequencies because the

modes re-entering the horizon right after inflation are never frozen as assumed in

the code. This leads to the unphysical upslope around 1011Hz. The parameters

used are Nhyp = 15, Ωend
r = 10−10 and H = 1013 GeV.

with no period of kinetic domination, originally derived in Ref. [292]. Both plateaus

are connected via a region growing linearly with the frequency f , corresponding to

the kination period. At large frequencies, the spectrum is cut off at the last mode

to be excited by inflation. At small frequencies, there is no cutoff; the first line in

Eq. (6.66) applies to all modes that re-enter during radiation domination.

Although it is easier to understand the shape of the spectrum in terms of Nhyp,

the free parameter in the action in Eq. (6.1) is α. For this reason, we present below

our results regarding the parameter space of the theory in terms of α and not Nhyp.
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The two are related by Eq. (6.19). For completeness, we present here the spectrum

in terms of α, and with k replaced with f :

ΩGW(f, η0) =



Ω0
r

96

(
H
mP

)2
, f < freh ,(

Ω0
r

Ωend
r

)3/4
H3/2

6πH
1/2
0 m2

P

(
1+
√

1+36αH2/m2
P

2

) 1
2

f , freh < f < fkin ,

Ω0
r

12π2Ωend
r

(
H
mP

)2
, fkin < f < fend ,

(6.70)

where

fend =
1

2π

(
Ω0

rH
2
0H

2

Ωend
r

)1/4

, fkin =
2

π2

(
Ω0

rH
2
0H

2

Ωend
r

)1/4
(
1 +

√
1 + 36αH2/m2

P

2

)− 1
2

,

(6.71)

freh =

[
Ω0

r (Ω
end
r )3H2

0H
2
]1/4

4

(
1 +

√
1 + 36αH2/m2

P

2

)− 1
2

. (6.72)

Note that the frequencies of the modes that cause the truncated peak, corre-

sponding to hyperkination and kination, are always between freh and fend, given

by Eqs. (6.72) and (6.71), respectively. The specific values depend on the Hubble

parameter at the end of inflation H, the density parameter of radiation at the end

of inflation Ωend
r and α. In order to give some indicative values, let us assume GUT

scale inflation H ≃ 1013GeV and electroweak-scale reheating ρ(ηreh) ≃ (200GeV)4,

corresponding to Ωend
r = 10−10. Changing α obviously leaves fend unchanged. In

Table 6.1, we show freh and fend for a few different α. Note that they are larger

than fBBN, as they should be.

6.5.2 Parameter space and detectability

In the present section, we put our model to the test and analyse the detectability

of the generated spectrum of primordial GWs in the presence of a period of

hyperkination after inflation. Since our analytical expression for the spectrum
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α freh fend

1030 3.9× 10−5Hz 4.4× 1010Hz

1035 2.2× 10−6Hz 4.4× 1010Hz

1040 1.2× 10−7Hz 4.4× 1010Hz

Table 6.1: Values of the frequencies corresponding to reheating freh and the end of

inflation fend for different values of α, given that H = 1013GeV and Ωend
r = 10−10.

approximates very well its numerical counterpart, as can be seen from Fig. 6.4, we

use it in order to compare with the PLICs of various detectors, namely LISA [433,

434, 435], ET [469, 470], LVK observing runs O3 and O5 [428, 429, 430, 431, 432],

SKA [471], DECIGO [436, 437, 438] and BBO [439]. For each of them, we run a

scan over the parameter space {α,Ωend
r , H}. The successful parameter space can be

found in Fig. 6.7.

Before we describe how the parameter space scan is performed, we comment on

some bounds that need to be imposed. First, BBN should happen during the period

of radiation domination. In other words, at (and below) the frequency associated

with BBN, the spectrum needs to be in its lower plateau, i.e., freh > fBBN, where

freh is given by Eq. (6.72). This imposes a bound on the maximum value α can take.

Solving for α in Eq. (6.72) gives

α <
m2

P

36H2

(√Ω0
r (Ω

end
r )3H2

0H
2

8f 2
BBN

− 1

)2

− 1


≃ m2

PΩ
0
r (Ω

end
r )3H2

0

2304f 4
BBN

= 6.9× 1085(Ωend
r )3. (6.73)

Importantly, we note here that the specific value we use for fBBN in Eq. (6.69)

comes from TBBN = 1MeV. However, recent studies [455, 464] have shown that

the stiff era is restricted to occur at temperatures T > 2.5MeV. This means that

the value in Eq. (6.69) would become a factor of 2.5 larger, and the bound in Eq.

(6.73) a factor of 0.026 smaller. However, given that the available parameter space

for α spans many order of magnitude (see Fig. 6.7), this change does not affect our
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Figure 6.5: A few different spectra superimposed with the PLIC curves of the GW

experiments. The parameter values {N,H,Ωend
r } are {17.5, 4.3× 1011 GeV, 10−12}

for the blue curve, {25, 7.9 × 1011 GeV, 10−9} for the orange curve, {20, 7.9 ×

1010 GeV, 10−5} for the green curve and {29.5, 1.7 × 1013 GeV, 10−8} for the red

curve. We also show lines parallel (dashed gray) to the kination part of the spectrum.

If not for the hyperkination period the spectra would violate the BBN bound.

results appreciably. Nevertheless, the reader should keep in mind that our bound

T > 1MeV is an approximate one.

In addition, the GW energy density at BBN must be low enough not to disturb

the standard results. Eqs. (6.63) and (6.64) give ΩBBN
GW = Ω0

GW/Ω
0
r , allowing us to

translate the bound to into the GW energy density today, yielding [295]

h2Ω0
GW =

∫
df

f
h2ΩGW(f) < 1.12× 10−6 , (6.74)

where h ≈ 0.7 is the dimensionless Hubble constant. In practice, however, for all

detectors except LVK O5 and ET, this bound is irrelevant. Indeed, it is sufficient

to impose that the hyperkination plateau be below the minimum of LVK O3, the

region excluded by now by LVK, which is below the BBN bound. Note that for LVK

O5 and ET there exists some parameter space where the hyperkination plateau is
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between both limits. We take this into account in the scans by showing the excluded

region from LVK O3 in Fig. 6.6. There, for each value of H and Ωend
r , we show the

maximum value of α, labelled αmax, below which the signal is not observationally

excluded.

We can also impose an upper bound on the energy scale at the end of inflation.

Using the slow-roll expression for the amplitude of the scalar power spectrum, we

can write the Hubble parameter at CMB scales as

HCMB =

√
ρCMB

3m2
P

= mP

√
As
π2r

2
, (6.75)

where As = 2.1 × 10−9 [8] and r is the tensor-to-scalar ratio. The latest constraint

on r is r < 0.036 [9]. The energy scale at the end of inflation is always lower than

at CMB scales, so Eq. (6.75) provides an upper bound on H at the end of inflation,

H < 4.7× 1013GeV . (6.76)

Further, the plateau corresponding to radiation domination should be below

the one corresponding to hyperkination, but this is not strictly guaranteed by our

approximative spectrum if the kination period is short. To ensure this condition is

satisfied, we impose

Ωend
r <

8

π2
≃ 0.81 , (6.77)

see Eq. (6.70).

The logic for the parameter scan is as follows. We consider a grid in the (H,Ωend
r )

plane, with the values of H lying in the interval [106, 4.7 × 1013] GeV and those of

Ωend
r lying in the interval [10−20, 0.81], both in steps of 0.5 in logarithmic units.

Then, for each point in the grid, we find the minimum value αmin, such that our

spectrum is detectable by the specific experiment we are considering. Since the effect

of increasing α (or, analogously, Nhyp) is to stretch the flat region corresponding to

hyperkination, if a signal is detectable for αmin, it will also be detectable for every

α > αmin. Note that for LVK O5 and ET, for a certain region in the (H,Ωend
r ) plane,

there is also a maximum value that α can take, see Fig. 6.6. This limitation exists
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Figure 6.6: Parameter space of the theory excluded by LVK O3. For each value of

H and Ωend
r , there is a maximum value for α, labelled αmax, above which the signal

is observationally excluded.

only for values where the height of the hyperkination plateau is above the minimum

of the LVK O3 PLIC.

In order to determine whether a signal can be detected, we compute the PLICs

[472] for each experiment. Then, for each set of parameters, we find the minimum

αmin such that the energy density spectrum is at least as large as the PLIC under

consideration. An easy way to picture this procedure is to realise that the spectra

with α = αmin are tangent to the PLICs. Increasing α increases the length of the

hyperkination plateau, so if the spectrum is tangent to a PLIC, it will be above it

for some frequency range if α > αmin.

In Fig. 6.5, we show some example spectra with a large enough SNR,

superimposed with the PLICs for all considered experiments. In the same figure,

we also show a grid of lines with the same slope as Ωkin
GW(f, η0) to showcase how in
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a setup with inflation being followed by usual kination most of the signals would

violate the BBN bound. Hyperkination fixes this by truncating the spectrum and

introducing a new plateau at high frequencies.
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Figure 6.7: Parameter space of the theory for the minimum α such that the signal

is detectable by LVK O5 (top left), ET (top middle), DECIGO (top right, BBO

(bottom left), and LISA (bottom middle) and SKA (bottom right). For each value

of H and Ωend
r , there is a minimum value for α, labelled αmin, above which the signal

is always detectable (minus the excluded region in Fig. 6.6 for LVK O5 and ET).

We report the results of parameter space scans as contour plots in Fig. 6.7.

There, for each pair (H,Ωend
r ), we give the minimum αmin such that the signal is

detectable, for each experiment. We emphasize that the totality of the successful

parameter space is contained in these figures. Besides the maximum value of H from
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Eq. (6.76), the parameter space is bounded at small H by the BBN timing condition

freh > fBBN, at small Ωend
r by the BBN energy density condition in Eq. (6.74) and

the LVK O3 exclusion bound, and at large Ωend
r by the requirement that the higher

hyperkination plateau must reach the lower end of the sensitivity band for the given

experiment.

We conclude that there is ample parameter space to accommodate detectability

by all experiments. Indeed, as can be seen from Fig. 6.7, for a Hubble parameter

H ≲ 1013 GeV, somewhat below the GUT scale, and a reheating efficiency in the

range of 10−15 ≲ Ωend
r ≲ 10−2, which can be easily accommodated by a variety

of reheating mechanisms [100, 473, 98, 99, 289, 290, 291], we can always find a

detectable signal. We emphasize that the size of the parameter space is large, and

there is no need for fine-tuning to obtain a detectable signal. Indeed, in Fig. 6.7

we report the minimum value α has to take in order for the signal to be detectable.

However, any value of α larger than αmin also leads to a detectable signal.

The value of αmin is quite large for most experiments. This can be understood

from Eq. (6.19). Indeed, we can find a lower bound on αmin by taking the limit

Nhyp ≪ 1. It gives

αρend ≃ 2m4
P

3
Nhyp. (6.78)

Using a GUT energy scale ρend ∼ 10−10m4
P, considering an almost non-existent

period of hyperkination withNhyp = 0.1, we obtain a rough lower bound αmin ≳ 1010.

As soon as we have a larger Nhyp, αmin grows exponentially with it. This is in line

with our findings in Chapter 5, where we study quintessential inflation with an

action of the form in Eq. (5.1). There, we find α ∼ 1010 for successful quintessential

inflation, without considerable hyperkination.

6.6 Discussion

We have investigated the spectrum of primordial GWs generated by cosmic inflation

in a model where after inflation but before reheating we have a period when the
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Universe is dominated by the kinetic energy density of the inflaton scalar field ϕ,

when the field is characterised by both the usual quadratic kinetic term and also by

a higher-order quartic kinetic term. This is natural in theories of quadratic R+αR2

gravity in the Palatini formalism, where in the Einstein frame the quartic kinetic

term is proportional to α, the coefficient of quadratic gravity. However, we can

equally well envisage a k-inflation scenario where the kinetic term of the scalar field

includes a term ∝ αX2, where X = 1
2
ϕ̇2.

This kinetically dominated period is divided into two parts. In the first part,

the inflaton kinetic energy density is dominated by the higher-order kinetic term; a

period which we call hyperkination. In the second part, the higher-order kinetic term

becomes negligible and the inflaton kinetic energy density is dominated by the usual

quadratic term; a period called kination. We have shown that, while kination is a

stiff phase with barotropic parameter w = p/ρ = 1, as is well known, hyperkination

is not; the barotropic parameter during hyperkination is that of radiation w = 1/3.

As a result, the modes of inflation-generated primordial GWs which re-enter the

horizon during hyperkination form a flat spectrum, in the same way as the modes

which re-enter the horizon after reheating, in the usual radiation era. However,

during usual kination, the GW spectrum is not flat but the GW density parameter

per logarithmic frequency interval is ΩGW(f) ∝ f . This means that, for modes re-

entering the horizon after inflation and before reheating, the GW signal is boosted.

This boost corresponds to a truncated peak in the GW spectrum; truncated because

the spectrum corresponding to hyperkination is flat but it can be of much larger

amplitude than that corresponding to the eventual radiation era. Consequently, the

period of kinetic domination (kination + hyperkination) can be made to last longer

and the boosted spectrum to extend to lower frequencies without the danger of the

production of excessive primordial GWs. In particular, the truncated spectrum can

avoid the upper bound imposed by the requirement that Big Bang Nucleosynthesis

(BBN) remains undisturbed. Thus, primordial GWs in all observable frequencies

can be enhanced without a problem.
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We have analytically and numerically studied thoroughly the inflationary

production and the subsequent evolution of GW modes and obtained the resulting

GW spectrum, linking it with the model parameters. The characteristic shape of

the spectrum will be testable in the near future by forthcoming observations, such

as advanced LIGO-Virgo-KAGRA, LISA, DECIGO, BBO and ET, as depicted in

Fig. 6.5. If observed, such a spectrum can provide insight into the underlying theory,

such as the energy scale of inflation, the reheating efficiency and the coefficient α.

The latter is directly related to the duration of the hyperkination phase. Indeed,

when hyperkination lasts Nhyp, then Eq. (6.19) suggests

α =
m4

P

3ρend
exp(4Nhyp) , (6.79)

where ρend = 3H2m2
P is the energy density at the end of inflation, and H is the

corresponding Hubble scale. Typically, inflation is at the scale of grand unification,

which impliesH2 ∼ 10−10m2
P. In this case, the above suggests that eNhyp ∼ 10−3α1/4,

which means that

Nhyp ≃ 10 ⇒ α ∼ 1026. (6.80)

Note that, in the usual Starobinsky R2 inflation we have α = 1.1× 109. Such large

values of alpha are non-perturbative, but this is no more a problem in our setup

than it is in Starobinsky gravity.

Important information can also be deduced by the amplitude of the truncated

peak corresponding to hyperkination. Indeed, Eq. (6.66) suggests that the value of

the GW spectrum on the hyperkination plateau is given by

Ωhyp
GW =

1

12π2

Ω0
r

Ωend
r

(
H

mP

)2

, (6.81)

where Ω0
r ≃ 10−4 is the density parameter of radiation at present and Ωend

r is the

density parameter of radiation at the end of inflation, also called reheating efficiency,

because the larger it is the sooner reheating takes place. As discussed, in order

not to destabilise BBN, we need Ωhyp
GW < 10−6. Thus, we obtain a lower bound

on the reheating efficiency as Ωend
r > (H/mP)

2. Typically for inflation we have

H2 ∼ 10−10m2
P, which implies Ωend

r > 10−10.
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In an effort to stay generic, we have not considered a specific mechanism for

producing the radiation which eventually reheats the Universe. We note however,

that a number of such mechanisms exist, such as instant preheating [100, 473],

curvaton reheating [290, 291] or Ricci reheating [98, 99, 289] to name but some.

It is even possible to avoid introducing additional degrees of freedom and consider

that reheating occurs due to the dissipating properties of the inflaton field itself, as

discussed in Ref. [272], where such processes become negligible after inflation.

