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Abstract

Cosmic inflation, a phase of accelerated expansion of the early Universe, not only
solves the horizon and flatness problems of the Hot Big Bang but also provides
the initial conditions for the density perturbations that source all structure in the
Universe. 9 billion years later, the Universe started engaging in another bout
of accelerated expansion, observed today, 13.8 billion years after the Big Bang.
This thesis is mainly concerned with quintessential inflation, a framework that
suggests that the same substance responsible for the period of primordial inflation,
the inflaton field, is also responsible for the current accelerated expansion. By
considering a simple and theoretically motivated setup in modified gravity, we
manage to bring back to life two of the most popular inflationary models, chaotic and
power-law inflation, hitherto discarded by the Planck data. We also achieve late-
time inflation for fairly natural parameter values, with significantly less fine-tuning
than in ACDM. Furthermore, we explore one specific limit of the modified gravity
setup, characterised by a period of quartic kinetic domination of the inflaton, and its
effects on the production of primordial gravitational waves by inflation. We find that
during this period, which we call hyperkination, the peak in the density spectrum of
gravitational waves corresponding to kination is truncated, thereby safely evading
Big Bang Nucleosynthesis constraints. This allows us to bring the gravitational
wave spectrum down to observable frequencies. If detected by future gravitational
wave interferometers, it would provide valuable insight into the underlying theory.
Lastly, mirroring the minimalist philosophy of quintessential inflation, we propose
a toy model of unified early dark energy and quintessence, which raises the value of
the Hubble constant inferred from the Planck data to values compatible with local
measurements. It simultaneously explains the current accelerated expansion of the

Universe, without significant additional fine-tuning than in ACDM.
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represents the BBN bound on the spectrum. The numerical spectral

energy density i1s not well resolved at the largest trequencies because

the modes re-entering the horizon right atter inflation are never frozen

as assumed in the code. This leads to the unphysical upslope around

10" Hz. The parameters used are Ny, = 15, Q¢ = 1071 and

H =10 GeV. . . .

[6.5

A few different spectra superimposed with the PLIC curves of the

GW experiments. The parameter values { N, H, Q¢} are {17.5, 4.3 x

10" GeV, 10~'?} for the blue curve, {25, 7.9 x 10*! GeV, 10~} for

the orange curve, {20, 7.9 x 10"’ GeV, 10"} for the green curve and

{29.5, 1.7 x 10'® GeV,10~°} for the red curve. We also show lines

parallel (dashed gray) to the kination part of the spectrum. If not for

the hyperkination period the spectra would violate the BBN bound.| .
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[6.6

Parameter space ot the theory excluded by LVK O3. For each value

of H and Q¢ there is a maximum value for «, labelled ayay, above

which the signal 1s observationally excluded. . . . . . . .. ... ...

6.7

Parameter space of the theory for the minimum o such that the

signal is detectable by LVK O5 (top left), ET (top middle), DECIGO

(top right, BBO (bottom left), and LISA (bottom middle) and SKA

(bottom right). For each value of H and Q¢ there is a minimum

value for «, labelled o,;,, above which the signal 1s always detectable

(minus the excluded region in Fig. |6.6[ for LVK O5 and ET), . . . . .
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Graph of the canonical potential and its two approximations for

small and large field values, given in Eqs. (7.9), (7.11) respectively.

These approximations are useful because they are simple exponential

potentials with well-known attractors. It can be readily seen that,

atter leaving the origin, the field jumps off a potential plateau and is

free-falling as aresult.| . . . .. . ... ..o

72

Parameter space slice in the kK — a plane with 0 < A < 0.027 and

Vi = 1072982 The blue dotted line is the boundary of the

region that produces non-inflationary results (see below), while the

orange region 1s constituted by the successful points, i.e., those for

which the constraints detailed in Table [7.1] are satisfied. Note that

the region bounded in blue i1s not equal to the range of the scan,

which 1s 0 < k < 700 and 0 < o < 0.00071. This 1s because points

with potential larger than a certain starting value result in the field

beginning the simulation dominant, which means that the Universe

goes 1nto inflation which cannot terminate and will never lead to

successiul EDE. These points are very close to the viable parameter

space for these two parameters and therefore must be thrown away.| .
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[7.3 Parameter space slice in the A — a plane with 0 < £ < 700 (left)

and in the A\ — k plane with 0 < a < 0.00071 (right), both with

Vi = 10~ %% m3 . The orange region is constituted by the successful

points, 1.e., those for which the constraints detailed in Table [7.1] are

satisfied . . . . .. L. 245

[7.4 Left: The Hubble parameter (in units of km s~!Mpc™') of a universe

with an EDE/quintessence field (green), a ACDM universe (black),

and one with only matter and radiation (blue), as a function of

redshift (top) and e-folds (bottom) elapsed since the beginning of

the simulation. The presence ot the field leads to a higher value of

Hy than in the ACDM scenario. Right: The logarithmic densities

of matter (dot-dashed red), radiation (dotted orange), the sum of

both (solid blue) and the scalar field (dashed green), as a function

of redshift (top) and e-folds (bottom) elapsed since the beginning

of the simulation, for a = 0.0005, x = 145, A = 0.008125, and

Vi = 107""%®mg. The horizontal solid line represents the SHOES

energy density of the Universe at present. The EDE scalar field

becomes momentarily subdominant near equality, then redshifting

away faster than radiation to become negligible at decoupling.| . . . . 246
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[7.5 Left: The density parameter ot the scalar field, for a = 0.0005, k =

145, A = 0.008125, and V4, = 10 "%%mg as a function of

redshift (top) and e-folds (bottom) elapsed since the beginning of

the simulation. The density parameter experiences a bump with

fepe = 24(2eq) S 0.1, before the EDE redshifting away and

refreezing to become dark energy today. Right: Barotropic parameter

of the scalar field (dotted green), of the background perfect fluid

(solid blue) and of the sum of both components (solid black), for

a = 0.0005, x = 145, A = 0.008125, and Vj = 10~ %" mg. Tt

1s apparent that the scalar field becomes 1mmediately kinetically

dominated (w, = 1) after thawing, remaining in freefall until it

refreezes again.| . . . . . . . ... Lo

xXxiil



[7.6  Schematic log-log plot depicting the evolution of the density ot the

scalar field p, (solid blue line) and the density of radiation and

matter p,. + p, (dashed red line) in the case when the decay of

the kinetic energy density of the trapped scalar field generates the

thermal bath of the hot Big Bang (as in Ref. [16]). Originally the

¢-field 1s rushing towards the minimum of the potential, dominated

by its kinetic density, so that ps oc a™® (free-fall). When it crosses

the enhanced symmetry point (ESP) its interaction to the x-field (cf.

Eq. (7.26))) traps the rolling ¢-field at the ESP while all its kinetic

energy 1s given to y-particles, which soon decay into the radiation

and matter of the hot Big Bang (the decay is assumed to be quick,

just after trapping). Afterwards, the ¢-field stays frozen, with energy

density V(¢ = 0) = e *Vx (cf. Eq. (7.5)) until much later, when its

potential density is comparable to the background. Then it unfreezes

before dominating, acting as EDE at the time near matter-radiation

equality, and subsequently free-falls to its value ¢y, with potential

density approximately V) =constant. The field stays there until the

present when it dominates the Universe and becomes late dark energy.|251
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Conventions

We use natural units with

and the reduced Planck mass

~ 2.44 x 10" GeV, (2)

1
mp = Were
where G is Newton’s gravitational constant. Notice the difference with Mp =1/ VG ,
which can be sometimes found in the literature.

We use the “mostly plus” sign convention for the metric (—, +, +, +). Repeated
upper and lower indices are always summed over all their possible values. Greek
indices take values p,v = 0,1,2,3 while latin indices take values 7,7 = 1,2,3.
Sometimes a boldface quantity represents a spatial vector, e.g., k = k%

Derivatives with respect to cosmic times are denoted by an overdot while

derivatives with respect to conformal time are denoted by a prime

da ,  da
A = —— pu— - . 3
““a@ T ()
Our Fourier convention is
A3z Cikex d’z ikx
Rk = / WR(X)@ and R(X) = / WRke (4)
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Chapter 1

Introduction

Out of the cradle

onto dry land

here it is

standing:

atoms with consciousness;

matter with curiosity.

Stands at the sea,
wonders at wondering: I
a universe of atoms

an atom in the universe.

Richard P. Feynman

Cosmology is the study of the Universe as a whole. Although humans have
wondered about the origin and structure of the Universe for millennia, cosmology
as a rigorous science is only a few decades old. It wasn’t until 1915 that Einstein
discovered the appropriate language to describe the evolution of the Universe, the
theory of general relativity. Omne hundred years ago, we did not know that the
Universe is expanding or that there exist galaxies beyond our own. Just twenty-

seven years ago we didn’t know of the existence of dark energy, the main constituent
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of the Universe at present.

During the current millennium, cosmology has experienced extraordinary de-
velopments. Perhaps most strikingly, we have measured the statistical properties
of the Cosmic Microwave Background (CMB), light that was emitted when the
Universe was about 370 000 years old and that has been travelling largely freely
until the present day, and discovered the perturbations in the primordial universe
that eventually grew into all the structure we observe today. The leading theory to
explain such primordial perturbations, that of cosmic inflation, suggests that they
have a quantum origin, stretched to cosmic scales just a billionth of a trillionth of
a trillionth of a second after the Big Bang in a period of accelerated expansion.
Another milestone was the discovery that after decelerating for 9 billion years, the
Universe engaged in another bout of accelerated expansion, still ongoing at present,
13.8 billion years after the Big Bang. However, the nature of this dark energy, which

accounts for around 70% of the contents of the present Universe, is still a mystery.

This thesis is mainly a study of inflation and dark energy. Since they are
the only two (known) periods of accelerated expansion, we consider the natural
possibility that they share a common origin, in what is called quintessential inflation.
We also study the effect of including theoretically motivated modifications to
the theory of general relativity, finding that it is helpful from a model-building
perspective.  Finally, we study other phenomenological aspects, such as the
production of primordial gravitational waves (GWs) by inflation and the possibility
of quintessential inflation aiding us in relaxing recent tensions between different

cosmological datasets.

Chapter [2| provides a general introduction to the topics of FRW cosmology
required for adequately following the subsequent chapters and aiming at making the
text self-contained. We provide descriptions of the horizon and flatness problems,
derive the spectrum of inflationary primordial perturbations, making contact with
current observations of the CMB, and explain how the inflationary density can be

transferred to the baryonic matter, during the process of reheating. Related to the



density of the Universe at present, we review the Hubble tension and explain the
physics of dark energy, covering topics such as the cosmological constant problem
and quintessence. We finish with quintessential inflation and its unique predictions.
Chapter [3| also contains background material, namely an introduction to f(R)
gravity, both in the metric and Palatini formalisms. Since all subsequent chapters
take place in the Palatini formalism, we explore in depth the main differences

between the two.

Chapters [ through [7] are based on the original research by the author, in
collaboration with Lucy Brissenden, Konstantinos Dimopoulos, Alexandros Karam,
and Eeemeli Tomberg. Chapter [4] showcases how modified gravity can help with
model-building quintessential inflationary models. We consider a toy model, based
on the original potential proposed by Peebles and Vilenkin, and analytically
study the effect of adding a term proportional to the Ricci scalar squared to the
gravitational action. We are able to rescue inflationary models otherwise discarded
by the latest observational data of the CMB. More specifically, chaotic inflation with
a mass term, arguably the simplest model of inflation, is brought back to life in the
context of Palatini R? gravity. The dynamics of kination and quintessence are also
studied, achieving successful dark energy with less fine-tuning than in ACDM. We

finish by showing how the setup evades observational bounds.

Chapter refines the philosophy of Chapter [ by considering a better
theoretically motivated potential and providing a more in-depth analysis. We
consider a single-branch exponential potential and modify the gravitational action
by including a non-minimal coupling between the field and gravity, expected from
quantum field theory in curved spacetime, as well as the aR? term, where « is a non-
perturbative coupling constant. We provide a thorough analysis, both analytically
and numerically, throughout the history of the Universe, from inflation, through
kination and reheating, until the present time. Again, we are able to resurrect
the previously discarded exponential potential as a valid inflationary model and to

achieve successful dark energy with less fine-tuning than in ACDM. We ensure this
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is the case by performing a parameter scan of the model.

Chapter@takes the same setup in Palatini R? gravity and studies the production
of GWs during the post-inflationary evolution of the Universe, in the limit where
a is very large. We find a new period of cosmic evolution, prior to kination,
which we name hyperkination. We calculate the density spectrum of GWs, both
analytically and numerically, and find that it is flat for modes that re-enter the
horizon during hyperkination. This truncates the infamous peak corresponding to
kination, allowing us to bring the spectrum to frequencies accessible by future GW
observations, such as LISA or ET. We perform a parameter scan of the model for all
relevant GW observations, locating the parameter values required for detectability
in each case and finding ample parameter space.

Chapter 7] does not follow the theme of the previous chapters in that it is not in
the context of modified gravity. Rather, it proposes a simple toy model of unified
early dark energy (EDE) and quintessence, in the context of a-attractors. EDE is
one of the leading proposals to alleviate the Hubble tension, the discrepancy between
the locally measured and cosmologically inferred values for the expansion rate today
Hy. Were it to be discovered, one of the more pressing questions would be the
unification with dark energy. We do so by means of a simple scalar field, originally
frozen at an enhanced symmetry point, which briefly behaves as EDE before free-
falling and re-freezing, to later behave as thawing quintessence. After providing some
analytical estimates, we solve the dynamics numerically and perform a parameter
scan at the background level, finding parameter values without additional fine-tuning
than ACDM.

We conclude in Chapter [§, including an overview of the thesis as a whole in the
context of the current state of the research field, as well as commenting on ideas for

future work.



Chapter 2

Acceleration in a Dynamical

Universe

The dynamics of the spacetime geometry and its matter content is governed by the
action

S = Sgu + Sm = mT% /d4zb\/—_gR + Sl Gy, V], (2.1)
where the first term is the Einstein-Hilbert (EH) action, ¢ is the determinant of
the metric g,,, Sm is the action for the matter fields, collectively denoted by ),
such as the particles of the Standard Model (SM) and the inflaton, and R is the
curvature scalar, defined as the contraction between the metric and the Ricci tensor

R

., Which, in turn can be written in terms of the connection Fij as

Ry, = OsI), — 0,00, + T3, 1%, =T, I7 (2.2)

Note that a priori the connection may be a gravitational field independent from the
metric. This is so in the Palatini formalism [I7, [I8, 19]. Conversely, in the metric
formalism, the only independent gravitational field is the metric. In this scenario,
one usually assumes metric compatibility V,g,, = 0, where V,, is the covariant
derivative. If one further assumes that the connection is torsionless I'j, = I'} , it

can then be shown that the connection takes the Levi-Civita form

1
Fzy = 5901[3 (augﬁu + augﬂu - aﬁguu) . (23)
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Importantly, both formalisms agree for an EH action, but differ when more
complicated functions of the Ricci scalar are considered. This is why it is important
to specify the gravitational degrees of freedom before studying a specific inflationary
model. In the present chapter, however, we limit ourselves to the EH action, so we
postpone a discussion regarding the differences between the metric and Palatini
formalisms, as well as details on modified gravity, to Chapter 3|

Extremising the action in Eq. with respect to the metric we find the

Einstein field equations

1 T,
G =Ry — §gWR = 7752 . (2.4)
P

The left-hand-side of this equation is a measure of the spacetime curvature, while the
right-hand-side is a measure of the matter content, expressed through the energy-

momentum tensor 7}, which is defined as

2 05n
T, =——— ) 2.
H /_g 5guu ( 5)

In order to solve Eq. (2.4 we have to first specify the metric g,,. Since the

Universe (at cosmological scales) is homogeneous and isotropic to a very good
approximation, we are led to the Friedmann-Robertson-Walker (FRW) metric

2

1—kr?

ds? = g datda” = —dt? + d?(t) +7r2(d6? + sin? Ade?) | (2.6)

where t is the cosmic time, and r, § and ¢ are the radial and angular coordinates,
respectively, of the spatial slices and k is the spatial curvature parameter. The latter
can be chosen to be k = 0 for a flat space, k > 0 for a spherical space and k < 0 for
a hyperbolic space. Note that the only dynamical degree of freedom is now the scale
factor a(t), which is a function of time only. It is standard practice to normalise it
at the present time g as a(ty) = 1.

Homogeneity and isotropy also constrain the energy-momemtum to be that of a

perfect fluid

T,uu = (p +p)u,uuzx +pgul/; (27)

6



where p and p are, respectively, the energy density and isotropic pressure of the fluid
in the rest frame and u* is its comoving four-velocity. However, in order to solve the
dynamics one extra relation between p and p, which may also depend on a, needs

to be given. This is called the equation of state (EoS) and it reads

p = wp, (2.8)

where w is the barotropic parameter.
The energy-momentum tensor should be conserved V,T"” = 0 and the v = 0

equation gives the continuity equation
) a
p+3ap(1+w) =0, (2.9)

where an overdot represents a time derivative. For a constant w, this equation can

be immediately integrated to obtain
p o a30Hw). (2.10)

giving the usual scalings p oc a2 for pressureless dust (w = 0), p o< a~* for radiation
(w=1/3), and p = const. for a cosmological constant (w = —1).

After plugging Egs. — in the Einstein equation, its 00 component gives
the first Friedmann equation

H? = (9)2 p__k (2.11)

= 3 2’
a 3mp  a

where we have defined the Hubble parameter H. We can write the same equation

in conformal time, which is defined as

dt
dn = —. 2.12
n=- (2.12)
It reads
2 2 P k
= R 2.1
H=a <3m123 a2) ’ (2.13)
where
a/
H=—=aH (2.14)
a
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is the Hubble parameter in conformal time and a prime denotes a derivative with
respect to 7.
The first Friedmann equation is often written in terms of the density parameters

Pa
Pe

Qa

: (2.15)

(1)

where the subscript “a” stands for any component that contributes to the total
energy density and p.(t) = 3m3 H? is the critical energy density. Indeed, taking into
account the different scalings of the relevant components, the Friedmann equation

can be rewritten as
H2 = Hg [vaoa_g + Qr’od_4 + QA70 + Qma_ﬂ s (216)

where the subscript “0” indicates that a quantity is evaluated at the present time

to. For example, ;¢ is the density parameter of curvature, which reads

Q(t) = — (2.17)

evaluated at tg.

Defining redshift as
1
alt)) __ L (2.18)
a(t) a(t)

where we have used the normalization a(ty) = 1 at present, the Friedmann equation

in terms of z reads
H? = Hj [Qno(1+2)* + Qo1+ 2)" 4+ Qo+ Qo1 +2)7] . (2.19)

Observations of the CMB temperature anisotropies suggest [§ that the contri-
bution of the spatial curvature term to the total energy density of the universe is
smaller than one part in a thousand €2 = 0.0007 &+ 0.0019 (68%C.L.). From the
Hot Big Bang until the present time, the comoving Hubble radius grows (see below),
which means that € (t) also grows, i.e., if €4 is so small at present, it had to be

even smaller in the past. Thus, it is a very good approximation to take the Universe



2.1. Inflation

as flat so that the second term in the r.h.s of Eq. (2.11]) can be safely ignored and
the FRW metric is simplified as

ds® = a*(t) [-dn® + &;;da’da’] (2.20)

where we have used the definition of conformal time in Eq. (2.12)).
The spatial components of the Einstein equations lead to the Raychaudhuri

equation (also known as the second Friedmann equation)

a 1
- =— 3 2.21

which can also be obtained by taking a time derivative of the first Friedmann
equation and combining it with the continuity equation. Note that Eq. (2.21)
holds regardless of the spatial curvature parameter k. It is sometimes useful to

combine this with the first Friedmann equation to obtain

1

2
2mp

H=——(p+p). (2.22)

Conventional matter satisfies the Strong Energy Condition (SEC) p+3p > 0. Thus,
from Eq. (2.21)) follows that @ < 0. In this way, one would naively expect that the

Universe expansion has been decelerating since its birth. We are in for a ride...

2.1 Inflation

Inflation is a hypothetical cosmological period, occurring at very early times,
during which the Universe experiences accelerated expansion. It is prior to the
hot Big Bang and it explains the observed high degree of homogeneity and spatial
flatness. What is more, when treated quantum mechanically, it also provides the
primordial perturbations that act as seeds for structure. We observe this today in
the temperature anisotropies of the CMB and in the distribution of galaxies and
galaxy clusters, also known as large scale structure (LSS).

The first ideas of inflation can be traced back to the early works of, e.g., R.
Brout et al. [20], D. Kazanas [21], K. Sato [22] and L. Z. Fang [23], while the first

9
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model was proposed by A. A. Starobinsky [11] in 1980. The name inflation was
coined by A. H. Guth some months after in Ref. [24], where it is also shown how
inflation solves the horizon and flatness problems. Inflation was then developed into
a full-fledged model by A. D. Linde [25] and A. Albrecht and P. J. Steinhardt [20]
in 1981 and 1982, respectively. Since then, inflationary cosmology has become an
extremely active area of research. Some excellent reviews can be found in Refs.

[27, 28, 29, 30, 311 32, B3, 34, 35).

2.1.1 Why inflation? The horizon and flatness problems

In order to explain the horizon problem, it is important to first understand the
difference between the particle horizon dj, and the (comoving) Hubble radius (aH ).
The first is defined as the maximal comoving distance from which light can been
received. In other words, the particle horizon determines the size of a causally
connected patch of space. Since light follows null geodesics ds? = 0, from Eq.

follows that the particle horizon is equal to the amount of conformal time

t dt/ Ina
dp=mn—mn; = = aH) 'dlna. 2.23
h n n /t; a(t’) /]nai ( ) ( )

In this equation a; = a(t; = 0) = 0 corresponds to the Big Bang singularity.

The comoving Hubble radius (aH)™! is the comoving distance that particles
can travel in one expansion time. In other words, it is the maximal distance below
which particles are causally connected at a given moment in time. Notice that if two
particles are separated by a distance larger than the particle horizon they could have
never been in causal contact, while if they are separated by a distance larger than
the comoving Hubble radius they are not in causal contact at this specific moment

in time. From the first Friedmann equation (with a(ty) = 1) and Eq. (22.10]) we have
(aH)™t = Hyta(H30)/2, (2.24)

Plugging this in Eq. (2.23) gives

2
d, — (143w)/2 (1+3w)/2] ' 2.95
"= Ho(1 1 3w) L % (2:25)

10
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Thus, for matter sources satisfying the SEC the comoving Hubble radius always
grows and the integral in Eq. is dominated by late time contributions giving
dp, ~ (aH)~'. Tt also follows that the amount of conformal time between the Big
Bang singularity and the emission of the CMB is much smaller than the conformal
time between the singularity and today. In other words, most visible parts of the
CMB had non-overlapping past lightcones at recombination, i.e., when the CMB
was emitted. However, not only the Universe today is homogeneous (at cosmological
scales) to a very high degree of accuracy, but the tiny temperature anisotropies that
are measured in the CMB are correlated over acausal distances. This is the horizon
problem.

Before we continue with the discussion, let us emphasize that from now on we
use the terms horizon and comoving Hubble radius interchangeably. If we ever need
to refer to the particle horizon, we use its full name so that the distinction is clear.
To make the discussion more quantitative, we can estimate how many casually
disconnected patches there are in the sky. For our present purposes it is enough to
consider a universe filled with matter and radiation only. Indeed, the inclusion of
dark energy (see Sec. for further details on dark energy) modifies the result only
by ~ 10%. From Eq. , the comoving Hubble radius then reads

1 a

Hy\/Qmo va+ CLec17

where deq = Qmo/Qeo = 338871 [§] is the scale factor at the time of equality, i.e., at

(aH)™ ' = (2.26)

the time at which the contributions from matter and radiation to the total energy

density became equal. It is then straightforward to obain the particle horizon today

1 ' da 2
dn(no) =10 = / ~ : (2.27)
Ho/Qmpo Jo Va+Geq  Hoy/Omo
where we have used that a9 = 1 > a.q. Likewise, the particle horizon at

recombination reads

2
dp(Threc) = Threc = H()—\/Q_o [\/Grec + Geq — +/leq| = 0.01761, (2.28)

11
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where we have used that the scale factor at recombination is ;e = 10917 [§]. Using
the value of the Hubble parameter today Hy ~ 70kms~ Mpc™ = 2 x 10~*Mpc™*
and the fraction of matter today Q0 = 0.31 [8] gives nec ~ 314Mpc, which should
be compared with the distance from us to the last-scattering surface. The angle

subtended by the horizon at recombination then reads

2ec 2% 0.0176
No — Tree 1 —0.0176

Thus, at last scattering the Universe was composed of ~ 10° causally disconnected

0= = 0.035rad = 2.0°. (2.29)

patches. We emphasize that the CMB temperature anisotropies over these 10° a
priori causally disconnected patches are, in fact, correlated.

The flatness problem can also be explained in terms of the comoving Hubble
radius. Indeed, from Eq. we see that the density parameter of curvature
is proportional to the comoving Hubble radius squared, so that for matter sources
that satisfy the SEC it can only grow. Since its observed value today is ¢ =
0.0007 £ 0.0019 (68%C.L.) the initial conditions must have been highly fine-tuned.
This can be easily quantified by combining Eqs. and to obtain

ka,O CL2

Qi (t) (2.30)

Qim0 @ + aegq
Evaluating this expression at matter-radiation equality (a., = 338871), at the time
of Big Bang nucleosynthesis (BBN) (aggy =~ 2.5 x 107Y) and at the electroweak

phase transition (agw ~ 1071°) gives
|Qk(teq)| < 10_6>
|Qk<tBBN)| < 10_16,
Q% (tew)] < 107%. (2.31)
It is also instructive to study the evolution of the density parameter of curvature
from the point of view of a dynamical system. Taking a derivative with respect to

the number of e-folds N = In(a/a;) of Eq. (2.17) and using the first and second

Friedmann equations we obtain

Aoy,
T = (14 30) (1 - ). (2.32)

12
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_____

v 5
3 \\‘ g 00
\
\
[ — w=0 -0.5
-2 =
i w=1/3 Wee
1
_3 H - - -1.0p
0 2 4 6 8 10 12 14 0 1 2 3 4 5 6 7
N N

Figure 2.1: Left: Density parameter of curvature as a function of the elapsing
number of e-folds N = In (a/a;). Full lines have a positive initial condition Q(N;) =
0.01 while dashed lines have a negative initial condition 4(V;) = —0.01. Blue
lines correspond to a matter-dominated universe while orange lines correspond to
a radiation-dominated universe. Right: An analogous figure to the left panel, only
now the universe is dominated by a cosmological constant. The initial condition

for the full line is Q(N;) = 0.7 while the initial condition for the dashed line is

It is now clear that €2, = 0 is an unstable fixed point for matter sources that satisfy
the SEC. For any positive initial perturbation, the system evolves towards its second
fixed point Q) = 1, which is stable. In other words, Qx(N) grows until it becomes
the dominant component of the Universe, making it an empty universe filled by a
negative curvature component. Conversely, for small negative initial perturbations,
the growth of Q. (N) accelerates and ends up diverging at the moment when the
Hubble rate becomes zero, indicating a turn-around point of the scale factor. This
corresponds to a k > 0 closed universe. We have numerically solved Eq.
and plotted the results in the left panel in Fig. [2.1 There it can be seen that the

qualitative behaviour we have described for any source with w > —1/3 indeed is the

same for both matter and radiation.

The solution to both the horizon and flatness problems seems now evident: a

13
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shrinking comoving Hubble radius
eyt = -2 <, (2.33)

where we have used that aH = a. It is clear that the comoving Hubble radius
decreases if and only if there is accelerated expansion, which is the usual definition
of inflation. Equivalently, we can express the comoving Hubble radius in terms of

the first slow-roll parameter

_ A H
eH:_ﬁ:1_ﬁ’ (2.34)
since ‘
d alH +aH 1
—(aH) ' =————— = —Z(1—¢). 2.35
e ==t =g (235)
Thus, accelerated expansion occurs if and only if
eg < 1. (2.36)

We emphasize that the three conditions (aH)™! < 1, d > 1 and € < 1 are equivalent.
More specifically, from the second Friedmann equation we can see that only matter
sources with w < —1/3 lead to an accelerated expansion. With this, the second

addend in the particle horizon in Eq. (2.25)) diverges as

. 2 143w)/2
lim —— 4! - — 2.37
2130 Ho(1 + 3w)az o ( )
In other words, the initial singularity has been pushed to 7, = —oo, while
n = 0 corresponds to the end of inflation. In this way, there is now much

more conformal time between the singularity and recombination, so that all the
different CMB patches in the sky do have overlapping past lightcones. This
is also why the perturbations in the CMB seem to be correlated over acausal
distances. At sufficiently large negative conformal times all the fluctuations were
inside the horizon. As the latter decreased in size, the fluctuations exited it. Then,
after inflation, the comoving Hubble radius started growing, and the fluctuations
progressively started re-entering it (see Fig. [2.2)). Today, the particle horizon is

much larger than the comoving Hubble radius.
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2.1. Inflation

In a similar way, in Eq. (2.32)), if w < —1/3 then 2 = 0 is an attractor. We
show this in the right panel of Fig. for the case of a cosmological constant.
Therefore, whatever the initial curvature is, if inflation lasts long enough the value
of €2, will be driven close enough to zero such that the subsequent post-inflationary

evolution does not increase it above the observational bounds.

T T T T T T N T
N 1 1
\ 1 1
AN : |
80 A present horizon scale | H 7
----------------------------------- :------------------I-- {\-------
1 1 y\\
: YN
1 1 0\\
: : A
601 : | P
o, | :
S | E: ' '
-E 1 1
40+ ! ! -
20F -
1 1 :u 1 :

-50 0 50

Figure 2.2: Comoving Hubble radius (aH)~! (in natural units) as a function of the
number of e-folds N = Ina/a;, with the scale factor normalised at the end of inflation
as a; = 1. We have approximated the energy density of inflation as a constant, with
a value of p = 1071%ng (GUT scale). The inclusion of the kination era increases
the number of inflationary e-folds, as given by Eq. . Nien signals the moment
of reheating, the temperature of which has been set to Ty, = 10° GeV. The recent

dark energy domination has initiated a new epoch of inflation.

We can estimate the minimum duration of the inflationary phase in order for
it solve the horizon and flatness problems [36, B7]. To this end, we need to
assume a specific post-inflationary expansion history of the Universe. Although

for times between BBN and the present the details are well known, there is a lot
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Chapter 2. Acceleration in a Dynamical Universe

of uncertainty for times between the end of inflation and BBN. This is mainly
because the period of reheating, i.e., the period during which the inflationary energy
density is transformed into the matter and radiation of the hot Big Bang, is highly
model dependent. We parametrise our ignorance by assuming that the Universe is
dominated by a perfect fluid with barotropic parameter w, so that the energy density
scales as in Eq. . Furthermore, as we will see below, the spectrum of scalar
perturbations is almost scale invariant, in support of a quasi-de Sitter expansion
during inflation. Therefore, it is a good approximation to assume that the Hubble
parameter is constant during this period.

As we mention above, the scales k that are re-entering the horizon today should
have been inside the comoving Hubble radius during inflation. This means that
(agHo)™' < (apHg)™', where k = apHj. Notice that we are using the comoving
Hubble radius rather than the particle horizon: inflation could have started many
e-folds before the scale k left the horizon, but have no access to this information.

Comparing the scale k£ with the comoving Hubble radius today gives

k . aka Gk QGend Qreh Hend aequq

= = 2.38
aOHO CLOHO Gend Areh Oeq Heq aOHO ’ ( )

where end stands for the end of inflation, reh for reheating, eq for matter-radiation
equality, 0 for the present time and we have used that Hy =~ Hg,g, since H =~
cte during inflation. Remembering that during matter domination the Hubble

3/2

parameter scales as H o« a™*/¢, we have

Qoq H. ag 1/2

eqifeq (_) =./1+ Zeq 2 58, (239)
aoHy Qeq

where we have used zeq = 3387 [§] and ignored the negligible contribution from dark

energy. The other factor can be rewritten as

1
en re Herl re. 3(1+'LU) Te V1/2
Qend Areh d _ (p h ) q end (240)

1/27
Qreh Qeq Heq Pend Treh peé

where have used that between the end of inflation and reheating the density scales

3(1+w)

as p x a~ , a o< 1/T after reheating and the Friedmann equation H o< |/p.
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2.1. Inflation

This expression can be further simplified by taking into account that the energy

density of radiation reads

7T2.g* T4

30 7

p= (2.41)

where g, is the relativistic number of effective degrees of freedom. The result reads

1-3w_
Gend Greh Hend o 7T29*(Treh) m Treh s 30 ‘/eln/d4 (2 42)
Qreh Qeq Heq B 30 ‘/;1/(14 7729*(Teq) Teq . .

Using that Tpq ~ 8.2 X 107 GeV [8], ¢.(Teq) = 3.36 and ¢.(Tren) = 106.75, we
obtain that the number of e-folds reads

Gond 1 1— 3w Tren v
N =1 = 61.77+ ——— In(35.12 1 In | —cod _
N OLTT+ 3(1 4 w) n(35-12) + 3(1+w) (@ﬁf) o (1016Ge\/

(2.43)

Of course, this expression could be refined, e.g., by taking into account a more
realistic inflationary quasi-de Sitter expansion so that H.,q < Hj or by not
neglecting the recent period of dark energy domination. However, for our present
purposes Eq. is accurate enough. For example, for GUT-scale inflation
Vei/dél ~ 106 GeV followed by a period of perturbative reheating, for which w = 0 (see
Sec. for more details on reheating) with Ty, = 10'° GeV, the number of e-folds
is N ~ 58. Of course, the number of e-folds is lower the lower T}, is. Nevertheless,
the Universe has to be dominated by radiation by the time BBN commences, at a

temperature of approximately 100keV. Therefore, we have a hard bound on the

minimum reheating temperature allowed
Tien > 0.1 MeV. (2.44)

The number of e-folds with T, = 0.1 MeV and GUT-scale inflation is N ~ 50.
This the reason why in the literature the number of e-folds is typically taken to be
between 50 and 60.

N could be significantly increased if inflation was followed by some non-
conventional period of cosmic expansion. For example, during kination (see Sec.

for further details on kination and quintessential inflation) w = 1. If we change
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Chapter 2. Acceleration in a Dynamical Universe

the barotropic parameter of the Universe before reheating as 0 — 1, the prefactor
of the third term in the right-hand-side of Eq. changes as 1/3 — —1/3 (and
as 1/3 — 1/6 in the second term, although this effect is subdominant). Therefore,
the number of e-folds is increased by

2 The
AN =2 (Vl/i>. (2.45)

end

Choosing again Ty, = 101°GeV and GUT-scale inflation gives AN = 9. In Fig.
2.2] we show the comoving Hubble radius as a functions of the number of e-folds
in precisely this situation. It becomes visually obvious how the existence of the
kination period increases the number of inflationary e-folds. As a final comment,
note that the increase could be as much as AN = 30, corresponding to T;., = Tggn,
although this situation is obviously unrealistic.