Additional important information can be obtained by the observation of the

frequency of the knee in the GW spectrum, shown in Figs. 6.4 and 6.5, which is

given by fkin in Eq. (6.71). Combining this with Eq. (6.81), in the large Nhyp limit,

we obtain
fkin

(Ωhyp
GW)1/4

=
2

π3/2

√
2

3
ρ
1/4
0 α−1/4

√
mP

H
, (6.82)

Where ρ0 = 3H2
0m

2
P is the energy density of the Universe at present. Putting the

numbers in the above, we find(
fkin
Hz

)(
Ωhyp

GW

10−6

)−1/4

∼ 1012 α−1/4

√
mP

103H
. (6.83)

Observations might provide the values of the left-hand-side of the above, which

means that α could be estimated provided H is known (e.g. H2 ∼ 10−10m2
P for

inflation at the grand unified energy scale).

In Fig. 6.7 we display our findings with respect to observability by different

missions, such as LVK 05, ET, BBO, LISA DECIGO and SKA. There, we show

the minimum value α has to take in order for the spectrum to be detectable.

Above this value, which we label αmin, the spectrum is always detectable. We

see that observability requires that the reheating efficiency is smaller the lower the

inflation energy scale is (the lower H is). Also, the values of αmin are larger for

large inflationary energy scales. For LVK 05 and LISA we find that observability

requires αmin ∼ 1030−60, while for ET, BBO and DECIGO the numbers are smaller

αmin ∼ 1010−50. For the reheating efficiency, we find that observability requires that

the density parameter of radiation at the end of inflation is Ωend
GW ≳ 10−16, a value
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which may increase up to unity or so in the case of ET, BBO or DECIGO. Such a

high reheating efficiency implies that the kinetic regime is very small or even non-

existent (prompt reheating). This is possible because, the ET, BBO and DECIGO

might be able to detect very faint signals at frequencies higher than LISA, which

means that they could even marginally observe the flat GW spectrum generated by

the usual radiation era (no kinetic epoch). This is why there is a region (for ET,

BBO and DECIGO) when H is large (H ∼ 1013GeV) where suddenly α can be very

small (or even zero). The parameter space for this is very small though.

We conclude that, with our mechanism, the observability of primordial GWs is

much enhanced compared to traditional models. We obtained concrete predictions

involving H, α and the reheating efficiency in the case the characteristic form

of the GW spectrum—a truncated peak—is indeed observed. Observation of the

primordial GW signal would not only confirm another prediction of cosmic inflation

but would also be a tantalising hint towards the quantum nature of gravity, which is

behind the assumption of the Bunch-Davies vacuum in Eq. (6.32). Forthcoming GW

observations may reveal new and surprising details about the physics of inflation and

fundamental physics in general. Our work serves to explore such a possibility.
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Chapter 7

Non-oscillating Early Dark Energy

and Quintessence from

α-attractors

This chapter is based on the original research article published in Astroparticle

Physics [4] and in the conference paper published in Proceedings of Science [5] by

the author, in collaboration with Lucy Brissenden and Konstantinos Dimopoulos.

7.1 Introduction

In the last few decades cosmological observations of the early and late Universe have

converged into a broad understanding of the history of our Universe from the very

first seconds of its existence until today. Thus, cosmology has developed a standard

model called the concordance model, or in short ΛCDM.

However, the latest data might imply that the celebrated ΛCDM model is not

that robust after all. In particular, there is a 8% discrepancy, at a confidence

level of 5σ, between the locally measured and cosmologically inferred values for the

expansion rate today H0. This Hubble tension (see Sec. 2.2.3 for a full discussion on

this topic) has undermined our confidence in ΛCDM and as such it is investigated
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intensely at present.

In this chapter we study a toy model of unified EDE and DE, which can

simultaneously raise the inferred value of the Hubble constantH0 coming from early-

time data and explain the current accelerated expansion with no more tuning that in

ΛCDM. We introduce a scalar field φ in the context of α-attractors, which is frozen

at early times and unfreezes around matter-radiation equality, briefly behaving as

a subdominant dark energy component to then undergo free-fall, redshifting away

faster than radiation. At late times φ behaves as quintessence. In contrast to most

other works in the literature, the field does not exhibit oscillatory behaviour (see

however Refs. [180, 179, 474, 475] for earlier attempts, the first two also in the

context of α-attractors).

Models of EDE are subject to significant constraints; the primary consideration

being that EDE must be subdominant at all times and should redshift away faster

than radiation, i.e., ρ ∝ a−n with n > 4 [159], in order for it to be negligible at the

time of last scattering. So far, in previous works, this has been achieved via a variety

of mechanisms, such as first or second-order phase transitions [173, 178], although

these might have undesirable side-effects such as the generation of inhomogeneities

from bubble collisions or topological defects. Other popular models typically feature

oscillatory behaviour [179, 130, 161, 159, 173, 174, 175, 176, 162, 177, 178] to achieve

the required energy scaling. In this case, as with the original proposal in Ref. [161],

after unfreezing, the EDE field oscillates around its vacuum expectation value in a

potential minimum which is taken to be of order higher than quartic. As a result, on

average, the scaling of its energy density with the scale factor reads ρ ∝ a−m, with

4 < m < 6. In contrast, in our model, the EDE scalar field experiences a period of

kinetic domination, such that its density decreases as ρ ∝ a−6, exactly rather than

approximately.

Our model unifies EDE with late DE (see Refs. [180, 475] for earlier attempts)

in the context of α-attractors1 continuously interpolate between those of chaotic

1In the context of inflation, the predictions of models featuring the construction of α−attractors

233



Chapter 7. Non-oscillating Early Dark Energy and Quintessence from
α-attractors

inflation [94] and those of Starobinsky [11] and Higgs inflation [390]. [476, 477,

478, 479, 465, 480, 481, 482, 483]. α-attractors appear naturally in supergravity.

Introducing curvature to the internal field-space manifold can give rise to a non-

trivial Kähler metric, which results in kinetic poles for some of the scalar fields of the

theory. The free parameter α is inversely proportional to said curvature. As for the

word “attractor”, it is used to refer to the fact that the inflationary predictions are

largely insensitive of the specific characteristics of the potential under consideration.

Such an attractor behaviour is attained for sufficiently large curvature (small α) in

the internal field-space manifold.

In practical terms, the scalar field has a non-canonical kinetic term, featuring

two poles, which the field cannot transverse. To aid our intuition, the field can

be canonically normalised via a field redefinition, such that the finite poles for the

non-canonical field are transposed to infinity for the canonical one. As a result, the

scalar potential is “stretched” near the poles, resulting in two plateau regions, which

are useful for modelling inflation [484, 485, 486, 487, 488, 489], or quintessence [260],

or both, in the context of quintessential inflation [260, 259, 258].

Before we start describing our model, we bring the attention of the reader to

the fact that EDE may have a significant drawback in that not only it does not

address the σ8 tension (associated with matter clustering), but might exacerbate

it [142, 490, 491, 492]. However, recent theoretical progress seems to indicate that

it may be possible to alleviate both the σ8 and the Hubble tension simultaneously,

via axion models of coupled EDE and dark matter [493, 494, 495, 496, 497]. It is

conceivable that an α-attractor model such as ours could feature a similar interaction

term.

This chapter is organised as follows. In Sec. 7.2 we introduce the model, in

the context of α-attractors, and analytically study the asymptotic behaviour of the

scalar field around the origin and infinity. In Sec. 7.3 we detail how we perform

the numerical simulation of the system. In Sec. 7.4 we report the results from

the numerics, namely the viable parameter space and the field behaviour. Sec.
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7.5 deals with the theoretical motivation behind the initial conditions of the field

and we conclude in Sec. 7.6. In Appendix D we consider the posibility of the

EDE/quintessence field also being the inflaton.

7.2 The Model

Following the standard recipe, we introduce two poles at φ = ±
√
6αmP by

considering the Lagrangian

L =
−1

2
(∂φ)2

(1− φ2

6αm2
P
)2

− U(φ) , (7.1)

where φ is the non-canonical scalar field and we use the short-hand notation (∂φ)2 ≡

gµν∂µφ∂νφ. We then redefine the non-canonical field in terms of the canonical scalar

field ϕ as

dϕ =
dφ

1− φ2

6αm2
P

⇒ φ = mP

√
6α tanh

(
ϕ√

6αmP

)
. (7.2)

It is obvious that the poles φ = ±
√
6αmP are transposed to infinity.

In terms of the canonical field, the Lagrangian now reads

L = −1

2
(∂ϕ)2 − V (ϕ), (7.3)

where

V (ϕ) = U

(
mP

√
6α tanh

(
ϕ√

6αmP

))
. (7.4)

We consider a potential of the form

U(φ) = VX exp
(
−λeκφ/mP

)
, (7.5)

where

VΛ ≡ exp
(
−λeκ

√
6α
)
VX , (7.6)

and α, κ, λ are dimensionless model parameters, VX is a constant energy density

scale and φ is the non-canonical scalar field. In the above, VΛ is the vacuum density
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at present2. In terms of the canonical field, the potential reads

V (ϕ) = exp
(
λeκ

√
6α
)
VΛ exp

[
−λeκ

√
6α tanh(ϕ/

√
6αmP)

]
. (7.7)

As usual, the Klein-Gordon equation of motion for the homogeneous canonical

field is

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 , (7.8)

where the dot and prime denote derivatives with respect to the cosmic time and the

scalar field respectively, and we assumed that the field was homogenised by inflation,

when the latter overcame the horizon problem.

7.2.1 Asymptotic behaviour of the scalar potential

We are interested in two limits for the potential in Eq. (7.7): ϕ→ 0 (φ → 0) and

ϕ→ +∞ (φ→ +
√
6αmP ). The first limit corresponds to matter-radiation equality.

In this limit, the potential is

Veq ≃ exp
[
λ(eκ

√
6α − 1)

]
VΛ exp(−κλϕeq/mP) , (7.9)

where the subscript ‘eq’ denotes the time of matter-radiation equality when the field

unfreezes. It is assumed that the field was originally frozen there. We discuss and

justify this assumption in Sec. 7.5.

After unfreezing, it is considered that the field has not varied much, for the above

approximation to hold, i.e.,

0 ≲ ϕeq ≪
√
6αmP . (7.10)

This is a reasonable assumption given that the field begins frozen at the origin

shortly before matter-radiation equality, unfreezing at some point during this time

3.

2In the parameter scans of the model, we scan over VX rather than over VΛ.
3There is no suggestion in the EDE literature [179, 130, 161, 159, 173, 174, 175, 176, 162, 177,

178] that the field has to unfreeze at any particular time, as long as it does not grow to larger than

the allowed fraction and its energy density is essentially negligible by the time of decoupling.
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At large ϕ (i.e. ϕ → ∞), the non-canonical field is near the kinetic pole (φ →

+
√
6αmP). Then the potential in this limit is

V0 ≃ VΛ

[
1 + 2κλeκ

√
6α
√
6α exp

(
− 2ϕ0√

6αmP

)]
, (7.11)

which, even for sub-Planckian total field excursion in ϕ, should be a good

approximation for sufficiently small α. The subscript ‘0’ denotes the present time4.
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Approximation at High Field Values
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Figure 7.1: Graph of the canonical potential and its two approximations for small

and large field values, given in Eqs. (7.9), (7.11) respectively. These approximations

are useful because they are simple exponential potentials with well-known attractors.

It can be readily seen that, after leaving the origin, the field jumps off a potential

plateau and is free-falling as a result.

The above approximations describe well the scalar potential near equality and

the present time, as shown in Fig. 7.1. As we explain below, in between these

regions, the scalar field free-falls and becomes oblivious of the scalar potential as

the term V ′(ϕ) in its equation of motion (7.8) becomes negligible.

4Note that, as the field becomes sufficiently large, the potential approaches the positive constant

VΛ, which corresponds to non-zero vacuum density with w = −1, as in ΛCDM. Thus, our model

outperforms pure quintessence (with −1 < w < −0.95 [8]), which can push H0 to lower instead of

higher values [498, 499].
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7.2.2 Expected Field Behaviour

Here we explain the rationale behind the mechanism envisaged. We make a number

of crude approximations, which enable us to follow the evolution of the scalar field,

but which need to be carefully examined numerically. We do so in the next section.

First, we consider that originally the field is frozen at zero (for reasons explained

in Section 7.5). Its energy density is such that it remains frozen there until equality,

when it thaws following the appropriate exponential attractor, since Veq in Eq. (7.9)

is approximately exponential [213]. Assuming that this is the subdominant attractor

requires that the strength of the exponential is [113, 27]

Z ≡ κλ >
√
3 . (7.12)

The subdominant exponential attractor dictates that the energy density of the rolling

scalar field mimics the dominant background energy density. Thus, the density

parameter of the field is constant, given by the value [213, 113, 27]

Ω eq
ϕ ≃ 3

Z2
=

3

(κλ)2
< 1 (7.13)

This provides an estimate of the moment when the originally frozen scalar field,

unfreezes and begins rolling down its potential. Unfreezing happens when Ωϕ (which

is growing while the field is frozen, because the background density decreases with

the expansion of the Universe) obtains the above value.

However, after unfreezing, the field soon experiences the full exp(exp) steeper

than exponential potential so, it does not follow the subdominant attractor any

more but it free-falls, i.e., its energy density is dominated by its kinetic component,

such that its density scales as ρϕ ≃ 1
2
ϕ̇2 ∝ a−6, until it refreezes at a larger value ϕF .

This value is estimated as follows.

In free-fall, the slope term in the equation of motion (7.8) of the field is negligible,

so that the equation is reduced to ϕ̈+ 3Hϕ̇ ≃ 0, where H = 2/3t after equality. The

solution is

ϕ(t) = ϕeq +
C

teq

(
1− teq

t

)
, (7.14)
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where C is an integration constant. From the above, it is straightforward to find

that ϕ̇ = Ct−2. Thus, the density parameter at equality is

Ω eq
ϕ =

ρϕ
ρ

∣∣∣∣
eq

=
1
2
C2t−4

eq

4
3
(mP

teq
)2

=
3

8

C2

(mP teq)2
⇒ C =

√
8
3
Ω eq
ϕ mP teq =

√
8

κλ
mP teq , (7.15)

where we used Eq. (7.13), ρϕ ≃ 1
2
ϕ̇2 and that ρ = 1/6πGt2 = 4

3
(mP/t)

2. Thus, the

field freezes at the value

ϕ0 = ϕeq + C/teq = ϕeq +

√
8

κλ
mP , (7.16)

where we considered that teq ≪ tfreeze < t0 .

Using that teq ∼ 104 y and t0 ∼ 1010 y, we can estimate

Veq
V0

≃
Ωeq
ϕ ρeq

0.7 ρ0
≃ 30

7(κλ)2

(
t0
teq

)2

≃ 3

7(κλ)2
× 1013 . (7.17)

Now, from Eqs. (7.9), (7.11) we find

Veq
V0

≃ eλ(e
κ
√
6α−1) exp(−κλϕeq/mP )

1 + 2κλ eκ
√
6α
√
6α exp

(
−2ϕ0/

√
6αmP

) . (7.18)

In view of Eqs. (7.10), (7.16), the above can be written as

Veq
V0

≃ eλ(e
κ
√
6α−1)

1 + 2κλ eκ
√
6α
√
6α e−2

√
8/κλ

√
6α
. (7.19)

Taking Ω eq
ϕ ≃ 0.1 as required by EDE, Eq. (7.13) suggests

κλ ≃
√
30 . (7.20)

Combining this with Eq. (7.17) we obtain

e
√
30
κ

(eκ
√
6α−1) ∼ 1012/7 , (7.21)

where we have ignored the second term in the denominator of the right-hand-side

of Eq. (7.19).

From the above we see that, κ is large when α is small. Taking, as an example,

α = 0.01 we obtain κ ≃ 18 and λ ≃ 0.30 (from Eq. (7.20)). With these values, the
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second term in the denominator of the right-hand-side of Eq. (7.19), which was

ignored above, amounts to the value 3.2. This forces a correction to the ratio Veq/V0

of order unity, which means that the order-of-magnitude estimate in Eq. (7.21) is

not affected.

Using the selected values, Eq. (7.16) suggests that the total excursion of the field

is

∆ϕ = ϕ0 − ϕeq =

√
8

κλ
mP ≃ 0.5mP , (7.22)

i.e., it is sub-Planckian. In the approximation of Eq. (7.9), we see that the argument

of the exponential becomes κλ∆ϕ/mP ≃ 2.7 > 1, where we used Eq. (7.20). This

means that the exponential approximation breaks down and the exp(exp) potential

is felt as considered, as depicted also in Fig. 7.1.

For small α, the eventual exponential potential in Eq. (7.11) is steep, which

suggests that field rushes towards the minimum at infinity. However, the barotropic

parameter is w ≈ −1 because the potential is dominated by the constant VΛ.

7.2.3 Tuning requirements

Our model addresses in a single shot two cosmological problems: firstly, the Hubble

tension between inferences of H0 using early and late-time data; and secondly, the

reason for the late-time accelerated expansion of the Universe; late DE. However,

its parameters, namely α, λ, κ and VΛ, are subject to some tuning.

As we have seen κ and λ seem to take natural values, not too far from order

unity. Regarding α we only need that it is small enough to lead to rapid decrease

of the exponential contribution in the scalar potential in Eq. (7.11), leaving the

constant VΛ to dominate at present. We show in the next section that α ∼ 10−4 is

sufficient for this task. This leaves VΛ itself.

The required tuning of this parameter is given by VΛ =
(
HPlanck

0

HSH0ES
0

)2
V Planck
Λ , where

V Planck
Λ = ΩΛρ0. Since

(
HPlanck

0

HSH0ES
0

)2
≃ (67.44

73.04
)2 = 0.8525 we see that the required fine-

tuning of our VΛ is not different from the fine-tuning introduced in ΛCDM. However,
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in contrast to ΛCDM, our proposal addresses two cosmological problems; not only

late DE but also the Hubble tension.

7.3 Numerical Simulation

In order to numerically solve the background dynamics of the system, it is enough

to solve for the scale factor a(t), the field ϕ(t) and the background perfect fluid

densities ρm(t) and ρr(t) (of matter and radiation respectively), as every other

quantity depends on these. They are governed by the Friedmann equation, the

Klein-Gordon equation and the continuity equations respectively. Of course, the

Klein-Gordon equation is a second order ordinary differential equation, while the

continuity equations are first order so that we need the initial value and velocity of

ϕ and just the initial value of ρm and ρr as initial conditions. As described above, the

field starts frozen and unfreezes around matter-radiation equality. Effectively, this

means using ϕini = 0 and ϕ̇ini = 0 as initial conditions, while the initial radiation and

matter energy densities are chosen to satisfy the bounds obtained by Planck [8] at

matter-radiation equality, i.e., scaled back from ρm(teq) = ρr(teq) = 1.27×10−110m4
P,

at some arbitrary redshift zini = 104.

For convenience, we rewrite the equations in terms of the logarithmic energy

densities ρ̃m(t) = ln (ρm(t)/m
4
P) and ρ̃r(t) = ln (ρr(t)/m

4
P). Plugging the first

Friedmann equation in the Klein-Gordon equation, gives

ϕ̈(t) +

√
3ρ(t)

mP

ϕ̇(t) +
dV

dϕ
= 0, (7.23)

˙̃ρm(t) +

√
3ρ(t)

mP

= 0, (7.24)

˙̃ρr(t) +
4

3

√
3ρ(t)

mP

= 0, (7.25)

where 3m2
PH

2(t) = ρ(t) = ρϕ(t) + [ exp(ρ̃m(t)) + exp(ρ̃r(t))]m
4
P and ρϕ(t) =

K(ϕ(t)) + V (ϕ(t)) where K(ϕ(t)) = 1
2
ϕ̇2(t) and V (ϕ(t)) is given by Eq. (7.7).
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As mentioned in Section 7.5, we assume the field to be initially frozen at an ESP,

such that it could have been the inflaton or a spectator field at earlier times. The

time of unfreezing is then controlled only by the parameters of the potential.

The simulation is terminated when the density parameter of the field becomes

equal to the density parameter of dark energy today ΩΛ = 0.6889 [8].

Parameter Description Constraint

Ωeq
ϕ Structure

formation

unimpeded while

EDE actually has

an effect

0.015 ≤ Ω eq
ϕ < 0.107 [175]

Ωls
ϕ EDE undetectable

in the CMB

Ω ls
ϕ < 0.015 [159]

Ωeq
ϕ and Ωls

ϕ Consistency check Ω eq
ϕ > Ω ls

ϕ

Ω0
ϕ Observational 0.6833 ≤ Ω0

ϕ ≤ 0.6945 [8]

w0
ϕ Observational −1 ≤ w0

ϕ ≤ −0.95 [8]

wa
ϕ Observational −0.55 ≤ waϕ ≤ 0.03 [8]

H0 [km/s/Mpc] Observational 72.00≤H0≤74.08 [136]

∆ϕ Sub-Planckian field

excursion

ϕ0 − ϕeq < mP

Table 7.1: Table describing and justifying constraints used to identify the viable

parameter space. In the above, waϕ = − dwϕ

da

∣∣∣
0
, cf. Eq. (2.208).
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7.4 Results and analysis

7.4.1 Parameter Space

We perform a scan of the parameter space of the theory, at the background level,

imposing the conditions in Table 7.1. We report our findings in Fig. 7.2, Fig. 7.35.

We find that our model is succesful for κ ∼ 102 and λ ∼ 10−3 − 10−2, which are

rather reasonable values. In particular, the value of κ suggests that the mass-scale

which suppresses the non-canonical field φ in the original potential in Eq. (7.5) is

near the scale of grand unification ∼ 10−2mP. Regarding the curvature of field space

we find α ∼ 10−4, which again is not unreasonable.

The viable parameter space suggests that κλ >
√
3, which contradicts our

assumption in Eq. (7.12). This implies that, unlike the analytics in Sec. 7.2.2, the

field does not adopt the subdominant exponential scaling attractor but the slow-roll

exponential attractor, which leads to domination [213, 27]. As the field thaws and

starts following this attractor, the approximation in Eq. (7.9) breaks down as the

field experiences the full exp(exp) potential, which is steeper than the exponential

(see Fig. 7.1). Consequently, instead of becoming dominant the field free-falls. This

contradiction with our discussion in Sec. 7.2.2 is not very important. The existence

of the scaling attractor provided an easy analytic estimate for the moment when the

field unfreezes. It turns out that, because the scaling attractor has been substituted

by the slow-roll attractor, the field unfreezes because its potential energy density

becomes comparable to the total energy density, going straight into free-fall. It is

much harder to analytically estimate when exactly this takes place, but the eventual

result (free-fall) is the same.

5The apparent structure found in Fig. 7.3 is spurious in origin. In the left panel of the figure

we show the valid points in the λ − α plane for a range of values in κ (and analogously for the

right panel). However, would we show a different color for each value of κ, we would find simple

curves in the λ−α plane. In other words, the apparent structure only has to do with how the grid

of points for the scan was chosen.
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Figure 7.2: Parameter space slice in the κ − α plane with 0 < λ < 0.027 and

VΛ = 10−120.068m4
P. The blue dotted line is the boundary of the region that produces

non-inflationary results (see below), while the orange region is constituted by the

successful points, i.e., those for which the constraints detailed in Table 7.1 are

satisfied. Note that the region bounded in blue is not equal to the range of the scan,

which is 0 ≤ κ ≤ 700 and 0 ≤ α ≤ 0.00071. This is because points with potential

larger than a certain starting value result in the field beginning the simulation

dominant, which means that the Universe goes into inflation which cannot terminate

and will never lead to successful EDE. These points are very close to the viable

parameter space for these two parameters and therefore must be thrown away.

We obtain that the matter-radiation equality redshift is zeq ≃ 4000, larger than

the Planck value zeq = 3387 ± 21 [8]. It should be however noted that, in

our simplified background analysis, we use the Planck matter density parameter

Ωm.0 = 0.3111 ± 0.0056 with the SH0ES value for the Hubble constant H0 =

73.04±1.04 km/s/Mpc, which is bound to give a value for ωm = Ωm,0h
2 incompatible

with Planck. A simple back-of-the-envelope calculation shows that there is a factor

of
(
hSH0ES

hPlanck

)2
=
(
0.73
0.67

)2
= 1.187 difference, which leads to a new zupdatedeq + 1 =

(1.18)1/3(zeq+1), i.e., resulting in zupdatedeq ≃ 3500. This pushes zeq to higher values,
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Figure 7.3: Parameter space slice in the λ − α plane with 0 < κ < 700 (left) and

in the λ − κ plane with 0 < α < 0.00071 (right), both with VΛ = 10−120.068m4
P.

The orange region is constituted by the successful points, i.e., those for which the

constraints detailed in Table 7.1 are satisfied.

closer to our findings. We emphasize, however, that a full fit to the CMB data

is required in order to obtain the actual value for zeq derived from our model. In

contrast, the redshift of last scattering is where we would expect it at zls ≃ 1087.

Theoretical constraints suggest zls ≃ 1090 [500], and the observations of the Planck

satellite suggest zls = 1089.80± 0.21 [8]. We note here that the best-fit values for

the cosmological parameters from ΛCDM are expected to somewhat change when

incorporating EDE. In this way, the constraints in Table 7.1 should be considered

as approximate only.

7.4.2 Field Behaviour

The field behaves as expected, with the mild modification of the attractor

solution at unfreezing (slow-roll instead of scaling), which leads to free-fall. The

evolution is depicted in Fig. 7.4, Fig. 7.5 for the example point {α, κ, λ} =

{0.0005, 145, 0.008125}, and VΛ fixed to the SH0ES cosmological constant [136].

The observables obtained in this case (i.e. the values of H0, w0 and wa) are shown

in Table 7.2. The behaviour of the Hubble parameter is a function of redshift as can
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be seen in the left panel of Fig. 7.4.
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Figure 7.4: Left: The Hubble parameter (in units of km s−1Mpc−1) of a universe with

an EDE/quintessence field (green), a ΛCDM universe (black), and one with only

matter and radiation (blue), as a function of redshift (top) and e-folds (bottom)

elapsed since the beginning of the simulation. The presence of the field leads

to a higher value of H0 than in the ΛCDM scenario. Right: The logarithmic

densities of matter (dot-dashed red), radiation (dotted orange), the sum of both

(solid blue) and the scalar field (dashed green), as a function of redshift (top) and

e-folds (bottom) elapsed since the beginning of the simulation, for α = 0.0005, κ =

145, λ = 0.008125, and VΛ = 10−120.068m4
P. The horizontal solid line represents the

SH0ES energy density of the Universe at present. The EDE scalar field becomes

momentarily subdominant near equality, then redshifting away faster than radiation

to become negligible at decoupling.

As shown in Table 7.1, the maximum allowed value of the EDE density parameter

at equality is just over 0.1. However, it is possible that this is too lenient a constraint

because unlike the models for which this constraint was developed, our model has a

true free-fall period, which means it redshifts away exactly as a−6 rather than below

this rate as in oscillatory behaviour (see the right panels of Fig. 7.4, Fig. 7.5)6.

Note that for oscillating EDE in a potential V ∝ ϕ2n, as the original EDE [162],

there is a limit n < 3 (n < 5) for matter (radiation) domination. This is because

6A more accurate constraint of ∼ 0.086 for non-oscillatory models is provided in Ref. [474],

which does not significantly narrow our allowed parameter space.
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Figure 7.5: Left: The density parameter of the scalar field, for α = 0.0005, κ =

145, λ = 0.008125, and VΛ = 10−120.068m4
P, as a function of redshift (top) and e-

folds (bottom) elapsed since the beginning of the simulation. The density parameter

experiences a bump with fEDE = Ωϕ(zeq) ≲ 0.1, before the EDE redshifting away

and refreezing to become dark energy today. Right: Barotropic parameter of the

scalar field (dotted green), of the background perfect fluid (solid blue) and of the

sum of both components (solid black), for α = 0.0005, κ = 145, λ = 0.008125,

and VΛ = 10−120.068m4
P. It is apparent that the scalar field becomes immediately

kinetically dominated (wϕ = 1) after thawing, remaining in freefall until it refreezes

again.

for n > 3 (n > 5) there exists an scaling attractor ϕ ∝ t1/(1−n), which means that

oscillations are impeded [217, 212]. Recently, a similar result was found in Ref. [164],

where it is shown that the data favours 2 ≲ n ≲ 3.4 at the 68% C.L. Since EDE

typically unfreezes around matter-radiation equality, this implies that the density

of oscillating EDE cannot decrease faster than ρϕ ∝ a−9/2, i.e., not as fast as true

free-fall, where ρϕ ∝ a−6 as we obtain.

At present, the exponential contribution to the potential density in Eq. (7.11) is

largely subdominant to VΛ, so the contribution of the scalar field to the total density

budget is almost constant, as in ΛCDM. Its barotropic parameter is, therefore,

wϕ ≈ −1 (see the right panel of Fig. 7.5). Technically, it is not exactly -1 but its

running is negligible, with the viable parameter space for wa fitting easily within

the constraint in Eq. (2.210) by some ten orders of magnitude (see Table 7.2).
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Constraint Example Value

0.015 ≤ Ω eq
ϕ < 0.107 0.05178

Ω ls
ϕ < 0.015 0.001722

Ω eq
ϕ > Ω ls

ϕ YES

0.6833 ≤ Ω0
ϕ ≤ 0.6945 0.6889

−1 ≤ w0
ϕ ≤ −0.95 -1.000

−0.55 ≤ waϕ ≡ − dwϕ

da

∣∣∣
0
≤ 0.03 −4.850× 10−11

72.00 ≤ H0

km s−1Mpc−1 ≤ 74.08 73.27

κλ 1.178

(ϕ0 − ϕeq)/mP < 1 0.4274

Table 7.2: Table giving the constraints and their corresponding values for an example

point, α = 0.0005, κ = 145, λ = 0.008125, and VΛ tuned to the SH0ES cosmological

constant, in the viable parameter space. The Hubble constant obtained in this

example is H0 = 73.27 km/s Mpc.

7.5 Initial Conditions

Our model accounts for both EDE and late-time dark energy in a non-oscillatory

manner (in contrast to Ref. [179]). The field is frozen at early times, thawing just

before matter-radiation equality when its density grows to nearly 0.1 of the total
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value (see left panel of Fig. 7.5), as set by constraints in Ref. [175]. A steep exp(exp)

potential then forces the field into free-fall, causing its energy density to dilute away

as ρϕ ∝ a−6. After this, the field hits the asymptote of the exponential decay and

refreezes, becoming dominant at present (see the right panel of Fig. 7.4).

Thus, we achieve DE-like behaviour at the present day by ensuring that the field

refreezes after its period of free-fall, therefore remaining at a constant energy density

equal to the value of the potential density at that point. Although this constant

potential density is initially negligible, the expansion of the Universe causes the

density of matter to decrease. Because the field refreezes at a potential density that

is comparable to the density of matter at present, the field starts to become dominant

at the present day. Once it begins to dominate the Universe, the field thaws again,

but the density of the Universe is dominated by a constant contribution VΛ, as with

ΛCDM.

The obvious question is why our scalar field finds itself frozen at the origin in

the first place. One compelling explanation is the following.

We assume that the origin is an enhanced symmetry point (ESP) such that, at

very early times, an interaction of φ with some other scalar field χ traps the rolling

of φ at zero. The idea follows the scenario explored in Ref. [501]. In this scenario,

the scalar potential includes the interaction

∆V =
1

2
g2φ2χ2 , (7.26)

where the coupling g < 1 parametrises the strength of the interaction. Note that

here φ is the non-canonical scalar field, appearing in the Lagrangian in Eq. (7.1),

related to its canonical version ϕ via Eq. (7.2). It is also featured in our potential,

when it is first introduced in Eq. (7.5).

We assume that initially φ is rolling down its steep potential7. Then, the

interaction in Eq. (7.26) provides a modulated effective mass-squared m2
eff = g2φ2

to the scalar field χ. When φ crosses the origin, this effective mass becomes

7Far away from the origin, the scalar potential V (φ) does not have to be of the form in Eq. (7.5).