In summary, inflation solves the horizon and flatness problems, provided it lasts
long enough, i.e., longer than the number of e-folds in Eq. . As we have seen,
this happens when ey remains small for a sufficient amount of e-folds (around 60

according to our estimation). To this end, we define the second slow-roll parameter

dIn (24 EH
= = . 2.46
"M=TAN T T Hey (2.46)

Inflation occurs when ey < 1 and persists when |ny| < 1, i.e., when the fractional

change of the first slow-roll parameter is small.

2.1.2 The physics of inflation: the background

The simplest way to achieve inflation is by introducing a scalar field ¢ = ¢(t, x),
named the inflaton, with its dynamics governed by the action in Eq. (2.1) and the

inflationary sector given by

1 17
5= [ ataev=g |- 509,000 - V(o). (2.47)
where V' (¢) is the potential energy density of the field. Using the definition in Eq.
(2.5)), the associated energy-momentum tensor reads

1
T = 0,00,6 — gu [§gaﬁaa¢aﬁ¢ + V(qﬁ)] , (2.48)
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2.1. Inflation

while the equation of motion of the inflaton reads

05y _y_ 1
o¢ V=g

where a prime in the potential represents a total derivative with respect to its

0y (V=99"0,0) = V'(¢), (2.49)

argument. Plugging in the flat FRW metric gives the Klein-Gordon (KG) equation
¢+3Hp — —670,0;0 +V' = 0. (2.50)
a

At the background level, homogeneity and isotropy make the field a function of
time only ¢ = ¢(t). Thus, the Laplacian term in the KG equation vanishes. Likewise,
the energy density and pressure read can be read off from the energy-momentum

tensor to be
1

p= §<'b2 +V, (2.51)
p= %(]52 —-V. (2.52)

The barotropic parameter of the field is defined as

2/2 -V
wy =P = 912=V (2.53)
P P24V
The dynamics of the system is then determined by
d+3Hp+V' =0, (2.54)
and the Friedmann equations
2o lgz'>2+v (2.55)
© 3mi \2 ’ '
a 1 b
2-_ -v). 2.56
a 3mé (gb (2.:56)

Note that the latter can be derived from the other two by taking a time derivative
of the first Friedmann equation and combining it with the KG equation. From the

second Friedmann equation it follows that accelerated expansion occurs when

V> ¢ (2.57)

19



Chapter 2. Acceleration in a Dynamical Universe

It is instructive to obtain the same condition from the first slow-roll parameter.

Plugging Egs. (2.51)-(2.52)) in Eq. gives H = —¢?/(2m?). Using this in Eq.
(2.34) we have .
2
€y = W. (2.58)
Imposing ey < 1 we recover Eq. (2.57)).
We have just found that a scalar field can sustain inflation when it is the dominant
contribution to the density of the Universe and its potential energy density is larger

than (twice) its kinetic energy density. But inflation should also last long enough.

At this point it is useful to define the dimensionless acceleration per Hubble time

é ¢//
dbg=————=1-— . 2.59
" He (2:59)
We can then obtain an expression for the second slow-roll parameter
€ H ¢
_ — 9" 197 _9 -9 2.60

where we have used Eq. (2.58). As we explain below, slow-roll inflation is in very

good agreement with observations. The slow-roll conditions read
ey K 1 and ‘UH| < 1. (2.61)

From Eq. we see that if {ey,|dy|} < 1 then the slow-roll conditions
{€m,|nu|} < 1 are satisfied. In other words, if the speed of the inflaton in field
space is small inflation takes place and if the acceleration of the inflaton is small
inflation lasts for a long time.

So far all the presented results have been exact. However, the slow-roll conditions
help simplify the equations of motion. Indeed, from 0y < 1 we can safely neglect

the acceleration term in the KG equation, which now reads
3Ho+ V' ~0, (2.62)

and from ey < 1 we can neglect the kinetic energy term in the first Friedmann,

which reduces to

H? ~ v

~
3mgp

(2.63)
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These approximated equations are first order ordinary differential equations and
thus easier to solve than Eqgs. ([2.54))-(2.55). Of course, they are more accurate the

smaller 0y and ey are. Importantly, they can also be used to express the slow-roll

parameters solely in terms of the potential. Indeed, plugging Eqs. (2.62) and ([2.63)
in Eq. (2.58) gives
12 2 V/ 2
ey — T (—) . (2.64)

T o2m2H? . 2 \V

It is now convenient to consider the combination

V' H H v

where we have taken a time derivative of Eq. (2.62) and plugged it in the definition
of dy in the first step and used Eq. (2.63)) in the second step.

We are led to define the potential slow-roll parameters

2 7\ 2
mp [V
_ v 2.
€y 9 ( % ) s ( 66)
v//

which are related to the Hubble slow-roll parameters via

ev ~eg and ny >~ 2y — - (2.68)

If {ev,|nv|} < 1 then {eny,|nu|} < 1 are satisfied. At this point it is important
to emphasize that the potential slow-roll conditions {ey, |ny|} < 1 are a necessary
condition for slow-roll inflation, but they are not a sufficient. Indeed, they determine
the slope and curvature of the potential, but they have nothing to say about the
velocity of the field in field space, which could initially be very large. However, if an
inflationary solution exists, all inflationary trajectories in field space approach each
other, even exponentially fast when in the linear regime [38,[39] This means that, if a
potential has a large enough region with {ey, |nv|} < 1, unless the initial conditions
of the inflaton are fine-tuned with very large velocity, the inflaton will always end

up in a slow-roll trajectory. In other words, slow-roll inflation is an attractor.
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The expression for the number of inflationary e-folds is also simplified by the

slow-roll conditions. It is easy to show that it can be written as

tend 1 O d 1 on d 1 on
N:/ dtH:—/ ¢ z—/ ¢ :—2/ d¢Z/, (2.69)
te mp é 2€H mp Gend V 2€V mP é V

end end

where ¢enq is the field value at the end of inflation, determined by the condition
€ (Gend) = 1 (€v(@ena) = 1 is a good approximation if slow-roll lasts until the end of
inflation), and ¢, is the field value at which the cosmological scales that we observe
today exited the horizon.

To gain some intuition regarding the dynamics of the inflaton it is useful to note
that Eq. resembles the equation of a particle moving in a potential V' subject
to friction 3H in field space, where the coordinate is ¢. Slow-roll inflation takes place
when the potential density is much larger than the kinetic energy. From Eq. ,
we see that the larger V' is, the larger the H is. This means that we can picture the
inflaton as ball rolling down a potential in which the friction is larger the higher in
the potential it is. During slow-roll, the acceleration term in the KG equation can
be neglected and the evolution of the inflaton is determined by a balance between
the slope of the potential and the friction. Of course, the inflaton evolves in a way
that tries to diminish its potential density, so at some point the friction decreases
enough, its kinetic energy grows and slow-roll inflation ceases. Inflation lasting long
enough is guaranteed by a small enough second slow-roll parameter. Indeed, if the
second derivative of the potential is small, the slope does not change much, ensuring

the inflaton stays in the region with large V' for a long time.

2.1.3 The physics of inflation: from quantum to classical

So far our treatment has been at the background level, with all quantities being
a function of cosmic time only. However, although the Universe is homogeneous
and isotropic to a very high degree, it is not perfectly so, which means that
the cosmological fields need to have some spatial dependence. The way this is

usually described is via cosmological perturbation theory (see, e.g., Ref. [40] or
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2.1. Inflation

Refs. [41] 42] for a review), where the metric and energy-momentum tensor are
expanded as a perturbative series around the FRW solution. In this context, the
inflaton perturbations d¢(n,x), after being quantized, act as the initial conditions
for the subsequent hot Big Bang evolution. Indeed, the exponential expantion
during inflation stretches the perturbations d¢(n, x) to super-Hubble scales k < H,
making them classical [43] 44], 45| [46] [47, [48]. Later, after the end of inflation, when
the comoving Hubble radius starts increasing, they re-enter the causally connected
patches and act as the seeds of structure. In this section we calculate the spectrum
of these quantum fluctuations. Further details on cosmological perturbation theory
can be found in Appendix

In cosmological perturbation theory, quantities are expanded as

X(nv X) = >_<(77) + (SX(nv X): (270)

where x (7, x) stands for any cosmological field. For example, the most general FRW
metric perturbed to first order reads [49, [50]
ds®* = (G + 6g,) da*da”
= a’(n) [-(1+24)dn* + 2B,dnda’ + (05 + 2E;;) da'da’],  (2.71)

where the factors of 2 have been chosen for convenience. The perturbed energy-

momentum tensor can be written as

7% = —(p+dp), (2.72)
To=—(p+p)vi = ¢, (2.73)
T = (p+ dp)o; +11';, (2.74)

where v is the bulk velocity (notice it is a perturbation) and we have defined the

momentum density ¢; and anisotropic stress IT';, which is traceless IT", = 0. Since

VK
the spacetime dependent perturbations are much smaller than the homogeneous
background, i.e., dy < ¥, the perturbed Einstein and continuity equations,

6G,, = 6T, /m} and V,06T" = 0, approximate well the full non-linear solution.
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Another important property is that scalar, vector and tensor perturbations do not
mix at linear order [32]. This allows us to treat them separately by using the
scalar-vector-tensor (SVT) decomposition [51]. Importantly[l} at second order, scalar
perturbations do, in fact, act as a source for tensor perturbations [70} [71] [72), [73] (see
also Ref. [74] for a review). However, for our present purposes this is not relevant.

The first step is to identify the physical degrees of freedom. To do so it
is important to realize that perturbations generally depend on our gauge choice.
Indeed, perturbations are defined as the difference between tensors in the physical
(perturbed) spacetime and a given background spacetime, dx(n,x) = x(n,x) —x(n).
In other words, we are comparing tensors in two different manifolds, although for
this comparison to be meaningful it should be made at the same point of a given
manifold. This is the gauge problem [49]. Thus, a prescription identifying points
in the perturbed spacetime with points in the background spacetimes needs to be
given. This is called a gauge choice. A change in this correspondence (keeping
the background coordinates fixed) is called a gauge transformation, which can be
generally written as

o T =t 4+ (L, x). (2.75)

In order to address the gauge problem there are two possible avenues. We can
either construct gauge invariant quantities [49], i.e., quantities that remain invariant
under gauge transformations, or we can fix a specific gauge and keep track of all
perturbations.

We now give a simple example to illustrate the gauge problem. Consider a
homogeneous energy density p(n) and a change in time slicing n — 7 = 7+ £%(n, x).
In terms of the new coordinates the density reads p(n) = p(f — &%) = p(7) — p'(7)&°.

We see that the energy density is no longer homogenous, having a perturbation

! Although the amplitude of the scalar perturbations is tiny at CMB scales, at small scales it
may be enhanced, leading to the production of Primordial Black Holes (PBHs). In this way, the
production of GWs would also be enhanced at such scales [52] [53], 54, [55] 56, 57 58, 59) [60, 61
62, [63] [64]. This has recently lead to a surge of interest [65] [66] [67, [68] [69] since the GW spectrum

may inherit the small anisotropies found in the scalar spectrum.
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given by dp(7), x) = —p'(7)£°(7, x). Likewise, a physical perturbation can be hidden
away by choosing an appropriate time slicing (of course, we would not actually get
rid of the perturbation, as it would reappear in the metric).

A detailed analysis on how perturbations behave under gauge transformations
can be found in Appendix With these transformation properties in hand, we
are able to count the physical scalar degrees of freedom. During inflation there
are five scalar perturbations: four coming from the metric, i.e., A, B, C' and E,
and one from the inflaton, i.e., d¢. The freedom in choosing ¢ and £° allows
to set two perturbations to zero. Furthermore, the Einstein equations relate the
perturbations to each other, acting as constraint equations. This allows to set
another two perturbations to zero. We are left with one physical scalar degree of
freedom.

We choose to parametrize the only scalar degree of freedom by one of the
following two important gauge invariant quantities. The first one is the curvature

perturbation on uniform density hypersurfaces [75]
2 op
(=-C+V E+H?’ (2.76)

called this way since it reduces to the intrinsic curvature of spatial slices in the
uniform density gauge (0p = 0). The second one is the comoving curvature

perturbation

R=—-C+V?E —H(v+ B), (2.77)

where v is the scalar part in the SV'T decomposition of the velocity v;. It is called this
way since it corresponds to the intrinsic curvature of spatial slices in the comoving
gauge (v = B = 0). Both curvature perturbations are related via the linearized

Einstein equations

- —R+<i)2ixy (2.78)
‘= all ) 3(p+p) '

where W = A+ H(B — E')+ (B + E') is one of the Bardeen potentials [49]. Thus,
on super-horizon scales £ < aH both curvature perturbations are equal and can

be used interchangeably. Furthermore, also on super-horizon scales, they are both
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constant if the matter perturbations are adiabatic [76], i.e., if
_ p
OPen = 0p — =0p = 0, (2.79)
D

where we have defined the non-adiabatic or entropy perturbation dp.,. Note that
OPen is gauge invariant. This critical feature makes them the best candidate to
describe the scalar perturbations.

Let us work in the comoving gauge with
0p=FE =0, (2.80)

and solve for B and C' by using the Einstein equations. Thus, the perturbed metric
reads (we do not consider vector perturbations as they decay exponentially during
inflation)

ds* = a*(n) [—dn* + (1 — 2R)é;;dz'da’] (2.81)

where we have ignored the tensorial perturbations for now. Note that in this gauge
the inflaton is unperturbed, and all scalar degrees of freedom are parametrized by
the comoving curvature perturbation R(n,x). In order to obtain the equation of
motion for the latter, we need to expand the action to second order in R. This is
a somewhat technical calculation that involves the ADM formalism [77] (see Ref.
[78] for a more didactic presentation). The full derivation can be found in Ref. [79].
The result reads

s=1 / d*z a3¢—2 {722 — ia’iﬂ‘amajn +O(R?). (2.82)

2 H? a?

Introducing the Mukhanov-Sasaki variabld?] [80, 8T]

v=2zR, (2.83)

where

z = a% = a% = a\/2egmp, (2.84)

2Note that the Mukhanov-Sasaki variable and the scalar part of the off-diagonal components

of the perturbed energy-momentum tensor are both denoted by v. The difference between them is

obvious by the context.
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and switching to conformal time, Eq. (2.82)) can be rewritten as

1 Ny "
S = 5 /dnd% [(v’)2 — 07 0,w0v + Z—vzl
2

- %/dnd?’k [(v{()2 — <k2 — %ﬁ) vi} , (2.85)

where we have switched to Fourier space in the second step by introducing

v(n,x) = /%vk(n)eik'x. (2.86)

The conjugate momentum to the canonically normalised variable v reads

7(n,x) = 5(((59511) ='(n,x). (2.87)

Extremising Eq. (2.85)) gives the Mukhanov-Sasaki equation

Z//
vy + <k2 — ?) v, = 0. (2.88)

This is the equation for a harmonic oscillator with a time dependent frequency
wi(n) = k® 4+ 2”/z. Let us emphasize that all the couplings between the metric
and the inflaton (to first order in perturbation theory) are contained in this simple
equation. Also note that we have dropped the vector notation k — k, since Eq.
only depends on the modulus of the wavenumber. Finally, note that the time-
dependent part of the frequency can be written in terms of the slow-roll parameters.
Indeed, differentiating 2z twice in Eq. with respect to conformal time we
obtain
" 5

3 )
%:27'[2 |:1+€H_§5H+ <6H—7H> (EH_(SH)_ﬁ . (289)

No approximations have been made, we have simply rewritten the time dependent
part in terms of ey and dy.

Since inflation is a period of quasi-de Sitter expansion (see below), we can analyze
the Mukhanov-Sasaki equation in the pure de Sitter limit in order to gain some

intuition. During de Sitter, the scale factor reads a(t) oc e*, or, in conformal time,

1

a(n) = “Hy (2.90)
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where € (—00,0), with minus infinity corresponding to the initial Big Bang
singularity at t = 0 and zero corresponding to the end of inflation. Note that it
is not possible for inflation to be a period of pure de Sitter expansion, since inflation

could have not ended. Using that the de Sitter limit corresponds to {ey,dy} — 0

in Eq. (2.89), Eq. (2.88) now reads
" 2 2

We can immediately identify two different limits. For modes with wavelength much
smaller than the comoving Hubble radius k7! > (aH)™' = —n, or k|n| > 1, the

Mukhanov-Sasaki becomes the equation of a massless scalar field in Minkowski space
vp + kv = 0, (2.92)

the solution of which is a superposition of plane waves
v = cre” P ek, (2.93)

This makes sense, since modes deep inside the horizon do not feel the expansion of

the Universe. In the opposite limit, we have

" "
2
2 (2.94)
ve oz M
which is solved by a superposition of growing and decaying modes
v =1+ ean’ (2.95)

In the super-horizon limit k|n| < 1 this solution is dominated by the growing mode

vy = c1n~ !, which means that super-horizon perturbations are frozen. Indeed, using

Eq. (2.83), we have
lim Ry = lim % o 7 — const. (2.96)
k|n|—0 kln|—0 2 n

We conclude that Ry is constant on super-horizon scales during de Sitter expansion.
This gives a clear and intuitive picture of the evolution of the scalar perturbations

during inflation. Indeed, at sufficiently early times, many e-folds before the end
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of inflation, the scalar modes are insensitive to the expansion of the Universe and
behave as plane waves. Then, as the comoving Hubble radius shrinks, the modes
progressively exit the horizon and freeze.

However, from an analytical standpoint we can do much better. Let us now
derive the general solutions to the Mukhanov-Sasaki equation for constant slow-roll
parameters. We also work to first order in the slow-roll parameters. We start by

noting that for constant ey we can directly integrate Eq. (2.34)) to obtain

1
H=—F——. 2.97
=y 290
Plugging this in Eq. (2.89) we have
Z” 1 2 + 6€H — 3(5]_]
— = ———— (24 2ey — 30y) = . 2.98
z (L—eg)™np? (24 2e1 = 30n) n? (2.98)
It is convenient to make one further redefinition, given by
" 2 _ 1/4 3
= %, where v = -+ 2eyg — 0. (2.99)
z n 2
With this, and making the change of variables *+ = —kn, the Mukhanov-Sasaki
equation can be rewritten as
LY (R & DR (2.100)
dz? 4) '
Finally, redefining the mode functions as vy = \/xg, we have
d? d
e AR Y GO S ) (2.101)

dz? dz

This is a Bessel equation, the most general solution to which is a linear combination
of Hankel functions g(z) = clﬂil)(x) + e HP (x), where a Hankel function of the
first kind is given by HY = J, + 1Y, and a Hankel function of the second kind
is given by bz (Hﬁl))* = J,—1Y,. J, and Y, are Bessel functions of the first
and second kind, respectively. Thus, the solution to the Mukhanov-Sasaki equation

reads
ve(n) = /—kn [t HV (—kn) + ex HSD (=kn)] (2.102)
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Chapter 2. Acceleration in a Dynamical Universe

To make further progress we need to quantize the theory. This is done in the
standard way, by promoting the canonically normalised variable v and its conjugate
momentum v’ to quantum operators, i.e., v — © and v — ¢', and imposing the

commutation relation

[0(n, %), %' (n,y)] = i6® (x — y). (2.103)

Alternatively, we can promote the Fourier components of both fields to operators,

i.e., vx — Ux and v — ¥}, according to the decomposition
Bw(n) = ve(n)ax + vpal,, (2.104)

O(n) = vh(mar + (v')zaly, (2.105)
where a, and &L are annihilation and creating operators, respectively, and the mode
functions vy (n) satisfy the classical equation of motion (2.88). Note that because of
this the mode functions still only depend on the magnitude of the wavenumber, while
the ladder operators define initial conditions which might depend on direction. The
sign in the wavenumber of the creation operators in Eqgs. — is negative
since © and ¢’ are Hermitian, i.e., 97 = © and (¢')7 = ¢'. Indeed, using Eq. ,
this means that the Fourier components must satisfy i (n)" = 9_1(n) (and likewise
for the conjugate momentum).

The ladder operators ay, and aL satisfy the usual commutation relations

lax,al)) = 6*(k —p) and  [aw, ap) = [af,al] = 0, (2.106)

p

if and only if the Wronskian of the mode functions satisfies the following constraint
W o, vi] = ve(vy,)* — vjv) = . (2.107)

This gives the first constraint on the integration constants ¢; and ¢, in Eq. (2.102]).
At this point it is useful to remember that the derivatives of the Hankel functions

read

dH M (z) vHM (z) L
= T_H;l)(x), (2.108)
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2.1. Inflation

and that their Wronskian is given by

W[HM (2), H? (2)] = ——. (2.109)
T
Plugging Eq. (2.102) in Eq. (2.107)) then gives
e = Jeof? = —. (2.110)

4k

The second constraint, necessary to completely fix the solutions from the second
order ODE , comes from the choice of vacuum. We do this with the standard
prescription [82], which we quickly review here. For an unambiguous choice of
vacuum |0), the mode functions vg(n) need to be fixed. Indeed, changing wv(n)
while keeping v fixed would change ax and hence |0), defined via ax|0) = 0. In
Minkowski space the choice is straightforward: the mode functions wvg(n) should
be selected such that the expectation value of the Hamiltonian in the vacuum is
minimized. However, this cannot be done for a general quasi-de Sitter spacetime,
where the frequency wi(n) = k? — 2”/z is time-dependent. Even if in principle
we could select the mode functions that minimize the vacuum expectation value of
the Hamiltonian instantaneously, at a given 7y, the mode functions satisfying this
condition will generally be different at a later time, thereby changing the definition
of |0). In order to find a solution we need to notice that at very early times, deep

inside the horizon, all modes satisfy k|n| > 1. From Eq. (2.89) this means that

Z” 1 1
B> =

— > .
224 25 — 30y + (2e5 — Onr) (e — Op) — 2~ 22

(2.111)

Thus, in this limit, the Mukhanov-Sasaki equation takes again the form given in Eq.
(2.92)), i.e., the equation of a massless scalar field in Minkowski space. Accordingly,

we impose the initial conditionf]

lim  vy(n) = ek, (2.112)

kn——o0

oy

3We remind the reader that the mode function satisfying Eq. (2.92)) and which minimizes the

vacuum expectation value of the Hamiltonian in Minkowski space reads v (n) = e~ /v/2k.
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Chapter 2. Acceleration in a Dynamical Universe

This condition defines a unique vacuum, called the Bunch-Davies vacuum, as well

as a preferable set of modes. Remembering that the large argument limit of the

2 )
lim H®(z) = |/ e mavmam, (2.113)
T—00 T
we can impose the Bunch-Davies initial condition in Eq. (2.102)). The result reads

Hankel functions is

1
V2k

From this, we find that c; = 0 and ¢; = /7 /(4k)e’ ™27/ giving

e*ikﬁ _ \/? [Clefi(kn+1/7r/2+7r/4) + C2ei(kn+u7r/2+7r/4)] ) (2114>
m

() = 5D, [ THO ), (2.115)

where v is given by Eq. (2.99)). Note that the condition (2.110)) is also satisfied.
Now that the have the solution for the canonically normalised field, to first order
in the slow-roll parameters, we only need z(n) in order to find R. From Eq. ([2.84)

we have

z n \ 2
where we used Eq. (2.97) and expanded to linear order in the slow-roll parameters

Z_':H(HEH_CSH):l(l_u), (2.116)

in the second step. Integrating gives
n 1/2—v
z(n) = z (—) : (2.117)
)
where 7, is an integration constant which can be conveniently associated with the
time of horizon crossing of the perturbations, i.e., k, = a,H, or n, = —k_ !, where
an asterisk denotes horizon crossing. Finally, the comoving curvature perturbation

mode functions read

v ) T _k,* v—1/2
Rk(n) _ k(77> _ ez7r(21/+1)/4\/j( ) nquEl)(_kn)’ (2118)

4 a,./2¢5,mp

where, again, quantities with an asterisk are evaluated at horizon crossing.

Remembering that the small argument limit of the Hankel functions reads
) —v 1 T\ VYV
lim H(2) = —=T() (5)  + 7 (5) 2.119
iy f,7@) = =2T03) T ray \3) (2.119)
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2.1. Inflation

we can now take the super-horizon limit knp — 0 of the mode functions of the
comoving curvature perturbation
o 1/2

21/71 k v
: __r(2vt1)/4 x L
k};go Ri(n) =e NG ['(v) T2 (k:*) . (2.120)

We conclude that, as for the de Sitter case (¢f. Eq. (2.96))), Rk is constant
on super-horizon scales during inflation. Furthermore, it can be shown [76], [83]
that it is also constant on super-horizon scales after a general single-field slow-roll
inflationary phase. This property together with the fact that the comoving curvature
perturbation is gauge independent make it the ideal candidate to describe the scalar
spectrum from inflation. Indeed, since it becomes constant at horizon crossing
during inflation, and remains so until horizon re-entry at much later times, we can
safely ignore all the complex high-energy processes of the early Universe and make a
direct comparison between inflationary predictions and late-time observables, such
as the temperature anisotropies in the CMB.

We now compute the spectrum of inflationary perturbations, which, to linear
order, are fully determined by their 2-point correlation function. Indeed, we have
seen (cf. Eq. ) that the fluctuations follow the equation of motion of a
harmonic oscillator (with a time-dependent frequency). As we know, the wave
function corresponding to the ground state of a harmonic oscillator is a Gaussian,
and so we expect the initial inflationary perturbations to also follow a Gaussian
distribution. Because of this, all odd N-point functions vanish, while all even N-
point functions can be obtained from the 2-point function. Of course, it could be
that contributions coming from higher order terms in perturbation theory play a
role. The current observational constraints [84] for the leading order correction, or
non-Gaussianity, are compatible with zero. Although this is a promising direction
in order to learn about the microphysics of inflation, it is beyond the scope of the
present work.

We are interested in the quantum statistics of the operator

R(n,x) = /@(jr—)ﬁﬂ [Rk(n)ak + Ri(n)al | e, (2.121)
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Chapter 2. Acceleration in a Dynamical Universe

where the mode functions Ry(n) are given by Eq. (2.118]). The expectation value
of R vanishes, i.e., (0] R(n,x)|0) = 0, but its variance does not

(RE) = OIRmOR@00) = [ o ERumR;) (0] il 1)

_ /%mk(n)ﬁ - /dmk%mk(n)ﬁ - /dlnkA%(n, k), (2.122)

where we have used the definition of the vacuum in the second step, the commutation
relations (2.106) in the third step and in the final step we have defined the

dimensionless power spectrum
2 _ K 2
Ar(n, k) = 55 Rem)[” (2.123)

The variance of the comoving curvature perturbation is completely determined by

the modulus squared of the mode functions, which is often called the power spectrum
Pr(n, k) = [Ri(n)|". (2.124)

The information contained in the power spectrum and in the 2-point function of the
perturbations is equivalent. Indeed, it is easy to see that the former is the Fourier
transform of the latter.

From Eq. (2.118)), the dimensionless power spectrum of the curvature perturba-

tion reads
k,S (—k’ )21/71 9

A2 ) I S ——L S SO ) 2.125
% (0, k) = 16 ez |HY (—kn)| (2.125)

In the super-horizon limit, using Eq. (2.120) and a, = k,./H,, we have

]{3322V_4F<V)2H2k_3 k —2v

lim A% (n, k) = LA e . 2.126
k|7§|r£l>0 R(na ) 7r3e*Hm% (k*) ( )

Note that the time dependence has disappeared. Using that 2% T'(v)? /7% ~ 2/ and
v =3/2+ 2¢;; — 03, we finally obtain

2 L —4e+20%;
AL (k) = ——— (—) : (2.127)

B 8m2mi ey \ ki
We remind the reader that inflation can only occur when {ep, |dx|} < 1. Therefore,

inflation generally predicts a weak scale dependence for the scalar perturbations.
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2.1. Inflation

With {eq, 0|} = 0, corresponding to de Sitter, we would have perfect scale
invariance. Deviations from de Sitter, needed for inflation to end, imply deviations
from scale invariance in the scalar spectrum, which are usually parametrised via the

scalar spectral index
ns — 1= —4dey + 205 = 2 — Nk, (2.128)

where we have used Eq. and the number one is featured due to historical
reasons.

In summary, the power spectrum of the comoving curvature perturbation takes
the form of a power law given by

AR (k) = A, (kﬁ*)ns_l, (2.129)

where the amplitude and spectral index read

H2

- 2002 % )
8T Mmp ey

A, (2.130)

ns =1—2ey — 1. (2.131)

The latest observational constraints [§] for these two quantities, evaluated at the

pivot scale k, = 0.05 Mpc ™!, are
A, = (2.099 +0.101) x 1077 (68%C.L.), (2.132)

ns = 0.9649 + 0.0042 (68%C.L.), (2.133)

corresponding to zero or approximately zero tensors (see Figs. and . We can
relate these results to the shape of the potential by using the slow-roll approximation,
in Eqgs. —, and relating the Hubble slow-roll parameters to the potential
ones, via Eq. . The amplitude and the tilt of the power spectrum in the

slow-roll approximation then read

GO (2.134)

* O 24mimiber’
ns = 1 — 6ey, + 2y (2.135)
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Chapter 2. Acceleration in a Dynamical Universe

Observations around the pivot scale k, probe the shape of the potential around
the field value ¢, = ¢(t,), where ¢, is the time at which the scale k, crossed the
horizon k, = a,H,. This time is usually given in terms of the remaining number of
inflationary e-folds, given by Eq. , where @enq is determined via ey (peng) = 1.

For completeness, we also mention here the scale-dependence of the tilt, defined

as
= dizsk. (2.136)
In the slow-roll approximation it reads
a, = 16eyny — 24et, — 26y, (2.137)
where we have defined the third potential slow-roll parameter
§v = mp V‘//ZW. (2.138)
The latest observational constraint [10] is
as = —0.0069 4 0.0069 (68%C.L.). (2.139)

Having dealt with the scalar perturbations, the treatment for their tensorial

counterpart is straightforward. The perturbed metric reads
ds® = a*(n) [—dn* + (6;; + hyj)da'da’] (2.140)

where 9;h"7 = h', = 0. The calculation of the action to second order in h;; is
simpler than for R (for a pedagogical review see, e.g., Ref. [85]). We give a detailed
calculation in Appendix [A.2] The result reads

2
5 = %/dndg’va [(%)2 = Omhi; 0™ ] (2.141)
5=,

where s denotes the two GW polarisations @ and ®, and we have switched to Fourier

space in the second step by introducing

dgk €’ hs ik-x
z] 7]’ Z / 27‘(‘ 3/2 2] k(n)ek ’ (2143)

s=6B,8
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2.1. Inflation

where have defined a polarization tensor that satisfies (€°)’; = k'e}; = 0 with the

8/

normalization 607" €5, (k)es,,, (k) = 20" In this way, €;;hi(n) describes oscillations
of a given polarization in directions perpendicular to the wave vector k.
In an analogous way to the scalar perturbations, we introduce the canonically

normalised variable
mp

fﬁ\/ﬁ

ahi, (2.144)

so that the action becomes
S=> E dnd®k | (f? — [ K* — @ (f)? (2.145)
2 k a k . .
5s=3,8
This action is the sum of two copies, one for each polarization, of the same action as
for the scalar perturbations (2.85)), only with z”/z substituted by a”/a. Extremising
it, we find that each polarization of the canonically normalised variable obeys the

following equation

"
(f2)" + (k2 = a—) fi=0. (2.146)
a
Using Eq. (2.97)), we find, to first order in the slow-roll parameters,
a” , 9 1 1 24 3ey
R C—eyP (L= en)yrp UR (2.147)
Making again the redefinition
" 2 _ 1/4 3
& = %, where ==+ €y, (2.148)
a i 2

and following the same steps as for the scalar perturbations, we find that the solution

to Eq. ([2.146|) reads
fi) =/ —=kn [el HV (—kn) + coHP (—kn)] . (2.149)

uantizatlion also proceeds 1n a Similar way. € promote anda 1ts conjugate
tization al ds in a similar way. Wi te f* and its conjugat

momentum f* to quantum operators as

. d3k ‘

o= ffnx) :/W [f;ﬁ(n)diﬂLf;j*(W)&sik] e, (2.150)
. d3k ‘

[ = (%) :/W [ ;f’(n)divtfi*’(n)&ik] e * (2.151)
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and impose the commutation relation
[ 0.%), 7 (0y)] = 75 (x — y). (2.152)
The ladder operators satisfy the commutation relations
[ay, a7 =6"6® (k —p) and [af,a"p) = [ay,a"L] =0, (2.153)
if and only if the Wronskian of the mode functions satisfies

WIS fel = D = R =i (2.154)

We again define the vacuum as the state annihilated by aj when the mode functions

satisfy the initial condition

lim fi(n) = L it (2.155)

kn——o0 v 2k
Analogously to the scalar perturbations, we find that each polarization of the

canonically normalised field is given by

fin) —eﬂ?““)\[w nHM (—kn), (2.156)

where p is given by Eq. (2.148). Of course, the metric perturbations also freeze in

the super-horizon limit. To show this, we first need to obtain the scale factor. By

integrating Eq. (2.97), we have

—1/(1—ep) —l—ep
n n
a(n) =as | — ~a, | — , 2.157

where, again, starred quantities correspond to horizon crossing k., = a,H,. With

this, we find
V2 fam) @02 D) ke (kN
lim Ai(n) = == i kAU — ocH == 2.1
k|$|IEO " mp k|$|rgo a(n) mpk3/2 I'(3/2) a. (k*) ’ (2.158)

where the time dependency has dropped out, as expected.

We are interested in the quantum statistics of the operator
\/_ * ~ ik-x
Z / 27)3/2 €;;(k) [fk( )ay + fi (n)asik} etk (2.159)
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2.1. Inflation

where the mode functions f;(n) are given by Eq. (2.156)). The expectation value of

hi; vanishes, i.e., (0] hy;(n, %) |0) = 0, but its variance does not

(hyl*) = OI%(U, )h”(m 0)10) (2.160)

-3 / s e ) 0) e FE ) o) 08 10
r— P

S,

- Z/ sl = o [ami i = [amkaio.n,

5=8,® P

where we have defined the dimensionless power spectrum of the metric perturbations
A2 (n, k) in a completely analogous way to its scalar counterpart. Since the mode
functions for both polarizations obey the same Eq. , their contributions in
the integral are equal. This is where the extra factor of two comes from in the
fourth step. Using Eq. , the super-horizon limit of the dimensionless power

spectrum reads

2H2 [k ¥
AF (k) = ——= (—) : (2.161)
h m2md \ k.
In summary, we have found that tensor spectrum takes the form of a power law
given by
E\™
A2 (k) = A, (k—> , (2.162)

where the amplitude and the spectral index read

2H?