In fact, it is conceivable that φ might play the role of the inflaton field too (see Appendix D.1).
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momentarily zero. If the variation of the φ field (i.e. the speed |φ̇| in field space) is

large enough, then there is a window around the origin when |ṁeff | ≫ m2
eff (because,

|φ̇| ≫ φ2 ≃ 0). This violates adiabaticity and leads to copious production of χ-

particles [501]8.

As the field moves past the ESP, the produced χ particles become heavy, which

takes more energy from the φ field, producing an effective potential incline in

the direction the φ field is moving. Indeed, the particle production generates an

additional linear potential ∼ g|φ|nχ [501], where nχ is the number density of the

produced χ-particles. This number density is constant because the duration of the

effect is much smaller than a Hubble time, so that we can ignore dilution from

the Universe expansion. The rolling φ field climbs up the linear potential until its

kinetic energy density is depleted. Then the field momentarily stops and afterwards

reverses its motion (variation) back to the origin. When crossing the origin again,

there is another bout of χ-particle production, which increases nχ and makes the

linear potential steeper to climb. This time, φ variation halts at a value closer to

the origin. Then, the field reverses its motion and rushes through the origin again.

Another outburst of χ-particle production steepens the linear potential further. The

process continues until the φ-field is trapped at the origin [27, 501].

The trapping of a rolling scalar field at an ESP can take place only if the χ-

particles do not decay before trapping occurs. If they did, the nχ would decrease

and the potential g|φ|nχ would not be able to halt the motion (variation) of the

φ-field. The end result of this process is that all the kinetic energy density of the

rolling φ has been given to the χ-particles. Now, since φ is trapped at the origin,

the effective mass of the χ-particles is zero, which means that they are relativistic

matter, with density scaling as ρχ ∝ a−4. As far as φ is concerned, it is trapped at

the origin and its density is only ρφ = V (φ = 0) = e−λVX =constant (cf. Eq. (7.5)).

After some time, it may be assumed that the χ-particles do eventually decay

8Near the origin, when φ ≃ 0, the φ-field is approximately canonically normalised, as suggested

by Eq. (7.2), so the considerations of Ref. [501] are readily applicable.
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Figure 7.6: Schematic log-log plot depicting the evolution of the density of the

scalar field ρϕ (solid blue line) and the density of radiation and matter ρr + ρm

(dashed red line) in the case when the decay of the kinetic energy density of the

trapped scalar field generates the thermal bath of the hot Big Bang (as in Ref. [16]).

Originally the ϕ-field is rushing towards the minimum of the potential, dominated

by its kinetic density, so that ρϕ ∝ a−6 (free-fall). When it crosses the enhanced

symmetry point (ESP) its interaction to the χ-field (cf. Eq. (7.26)) traps the rolling

ϕ-field at the ESP while all its kinetic energy is given to χ-particles, which soon

decay into the radiation and matter of the hot Big Bang (the decay is assumed

to be quick, just after trapping). Afterwards, the ϕ-field stays frozen, with energy

density V (ϕ = 0) = e−λVX (cf. Eq. (7.5)) until much later, when its potential density

is comparable to the background. Then it unfreezes before dominating, acting as

EDE at the time near matter-radiation equality, and subsequently free-falls to its

value ϕ0, with potential density approximately VΛ =constant. The field stays there

until the present when it dominates the Universe and becomes late dark energy.

into the standard model particles, which comprise the thermal bath of the hot Big

Bang. The confining potential, which is proportional to nχ, disappears but, we

expect the φ-field to remain frozen at the origin because the scalar potential V (φ)
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in Eq. (7.5) is flat enough there. As we have discussed, the φ-field unfreezes again

in matter-radiation equality. The above scenario is depicted in Fig. 7.6

For simplicity, we have considered that, apart from the obvious violation of

adiabacity at the ESP, the χ direction is otherwise approximately flat and the χ-

field has a negligible bare mass compared to the φ field. It would be more realistic

to consider a non-zero bare mass for the χ-particles, which when they become non-

relativistic (much later than the trapping of φ) can safely decay to the thermal bath

of the hot Big Bang, reheating thereby the Universe, e.g. in a manner not dissimilar

to Ref. [16].

The above scenario is one possible explanation of the initial condition considered

and not directly relevant to the scope of this chapter - we simply assume that the

field begins frozen at the origin. Other possibilities to explain our initial condition

exist, for example considering a thermal correction of the form δV ∝ T 2φ2, which

would make the origin an effective minimum of the potential at high temperatures

and drive the φ-field there.

7.6 Discussion

In conclusion, we have proposed a toy model that unifies EDE and DE via a scalar

field in the context of α-attractors. We have studied the background dynamics in

detail, finding that the value of the Hubble parameter, coming from early-time data,

can be raised while simultaneously explaining the current accelerated expansion,

with no more fine tuning than ΛCDM.

Our work differs from Ref. [179], in that the field is not oscillating; instead

after equality, it free-falls with energy density decreasing as ρ ∝ a−6, faster than

most EDE proposals and the fastest possible9. Although, from our background

9Causality implies that the barotropic parameter w of a perfect fluid cannot be larger than

unity because the speed of sound of the fluid c2s = w cannot be superluminal. This implies w ≤ 1

and so, the density of an independent perfect fluid ρ ∝ a−3(1+w) cannot decrease faster than a−6.

However, a homogeneous scalar field can be represented as a perfect fluid with w = ρkin−V
ρkin+V , where
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analysis, we find a larger value of zeq than found by Planck, it should be realised

that Planck assumes a ΛCDM scenario to derive this quantity and hence it may not

be fully applicable to other models, particularly one with a significant scalar field

contribution at that time as in our case. Of course, a full fit to the CMB data is

needed in order to obtain the actual zeq derived from our model.

In our proposed scenario, the scalar field lies originally frozen at the origin, until

it thaws near the time of equal matter-radiation densities, when it becomes EDE.

Afterwards it free-falls until it refreezes at a lower potential energy density value,

which provides the vacuum density of ΛCDM. We showed that the total excursion

of the field in configuration space is sub-Planckian, which implies that our potential

is stable under radiative corrections.

One explanation of our initial conditions is that the origin is an ESP. Our scalar

field is originally kinetically dominated until it is trapped at the ESP when crossing

it10. As we discuss in D.1, the scalar field could even be the inflaton, which after

inflation rolls down its runaway potential until it becomes trapped at the ESP.

Our potential in Eq. (7.5) really serves to demonstrate that a model unifying

EDE with ΛCDM can be achieved with a suitably steep runaway potential. With

the parameters of our model assuming rather natural values, thereby not introducing

fine-tuning additional to that of ΛCDM, we show that this is indeed possible with

a simple design.

The challenge lies in constructing a concrete theoretical framework for such a

potential. Furthermore, although the background analysis is promising, a full fit

to the CMB data is lacking. We plan on running a Markov Chain Monte Carlo

(MCMC) doing this in a future work. This is of paramount importance since it

would show what values (if any) from our a priori viable parameter space lead to a

ρkin is the kinetic energy density of the scalar field and V the potential. It seems that w > 1 could

indeed happen when the field transverses an AdS minimum of V , such that V < 0. As a result,

the density of such scalar field could decrease faster than a−6. The scenario of such EDE has been

considered in Refs. [180, 502].
10A thermal correction to the scalar potential can have a similar effect.
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best fit to the data.

254



Chapter 8

Conclusions

Inflation not only solves the horizon and flatness problems of the Hot Big Bang

but also provides an elegant mechanism that accounts for the initial conditions

of the primordial density perturbations that seed all structure in the Universe.

The predicted statistical properties of these fluctuations for the simplest models,

namely a quasi-scale invariant spectrum, well described by a Gaussian distribution

with adiabatic initial conditions, are largely model-independent. The available

observational evidence firmly supports this picture and so the inflationary paradigm

has become a cornerstone of the concordance model of cosmology. However, there

exists a plethora of models that agree with observations and there is currently no way

to discriminate between them, until observations are improved. On the other hand,

ever-improving observations have already ruled out many different classes of models,

and this trend will likely continue as observational bounds keep being pushed. This

is the case for some of the, arguably, simplest and best theoretically motivated

potentials, such as chaotic and power-law inflation. Chapters 4 and 5 provide a

simple and natural way of bringing them back in agreement with observational

constraints, in the context of modified gravity.

One might argue that general relativity is one of the most successful physical

theories ever constructed, surviving experimental tests for a century and even

providing predictions, such as the existence of black holes and gravitational waves
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(GWs), which have been experimentally confirmed in spectacular fashion. So why

should we consider modifications of the theory? Perhaps the simplest answer is

because we can. Exploring the limits of a theory is always worthwhile and, even

if somehow they are excluded by experiments, theories of modified gravity have

insights to be gained regarding the theory of gravitation. Further, even if general

relativity is so successful at the scales it has been tested at, most of the density

of the Universe corresponds to unknown dark substances. It may be that at the

relevant scales of dark matter and dark energy the Einstein-Hilbert action is not

a valid description. Finally, from a more fundamental perspective, we know that

general relativity is not the end of the story, as it in principle should have a quantum

description. Quantum corrections to the gravitational action include higher order

terms of the Ricci scalar as well as non-minimal couplings between the fields of the

theory and gravity.

In Chapter 4 we consider arguably the simplest model of inflation with arguably

the simplest modification of gravity, namely chaotic inflation with V ∼ ϕn and a

Starobinski term αR2 added to the Einstein-Hilbert action. Working in the Palatini

formalism, we calculate the inflationary observables analytically. We find that the

amplitude and tilt of the scalar power spectrum are unaffected by the addition of

the Starobinski term, while the tensor-to-scalar ratio becomes inversely proportional

to the coupling constant α. As long as α ≳ 108, we are able to bring the hitherto

discarded potentials V = m2ϕ2/2 and V = λϕ4/4! back within the 1σ and 2σ Planck

constraints, respectively.

In Chapter 5 we consider a scalar field governed by an exponential potential

and with a non-minimal coupling to gravity, as well as the same Starobinski term

as in Chapter 4. Working in the Palatini formalism, we solve numerically the full

non-linear dynamics in the Jordan frame, being able to bring back the hitherto

discarded exponential potential within the 1σ Planck constraints. We find ample

parameter space with natural parameter values, with no more fine-tuning than in

regular Starobinski inflation.
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All in all, Chapters 4 and 5 provide a valuable contribution to inflationary model-

building, showing how a minimal and theoretically motivated modification of gravity

can resurrect models otherwise discarded by the data. However, this is not the

full extent of their contribution, as the aim is also to account for the dark energy

observations, in the context of quintessential inflation.

In ΛCDM, dark energy is described by introducing a cosmological constant,

i.e., a source of negative pressure that does not dilute with the expansion of the

Universe. This cosmological constant has two possible contributions, a classical one

from the Einstein equations and a quantum one coming from the energy density of

the vacuum. Although it accounts for the observed current accelerated expansion,

it requires an incredible amount of fine-tuning. Indeed, both contributions should

cancel out with a precision of 60 significant digits. One way out of this fine-tuning

problem is to assume both contributions exactly cancel out, due to some unknown

symmetry, and to describe dark energy via some other mechanism. This is the

motivation behind quintessence, where dark energy is described by a dynamical

degree of freedom, namely a scalar field. However, it is in general challenging to

endow quintessence with attractor properties, and the fine-tuning problem of ΛCDM

just changes shape into one of the initial conditions of quintessence. Quintessential

inflation tackles this issue by identifying the inflaton with the quintessence field. In

this way, the initial conditions of quintessence are fixed by the inflationary attractor.

In Chapter 4 we augment the chaotic inflation potential with an inverse-power-

law potential V ∼ ϕ−m at large positive field values for the quintessence regime. It is

well known that utilising the attractor regime of this potential leads to a barotropic

parameter of dark energy incompatible with observations. However, it is still a viable

model in the freezing-thawing regime, although the initial conditions then need to be

explained. Of course, since now the quintessence field is identified with the inflaton,

they are given by the inflationary attractor. We find that the contribution from the

modified gravity setup is negligible for the evolution of quintessence, and achieve

successful dark energy with fairly natural parameter values, thereby improving the
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extreme fine-tuning of ΛCDM. We also find that the model passes solar system tests

of modified gravity.

In Chapter 5 we utilise a single-branch exponential potential for both inflation

and dark energy. It is notoriously difficult to endow exponential quintessence with

attractor properties. Indeed, once the field enters the subdominant attractor regime,

with its energy density imitating that of the background, it can never come to

dominate (unless the setup is augmented, often introducing an amount of fine-

tuning comparable to ΛCDM). In our case, the running of the non-minimal coupling

between the field and gravity generates a minimum in the potential at large field

values. At late times, the field ends up freezing at the minimum, thereby behaving

as dark energy. However, the dynamics of quintessence during the matter dominated

are affected by the modified gravity setup. Indeed, the coupling between the Einstein

frame field and the matter action, which is zero during the radiation dominated

regime, obtains an important contribution during the matter dominated era coming

from the non-minimal coupling between the field and gravity (a coupling that did

not feature in the action of Chapter 4). The leading effect of this coupling is an

energy transfer between the field and the background, amounting to a rise in the

effective barotropic parameter of the Universe, above w = 0. After solving the full

dynamics numerically and running a parameter scan of the theory, we find that this

effect narrows the viable parameter space, although not dramatically. We again find

natural parameter values, in a very minimal setup which is able to account for both

inflation and dark energy, with significantly less fine-tuning than in ΛCDM.

In Chapters 4 and 5 we consider different reheating mechanisms. In the former,

we consider gravitational reheating, following the minimalist philosophy of the model

and studying how the reheating temperature affects the number of inflationary e-

folds. As for the latter, we consider Ricci reheating, where a scalar field other than

the inflaton is also non-minimally coupled to gravity. During inflation, the field is

trapped at the minimum of its effective potential, but the change in sign of the

Ricci scalar after the end of inflation makes it oscillate around the newly formed
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minimum, thereby decaying into the particles of the standard model. We ensure

that reheating is efficient enough so as not to overproduce GWs.

Any viable potential for quintessential inflation must bridge an inflationary

region with energy density of order ρ ∼ 10−10m4
P and a quintessence region with

energy density of order ρ ∼ 10−120m4
P, i.e., the potential must bridge regions

with a difference of around 110 order of magnitude in energy density. This is

typically achieved with a new region of V (ϕ) with very large slope, in between

the inflationary plateau and the quintessential tail. As the field approaches it, its

kinetic energy density grows and dominates. The field becomes oblivious to the

potential, engaging in free-fall during a period called kination. Among the different

observational consequences, perhaps the most important one is the generation of a

peak in the density spectrum of GWs for the modes that re-enter the horizon during

this period. In more physical terms, since the density of GWs scales as ρ ∝ a−4

when sub-horizon and the background density scales as ρ ∝ a−6 during kination, the

contribution of GWs to the total density budget grows until radiation becomes the

dominant component. Therefore, if kination lasts too long, there may be enough

GWs to disturb to delicate process of BBN. This is a generic issue with quintessential

inflation models and one needs to ensure that reheating is efficient enough.

In Chapter 6 we address the issue of overproduction of GWs during kination by

considering the same modified gravity setup as in Chapter 5. In the Einstein frame,

other than the coupling between the field and the matter action (see above), the

modified gravity setup also leads to the appearance of a quartic kinetic term for the

field. In Chapters 4 and 5 we ignore this term, as it is negligible for the region in

parameter space under consideration. In Chapter 6 we consider another limit, with

α very large, after undergoing a post-inflationary sudden change in value, and study

the post-inflationary evolution in the kinetic domination regime, i.e., in the regime

where the field becomes oblivious to the potential. We find a new period of cosmic

expansion, which we call hyperkination, during which the background density, still

dominated by the field, scales as radiation. This period takes place prior to regular
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kination, and we find that the latter is an attractor; the field always ends up engaging

in regular free-fall during kination. We calculate the density spectrum of GWs both

analytically and numerically and find that the spectrum for modes that re-enter

the horizon during hyperkination is flat, as for radiation, effectively truncating the

kination peak. This allows us to bring the spectrum within observable frequencies

without violating the BBN bound. We run a parameter space scan, looking for

the required parameter values such that the gravitational wave signal is observable

by upcoming gravitational wave experiments, such as LISA or ET, and find ample

parameter space. It should be emphasized that our analysis is completely model-

independent. This is because, during both hyperkination and kination, the field is

kinetically dominated and therefore oblivious to the potential.

The spectrum we find has a distinctive shape. If it was detected, it would provide

valuable insights into the background theory. Indeed, it would strongly suggest the

existence of higher-order kinetic terms in the action. Furthermore, the position of

the “knee” could yield the value of the coupling constant α, were the energy scale

of inflation known.

The value of the density of the Universe today measured by Planck is not only at

odds with the value expected from theoretical considerations, as we comment above,

but also with local measurements, in what is called the Hubble tension. Although

the latter is much less dramatic than the former, its statistical significance has

led the cosmology community to take it more and more seriously, both from an

observational and a model-building point of view. From a theoretical standpoint,

the proposals that perhaps are best suited to address the problem are those that

are able to reduce the comoving sound horizon at the time of decoupling. Among

those, early dark energy (EDE) is the one that has received more attention, making

it the leading candidate. Of course, if observational evidence in favour of EDE was

to grow, one of the more pressing issues would be to embed it in a more complete

theoretical framework.

In Chapter 7 we propose a toy model of unified EDE and quintessence. There,
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a scalar field is initially frozen at an enhanced symmetry point. At a redshift close

to matter-radiation equality, it thaws and briefly behaves as EDE, to then quickly

free-fall with density ρ ∝ a−6 and re-freeze at a later time. Finally, when the energy

density of the background becomes comparable to that of the field, it unfreezes again

and accounts for dark energy. The free-fall, a distinctive behaviour different from

most EDE models where the field oscillates around the minimum of its potential, is

achieved via a potential which we take to be of the form V ∼ exp(−exp(ϕ)). Such

a choice is phenomenological; our purpose is to show that a steep enough potential

can lead to the desired behaviour. Of course, finding a potential better grounded

from a theoretical standpoint is the logical next step for future work.

The research presented in this thesis leaves room for exciting new avenues. For

example, the modified gravity setup used in Chapters 4-6 could help ameliorate

the Hubble tension. Indeed, we found that the coupling between the matter action

and the quintessence field depends on the trace of the background fluid energy-

momentum tensor. In this way, the coupling disappears for a background fluid with

w = 1/3 but is turned on for w = 0. This is reminiscent of Ref. [168], where the

same coupling in the matter action is found and a scalar field receives an energy

injection from a neutrino field around matter-radiation equality to act as EDE.

In the same spirit, the inflaton could briefly act as EDE around matter-radiation

equality, a behaviour coming solely from the modified gravity setup, to then become

quintessence at late times. I believe this is a very attractive idea since the Hubble

tension could be resolved without the introduction of any new degree of freedom.

One other possible way to address the issue with kination generating a spike in

the spectrum of GWs large enough to disturb BBN would be to couple the inflaton

field to a non-Abelian gauge field, via a Chern-Simmons term. Indeed, the coupling

with a gauge field is expected to act as extra friction for the field [503], thereby

possibly reducing the barotropic parameter of the Universe and therefore also the

slope of the peak in the GW spectrum. The need for the gauge field to be non-

Abelian is slightly more technical, having to do with the suppression of the large
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scale anisotropy that one would obtain if simply working with abelian gauge fields

[504]. Exploring the effects of one such coupling on a stiff period of the history of

the Universe after the end of inflation could help obtain information about reheating

from the observation of the stochastic GW background, an exciting prospect with

the launch in the near future of ground and space-based observatories such as the

ET or DECIGO, or the relatively futuristic BBO.

Finally, from a more open-ended perspective, I believe it would be interesting to

study the generation of scalar-induced GWs in the context of Palatini modified

gravity. Indeed, as discussed above, when departing from the Einstein-Hilbert

action, the metric and Palatini formalisms of general relativity do not agree with

each other. In particular, the appearance of a quartic kinetic term may affect the

generation of large scalar perturbations, possibly leading to the formation of PBHs,

as well as the generation of GWs from second-order scalar perturbations. If detected,

this could provide valuable insights regarding the different formalisms of the theory

of gravity.
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Appendix A

Detailed Calculations

A.1 Gauge Transformations of Perturbations

Let us study the transformation properties of perturbations under the general gauge

transformation

xµ 7→ x̃µ = xµ + ξµ(t,x), (A.1)

where ξµ is assumed to be small and can thus be treated as a perturbation. Thus,

∂x̃µ

∂xν
=

1 + (ξ0)′ ∂iξ
0

(ξi)′ δij + ∂jξ
i

 ,
∂xµ

∂x̃ν
=

1− (ξ0)′ −∂iξ0

−(ξi)′ δij − ∂jξ
i

 , (A.2)

where a prime denotes a derivative with respect to conformal time.

Working to linear order, we expand all quantities as

χ(η,x) = χ̄(η) + δχ(η,x), (A.3)

where χ(η,x) stands for any cosmological field, like the metric gµν or the matter

fields in the energy-momentum tensor Tµν , such as the inflaton ϕ or the background

density ρ and pressure p. Note that in Eq. (A.3) we have split χ into a homogeneous

background part χ̄, which only depends on cosmic time, and a small perturbation δχ.

Since the latter satisfies δχ ≪ χ̄, the perturbed Einstein and continuity equations,

δGµν = δTµν/m
2
P and ∇µδT

µν = 0, approximate well the full non-linear solution.
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Another advantage of working to linear order is that the Einstein equations do

not mix scalar, vector and tensorial perturbations [32]. It is therefore convenient

to use the scalar-vector-tensor (SVT) decomposition for perturbations [51]. For a

3-vector Bi this simply means

Bi = ∂iB + B̂i, (A.4)

where B is a scalar and B̂i is a divergenceless 3-vector, i.e., ∂iB̂
i = 0. For example,

the spatial part of the gauge transformation in Eq. (A.1) would be decomposed as

ξi = ∂iξ + ξ̂i, (A.5)

where ξ is a scalar and ∂iξ̂
i = 0.

For a (0, 2) symmetric tensor Eij we have

Eij = Cδij + ∂⟨i∂i⟩E + ∂(iÊj) + hij, (A.6)

where C and E are scalars, Êi is a divergenceless 3-vector, i.e., ∂iÊ
i = 0 and hij is

a traceless and divergenceless (0, 2) symmetric tensor, i.e., ∂ih
ij = 0 and hii = 0.

We have also defined

∂⟨i∂i⟩E ≡
(
∂i∂j −

1

3
δij∇2

)
E, (A.7)

∂(iÊj) ≡
1

2

(
∂iÊj + ∂jÊi

)
. (A.8)

Note that Eq. (A.7) is the traceless contribution from the scalar perturbations.

The most general FRW metric perturbed to first order reads [49, 50]

ds2 = (ḡµν + δgµν) dx
µdxν

= a2(η)
[
−(1 + 2A)dη2 + 2Bidηdx

i + (δij + 2Eij) dx
idxj

]
, (A.9)

where the factors of 2 have been chosen for convenience. Note that with the SVT

decomposition, the 10 d.o.f. of the metric have been decomposed into 4 scalars (A,

B, C and E), two divergenceless 3-vectors (B̂i and Êi) and one divergenceless and

traceless symmetric (0, 2) tensor (hij).
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In order find how the metric perturbations transform under Eq. (A.1) we take

into account that the spacetime interval is invariant

ds2 = gµνdx
µdxν = g̃µνdx̃

µdx̃ν = g̃αβ
∂x̃α

∂xµ
∂x̃β

∂xν
dxµdxν , (A.10)

where we have relabelled indices. Thus, the equation relating the metric in the old

coordinates xµ to the metric in the new coordinates x̃µ reads

gµν(x) = g̃αβ(x̃)
∂x̃α

∂xµ
∂x̃β

∂xν
. (A.11)

Using Eq. (A.2) it is straightforward to find that the scalar perturbations transform

as

A 7→ Ã = A− (ξ0)′ −Hξ0, (A.12)

B 7→ B̃ = B + ξ0 − ξ′, (A.13)

C 7→ C̃ = C −Hξ0 − 1

3
∇2ξ, (A.14)

E 7→ Ẽ = E − ξ, (A.15)

where ξ is the scalar part in Eq. (A.5). The vector perturbations transform as

B̂i 7→ ˆ̃Bi = B̂i − (ξ̂i)
′ (A.16)

Êi 7→ ˆ̃Ei = Êi − ξ̂i, (A.17)

where ξ̂i is the divergenceless vector part in Eq. (A.5). Finally, the tensor

perturbations are gauge invariant

hij 7→ ĥij = hij. (A.18)

Note that we can use the freedom to choose the gauge functions ξ0 and ξ in order to

set two of the four scalar perturbations to zero. There are different possible choices,

but perhaps two of the most useful ones are the Newtonian gauge, with B = E = 0,

and the spatially flat gauge, with C = E = 0.

We now deal with the perturbations of the energy-momentum tensor. They can

be written as

T 0
0 = −(ρ̄+ δρ), (A.19)
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T i0 = −(ρ̄+ p̄)vi ≡ qi, (A.20)

T ij = (p̄+ δp)δij +Πi
j, (A.21)

where vi is the bulk velocity (notice it is a perturbation) and we have defined the

momentum density qi and anisotropic stress Πi
j, which is traceless Πi

i = 0. Since

the different contributions to the energy-momentum tensor are additive, the total

perturbations share the same property. For example, the total momentum density

is qi =
∑

(a) q
(a)
i , where (a) labels the different contributing species. Note that that

the velocities vi do not add, only the momentum densities do.

In order to find how the matter perturbations transform we use the same

producedure as for the metric. Indeed, under coordinate transformations, the

energy-momentum tensor transforms as

T µν(x) =
∂xµ

∂x̃α
∂x̃β

∂xν
T̃αβ(x̃) (A.22)

Using Eq. (A.2) again, we obtain

δρ 7→ δρ̃ = δρ− ρ̄′ξ0, (A.23)

δp 7→ δp̃ = δp− p̄′ξ0, (A.24)

qi 7→ q̃i = qi + (ρ̄+ p̄)∂0ξi, (A.25)

Πi
j 7→ Π̃i

j = Πi
j. (A.26)

A.2 The Second Order Action for Tensor Pertur-

bations

We decompose the metric into a background part ḡµν(η) = a2(η)ηµν plus a small

perturbation δgµν(η,x) = a2(η)hµν as

gµν(η,x) = ḡµν(η) + δgµν(η,x) = a2(η) (ηµν + hµν) , (A.27)
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where hµ0 = ∂ih
ij = hii = 0. Its inverse reads

gµν = a−2(η) (ηµν − hµν) . (A.28)

Note that writing gµν in this way, hµν corresponds to a linear metric perturbation

in Minkowski. Thus, since Minkowski and FRW are conformally related, we can

straightforwardly obtain the scalar curvature of the perturbed FRW metric from

the perturbed Minkowski one. Indeed, given two metrics gµν and g̃µν related to each

other via a conformal transformation gµν → g̃µν = Ω2gµν , the corresponding Ricci

scalars are related via

R 7→ R̃ =
1

Ω2
[R− 6∇σ∇σ lnΩ− 6∇σ lnΩ∇σ lnΩ] , (A.29)

In our case Ω = a, thus

RFRW =
1

a2(η)

[
RMK + 6∂2η (ln a) + 6

(
a′

a

)2

+ 6(ηαβ − hαβ)Γ0
αβ∂η ln a

]

=
RMK

a2(η)
+

6

a2
(
H2 +H′)− 3

H
a2
hijh′ij, (A.30)

where RFRW and RMK are the Ricci scalars in perturbed FRW and Minkowski,

respectively, and Γ0
αβ are the Christoffel symbols of the perturbed Minkowski metric

ηµν + hµν . In the last step, we have used that

Γ0
αβ =

1

2
(η0λ − h0λ)(∂αhλβ + ∂βhλα − ∂λhαβ) = −1

2
η0λ∂λhαβ, (A.31)

since hµν is purely spatial. Furthermore,

(ηαβ − hαβ)Γ0
αβ = −1

2
(ηαβ − hαβ)η0λ∂λhαβ = −1

2
hijh′ij, (A.32)

where we have also used that hµν is traceless.

We now sketch the calculation of the scalar curvature for the perturbed

Minkowski metric. In order to obtain the linearized action we proceed as usual,

first by computing the Riemann tensor

Rρ
µσν = ∂σΓ

ρ
νµ − ∂νΓ

ρ
σµ + ΓρσλΓ

λ
νµ − ΓρνλΓ

λ
ρµ, (A.33)
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to then obtain the scalar curvature R = (ηµν − hµν)Rµν from the Ricci tensor Rµν =

Rρ
µρν . To first order in hµν the Christoffel symbols read

Γρµν =
1

2
ηρλ (∂µhνλ + ∂νhµλ + ∂λhµν) , (A.34)

and only the ∂Γ terms of the Riemann tensor contribute, since the Γ2 are second

order in hµν . After some algebra, it is not difficult to find that the scalar curvature

to first order in hµν reads

R(1) = ∂µ∂νh
µν −□h = 0. (A.35)

To second order in hµν we have in principle three contributions, since

R = (ηµν − hµν)Rµν = ηµνR(2)
µν − hµνR(1)

µν . (A.36)

The first are the Γ2 terms with the Christoffel symbols given by Eq. (A.34). This

gives the contribution

ηµν
(
Γ
(1)ρ
ρλ Γ(1)λ

νµ − Γ
(1)ρ
νλ Γ(1)λ

ρµ

)
=

1

4
ηµν(∂µhσν∂

σh+ ∂νhσµ∂
σh− ∂σhµν∂

σh

+ 2∂σh λ
ν ∂σhλµ − 2∂λhσν∂σhλµ − ∂µhλσ∂νh

λσ)

=
1

4
(2∂λh

λ
σ ∂

σh− ∂σh∂
σh+ ∂σhµν∂

σhµν − 2∂λhσµ∂σh
µ
λ ) (A.37)

The second are the ∂Γ terms with the second order Christoffel symbols

Γρµν = −1

2
hρλ (∂µhνλ + ∂νhµλ + ∂λhµν) . (A.38)

This gives the contribution

ηµν
(
∂ (2)
ρ Γρµν − ∂ (2)

ν Γρρµ
)
=

1

2
ηµνhρλ (∂ρ∂λhµν + ∂ν∂µhλρ − ∂ρ∂µhλν − ∂ν∂λhρµ)

+
1

2
ηµν
(
∂ρh

ρλ∂λhµν + ∂νh
ρλ∂µhλρ − ∂ρh

ρλ∂νhλµ − ∂ρh
ρλ∂µhλν

)
=

1

2
hρλ
(
∂ρ∂λh+□hλρ − ∂ρ∂σh

σ
λ − ∂σ∂λh

σ
ρ

)
+

1

2

(
∂ρh

ρλ∂λh+ ∂µh
ρλ∂µhλρ − 2∂ρh

ρλ∂σh
σ
λ

)
(A.39)

The third come from

−hµνR(1)
µν = −1

2
hµν

(
∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νh−□hµν

)
, (A.40)
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where R
(1)
µν is the Ricci tensor to first order in hµν .

Using that ∂µh
µν = hµµ = 0 and summing the three contributions in Eqs.

(A.37), (A.39) and (A.40) gives the second-order scalar curvature for the perturbed

Minkowski metric

R(2) =
3

4
∂µhρσ∂

µhρσ − 1

2
∂µhνβ∂

νhµβ + hµν□hµν (A.41)

Finally, combining Eqs. (A.35) and (A.41) with Eq. (A.30) we obtain the scalar

curvature for the perturbed FRW metric to all order up to two.