21112

At:

(2.163)

ny = —2€. (2.164)

The observational constraints on the tensor perturbations are usually given in terms

of the tensor-to-scalar ratio, defined as

Ay .
r= = 16€7; = —8ny. (2.165)

The latest observational constraint [9] for this quantity, evaluated at the pivot scale
k., = 0.05 Mpc™ 1, is
r < 0.036 (95%C.L). (2.166)
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Chapter 2. Acceleration in a Dynamical Universe

Note that since A, has been measured, r quantifies both the amplitude and the tilt
of the tensor perturbations. Furthermore, since r > 0, the spectrum is necessarily
red-tilted, 7.e., ny < 0, meaning that the perturbations are larger at smaller scales.

We can relate Eqgs. (2.163) and (2.165)) to the shape of the potential by using

the slow-roll approximations. The result reads

2 V(¢
= — 1
I (2.167)
r = 16¢j,. (2.168)

Detection of a primordial stochastic background of GWs, possibly via the B-
mode polarization of the CMB, is usually considered to be a smoking gun for
inflation. It would also tell us about the energy scale of inflation (at times around

horizon crossing). Indeed,

1/4
Bine = pM/4 = (3m2 H2)Y4 = 4 x 107 (ﬁ) mep, (2.169)

where we have used Eqs. and . Note that since Eyys o< /4, we would
need a change by a factor of 10* in r to achieve an order of magnitude variation in
Ei¢. In order for tensor modes to be observable in the near future, with r» ~ 0.01,
inflation should have occurred at around the GUT scale Ei,s >~ 10'%GeV.

The tensor-to-scalar ratio is also related to the total field excursion, from the

time of horizon crossing to the end of inflation. Using Eq. (2.58) with dN = Hdt,

8 [do\?
=—|—] . 2.170
" md (dN ) ( )
Integrating, we have

N. N.
% = dN\/Z: | T+ / d_N L, (2.171)
mP 0 8 001 0 60 T*

where r, is the tensor-to-scalar ratio at horizon crossing. Since r does not change

we can write

much during slow-roll evolution, and remembering that N, ~ 60, we obtain the Lyth

bound [86] A

T

— =01 _ 2.172
me ~ CW G (2.172)

Large values for r are correlated with super-Planckian field excursions.
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2.1.4 Contact with observations and inflationary model

building

As we have explained in the previous section, inflation predicts an almost scale-
invariant spectrum for the scalar and tensor perturbations. It also predicts a small
deviation from perfect scale invariance coming from the broken time-translation
symmetry required for inflation to end. This is parametrised in Eqgs. and
(2.162)) via the the spectral indices ng and n;. Although tensor modes have not been
observed, from Eq. follows that the tensor spectral index is necessarily
negative (something that may be used to distinguish inflation from alternative
theories of structure formation, such as string gas cosmology [87, 88]). This is a
priori not necessarily the case for the scalar modes, since n, depends on 7y (see Eq.
(2.135])), which may be positive or negative. However, the latest observations [§]
suggest that n, ~ 0.97. Using the fact that the bound on the tensor-to-scalar ratio
implies €}, ~ €j; = r/16 < 0.002, we can conclude that concave potentials,
with ny < 0, are favoured. Even more, after the publication of the first round of
results by Planck [89], in Ref. [00] a Bayesian study of many different models of
single-field slow-roll inflation is carried out, arriving to the conclusion that plateau-

like potentials are statistically favoured.

The power spectrum of both matter and radiation has been measured and it is
clear that the results agree with the predictions from inflation, a great success in
itself. However, “this is not what tingles our spines when we look at the data”,
as Dodelson says in Ref. [91]. Instead, it has to do with the peaks and troughs
structure in the temperature power spectrum of the CMB (see left panel of Fig.
, which can only arise if all Fourier modes of the perturbations that re-enter the
horizon prior to recombination have the same phase. Inflation naturally provides a

mechanism for this to happen.

In comoving coordinates, the Fourier modes of the scalar perturbations Ry

progressively exit the horizon, and freeze when they do, as the comoving Hubble
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Figure 2.3: Temperature power spectrum (left) and TE power spectrum (right)
of the CMB, from Planck 2018. Both are shown as a function of angular scale.
The peaks and troughs structure in the left panel is a consequence of all Fourier
modes re-entering the horizon having the same phase. The anticorrelation between
temperature and polarization at 100 < [ < 200 in the right panel corresponds
to scales that were outside the horizon at recombination. Since polarization is
generated before recombination, creating such a signal without inflation would

violate causality [7]. Figures taken from [§].

radius (aH)™! decreases in size. We emphasize that after they leave the horizon
no causal physics can alter them. Then, at much later times, after inflation ends,
they again enter the horizon and start oscillating. However, since they are frozen,
they have very small R} when they do. Seeing R as a combination of sine and
cosine solutions, inflation excites the cosine only, or, in other words, all modes have
the same phase when they re-enter the horizon. As the horizon grows, modes with
smaller k re-enter earlier and have a longer time to oscillate before recombination
than those with larger k£, which re-enter at later times. In this way, summing all
modes that have undergone half an oscillation before recombination, having maximal
amplitude at that moment, leads to the first peak in the power spectrum. Likewise,
summing all modes that have undergone 3/4 of an oscillation, having null amplitude,

leads to the first through of the power spectrum. And so on so forth.

It is important to emphasize that if the phases were random (and constant power
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2.1. Inflation

across different scales), we would not see peaks or troughs in the CMB power
spectrum. Both the cosine and sine components of the Fourier modes would be
excited and summing all modes would lead a flat spectrum. The structure that
can be found in the left panel of Fig. is a direct consequence of all modes that
re-enter the horizon being coherent. However, even if inflation provides a natural
mechanism for this coherence, one could still postulate another physical process to
achieve this. Indeed, the peaks and troughs are all at [ > 200, i.e., at scales smaller

than one degree, meaning that they were in causal contact at recombination.

The most important piece of evidence in favour of inflation comes from the
cross correlation between temperature fluctuations and E-mode polarization of the
CMB (see the right panel in Fig. . One can find a negative correlation at
100 < I < 200, 7.e., at scales larger than one degree, which were not in causal
contact at recombination. Since polarization is generated before recombination, via
Compton scattering of the radiation field, creating such a signal without inflation

would violate causality [7].

The peak structure in the temperature power spectrum of the CMB also reveals
information about isocurvature perturbations [92]. In our discussion of single-
field inflation there is only one scalar degree of freedom, which induces purely
adiabatic initial conditions. However, for more general models of inflation (such
as multi-field inflation) this is not necessarily the case. If isocurvature fluctuations
were produced, they would imprint distinctive features in the CMB spectrum
[93]. More specifically, adiabatic initial conditions generate cosine oscillation in
the pre-recombination plasma, while isocurvature initial conditions generate a since
oscillation [35]. This is incompatible with the peak structure of the temperature
power spectrum of the CMB and isocurvature perturbations are highly constrained.
For example, in the case that they are totally correlated with the adiabatic modes,
the matter isocurvature is proportional to the curvature perturbation S, = /aR
[35]. The latest observational bound on the proportionally constant a is [10]

a < 0.0003790015 (95%C.L).
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Chapter 2. Acceleration in a Dynamical Universe

In summary, there is ample observational evidence that agrees with the most
generic instance of the inflationary picture. The power spectrum of the primordial
perturbations needs to be almost scale-invariant and all Fourier modes have to be
coherent. Inflation provides a framework where these two qualities are naturally
obtained. Furthermore, observations favor adiabatic initial conditions and small
levels of non-Gaussianity. This makes sense if we are to believe the single-field
slow-roll picture. Indeed, single-field models generate zero isocurvature modes.
Furthermore, slow-roll typically happens in a flat region of the potential, so the
self-interactions of the field are small. If this is the case, the linearised equation
of motion, which takes the form of that of a harmonic oscillator, is a good
approximation. But the wavefunction associated with the ground state of a harmonic
oscillator is a Gaussian, so it is expected that the statistics of the initial perturbations
also follow a Gaussian distribution.

Perhaps the aspect of this picture that is most lacking has to do with the
microphysics of inflation, which is still a mystery. To improve our understanding
in this respect, the detection of primordial tensor modes and non-Gaussianities are
two very promising directions. The former because, if detected, will tell us about
the energy scale of inflation. The latter because, even if small, non-Gaussianities are
related to the inflaton self-interactions. In any case, at present there exists a plethora
of models that agree with observations (see Figs. , something that has been
a source of criticism (although many other models have been discarded thanks to
ever-improving observations). Better or worse motivated, the strategy that is usually
followed in inflationary model building is to calculate the inflationary observables n,
A, r and ay, evaluated at horizon crossing, in the slow-roll approximation, to then
compare them with the observational data. In order to exemplify this procedure,
we give here the specific examples of chaotic inflation [94] and power-law inflation
[95].

We start with chaotic inflation. Let the potential be

V(6) = Vo (—) (2173)
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Figure 2.4: Marginalized joint 68% and 95% C.L. regions for n, and r at k =
0.002 Mpc~! from Planck alone and in combination with BK15 or BK15+BAO data,
compared to the theoretical predictions of a few inflationary models. o, = 0 is
assumed. Note that this figure is dated, as the tensor-to-scalar ratio has been
further constrained to r < 0.036 [9] since its publication (see Fig. . Figure taken
from Ref. [10].

where V} is some constant density scale. Using Eqgs. (2.66])-(2.67)) we have
2

2 2
€y = % (%) , and ny =n(n—1) <%) . (2.174)

Inflation ends when the condition €y (¢enq) = 1 is met, which means that ¢eng =
mpn/v/2. Plugging this and the first slow-roll parameter in Eq. (2.69) we obtain

the field as a function of the number of e-folds

S(N) = v2nmpy | N + g. (2.175)

Combining this with Eq. (2.174), the inflationary observables in the slow-roll

approximation read

n -+ 2
s=1——" 2.176
" 2(N+1) ( )
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Figure 2.5: Constraints in the r-n, plane for the Planck 2018 baseline analysis (green

contours), and when also adding BICEP /Keck data (blue contours). The constraint

on r is tightened to r < 0.036. The purple region corresponds to natural inflation.

Figure taken from Ref. [9].
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The first two can be combined to give the consistency relation
8n
— 1—n,
n 4+ 2< )

Using ngs ~ 0.965 and r < 0.036 in this expression gives

n < 0.3.

(2.177)

(2.178)

(2.179)

(2.180)

However, plugging Eq. (2.180) in Eq. (2.176) with n, ~ 0.965 gives that the

number of inflationary e-folds is N < 32.8, which is hard to achieve, unless the

period of primordial inflation is followed by subsequent periods of thermal and fast-

roll inflation [27]. In any case, the historically celebrated models with n = 2 and
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2.1. Inflation

n = 4 are observationally excluded. This can also be seen from Figs. 2.5, where
the predictions for n = 2/3,1,4/3, 2 are represented. They all lie above the marginal
value r = 0.036.

The potential for power-law inflation is given by
V(p) = Vye /me, (2.181)

The KG equation for this potential has the following exact solution [27]

B mpe 2(6 — )\2) mpe 2
It follows that the Hubble parameter reads
H(t) = ! Loy V(g) = : (2.183)

Integrating this expression we obtain the scale factor
a(t) o 122 (2.184)

which shows that for an exponential potential the inflationary expansion follows
a power-law behaviour, rather than quasi-exponential. @The Hubble slow-roll

parameters can also be directly obtained from Eq. (2.183) as

H )2 én

- d = =0. 2.185
N e T gy M =Ty (2.18)

This means that inflation occurs for
en<l o A<V2 (2.186)

The same condition for A can be obtained from the barotropic parameter

_92-Vie) X 1 (2.187)

w¢ == o ? )
¢?*/2 =V (¢)
by imposing ws < —1/3. However, since ey = const. inflation can never end, unless

the model is augmented, e.g., by adding another field with a hybrid mechanism [96].
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Chapter 2. Acceleration in a Dynamical Universe

Even then, the predictions of power-law inflation are in conflict with observations.

Indeed, the scalar spectral index and the tensor-to-scalar ratio read
ng=1-X, and r=8)\%. (2.188)

Using ng >~ 0.965 gives A ~ 0.19, which implies that r ~ 0.28, clearly incompatible
with the observational bound in Eq. .

In the original research in Chapter [l we consider a quintessential inflation model
with an inflationary sector governed by the potential in Eq. . By adding
an R? term to the gravitational action, and working in the Palatini formalism, we
are able to rescue chaotic inflation with 2 < n < 4 by bringing it back within
observational bounds. In the same spirit, in the original research in Chapter 5| we
rescue the also discarded exponential potential, although the setup is slightly more

complicated.

2.1.5 Reheating

In the discussion made so far we have ignored the elephant in the room: the Universe
is filled with the particles of the SM, dark matter and dark energy. Even if the
inflaton is responsible for the current acceleration of the Universe (an intriguing
possibility that will be studied at length in this thesis), there still needs to be
a mechanism that transforms the inflationary energy density into the matter we
observe todaylﬂ Such a process is called reheating. In this section we start by
quickly reviewing the canonical example of perturbative reheating to then comment
on gravitational reheating [97]. Ricci reheating [98, 99] is discussed in Chapter [
Although other mechanisms exist such that the inflaton is allowed to survive until
the present, as instant preheating [100], we focus on these two since they are the

ones used in the original research in Chapters[4 and 5] Reheating is generally highly

4An exception is quintessential inflation (or, more generally, non-oscillatory inflation), where
the inflaton survives until the present day to account for dark energy observations. In this case,

reheating needs to take place via other means (see Sec. [2.2.5)
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Figure 2.6: Field evolution in the Starobinsky potential [I1I]. The field values ¢,
and ¢enq correspond to the perturbations observed in the CMB and to the end of
inflation, respectively. After inflation ends the field oscillates around the minimum

of the potential and pertubatively reheats the Universe.

model dependent and it is a very active area of research. An in depth analysis
is beyond the scope of the present work. We refer the interested reader to Refs.
[T0T], 102, 103], 104}, [105] for reviews.

In the canonical scenario, as the field ¢ rolls along the potential, the latter
becomes progressively steeper so that the kinetic energy of the field becomes more
and more important. Inflation ends when the condition €y (¢enq) = 1 is met and
after that ¢ oscillates the around the minimum located at ¢y (in Fig. ¢o =0),
where V(¢g) = 0 (or else the Universe would engage in a new bout of inflation).
Such a homogeneous oscillating field can be thought of as a collection of massive
particles, i.e., inflatons, with zero momenta (if V" = const. > 0). If the Lagrangian

of the inflaton has a coupling to another ﬁeldEL the collections of inflatons will decay

5Here we assume only one coupling for simplicity, but of course there could be many.
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into this field, with decay rate I". The equation of motion of the inflaton then reads

¢+ (3H +T)¢+m?p =0, (2.189)

where we have Taylor expanded the potential around its minimum V’(¢) =~
V"($o)(¢ — ¢po) = m2¢ and introduced the phenomenological term I'¢. This is
the equation of motion of a damped harmonic oscillator. Since over the timescale

of a few oscillations, the Hubble parameter does not change much, we can use the

ansatz
¢ x exp{/dt /\(t)}, (2.190)
leading to
—3H —-T
At) = — +vm, (2.191)

where we have taken into account that the regime of interest is that of an under-

damped oscillator, with (3H + I')> < 4m?. Thus, the solution can be written as
o(t) = ®(t) sin (mt + ¢), (2.192)

where
1
D(t) exp{—§ /dt (3H(t) + F)}, (2.193)
and c is a constant phase determined by initial conditions. The kinetic and potential

energy density of the field immediately follow

1. ‘ 2
Pin =5 =5 [@(t) sin (mt + ¢) + ®(t)m cos (mt + C)] , (2.194)
V(g) = m;¢2 _ %@%W sin? (mt + ). (2.195)

Noting that over one oscillation ®(t) is basically constant, the averages per oscillation

are also easily obtained

P = V(¢) = }L(IDQ(t)mQ. (2.196)

Furthermore, in this limit, the first term in the brackets in Eq. (2.194) can be

neglected so that the total energy density reads

Py = %@2(t)m2 = 20 = 2V (9). (2.197)
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2.1. Inflation

This approximation is not as accurate over many oscillations, when the expansion of
the Universe changes the Hubble factor appreciably. The continuity equation may

now be obtained by noting

Py = % Gq&? + v> = d(d+ V') =—¢?(3H + 1), (2.198)

where we have used Eq. (2.189)) in the last step. Using Eq. (2.197), on average

$* = 2Pk = pg, so that we finally obtain
ps+ (3H +T)py = 0. (2.199)
The solution to this equation reads
po = (222) et (2.200)

where we have assumed that I' is constant and t.,q is the time at which inflation
ends. We can distinguish two different regimes. For I' < H, ps oc a~3. Thus, the
energy density of an inflaton oscillating around a quadratic potential decreases as
pressureless matter’, As time grows, the Hubble parameter H(t) = 2/(3t) decreases
and when H ~ I' the decay products grow faster than they can be diluted by the
Universe expansion. Finally, when I' > H, the Hubble friction term in Eq.
is negligible, the energy density of the inflaton decays exponentially fast py oc e
and reheating is completed. As a side comment, it could be that I' 2 Hg,q. This
case is called prompt reheating and the duration of this period is negligible.

From the discussion above it is clear why the reheating epoch affects the number
of inflationary e-folds and therefore the inflationary observables. Indeed, different
reheating mechanisms lead to different expansion histories during this period. This

of course changes the amount of elapsing e-folds from the end of inflation until the

present time, which, in turn, changes the number of e-folds before the end of inflation

6In general, a field oscillating in a power-law potential V o |q§\2n has a barotropic parameter
given by wg = (n—1)/(n+1) [106]. The quadractic potential case, with n = 1, gives the expected
matter-like barotropic parameter wg, = 0, while for a quartic potential, with n = 2, we have a

radiation-like barotropic parameter wy = 1/3.
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Chapter 2. Acceleration in a Dynamical Universe

at which the CMB scales left the horizon, in order to match the observations today
(see Fig. [2.2)).

As we have said, while I' < H, the Universe is dominated by a coherently
oscillating inflaton condensate, with a matter-like barotropic parameter w = 0.
Then, when I' ~ H the inflaton particles start decaying efficiently, a process which
is fast since at the end, when I' > H the energy density of the inflaton decays
exponentially fast. Thus, it a fair approximation to say that reheating occurs when
I' ~ H.y. Using the first Friedmann equation and Eq. we find that the
reheating temperature, defined as the temperature of the thermalised radiation bath

at the moment when it becomes the dominant component of the Universe, reads

90 1/4
Tien = ( _ ) Vmpl ~ \/mpT, (2.201)
Ty

*

where we have used that g. < 100. The decay rate I' may take different forms
depending on the interaction terms in the Lagrangian. For example, a fermionic

coupling of the form
Ling = —hop, (2.202)

where v is a generic fermionic field and A is a dimensionless coupling constant, leads

to a decay rate given by [107]

h*m
Loy = o (2.203)

Considering GUT-scale inflation V;{f ~ 10 GeV, and noting that at the end
of slow-roll inflation 1 = |Nena| = m = \/% ~ /Vina/mp (where we have
Taylor expanded around the minimum of the potential), we have that the reheating
temperature is Tyep ~ h x 10'° GeV.

Let us finish our discussion on perturbative reheating by mentioning that so
far we have considered decays of individual inflaton particles into other fields.
However, the inflaton condensate may act a coherent whole, leading to parametric
resonance effects. This non-perturbative decay is called preheating [I08] and results

in explosive decay. In turn, if the decay particles decay fast enough, the mechanism
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2.1. Inflation

is called instant preheating [100]. If (instant) preheating, takes place it is usually
much more efficient than perturbative reheating, so it is important to take it into
account. However, if the inflaton is not significantly coupled to any other field
in the Lagrangian, reheating proceeds via gravitational reheating [97], which does
not require the existence of any extra dynamical degree of freedom other than the
inflaton, or via Ricci reheating, which does.

Gravitational reheating can be heuristically understood by first noting that
the cosmological horizon during accelerated expansion is an event horizon. Then,
following a similar reasoning to the one that leads to the Hawking temperature of
the black body radiation emitted by black holes [I09], one finds that during de Sitter
expansion a thermal bath of particles with temperature

H

" or

T (2.204)

is generated. In the case of black holes, creation and annihilation of virtual pairs
close to the event horizon can lead to one member of the pair to fall into the black
hole. But be cause of this, annihilation is no longer possible, resulting in the other
member of the pair becoming a real particle, escaping to infinity. The case of
inflation is similar. Virtual pairs are pulled apart over to acausal distances by
the accelerated expansion of the Universe, before they have a chance to annihilate.
In other words, they become real particles. This process occurs everywhere and
therefore all space is filled with Hawking radiation.

All non-conformally invariant light (m < H) fields gravitationally produce
particles. Combining Eqgs. (2.41)) and (2.204)), their energy density is [97]

2 » H 4
Par = q”?)g (%) ~ 10"2H*, (2.205)

where we have introduced an efficiency factor ¢ ~ 1 since the spectrum is not exactly
thermal and g. ~ O(100) is the effective non-conformally invariant relativistic
degrees of freedom of the gravitationally produced particles.

In most cases, pgr is negligible compared to the energy density of radiation

generated via other reheating mechanisms. However, if the inflaton survives until
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Chapter 2. Acceleration in a Dynamical Universe

the present day and there are no other dynamical degrees of freedom, so that instant
preheating or Ricci reheating cannot occur, it is the only viable mechanism for the
generation of the Hot Big Bang radiation bath. In order for gravitational reheating
to be efficient enough, so that GWs are not overproduced during kination enough

to violate BBN bounds (see below), g. 2 300 is required.

2.2 Dark Energy

Having dealt with the physics of the very early Universe, we now turn our attention
to the present day. As is discussed in the introduction of this chapter, conventional
matter satisfies the SEC and so decelerated expansion would be a prior: expected.
In order to have accelerated expansion, the energy density of the Universe needs
to be dominated by a component with barotropic parameter w < —1/3 (see Eq.
(2.21])). This is the case of inflation, a period of accelerated expansion at very early
times that could be sourced by a scalar field with energy density dominated by its
potential. However, after the end of inflation, with the horizon and flatness problems
solved, as well as with the initial perturbations that seed all structure provided for,
the expectation was that the Universe would have been decelerating until the present
day. This is why the discovery [110} [111] that the Universe has recently started to
accelerate again came in as a shock (although it solved the cosmic age problem).
The substance responsible for the acceleration of the Universe was called dark
energy (DE), a term coined by Michael S. Turner [I12], reflecting its mysterious
nature.  Although since its discovery many mechanisms have been proposed
attempting to explain it (for a review see Ref. [I13]), they all have to satisfy the
most up-to-date constraints on the density parameter and barotropic parameter,
which are [§]
Qqe = 0.6889 £ 0.0056 (68%C.L.), (2.206)

wee = —1.028 £ 0.031 (68%C.L). (2.207)
Importantly, the constraint in Eq. (2.207) assumes that dark energy has been
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2.2. Dark Energy

constant throughout the history of the Universe. However, this need not be the
case and deviations from this behaviour can be parametrized as a function of the

scale factor as (with the normalization at present a(ty) = 1)

dw
wWee(a) = wo + (a — 1)5

= wo + (1 — a)w,, (2.208)
0

in what is called the Chevallier-Polarski-Linder (CPL) parametrization [114], [115]
and we have defined w, = dw/daly. Note that Eq. (2.208) is simply a Taylor
expansion of w(a) around the present time a(ty). Assuming this parametrization,

the constraints now read [§]
wo = —0.957 = 0.080 (68%C.L) (2.209)

w, = —0.29703% (68%C.L.). (2.210)

Note that w,, also known as the running of the barotropic parameter, is compatible
with zero. Future experiments, such as the recently launched EUCLID [I16] may be
able to resolve this uncertainty shedding light on the nature of dark energy. Finally,

imposing the restriction wy > —1, as is the case for quintessence, leads to [§]
—1 < wy < —0.95 (68%C.L.). (2.211)

The CMB temperature power spectrum also reveals information about the
critical density today, and, thus, about the energy density of dark energy. Indeed, the
Planck 2018 results [§] indicate that the Hubble parameter at present is (including
BAO)

Hy = 67.66 + 0.42 — (5.912 + 0.037) x 10~ mp (68%C.L.),  (2.212)

s - Mpc
where we have switched to natural units in the second step. This means that the

critical density today is

pY =1.048 x 107 "m3p. (2.213)

Combining this with Eq. (2.206]) gives the energy density of dark energy today
P = 7.222 x 10712'm3. (2.214)
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Chapter 2. Acceleration in a Dynamical Universe

2.2.1 ACDM

The first solution one might think of when addressing the nature of dark energy is
having it correspond to a positive cosmological constant (see [117], 118, 119 120] for
reviews). Indeed, there is the freedom of adding Ag,,, where A is a constant, to the

Einstein equations. From the point of view of the action this amounts to writing

S = m;’ /d4:v\/—_g(R —2A). (2.215)

This action is, in fact, the most general covariant one that can be written in terms
of the metric and its first and second derivatives. Equivalently, the new term may
be thought as a source in the energy momentum tensor given by T, = —m%Ag,,.
Of course, its conservation VT = 0 is still satisfied. Since the energy density is

constant, py = m#A, its continuity equation leads to
wy = —1. (2.216)

The modified Friedmann equations read]

p A
H? = —— +—, 2.217
3mé * 3 ( )
a 1 A
- =— 3 —. 2.218
R R (2215)
It is clear that the cosmological constant acts as a negative pressure py = —m3A

and therefore has a repulsive effect. As long as it is the dominant component of the

Universe, the expansion will be accelerated.

"The cosmological constant was originally introduced by Einstein in order to obtain a static
universe. Reinstating the spatial curvature term in Eq. , it is easy to see that a universe
dominated by dust (p = 0), with energy density p = 2m3A and curvature k = Aa? is static.
Furthermore, since p > 0, the cosmological constant is also positive, which means that the universe
is closed k > 0. However, after the discovery that the Universe is, in fact, expanding [121],
Einstein was forced to drop the cosmological constant term in what he called “my biggest blunder”

(according to George Gamow [122]).
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2.2. Dark Energy

The assumption that dark energy, which accounts for about 69% of the energy
budget of the Universe, is a cosmological constant, together with the density

parameters of matter and radiation [8] at present
O = 0.3111 % 0.0056 (68%C.L.), (2.219)

is called ACDM or the concordance model. From the totality of matter in the
Universe, only 15.8% is baryonic, while the rest corresponds to cold dark matter
(CDM). In other words, 95% of the total of the energy density of Universe

corresponds to unknown substances!

2.2.2 The Cosmological Constant Problem

We have a measurement for the critical energy density, and we know what proportion
of the Universe corresponds to dark energy, so we could claim the cosmological
constant has been observed. Unfortunately, when one starts taking into account the
different contributions from fundamental physics that could act as a cosmological
constant, things do not go as planned. In this section we comment on these
contributions and lay out what is known as the cosmological constant problem
[123] 124].

Classically, there exist two contributions. The first one is of course the
cosmological constant A that is allowed in the Einstein equations. However, there is
no preferred choice for what its value might be. The second one has to do with the
energy density of the different fields that exist in the Universe. Take, for simplicity,
a scalar field with energy-momentum tensor given by Eq. . The lowest energy
configuration is one where the kinetic energy of the field vanishes while the field is

lying at the minimum of its potential

TMV = _V(¢0)guua (2220)

where ¢q is the field value at which V'(¢o) = 0. There is a priori no reason for

the potential to vanish at the minimum and therefore a term like (2.220)) acts as
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Chapter 2. Acceleration in a Dynamical Universe

an effective cosmological constant. All in all, classically, the energy density of the

effective cosmological constant reads
pa = mAA + V(o). (2.221)

where the last term should be interpreted as the sum of the potential densities of
all the relevant fields.

In quantum theory, a field may be thought as an infinite collection of harmonic
oscillators in momentum space. As in non-relativistic quantum mechanics, these
oscillators have a zero-point energy and the sum of all of them in principle gives
the energy density of the Vacuumﬂ. More specifically, taking again a scalar field for

simplicity, the Hamiltonian reads

[ Bk s (o Lo 35
H /(ZW)3\/I< n (k ot 5(2m)% (0)), (2.222)

where m is the mass of the field. As we learn in quantum field theory courses,
the divergence coming from the delta function can be dealt with by working with
energy densities rather than absolute energies. This is because in a finite volume
(27)364)(0) is simply the volume. Therefore, the energy density of the vacuum reads

_<0|H|0>_1/ ¢k s _/ dk 12 s
Prac="77— =75 n)? k2 +m? = (27T)2]€ k2 +m?2, (2.223)

where in the second step we have switched to spherical coordinates in momentum
space. However, the theory is in general only valid until some ultraviolet momentum
kmax. Introducing this cutoff in the integral (2.223)), i.e., discarding high-momentum

modes, we have

Fmax kg 1
Prac = / VE? +m? ~ e (2.224)
0

(2m)?2 1672 M

where we have taken into account that the integral is dominated by the modes close
to the cutoff. In quantum field theory this energy is typically discarded (by normal-

ordering) under the grounds that we can not measure absolute energies: we can

8Vacuum energy was first experimentally measured by Casimir [125].
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2.2. Dark Energy

only measure differences in energy. However, the situation changes when gravity
is included, as any kind of energy contributes to the gravitational interactions.
Choosing ky.x to be the Planck scale, where quantum gravity effects are expected

to become relevant, gives

4
mMp 4

s ™ b, (2.225)

,Ovac =

where in the last step we have gotten rid of the numerical pre-factor as it depends
on the specific field theory under consideration and we expect contributions to the
vacuum energy from all the SM fields.

Comparing Eq. with the experimental value of the density of dark energy
in Eq. , we find that the theoretical contribution is many orders of magnitude
larger than the experimental value. Taking also into account the bare cosmological
constant A, it could be that they all cancel out to give the precise value in Eq.
, but they would need to do so with a precision of 60 significant digits in
energy (the dimensions of A are [A] = E?). This is the cosmological constant
problem [123].

In the present work we take the approach that due to some unknown symmetry,
all contributions to the cosmological constant cancel out (as was routinely assumed
before the observation of dark energy). In this way, dark energy needs to be

explained via other means. In our case, it will be quintessence.

2.2.3 An Interlude: The Hubble tension

The Planck CMB measurements suggest a value for the Hubble parameter today
given by Eq. . This value is not only at odds with the vacuum energy density
expected from theoretical considerations, as detailed in the last section. For very
different reasons, it is also at odds with local measurements (although the difference
in magnitude is much less dramatic), in what is called the Hubble tension [126]. More
generally, the Hubble tension may be defined as the discrepancy between the locally
measured and cosmologically inferred values for the expansion rate today H (for

reviews on the Hubble tension see, e.g., Refs. [127], 128 129, 130, 13, 131, 132}, 133]
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and Refs. [13], [134] for a focus on the different models that have been proposed to
explain it). Let us first start by elucidating the difference between both.

Obtaining H, involves the measurement of cosmological distances. These
measurements are difficult to carry out, although not impossible. The strategy
that is often followed is to take advantage of either standard candles, i.e., objects of
known intrinsic brightness, or standard rulers, i.e., objects of known size. With the
former, comparing the measured flux of light with the theoretical value and taking
into account the FRW geometry of the Universe as well as the redshift of light, one
can infer the distance to the source. As for the latter, if an object has a known
size, e.g., the typical separation between hot and cold spots in the CMB, it can be
compared to the observed angular size, which depends on distance.

More specifically, for local measurements, i.e., with redshift z < 1, one can
Taylor expand the scale factor around the present time ¢3 to second order in the

look-back time |t — tg|
1
a(t) =14 Ho(t —to) — 5Q0Hg(t —t9)?, (2.226)

where we have used the normalization a(ty) = 1 and qo = —a(to)/(a(te)HZ) is the

deceleration parameter today. The redshift then reads

1 1
z=—--1= Ho(to —t) + 5(610 +2) Hg (to — t)*. (2.227)

On the other hand, from the flat FRW metric (2.20)), the radial comoving distance

reads

z(t) = C/t ’ % = c/t i dt [1 — Ho(t —to)] = c(to — t) + CTH”(tO — )%, (2.228)

where we have reinstated the speed of light ¢. Noting that Eq. (2.227)) can be
inverted to give Hy(to —t) = 2 — 2%(2 4 qo)/2 and plugging this in Eq. (2.228) gives

the comoving distance as a function of redshift

2(z) = Hio {z - %(1 + qo)ZQ} . (2.229)
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2.2. Dark Energy

But, of course, we do not measure comoving distances. Rather, when using the

method of standard candles, the useful definition of distance is that of luminosity

distance
1
do=(1+2)2= |2+ 5(1-q)22 +O()| . (2.230)
Hy 2
Since the measured flux of light coming from, e.g., a Type Ia supernova (SN Ia), is
given by
- L (2.231)
 drrde’ ’

where L is the (known) luminosity, i.e., energy radiated per unit of time, relative
distances are easily obtained simply by measuring the brightness of different SN Ia.
This, in turn, leads to the determination of the deceleration parameter by using
Eq. . Note, however, that Hy drops out of the calculation. Indeed, in
order to obtain the expansion rate we need to measure absolute distances. This
can be done by constructing a distance ladder, starting with distances that can
be directly resolved by using parallax to then move to larger distances by using
Cepheid variables and SN Ta. Cepheids are bright (~ 10° solar luminosities) stars
with brightness that changes periodically. In turn, this period is correlated with
their intrinsic brightness, due to the x-mechanism, where the opacity x of the gas
depends on its temperature [I35]. The most recent implementation of this technique

by the SHOES team yields a value for the expansion rate at present given by [136]

km

Hy=73.044+1.04 2.232
0 S MpC7 ( )
and
k
Hy="73.30+£1.04 m , (2.233)
s - Mpc

when including high-redshift SN Ia from the Pantheon+ data [137]. This value
disagrees at 5o with the one obtained by the Planck collaboration (see below). Of
course, there are other values obtained by a variety of experiments, although all
early-time indirect measurements, such as CMB or BAO, which assume ACDM,
agree between themselves, and likewise for all the late-time ACMD-independent

measurements, such as distance ladders or strong lensing (see Fig. [2.7)).
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Figure 2.7: Constraints on Hy coming from different cosmological probes (at 68%

C.L.). Figure adapted from Ref. [12] (which is based on Refs. [13, [14]).
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The value of the Hubble constant can also be inferred from cosmological
observations. The most notable example comes from the peak structure in the
angular power spectrum of the temperature anisotropies of the CMB (see Fig. [2.3)).
The multiple moment [, of the first acoustic peak is tightly related to the angle
subtended by the sound horizon at last scattering #,. In fact, the latter has been
very precisely determined by Planck to be [§]

0, = (1.04109 4 0.00030) x 10~ % rad. (2.234)
Since 6, is small we can work in the small angle approximation to write

0, = (2.235)

where r, is the comoving sound horizon at last scattering and D, is the comoving
angular diameter distance to the surface of last scattering. The former is given by

cdz

21 / \/_Hls\/Qm ls 1 —f-Z +Qr,ls<]— +Z)47
where 2z, = 1089.95 & 0.27 [8] is the redshift of last-scattering, c,(2) =~ ¢/v/3 is the

(2.236)

rs =

sound speed of the photon-baryon fluid and €, s and €2, ;5 are the density parameters
at last scattering of matter and radiation, respectively. Here, the Hubble parameter

at last scattering is given by
HY = Hg [Qmo(14 216)° + Qo(1 4 216)"] (2.237)

where we have omitted the contribution from dark energy as it is negligible at zi.
The comoving angular diameter distance is given by

s e dz dz

Dy = ,
4 0 Z HO / \/QmO 1 —+ Z (1 — Qm’o)(l -+ Z>3(1+w)

(2.238)

where we have assumed wCDM and neglected the contribution from radiation, since

the integral is dominated by its lower limit. For ACDM, w = —1. Combining, Egs.