(0)RFRW =
6

a2
(
H2 +H′)

(1)RFRW = 0

(2)RFRW =
1

a2

[
3

4
∂µhρσ∂

µhρσ − 1

2
∂µhνβ∂

νhµβ + hµν□hµν − 3Hhijh′ij
]
.(A.42)

In order to obtain the action to second order in hij we still have to perturb the

determinant of the metric. We start by writing

−g = − det
(
a2(ηµν + hµν)

)
= − det

(
a2ηµσ

)
det
(
δσν + ησγhγν

)
= a8 det

(
δσν + ησγhγν

)
. (A.43)

Now we use the series expansion of the determinant which, schematically, reads

det(1 + ϵA) = 1 + ϵTrA+
ϵ2

2

[
(TrA)2 − Tr

(
A2
)]
, (A.44)

where ϵ simply keeps track of each order in the expansion. In our case A = ησγhγν =

hσν . Thus, only the zeroth and second order in the expansion of the determinant

have surviving terms. From Eq. (A.43), we have

(0)(−g) = a8

(1)(−g) = 0 (A.45)

(2)(−g) = −a
8

2
Tr
(
hσνh

ν
ρ

)
= −a

8

2
hµνh

µν

Therefore, the full expansion of
√
−g, up to second order in hµν , reads

√
−g =

√
a8 − a8

2
hµνhµν = a4

√
1− 1

2
hµνhµν = a4 − a4

4
hµνh

µν , (A.46)

269



Appendix A. Detailed Calculations

or, order by order,

(0)
√
−g = a4

(1)
√
−g = 0 (A.47)

(2)
√
−g = −a

4

4
hµνh

µν .

We are getting closer to our final result. The Einstein-Hilbert part of the action,

to second order, reads

(2)(
√
−gR) = (0)

√
−g(2)R + (2)

√
−g(0)R = −3a2

2
hµνh

µν
(
H2 +H′)

+a2
[
3

4
∂µhρσ∂

µhρσ − 1

2
∂µhνβ∂

νhµβ + hµν□hµν − 3Hhijh′ij
]
. (A.48)

By using h0µ = 0, this expression can be further simplified to obtain

δ(2)S = −3m2
P

4

∫
d3xdη a2

(
H2 +H′)hµνhµν

+
m2

P

2

∫
d3xdη a2

[
− 3

4
(hij)

′(hij)′ +
3

4
∂khij∂

khij − 1

2
∂khij∂

ihkj

−hijh′′ij + hij∂k∂
khij − 3Hhijh′ij

]
. (A.49)

Noting that the prefactor in the integrand depends only on time, we can integrate

by parts the spatial derivatives without picking up an extra term. This kills the

third term and the fifth can be combined with the second to give

S = −3m2
P

4

∫
d3xdη a2

(
H2 +H′)hµνhµν (A.50)

+
m2

P

2

∫
d3xdη a2

(
−3

4
(hij)

′(hij)′ − 1

4
∂khij∂

khij − hijh′′ij − 3Hhijh′ij
)
.

Now, integrating by parts the third term gives

S = −3m2
P

4

∫
d3xdη a2

(
H2 +H′)hµνhµν (A.51)

+
m2

P

2

∫
d3xdη a2

(
1

4
(hij)

′(hij)′ − 1

4
∂khij∂

khij −Hhijh′ij
)
.

Finally, integrating by parts the last term, we arrive at

S =
m2

P

8

∫
d3xdη a2

(
(hij)

′(hij)′ − ∂khij∂
khij

)
− m4

P

4

∫
d3xdη a2(2H′ +H2)hijh′ij.

(A.52)
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The last contribution comes from the matter action. We do this for the Palatini

Lagrangian in Eq. (5.15), but the the proof is general. As before, we have two terms

(remember (1)
√
−g = 0)

(2)(
√
−gLϕ) = (0)

√
−g(2)Lϕ + (2)

√
−g(0)Lϕ, (A.53)

where

Lϕ = −1

2
gµν∂µϕ∂νϕ+

α

4
f(ϕ)(gµν∂µϕ∂νϕ)(g

αβ∂αϕ∂βϕ)− V̄. (A.54)

The zeroth-order Lagrangian is simply

(0)Lϕ = −1

2
ḡµν∂µϕ∂νϕ+

α

4
f(ϕ)(ḡµν∂µϕ∂νϕ)(ḡ

αβ∂αϕ∂βϕ)− V̄, (A.55)

while to second order, using the inverse metric (A.28), we have

(2)Lϕ = −a
−4

2
hµσh ν

σ ∂µϕ∂νϕ+
αa−4

4
f(ϕ) (hµν∂µϕ∂νϕ)

(
hαβ∂αϕ∂βϕ

)
= 0, (A.56)

where we have used that ϕ = ϕ(t) and h0µ = 0. This means that the second-order

matter action reads

(2)(
√
−gLϕ) = (2)

√
−g(0)Lϕ = −a

4

4
hµνh

µν

(
1

2a2
ϕ′2 +

αf(ϕ)

4a4
ϕ′4 − V̄

)
= −a

4

4
hµνh

µνpϕ, (A.57)

where we have used the second line in Eq. (5.34).

Solving for pϕ in the Friedmann equations and plugging it back in Eq. (A.57)

finally gives

Sm =

∫
d3xdη (2)(

√
−gLϕ) =

m2
P

4

∫
d3xdη a2

(
2H′ +H2

)
hµνh

µν , (A.58)

which exactly cancels the second integral in Eq. (A.52).

Putting everything together, the action to second order in the tensor perturba-

tions finally reads

S = −m
2
P

8

∫
d4x

√
−ḡḡαβ∂αhµν∂βhµν (A.59)

=
m2

P

8

∫
dηd3xa2

[
(h′ij)

2 − ∂mhij∂
mhij

]
. (A.60)
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A.3 The Gravitational Wave Density Spectrum

During Kination

We give here some details regarding the calculation of the GW density spectrum

during a period of kination, followed by a period of radiation domination.

The first step is to obtain the scale factor by solving the first Friedmann equation.

It reads

a =



[
− 1

(1− ϵH)Hendη

]1/(1−ϵH)

, η ≤ ηend ,√
2Hendη + 3 , ηend ≤ η ≤ ηreh ,

Hend(η + ηreh) + 3√
2Hendηreh + 3

, ηreh ≤ η ,

(A.61)

where Hend and ηend < 0 are the Hubble parameter and conformal time at the end

of inflation, respectively, and ηreh is the time of reheating. We have assumed that

the first Hubble slow-roll parameter ϵH is constant during inflation and normalised

the scale factor as a(ηend) = 1. We also approximate

ηend = − 1

(1− ϵH)Hend

≃ − 1

Hend

≡ − 1

H
, (A.62)

where, to avoid clutter, and slightly abusing notation, we have defined H ≡ Hend.

Note that in the pure de Sitter case, with ϵH = 0, the Hubble parameter is constant

and equal to H.

The next step is to solve the equation

(f sk)
′′ +

(
k2 − a′′

a

)
f sk = 0, (A.63)

where f sk are the GW mode functions and, from Eq. (A.61),

a′′

a
=



2 + 3ϵ

η2
, η ≤ ηend,

− 1

4z2
, ηend ≤ η ≤ ηreh,

0 , ηreh ≤ η,

(A.64)
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where

z ≡ η +
3

2H
. (A.65)

We solved Eq. (A.63) for constant slow-parameters (and to first order) during

inflation in Sec. 2.1.3 (see Eq. (2.146) and below). Following an analogous procedure

for kination and radiation domination, we find

f sk(η) =



√
π

4k

√
−kηei

π
4
(2µ+1)H(1)

µ (−kη) , η ≤ ηend ,√
π

4k

√
kz
[
α+(k)e

−iπ/4H
(2)
0 (kz) + α−(k)e

iπ/4H
(1)
0 (kz)

]
, ηend ≤ η ≤ ηreh ,

1√
2k

[
β+(k)e

−ikη + β−(k)e
ikη
]
, ηreh ≤ η ,

(A.66)

where

µ =
3

2
+ ϵH . (A.67)

In order to fix the coefficients α± and β±, we impose continuity of the mode functions

and their derivatives at each transition

lim
η→η−end

f sk(η) = lim
η→η+end

f sk(η) and lim
η→η−end

f sk
′
(η) = lim

η→η+end

f sk
′
(η), (A.68)

and likewise at ηreh. Defining the new variable

xend ≡ k

H
, (A.69)

we have

kηend = −xend and kzend =
xend
2
. (A.70)

The continuity of the mode functions at the end of inflation reads

√
2ei

π
4
(2µ+1)H(1)

µ (xend) = α+e
−iπ/4H

(2)
0 (

xend
2

) + α−e
iπ/4H

(1)
0 (

xend
2

), (A.71)

while the continuity of their derivatives reads

ei
π
4
(2µ+1)

[(
1

2
+ µ

)
H

(1)
µ (xend)√
xend

−
√
xendH

(1)
µ+1(xend)

]
=

√
xend
2

[
α+e

−iπ/4H
(2)
1 (

xend
2

)

+α−e
iπ/4H

(1)
1 (

xend
2

)

]
− 1√

2xend

[
α+e

−iπ/4H
(2)
0 (

xend
2

) + α−e
iπ/4H

(1)
0 (

xend
2

)
]
, (A.72)
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where we have omitted the k dependence of α± to avoid clutter. The second

continuity condition can be simplified by plugging Eq. (A.71) in Eq. (A.72) to

obtain

ei
π
4
(2µ+1)

√
2

xend

[(
3

2
+ µ

)
H

(1)
µ (xend)√
xend

−
√
xendH

(1)
µ+1(xend)

]
= α+e

−iπ/4H
(2)
1 (

xend
2

) + α−e
iπ/4H

(1)
1 (

xend
2

). (A.73)

In order to obtain α− (α+) we multiply Eq. (A.71) by H
(2)
1 (xend

2
) (H

(1)
1 (xend

2
)) and

Eq. (A.73) by H
(2)
0 (xend

2
) (H

(1)
0 (xend

2
)) and substract one from the other. The result

reads

α− = −πe
iπ(µ+1)/2

4
√
2

{
xendH

(1)
µ (xend)H

(2)
1 (

xend
2

)−H
(2)
0 (

xend
2

)

[(
3

2
+ µ

)
H(1)
µ (xend)

− xendH
(1)
µ+1(xend)

]}
, (A.74)

α+ =
iπeiπ(µ+1)/2

4
√
2

{
xendH

(1)
µ (xend)H

(1)
1 (

xend
2

)−H
(1)
0 (

xend
2

)

[(
3

2
+ µ

)
H(1)
µ (xend)

− xendH
(1)
µ+1(xend)

]}
(A.75)

In the super-horizon limit, i.e., in the limit where xend ≪ 1, they read

α− = 2µ−3/2eiπ(µ+1)/2Γ(µ)

[
− 2

π
− i

(
3

2
− µ

)(
1

2
− i

π
ln
xend
2

)]
x−µend, (A.76)

α+ = i2µ−3/2eiπ(µ+1)/2Γ(µ)

[
− 2

π
+ i

(
3

2
− µ

)(
1

2
+
i

π
ln
xend
2

)]
x−µend. (A.77)

Defining the new variable

xreh = kηreh ≃ kzreh, (A.78)

where in the last step we have taken into account that ηreh ≫ ηend, the continuity

of the mode functions at reheating reads√
πxreh
2

[
α+e

−iπ/4H
(2)
0 (xreh) + α−e

iπ/4H
(1)
0 (xreh)

]
= β+e

−ixreh + β−e
ixreh , (A.79)
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while the continuity of their derivatives reads

i

√
π

2

{
1

2
√
xreh

[
α+e

−iπ/4H
(2)
0 (xreh) + α−e

iπ/4H
(1)
0 (xreh)

]
−
√
xreh

[
α+e

−iπ/4H
(2)
1 (xreh) + α−e

iπ/4H
(1)
1 (xreh)

]}
= β+e

−ixreh − β−e
ixreh . (A.80)

Subtracting (summing) Eq. (A.80) from Eq. (A.79) we find

β± =

√
π

2

e±ixreh

2

{
√
xreh

[
α+e

−iπ/4H
(2)
0 (xreh) + α−e

iπ/4H
(1)
0 (xreh)

]
± i

2
√
xreh

[
α+e

−iπ/4H
(2)
0 (xreh) + α−e

iπ/4H
(1)
0 (xreh)

]
∓ i

√
xreh

[
α+e

−iπ/4H
(2)
1 (xreh) + α−e

iπ/4H
(1)
1 (xreh)

]}
(A.81)

In the super-horizon limit, i.e., in the limit where xreh ≪ 1, they read

β± = ±
√
π

2

1

2
√
xreh

[
i

2

(
α+e

−iπ/4 + α−e
iπ/4
)
+

1

π
(2 + ln xreh)

(
α+e

−iπ/4 − α−e
iπ/4
) ]

= ±e
iπ(2µ+1)/42µ−3Γ(µ)√

π
√
xrehx

µ
end

(
µ− 3

2

)[
ln
ηreh
ηend

+ 2 + ln 2 +
2(

µ− 3
2

)] , (A.82)

where we have used the relations

α+e
−iπ/4 − α−e

iπ/4

eiπ/42µ−3/2eiπ(µ+1)/2Γ(µ)x−µend

= i

(
3

2
− µ

)
, (A.83)

α+e
−iπ/4 + α−e

iπ/4

eiπ/42µ−3/2eiπ(µ+1)/2Γ(µ)x−µend

= − 4

π
− 2

π

(
3

2
− µ

)
ln
xend
2
. (A.84)

In the scale-invariant case, with ϵH = 0 and µ = 3/2, the coefficients read

α− = −iα+ = − ei5π/4
√
πx

3/2
end

, (A.85)

β± = ∓ 1

23/2
√
xrehx

3/2
end

. (A.86)

The coefficients in Eqs. (A.85)-(A.86) can be further simplified. The time of

reheating ηreh can be obtained by remembering that during kination the background

density scales as ρ ∝ a−6 while the radiation density escales as ρ ∝ a−4. Therefore,
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the density parameter of radiation scales as Ωr ∝ a2. Noting that at reheating

radiation is the dominant component we have

1 ≃ Ωreh
r = Ωend

r

(
areh
aend

)2

= Ωend
r (2Hηreh + 3) ≃ 2Ωend

r Hηreh, (A.87)

where we used Eq. (A.61) and the normalization a(ηend) = 1. Thus, also using Eqs.

(A.69) and (A.78), we find

|α−|2 =
H3

πk3
and |β−|2 =

H4Ωend
r

4k4
. (A.88)
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Appendix of Chapter 5

B.1 Solving for the Hubble parameter

In this appendix, we solve the Jordan frame Hubble parameter H in (5.20) explicitly

in terms of φ, φ̇, and the fluid energy density ρ. We begin by using (5.18), (5.23),

and (5.25) to decompose the time derivative of fR as

∂0fR = A+HB , (B.1)

where

A =
2φφ̇ξ̃

m2
P

+
2αφ̇

(
3V ′(φ)− ξ̃φR

)
m4

P

(
1 + ξφ2

m2
P

) +
2αφφ̇ξ̃

m6
P

(
1 + ξφ2

m2
P

)2T (B.2)

and

B =
3α

m4
P

2φ̇2 − ρ(1 + w)(1− 3w)

1 + ξφ2

m2
P

 , (B.3)

where ξ̃ and T are given by Eqs. (5.26) and (5.19) respectively. Note that by using

Eq. (5.17), the expression for A can be simplified further to obtain

A =
2φφ̇ξ̃

m2
P

1 +
2αT

m4
P

(
1 + ξφ2

m2
P

)2
+

6αφ̇V ′

m4
P

(
1 + ξφ2

m2
P

) . (B.4)
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With these, Eq. (5.20) can be recast as

H2

(
3FR + 3B +

3

4FR
B2

)
+H

(
3A+

3

2FR
AB

)
+

3

4FR
A2−T00

m2
P

− α

4m2
P

R2 = 0 (B.5)

and solved for H as

H = − A

B + 2fR
+

√
3fR(4T00 + αR2)

3(B + 2fR)
, (B.6)

with R, FR, and T00 from Eqs. (5.17), (5.18) and (5.22), respectively. Demanding H

to be real sets the requirement fR ≥ 0 (note that T00 and R2 are always positive).

From Eq. (5.18), this reads(
1 +

ξφ2

m2
P

)2

>
αT

m4
P

=
α

m4
P

(
φ̇2 − 4V (φ)− ρ(1− 3w)

)
. (B.7)

During inflation, the background matter energy density ρ = 0, and the condition

is always satisfied when the potential dominates the kinetic term, 4V (φ) > φ̇2, in

particular during slow-roll. It is also easy to satisfy later on, when ρ > 0 becomes

important and α contributions become irrelevant.