(2.235)-(2.238)) we have
les dz
0

= /30 Hy V/ Qm,0(142)34+(1—Qm o) (142)3(1+w) |

(2.239)

foo dz
“ls \/Qm,ls(1+z)3+ﬂr,ls(1+z)4
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It should be noted that, strictly speaking, this is an implicit equation for Hy. Indeed,
in the right-hand-side, the quantities Qp,, o = wy/h? and Q, ¢ = w,/h? depend on h =
Hy/(100 kms™! Mpc’l)ﬂ. Furthermore, the density parameters at last scattering are
related to their counterparts evaluated at present time via a simple rescaling, so they
also depend on Hj. In practice, however, all unknown cosmological parameters are
obtained simultaneously by numerically fitting the ACDM model to the data. The
value for the Hubble parameter obtained by the Planck collaboration using this
method is [§] (excluding BAO)
km

s+ Mpc’

Hoy = 67.36 + 0.54 (2.240)

This implies a 8% discrepancy with respect to the value obtained by the SHOES
collaboration [130] (see Eq. (2.232)) at a confidence level of 5o.

Although determining H, via Eq. is heuristic, it is a good approximation
and it serves well to gain some intuition regarding solutions to the Hubble tension.
Indeed, although w,, and wy carry an h dependence, they mainly depend on the
characteristics of the CMB power spectrum and, in fact, it has been found [127]
that the fractional change of the Hubble parameter with these quantities is mild,
AHy/Hy ~ 0.1Awy/wy, and AHy/Hy ~ —0.77Awy, /wy. Then, for example, the
value of the Hubble parameter can be increased by increasing the number of
additional relativistic degrees of freedom N.g. This is because H)s in the numerator
of Eq. depends on (), o, which, in turn, depends on the photon density

parameter {2, via the relation

Qr,O =

7 4 4/3
1+§Nﬁ(ﬁ> Q0. (2.241)

In ACDM we have Negg = 3.06 coming from the three neutrino mass eigenstates
[138]. However, if Neg were increased it would lead to a higher H)s and therefore to

a larger H,.

9 Although we have used the approximation ¢, ~ ¢/v/3, cs(2) depends on Q, = wy, 0/h?, i.e.,

the baryonic density parameter at present, so it indirectly depends on Hy.
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2.2.3.0.1 Solving the Hubble tension

Assuming that the Hubble tension is not due to unknown systematic errors, its
resolution calls for the introduction of new physics [139, 140, 141, 142]. Since
local measurements of the Hubble constant are largely model independent, most
theoretical attempts involve the introduction of new physics, beyond the ingredients
of ACDM, such that the value of H inferred from CMB measurements is increased.
Looking at Eq. , these can be classified in early-time and late-time solutions,
depending on whether they change the denominator or the numerator of this
expression, respectively. Early-time solutions usually involve an increase in the
energy density before recombination such that the comoving sound horizon at last
scattering is decreased. For example, increasing Neg is an early-time solution.

Late-time solutions require that the energy density between recombination and
the present time is smaller than in ACDM, with the constraint that the current
energy density is fixed [143], i.e., p(z)/po < p(z)/polacpm, such that the comoving
angular diameter distance to the last scattering surface is increased. Since the
redshift scaling of matter and radiation are known, this can be achieved by
introducing an exotic component with energy density that increases with time.
A popular candidate has been a phantom field [144] with barotropic parameter
w = p/p < —1 and, more specifically, dark energy with a phantom crossing
[145], [146], 147]. However, these models not only imply a violation of the dominant
energy condition (DEC), but lead to discrepancies in the sound horizon seen from the
galaxy correlation function [132] 148], as well as with constraints on the barotropic
parameter of dark energy coming from high-redshift SNe Ia data [137]. Other
possible late-time solutions include a vaccuum phase transition [149] 150} 1511 [152] or
interacting dark energy [153,[154]. Late-time solutions, which seem to be disfavoured
[155], [156], are beyond the scope of the present work, so we do not further comment
on them.

One of the most promising early-time solutions for the Hubble tension is EDE,

a name coined in Ref. [I57] (see also Refs. [I58| 159, [160] for early works). The

65



Chapter 2. Acceleration in a Dynamical Universe

nature of EDE is well described by its name: it simply is a subdominant dark energy
component in the early Universe. In Ref. [I61] it was first suggested that EDE
might alleviate the Hubble tension, but it was soon realised that the analysis was
too simplistic and another model that fully resolves the tension was proposed in Ref.
[162]. Since then, EDE in the context of the Hubble tension has become a very active
area of research (see, e.g., Refs. [163] 164 [165] 166, 167, 168, 169, 170} 171, 172), 173,
174, 1775 176, 162 177, 178, [179] 180, 18T, 182 183, 184, 185, 186, 187, 18K, 189, 190]

for a non-comprehensive list).

EDE provides an increase to the energy density before recombination, leading to
a smaller comoving sound horizon at last scattering and therefore to a larger value for
Hy inferred from the CMB. It usually contributes ~ 10% to the total energy density
for a brief time, to then quickly redshift away, leaving the subsequent evolution of
the Universe unchanged. More specifically, EDE is generally modelled as a frozen
scalar field ¢ that becomes dynamical at redshift z., when its density parameter
is f.. = Qs(ze)/Qot(2e). In most of its successful realizations, ¢ then undergoes
oscillations, with its energy density decaying faster than radiation. Models are

parametrized by three quantities: z., f.. and the effective sound speed 2.

Of course, EDE is highly constrained by the peak structure of the angular power
spectrum of the CMB temperature anisotropies (see Fig. . Indeed, although
the multiple moment of the first peak is related to scales corresponding to last
scattering, the highest multiple moments, with I; ~ 3000, correspond to scales the
re-entered the horizon at redshifts z ~ 10, deep inside the radiation dominated era
and well before equality. Constraints vary depending on the specific model under

< 0.107, so that

~Y

consideration. However, it is usual to find 2z, > 2z, and 0.015 < f,,
the contribution of EDE is enough to solve the tension while not impeding structure

formation. By last scattering, the density parameter should already be f, < 0.015.

It has been argued [133, [191] that upcoming ground-based measurements of
the CMB, e.g., by the SPT and ACT collaborations or the Simmons Observatory,

providing independent measurements of intermediate angular scales and extending
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those of small scales, may uniquely probe EDE, possibly discarding it as a viable
model. However, if the evidence in favor of EDE became stronger, connecting it
with “late” DE would be one of the most pressing questions.

A toy model attempting to unify EDE and late DE is given in the original
research in Chapter There, a scalar field with a non-minimal kinetic term,
in the context of a-attractors, acts as EDE to then free-fall with energy density
p < a % and freeze. At late times the field becomes dominant and accounts for
the DE observations. Furthermore, it may even be possible to have the scalar
field be responsible for the period of cosmic inflation in the early Universe, as in

quintessential inflation [15].

2.2.4 Quintessence

After our digression into the Hubble tension, we return to the topic of dark energy.
In Sec. [2.2.2] we explained the extreme fine-tuning problem associated with a
cosmological constant, in what is called the cosmological constant problem. Our
approach in the present work is to ignore this issue by assuming that, due to some
unknown symmetry, all contributions to the cosmological constant cancel out. Dark
energy then needs to be explained via other means.

Among the plethora of proposed mechanisms, we focus on, arguably, the simplest:
a scalar field (see Ref. [I13] for a review). And among the plethora of available scalar
field modelﬂ we focus again on, arguably, the simplest: quintessence [208, 209] (see
also Ref. [210] and Ref. [211] for a review).

Quintessence is defined as a scalar field ¢ governed by the action

Sy = / d*zv/—g {—%gﬂ”amam ~ V(o). (2.242)

This is the same action as the one we introduced for the inflaton in Eq. (2.47). Thus,
the analysis given in Sec. regarding the background dynamics directly applies

10A non-comprehensive list includes chameleon fields [192, 193], k-essence [194] [195] [196],
modified gravity [197, 198, [199], Chaplygin gas [200} 201} 202], tachyons [203] 204], Phantom
Dark Energy [144], the Cyclic Universe [205] and Ghost Condensates [206, 207].
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here, with the caveat that during inflation the dominant component of the energy
density is the inflaton. After the hot Big Bang, the Universe goes through periods
of radiation and matter domination, during which the quintessence field needs to be
subdominant, until it comes to dominate at the present time. Therefore, in order
to correctly study the dynamics of quintessence we need to study the dynamics of a
subdominant scalar field.

The Friedmann equations are modified as

171, ‘
H? = — 2.24
o |38V + ). (2.243
and
S T -
=y EEIERTSA (2.244)

where py, is the density of a background perfect fluid with barotropic parameter
wy, = pp/pp and b is label standing for the possible different components, such as

pressureless dust or radiation. The energy density p, and pressure py of the field
remain as in Egs. (2.51)-(2.52). Both the field and the background perfect fluid

obey continuity equations
where wy = py/pgs, and
v+ 3Hpp(1 4+ wy) = 0. (2.246)
The solution to Egs. (2.243)) and (2.246]) in the case of a subdominant field
Py <K pp reads

ppla) xa™™ = at)xt = H@l) == (2.247)

where, for convenience n = 3(1+4wy,). With this, the KG equation takes the following
form
¢+ %o} +V'(¢) = 0. (2.248)
Let us obtain the potentials V(¢) that allow the density evolution of the field to
be
py xa ™, (2.249)
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where m is a constant. Note that the power of the scaling behaviour of quintessence
is bounded as 0 < m < 6. The cases m = 0 and m = 6 correspond to the limiting
cases of potential and kinetic domination, with wy = —1 and w, = 1, respectively.
Furthermore, the scaling in Eq. requires that the ratio of the kinetic density
of the field and its total density remains constant. This can be easily seen by taking

a time derivative of ps and combining it with the KG equation to obtain
ps = —3H@?. (2.250)

Dividing this expression by ps and noting that, from Eq. (2.249), ps/ps = —ma/a

we find '
¢*/2 _m
e 6
We now can also find the time dependence of (;5 Combining Eq. with Egs.
(2.247) and (2.249) gives

(2.251)

o(t) ot (2.252)

Plugging this back in the KG equation it is straightforward to integrate for V(o)
[209] 212].
Let us first focus on the m = n case. Integration of Eq. (2.252) gives

b(t) = QmTP Int /to, (2.253)

and

t(¢) = toe?/2me) (2.254)

where we have chosen the integration constant by convenience. Plugging Eq. (2.253))

in the KG equation gives

2mp (6 1
—|=-=1)=+V'(¢)=0. 2.255
E(2-1) g v (2:255)
Plugging Eq. (2.254) in Eq. (2.255) and integrating gives the exponential potential
2m? 6
Vig)= 2 (11— = |e/me, 2.256
0= (1-2)c (2.256)

69



Chapter 2. Acceleration in a Dynamical Universe

In the current limit of a subdominant field p, < p, this potential gives rise to
a scaling behaviour for the field such that its energy density mimics that of the
background. We prove this by showing that the density parameter of the field is

constant as well as by obtaining w,. First, combining (the time derivative of) Eq.

(2.253]) and Eq. (2.256)) we find the energy density of the field to be

_ 12m3
nA2t2’

po = 362+ V(0) (2257)

The energy density of the background can be obtained from the Hubble parameter

in Eq. (2.247)) via the Friedmann equation as

B 12m3
P= e

(2.258)

Thus,

ps _ n _ 3(1+w)
Q = = prm— 2.2

which is constant. Then, combining (the time derivative of) Eq. (2.253) and Eq.
(2.257) we find

(2
2
b2 _n (2.260)
ps 6
Plugging this back in Eq. (2.251)) gives
Wy = Wy, (2261)

as we wanted to show. Note that in order for the process of BBN not to be disturbed,
the contribution of the field to the energy budget of the Universe should be small
enough. The bound reads [27]

QqS(tBBN) < 0.045, (2262)
which combined with Eq. (2.259)) (and wy, = 1/3) leads to
A>9.4. (2.263)

It is clear that, in the regime under consideration, it is not possible for a field

rolling along an exponential potential to behave as dark energy. Not only its density
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remains a constant fraction of the total, but its barotropic parameter is that of the
background and therefore can never fulfill the requirement for accelerated expansion
wy < —1/3, much less the observational bound w, < —0.95.

We have obtained the only potential that can give rise to the scaling behaviour
in Eq. (2.249), with n = m. However, the KG equation is non-linear and there is
no guarantee that given an exponential potential the field with generally follow the
assumed scaling solution. In other words, the phase-plane analysis of the system
should be carried out. This was first done in Refs. [213] 214], where it is found
that the solution we have obtained is indeed an attractor, for A> > 3(wy, + 1).
Furthermore, there is another attractor for A < 3(wj, + 1) where the energy density
of the field dominates the Universe 2y = 1. Since in this dominant attractor the
barotropic parameter of the field is given by Eq. , accelerated expansion can
only occur for \? < 2.

Is it possible for exponential quintessence to successfully describe dark energy?
The scaling attractor is very attractive (no pun intended!) from a model-building
point of view, since given any initial conditions the field stays subdominant, while
having a constant non-negligble contribution to the total density, mimicking the
scaling of the background. However, precisely for this reason, the field can never
lead to accelerated expansion with w, < —1/3. On the other hand, the dominant
attractor corresponds to total domination of the field. This means that, since Qg ~
0.69, at present the field should have not reached this attractor yet, but be in
the transition between both attractors. Following this reasoning, in Ref. [215], T.

Barreiro, E. J. Copeland and N. J. Nunes proposed the potential
V(¢) = Vie/me 4 Vpelolme, (2.264)

where V) and V, are constant density scales and o > (. Therefore, at early times
the first term dominates over the second, while the opposite is true at late times.
In this way, the field follows the scaling attractor during the radiation and matter
domination eras, while towards the present it transitions to the dominant attractor.

From the BBN constraint in Eq. (2.263]) we have a > 9.4, while V] is basically a free
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parameter, since the scaling regime does not depend on the density scale. As for the
second exponential, we can impose the observational constraint for quintessence in
Eq. to obtain 8 < 0.39, while the mass scale V5 should be comparable to the
critical density today Vi ~ 107129mg, in order for the transition between attractors
to happen close to the present, with V(¢g) = Qqepo. Of course, this corresponds to
the same amount of fine-tuning as for ACDM, tarnishing the nice logic behind the
mechanism.

Finally, exponential quintessence could also work if the field overshoots both
attractors with A\ < /2, transiently freezing to then unfreeze close to the present
time and approach the dominant attractor. This scenario is called thawing
quintessence. However, here one needs to give up the idea of an attractor as the
initial condition, 7.e., the value ¢r at which the field freezes accounting for the
critical density today V' (¢r) = Qqepo, needs to be explained.

In the original research in Chapter [5| we consider a quintessential inflation model
with a quintessential sector governed by the exponential potential , in the
context of modified gravity in the Palatini formalism. The inclusion of a running in
the coupling constant £ of the non-minimal coupling between the field and gravity
£¢? R [82] generates a minimum in the potential at large field values. When the field
reaches this minimum, it essentially behaves as an effective cosmological constant,
accounting for dark energy. In this way, we are able to utilise the exponential as a
successful quintessence potential in a novel way, without using either the scaling or
the dominant attractors.

We now focus on the m # n case. Integration of Eq. (2.252)) gives

+ 1-m/n

% _B (%) , (2.265)
and B :
t n/(in—m

= <Bi;bo) , (2.266)

where ¢q is an arbitrary field value, ¢y is an arbitrary time value, the integration

constant B is dimensionless and we have set the other integration constant to zero
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A = 0 since it leads to a potential that does not satisfy the constraint in Eq. (2.251]).

The KG equation now reads

t2 By (1 - T) (9 - T) ( ! )_(n+m)/n +V'(¢) = 0. (2.267)

n n n to

Plugging Eq. (2.266) in Eq. (2.267) and integrating gives the power-law potential
2 6 7
V() = 15 (Beo)? {—] ( + 2 )( ¢ ) , (2.268)

a2 ) B
where
2
g= " (2.269)
m-—n

The power of the potential is positive ¢ > 0 for m > n. In this case, the density of
quintessence diminishes faster than that of the background. Conversely, a negative
power ¢ < 0, first investigated in Refs. [209, 216], corresponds to m < n, and the

density of the field diminishes slower than that of the background. Solving for m in

Eq. (2.269) gives
q
=(——|n 2.270
" (q—2) " (2270)

It follows that if ¢ is positive then it must be ¢ > 2, since both m and n are positive.
For negative powers, all values are allowed ¢ < 0.

It is straightforward to fix the integration constant B. We simply use Eq. ([2.270))
in Eq. (2.265)) to rewrite the field as

2/(2—q)
% _p (i) . (2.271)

It is also important to note that given a potential V(¢) = Vy¢?, the constant
potential density V4 in front of the V’ term in the KG equation can be absorbed
into a rescaling of time ¢ — #(t) = /Vot. With this, and plugging Eq. in
the KG equation ([2.248]), we obtain

SRS e

Finally, noting that (tg 2 (2)—(1) 149 has dimensions of mass, we rewrite the potential
as

V(p) = M*99, (2.273)
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where M is a mass scale. For negative values of ¢, this is typically called the inverse-
power-law potential.
We have now derived all potentials that lead to a scaling solution of the field

m

given by p, oc a=™, assuming that the background scales like p oc a™". However, as
we have commented for the exponential potential, the attractor structure should be
analysed out in order to find out how general these scaling solutions are. This was
first done in Ref. [217] for negative ¢ and n = 3,4 and in Ref. [212] for arbitrary ¢

and arbitrary n. For ¢ < 0, it turns out that the scaling solution is an attractor if

q<2(g+"). (2.274)
—n

Since n is positive, this condition is always satisfied and scaling solutions are

attractors for all ¢ < 0. Conversely, for ¢ > 0 we have an attractor if

q>2(2t2). (2.275)

Thus, during matter domination, with n = 3, the scaling solution is an attractor as
long as ¢ > 6. During radiation domination the condition is ¢ > 10.

Although positive power-law potentials are used in other contexts, such as in
EDE (see the discussion towards the end of Sec. or inflation, they are not
so relevant in the context of dark energy. This is because they lead to a scaling
behaviour for the field with m < n, i.e., the energy density of the field diminishes
faster than that of the background, a property that is not desirable since dark
energy needs to approach domination towards the present time. Negative power-
law potentials are a prior: better equipped to describe dark energy as they lead to
a similar field evolution as for positive power-law, only with m > n, so that the
density parameter of quintessence grows with time. However, precisely because of
this reason, there is a certain amount of tuning in these models. This has to do with
the fact that for the BBN process not to be disturbed, the density parameter of the
field at that time should satisfy [27] 2, (tgpn) < 0.045. For the exponential potential,
the mass scale of the potential is unaffected by this bound, as the only condition

for the field to follow the scaling attractor is on the strength of the exponential
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A. If X is large enough, not only the field follows the scaling attractor, but its
density parameter is small (see Eq. ) This is not so in inverse-power-law
quintessence, for which the scaling solution is an attractor irrespective of the value ¢
takes. Therefore M should be appropriately tuned. Related to this issue is the fact
that the field should be starting to dominate at the present time. An estimate for
the corresponding field value can be calculated by noting that the density of the field
catches up with the background fluid when its mass squared becomes comparable

to the Hubble parameter (also known as the coincidence constraint)

2

which means that the value of the field at present is of the order of the Planck mass
do = O(mp). (2.277)

Since V(¢o) = Qaepo 22 107 m}, (see Eq. (2.214)), we obtain the mass scale
M ~ 107120/ (2.278)

For example, if ¢ = —4, we have M ~ 10% GeV, close to the electroweak scale. It
seems the severe fine-tuning of ACDM is alleviated.
There is a more serious problem when considering the barotropic parameter of

the field. From Eqs. (2.268) and (2.271)), after a bit of algebra, it is straightforward

to obtain
_ quy, + 2 _ lq|wp, — 2
q—2 lq| +2

For a background dominated by pressureless dust, with w;,, = 0, the observational

we (2.279)

constraint wy < —0.95 leads to

lq| < 0.1, (2.280)

which, from Eq. (2.278) leads to M ~ 1072 GeV, a mass scale difficult to find
in particle physics. We conclude that trying to explain dark energy via inverse-

power-law quintessence in the scaling attractor leads to an amount of fine tuning

comparable with ACDM.
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However, Eq. has been calculated under the assumption that the field
is subdominant ps < p. Since the field is beginning to dominate at present, it is
reasonable to expect it to be undergoing slow-roll in its potential. In this regime,
the barotropic parameter reads [27]

_ ¢*mp — 6¢

= — 2.281
P?mi + 602 ( )

We

Imposing the constraint wy, < —0.95 at present gives ¢o > 2.55|¢|mp, which is
consistent with our estimation in Eq. for reasonable values of ¢q. Of course,
the field is neither in the scaling nor in the dominant attractor, but transition
between both. However, as mentioned above, the scenario where the scaling
attractor brings the field to dominate today is not feasible due to the amount of
fine-tuning involved. In contrast, it could be that the field overshoots the attractor,
transiently freezing to later unfreeze close to the present time and approach the
dominant attractor. In this scenario, just as we explained for the A < /2 case
in exponential quintessence, the idea of an attractor has to be given up and the
initial condition for the field, i.e., the value ¢r at which the field freezes, needs to
be explained. Again, this behaviour is called thawing quintessence.

In the original research in Chapter [4] we consider a quintessential inflation model
with a quintessential sector governed by the potential in Eq. . On top of
the ingredients described so far, we add an R? term to the gravitational action and
work in the Palatini formalism. We obtain successful dark energy in the scenario
of thawing quintessence, for ¢ = 4 and a mass scale close to the electroweak scale,

which are rather natural values.

2.2.5 Quintessential Inflation

In the previous section we found that, although it is possible to endow quintessence
models with attractor properties, it is generally hard to successfully satisfy the
observational constraints on dark energy without either giving up the idea of an

attractor or including an amount of fine-tuning comparable to ACDM. For example,
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the scenario of thawing quintessence does not seem to lead to unreasonable amounts
of fine-tuning on the parameters. However, the value ¢r at which the field freezes
becomes a free parameter. It seems the fine-tuning has reappeared via the initial
conditions of the field. But, what if we could explain the value ¢g?

Quintessential inflation is a framework that identifies the inflaton and quintessence
scalar ﬁeldﬂ. In principle this is a natural idea, since in both cases the acceleration
of the Universe is driven by a potential-dominated scalar field. In its original
form, proposed by P. J. E. Peebles and A. Vilenkin [I5] in 1999 (see Refs.
[220,, P21, 222, 223, 224], 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236,
237,238,239, 2401, 241, 242] 243|244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254],
255, 256, 257, 258, 2591 260l 261, 262| 263| 264, 265, 266, 267, 268, [16], 269], 2701 271,
2772, 273, 2774, 275], 276, 277, 278, 279, 280, 281, 282] 283] for a non-comprehensive
list of successful quintessential inflation models and Refs. [284] 285] for reviews),
the potential reads (see left panel in Fig.

V(g) = MOTHMD, o =0 , (2.282)

praae s $>0
where M is a constant mass scale and A is the self-coupling of the inflaton. For large
negative values of the field |¢| > M the potential reduces to quartic chaotic inflation,
which, as we described by the end of Sec. [2.1.4] is discarded by observations,
unless, e.g., the gravitational action is extended with an R? term in the Palatini
formalism (see Chapter [4f for further details). Conversely, for large positive values
of the field ¢ > M, the potential reduces to quartic inverse-power-law quintessence.
As described in the previous section, the attractor properties of this potential
cannot be utilised and we are basically left with a thawing quintessence scenario.
However, the situation is now different. Crucially, due to the identification of the
inflaton and quintessence fields, the value at which the field freezes ¢r is not a free

parameter anymore, but is given by a combination of the inflationary attractor and

the mechanism that generates the radiation of the hot Big Bang. We show this, but

"The idea of unifying inflation and quintessence can be traced back to Refs. [218] 219].
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in order to do so we first need to understand the dynamics of kination, a new period

of expansion of the Universe typical of quintessential inflation.

s . . . . - 55k
Chaotic Inflation Inflationary Plateau
4r 2.0
Kination
3r 1.5k
s S
> >
2r 1.0
Kination
It 0.5
Quintessential Tail Quintessential Tail
Or 0.0r
-1 0 1 2 3 4 -100 =50 0 50 100 150
[ [

Figure 2.8: Left: Original Peebles-Vilenkin potential [I5] (see Eq. (2.282)) in
arbitrary units. Quartic chaotic inflation has been discarded by observations, so
the model is no longer valid. Right: Typical quintessential inflation potential, in

arbitrary units. It features an inflationary plateau, which is observationally favoured.

Kination, a name coined in Ref. [280], takes place after the end of inflation, as
the potential becomes very steep. It was first considered as a means of terminating
inflation in Ref. [287] and later as a source for a strongly first-order electroweak
phase transition that could enhance baryogenesis in Ref. [288]. During this period
the energy density of the Universe is still dominated by that of the inflaton field. The
defining property is that the inflaton becomes kinetically dominated, oblivious to
the potential. Importantly, as a consequence, the properties of the kination period

are model-independent. The total energy density of the Universe p reads

¢ 0
p=py=—- = H=

2 \/677?13 ‘

It immediately follows that the barotropic parameter (see Eq. (2.53))) is w = 1.

(2.283)

Since the field still obeys its continuity equation, it follows that its energy density
scales as

p=pyoxa’ (2.284)
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Using Eq. (2.283)), the KG equation during kination reads

¢ ﬁéz =0. (2.285)

2mp
Assuming that the start of kination happens at the end of inflation, this expression
can be readily integrated between then until some arbitrary time during kination to
obtain

11 _ V6 (t — tona) (2.286)

Cb Q‘Send a 2mP
where “end” stands for the end of inflation. If kination lasts long enough, i.e., if

t > tenq, then, since ¢ o a3, it is a good approximation to use that e > ¢(t)
With this and integrating Eq. (2.286)) we obtain

G(t) = Pend + \ﬁmp In ( ! ) (2.287)
3 Zfend

Of course, even if the inflaton survives until the present day, the Universe needs

to be somehow reheated, e.g., via gravitational reheating [07], Ricci reheating [98]
99, 289], curvaton reheating [290], 291], instant preheating [100, 228], primordial
black hole evaporation [267] or in the context of warm quintessential inflation [272].
Here we assume this is the case, without choosing one specific mechanism. Since the
radiation density scales slower (p, o< a=*) than the field density (ps o< a™°), it will
at some point become dominant. We call this moment reheating. After reheating,

since H = 1/(2t), the KG equation reads
G+25-0 (2.288)
5,9 =0 :

Integrating this expression from reheating until some later time during the radiation

domination epoch, we obtain

5 ; troh 5/2 2 mp+/ trch
¢ = Gren ; =\ s—=5

~reh A (2.289)

where “reh” stands for reheating and in the second step we have evaluated the time

derivative of Eq. (2.287)) at reheating in order to obtain Dren. Integrating again we

find
O(t) = bren + 2\/gmp (1 — 4/ tr;h) : (2.290)

79




Chapter 2. Acceleration in a Dynamical Universe

It is obvious that for times t > t.., the field freezes at a value given by

¢F = ¢reh + 2\/§mp (2291)

We can express ¢ as a function of the field value and the density parameter of
radiation, both at the time at which radiation is generated. The latter is usually
referred to as the reheating efficiency. As we say above, we assume that reheating
happens via some unspecified mechanism. Let the moment at which radiation is

created be t,,q, With fenq < traq < tren- We can integrate Eq. (2.285)) between t,.q

2 tre
Groh = Drad + \/;mp In (t 2) (2.292)

where we have assumed that éreh < érad, as before. The ratio t.en/traq can be

and t.., twice to obtain

estimated by using that the density of parameter of radiation (2. during kination

scales as

Q, = % x 5 =, (2.293)

Since at reheating the dominant component of the Universe is radiation, we then

have

reh rad [ Greh ? rad treh 0
1= Qb = qrad ([ Zxh ) qrad ([ Zreh ) (2.294)

Qrad trad

where in the last step we have used that during kination a oc t'/3. Thus,

freh _ (qqra) /2. (2.295)
lrad

Putting everything together, the value at which the field freezes reads

2 3
¢F - ¢rad + é <2 - 5 In Qiad> mp. (2296)

Note that the smaller Q9 is, the larger ¢p is. Indeed, smaller values of the reheating
efficiency mean that radiation takes longer to dominate. Since the field starts slowing
down after radiation becomes dominant, it has a longer time to free-fall and freeze

at larger values.
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As an example, for gravitational reheating t.,q = fenq. In this case, the value

at which the field freezes is given by the inflationary attractor and the reheating

2 3
PF = Pena + \/; (2 —3 In and) mp, (2.297)

where “end” stands for the end of inflation. For prompt reheating, with Q4 = 1,

efficiency

the field transverses the lowest possible distance in field space, given by
OF = Gena + 1.63mp. (2.298)

The opposite is true for gravitational reheating, the most inefficient of all reheating
mechanisms. For GUT-scale inflation, the reheating efficiency reads Q¢ ~ 10713
(see below), leading to

¢ = Qena + 36.82mp. (2.299)

Needless to say, due to these super-Planckian field displacements, quintessential
inflation generically suffers from the same problems that plague quintessence (see
end of Sec. (2.2.4)).

The existence of the kination period also increases the number of inflationary
e-folds. According to our result by the end of Sec. 2.1.1] the increase with respect

to, e.g., a period of an oscillating condensate with w = 0 is

2 [ T
AN =2l ( 1/*1) (2.300)
V;)nd

We can estimate the maximum allowed value for the total number of e-folds if
inflation is followed by kination, by using Eq. (2.43)). For this, we need to consider
the lowest possible reheating temperature, coming gravitational reheating.

Combining Eq. (2.205) with the Friedmann equation at the end of inflation

gives the density parameter of the gravitationally produced radiation at the end of

inflation )
gend _ Pellend) 10 Hong oo (Hena (2.301)
' p(tena) 3mpHZ, mp . |
Since the density parameter of radiation during kination scales as Q, oc a?, we have
en Hen
Gend _\ /Qend o~ 101220 (2.302)
Gyeh mp
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where we have used that (**® = 1. With this, and using again Eq. (2.205)), the

radiation density at reheating reads

Qend 4 HS
r(tren) = Pr(ten = =~ 1076id- 2.303
prlt) = plto) (220) = 10702 2309

Combining this with Eq. (2.41)), we finally obtain the reheating temperature of the

gravitationally produced radiation

H2, 1072V,
T = 1072 mpd ~ = m;, (2.304)
P

where we have used that for gravitationally produced radiation g, ~ 10? and the

slow-roll approximation. Plugging this in Eq. (2.43) gives

1 V3/d4 Vl/d4 mp
N =6426—=1n | 2end | 41 [ —Zend |} — 64.26+1 <—) — 70. (2.305
37\ T ) T\ 10 Gev T TonGev (2.305)

We conclude that the usual 50-60 e-folds of inflation considered in the literature in
the canonical case is raised to 60-70 e-folds if inflation is followed by kination.

To end our discussion of quintessential inflation, we address one last consequence
of the existence of the period of kination, having to do with the overproduction
of GWs. Briefly put, the density parameter of GWs during kination is inversely
proportional to scale. Therefore, we expect that GW modes that re-enter the
horizon soon after inflation ends to have a large contribution to the energy density,
possibly challenging BBN. In what follows we give a summarised account of this
phenomenom, leaving most technical details to Appendix [A.3] We emphasize that
this problem is unique to the period of kination, while the problems associated with
a super-Planckian ¢p are also ubiquitous in most models of quintessence.

The quantity we need to consider is the spectral energy density of the primordial

GW background, defined as

1 dpaw(k,n)
p(n) dlnk ~’

where p(n) is the total energy density of the universe and dpgw(k,n) is the

Qaw(k,n) =

(2.306)

contribution to Qagw(k,n) from the tensor modes in the interval dlnk. In the
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literature, Eq. (2.306) is typically evaluated at present, and we simply write

1 dpaw (K, 10)
Qaw(k) = —————=. 2.307
aw (k) pe  dlnk (2.307)
Since the energy density of the tensor modes reads (see Chapter |§| for a full

derivation)

. dlnk k*
(paw) ~ / ~la_|?, (2.308)

where a_ are the coefficients that multiply the negative frequency modes, Eq.
(2.307)) can be rewritten as
1 K 2

Qaw (k) = ————a_|".

_ = 2.309
pe m2a*(no) ( )

This equation can be simplified even further by noting that the energy density of

radiation scales as

pe(1) = pr(Mena)a™ () = Q" penaa™* (n), (2.310)

where we have used the normalization condition a(7enq) = 1 at the end of inflation.

Thus,

(2.311)

The basic method we use in order to obtain the coefficients a_, after imposing the
Bunch-Davies vacuum as an initial condition, is to match the mode functions and
their derivates at the transitions between the different cosmological epochs. We
carry out this procedure in detail in Appendix for kination (see Ref. [292]
for the original work of V. Sahni and Refs. [293] 294] for subsequent early works
specific to kination) and in the original research in Chapter |§| for the novel period of

hyperkination. Plugging Eq. (A.88) in Eq. (2.311]), we find that the GW spectrum

for a period of kination followed by a period of radiation domination, in the scale-
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invariant limit, readd"

Qe (k) Qv m Kena > k > Kyen (2.312)
aw(k) = =5 — :
me 1251}) kren > k > kBN

where kena = H and kyep = 1/(200en) = QP4 H. Decreasing the value of Q4 makes
kination last longer, i.e., decreases the value of k., and leaves the amplitude of
the branch of the spectrum corresponding to radiation domination unchanged. The
amplitude of the latter depends solely on the energy scale at the end of inflation. To
showcase this behaviour we plot the spectrum in Fig. for a few different values
of H and Q4. In the left panel we fix H at the GUT scale and we find that indeed
decreasing the value of ¢ shifts the kination peak to lower frequencies. In the
right panel we fix 2" and we find that decreasing H indeed lowers the amplitude of
the radiation branch of the spectrum. Note that in Fig. 2.9 we show the spectrum
as a function of frequency, which is related to the wavenumber via

2 1 [ QoH2 \'*
f :2m0:%(W) b (2:313)

where we have used Eq. (2.310) and Q° = 9.15 x 107°. We also show the frequency
corresponding to BBN, which reads

I appnHppn 1 ( o )1/4 (PBBN

2 Qo o PBBN 3m123

1/2
feBN = > ~ 1.36 x 10" "' Hz, (2.314)

where we used pppy =~ 3 x 107%0m3,.
The process of BBN places strong bounds on the energy density parameter
of GWs. Indeed, the contribution of GWs at the time of BBN Q3N =

pew (MBBN)/p(NBBN) should be small enough so as not to disturb the process. Using

12Gince our aim is to study the spike in the spectrum generated by kination, we do not take into
account the period of matter domination. We simply calculate the spectrum at some time deep into
the radiation-dominated era, chosen to be BBN for convenience, and redshift it until the present
time. In any case, although the spectrum is boosted during matter domination as Qqw (k) o k2,
the corresponding frequencies are too small to be detected by any upcoming experiment, such as

LISA or ET, to name a couple.

84



2.2. Dark Energy
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Figure 2.9: GW density spectrum as a function of frequency for a period of kination
followed by a period of radiation domination (see Eq. ), for different values
of H and Q¢ superimposed with the power law integrated curves of different
gravitational-wave experiments. Left: H = 10 GeV and Q™4 = 1077 (blue),
Qend = 10710 (orange) and Q4 = 1073 (green). Right: Q™4 = 107 and H =
10" GeV (blue), H = 5x 10 GeV (orange) and H = 102 GeV (green). The vertical
dotted line represents the frequency corresponding to BBN in Eq. and the
horizontal dotted line represents the approximate BBN bound in Eq. . The
different spectra have a high-frequency cutoff given by fena = H/(2may).

Egs. (2.306) and (2.311)) we can relate Q8EYN to present-day quantities. Using the
latest observational constraints [295], the BBN bound reads

d
R Qw = /TfthGw(f) <112 x 107°. (2.315)
If the spectrum does not feature a very narrow peak, we can approximate
R*Qaw(f) < 1.12 x 107°. (2.316)

This is the bound that we show in Fig. (2.9)), as a horizontal dotted line. We can
be a bit more careful and compute the integral by using Eq. (2.312]). The results

reads (barring the negligible contribution coming from modes k < kppn)

hQQgH |:kend - kreh ( kreh > H :|
In

112 x 107% > ?Qy =

7T2mp 3andﬂ'mp kBBN 12mp
H\? 1 1 H
~128 x107% ( — —1In | (Qend)3/2 | 1 12.38 2.317
) (mp> {andﬂ+8n{< ) mp * a )
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where we have used Q0 ~ 8.37 x 107°, h =~ 0.67, kena = H, kren = Q™ H, kppy =
(pr(Mena)/ e (nBBN)) 4 (p(NBBN) /(3m3)) Y2 and Q4 < 1. Eq. directly relates
the model parameters to the BBN bound. For typical parameter values, the last
two terms approximately cancel each other, and the BBN bound takes the simple

form

1 H\?
W<_> <1 (2.318)

mp
As an example, the blue line in the left panel of Fig. (2.9) has H?/(mm2Qmd) =
1.06 x 108, which clearly violates the condition in Eq. (2.318)), while the the green
line has H?/(mrm%Qd) = 1.06 x 1078 in agreement with Eq. (2.318)), as they should.

O"I"'l"'I"'I"'I"'I"

— <
mp

end

log,, Q7
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log,,(H/mp)

Figure 2.10: Regions in the (H/mp, Q9) plane (in logarithmic units) such that the
BBN bound in Eq. (2.318]) is satisfied (light green) and such that the (approximate)
observability condition in Eq. (2.320)) is satisfied (dark green). Both conditions are

met simultaneously in the locus of points where both regions intersect.

Let us estimate the parameter values needed for the spectrum to be simul-
taneously detected by most of the upcoming GW observations, including LISA,
ET and DECIGO. Looking at Fig. (2.9), it is a good approximation to set
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fmin = 107°Hz = 2.70 x 107*mp as the frequency such that if fien < fmin the
signal is observable (note that f.e, cannot be much smaller than this, otherwise the

signal would have been already detected by LVK O3). We then have

1/ Qo2 \Y*
fren = o~ < Qe ;2) QA < 2.70 x 107%mp = funin. (2.319)
T N
Simplifying gives
H 2
(Qendy3 (—> < 2.82 x 1079, (2.320)
mp

We show the conditions in Eqs. (2.318) and (2.320)) superimposed with each other
in the (H/mp, Q) plane (in logarithmic units) in Fig. It is clear that it
is hard to obtain an observable signal that does not clash with the BBN bound.

For this, it is needed both low-scale inflation and a small reheating efficiency. For
example, for GUT-scale inflation, with H ~ 10~°mp, the signal is only observable
for Q14 < 10717 while it clearly violates the BBN bound.

In the original research in Chapter [6] we propose a mnovel period of cosmic
expansion, named hyperkination, after inflation and prior to kination. The defining
property of hyperkination is that the inflaton, which still is the dominant component
of the density of the Universe, is dominated by a quartic kinetic term. Such a setup
can be obtained by adding an R? term to the gravitational action and working in
the Palatini formalism (although it can also be motivated by k-essence). We find
that hyperkination truncates the peak corresponding to kination, thereby making it
possible to bring the spectrum within observable frequencies, without violating the

BBN bound.
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Chapter 3

Modified Gravity

This chapter is based on the introductory sections of the original research articles
published in Physical Review D and Journal of Cosmology and Astroparticle Physics,
and Galazies [1],[2, (3] by the author, in collaboration with Konstantinos Dimopoulos,

Alezandros Karam and Eemeli Tomberg.

3.1 Introduction

In this chapter we present the background material regarding modified gravity
required to follow the original research in Chapters [} p] and [6] Our aim is to make
the presentation self-consistent, without going into unnecessary detail. Modified
gravity is a vast area of research and we do not attempt to give a comprehensive
review.

We focus on f(R) theories of gravity (for reviews see Refs. [199, 296 297, 298],
299]), which was first studied in Ref. [300]. This means that the action now reads

5= [ EeV=ar(R) + Sulgun vl (3.1)

where f can be any function of the Ricci scalar R and 1 collectively denotes all
matter fields. Note that, for f(R) = R, Einstein-Hilbert gravity is recovered. In

Chapter |5| we focus on f(R, ), but the results are straightforwardly generalised.
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General relativity is one of the most successful physical theories in history, having
passed all experimental tests to date, so why should we consider modifications? As

explained in Secs. [2.2.1]and [2.2.2], ACDM provides an excellent fit to the data, but it

does not explain the nature of dark matter or of the inflaton field. Furthermore, the
cosmological constant is subject to an extreme amount of fine tuning. Introducing
quintessence in order to alleviate the cosmological constant problem also does not
provide very satisfactory answers. As we saw in Sec. it is difficult to endow
quintessence with attractor properties without including an amount of fine tuning
comparable to ACDM. However, could it be that general relativity provides a good
description of gravity at the scales it has been put to test, but not at the scales
relevant for the description of the dark components of the Universe? This possibility,
coupled to the fact that questioning the gravitational theory will lead to a better

understanding of it, warrants further investigation of modified theories of gravity.

Importantly, the metric formalism of general relativity is not the only possible
choice. The Palatini formulation of gravity (originally introduced by Einstein [I§])
has recently gained considerable popularity as an alternative to the usual metric
formulation. It treats the metric and the connection as independent variables, which
means that one has to vary the action with respect to both of them. For a minimally
coupled scalar field and an action linear in R the two formulations result in the
same equations of motion and the connection turns out to be the Levi-Civita one.
However, when the field is non-minimally coupled to gravity [301], 302} 303}, 304} 305,
306, 307, 308, 309, 310}, B11), B12], B13], B314], 315l 316l 317, 318, 319] 320} 321, 322,
323, 13241 [325] 1326, 327, 328, 329, 330, 331], 332, 333, 334, 335], 336, 337, 338], 339
340, 341l 342, 343] and/or quadratic or higher curvature terms are included [298],
3441134511346, 347, 1348, 1349, 350, 3511, [352], 1353, 13541, 355, (3561, (357, [358], 1359, 360, 361,
362, 363, 1364, [365], 3606], B67, 2, 368, [369], significant differences arise. In the case of
the non-minimal coupling, the difference can be readily seen when one transforms
the Jordan frame action to the Einstein frame one. Because the Riemann tensor

only depends on the connection in the Palatini formalism, this means that the Ricci
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scalar (which is a contraction of the metric with the Riemann tensor) transforms
differently under a Weyl transformation in the two formalisms. As a result, the
scalar picks up an extra coefficient in its kinetic term which is absent in the Palatini
version of the theory. Therefore, the field redefinition which renders the scalar field
canonical is different and the resulting Einstein frame potential is usually flatter in
the Palatini formulation. Similarly, when an aR? term is added to the action, the
auxiliary field which is usually introduced in order to eliminate this term turns out
to be non-dynamical in the Palatini formulation, in contrast to the metric version.
Consequently, while the metric theory becomes two-field and therefore complicated
to analyze, in the Palatini version the auxiliary field can be eliminated through its
equation of motion and the resulting action is single-field, albeit modified. The main
modification concerns the inflaton potential which is divided by a factor that again
renders it asymptotically flat.

In the present chapter we study the differences between metric and Palatini f(R)
gravity at the level of the gravitational action, while in Chapters 4] and [5| we include
in the analysis a scalar field that acts as the inflaton and as the quintessence field,

in the context of quintessential inflation.

3.2 Metric vs. Palatini formalisms

In order to obtain the gravitational field equations, we must apply the variational
principle to the action in Eq. (3.1)). To do so, we first need to specify what are
the gravitational degrees of freedom. Typically, in the metric formalism, the only
independent gravitational field is the metric and the field equations read

0S
ogH

—0. (3.2)

Assuming metric compatibility V,g,, = 0, the connection takes the usual Levi-

Civita form

1
L;O:V = §gaﬁ (a,ugﬁl/ + al/gﬁ,u - a/g’gm/> . (33)
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However, a priori, there is no reason why the connection could not be an independent
quantity. This is so in the Palatini formalism, where connection and metric are taken
to be independent. For example, the Riemann and Ricci tensors are functionals of

the connection only, i.e.,

R* [T = R[] =0\, — 8, + T30, — 0T (3.4)

UV ApT pv vp)

while the Ricci scalar also depends on the metric via the contraction

R[g,T] = g™ Ry. (3.5)
The field equations read
08 08
S 0 and 5T = 0. (3.6)

Importantly, it is assumed that matter only couples to the metric, so that
Sm does not depend on the independent connectionﬂ Since the matter action
generally includes covariant derivatives of the matter fields, this assumption means
that the independent connections does not define parallel transport or the covariant
derivative [371]. Instead, these are defined with respect to the Levi-Civita connection
as

VA = 9,A" + LY AT, (3.7)

where A" is a given 4-vector and analogous expressions hold for different rank
tensors. Below we use covariant derivatives with respect to the independent

connection, which we denote with a bar as
V.V =0,V + Ty V7, (3.8)

where V¥ is a general 4-vector, unrelated to the matter action.
For simplicity, we also assume that the theory is torsionless, meaning that the

torsion tensor, defined as

sno=Le, ey, (3.9)

w9

1Such a coupling is allowed in the metric-affine formalism [370], but this possibility lies beyond

the scope of the present work.
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is zero. This means that the connection is taken to be symmetric in its lower indices
ngﬁ = Fga, (3.10)

something that is a prior: also not required.

When f(R) is a linear function of R, as in general relativity, both metric and
Palatini formalisms agree (this is the reason why Einstein preferred the metric
formalism). However, for any other function of the Ricci scalar they do not, leading
to the different theories of metric f(R) gravity and Palatini f(R) gravity [300].

We can first do some manipulations irrespective of the chosen formalism.

Variation of Eq. (3.1]) gives
ml% 4 1 v v
0S8 = - d*zv/—g || frRE(w) — §g,ﬂ,f 0" + frg" OR, | + 0Sm, (3.11)

where parenthesis around indices indicate the symmetric part of a tensor, fr = Orf,

and

SRy, = V0T, — V0%, (3.12)
which follows from elemental manipulations of Eq. (3.4]) and the covariant derivative
of 61" 5 (notice that I' 5 is not a tensor but JI', ; is). Importantly, the reader should

[0}

note that, in the Palatini formalism, the covariant derivatives in Eq. (3.12)) are with

respect to the independent connection. Of course, in the metric formalism V,, = V,,.

Let I = [d*a\/—gfrg" 6R,y. Using Eq. (3.12) and integrating by parts gives

1= [aa9av=ga) - [ a's [Valv=asng™) = Vo (V=01ng 5| oL,
(3.13)

where A* is a 4-vector given by
AN = fg (g" 0T, — "1y, . (3.14)
Using that Vyy/—g = Oxy/—g — I'{, [372], we have

Va(V=gA%) = o (V/=gA%). (3.15)
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At this point we must choose between metric and Palatini formalisms. We first
cover the metric formalism, i.e., I', = Lf,. Using Eq. (3.3), it is easy to find the
variation of the Levi-Civita connection under g,, — g, + 0g,, to be

1
0Ly, = =5 19w Vu(09™) + 9wV u(697) = 909,V (097°)] - (3.16)

Ignoring the subtleties related to finding an analogous surface term to the Gibbons-
Hawking-York term [373][374] in f(R) gravity (see Ref. [375] for more details), the
boundary term (3.15) is set to zero. Thus,

I = /d4x\/—g [5KgWV7fR — gWVAfR] 5L;\u
_ / 82/ [0V (0™ )V o fit — G V(69" )V Sl
— [ A0V Vet~ VT 69 (3.17)

where we used Eq. (3.16]) in the second step and integrated by parts in the third.

Putting everything together, we arrive at the metric f(R) field equations

1 T,
fRRuV - §guuf + (guuvgva - v,uvu) fR = m_ul%v (318)

where, as usual,

2 0Sm
T, =——— . 1
g V=909 (3.19)

Since matter is minimally coupled to the metric, the energy-momentum tensor is

covariantly conserved

v, " = 0. (3.20)

The same result can be obtained by showing that the covariant derivative of the

left-hand-side of Eq. (3.18)) vanishes [376].
Taking the trace of Eq. (3.18) gives

T
JrRR=2f +3VV, fr=—,
mp

(3.21)

which shows that R is dynamically related to 7', rather than algebraically as in

GR, where R = —T/m}, or in the Palatini formalism (see below). We can find
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out more about the dynamical structure of metric f(R) gravity by using the Brans-
Dicke representation of the theory [377, [378| 379] (see Refs. [380, B8] B382] for early

works). We proceed by rewriting the action (3.1]) in a dynamically equivalent form

5= mT% /d45”\/‘_9 [F 00 + FOO(R = )] + Sualgw, ) (3.22)

Variation with respect to y gives

F" )R —x) =0, (3.23)

which implies that, as long as f”(x) # 0, x = R. Plugging this back in Eq. (3.22))

the original action is recovered. Now, making the field redefinition

o =1 =rr, (3.24)
and defining

Vip) = x(p)p — f(x(¥)), (3.25)

where x(¢p) is obtained by inverting Eq. E|, we have that the action reads

5= [ eV leR = Vo)) + Sulgs vl (3.26)

which is a Brans-Dicke theory with Brans-Dicke parameter w = 0 [384], i.e., the
kinetic term of the field in the Jordan frame vanishes. The field equation are
obviously equivalent to Eq. .

The action in Eq. can be brought to the Einstein frame, where the field
is minimally coupled to gravity and the gravitational action is simply given by the

Einstein-Hilbert term, by performing the conformal transformation

Guv — g,uu = Q9 = ngw/' (327)

The new action (see, e.g., Appendix G of Ref. [385] for the transformation properties

of the Ricci scalar under conformal transformations) reads

m2 - V() _
S = 713 /d4$\/—g |:R — 2_502gu augo&,go — 902 + Sm[guu/wawL (328)

2Note that f”(x) # 0 is a sufficient condition for ¢ = f’(x) to be invertible. A necessary

condition is that f’(R) be continuous and one-to-one [383].

94



3.2. Metric vs. Palatini formalisms

where barred quantities are in terms of the Einstein frame metric (3.27) (note that
the a priori independent connection is the Levi-Civita connection in the Einstein
frame). Finally, performing the field redefinition

d 3m P

_¢ = _—P = p = e\/;mP (329)

de 29

gives
2 _ 1 _JZ o
5= [y {%R ~ 590,006 - U<¢>} + Sule V3G, (330)

where

mp Rfr— f
2 2

where R = R(¢). In this representation, the dynamical degree of freedom is the

U(g) = (3.31)

scalar field ¢, usually called the scalaron. It is related to the Ricci scalar via
3
¢ = mey In fg. (3.32)

In conclusion, metric f(R) gravity introduces an additional degree of freedom.
This can be seen either from the dynamical relation between R and 7' in the trace
equation or from the Brans-Dicke representation of the theory .

Let us now deal with the Palatini formalism. Variation of Eq. with respect

to the metric gives

1 T
frBRywy = 59w f = 5, (3.33)
(uv) 2 I m%

where the energy-momentum tensor is defined as in Eq. (3.19)). We emphasize that
R, is given by Eq. (3.4) and is a function of the independent connection I';, only,
while R also depends on the metric, as shown in Eq. (3.5). Variation of Eq. (3.11))

with respect to the connection gives
Va(V=9frg") = Vo (V=4frg"")8Y) = 0. (3.34)

Note that the surface term, given by Egs. (3.14)-(3.15)), depends only on the

gravitational field (the connection) at the boundary; it does not depend on its

derivatives, as it happens in the metric formalism. Therefore, there is no need
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to add a total divergence, in the sense of the Gibbons-Hawking-York term, to the
action in the Palatini formalism.
We can further simplify the field equation coming from the variation with respect

to the connection. Acting with 5;) on Eq. gives

V. (vV=frg™) = 0. (3.35)
Thus, Eq. is simplified to

Va(vV=gfrg") = 0. (3.36)

From this equation, we can see why when f(R) is a linear function of R both Palatini
and metric formalisms agree. Indeed, in such a case, fr = const. and we are left with
Va(y/=g9*) = 0, which is the definition of the Levi-Civita connection. Note that in
the Palatini formalism this is a dynamical characteristic, rather than an assumption.
Importantly, however, both formalisms differ when considering any other function
f(R) [300, 386, B87, B8Y, B89], as can be seen from comparing the field equations
and .

The energy-momentum tensor is again conserved with respect to the Levi-Civita
connection

v, =09,T" + L, T = 0. (3.37)

This follows from the fact that, by assumption, the matter action does not depend
on the independent connection. Indeed, Eq. follows from diffeomorphism
invariance, as in the metric formalism. The same result can be show by brute force
by taking the covariant derivative of the left-hand-side of the field equations
[376]. The reader should note that if the matter action was allowed to depend on
the independent connection we would not recover the Einstein field equations even
for f(R) = R, since Eq. would acquire a new term of the form

wg  0Sm
H = 5T (3.38)

leading to a different connection than the Levi-Civita one and therefore to

modifications in Eq. (3.33) when plugging the connection back in the Ricci tensor.
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For the FRW metric, Eq. (3.37)) takes the same standard form as in GR
p+3H(p+p) =0. (3.39)
Taking the trace of Eq. (3.33) gives
T
JrRER=2f = —. (3.40)
mp
It is evident that this equation relates R and T algebraically, as for GR in the metric
formalism. The reader should compare with the analogous equation in the metric
formalism (3.21)), where R is dynamically related to 7. This is an indication that
considering modifications to the Einstein-Hilbert action in the Palatini formalism
does not lead to the introduction of additional dynamical degrees of freedom,
something that can also be seen by using the Brans-Dicke representation of the
theory. However, before doing so, we need to rewrite the field equations in terms of

Juv-

Let us consider the conformal transformation
Guv = g;w = ng,uzw (341)

Since /—gg" = \/—gfr9", Eq. (3.36) simply states that the “independent”

connection is compatible with g,,, i.e.,

1
Fgﬁ = iglw (8&%5 + aggga — aUéaB)
1
_ ﬂgw [0 (fRYo8) + 05 (fRIsa) — Os (fRGaB)]

= LZB + % [8a (In fr) (55 + 05 (In fg) 08 + 0" (In fg) gaﬁ} . (3.42)

Since, from Eq. (3.40), R (and therefore fz) is algebraically related to 7', we have

shown that the a priori independent connection can actually be written as the Levi-

Civita connection of the metric plus some derivatives of the matter fields.
Plugging Eq. in Eq. we find

R[] = Rulg] + %VuvaufR — fiR (vuvy — %gwu> Ir, (3.43)
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where R, [I'] is given by Eq. (3.4) and R,,[g] is the usual Ricci tensor given by the

Levi-Civita connection. Taking the trace of this equation gives

¢ R [T] = Rlg] + — ¥, fu V" o + %u In (3.44)

+ R
2f% f
Putting everything together back in the field equations (3.33)) yields

1 T, 1 1
Rulgl = 59 Rl9) = m%ffR — 59 (R - f—J;> + n (VuV, —gw0) fr
3 1
- % |:vuvaufR — 59w (VfR)Q} - (3.45)

We emphasize that all quantities on the right-hand-side of this equation are a
function of the matter sources, via the trace equation . We have thus
eliminated the “independent” connection and obtained that Palatini f(R) gravity
simply changes the relation between geometry and the matter sources, via the new
derivatives of the energy-momentum tensor in the right-hand-side of Eq. .
Furthermore, the a prior: independent connection behaves as an auxiliary field,
rather than being a fully fledged dynamical degree of freedom.

Again, if f(R) = R, Eq. reduces to GR, as expected. Note that if T'= 0,
from Eq. , we have that R (and f and fg) is a constanlﬂ Letting this constant
be Ry, Palatini f(R) gravity in the vacuum (or with a background of conformally

invariant matter) is equivalent to GR with a cosmological constant given by

1 f(Ro) Ry
A=s (RO - fR<Ro>> S (346)

where we have used Eq. (3.40)). In this way, Eq. (3.45) is reduced to

G = —Agu. (3.47)

To conclude this section, we analyze the lack of additional degrees of freedom by

studying the Brans-Dicke representation of the theory. Following the same steps as

3Unless f(R) o< R%. In this case, the left-hand-side of the trace equation (3.40) is identically
zero and, therefore, only conformally invariant matter, which has T' = 0, can be coupled to gravity.
This is not a suitable description of low energy gravity, since matter is not generically conformally

invariant and so we do not consider this case in the present work.
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in Egs. (3.22)-(3.26]) we obtain that Eq. (3.1)) is dynamically equivalent to
mp 4
S = 5 d"zv/—g {eR[I'] = V(©)} + Swlgu, V1. (3.48)

The difference betweent this equation and Eq. (3.26)) is that the Ricci scalar is now
a function of Fgﬁ only. Plugging Eq. (3.44) in Eq. (3.48) and neglecting surface

terms gives

3
S = / d'zy/—g {@RJr 2% 59" VueVip = V(p)|, (3.49)

where, as for the metric formalism, ¢ = fz and V(p) = x(¢)p — f(x(v)). This is a
Brans-Dicke theory with Brans-Dicke parameter w = —3/2. The field equations are

obviously equivalent to Eq. (3.45]). After performing a conformal transformation

Juv — g,u,l/ = PG = ng;wu (350)

the action in the Einstein frame reads

/ dw—{ TE R (e >]+sm[so—1gw,w], (3.51)

where

mp Rfr — [
2 fr

The reader should note how the kinetic term of ¢ dissappears in the Einstein frame.

U(p) = (3.52)

We emphasize that U(y) is a function of the energy-momentum tensor, via the trace
equation (13.40)).

In conclusion, Palatini f(R) gravity does not introduce additional dynamical
degrees of freedom. This can be seen either from the algebraic relation between R
and T in the trace equation or from the Brans-Dicke representation of the
theory .

Finally, it is also possible to express the Einstein equations in terms of the metric
G = frYuw (below it is explained that this metric is the one corresponding to the

Einstein frame). They read [298]

Guv(h) = —5=Tu = MT) o (3.53)
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where

AT) = M, (3.54)

2%

where R and fr are functions of the matter content, as explained above.
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Chapter 4

Power-law Quintessential Inflation

in Palatini f(R) Gravity

This chapter is based on the original research article published in Physical Review
D [1] by the author, in collaboration with Konstantinos Dimopoulos. At the time of
publishing, the observational bound on the tensor-to-scalar ratio was r < 0.056 and

is therefore used throughout the present chapter.

4.1 Introduction

Apart from employing a scalar field with a suitable potential in Einstein gravity,
inflation can also be achieved by suitably modifying gravity, as was discovered early
on by Starobinsky, in his seminal paper [11], where he introduced a higher-order term
in the gravitational action, schematically R 4+ oR?, where R is the scalar curvature
(Ricci scalar) and « is a non-perturbative coupling. Even though it is possible to
model primordial inflation is this way, a la Starobinsky inflation or Higgs inflation
[390] for example, the task is much harder for late-time inflation. Indeed, many

attempts to consider modified gravity theories, e.g. with a term proportional to 1/R
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in the gravitational action [198], were shown to be unstabldl] [392]. Moreover, the
recent observation confirming that the speed of propagation of GWs is exactly light-
speed (to precision of 15 orders of magnitude) [393], as suggested by Einstein gravity,
excludes the contemplation of many otherwise motivated modifications of gravity at
work in the late Universe, like the Gauss-Bonnet term [394] (see also Refs. [395] 396]
for Gauss-Bonnet models in the Palatini formalism). While work still continues in
this front [397], in this chapter we investigate a blended quintessential inflation
model, which achieves primordial inflation via f(R) gravity, but late-time inflation
via a suitable scalar potential of quintessence. However, our approach cannot be
clean-cut in that modifications of gravity are expected to affect the kination era,
after primordial inflation, and the recent history of the Universe, after the end of

the radiation era.

In metric R 4+ aR? gravity, the higher order gravity term introduces an extra
degree of freedom, which can be rendered in the form of a scalar field, the scalaron.
Starobinsky inflation is very successful, but if it were to be considered as part of a
quintessential inflation model, the scalaron would need to survive until today and
become quintessence. In this case though, experimental tests of gravity [398] cannot
allow successful primordial inflation. Therefore, we consider Palatini gravity, where
the R + aR? model does not introduce a scalaron and the theory does not conflict
with the experimental tests of gravity. The inflaton field is not the scalaron (for the

latter does not exist) but it is explicitly introduced, as in conventional inflation.

However, Palatini gravity does affect our scenario. Firstly, it “flattens” the
inflaton scalar potential [346, 347, 354, 358, [352] so that the desired inflationary
plateau can be attained even with an originally steep scalar potential. Secondly,
the theory is expected to introduce modifications to the kination period, after

primordial inflation, and also in the late Universe, when the inflaton field becomes

!There are still many other viable models of f(R) gravity in the metric formalism that
successfully generate late-time acceleration, such as f(R) = R — puRP with p € (0,1), originally
proposed in [391].
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quintessence. We investigate in detail what these effects are, considering a family of
models, which is a generalised version of the original Peebles-Vilenkin quintessential

inflation potential.

For the inflationary sector, we assume chaotic power-law inflation with V' (¢) o<
¢", for any n > 0. As discussed at the end of Sec. [2.1.4] for this class of inflationary
models the Planck constraints can only be satisfied if n < 0.3 (and N < 32), ruling
out the historically celebrated models n = 2 and n = 4. For the quintessential
sector we assume inverse-power-law quintessence, with V(¢) o« ¢~9, for any ¢ >
0. By the end of Sec. [2.2.4] we showed that, in the scaling attractor, during
which the quintessence field is subdominant, imposing the observational constraints
on the barotropic parameter of dark energy leads to ¢ < 0.1 and a mass scale
M ~ 10712 GeV. In this way, these recent observations seem to undermine tracker
quintessence. Of course, at present, quintessence is not subdominant anymore, so
these considerations are expected to be modified when solving the full dynamics
accurately. It could also be that the field overshoots the tracking regime, transiently
freezing to later unfreeze, close to the present time, and approach the dominant
attractor. However, this thawing quintessence requires an explanation for its initial

condition, i.e., the value at which the field freezes.

Chaotic inflation is ruled out and the tracking behaviour of inverse-power-law
quintessence has to be given up, so why should we consider them? In this chapter,
we rescue chaotic inflation, bringing it back within observational constraints by
including a term proportional to R? in the gravitational action, in the Palatini
formalism. We also find other attractive properties in this setup, such as a sub-
Planckian field displacement, a feature that may help with radiative corrections of
the potential as well as with 5-th force problems. Furthermore, we consider thawing
quintessence, with the value at which the field is frozen given by the inflationary

attractor.

This chapter is structured as follows. In Sec. we introduce R+ aR? Palatini

gravity with a scalar field and background matter /radiation, with emphasis on the
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interaction between them. In Sec. 4.3 we present our family of quintessential
inflation models and how they are affected by the assumed modified gravity setup,
focusing on the period of primordial inflation. In Sec. [4.4] the period of kination
in the context of Palatini R + aR? gravity is investigated, in a way which is
independent on the form of the scalar potential. To obtain concrete inflationary
predictions we assume gravitational reheating, but our results are easy to reproduce
when considering another, more efficient mechanism, as only the relevant number of
inflationary e-folds is affected. In Sec. [4.5] we investigate quintessence in our setup
and look for the amount of tuning needed to satisfy the coincidence requirement. In
Sec. [£.6], we show how experimental gravity tests are not challenged by the modified
gravity theory considered. Finally, we end in Sec. [L.7] with a brief discussion of our

findings and our conclusions.

4.2 The Model

We work in f(R) gravity with a Starobinsky term, as in [346], 347, [354]. In this way,

we have

(07

f(R) =R+ R? (4.1)

2
2mp

so that the action reads

m2 Q 1
S = /d4:r\/—g {TPR + ZR2 = 39" VupVop = V(@) | + Smlg, ¥].  (4.2)

Note that, since Palatini f(R) gravity does not introduce any additional
dynamical degrees of freedom, we introduce the inflaton field in the action by hand.
As a remark, although S,,[g,.,%] = 0 during inflation, we keep this term explicit
in what follows since the treatment is also valid for the kination and quintessential
sectors of the theory, when matter and radiation fields are present.

It is straightforward to calculate the matter dependence of the Ricci scalar. The

derivatives of the f(R) function read

fr(R)=1+—R (4.3)

mp
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and
frn(R) = —. (4.4)
P

Taking into account the two main contributions to the energy density of the
Universe come from the inflaton (or quintessence, depending on the cosmological
era under consideration) and from regular pressureless mater and radiation, the
energy momentum tensor can be written as, assuming the background matter and

radiation behave as a perfect fluid,

T =T + T (4.5)
where
TS = 8,00, = Gyu %Wgoaago + V() (4.6)
and
T, = (p+ p)uytiy + PG, (4.7)

where u# is the four-velocity of a comoving observer with respect to the fluid (so
that —1 = n"u,u,).
It follows that the trace of the energy momentum tensor, remembering ¢ = ¢(t),

reads
Tt =76 4 T8 (4.8)
where
T = T =~ pDap — AV () = ¢ — AV (), (4.9
where in the last equation we have taken ¢ as homogeneous, and
TP =g"Ty, = —p+3p=—p(l —3uw), (4.10)

where p and p are the density and the pressure of the background perfect fluid

respectively, and w = p/p is its barotropic parameter.
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Assuming the Universe is filled up with radiation (w, = 1/3) and pressureless

matter (wy, = 0) we have
T8 = —pp. (4.11)

Thus, Eq. (3.40) reads

faR—2f = <1+%R) R-2R— = R*=_R
mp mp
1 .
= (—pm + > — 4V (p)) . (4.12)
P
The curvature scalar is then obtained as a function of the matter content of the

Universe as

R— 1 (pm — >+ 4V (p)) . (4.13)

mp
Depending on the cosmological era under consideration, some approximations
can be made to simplify Eq. (¢.13]). During slow-roll inflation p,, = 0 and ¢* < V()

so that the Ricci scalar reads

4
Rsn = — V(). (4.14)

mp
During kination, remembering the inflaton is kinetically dominated ¢? > V()
and the other contribution to the energy-momentum tensor is radiation, which is

traceless, we have
22
¥
Ryn = ——-. 4.15
k ml% ( )

During the radiation dominated era, p, > p*) = 1% + V(). However, since
the energy-momentum tensor of a perfect fluid with w = 1/3 is traceless, we have
1 9
Rerp = —5(—¢” + 4V (p)). (4.16)
mp
At reheating, the moment at which radiation becomes the dominant component in
the Universe, the field is still in free fall as during kination (see below), so that we

still have Rrp ~ —¢?/m%. However, not long after reheating, the field stops and
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freezes (see Eq. (4.148) below), so that Rrp =~ 4V ()/m3, which is extremely small
since V'~ 10712%m3, because of the coincidence requirement (see below).

During the matter dominated era, the Ricci scalar reads
Pm
Ryp = —. 4.17
MD ml% ( )

Note also that during this era the energy density of the quintessence field is p ~ V(i)
since it stops its roll-down the potential and freezes during the radiation dominated
era, as explained above.

During the quintessence era, the Ricci scalar still obeys Eq. . However, we
consider thawing quintessence (see below), which means the inflaton is only starting
to unfreeze today, so that

1
Rauin = mZ (Pm + 4V (@) - (4.18)

Finally, in vacuum, where 7),, = 0, we have
Ry = 0. (4.19)

It is interesting that Palatini f(R) gravity with a Starobinski term does not lead
to gravity-driven inflation [369], as in its metric f(R) counterpart. As explained in
Chapter , Palatini f(R) theories do not introduce a new degree of freedom and
the change in the gravitational dynamics (compared to conventional GR) can be
interpreted as a change in the matter sources. In this way, when p, = p, = 0,
we re-obtain the conventional Friedmann equation with H = 0, and inflation does
not take place in the absense of an inflaton field. If we do introduce a minimally
coupled scalar field ¢ in Palatini f(R) gravity with a Starobinsky term, the standard
inflationary dynamics (in the Jordan frame) is not affected when the inflaton is in
the slow-roll regime [368] at the level of the background evolution. However, the
generation of perturbations, which is behind the inflationary observables, is indeed
affected.

Following the procedure through which we obtained the action in Eq. , the
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action in Eq. (4.2)) is dynamically equivalent to

_ a1 o Lo Lo e
S = /dx\/ ngp 1+m1%x R —qax” = 5(Ve)" = V()

+  Splguw, V. (4.20)

We emphasize that the original action in Eq. (4.2) can be obtained by imposing

the constraint on the auxiliary field

S

— = 4.21
5 =0 (421)

in the action in Eq. (4.20).

We now perform a conformal transformationP]

_ (6%
G = G = f,<X>glw = <1 + WX> Guw> (4.22)
P

so that
dt =/ f'(x)dt
a(f) = V/f'(alt). (4.23)
After some algebra, the action in the Einstein frame can be found to be

s 5 1 mi(Ve)?: mp(Vip)+ $x°)

4 |1
5 = /‘” 9 T S o) T (it an)?
b Sl 00) G 0, (4.24)

where barred quantities are calculated using the Einstein frame metric given by Eq.
(4.22). Note the new coupling between y and the matter fields in the matter action.
Now, imposing the condition in Eq. (4.21]) on the auxiliary field x, we have

_ 4V(p) + (Vo)
mp — = (V)

(4.25)

which implies that

mfs + 4aV(p)
mp — a(Ve)?

f(x(p) = (4.26)

2As opposed to f(R) gravity in the metric formalism, the Ricci tensor now only depends on the

connection, so that it does not transform under the conformal transformation in Eq. (4.22)).
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Substituting back in the action in Eq. (4.24)), one obtains

3(Vp)? V(p) a (V) (V)?