B.2 A bound on the bare mass-squared of the

spectator field

Let us estimate the upper bound of |m2|, the mass squared of the spectator field ψ

from (5.50), such that it remains negligible at least until reheating. Firstly, let us

obtain an upper bound of the value of ⟨ψ2⟩ at the end of inflation. Imposing the

requirement that ρ̄endψ < ρ̄endr , as found by Ref. [289], and using that ρ̄endψ = 1
4
λ⟨ψ2⟩2,

we find

⟨ψ2⟩end < 6
√
2 (ξ̂/

√
λ) H̄2

end . (B.8)

where we considered Eq. (5.51). Considering that the typical value of the amplitude

of the oscillating condensate at a given location is of the order |ψ| ∼
√

⟨ψ2⟩,

we can estimate how it evolves after the end of inflation. Indeed, because
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1
4
λ|ψ|4 = ρ̄ψ ∝ ā−4, we have |ψ| ∝ ā−1. Thus, we obtain

|ψ|reh =
āend
āreh

|ψ|end ⇒ |ψ|reh < 6

(
2

λ

)1/4

ξ̂3/2
H̄2

end

mP

, (B.9)

where we used Eqs. (5.53) and (B.8).

The quadratic term in Eq. (5.50) takes over from the quartic term at a critical

value ψ2
x when 1

2
m2ψ2

x = 1
4
λψ4

x, which suggests

ψ2
x = 2m2/λ . (B.10)

To make sure that this does not happen until reheating, we simply require ψ2
x ≤ |ψ|2reh

(|ψ| is reducing in time). Then the bound in Eq. (B.9) results in the bound

m2 < m2
max ≡ 18

√
2λ ξ̂3

H̄4
end

m2
P

. (B.11)

The above is too strict because, if ρ̄ψ ≪ ρ̄r after the end of inflation, then ρ̄ψ

can remain subdominant until reheating even if the quadratic term in V (ψ) takes

over before reheating. So the above bound is sufficient but not, strictly speaking,

necessary. Its numerical value may be estimated using the range obtained in

Eq. (5.57). Taking λ ∼ 1, we find

102 GeV ≲ mmax < 1015 GeV. (B.12)

The lower bound in the above might be unrealistic because such a particle could

have been already observed in the LHC. But we see that the mass range extends

well above the TeV scale so there is no real conflict with the observational data.

B.3 Energy density of gravitational radiation at

the end of inflation

The energy density of GWs is [505]

ρ
GW

(τ,x) =
⟨h′ij(τ,x)h′ij(τ,x)⟩

32πGa2
, (B.13)
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where the prime denotes derivatives with respect to conformal time τ , hij are the

spatial components of the metric perturbation and we consider superhorizon scales.

We consider the Einstein frame and omit the overbar for simplicity. Switching to

momentum space, we can define the density parameter of GWs per logarithmic

momentum interval

Ω
GW

(τ, k) ≡ 1

ρc

dρ
GW

(τ, k)

d ln k
, (B.14)

where ρc = 3H2m2
P . GWs generated by inflation obtain a predominantly scale-

invariant superhorizon spectrum given by [425]

∆2
h(k) =

2

π2

(
Hend

mP

)2(
k

k∗

)nt

≃ 2

π2

(
Hend

mP

)2

, (B.15)

where |nt| ≪ 1 ia the tensor spectral index, the star denotes the pivot scale and

⟨hij(τ,x)hij(τ,x)⟩ =
∫

dk

k
∆2
h(k)(τ, k) . (B.16)

Then, the final expression of the stochastic GW background from inflation is [423]

Ω
GW

(τ, k) =

(
ak
a(τ)

)4(
Hk

H(τ)

)2
∆2
h(k)

24
, (B.17)

for arbitraty evolution a(τ), where akHk = k corresponds to horizon re-entry of scale

k. Evaluating the above at the end of inflation and integrating over all superhorizon

modes we obtain

Ωend
GW

≃ 1

12π2

(
Hend

mP

)2

, (B.18)

where we considered that the integral is dominated by the highest k (i.e. kend).

Using that ρ
GW

= Ω
GW
ρc, we find

ρ
GW

≃ 1

4π2
H4

end, (B.19)

which agrees nicely with the estimate in Ref. [97].
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C.1 A toy model for a drastic change of α at the

end of inflation

The coefficient α parametrising quadratic gravity can experiece a drastic change at

the end of inflation if it is a function of a degree of freedom which changes rapidly

at that time. For example, if inflation takes place at the energy of grand unification,

as is typically the case, then this degree of freedom could be the Higgs field χ of a

Grand Unified Theory (GUT). If the breaking of grand unification takes place via

spontaneous symmetry breaking, then the expectation value of χ changes from zero

to M ∼ 1016GeV.

A toy model example of the inflaton potential, which leads to the GUT phase

transition but still retains the runaway nature assumed in this work is

V (φ, χ) =
1

4
λ(χ2 −M2)2 +


1
2
(m2 + g2χ2)(φ2 + µ2) , φ < 0

1
2
(m2 + g2χ2)

µ6

φ4+µ4
, φ ≥ 0

, (C.1)

where m and µ are mass scales with 0 < µ≪ m < M and λ, g ≲ O(1). By taking

λ = 0 = g, we recover the (n, q) = (2, 4) case of the quintessential inflation potential

in an R + αR2 Palatini modified gravity theory, which was investigated in Ref. [1].

This potential, in turn, is a minor modification of the original quintessential inflation
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potential in Ref. [15]. Switching λ and g on, and considering the limit |φ| ≫ µ with

φ < 0, we obtain the original hybrid inflation potential [96].

Let us first consider standard gravity without an R2 term. In the beginning,

φ≪ −µ. Then the effective mass-squared of the GUT Higgs field χ is positive,

which sends χ to zero. The scalar potential then becomes

V =
1

2
m2φ2 +

1

4
λM4 . (C.2)

When the constant term dominates, we have an inflationary plateau. The effective

mass-squared of the GUT Higgs field is m2
effχ = g2φ2 − λM2. Thus, m2

effχ is positive

as long as |φ| > |φc|, where φc ≡ −(
√
λ/g)M , where for simplicity we assume

|φc| ≫ µ. Inflation ends when φ = φc, which triggers a phase transition that sends

the GUT Higgs field towards its vacuum expectation value (VEV) χ =M , in which

case m2
effχ = 2λM2. At this time, the effective mass-squared of the inflaton field

becomes m2
effφ = g2M2 > 0, when the inflaton is still negative φc < φ < 0. This

propels the inflaton to the origin.

When φ becomes positive, it free-falls in its steep runaway potential. In the limit

φ≫ µ, the potential is

V =
1
2
g2M2µ6

φ4
, (C.3)

where we assumed gM > m. The above inverse quartic potential can indeed work

not as tracker quintessece, as in the original quintessential inflation model [15], but as

a freezing-thawing quintessence, which unfreezes at present provided the mass-scale

(1
2
g2M2µ6)1/8 is of the correct magnitude to satisfy the coincidence requirement.

Inflation, however, as described above would not work. Indeed, the original hybrid

inflation model of Ref. [96], which is characterised by the inflationary potential in

Eq. (C.2), produces a blue spectral index for the scalar curvature perturbation.

As shown in Ref. [1], things change when we embed the above model in R+αR2

Palatini modified gravity. We assume that λ is small enough, such that the potential

in Eq. (C.2) during inflation is V ≃ 1
2
m2φ2. Then, the inflationary plateau is

due to the quadratic gravity term, which flattens the potential and creates the
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inflationary plateau with Uinf ≃ m4
P/4α as discussed in Sec. 6.2.1. As mentioned,

the scenario with λ = 0 = g was investigated in Ref. [1], which found that successful

quintessential inflation in achieved if m ∼ 1013GeV and (1
2
g2M2µ6)1/8 ∼ 10GeV,

which means µ ∼ g−1/310−4GeV. The assumption g > m/M ∼ 10−3 suggests that

µ ≲ O(MeV).

In Ref. [1] it was shown that for successful quintessential inflation with this model

we need α ∼ 108, so that U
1/4
inf ∼ 1016GeV. The canonical inflaton field rolls down

the Palatini inflationary plateau Uinf until it triggers the GUT phase transition and

sends the GUT Higgs field to its VEV. Then, the potential V is reduced drastically

so that the system exits the Palatini plateau and U ≃ V .

The change of the expectation value of the GUT Higgs field χ at the phase

transition not only terminates inflation but may also affect the value of α provided

the latter depends on χ. Indeed, suppose that

α = α(χ) = α0 e
κχ/M , (C.4)

where κ = O(10) is a coefficient and α0 ∼ 108. Before the phase transition, χ = 0

and α = α0 ∼ 108. After the phase transition, χ =M ∼ 1016GeV and κχ/M ≲ 102.

As a consequence, α becomes huge. Indeed, for the range κ = 5− 166 we find

α ∼ 1010–80, which comfortably includes the values considered in Fig. 6.7. Note that

α should not depend on the inflaton field, α ̸= α(φ), because the latter changes

substantially during kination and hyperkination, while α is taken to be constant.

Finally, it must be pointed out that the period of hyperkination in the post-

inflationary history would modify the treatment of Ref. [1] somewhat. As a result,

the value of µ for successful coincidence might change, but this is beyond the scope

of the present work.

C.2 Numerical solutions

To check our analytical results, we solve numerically the time evolution of the

background composed of the field and radiation and the GW mode functions. The
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full set of equations reads(
1 + 3α

ϕ̇2

m4
P

)
ϕ̈+ 3

(
1 + α

ϕ̇2

m4
P

)
Hϕ̇ = 0 ,

ρ̇f = −3Hρf (1 + wf ) , 3H2m2
P = ρϕ + ρf , (C.5)

ρϕ =
1

2

[
1 +

3

2
α
ϕ̇2

m4
P

]
ϕ̇2 , hsk

′′ + 2
a′

a
hsk

′ + k2hsk = 0.

Many of the variables vary by orders of magnitude during cosmic evolution. To

make numerics easier, we define new, rescaled variables x, y, and Z, a new time

variable s, and a constant s0 through

ϕ̇ = m2
Pα

−1/2e−s0−s+x , ρf = m4
Pα

−1e−2s0−2s+y ,

H = mPα
−1/2Ze−s0−s , s0 = − ln

(
2
√
αH0/mP

)
,

dt = m−1
P

√
αes0+sds , (C.6)

where H0 is the initial Hubble parameter. Definitions in Eq. (C.6) are chosen

to ensure the new numerical quantities remain of order one throughout the

computation. The equations of motion become

◦
x = 1− 3Z(1 + e−2s0−2s+2x)

1 + 3e−2s0−2s+2x
,

◦
y = 2− 3Z(1 + wf ) ,

3Z2 =
1

2

(
1 +

3

2
e−2s0−2s+2x

)
e2x + ey ,

◦◦
hk + (3Z − 1)

◦
hk +

k2

m2
Pa

2
αe2s+2s0hk = 0 , (C.7)

where a circle over a variable indicates a derivative with respect to the new time

variable s.

The initial conditions for the field velocity and fluid energy density are set

as described in the text, engineered to match a desired end-of-inflation Hubble

parameter Hend, duration of hyperkination Nhyp, and initial radiation energy density

fraction Ωend
r . We then follow their evolution from the end of inflation until the BBN

temperature is reached, see Fig. 6.2. The GW modes are evolved from their frozen

super-Hubble state in Eq. (6.62) starting somewhat before they re-enter the Hubble
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radius, until somewhat after the re-entry, after which they are taken to behave as

radiation. To get the mode energy density, we use the first equation in Eq. (6.34)—as

explained in the text, the error related to regularization is negligible for all relevant

modes. Iterated over a number of modes, this produces the spectra in Fig. 6.4.

C.3 Mode function matching

In this appendix, we report the more technical results concerning the mode function

matching at the transition between the different cosmological eras. We start with

the transition from inflation to hyperkination, which takes place at ηend. During the

hyperkination, the Mukhanov Sasaki equation reads (see Eqs. (6.31) and (6.51))

vsk
′′ + k2vsk = 0 . (C.8)

The solution is simply a superposition of plane waves,

vsk(η) =
1√
2k

(
α+e

−ikη + α−e
ikη
)
. (C.9)

Matching this to the standard slow-roll result (see the first line of Eq. (6.55)) at ηend

gives

ei
π
4
(1+2ν)

√
π

2

√
xendH

(1)
ν (xend) = α+e

ik|ηend| + α−e
−ik|ηend| , (C.10)

where xend ≡ k|ηend| and we dropped the subindex I from ν. Matching the

derivatives gives

i

√
π

2
ei

π
4
(1+2ν)

[ 1
√
xend

(1
2
+ ν
)
H(1)
ν (xend) −

√
xendH

(1)
ν+1(xend)

]
=

− α+e
ik|ηend| + α−e

−ik|ηend| . (C.11)

Summing (subtracting) both expressions, we obtain

α∓ =
ei

π
4
(1+2ν)±ixend

2

√
π

2

[
H(1)
ν (xend)

(√
xend ±

i
√
xend

(ν +
1

2
)
)
∓ i

√
xendH

(1)
ν+1(xend)

]
.

(C.12)

We now take the super-Hubble (small argument) limit xend ≪ 1. Noting that

the leading contributions come from the terms proportional to H
(1)
ν (xend)/

√
xend and
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H
(1)
ν+1(xend)

√
xend, it reads

α∓ = ±2ν−1ei
π
4
(1+2ν)

√
2π

(
1

2
− ν

)
Γ(ν)

1

(k|ηend|)ν+
1
2

. (C.13)

Using ν = 3/2 + ϵ, this expression can be further simplified to

α∓ = ±2ϵ−1eiπϵ/2Γ(3/2 + ϵ)

Γ(3/2)

(
H

k

)2+ϵ

. (C.14)

For pure de Sitter, with ϵ→ 0, we obtain

α∓ = ±H2

2k2
. (C.15)

We continue with the transition from hyperkination to kination, which takes

place at ηkin. During kination, the Mukhanov–Sasaki equation takes the form

vsk
′′ +

[
k2 − 1

4
[
η − ηkin

2
+ 1

H

]2
]
vsk = 0 . (C.16)

Making the change of variables y ≡ k (η − ηkin/2 + 1/H) (where y = kz in the

notation of Eq. (6.52)) and redefining the mode functions as g =
√
yv, this equation

can be recast as a Bessel equation with ν = 0 (see Eq. (6.53)). Thus, the solution

reads

vsk(η) =

√
π

4k

√
y
[
e−iπ/4β+(k)H

(2)
0 (y) + eiπ/4β−(k)H

(1)
0 (y)

]
, (C.17)

where the overall constant and phase has been chosen such that the mode functions

have a simple sub-Hubble (y ≫ 1) limit, as discussed below Eq. (6.55). We match

this equation (and its derivative) with Eq. (C.9) (and its derivative) at time ηkin,

i.e., at

ykin ≡ y(ηkin) =
k

2

(
ηkin +

2

H

)
≃ kηkin

2
, (C.18)

where we have taken into account that ηkin ≫ ηend. To avoid clutter we also define

r ≡ eiπ/4
√
π/2. Equating the mode functions gives

α+e
−ikηkin + α−e

ikηkin =
√
ykin

[
r∗β+H

(2)
0 (ykin) + rβ−H

(1)
0 (ykin)

]
, (C.19)
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while doing so for the derivatives gives

i
(
−α+e

−ikηkin + α−e
ikηkin

)
=

1

2
√
ykin

[
r∗β+H

(2)
0 (ykin) + rβ−H

(1)
0 (ykin)

]
+
√
ykin

[
r∗β+

dH
(2)
0

dy
(ykin) + rβ−

dH
(1)
0

dy
(ykin)

]
. (C.20)

Now, using Eq. (C.19) in Eq. (C.20) allows us to rewrite the latter as[
α+

(
−i− 1

2ykin

)
e−ikηkin + α−

(
i− 1

2ykin

)
eikηkin

]
=

√
ykin

[
r∗β+

dH
(2)
0

dy
(ykin) + rβ−

dH
(1)
0

dy
(ykin)

]
.

(C.21)

In order to obtain β− (β+), we multiply Eq. (C.21) by H
(2)
0 (ykin) (H

(1)
0 (ykin)) and

Eq. (C.19) by dH
(2)
0 /dy (dH

(1)
0 /dy), subtract the latter from the former and use the

Wronskian of the Hankel functions. The results read

β− = e−iπ/4
√
πykin

i2
√
2

{
H

(2)
0 (ykin)

[
α+

(
−i− 1

2ykin

)
e−ikηkin + α−

(
i− 1

2ykin

)
eikηkin

]
+H

(2)
1 (ykin)

(
α+e

−ikηkin + α−e
ikηkin

)}
(C.22)

and

β+ = −eiπ/4
√
πykin

i2
√
2

{
H

(1)
0 (ykin)

[
α+

(
−i− 1

2ykin

)
e−ikηkin

+ α−

(
i− 1

2ykin

)
eikηkin

]
+H

(1)
1 (ykin)

(
α+e

−ikηkin + α−e
ikηkin

)}
.

(C.23)

Noting that α+ = −α−, these expressions can be rewritten as

β− = e−iπ/4
√
πykin
2

α−

{
H

(2)
0 (ykin)

[
cos (kηkin)

− 1

2ykin
sin (kηkin)

]
+H

(2)
1 (ykin) sin (kηkin)

} (C.24)

and

β+ = −eiπ/4
√
πykin
2

α−

{
H

(1)
0 (ykin)

[
cos (kηkin)

− 1

2ykin
sin (kηkin)

]
+H

(1)
1 (ykin) sin (kηkin)

}
.

(C.25)
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We can now take the super-Hubble limit kηkin ≪ 1. Using kηkin = 2ykin, the

term in brackets multiplying H
(1,2)
0 (ykin) cancels out, and we obtain the result

β± = 2ie±iπ/4α−

√
kηkin
π

, (C.26)

where α− is given by Eq. (C.14). Note that

β+ = iβ− . (C.27)

For pure de Sitter, we have the simplified expression

β± = ie±iπ/4
(
H

k

)2
√
kηkin
π

. (C.28)

Finally, we consider the transition from kination to the radiation-dominated era

at ηreh. During the latter, the Mukhanov–Sasaki equation is identical to the one

corresponding to hyperkination,

vsk
′′ + k2vsk = 0 , (C.29)

the solution to which reads

vsk(η) =
1√
2k

(
γ+e

−ikη + γ−e
ikη
)
. (C.30)

The matching conditions at ηreh now read

√
yreh

[
r∗β+H

(2)
0 (yreh) + rβ−H

(1)
0 (yreh)

]
=
(
γ+e

−ikηreh + γ−e
ikηreh

)
(C.31)

and

1

2
√
yreh

[
r∗β+H

(2)
0 (yreh) + rβ−H

(1)
0 (yreh)

]
+
√
yreh

[
r∗β+

dH
(2)
0

dy
(yreh) + rβ−

dH
(1)
0

dy
(yreh)

]
= i
(
−γ+e−ikηreh + γ−e

ikηreh
)
,

(C.32)

where

yreh = k

(
ηreh −

ηkin
2

+
1

H

)
≃ kηreh , (C.33)
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where we have taken into account that ηreh ≫ ηkin ≫ ηend. Summing (subtracting)

both expressions gives

γ± =
e±ikηreh

2

{
r∗β+

[
H

(2)
0 (yreh)

(
√
yreh ± i

1

2
√
yreh

)
∓ i

√
yrehH

(2)
1 (yreh)

]
+ rβ−

[
H

(1)
0 (yreh)

(
√
yreh ± i

1

2
√
yreh

)
∓ i

√
yrehH

(1)
1 (yreh)

]}
.

(C.34)

We use Eq. (C.27) and take the super-Hubble limit kηreh ≪ 1 to obtain

γ± = ±rβ−
2

i
√
yreh

, (C.35)

where β− is given by Eq. (C.26). For pure de Sitter, we have the simplified expression

γ± = ∓H2

2k2

√
ηkin
2ηreh

. (C.36)
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D.1 Quintessential Inflation

Is it possible that our scalar field can not only be early and late dark energy, but also

be the inflaton field, responsible for accelerated expansion in the early Universe?

The α-attractors construction leads to two flat regions in the scalar potential of

the canonical field, as the kinetic poles of the non-canonical field are displaced to

infinity. This idea has been employed in the construction of quintessential inflation

models in Refs. [260, 259, 258], where the low-energy plateau was the quintessential

tail, responsible for quintessence and the high-energy plateau was responsible for

inflation.

However, if we inspect the potential in Eq. (7.5) at the poles φ = ±
√
6αmP,

we find that the potential for the positive pole is V (φ+) = VΛ as expected, while

for the negative pole we have V (φ−) = VΛ exp
[
2λ sinh

(
κ
√
6α
)]
. For the values of

the parameters obtained (κ ∼ 102, λ ∼ 10−3 and α ∼ 10−4) it is easy to check that

V (φ−) is unsuitable for the inflationary plateau. Thus, our model needs to be

modified to lead to quintessential inflation.

The first modification is a shift in field space such that our new field is

φ̃ = φ+ Φ , (D.1)
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where Φ is a constant. The α-attractors construction applies now on the new field

φ̃ for which the Lagrangian density is given by the expression in Eq. (7.1) with the

substitution φ→ φ̃. The poles of our new field lie at φ̃± = ±
√
6α̃mP, where α̃ is

the new α-attractors parameter.

We want all our results to remain unaffected, which means that, for the positive

pole, Eq. (D.1) suggests

φ+ =
√
6αmP = φ̃+ − Φ =

√
6α̃mP − Φ ⇒ α̃ =

1

6

(
Φ

mP

+
√
6α

)2

. (D.2)

The above, however, is not enough. It turns out we need to modify the scalar

potential as well. This modification must be such that near the positive pole the

scalar potential reduces to the one in Eq. (7.5). A simple proposal is

V (φ̃) = VX exp{−2λ sinh[κ(φ̃− Φ)/mP]} , (D.3)

which indeed reduces to Eq. (7.5) when κ(φ̃−Φ) = κφ > mP. Note that κ
√
6α > 1

is implied from the requirement that near the positive pole we have κ
√
6αmP =

κφ+ > mP.

The ESP discussed in Sec. 7.5 is now located at φ̃ = Φ, such that Eq. (7.26) is

now ∆V = 1
2
g2(φ̃− Φ)2χ21.

We are interested in investigating the inflationary plateau. This is generated for

the canonical field near the negative pole φ̃− = −
√
6α̃mP, where the scalar potential

of the canonical field “flattens out” [465].

Assuming that Φ >
√
6αmP, we have that φ̃− − Φ = −2Φ−

√
6αmP ≃ −2Φ,

where we used Eq. (D.2). Hence, for the potential energy density of the inflationary

plateau we obtain

1Near the ESP the potential does not approximate Eq. (7.5). However, we assume that, after

unfreezing, the field rolls away fast from the ESP, such that soon the exp(exp) form of the potential

becomes valid and the evolution is the one discussed in the main text of our paper.
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Vinf = V (φ̃−) ≃ VX exp[−2λ sinh(−2κΦ/mP)]

≃ exp
(
λ eκ

√
6α
)
VΛ exp[λ exp(2κΦ/mP)]

= exp
[
λ(eκ

√
6α + e2κΦ/mP)

]
VΛ ≃ VΛ exp

(
λ e2κΦ/mP

)
, (D.4)

where we used Eq. (7.5) and that in −2 sinh(−x) ≃ ex, when x≫ 1.

With α-attractors, the inflationary predictions are ns = 1− 2/N and r = 12α̃/N2

[465], where ns is the spectral index of the scalar curvature perturbation and r is

the ratio of the spectrum of the tensor curvature perturbation to the spectrum of

the scalar curvature perturbation, with N being the number of inflationary efolds

remaining after the cosmological scales exit the horizon. Typically, N = 60− 65 for

quintessential inflation, which means that ns = 0.967− 0.969, in excellent agreement

with the observations [10]2. For the tensor-to-scalar ratio the observations provide

the bound r < 0.036 [9], which suggests α̃ < 0.003N2 = 10.8− 12.7.

The COBE constraint requires Vinf ∼ 10−10m4
P. Using that VΛ ∼ 10−120m4

P,

Eq. (D.4) suggests that κΦ/mP = 1
2
ln(110 ln 10/λ). Hence. the conditions

Φ >
√
6αmP and κ

√
6α > 1 suggest

1 < κ
√
6α < κΦ/mP =

1

2
ln(110 ln 10/λ) . (D.5)

Our findings in Section 7.4 are marginally in agreement with the above requirements.

For example, taking α = 0.0006 and κ = 100 we find κ
√
6α = 6 and then Eq. (D.5)

suggests λ < 1.556× 10−3. We also find Φ/mP >
√
6α = 0.06, which is rather

reasonable. Then, Eq. (D.2) implies α̃ > 12α = 7.2× 10−3, which comfortably

satisfies the observational constraint on r. In fact, taking N ≃ 60, we find

r = 12α̃/N2 > α/25 = 2.4× 10−5.

The above should be taken with a pinch of salt because the approximations

employed are rather crude. However, they seem to suggest that our augmented

2It should be however noted that recent results [506, 507, 508, 509] suggest that, in the presence

of EDE, the data seems to favour larger values of ns, closer to unity. This would somewhat

undermine the use of α-attractors.
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model in Eq. (D.3) may lead to successful quintessential inflation while also resolving

the Hubble tension, with no more fine-tuning than that of ΛCDM3. A full numerical

investigation is needed to confirm this.

3Unifying inflation, EDE and late DE in f(R) modified gravity has been investigated in

Refs. [510, 511].
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[499] B.-H. Lee, W. Lee, E. O. Colgáin, M. M. Sheikh-Jabbari, and S. Thakur, Is

local H 0 at odds with dark energy EFT?, JCAP 04 (2022), no. 04 004,

[arXiv:2202.03906].

[500] D. Wands, O. F. Piattella, and L. Casarini, Physics of the Cosmic

Microwave Background Radiation, Astrophys. Space Sci. Proc. 45 (2016)

3–39, [arXiv:1504.06335].

[501] L. Kofman, A. D. Linde, X. Liu, A. Maloney, L. McAllister, and

E. Silverstein, Beauty is attractive: Moduli trapping at enhanced symmetry

points, JHEP 05 (2004) 030, [hep-th/0403001].

[502] G. Ye and Y.-S. Piao, Is the Hubble tension a hint of AdS phase around

recombination?, Phys. Rev. D 101 (2020), no. 8 083507, [arXiv:2001.02451].

[503] Y. Cui and E. I. Sfakianakis, Detectable gravitational wave signals from

inflationary preheating,, Phys. Lett. B 840 (2023) 137825,

[arXiv:2112.00762].

[504] A. Maleknejad and M. M. Sheikh-Jabbari, Gauge-flation: Inflation From

Non-Abelian Gauge Fields,, Phys. Lett. B 723 (2013) 224–228,

[arXiv:1102.1513].

[505] J. F. Dufaux, A. Bergman, G. N. Felder, L. Kofman, and J.-P. Uzan, Theory

and Numerics of Gravitational Waves from Preheating after Inflation, Phys.

Rev. D 76 (2007) 123517, [arXiv:0707.0875].

[506] G. Ye, B. Hu, and Y.-S. Piao, Implication of the Hubble tension for the

primordial Universe in light of recent cosmological data, Phys. Rev. D 104

(2021), no. 6 063510, [arXiv:2103.09729].

344

http://arxiv.org/abs/2006.00244
http://arxiv.org/abs/2202.03906
http://arxiv.org/abs/1504.06335
http://arxiv.org/abs/hep-th/0403001
http://arxiv.org/abs/2001.02451
http://arxiv.org/abs/2112.00762
http://arxiv.org/abs/1102.1513
http://arxiv.org/abs/0707.0875
http://arxiv.org/abs/2103.09729


Bibliography

[507] J.-Q. Jiang and Y.-S. Piao, Toward early dark energy and ns=1 with Planck,

ACT, and SPT observations, Phys. Rev. D 105 (2022), no. 10 103514,

[arXiv:2202.13379].

[508] G. Ye, J.-Q. Jiang, and Y.-S. Piao, Toward inflation with ns=1 in light of the

Hubble tension and implications for primordial gravitational waves, Phys.

Rev. D 106 (2022), no. 10 103528, [arXiv:2205.02478].

[509] J.-Q. Jiang, G. Ye, and Y.-S. Piao, Return of Harrison-Zeldovich spectrum in

light of recent cosmological tensions, arXiv:2210.06125.

[510] S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, Unifying Inflation with

Early and Late-time Dark Energy in F (R) Gravity, Phys. Dark Univ. 29

(2020) 100602, [arXiv:1912.13128].

[511] V. K. Oikonomou, Unifying inflation with early and late dark energy epochs

in axion F (R) gravity, Phys. Rev. D 103 (2021), no. 4 044036,

[arXiv:2012.00586].

345

http://arxiv.org/abs/2202.13379
http://arxiv.org/abs/2205.02478
http://arxiv.org/abs/2210.06125
http://arxiv.org/abs/1912.13128
http://arxiv.org/abs/2012.00586

	Introduction
	Acceleration in a Dynamical Universe
	Inflation
	Why inflation? The horizon and flatness problems
	The physics of inflation: the background
	The physics of inflation: from quantum to classical
	Contact with observations and inflationary model building
	Reheating

	Dark Energy
	CDM
	The Cosmological Constant Problem
	An Interlude: The Hubble tension
	Solving the Hubble tension

	Quintessence
	Quintessential Inflation


	Modified Gravity
	Introduction
	Metric vs. Palatini formalisms

	Power-law Quintessential Inflation in Palatini f(R) Gravity
	Introduction
	The Model
	Coupling to Matter

	The Inflationary Sector
	Inflationary Observables

	Kination
	Dynamics in the Jordan and Einstein Frames
	Reheating and Number of e-folds 
	n=2
	n=4

	Quintessential Sector
	Corrections Coming From the Matter Action
	Frozen Inflaton
	Residual Potential Energy
	q=1

	q=2 and n=2
	q=4 and n=2

	Constraints Coming From Experimental Tests
	Solar System
	Microscopic Experiments

	Discussion

	Exponential Quintessential Inflation in Palatini f(,R) Gravity
	Introduction
	Setup
	The model
	Equations of motion in the Jordan frame
	Between the Jordan and Einstein frames
	Equations of motion in the Einstein frame

	Cosmic history with quintessential inflation
	Inflation
	Kination
	Reheating
	Radiation and matter domination
	Quintessence domination

	Numerical results
	Initial conditions
	The parameter space
	Numerical results for inflation
	Numerical results for post-inflationary evolution

	Discussion

	Observable Gravitational Waves from Hyperkination in Palatini Modified Gravity and Beyond
	Introduction
	Hyperkination
	Quartic kinetic terms from Palatini R2 inflation
	Kinetic domination
	Full cosmic evolution

	Gravitational waves
	Tensor perturbations and quantization
	Energy density scaling and the problem with kination

	Analytical solution
	Solving the background
	The gravitational wave mode functions

	Gravitational wave observations
	Gravitational wave spectrum
	Parameter space and detectability

	Discussion

	Non-oscillating Early Dark Energy and Quintessence from -attractors
	Introduction
	The Model
	Asymptotic behaviour of the scalar potential
	Expected Field Behaviour
	Tuning requirements

	Numerical Simulation
	Results and analysis
	Parameter Space
	Field Behaviour

	Initial Conditions
	Discussion

	Conclusions
	Appendix Detailed Calculations
	Gauge Transformations of Perturbations
	The Second Order Action for Tensor Perturbations
	The Gravitational Wave Density Spectrum During Kination

	Appendix Appendix of Chapter 5
	Solving for the Hubble parameter
	A bound on the bare mass-squared of the spectator field
	Energy density of gravitational radiation at the end of inflation

	Appendix Appendix of Chapter 6
	A toy model for a drastic change of  at the end of inflation
	Numerical solutions
	Mode function matching

	Appendix Appendix of Chapter 7
	Quintessential Inflation