_ 4 S22 p _

5 = [T\ gmiR BV 1T BV a1t BV
S () Gn ], (a.27)

where (f'(¢))"! is given by Eq. (4.26) and the prime denotes a derivative with

respect to x = x(p).

Since we study the behaviour of the inflaton during slow-roll and of quintessence
today, when its potential is becoming shallow, higher than quadratic powers of V¢
are not expected to play a role. Furthermore, it can be shown [368] that during a
kinetic energy dominated era, such a kination, the kinetic energy of the inflaton (in

the Jordan frame) is bounded as

1 4
50" < T;—; (4.28)

As it is shown below, during kination the kinetic term in the action is canonical
to a very good approximation (since the potential is negligible compared to mp
during this epoch). This means the canonical field in the Einstein frame ¢ is equal
to the canonical field in the Jordan frame ¢. Therefore, Eq. holds in the
Einstein frame during kination and the quartic kinetic term in Eq. is negligible
compared to the quadratic kinetic term, in the same way as it is during slow-roll

inflation and during the quintessence tail. Thus, this term is ignored in what follows.

4.2.1 Coupling to Matter

The conformal transformation in Eq. (4.22)) introduces a coupling between the field
¢ and the matter action in the Einstein frame, as can be seen in, e.g., Eq. (4.27).

In this section we investigate the effects of such coupling.

The relation between the energy-momentum tensor in the Jordan and in the

Einstein frames reads (remember barred quantities correspond to the Einstein frame
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while unbarred quantities correspond to the Jordan frame)

o _ 2 0S5, 2 99785, _ [(v) (_ 2 55m)_ L /8
e /=g ogm V=g 0g™ 6g°f  (f(0)?\ V=gdg™)  ['(p) "
(4.29)
where we have used
89(15 / o
AL (4.30)

and

V== (). (431)

which follow from Eq. (4.22). Following Refs. [198, 399], it is then convenient to

define the energy-momentum tensor for a perfect fluid in the Einstein frame as
T, = (P + D)uuty + PGy, (4.32)

where, comparing with Eq. (4.7) and using Eq. (4.29)),

U, =/ f'()up,
pe P
(f"())?
p=—2 (4.33)

During inflation, S, [g,.,%] = 0, and so the new coupling in the matter action
between ¢ and the matter fields does not change the dynamics. However, after
inflation ends and the Universe is reheated, the matter action is not zero anymore.

Indeed, the equation of motion for the inflaton field now reads

S 4S
o mm 4.34
dp dp 0, (4.34)

where the result of the first term depends on the specific form the potential takes.

Let us investigate the second term. We have

5Sm_ag“y55m_ , v 1 B . f:o(gp)_w/ _1 —B
S O o (—gvmars) = e (-yvae)
S QJC;/((Z))HTB, (4.35)
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where f = 0f'/0yp (recall that the prime denotes derivative with respect to x())
and we have used Eqs. (4.22)) and (4.29)-(4.31]).
Analogously to Eq. (4.10]), the trace of the energy-momentum tensor in the

Einstein frame reads
T° =g"T,, = —p+3p=—p(l—3w), (4.36)

where w = p/p is the barotropic parameter of the background perfect fluid. Note
that Eq. (4.33) implies the barotropic parameter is the same in both the Jordan
and Einstein frames. Indeed,

PP

Furthermore, the prefactor in the right-hand-side of Eq. (4.35)) reads, from Eq.
(3.26),

folg) _dadV 1
file)  mp 9p 1+ 25V ()

(4.38)

Putting everything together, we finally have

0Sm, _2a 0V (p) p(l —3w)
— =/ —— . 4.39
S gm4P op 1+ _4_;7110; V(p) ( )

It immediately follows that during the radiation dominated epoch (w = 1/3)

0Sy,

Zmy 4.4
dp IRD (4.40)

Y

and the dynamics of ¢ is unaffected by the new coupling in the matter action.
Likewise, during kination, although the dominant contribution to the energy density
of the Universe is that of the inflaton and the barotropic parameter of the Universe
is w = 1, the only other matter field present during this epoch is radiation, so that
w = 1/3 in Eq. and the dynamics of the inflaton during kination is also
unaffected.

As a remark, below is defined a new canonical field ¢ which is identified as the

inflaton. Obtaining its equation of motion

0S  0Sy,

3654 =" (4.41)

111



Chapter 4. Power-law Quintessential Inflation in Palatini f(R) Gravity

is straightforward by simply using the chain rule
6Sm  dpdSn,
6¢p  do bp

Finally, it has been explained above (see Egs. (3.53)-(3.54])) that the Einstein

(4.42)

equations in the Einstein frame read

oo\ g (RO SO (4.43)

mf'(T) " 2(4/(T))?

where the Ricci scalar and the function f/'(R) depend on the matter content of the

specific cosmological epoch under consideration.

4.3 The Inflationary Sector

After the general treatment of the action given in the previous sections, we fix V()
to be a generalised version of the Peebles-Vilenking potential [15], given by
S M), o<

V =
(90) A" Mnta QD > O

where A is a dimensionless constant fixed by the inflationary observables and
0 < M < mp is a suitable energy scale that is fixed by requiring that the potential
energy density of the inflaton (see below) at its frozen value ¢p corresponds to the
vacuum energy density measured today (coincidence requirement). The parameters
n and g are of order unity. We will consider integer values of n and ¢ to facilitate our
analytic treatment, but this is strictly speaking not necessary, as we elaborate in the

discussion section. The original potential of Ref. [I5] is recovered when n = ¢ = 4.

Remember, as we have said above, that S,,[g,., %] = 0 during inflation.
The kinetic term in the action (4.27), when || > M, reads
(Ve (V)

~ —. 4.44
T+ BV 1+ e (44)
It can be made canonical by means of the transformation
d d
do = 14 —_mr a (4.45)

o Ada) T
mp
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where we have defined

AM4a) g
mp

T

(4.46)

and ¢ can be identified as the canonical inflaton. For now it is not necessary to
obtain ¢ = ¢(z). We only need
dz  A(da)¥/m
de AU A (4.47)
dgb mp

The potential in the Einstein frame reads

Vie)  Am"/mi™t  mb x"(¢)

- _ e |
1+ ;‘,‘L—%V(gp) 1+ %gpn 4o 1+ 27 ()

(4.48)

The slow-roll parameters are calculated in terms of the canonical field ¢, so that

—, 2 — 2

Vig)) — 2V2%(z) \d¢ oz 22(1+ an)
where from now on the prime denotes a derivative with respect to ¢, and
L V¢) . m} dz d (dzdV(x)
Lol o e il W
V(o) V(z)dedr \d¢ Ox
—1)—n(%2+1)z"
_ 2 4 2/nn<n 2 4.

where we have used Eq. (4.47). We can now calculate the remaining number of

inflationary e-folds after the cosmological scales exit the horizon as

N 1 ¢end dgb 1 /zend d
T e Aen(4a)n xdx
me Jg. 2ey (@) n(da)?im |
1 ) )
- W(l’* - Iend)7 (451)

where ¢, is the inflaton value at which the cosmological scales leave the horizon and
Gena 18 the inflaton value at which inflation ends, i.e., €y (dena) = 1. The value of
the field = at the end of inflation Zenq = T(Pena) can be obtained, using Eq. ,
through the condition

end

1
v (end) =1 & 22 (2% 4+ 1) = 5)\2(404)2/’%2. (4.52)
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For the typical values of A and « we consider, and for n not too large, we have
|xend| < 1 (453)
so that?]

1
a2 g~ 5)\2(404)2/"712 for all n. (4.54)

end —

The value of the field x when the cosmological scales leave the horizon x, = z(¢x)

then reads, from Eq. (4.51)),

22 = 22+ 222n(40)Y" N = 222n(4a)¥" <N + %) . (4.55)

4.3.1 Inflationary Observables

We can constrain the parameters of our theory by imposing the observational data

obtained by Plank []], listed in Eqs. (2.132))-(2.133]). As for the tensor-to-scalar

ratio, it is constrained to be

A
= A—h < 0.056. (4.56)

Let us start with the curvature power spectrum. In the slow-roll approximation,

which is valid at the time at which the cosmological scales exit the horizon, it reads

V(¢*) JZTH_Q 2n/2nn/2—1 n "T-‘FQ
.= = : - A (N —) (457
24m2miey (¢.)  48m2n2N2a(4dar)?/m 672 N 4 (4.57)

where we have used the first Friedmann equation and Eq. for the value of the
field z at horizon exit. It follows that A, is independent of . Note that the total
number of e-folds /N depends on the specific details of the kination period. See Fig.
for graphs representing the constant A" for different values of n as a function

3In the opposite limit |2enq| > 1, the term n/4 in the parenthesis in Eq. is replaced by
the complicated expression 27 T (A2(400)2/™) 7355 | Using the limit |ena| > 1 it can be shown
this expression is bounded from above by n/4. Taking into account that N > n for reasonable
values of m, this means that our results are insensitive to whether |Tena| > 1 or |zena| < 1.

However, we emphasize that, for the typical values of A and «, |Zena| < 1 holds.
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Figure 4.1: Constant A" for n = 1 (top left), n = 2 (top right), n = 3 (bottom left)
and n = 4 (bottom right) as a function of the number of e-folds N in the range of

interest for quitenssential inflation.

of the number of e-folds N. Note that in quintessential inflation, we typically have
N € [60,70].
The scalar spectral index reads

(n+2)+n(n+2)x
2(1 4 7)

ne = 1—6ey(.) +2nv(d) = 1 — N2(4a)?/m "

a/mn(n +2) L n—+2
2V )

where we have used Eqgs. (4.49)), (4.50]) and (4.55]). It follows that the scalar spectral

index depends only on the number of e-folds (and on n) and does not depend on

= 1—\(4a) (4.58)

the parameters of the theory a, M and A. Remember the remaining number of
inflationary e-folds NV depends on the details of the kination period.

Finally, the tensor-to-scalar ratio reads

] 4n
_ _\2 2/n, 2 —
ro= 16ey(0.) = A"(4a)”"n 22(1+a7)  (N+12)(1+an)
4n 1
) n | (4.59)
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where we have used Eq. (4.55)).

Figure 4.2: Left: Lower bound on « as a function of the number of e-folds N for
n =1 (red dotted line), n = 2 (green dashed line), n = 3 (black solid line) and n = 4
(blue dash-dot line) obtained by imposing r = 0.056. The lower bound is roughly
a ~ 10® for all values of n for the typical number of e-folds in quintessential inflation
models N € [60, 70]. Right: Lower bound on « as a function of n for N = 60 (blue
dash-dot line) and N = 70 (black solid line), obtained by imposing = 0.056. The
bound quickly becomes insensitive to the specific value of n taken, independently of

the number of e-folds within the range of interest in quintessential inflation.

To better understand the role a plays in the observational bound r < 0.056, one

can solve for A" in Eq. (4.57) and plug it in Eq. (4.59)) to obtain

16n 1
= . (4.60)
4N m2n
Therefore, o in terms of r reads
16 _ 1 + 4N
Sl G v (4.61)
9672 A,
This means that a can be small (of order unity) when
16

For n = 2 and taking taking into account that the existence of a kination period
means that the total number of e-folds is typically within the interval N € [60, 70],
a is small (of order unity) when the scalar-to-tensor ratio is approximately in the

interval
r € [0.113,0.132]. (4.63)
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4.83. The Inflationary Sector

The 1o bound r < 0.056 does not allow this, but it might be marginally allowed
at 20, where r < 0.114 [g].

For n = 1 accompanied by a long period of kination such that N ~ 71, we have
r = 0.055, (4.64)

which is marginally within the 1o bounds. See the top left panel of Fig. for the
r — ng graph in the n = 1 case. Note however, that we expect N < 70 or so, for
otherwise kination lasts too long and there is danger that a spike in the spectrum
of primordial GWs, corresponding to the scales which reenter the horizon during
kination, threatens to destabilise Big Bang Nucleosynthesis [254].

When the tensor-to-scalar ratio takes the value given by Eq. (4.62)), a can be
very small (of order unity). However, as we have explained above, this in general
not the case (when n = O(1) we have a > 10% as can be seen in Fig. [4.2). Indeed,
using N = 60 and A, = 2 x 107, we have the following bounds for some values of

n by imposing r < 0.056

n=2 = «a>0.87x10®
n=4 = a>118x10®

n=8 = «a>134x10° (4.65)

Note that « is a non-perturbative coefficient that can be much larger than unity
without a problem. Note also that these bounds are a direct consequence of the
observational value of the scalar power spectrum and cannot be realaxed via the
choice of a suitable value of \".

We end this section with a remark regarding the Lyth bound [400]. By expressing
the equation of motion of the inflaton (during slow-roll) as a function of the number
of e-folds, with the help of Eq. , it is straightforward to obtain the variation
of the inflaton from the time at which the cosmological scales exit the horizon until
the end of inflation as

Nena dN
AG = Gepa — G« = —mpV2n . 4.66
¢ = e =9 g / VAN +n + 96m2nad, (4.66)
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We consider two different limits. Firstly, for a at least one order of magnitude

larger than A_!, e.g., the higher bound o = 10'° in Fig. , r is very small (cf. Eq.
(4.60))) and the third term in the square root in Eq. (4.66) dominates. It can then
be easily found that the displacement of the inflaton, taking N, — Nenq =~ 70, as is

usual in quintessential inflation, reads
A¢p ~ 0.Tmp. (4.67)

Note that for arbitrarily large o, A¢ can be made arbitrarily small, e.g., for o ~ 103
we have A¢ ~ 10~ 2mp.
In the opposite limit, when the value of « is around the lower bound given by

Eq. (4.65)), all terms in the square root in Eq. (4.66|) are comparable. However, the

integration can easily be carried out, yielding, for n ~ O(1) and N = 70,

In order to obtain the displacement of the canonical field in the Jordan frame ¢,
for a given n, we would need to integrate Eq. to obtain the relation between
¢ and ¢. In general it is not possible to obtain an analytic expression, except for
the n = 2 case. This case is studied in detail below and the displacement of ¢ is

calculated there.

4.4 Kination

4.4.1 Dynamics in the Jordan and Einstein Frames

After the inflaton reaches the value given by Eq. and inflation ends, a new
cosmological era called kination starts. During kination, the dominant contribution
to the energy density of the Universe is still that of the inflaton. Furthermore, as
the slope the potential becomes larger in magnitude, the inflaton becomes oblivious
to the potential and its energy density is dominated by the kinetic part. Varying the
action with respect to ¢ we obtain the usual Klein-Gordon equation (remember
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4.4. Kination

in the Jordan frame the field is minimally coupled to gravity). Thus, during kination,

the equation of motion of the inflaton reads
O+ 3Hp ~0. (4.69)

In the Palatini formalism, new effective matter sources are introduced as a
consequence of the addition of the aR? term to the gravitational action. We can
see this by calculating the 00-th component of the Einstein equations . Using
Eq. and remembering that during a kinetic dominated era the kinetic energy
density of the inflaton is bounded as [368)]

—¢ 4.70
which means that
o - «
1 .9 .9
Ry =(1—— ~ 14+ —p° 4.71
R = (1- ) =14 e (71)
the 00-th component of the Einstein equations reads
22 2 2 3
%) 6Ha .. 3o ., 3a° 5. L a5 6o’ 4,
3H? = 2HYp— @) — —=¢° — —= . (4.72
o T PP g s P(2HS— @) mb? ant? (4.72)
This equation can be further simplified by using Eq. (4.69) to obtain
1 2 3 5a 2 60’
3H2m12>:—gb2— ‘;‘¢2+ 044¢4_ 046 P22 a8¢6_ Oiogb4¢2
2 mp 4mp mp 4my, mp (4.73)

1., 3a ., a L, 200 ., dSar 6o,
= 2|1 1— e 1
2% { +2m4PS0 ( 3m4PS0 )] ml%gp +2m4PS0 +5mi§,¢

If « is not very large, Eq. (4.70) can be strongly satisfied, especially as the kinetic

energy density decreases rapidly after the end of inflation. Then, the above is

reduced to
1 20 1 H?
3H?>m?2 ~ ~p? — =32~ ~p% [ 1 — 360— 4.74
mp = 5@ m%so 5% ozm% , (4.74)

where we also used Eq. 1} H is diminishing with time, so H? < H2, ~

inf

1071%n. Thus, if « is not too large, the second term in the parenthesis above very

‘Rearranging Eq. (4.74) we obtain (¢/H)? = 6m? + 36ap?/m3, where one can see that H is
not zero for any finite value of «, that is the brackets in Eq. (4.74)) are always positive.
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soon becomes negligible compared to unity. It follows that the main contribution to

the energy density of the Universe is the kinetic energy density of the inflaton

SH?mp ~ ~p* (4.75)

N |

The following expressions immediately follow

1 1
p:pwz§gb20<a_6<:)w:1(:)ao<t1/3(:)H:§, (4.76)

where w is the barotropic parameter of the Universe.

We conclude that the modifications to the kination dynamics coming from the
introduction of a aR? term in Palatini f(R) gravity are subdominant and the typical
situation is recovered.

Equivalent conclusions can be obtained in the Einstein frame. Indeed, close to
the origin, the modified Peebles-Vilenkin potential reads

AP M™

Vie) = 1 (4.77)

so that the field redefinition (4.44) for the (non-canonical) kinetic term in the action
(4.27) now reads

do = \/% ~ (1 - %) dep, (4.78)
mp

where we have used that M < mp and a\" < 1 (see below). It follows that

the kinetic term of ¢ is canonical to a very good approximation, i.e., ¢ ~ .

Furthermore, the coupling in the matter action does not affect the dynamics (see

the discussion after Eq. ) Thus, since the inflaton is still oblivious to the

potential, in the Einstein frame we have the equation
¢+3Ho ~ 0. (4.79)

As for the 00-th component of the Einstein equations, from Eq. (4.43)) and Eq.
(4.71) we have

3 ¢4 o Q‘SG
dmy  2mb’

_ 1.
SH*mp = §¢2 1 (4.80)
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where barred quantities are calculated using the metric in the Einstein frame (4.22)
and dots represent d/d¢. Again, using Eq. (4.70) and ¢ ~ ¢ during kination, the

Friedmann equation reads, to a very good approximation,

3H*m2 ~ =¢°. (4.81)

DN | —

4.4.2 Reheating and Number of e-folds

When there is a cosmological era after inflation with a stiff equation of state with
barotropic parameter w, the number of inflationary e-folds is increased by (cf. Eq.

2.43))

Jw—1 v
AN = Lo zend ), 4.82
%men<ﬂm) (4.82)

In common inflationary models, after inflation ends, the Universe is perturbately
reheated when the inflaton oscillates around the minimum of its potential. It is easy
to show that in this situation the effective barotropic of the Universe is w = 0,
so that the prefactor in Eq. is —1/3 and the remaining e-folds of inflation
are actually decreased. In contrast, during kination, the barotropic parameter of
the Universe is w = 1 (see Eq. (£.70)), so that the prefactor is +1/3. Thus, the
remaining number of inflationary e-folds is increased by

1 Vl/4(¢end)
AN = =1 _ 4.83
. n( - ) (4.83)

where T, is the temperature of the radiation bath at reheating and V(¢enq) is
the potential at the end of inflation. In this way, in what follows we consider that
the remaining number of inflationary e-folds after the cosmological scales exit the

horizon is given by
N =60+ AN. (4.84)

The lowest value for T}, and, therefore, the highest for AN, is obtained through

gravitational reheating (for which reheating occurs at the end of inflation t,, =
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tend)ﬂ For this reheating mechanism, we have obtained (see Eq. (2.304])) that

2
TS, ~ 10—2M. (4.85)
re mP

Assuming that the slow-roll approximation is still valid at the end of inflation,

we have

_ V(¢end)
T8 =102~ 4.86
reh 3m13) ( )

Thus, the increase in the number of e-folds reads

. 1 3m%‘71/4(¢end) -~ mp
=g oo ) = (i) 00

The potential at the end of inflation V (¢enq) can be obtained by evaluating Eq.
(4.48) at xenq, given by Eq. (4.54). It reads

mp  (Pend) B mpn"\"

‘7 end) — - ) 4.88
(Gena) = o T 27 (o) — 272 + dami (4.88)
and the remaining number of e-folds is increased by
1 272  dam™ A"
AN =2+ -1 . 4.89
* 4" ( ntAn ) (489)
Note that, by virtue of Eq. (4.53)), Eq. (4.88) is simplified as

- mpn" A"

V(¢end) = 1:2)“#7 (490)

so that Eq. (4.89) is simplified as

n. (V2
AN =2+21n (H) . (4.91)

We emphasize that Eq. (4.53), and thus the approximated expressions in

Egs. (4.90) and (4.91)), only hold when we work near the lower bound for « (as

we do in the present work).

5Tt is important to mention that modifications to the gravitational particle production, due to
the R? term in the action, are possible. However, during inflation this term and the Einstein-
Hilbert one are comparable. Therefore, any possible modifications are of order unity. This is why,
for simplicity, we assume the dominant contribution comes from the latter. The study of particle

production due to an event horizon in Palatini f(R) gravity will be addressed in a future work.
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From Eq. (4.58)), taking into account that the remaining number of inflationary
e-folds is N = 60 + AN we have

_ n+2
2 (60 + AN +12)’

At this point, in order to obtain analytical results we need to choose specific

(4.92)

ne =1

values for n.

0.25 1 o Planck TT,TE,EE+lowE 0.25 1 e Planck TT,TE,EE+lowE
K Planck TT,TE,EE+lowE+lensing Planck TT,TE,EE+lowE+lensing
+BK15+BAO +BK15+BAO
0.20 - 0.20 -
7.37 7.94
0.15 - 8.03 0.15 - 8.45
g — 8.69 [ log,ya g o 8.97 § logya
< ’ 9.34 € 9.48
0.10 - 10 0.10 - 10
0.05 - N=70 0.05 -
0.00 T T T T 0.00 T T T
0.95 0.96 0.97 0.98 0.99 1.00 0.95 0.96 0.97 0.98 0.99 1.00
ns ns
0.25 1 o Planck TT,TE,EE+lowE 0.25 1 4 Planck TT,TE,EE+lowE
n Planck TT,TE,EE-+lowE+lensing " Planck TT,TE,EE+lowE-+lensing
+BK15+BAO +BK15+BAO
0.20 4 0.20 -
8.03 8.07
0.15 4 8:59 0.15 - 8.55
g - 9.02 | log,o g - 9.04 B logyga
< 9.51 € 9.52
0.10 4 10 0.10 10
0.05 - 0.05 -
0.00 - - T T 0.00 - T
0.95 0.96 0.97 0.98 0.99 1.00 0.99 1.00
ns N

Figure 4.3: r — n, graph where the predictions derived from our model, for n = 1
(top left), n = 2 (top right), n = 3 (bottom left) and n = 4 (bottom right), are
compared to the experimental data. The number of e-folds represented range from
60 (left side) to 70 (right side). The parameter a ranges from its lower bound
Omin = 2.36 x 107 (blue) to a = 101 (yellow). Figure adapted from Ref. [g].
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443 n=2

In this section we focus on the n = 2 case. The potential in the Jordan frame,

remembering ¢ > M during inflation, reads
V(p) = Nmpe®. (4.93)
We can redefine the coupling constant as

2 2
A mp

1
§m2, (4.94)

where m is a suitable mass scale.
It is worth mentioning that for n = 2 it is possible to obtain an analytical
expression for the potential in the Einstein frame. Indeed, the field redefinition

(4.45) now reads

mp dz

- 2)\\/5\/1+x2.

Integrating this expression we obtain

do

(4.95)

¢(r) =

mp

2\
2;"\35 sinh ™' # = x(¢) = sinh ( ‘/a¢). (4.96)
Using this in Eq. (4.48) we obtain the potential in the Einstein frame

V(p) = m—%tanhz (QA\qu). (4.97)

4oy m

Choosing n = 2 in Eqs. (4.57)-(4.59)), the inflationary observables now read
2

s pu—
24m2m3

(2N +1)?, (4.98)

4
s=1-— : 4.

" 2N + 1 (4.99)

and
16
r= - : (4.100)
(2N +1) |14 222N + 1)
P
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where N = 60 + AN is the total number of inflationary e-folds. Furthermore, Eq.

(4.54) now reads
2 o =4— 4.101
Lend 7 & ( )

while the increase in the number of e-folds is

1 1+ 4042—22
AN =2 + Z_l In TP . (4102)

2
mp

The above is reduced to AN = 2+ 3 In (mp/m) when |Zepq| < 1.

In order to obtain the most accurate value for AN, one can solve for m?/m% in

Eq. (4.98) and use it in Eq. (4.102)) to obtain the equation

1 [(121 + 2AN)? + 96an A,
AN =2+ -1 .
tan 2472 A,

(4.103)

Using the lower bound for alpha o ~ 8.7 x 107, given by Eq. (4.65)), and the
observational value for the amplitude of the scalar power spectrum, this equation

can be numerically solved to obtain
AN = 8.103 ~ 8§, (4.104)
which means that the total number of inflationary e-folds is
N ~ 68. (4.105)
Using this result in Eq. immediately gives
ns = 0.9708, (4.106)

which is just above the upper 1o bound and can be easily accommodated by the
20 bounds [§]. This can be understood as follows. From Eq. (4.99)), the number of

e-folds in terms of n, reads

N:%( 2 —4), (4.107)
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so that the 1o bounds correspond to
N € [52,66]. (4.108)

Thus, the extra 6 e-folds at the upper bound could be explained by a period of
kination, although AN = 8 would be too large to be within the 1o bounds.

The mass scale m? is fixed by the amplitude of the power spectrum. For N = 68,

using Eq. (4.98)), we obtain

2
T € [2.518,2.773] x 1071, (4.109)
mp

so that m ~ 107'/2mp ~ 10'3 GeV. This range of values is in agreement with what

was obtained in the top right panel of Fig.

We have already obtained (see Eq. (4.65])) that as long as
a>8.7x 107 (4.110)

the observational bound r < 0.056 is satisfied. Indeed, using the obtained values for

N and m? and the lower bound for o in Eq. (4.100) gives
r € [0.050, 0.053], (4.111)

which is within observational bounds, as expected.

The results obtained in this subsection are summarized in the r — ng graph in
the top right panel of Fig. [£.3]

We can also obtain the displacement of the canonical field in the Jordan frame
v, as was discussed at the end of Sec. Using Eq. with the obtained
value for m?/m3, the displacement of the inflaton field A¢ = 0.7mp, in the limit
when o ~ 101° (represented by the yellow color in the top right panel of Fig.
corresponds to

Ap ~ 0.7mp. (4.112)

In this limit Ay behaves as A¢, in the sense that for arbitrarily large o, Ay becomes
arbitrarily small. We conclude that in this regime, the potential V(p) = m?¢?/2

belongs to the small-field class of inflationary models.
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In the opposite regime, when o takes a value around its lower bound o ~ 102,

the displacement of the inflaton A¢p ~ 6mp (cf. Eq. (4.68])) corresponds to
Ap ~ 6mp. (4.113)

To end this subsection, we can verify that the approximations made above are
valid. With the obtained values for m? and a, the value z.nq at the end of inflation
is

2

2 = A = 0.0091 = e = 0.095, (4.114)
mp

and the approximation made in Eq. (4.54)) is valid.
Finally, the potential (4.88) with the obtained values of m? and « is

2,,2
V (2end) = % ~ m2m? ~ 2.5 x 107 m3, (4.115)

mp
which is similar to the typical inflationary energy scale V ~ 107 ¥m3, and in the last

step we used Eq. (4.53)).

444 n=4

In this section we focus on the n = 4 case, following the same steps as in the
last subsection. The potential in the Jordan frame, remembering ¢ > M during

inflation, reads
Vip) = M. (4.116)

Choosing n = 4 in Eqs. (4.57))-(4.59), the inflationary observables now read

8
A, = — NN +1)3 4.117
N (N 1), (4.117)
3
=1 4.118
" N +1 (4.118)
and
1

(N +1)[1 + 256aM (N +1)2]’
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where N = 60 + AN is the total number of inflationary e-folds. Furthermore, Eq.

(4.54) now reads
224 = 160*V/a, (4.120)

while the increase in the number of e-folds is

1 1 + 256a\*

. (4.121)

The above is reduced to AN =2 — 1n(2\/§)\) when |Zenq| < 1.

In order to obtain the most accurate value for AN, one can solve for A\* in

Eq. (4.117) and use it in Eq. (4.121)) to obtain the equation

B 1. [(61+ AN)?+ 96an?A,
AN_2+ZLIH|: 2471’2148 .

(4.122)

Using the lower bound for alpha o ~ 1.18 x 10%, given by Eq. (4.65)), and the
observational value for the amplitude of the scalar power spectrum, this equation

can be numerically solved to obtain
AN = 8825 ~9, (4.123)
which means that the total number of inflationary e-folds is
N ~ 69. (4.124)
Using this result in Eq. immediately gives
ns = 0.9571, (4.125)

which is outside the 1o bounds but could be accommodated by the 20 bounds []].
Using the number of e-folds in Eq. (4.124)) and the observational value for the
amplitude of the scalar power spectrum, it follows from Eq. (4.117) that the value

the coupling constant takes is

M€ [2.153,2.371] x 1071 (4.126)
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This range of values is in agreement with what was obtained in the bottom right

panel of Fig. [4.1]
As for the parameter «, we have already obtained (see Eq. (4.65)) that as long

as

a > 1.18 x 10°, (4.127)

the bound r < 0.056 is satisfied. Indeed, using the obtained values for N, A\* and
the lower bound for « in Eq. (4.119) gives

r € [0.0507,0.0546], (4.128)

which is within observational bounds, as expected.
The results obtained in this subsection are summarized in the r — ng graph in

the bottom right panel of Fig. [£.3]

With these values for A* and «, the value z.,q at the end of inflation is
22 = 16A*Va = 0.026 = x¢uq = 0.16, (4.129)

and the approximation made in Eq. (4.54) is valid.

Finally, the potential (4.88) with the obtained values of A\* and « is
_ 64N mp

V(Zend) = 1o 25600 = 64\*mp ~ 1072 mp, (4.130)

which is similar to the typical value of the inflationary energy scale V ~ 107 3mg
and in the last step we used Eq. .

It is important to emphasize that the results obtained above are indicative only.
The parameter n can assume other order unity values, for example n = 1 and n = 3,
or even non-integer values inbetween. In the top and bottom left panels of Fig. 4.3
the cases n =1 and n = 3 are also considered. We find that the best results are
obtained for n ~ 2 — 3, which suggests that modelling the inflationary plateau as a

power-law is a successful choice.
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4.5 Quintessential Sector

We have already analysed inflation and kination in this model. In this section we
focus on the positive branch of the modified Peebles-Vilenkin potential in Eq.
to study quintessence.

The kinetic term in the action for the field ¢ in the Einstein frame, at
large field values ¢ > M, reads

3(Ve)? 3(Ve)?

~ ) 4.131
T+ 5V (p) 1 i (413
mP mp QOq
It can be made canonical by means of the transformation
d daxt MY g
do = 1d _ ( S ) LA (4.132)
1 fedn M mp VIFya
mg e
where we have defined
n 1/q
mp
=(— 4.133
4 (4@)\”M”+Q) 4 (4.133)

and ¢ can be identified as the quintessence field, or, in other words, as the inflaton
field at large positive values in field space.

The potential in the Einstein frame reads

o Vo) AMTmp et mp 1 (4.134)
T+ BV(e) | 1+ @00~ o y(g) + 1

Note that in order to obtain an expression of the potential in terms of the inflaton

V(¢) we need to solve Eq. (4.132) to obtain y = y(¢) and then plug this result in
Eq. (4.134).

4.5.1 Corrections Coming From the Matter Action

In this section we study the influence of the coupling between the inflaton and the

matter action in the Einstein frame (c¢f. Eq. (4.27)), following the results obtained
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in Sec. 4.2.1, After making the field redefinition given by Eq. (4.132]), the equation
of motion for the inflaton reads, using Eqs. (4.41)), (4.42)) and (4.39),

AL SO dp 20 OV(p)  pm
H —— = 4.1
$+3A+ V0t 3t T T BT~ (4.135)

where we have taken into account that during this era w = 0. Using Eq. (4.132),

this equation can be recast as

20pm 1 vV (p)

b+3HS+V'(¢) + 5 ~0. (4.136)

Furthermore, the third term on the left-hand-side can be written as, using again

Egs. (#.132) and (£.134),

= de OV () da OV ()
=L = 14+ =
1 A Vi) (4.137)
4o 4 2 ’ :
PRVl ey dey(g)
Putting everything together, Eq. (4.136]) now reads
. _ . 20Pm 1 ov 4o Vv ov
¢+3H¢+(1+ Z) 4 a(90)_ ! () - 8(90):0
) e % ] %
(4.138)

The second term inside the parenthesis, coming from the coupling of the inflaton
in the matter action in the Einstein frame is Planck suppressed and, unless « is
unrealistically largeﬂ is many orders of magnitude smaller than unity (see below the
discussion concerning Eq. in relation to experimental constraints). Thus,

the equation of motion for the inflaton during the quitessence era reads
¢+ 3Hp+V'(¢) ~0, (4.139)

where we have used Eq. (4.137)) to combine back together the derivatives of V' (p).

g

6 m mp \4 10108
a>ZE 2 (§) ~ 101
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We conclude the coupling in the matter action is negligible during the quintessence
era and is ignored in what follows. Furthermore, note that this conclusion also holds
for the matter dominated era. Indeed, the difference between both eras is that during
the matter dominated era the matter energy density is the dominant contribution
to the total energy density of the Universe, while during the quintessence era it
is a subdominant component (accounting for ~ 30% of the total energy density).
However, in both cases w = 0, whether the energy density of the quintessence field
dominates the Universe or not, and the second term in the parenthesis in Eq.
is negligible in both cases. Furthermore, during kination and during the radiation
dominated era @ = 1/3, so that the coupling term (given by Eq. (£.39)) vanishes.
Lastly, Sp[guw,] = 0 during inflation. Thus, the non-minimal coupling with the
inflaton in the matter action in the Einstein frame does not affect the dynamics of
the inflaton throughout the whole cosmological history of the Universe.

As for the Friedmann equation in the Einstein frame, remembering R = —T'/m?

from the trace equation (3.40)), it is easy to show that Eq. (4.43)) takes the form

_ T T o’T?
H2m2 = Too+ o (Tpo+ = ) + 2 414
3H"mp 00+m§(00+4)+2m%’ (4.140)
where
1.,
and
T =¢* —4V(¢) — pm. (4.142)

Remember barred quantities are calculated using the metric in the Einstein frame

(4.22) and dots represent d/dt.

Working to first order in O(1/m}), the Friedmann equation reads
_ 1., _
3H*m3 ~ Ty = §¢2 +V(}) + pm = V(¢) + pm, (4.143)

where in the last step we have taken into account that we work with thawing

quintessence and the scalar field is only starting to roll down its potential today.
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Thus, the new effective matter sources that appear due to the treatment of our
f(R) function in the Palatini formalism (the terms proportional to powers of «) are
negligible compared to Ty unless « is unrealistically large, and the usual Friedmann

equation is recovered.

4.5.2 Frozen Inflaton

In this section we calculate the value at which the canonically normalized field
¢ freezes after the period of kination. It is important to mention that, although
there exist other reheating mechanisms, such as instant preheating [100) 259],
curvaton reheating [290, 40T, 291], Ricci reheating [98, Q9] or considering warm
quintessential inflation [258 [402] 277], in the present work we consider gravitational
reheating [97, 403], 404]. The reason is twofold. First, it simplifies the calculations
and allows for the reader to have a clearer picture of the mechanisms behind
quintessential inflation in Palatini f(R) gravity. Second, this reheating mechanism
propels the field the furthest after kination, so that it freezes at a value such that
the residual potential energy easily fits the observed vacuum energy density. Note
that gravitational reheating corresponds to the lowest possible value for Tie, so
that the increment in the number of e-folds given by Eq. is maximised. In
this way, other reheating mechanism would correspond to a lower value of AN and,
specifically, the results obtained for n = 2 would be closer to the 1o bounds for the
scalar spectral index (see Egs. (4.104)-(4.108)).

Since Egs. (4.79) and are the standard Klein-Gordon and Friedmann
equations in the kination limit, when ¢? /2> V'(¢), we can use the results obtained
in Sec. . There, we found that, for gravitational reheating, the value at which

the inflaton freezes is given by

2
¢F = Gend + \/;mp (2 - gln Qﬁnd> : (4.144)

In order to obtain an expression for the radiation density parameter at the end

of inflation Q2" we remember that the density of particles created by the event
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horizon in de Sitter space at the end of inflation reads

d m? Hena " 2 74
ond —g—g¥ | %) ~107%H 4.145
pI‘ q30g* ( 27T ) end” ( )
where ¢ ~ 1 and ¢8 = O(100) is the effective relativistic degrees of freedom.
Dividing this expression by the Friedmann equation p®™d = 3H2 ;m? gives

end H 2

Qerd = B 072 (—“d> ~ 102 (¢e"d) (4.146)
en mp mP

where in the last step we assumed that the slow-roll approximation is valid at the

end of inflation. Plugging Eq. (4.146]) in Eq. (4.144]) gives

¢end+\[mp {2+31 10-%1 ( wm))] (4.147)

Using the obtained an expression for V(¢enq) given by Eq. (4.88) we have

2 3 neA™
= Gen “mp|243In10— 21 . 414
OF = Gend + \/;mp[ 3l =5 (271/2+4om")\”)} (4.148)

When « takes a value close to its lower bound, using Eqgs. (4.53)) and - this

equation is simplified as

2
ng = ¢end + \/gml:’

Note that in order to obtain ¢e,q we need to solve the (generally complicated)

n

2
2—|—31n10+37n1n (£>] . (4.149)

integral and plug the resulting x = z(¢) in the equation for z.,q given by
. However, in most cases ¢enq is negligible compared to the second term in the
right-hand-side of Eq. . To illustrate this we can choose the simplest case for
which Eq. can be solved, i.e., for n = 2. Indeed,

mp dx m

dp = — = ¢=—— —sinh . 4.1
¢ NAa) 2 T 2 =0 M) sinh™ x (4.150)
Thus,
. mp . -1 -~ mp
bena = A(4a)1/2 sinh ™ Zeng = Ada )mxend V2mp, (4.151)
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where we have used Eq. (4.54) and taken into account that unless a 2> 10!, |zenq| <
1. Then, remembering (see Eq. (4.109))) that inflation fixes 2\* = m?/m3 ~ 10711

and taking o ~ 10%, the inflaton freezes at

2
br = —V2mp + \gmp (24310 + 1510 10) ~ 35mp > dend. (4.152)

Notice that the above is a super-Planckian displacement of the canonical inflaton ¢

and not of ¢, which appears in the scalar potential of this model, in Eq. (4.44).

4.5.3 Residual Potential Energy

If we were to obtain the residual potential energy for a general ¢ we would need
to solve Eq. (4.132)) in order to obtain y = y(¢) and substitute it in the potential
(4.134]) to finally use the value at which the inflaton is frozen after kination, given

by Eq. (4.148). Although Eq. (4.132) is in general difficult to solve, we can take

into account that when the inflaton stops being kinetically dominated, i.e., when
it freezes, the potential energy has become many orders of magnitude smaller than
the Plank scale (we are on the quintessential tail). In this way, we are in the regime

where

4aV (p) < m4P S 4aN" M < mpp? &yl < 1, (4.153)

where we have used Eq. (4.133)). Thus, Eq. (4.132) can be approximated by

dar Mt e 1
de = <O‘—) <1 - —yq) dy. (4.154)

n
mp 2

This equation can be immediately integrated to obtain, for ¢ # 1,

o(y) = (%) qu (1 + m> : (4.155)

Raising the above to the power of ¢ and using the approximation (4.153) again

we have

] _daAtMte q
P(y) = T (y + -1 1)) : (4.156)
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Therefore, the analytical expression for y(¢), in the regime defined by Eq.

[@-153), is

g mpot g
y'() = TCEENE (4.157)

Evaluating this expression at ¢r and plugging it in Eq. (4.134), after some

algebra, we obtain the residual potential density

Vior) _ ( mpdh  20(g-2)\"
mb  \ AnMnta g—1 ’

(4.158)

where ¢ is given by Eq. (4.148]). Note that for most values of «, and for ¢ # 1,
such that the limit mE¢h > 2aA™M™ holds, the potential can be approximated

to first order as

V(op) =

nMn+q 2 _2 nMn+q
A { _ 2lg=2)ak ] (4.159)

mp . (q — )mof

Also note that to zeroth order this is the same as the original Peebles-Vilenkin
potential [15] in the Jordan frame in the limit ¢ > M, only with ¢r replaced by
¢r. Of course, this was expected since we assumed the limit in Eq. in the
first place.

4531 ¢=1

Before calculating the residual potential energy density for specific values of n and

q we focus on the special case ¢ = 1. Eq. (4.154)) now reads

4a " ML 1
dp= 20— (1 - —) dy. (4.160)
mp 2y
Integrating, we have
da A" M 1
¢ = a—n (y — —lny) : (4.161)
mp 2

It is not possible to obtain an analytic expression for y = y(¢). However, in the

limit y > 1, to a good approximation

y(¢) = —TE?
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so that the residual potential energy reads

)\n Mn+l

- 4.163
m’r}z)—4¢F ( )

V(pp) ~

Note this coincides with the O-th order approximation in Eq. (4.159). Of course,
the approximation made in Eq. (4.162) is equivalent to neglecting the second term
in Eq. (4.157). We can conclude that similar results to the ones obtained for a

general ¢ are obtained for ¢ = 1.

4.54 g=2and n=2

An exception for the treatment given above is ¢ = 2. Note that in this case the
corrections in Eq. (4.159) cancels out and the form of the potential for ¢ is the same
as for the non-canonical field ¢. Furthermore, an analytical expression for y(¢) can

be obtained. It reads, using n = 2,

2/ a\M? d 2/ a\M?
o= 2V Yy WA s (4.164)
mp /14 y? mp
Solving for y we have
2 12
2 MpoE
Yr = g b (4.165)

so that the potential at the value of the frozen inflaton reads

_ mi 4o 2M*  N2MA
vV =_F = ~ 10704 4.166
(0r) dor mEo% 1225 ’ ( )

where we have used ¢r ~ 35mp (see Eq. (4.152))) and that inflation fixes 2A\? =
m?/m} ~ 2.6 x 107! (see Eq. (4.109)). Note that the residual potential energy is
independent of a.

The vacuum energy density today is pg ~ 10712°mg, so that the mass scale M

is fixed to be

M ~ 3.5 x 10" *mp ~ 8.5 x 1073GeV. (4.167)

137



Chapter 4. Power-law Quintessential Inflation in Palatini f(R) Gravity

4.5.5 g=4and n=2

In this section we study the case where ¢ = 4 and n = 2. We consider the lower
bound o ~ 108, the fact that inflation fixes 2\ = m?/m3 ~ 2.6 x 107! and the
value at which the inflaton freezes ¢p =~ 35mp. Thus, using the approximation
obtained for the potential in Eq. (4.159), we have
- A2md M© 4a N2 M M6 M6
Vigr) = 2 (1- 202 ) =87 x 1078 (1-107°" ). (4.168)
Pk 3Mp P mp mp
The residual potential energy should be comparable to the vacuum energy density
today pg ~ 107'2%m%,. In this way the mass scale M is fixed by
MG M6
8.7 x 107 1¥— (1 — 10—9—6) = 10"""mp. (4.169)
mp mp

It is straightforward to solve this quadratic equation to obtain

M ~ 10" " mp ~ 10GeV. (4.170)

4.6 Constraints Coming From Experimental Tests

f(R) theories in the Palatini formalism should be treated in the same way as general
relativity, in the sense that they should agree with experiments and observations
on all scales in order to be viable. In this way, f(R) theories proposed to explain
cosmic speedup should coincide with the dynamics of the solar system and laboratory
experiments. In this section we summarize the most salient results found in the
literature, mainly following Ref. [298].

In scales comparable to that of the solar system, the Universe does not behave
as a perfect fluid (as opposed to cosmological scales), and it makes sense to make a
distinction between the interior and exterior of matter sources. Outside of matter
sources py, = 0 and, in the thawing quintessence scenario we consider, the inflaton

freezes at ¢ so that V(¢ ) accounts for the vacuum energy density measured today[].

"Remember that during the quintessence era ¢ =~ ¢ to a very good approximation (cf.
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Thus, the Ricci scalar today outside of matter sources reads (cf. Eq. (4.13]))
4V (o)
2

mp

Rout = R(O) =

= constant. (4.171)

This means that the Einstein equations in the exterior of matter sources reduce

to the form
1

2
mp fr
as suggested by Eq. (3.45)) with fr(R) = constant, where T}, = —g,,V (¢r) and Aeg

is given by Eq. (3.46))

G = Ty — Nest Gy (4.172)

1 1
Aeﬁ‘ — —Rout f( Out)

2 2fR( out)
In the above, in view of Egs. (4.1]), (4.3) and (4.171]) we have

(4.173)

F(Bow) = £(0) = 4VTT(Z2jF) I SOﬂgjng) _ 4Vn§§F> (1 n 204‘T/n(§F)) ’ (4.174)
and
fr(Row) = fr(0) = %(;F). (4.175)

Since V(¢r) ~ 107129mi accounts for the vacuum energy density today and
assuming that « is not unrealistically large, we have 4aV (¢r) < mp. Thus, the

effective cosmological constant is simplified to

A 2V (ér) 2V(¢F) (1 N M) ( - 4aV(gz5F)) 4av2(¢p)

2 1
mp mP mp mP

. (4.176)

mp
Considering the 00-component of the Einstein equations in Eq. (4.172]) we obtain

the Friedman equation, which reads

SH?m3 = Too 3 A ~ V(6p) ( 404V(4¢F)) N 404V2§¢F) — V(ép). (4.177)
R mp mph

Thus, the vacuum density is V (¢r), which is much larger than m#A.g since

Viprp)  mp
miher  4aV(¢r)

> 1. (4.178)

Eq. (4.157). Also, we are ignoring the fact that quintessence is thawing so, technically, it is
unfreezing at present, which means that it has a non-zero kinetic energy density, which, however,

is subdominant %(]52 <K V() =V (pp).
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This means that V(¢r)/m3 is the “true” cosmological constant, as we assumed
in the previous section, while the contribution due to Palatini gravity m3A.g is

negligible. In the following we redefine Aoy as Aeg = V(dr)/mp.

4.6.1 Solar System

In Chapter [3] we found (see Eq. (3.47)) that the vacuum equations of motion in
Palatini f(R) theories are equivalent to those of GR with a cosmological constant,
given by Eq. . Furthermore, we found that in the quintessential inflation
scenario with the f(R) function given by

«Q
2
2mgp

f(R) =R+ —5 R’ (4.179)

the equations of motion are also equivalent to those of GR with a cosmological
constant, now given by A.g = V(¢p)/m%. It follows that, if one considers a
spherically symmetric non-rotating mass distribution, such as the Sun, the metric
outside is the Schwarzschild-de Sitter solution

2

dr

ds? = —A(r)dt* + A0

+ 7r2d0?, (4.180)

where A(r) = 1 — 2GM/r — Agr?/3, with M identified as the mass of the star
and A is the cosmological constant. In the vacuum case, some authors [405], 406]
conclude that Palatini f(R) theories are compatible with solar system observations,
based on the fact that for a suitable region in the parameter space of the theory
Ao can be made small enough and predictions are virtually indistinguishable from
those of the Schwarzschild solution in general relativity (which pass all experimental
tests). In the quintessential inflation case, Aeg = V (pr)/m? is obviously very small
and the metric effectively takes the Schwarzschild form.

However, as it is pointed out in Ref. [298], Eq. departs from GR with an
effective cosmological constant in the regions of space where R, and therefore fg, is
no longer constant (and the dfg in the right-hand-side of Eq. are no longer

zero), such as in the interior of stars. In this way, the transition from the interior
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to the exterior solution is, in general, not as simple as in GR, due to the modified
dynamics in the interior of the sources.

We now give a brief overview of the study of the transition from the interior
to the exterior solution in Palatini f(R) theories. The reader is referred to Ref.
[298] for further details. It is convenient to perform a conformal transformation
G = hyw =719 = J;f;g)) g, under which Eq. read

G,W(h) == me/ - [\(T)h

where we have relabelled fgr,,, = fr(0) (see Eq. (#.175)), m3 = m3fz(0) and
ANT) = (Rfr — )/(2fr(0)7?), so that A(0) = Acg.

We now focus on spherically symmetric pressureless bodies, for which an

(4.181)

2

analytical solution for an arbitrary f(R) can be obtained [407] by using the ansatz

1 1
—h,,datds” = —— | —B(r)e*®Md? +
A" eyl

1
B(r)

dr? +r?dQ?| .
(4.182)
The explicit form of B(r) and ®(r), obtained from the field equations (4.181]), can

ds? = gudatdx” =

be found in Ref. [407]. For our current purposes it suffices to say that both functions
are well defined and provide a complete solution for a nonrotating, pressureless,
spherically symmetric body. Furthermore, in the exterior of matter sources, where
7(0) = 1, the line element in Eq. is the same as the Schwarzschild-de Sitter
one given by Eq. , just by absorbing the ¢?® factor with a time coordinate
redefinition and identifying A(r) with B(r). As for the interior of the body, the
usual GR expressions are recovered by choosing v = 1 and A = 0. In this way, the
Newtonian limit of the general solution can be studied. In particular, we

focus on the time-time component of the metricﬂ

1

1], 26GM()
v(T)

r

g = —

] 2@ ()=o) (4.183)

8Note Eq. (4.181)) is the same as Eq. (3.53)), only with g, replaced by k., fr(T) by v(T) and

mp by mp. Indeed, g,, = fR(O)hW, but the Einstein tensor is invariant under constant rescalings

of the metric G, (§) = G, (fr(0)g).
9We have redefined B(r) = 1 — 2GM (r)/r.
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The conclusions presented in Ref. [298] imply that, for a Palatini f(R) theory
to be viable, the function f(R) has to be chosen such that (7)) (or fr(T)) is
not very sensitive to density variations over the range of densities accessible to
the corresponding experiments. In other words, (7)) must be almost constant
since then, with a simple constant rescaling of the metric, the constant v(7T') ~
Yo + corrections can be brought to the form 4(7T") = 1 + corrections. This, in turn,
implies that the metric has the standard form g,, = 7,, + corrections.

From a more analytical perspective, we require that a change A~ relative to ~
induced by a change Ap relative to p must be small

CARYE?

5 fRa_p‘ <1 (4.184)

This condition is equivalent to [40§]

Pyl fR/1<RfRR> <1 (4.185)

We now have the tools to determine whether our f(R) function, given by

«Q
2
2mgp

satisfies Solar System bounds or not. Using Eqgs. (4.3]), (4.4]) and (4.18]) we have the

following expressions inside the matter sources

f(R) =R+ — R, (4.186)

1 « Pm QP
T) = — [pm +4 O o AV ()P P (14 Lo 4.1
FT) = aln + 4V (or)] + goglom + V(e = 22 (14222 (a0
FRT) =1+ —[pm + 4V (gp)] = 1 + — (4.188)
R - mil) Pm Pr)| = m4Ppm7 :
and
(0%
fre(T) = —, (4.189)
m

where we have taken into account that V(pr) < pp, inside matter sources. Plugging
these results in Eq. (4.184]) gives

O Pm
—r <1 (4.190)

mp
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It is obvious that this bound is satisfied for most values of the coupling constant
«, and in particular for the lower bounds given by Eq. (4.65). For example, the
density of the Sun is p = 1.41g/cm?® = 1.3 x 107%'m3, so that

107" < 1. (4.191)

We conclude that our model passes the Solar System constraints. However, this
is not the end of the story: We have overlooked one important subtlety by taking the
approximation that the considered matter distributions are perfectly homogeneous.
Indeed, the real structure of matter is discrete and our results could be modified.
Specifically, the condition that «(7") has to be almost constant does not necessarily
hold when one considers microscopic experiments, since it would be always possible

to find regions of space where (T') could take any possible value.

4.6.2 Microscopic Experiments

In this section we make use of the results found in Refs. [298], 409, 410]. The first
experimental constraint is obtained by considering the non-relativistic Schrodinger
equation for an electron in an external electromagnetic field, derived from the
equation for a Dirac field in curved space-time. It is found that the v(T") term
in the metric in Eq. induces a miss-match in m = m~y~'/2, where m is the
mass of the electron, calculated in vaccuum and in the interior of sources. This miss-
match in turn corresponds to a change in the potential in the outermost part of the
atom, which could induce a probability flux towards infinity reducing its half-life.
In order for the miss-match to be small enough, any viable f(R) theory must have

a negligible [409]

- fr(o0)
A, = mg ( ) 1> , (4.192)

where myq is a constant of the order of the mass of the electron m and fr(co) is fr

evaluated in the regions of space where the matter energy-density is much larger
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than the vacuum energy-density. From the results obtained in the previous section,

we have

A Pe moQPe
Ay, = 1 —1) ~ . 4193
(14 0 ) =5 19

Since the vacuum-density scale m%/« is much larger than any matter-density
scale that the wavefunction of the electron can reach, unless « is unrealistically large,
we conclude that our choice for the f(R) function is compatible with experiments
related to the stability of the Hydrogen atom.

Another constraint was obtained in Ref. [410] from the variation in the energy
levels of Hydrogen, for models in which the constraint given by Eq. is

satisfied, i.e., A,, is negligibly small, such as ours. It reads

frr(0)H
fr(0)

Using the results obtained in the previous section and the first Friedmann

‘ <4 %1079, (4.194)

equation we obtain

@pPo
3mp

‘ <4x107%, (4.195)

where pg is the energy-density of the Universe today, which value is

&
cm3

The bound in Eq. (4.195) is obviously satisfied unless, again, « is unrealistically

po =~ 8.5 x 10730 = ~ 10719m}. (4.196)

large.
This concludes the section about constraints coming from experimental tests.
We have found that our choice for f(R) passes the constraints coming from both

Solar System and microscopic experiments. Furthermore, they are compatible with

the bound in Eq. (4.127]) coming from inflationary dynamics.

4.7 Discussion

The emphasis in this work is put on investigating quintessential inflation in the

context of an R + aR? Palatini modified gravity theory. In the Palatini formalism,
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R + aR? gravity does not introduce an extra dynamical degree of freedom (the
scalaron) as is the case in the metric formalism. Instead, inflation is driven by an
explicitly introduced inflaton field. What the Palatini setup does is it “flattens” the
scalar potential leading to an effective inflationary plateau even though the original
inflaton potential might be steep. As such, we have shown that a theory with e.g.

V o ? is successful in accounting for the inflationary observables.

However, thus far this is not a new result, as inflation in the Palatini context
has been studied before. In our work we have also investigated other implications
of our Palatini modified gravity theory after inflation. During radiation domination
R = 0, which implies that our R + «R? Palatini modified gravity does not really
differ from standard Einstein gravity. However, this is not true during kination and
subsequently during the recent history of the Universe, after the end of the radiation
era. In principle, these periods may be affected and we have studied this in detail.
We have shown that the Palatini corrections are largely subdominant to negligible
during the kination era if the coupling o of the R? term in our theory is not too
large{:G]. We also showed that, as far as the Universe dynamics is concerned, the

recent matter era is also unaffected.

There is an additional level on which our Palatini setup outperforms R + aR?
modified gravity theory in the metric setup, and it has to do with constraints from
experimental tests on the coupling a of the R? term. The inflationary observables
are satisfied when o > 108 or so. In the metric formalism, such values are excluded
by solar system observational constraints and other microscopic experimental tests.
The tightest constraint comes from time-delay effect of the Cassini tracking for the
Sun, enforcing a stringent bound on post-Newtonian parameter |y — 1] < 2.3 x 107°
[398]. This implies o < 5.8 x 1075, However, this is not so in the Palatini formalism,
where experimental tests allow for large values of a without problems. Thus, R+aR?
quintessential inflation is possible only in the context of the Palatini and not the

metric formalism.

10Recall that the Lagrangian density of gravity is actually £ = %m%R + %aR?
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To obtain specific predictions and demonstrate the analytic treatment of
quintessential inflation in our Palatini modified gravity theory, we have investigated
a family of models based on a generalised version of the original Peebles-Vilenkin
quintessential inflation model [15], introduced in Eq. (4.44). This model is not to
be taken too seriously though. The reason is that only two small regions of the
scalar potential are really relevant. During inflation, the observable part of the
scalar potential corresponds to the region traversed in slow-roll of the canonical
inflaton field ¢ in no more than about 10 e-folds. For the non-canonical field ¢
(cf. Eq. (4.45)), this region is even smaller. For thawing quintessence, the region
traversed corresponds to the field unfreezing and starting to roll. This region is
again rather small. The model approximates the two regions as power-laws, with a

positive power n for inflation and a negative power —q for quintessence.

For inflation, we have shown that the correct spectral index of the primordial
curvature perturbation is obtained when n =2 — 3, in the case when reheating is
due to gravitational particle production. This is the least effective mechanism for
reheating, which corresponds to about N =~ 68 e-folds of remaining inflation when
the cosmological scales exit the horizon. The problem of gravitational reheating is
that the subsequent kination period is so long that the amplification of primordial
gravitational waves challenges the process of Big Bang Nucleosynthesis. A more
efficient mechanism would reduce N somewhat down to N =~ 65 or so. This would
mean that n ~ 2 or even less. The observed amplitude of the primordial curvature
perturbation determines the value of the constant \. When n =2 we find that
A ~ 1079, Finally, regarding the generated primordial tensors, we find that we are
within the observational limits if o > 108. If we are near this value, the produced
primordial tensors are within reach of observations in the near future (e.g. by the

BICEP3 or Simons observatories).

For quintessence, we have shown that coincidence can be achieved by avoiding
the extreme fine-tuning of ACDM. Indeed, for ¢ = 4 we found M ~ 10 GeV, which

is rather reasonable. We have shown that this value substantially grows if ¢ becomes

146



4.7. Discussion

larger (M ~ 1077 GeV when ¢ = 2). However, the negative power ¢ cannot be much
larger because the barotropic parameter of thawing quintessence today would be too
large [258], the observational bound being —1 < w < —0.95 [§]. Future observations
(e.g. Euclid or the Nancy Grace Roman missions), will pinpoint w further, resulting
in a better estimate of ¢. It will be interesting if w = —1 was excluded and ACDM
was in trouble. We should note that the power-law approximations of the scalar
potential in the inflation and quintessence regions are only indicative. In this sense,
one can envisage non-integer powers.

After inflation there is a period of kination where the inflaton field is oblivious of
the scalar potential. Our treatment of kination within the Palatini setup is therefore
independent of the specific model chosen for the scalar potential. We found that

the canonical field ¢ is propelled over super-Planckian distances. However, the non-

canonical field ¢ for both inflation and quintessence (cf. Egs. (4.45) and (4.132))) is

expected to vary much less, as is the case of a-attractors [258]. This means that the
radiative stability of the quintessential tail is protected and the 5th force problem
of quintessence is overcome [259].

Summing up, we have investigated quintessential inflation in the context of
an R + aR? Palatini modified gravity theory. We have shown that inflation is
successful with a quadratic scalar potential for the inflaton field, while quintessence
is successful with a quartic inverse power-law potential without the extreme fine-
tuning of ACDM. He have found that the Palatini setup introduces subdominant
corrections to the kination and quintessence periods and does not lead to violations
on experimental tests of gravity. Our treatment is able to provide concrete
predictions for the primordial tensors and the barotropic parameter of dark energy,

which will be tested in the near future.
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Chapter 5

Exponential Quintessential

Inflation in Palatini f(y, R) Gravity

This chapter is based on the original research articles published in Journal of
Cosmology and Astroparticle Physics [3] and in Galazies [2] by the author,
in collaboration with Konstantinos Dimopoulos, Alexandros Karam, and FEemeli

Tomberg.

5.1 Introduction

In this chapter, we study a model of quintessential inflation in the context of R+ R?
Palatini gravity where the scalar field has a running non-minimal coupling to gravity.
Employing Palatini gravity to study quintessential inflation was first considered in
Chapter [4] considering a variation of the original quintessential inflation model in
Ref. [15]. This toy-model investigation demonstrated that modeling quintessential
inflation with Palatini gravity is promising. In this, much more elaborated and
realistic approach, we consider a simple negative exponential potential in the Jordan
frame. When we transform the action to the Einstein frame, the potential becomes
flat for both negative and positive field values with a steep transition region in-

between, resembling a step function. The two flat regions are suitable for inflation

148



5.2. Setup

and quintessence. Working in the Palatini formulation allows us to modify the
inflationary plateau, in particular, through the R? term. The running of the non-
minimal coupling allows us to obtain the correct quintessence behaviour. To study
the full time evolution of the system throughout its cosmic history, we provide the
equations of motion of the scalar field and an ideal fluid component representing
other matter sources in the universe. We solve these equations numerically and
scan over the parameter space, finding working scenarios matching both the CMB
and late-time observations for parameter values that are free of fine-tuning. A
preliminary study of the model can be found in Ref. [2]. In the present chapter, our

treatment and findings are more complete and comprehensive.

This chapter is structured as follows. In the next section, we describe our model
and perform the Jordan to Einstein frame transformation. Then, in Sec. 5.3 we
describe the model’s time evolution in a cosmological setup. We employ the slow-
roll approximation and discuss the inflationary behaviour of the model, adopt Ricci
reheating as the mechanism responsible for reheating the Universe and describe
its details, and outline the post-inflationary expansion history, namely, kination,
radiation/matter domination, and quintessence. Numerical results for inflationary
and late-universe observables are presented in Sec. 5.4 and we conclude in Sec. [5.5

Further computational details are relegated to the appendices.

5.2 Setup

In this section, we first present the action of the model in the Jordan frame. After
a frame transformation we bring the action to its Einstein frame form. Then, we
compute the equations of motion in both Jordan and Einstein frames and show how

one can easily transition between them.
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5.2.1 The model

We start by considering the action in the Palatini formalism

4 m% 1 v
5= [ dlay=g| "Rt B) - 3 0utup - Vo) + Sulgetl. (5)

where mp is the reduced Plank mass, 1 collectively represents the matter fields other
than the inflaton ¢, and we take them to behave as an ideal fluid. The function
f(¢, R) takes the form

«

R?. (5.2)
2m?,

o, R) = (1 + %gﬁ) R+

We let the non-minimal coupling £ run as
2

E(p) =& {1 +8n (“’—)} , (5.3)

L

with & > 0 and 8 < 0 constants, and p an arbitrary reference scale.

In the Palatini formalism, the connection I' is independent of the metric g, .
The connection features in the Ricci tensor, which is a function of the connection I'
only, with

R=g" R, (). (5.4)

The form of the connection is determined by constraint equations obtained by
varying the action with respect to I', and, in the presence of the non-minimal
gravitational physics introduced by the non-zero £ and «, it will differ from the
standard Levi-Civita form.

The real scalar field ¢, which plays the role of the inflaton and quintessence in

quintessential inflation, is governed by an exponential potential
V(p) = Miemrelme. (5.5)

The exponential form is well-motivated in particle physics (it usually appears in
string theory and supergravity models, e.g. in gaugino condensation [411], 1412} 413]).

It can produce quintessence in agreement with observations in its flat tail at ¢ > 0,
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and it is also suitable for quintessence from a theoretical point of view: we do not
introduce a fine-tuned cosmological constant by hand, but instead V' — 0 for large
v, and the late time dark energy density arises dynamically from the equations of
motion.

The action (.1)) is dynamically equivalent (as long as 93 f # 0) to

1
S = /d4£€v —9g |:f(307 X) + axf(SD, X) (R - X) - éguya;ﬁpaugo - V(SO):| + Sm[gulu ¢] 9
(5.6)
as can be seen by obtaining the equation of motion for the auxiliary field y and

plugging it back in Eq. (5.6)). Using this, the action can be cast in the form

S = /d4a:\/—g "E (1 L LR =2 = L 0,00,0 — Vi) [+ Sulgun v
2 md md 4 2 pry e
(5.7)
As is standard, we employ a conformal transformation (note that, in the Palatini

formalism, this does not change I")

_ § 5 Q
v V:Qz »= (1 v 5.8
G = Gu 9 ( + 12390 +—1%X 9 (5.8)

to express the action in the Einstein frame where the gravitational part takes the

standard Einstein—Hilbert form:

2 2 (A, )2 4 a2
_ 4. —|mp s 1 mp () B mP<V(S0)+zX)
S—/dx\/_g[—z R

+Sm[ QG Y]
2(mp + & +ax)  (md+Ep? + ax)’ R

(5.9)
Note that, essentially, Q% = dgf(p, R) = fr. We have introduced the short-hand

notation (Jp)? = gwéﬂgpé"gp, where 0 denotes a derivative with respect to the
Einstein frame coordinates. Throughout the chapter, we will use an overbar to
denote Einstein frame quantities. Due to the standard form of the gravity sector,
we will interpret all the usual cosmological observations in the Einstein frame.

To make the calculations that follow less cluttered, we define

h(p) =mp +Ep*. (5.10)
We then get rid of the auxiliary field by obtaining its equation of motion. Let us,
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for a moment, ignore all matter except for the inflaton; then, we have

5S AmBV + h(p)(0p)?
x X = hpymE — alop) 510
giving
2
02 — h* 4+ 4aV/ (5.12)

hmg, — a(9p)*
Plugging both expressions back into the action gives [345], [346]

dp)?hmd o (Op)* Vmi
q mp _ _( p L@ _ P . 1
/ TV [ R e T aav T AR 14V T Wt daV (5.13)

Note that, because we were able to get rid of the non-dynamical auxiliary field
through its equation of motion, the above action contains only one scalar field.
This is in contrast to the metric version of the theory, where the auxiliary field is
dynamical and the Einstein frame action contains two fields.

The field can be made canonical via the redefinition

do _ h(¢)mi
dp \/h(sf))2 +4aV(p) (514

Note that for large negative ¢, this gives d¢/dp oc e®¢/(?™?) which, after integration,
shows that ¢ approaches a constant as ¢ — —oo. We choose this constant to be
equal to zero, so that ¢ is restricted to take positive values.

The field redefinition leads finally to

ah?+4aV - Vm}

—_— —_— q
4 h®m (09)" - h? + 4aV (5.15)

4 mp o 1o
Note the appearance of the higher-order kinetic terms for the scalar. As we will see

below, they are negligible for most of cosmological evolution. Note also the form of

the Einstein frame potential,

V . Vm4P m%Mﬁle_’ﬁSO((b)/mP
(9) = h2 +4aV — (md + Ep(¢)2)2 + daMiere(d)/mp

(5.16)

which chiefly determines the cosmological evolution of the model. An example case
is depicted in Fig. |5.1l The appealing features of the model are evident in the

potential. For ¢ < 0, the potential decreases with increasing ¢, but only slowly: the
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« term makes the potential flat and suitable for slow-roll inflation. For ¢ > 0, the a
term is subleading, and the potential decreases quasi-exponentially, modified by the
change of variables . The £ contribution modifies the potential; its running
enables it to fix both the inflationary CMB observables and the late-time dark energy
to values that match observations. For large enough ¢, £ runs to negative values,
causing V to first flatten and then start growing, forming a local minimum and a
nearby peak when 1 + £(¢)p?/m? becomes zero. For the parameters in Fig. [5.1]
the zero occurs at ¢ = 890.99mp, and at this point the height of the Einstein frame
potential is 1(890.99) = 1.14 x 10~ %m3 (notice the second term in the denominator
in the potential regularizes the peak). Beyond the peak, the kinetic term in ({5.13)

changes sign. In practice, as we will see below, dynamics never probe this region.

3.0F
3.0F ~7.73x10!2
5k 4“—1 < X10—9 ) 2 @=7.73x10"2
& MP=1.65%10mp = o0t M*=1.85%10m?
é 2.0f ﬁ:—O.l 13 ﬁ_ 0.1
N _ 11X 1.5F S
=L . K 0-281 o - k=028
S 1.0 [ Logid==196 | 1% 1.0} Log,o¢,=—1.96
0.5 0.5
0.0 , , , , oof ...
0 50 100 150 860 865 870 875 880 885 890
@/mp @/mp

Figure 5.1: Potential in the Einstein frame V' as a function of the field ¢ (in Planck
units), with the presented parameter values, in two regions: around the inflation
scale, ¢ ~ 0 (left), and around the point at which 1 + £()p?/m? becomes zero,
i.e., o = 890.99mp (right). The height of the potential at this point is V(890.99) =

1.14 x 107% m.

5.2.2 Equations of motion in the Jordan frame

While the Einstein frame discussed in the previous section is useful for physical

interpretation of the results, the equations of motion are easier to formulate in
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the Jordan frame, especially when we wish to include the non-inflaton matter
contribution from and thus go beyond the simplified Einstein frame action
(5.15)). To obtain the equivalent of Einstein equations for our system, we follow the
same steps as in Sec. [3.2]

We take the matter energy-momentum tensor to be of the ideal fluid form with
energy density p and pressure p, Tlgl,?) = (p+ p)uyuy + pgu. We define the fluid’s
barotropic parameter as w = p/p. The energy-momentum tensor of the field takes
the standard form 7.\ = 0up0up — g (3(09)? + V).

Using Eq. , the trace equation becomes

T
R=——5—, 5.17
mp + £p? (547

and the R-derivative of the f function reads

fr= <1 + %soQ) S — (5.18)
mp

mp + Emie”

where trace of the energy-momentum tensor reads
T = —g" 0,00, — AV () — p(1 — 3w). (5.19)

Adopting now the flat FLRW metric, the metric Einstein tensor G, can be
written in terms of the scale factor a and its time derivatives such as the Hubble
parameter H = a/a in a standard way. Dot refers to a derivative with respect to

the cosmic time. The zeroth-zeroth component of Eq. (3.45)) then reads

1 1 f 3HOyfr 3 2
3H?> = ——T, +—<R——> - - O , 5.20
mifr "2 Ir Ir 4f}23( /) (5:20)
while the 77 components read
. 1 . fR 3 Fo\2 HfR
H=———S—@+p+¢) -+ + =, 5.21

where R and fg are given in terms of the matter content by Eq. (5.17)) and (5.18))
and

1.
Too = p+ §¢2 + V(). (5.22)
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Eq. is a second-order algebraic equation for H, which can be solved in terms
of the field and fluid variables ¢, ¢, p, and w. A complication arises from the
time derivatives of fr: these contain also factors such as ¢ and p, which must be
eliminated using the field and fluid equations introduced below. The procedure is
explained in detail in Appendix [B.1]
As discussed in Sec. [3.2] the energy-momentum tensor of the fluid is conserved
[376], so that
V#T(‘I‘Z):O = p+3Hp(14+w)=0. (5.23)

Finally, varying the action with respect to ¢, we have

G+ 3Hp+ V() - <g(¢> + 5/“2”)"0) PR =0, (5.24)
which, using Eq. , becomes
$+3Hp+V'(p) —EpR=0, (5.25)
where we have defined
E=¢, {1+B(1+lng)] (5.26)

Equations ((5.23]) and (5.25), with (5.17) and (5.20) for R and H, form a complete

set of equations from which the dynamics of the system can be solved.

5.2.3 Between the Jordan and Einstein frames

To give a physical interpretation for the dynamics, we want to relate the Jordan
frame quantities to the Einstein frame ones. In both frames, we use a flat
FLRW coordinate system with the metrics g, = diag(—1,a? a? @*) and g, =
diag(—1,a% a@* a*). We remind the reader that we use an overbar to denote
the Einstein frame quantities. The spatial coordinates of these two flat FLRW
coordinate systems match, but the time coordinates are rescaled. As per our
convention, we call the Jordan frame coordinates z* = (¢,z') and the Einstein

frame coordinates Z = (%, z"), and the conformal transformation gives for spacetime
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intervals

ds? = da*dz’g,, = Az dz” g, Q>
| - " (5.27)
& (do')?e® = (d2')%a*Q 2, —dt* = —d*PQ 2,

where Q% = fr depends on time only. We obtain the relationships

C —Va  a=a/Fa (5.28)

as the master equations for moving between the two frames. With these, we can
express various Einstein frame quantities in terms of the Jordan frame ones. In

particular, ‘
1 do . H 1 fr

VTnde” VR i

where a dot still denotes a derivative with respect to the Jordan frame time, and

H

Q| lo

d, o
d_f¢:¢_ (5.29)

we introduced a circle over a symbol to indicate a derivative with respect to the
Einstein frame time, so that z = f}gl/Qiz

The relation between the fluid energy-momentum tensors in the Jordan and

Einstein frames is [1]

2 0Sn 2 690‘55Sm_i(_ 2 5Sm>_1

T — _ — = = —7m (5,30
g V=gogm =g 0gm gt [P\ /=gog®) [ (5:30)

where we used dg*’/0g"” = f656) and /=g = f*/=g
The Jordan frame ideal fluid is still ideal fluid in the Einstein frame; following

Refs. [198] [399], we write its energy-momentum tensor as

po_D
f27 p_f27

where the last equations relate the Jordan and Einstein frame quantities. It follows

T = (p+ Pyt + PG U=/ fuu, p= (5.31)

that the barotropic parameter has the same expression in both frames:

w

Il
ATl R~

p
p

Below, we will always refer to the Einstein frame when talking of the barotropic

parameter; we will omit the bar for simplicity of notation.
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5.2.4 Equations of motion in the Einstein frame

We are now ready to examine the Einstein frame equations of motion. Their full form
is complicated—in the Einstein frame action , the field and fluid components are
coupled through the conformal factor Q=2 inside S,. In a general case with o # 0,
the fluid may even modify the y constraint equation (5.11)) and, as a consequence,
the field transformation . We only present here approximate forms of the
equations, free of some of these complications and valid during specific cosmological
eras. Exact expressions can always be obtained by starting from the Jordan frame
equations of Sec. and applying the transformations of Sec. [5.2.3]

During inflation and right after it, the fluid is subdominant and can be ignored

in the field equations. Varying the action ([5.15)) then gives [345]

4 42 | oo 4 v
1+3a(1+o‘—;/>¢—4 $+3 1+a(1+0‘—2v)¢;4 Hé
h? ) mp h? ) mp
(5.33)
ot d [V d -
30— —( =] +-—=V=0
i e\2) T a ’
with A defined in ([5.10]). The energy density and pressure of the field read [362]
a3 4oV ¢* ] ey -
1 a1 2 2
Pé 5 + 2OA( —+ 52 ) m4P °+V,
- o) (5.34)
o1l 4aV\ ¢ | oy -
— 1+ Zal1+ 22 ) 2 _
Do 5 + 204( + 52 ) m4P 10) Vv,

and the Hubble parameter can be written as 3m H? = p,. The higher-order kinetic
terms are the only complication compared to a standard canonical scalar field.

At later times, the fluid becomes important, but the o terms turn out to be
negligible. In this limit, the field transformation ([5.14)) can be solved explicitly to
yieldﬂ

VEo = mp sinh(\/éb/mp) , (5.35)

Note that, when o = 0, we have ¢ — —o0 as ¢ — —oo, contrary to the discussion below

Eq. (5.14)). When working in the o = 0 limit, we normalize the field so that ¢ = 0 when ¢ = 0.
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with the Einstein frame potential

exp |—— sinh (&
V()= M p[coﬁ4(%i?P¢)] =V(9). (5.36)

The field is coupled to the fluid; action ([5.15)) with the fluid contribution added in

gives in the o — 0 limit:
N A ]
+3Hp+ — — ———(1—-3w)p =0, 5.37
o () (537
where fg is given by (5.18)), so that 9, fr/(2fr) = v/& tanh /€, and we used
1 08 002 1 48 1 002 _ -
m_ 2 g m) P T,=—(1-3wp. (5.
/=G 66 ¢ g ( /=5 5guu) 02 96 ) (1=3w)p. (5.38)

Throughout the cosmic history, the fluid continuity equation in the Einstein frame

can be obtained from the Jordan frame version , using the transformations of
Sec. 5.2.3l The result is

1
2fr
Multiplying the field equation by qg gives the continuity equation for the field

p+3Hp(1+w) + = fr(l = 3w)p=0. (5.39)

energy density. The inflaton-fluid coupling terms there and in (5.39) are identical
but have opposite signs: the coupling simply transfers energy from one component
to the other. The coupling vanishes in the early universe when the fluid behaves
like radiation, w = 1/3, but it can be non-negligible during matter domination. We
will discuss the effects of this coupling in more detail in Sec. [5.4]

Note that these expressions are still written partly in terms of the Jordan frame
field ¢, hidden in quantities like h, V', and fg. In a general case, it is not possible
to solve the field ¢ from ¢ analytically. This is why, in our practical numerical
computations, we work in the Jordan frame. The Einstein frame expressions of this

section are for the benefit of developing a physical intuition of the system.

5.3 Cosmic history with quintessential inflation

Let us now turn to the time evolution of our model in a cosmological setup. In this

section, we explore the cosmic history qualitatively through its many stages, starting
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from inflation and ending with quintessence domination. To make contact with the

standard formalism discussed in the literature, we mostly work in the Einstein frame.

5.3.1 Inflation

We start with the field at the plateau with ¢ < 0 and high V, with other
matter components being negligible. We assume the high potential energy density
dominates over the scalar’s kinetic energy, giving rise to cosmic inflation, where the
expansion of space accelerates. The plateau in V is suitable for slow-roll inflation,
where the field slowly moves towards positive values so that the potential gradient
is balanced by Hubble friction. In this limit, the Einstein frame equations of motion
take the standard form

3H¢ + i—‘; =0, 3HmL=V, (5.40)
where we neglected higher-order kinetic terms as subleading slow-roll corrections
[345]. The evolution is characterized by the slow-roll parameters:

1 /dVmp ? APV m?

e (WY A

WV (5.41)
For slow roll to be possible, we must have ¢y, < 1 and |ny| < 1 at the corresponding
field values. We can compute the slow-roll parameters for our potential in the
limit of constant &, that is, with § = 0. To make the computation simpler, we use
a result from [345] that relates ey and 7y to their counterparts in the o = 0 limit

(here € and 7}, respectively). The results, by using Eq. (5.14) and the chain rule,

can be expressed terms of the Jordan frame field ¢ as

B 4oV é

= — 9=, €y = ———=,

I T 144V
2 2 2 2 2
[e(1+ %) + g2 et (1+59) 402 (14 £2) —4c + 1665
€= . 2 2 , n= : - 2 - :

2 L+ 35 L+ 55

P P

(5.42)
and V is defined in (5.36). The expression for e, reveals possible extrema with
V' =0 at kp/mp = —2 £ /4 — k2/€. We demand that the potential is monotonic,
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i.e. V' < 0 everywhere; this sets the restriction x2 > 4¢ on the allowed parameter
space.

Asymptotically, € ~ ¢?, diverging for both positive and negative ¢. However, ey
is suppressed by the exponential oV contribution so that e, < 1 for © K —mp/K.
This allows the system to undergo inflation even for large negative . Indeed, this
was the motivation for us to introduce the aR? term to our model in the
first place. The asymptotic behaviour ny, ~ 7 ~ ¢ also reveals divergences for
|| — oo, this time not removed by the « terms, making slow roll impossible for
¢ < —mp/(kE). This leaves us with a range of field values near ¢ = 0 that are
compatible with slow-roll inflation. We start our inflationary evolution in slow-roll
in this field range. As we will see in Sec. typical values of the model parameters
support the 60 or so e-folds of inflation needed for a successful inflationary scenario.

As discussed in Chapter [2, the motivation for slow-roll inflation is that it
produces a nearly scale-invariant spectrum of perturbations, compatible with the

CMB observations [10, 9]

Ag=21x10"7, n,=0.9649 £0.0042, o, = —0.004540.0067, 7 < 0.036.
(5.43)
Here A, is the scalar power spectrum amplitude, n is the scalar spectral index, a its
running, and 7 is the tensor-to-scalar ratio at the CMB pivot scale k, = 0.05 Mpc ™.

In the slow-roll limit, the perturbations read

v i
A= Srtmbey ~ &mben
m mpev Y mPeH (544)
ng =1—06ey +2ny =1—4eyg + 2ny, r = 16ey = 16¢g ,

where we also gave the forms based on the Hubble slow-roll parameters,

o oo

€Eg = ~ €y, Ng = ——=S Ny — €y, (545)
H

where the approximations apply during slow roll. The expression for a; depends on

higher-order slow-roll parameters, which we omit for brevity; these can be found in
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e.g. [39]. Using the results ((5.42)), we can also write down the full expression

2 1+ 28
ns—]———«?<1+§fg)——HMmiﬁn—Sf———ﬁgn (5.46)
mg mp 1+ 8

P

In our numerical results, we have 8 # 0, so the results (5.42), ((5.46) will be

modified slightly. We will use these expressions as guidance when scanning over
the parameter space, but we will compute the CMB observables from the Hubble
slow-roll parameters as laid out in ([5.44)). The modifications of inflation due to a
non-zero 3 turn out to be minor; 3 is more important for the later evolution of the

system, in particular, for fixing the final dark energy density.

5.3.2 Kination

Inflation ends when the field rolls down from the inflationary plateau to positive ¢
values. As the field drops off the potential ‘cliff’; see Fig. [5.1] its velocity increases
and the kinetic terms in the action start to dominate over the potential.
During this stage, the extra kinetic terms proportional to 04<Z4 may play a role in the
evolution (see Chapter @ However, as the field velocity decreases due to Hubble
friction, these terms die out quicker than the canonical q(;Q kinetic term, which soon
dominates. Analogously, in the Jordan frame, the aR? term becomes subdominant
compared to the linear R term as the energy density of the universe, and thus its
curvature, decreases, and it stays subdominant until today. Thus, the o term is only
important during and right after inflation.

After a transition period (lasting less than 10 e-folds according to the numerics
of Sec. , the scalar field follows standard kination [287, 288, 286, 239 240, 245]

with the equations of motion

[e)e} — O —_ 1 o

¢+3Hp=0, Mﬂmézéﬁ, (5.47)
with the solution

o 1 o

poca,  py=ps=50 xa’. (5.48)
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Note that the exponentially suppressed potential does not play a role during this
stage. The evolution corresponds to a barotropic parameter w = 1, which is
quite distinct from the standard radiation or cold matter domination (w = 1/3 and
0, respectively). The period of kination leads to a non-standard expansion history
of the universe, which, in particular, shifts the number of e-folds of inflation left at
the Hubble exit of the CMB pivot scale k = 0.05Mpc™! from the standard 50-60
to 60-70. We will return to this point in Sec. [5.4] where we match the CMB scale

based on the full expansion history.

5.3.3 Reheating

In many conventional models of inflation, reheating occurs through the inflaton
decaying into matter particles, which then take over the energy density and start
the standard Hot Big Bang era. In quintessential inflation?] the field condensate
must be preserved and serve as dark energy later on. Therefore, radiation has to be
created in some other way. There are many mechanisms which can facilitate this.
As an example, we consider one such mechanism, called Ricci reheating. Ricci
reheating was first considered by Ref. [98]. Then, it was refined first by Ref. [99],
which also coined the name, and further by Ref. [289]. In a nutshell, the idea behind
Ricci reheating is as follows. The mechanism is based on the fact that, for a flat
FRW Universe, the Ricci scalar (in the Einstein frame) is R = 3(1 — 3wy ) H?, where
Wit 1S the barotropic parameter of the whole Universe. During slow-roll inflation we
expect wio = —1, while after the end of inflation during kination we have wy, = 1.
This implies that the sign of R changes in the transition from inflation to kination.
If one considers also a spectator scalar field ¢ with non-minimal coupling to gravity
o R?, then this change of sign in R would correspond to a change of sign in the
effective mass-squared of ¢ generated due to the non-minimal coupling. Assuming
that this effective mass-squared is positive during inflation, we can safely consider

that the expectation value of 1 is zero by the end of inflation. However, as we switch

2and in general in non-oscillating inflation models
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5.3. Cosmic history with quintessential inflation

to kination, the effective mass of 1) becomes tachyonic and the field is displaced from
zero (which corresponds to a potential hilltop, after inflation) and begins oscillations
in its effective potential. The oscillating ¢) has a particle interpretation and can decay
into radiation, which eventually reheates the Universe, because its density is diluted
less efficiently by the expansion than that of the free-falling inflaton during kination.

The mechanism has a number of advantages compared to other reheating
mechanisms considered in quintessential inflation. It can be very efficient, in contrast
to gravitational reheating [97) [403], which means it would not challenge Big Bang
Nucleosynthesis (BBN); it does not require a coupling between the spectator field
and the quintessential inflaton in an enhanced symmetry point, as would be the case
of instant preheating [100] 228]; it does not need tuning of initial conditions for the
spectator field, as does the curvaton reheating mechanism [290] 291] and finally it
does not presuppose a quintessential inflaton with dissipating properties as in warm
quintessential inflation [272] or the generation of primordial black holes [414]. Tt
only employs the fact that renormalisation in curved spacetime results generically
in a non-minimal coupling of scalar fields to gravity.

The additional Lagrangian density of the scalar field is
_ 1. 1
0L = —SERY? = 53" 0,0 = V(¥), (5.49)

where V(1)) is the part of the scalar potential which involves ¢ and é is a non-
perturbative coupling, which should not be confused with &, the non-minimal
coupling of the quintessential inflaton field.

Technically, the addition of the above in the Lagrangian density of the theory
is yet another modification of gravity, which must be taken into account when
switching between the Jordan and Einstein frames. However, we consider that
\/2 || < mp always, which means that the influence of ¢ on gravity remains always
negligible. Thus, in effect, we can consider that the only effect of the above non-
minimal coupling is to provide a contribution to the effective mass-squared of the
spectator field. Additionally, the condition \/E || < mp allows us to consider a

perturbative scalar potential, which around the expectation value of the field during
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inflation, can be written as
1 1
V() = §m2¢2 + ZW4 SR (5.50)

where the ellipsis denotes higher-order non-renormalisable terms, presumed negligi-
ble. We will consider at first that the non-minimal coupling overwhelms the bare
effective mass-squared |m?| < |€ R| so we can ignore the first term on the right-hand-
side above. This sets a limit on the mass which we discuss in Appendix[B.2] We will
also consider a positive perturbative self-coupling 0 < A < 1, so that the potential
is stabilised by the quartic term and not by non-renormalisable terms, although a
modification of our results in the latter case is straightforward.

In Ref. [289] it was shown that after the end of inflation, the field ¢ oscillates
as determined by the terms in that stabilize V'(¢), while the effect of the
central potential hill (generated by the non-minimal coupling) is diminishing (and
negligible) because R ~ H(t) is decreasing after inflation. If the stabilising potential
is quartic, as is the case of Eq. , then the density of the oscillating condensate
decays as radiation, p, oc a~* [106]. However, if the potential were stabilised by
a non-renormalisable term, this would not have been so. Fortunately, Ref. [289]
demonstrated that it is largely irrelevant which term stabilises the potential V' (¢)).
This is because in Ref. [289] it was shown that the primary reheating effect is not
the perturbative decay of the coherently oscillating ¢ condensate, but the non-
perturbative particle production on the hilltop, right after the end of inflation.
At this moment, the field finds itself on top of a potential hill, leading to ample
production of radiation due to a tachyon instability. In Ref. [289], it was claimed
that the produced radiation dominates over the one corresponding to the oscillating
condensate. Because the latter is diluted (at least) as fast as radiation, it never
becomes important, at least as long as the quadratic term in Eq. remains
negligible. These considerations simplify our treatment, because they suggest that
radiation is immediately produced at the end of inflation, and the further evolution
of the oscillating 1) condensate is irrelevant. The only question is how much radiation

is produced.

164



5.3. Cosmic history with quintessential inflation

An estimate of the size of the spread of a scalar field condensate on top of a
potential hill is given by ()?) ~ |m.g|* [415], where the effective mass squared in
our case is m%; = —6£ H? during kination, which takes place near the end of inflation.

Therefore, the density of radiation at the end of inflation is

end

Pr |meff|< > = 1852 end » (551)

where ‘end’ denotes the end of inflation. Thus, we obtain

—~end 18 2 R ﬁen 2
et = P L8 e _ oo (Hena) ™ (5.52)
Prot 3H? odMP mp

During kination, the total density of the Universe decreases as pio; o< @~ °, while for

radiation we have p, oc @*, which means that p, / Prot X a®. Therefore,

_ 2 _ _ 9
- (d) | = (d) ~ 6’ ( e“) SN CEE)
end Qreh Ptot |reh Qreh mp

where ‘reh’ denotes reheating, which is the moment that radiation takes over and

pr
Prot

we have p, =~ piot. The density of the Universe at reheating is straightforward to
find, by considering that pio; oc @~¢. Indeed, we get

~reh end ‘ —end 6 8

Prot = (a) Pror =~ 648" —= mP (5.54)

where we used Eq. ( and peid = 3H2 ;m%. Therefore, using that at reheating

Dot 2 Pr = %g*TA‘, the reheatlng temperature is

15\ .., H?
Treh:(ﬁ( . ) £3/2 —end (5.55)

=g« mp

where g, is the number of effective relativistic degrees of freedom at reheating.

The allowed reheating efficiency for successful reheating is
1078 <omd <1, (5.56)

The lower bound in the range of the reheating efficiency in Eq. ([5.56]) is obtained from
gravitational reheating [97), 403], which challenges the process of BBN due to an over-

enhancement of primordial GWs during kination. Indeed, gravitational reheating
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suggests P& ~ 107202 | where Huq ~ 10~8mp and we used that V2! ~ 10~4mp,
as the numerical scans of Sec. give. The value of 1_/;1/(14 roughly corresponds to

mp/(4a)V*, that is, V'/* on the plateau during inflation. Using Eq. (5.52), we

obtain the range of the non-minimal coupling of the spectator field
0.1 <E< 108, (5.57)

This range includes values of é ~ 1, which means that no fine-tuning is required for
our mechanism to work. A similar lower bound on é is obtained when considering
the density of the primordial GWs generated by inflation. Indeed, the density of the
gravitational radiation at the end of inflation is pn¢ ~ ;L HZ | (see appendix [B.3).
We require that p,/p.,, > 20 at BBN, but because both p, and p,, decrease with

4

the expansion as a—*, we have the same requirement at the end of inflation. In view

of Eq. 1} this requirement becomes é > 1/6y/27 ~ 0.038, which agrees with the
range in Eq. (5.57).
Equations (5.55)) and (5.57)) suggest that the reheating temperature ranges as

10 GeV < Thep < 10 GeV . (5.58)

5.3.4 Radiation and matter domination

After reheating, the universe is dominated by hot radiation, and the barotropic
parameter settles to w = 1/3. As the univserse cools, particles in the thermal bath
start to become non-relativistic, and this cold matter eventually takes over. We
approximate this to happen instantaneously when p, ~ 10~'1%n%}, corresponding to
a temperature of ~ 0.8 eV [39].

At the same time, the field follows the equation of motion (5.37)), veering away
from kination once radiation starts to take over. While the fluid is relativistic,
w = 1/3, the field and fluid don’t mix directly. However, in the presence of radiation
the Hubble parameter is larger than it would be if induced by ¢ alone, and this
increases the importance of the friction term. The field velocity <Z starts to decrease

dramatically, until the field essentially freezes to a near-constant value ¢g. Using
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the known scalings of the scalar and radiation energy densities, and assuming a

negligible scalar potential, we can write

_ —6 _ —4
— —kin a —kin a
Prot = Py (ak' ) + pE (—ak. ) : (5.59)

where ‘kin’ refers to a moment at the beginning of standard kination with pkin / ﬁld‘)in =

Qkin < 1. With this and 3H?m% = pi;, we can solve the frozen field value as

[ee] _ o [ee] B q(;
asfr—m:/ dg— [ da
g t_kin H

Qkin a

(5.60)

/ > da 2p5™(a/ @)
Gkin

(in /750 (@/@an) =0 + (@ /) 4] / (3m3)
- 3 .
= 6mpsinh™* (1/\/ka> ~mpV6In2 — mp\/;ln QI;‘“ .

As the kinetic energy of the field drops, the potential again starts to play an
important role in field evolution, complicating the dynamics. Two basic behaviours
emerge: the field may completely freeze, so that its potential energy comes to
dominate over the kinetic one and the field’s barotropic parameter becomes —1,
or the field may start to follow a scaling attractor with slow time evolution
[208, 4716, 213]. To estimate which fate is more likely, we can approximate the

potential locally around ¢ = ¢ with the exponential

V(¢) ~ Méﬁe—ﬁcﬂfb/mp :

6_ \/’5?‘*? Sinh(\/mqso/mP)‘f"ﬂbo Cosh(\/ §(¢O)¢O/mP>

M = cosh4(\/§@70)¢o/m%,) , Keoff = /fcosh<\/§(¢z5)¢601/)mp> )

If keg is approximately a constant, then kg < V2 leads to freezing, and kKeg > V2
gives the scaling solution. In our model in the examples below, we find kg to be
small and slowly changing, leading indeed to a freezing behaviour.

After matter becomes non-relativistic with w # 1/3, time evolution is further
complicated by the direct coupling between the fluid and the field in , .
In practice, the dynamics have to be solved numerically; we do this in Sec. [5.4]
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5.3.5 Quintessence domination

As the field rolls, ¢ from Eq. runs to smaller and smaller values, and the
Einstein frame potential becomes flatter and flatter, becoming more suitable
for quintessence with a slowly rolling field. Indeed, as mentioned in Sec. [5.2.1]
eventually £ runs to negative values; around this point, the Einstein frame potential
develops a local minimum and then starts to grow again, with a high positive peak
near £(p)p? = —m3. The coupling to matter can cause the field to overshoot the
minimum and oscillate around it a few times, but eventually, as the fluid energy
density dilutes away, the field will settle into the potential minimum at ¢ = g,.
Its barotropic parameter w, = —1 and its energy density, given by the height of the
potential, become constant. The quintessence field then behaves as dark energy. To
match observations, we need V(pg,) = 7.23 x 1072'm%, computed assuming that

H = 67.66km/s/Mpc and that roughly 70% of the energy density of the universe

today is in dark energy. To be more precise, the dark energy fraction today is [§]
Qp = Qpp = 0.6889 £ 0.0056 . (5.62)

Since we live in the transition period where both dark energy and matter have non-
negligible roles, the quintessence field is not necessarily completely frozen yet. In
our numerical results, we demand that the barotropic parameter of the field today

respects the observational bounds of the CPL parametrisation [114],

a dw
Wpp = WO + W, (1 — Cl_o) , Wy = — d;E , (5.63)
where ‘0 refers to today, and the limits are [§]
—1<wd, <095 and  w, €[-0.55,0.03]. (5.64)

5.4 Numerical results

In this section, we explain the details concerning the numerical side of our work. As

it is explained above, in order to numerically solve the dynamics of the system, we
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work in the Jordan frame. It is then straightforward to obtain the corresponding
quantities in the Einstein frame, where our intuition applies, by following the
discussion in Sec. [5.2.3] To be more explicit, we need to solve for the scale factor
a(t), the inflaton field ¢(¢) and the fluid density p(¢) (remember that, at a classical
level, homogeneity and isotropy impose that the fields depend on time only), since
every other quantity depends on these. In principle this could be done by solving

the system of ordinary differential equations given by Eqgs. (5.21)), (5.23)), and (5.25)).

However, the Hubble factor can be algebraically solved to be

A V/3[r(4To0 + aR?)
B=—5 T stram (5.65)

where the specific forms of A and B, as well as the details of the calculation, can be

found in Appendix For our current discussion it suffices to know that A and B

depend on ¢(t) (and its first derivative) and p(t) only. This means that the initial

system of ordinary differential equations given by Eqs. (5.25)), (5.21) and (5.23)) is
reduced to Eqgs. (5.25) and (5.23)), where H is given by Eq. (5.65). These are the

equations that we numerically solve.

It is also worth commenting on our choice of the Jordan frame over the Einstein
frame. One obvious advantage of working in the Einstein frame is that the
gravitational sector of the action is simply the Einstein—Hilbert term. However, were
we to work in the Einstein frame, Eq. would need to be solved and inverted in
order to obtain ¢(¢), to then be plugged back in the action in order to express
all the quantities in terms of the canonical Einstein frame field ¢. Furthermore, the
action in the Einstein frame features a quartic kinetic term and a coupling between
the inflaton and the background matter fields through a conformal factor in the
matter action. Although during inflation the matter action is zero, during the
subsequent cosmological eras this extra coupling is present, complicating the setup.
Likewise, the quartic kinetic term, which complicates the equations of motion even
further, cannot be a priori discarded (although after solving the dynamics it is found
to be in general negligible, see Fig. . All of these considerations outweigh the

only hurdle in the Jordan frame: gravity is non-linear. As a matter of fact, due to
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working in the Palatini formalism, we can profit from further simplifications as the
one explained above, where the Hubble factor can be algebraically solved in terms
of the inflaton and the background fields. In this way, we find the solution of the
system to be much more approachable in the Jordan frame than in the Einstein
frame. Finally, it is important to keep in mind that, as we have mentioned, once the
dynamics is solved in the Jordan frame it is straightforward to obtain the analogous

quantities in the Einstein frame by following the discussion in Sec. [5.2.3]

5.4.1 Initial conditions

During the inflationary era the only existing field is the inflaton (even if some matter
fields existed they would be inflated away), so that p(t) = 0. Therefore, the only
equation to solve for is Eq. (with H given by Eq. ), which is a second
order ordinary differential equation. Thus, only two initial conditions are needed,
©(t;) and H(t;). We choose ¢(t;) sufficiently negative to capture all the possible
evolution histories when scanning over the parameter space, while respecting the
bound that imposes that the field should not be much smaller than —mp/(k§) (c.f.
Sec. , for which slow-roll is not possible. This usually amounts to having
©(t;) ~ —30mp and as it can be seen from Fig. [5.3| (see also the discussion in Sec.
, using a smaller value would be of no help, since the region of the parameter
space compatible with observations restricts ¢(t;) > —30mp. Furthermore, for
simplicity, since the field will eventually reach the slow-roll attractor, we choose
&(t;) such that slow-roll is satisfied. Effectively this means neglecting the second
order derivative in Eq. . With ¢(t;) fixed, this equation only depends on ¢(;),
for which we can (numerically) solve to obtain the initial value.

The end of inflation gives way to kination. During this era, some reheating
mechanism transfers the energy density of the inflaton to the particles of the SM,
which are modelled in our setup by a perfect fluid with energy density p(¢). In this

way, the last needed initial condition is the initial energy density of radiation, at
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the end of inflation, p(tenq). It can be found by the following simple calculation

N (end _ dend@ _ Qend Hf = To kT'H (5 66)

— — — — *
. ag Oy ap a.H., Tend

€

where * corresponds to the time at which the CMB pivot scale exits the horizon
during inflation (with k, = a,H, = 0.05 Mpc™'), “end” corresponds to the end of
inflation, and ‘0’ corresponds to the present time. We have also set ay = 1 and made
the approximation @ oc 7! from the end of inflation until today, where T is the
temperature of radiation. Using Eq. , we can relate the number of e-folds in
the Einstein and Jordan frames as [417, [418]

B 1 end
N=N+=-In=2£_. 5.67
2 fi (5:67)

Thus,

T, [ f -

N 0 ;-1 R

N = 20 - ., 5.68
Tend f }%nd ( )

where Ty ~ 2.7K. The initial energy density of radiation at the end of inflation can

be written as

7.{.2

p=359T" (5.69)

where g, = 106.75 is the number of relativistic degrees of freedom. Relating p to p
via (5.31) and gathering the above results together, we get

2 4
12 T Gx TO —1 17
- S| .
p<teﬂd) (fR) 30 |:6N k* :| (5 70)

written in terms of quantities that are either known or fixed by inflation. Note
the cancellation of (f&4)? due to the extra factor of f coming from expressing
the energy density in the Jordan frame. It is important to mention that when
scanning over the parameter space we require that p(te,q) satisfies two bounds,
the upper one such that the inclusion of the radiation fluid at the end of inflation
is a small perturbation to the overall dynamics, i.e., Q¢ < 0.1, and the lower
one corresponding to the gravitational reheating limit, which is the least efficient
reheating mechanism. Thus, we impose p(tend) > Paray = qgs(Hena)*/(4807%) =~
2.25 x 1072(Hepq)* [27], where we have introduced ¢ ~ 1 because the spectrum is

not exactly thermal.
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5.4.2 The parameter space

The model has six parameters, namely x, &, B, pu, «, and M?* It would
be computationally costly to perform a scan over such a six-dimensional space.
However, there are some simplifications that allow us to reduce the dimensionality
of the parameter space.

The first thing to notice is the scaling law the model obeys. Indeed, let us rescale

the coordinates, background density and parameters in the Jordan frame asE|
" = Xt p—=A?p, a— Na and M* — ATIM?. (5.71)

From Eq. (5.17) it immediately follows that under this transformation the Ricci
scalar scales as

R— \°R. (5.72)

Likewise, from Eq. (5.1)), the action scales as
S — A\2S. (5.73)

Of course, the equations of motion are invariant under such a rescaling of the action.
Furthermore, the quantity aM* is also invariant. Looking at the expressions for the
inflationary observables in Eq. , one can see that the parameters o and M*
only enter the expressions for n, and r through the combination aM?, i.e., they
are invariant under the rescaling . It is not so for A,, where M* enters its
expression alone.

From this discussion we conclude that it is enough to scan over the quantity
aM*. For each value of aM* we can fix M* such that A, satisfies the observational
requirements from . In this way we have reduced the dimensionality of the
parameter space to five.

There is one extra simplification that can be made by taking into account that

pin Eq. (b.3) is an arbitrary scale that can be changed by reabsorbing it into

3Note that here A is just a constant factor and should not be confused with the v field self-

coupling in Eq. (5.50).
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&,. Therefore it can be chosen to take the most convenient value, which, for us,
is the field value at which the cosmological scales leave the horizon, ¢,. This way,
around this scale the effect of the running is minimal and the non-minimal coupling
is roughly just &,. The dimensionality of the parameter space is now four.

Having defined the degrees of freedom of the system, i.e., p(t), a(t) and p(t), the
initial conditions, i.e., ©(t;), ¢(t;), and p(tenq), and the parameters over which to
scan, i.e., k, aM*, &, and 3, we first focus on the inflationary regime of the theory. In
this way, we start with the initial conditions discussed above and numerically solve
the system until the end of inflation, defined by the conditio en = 02/ (2H?m2) =
1. We take discrete slices in aM*, ranging from 0.0143 to 1.43 x 10° in steps of
factor 10 and a region in 3 around the central value of —0.1 with a resolution
of 1072 and scan over the parameters x and log;, &, with values in the intervals
[0.2,0.7] and [—2.5, —0.9], respectively, with resolutions of 5 x 1073. The reason
behind choosing such a central value for [ is that we have found that a correct
behaviour for quintessence is strongly peaked around it.

As the values for the field and its velocity at the end of inflation will serve as the
initial conditions for the beginning of the next cosmological era, we impose a set of
conditions on the points obtained from the scan through which we obtain the valid
region in the parameter space. In addition to fixing A, = 2.1 x 1072 as discussed

above, we require that:

e The value of the scalar spectral index is equal to the central value obtained

by Planck [§], i.e., ns = 0.9649.

e The value of the tensor-to-scalar ratio is within the latest observational bounds

[9], i.e., r < 0.036.

e The value of the running of the scalar spectral index is within the 20 bounds

obtained by Planck [§], i.e., —0.0179 < a;; < 0.0089.

“Note that the first slow-roll parameter in Eq. (5.42) is only an approximation. In the numerical

study we also take into account the presence of the running in £.
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e The initial energy density of radiation at the end of inflation, obtained via Eq.

(5.70), amounts to a small perturbation of the system, i.e., Q4 < 0.1.

e The initial energy density of radiation at the end of inflation is larger than
the energy density corresponding to gravitational reheating, i.e., p(tena) >

2.25 x 1072(Hed)4,

The last two conditions translate to the available range in the number of e-folds from
the time at which the cosmological scales exit the horizon until the end of inflation
(see the right panel in Fig. . It is usually between 60 and 75. Also note that we
have not imposed a correct value for the amplitude of the power spectrum A, as a
condition since every single point in the parameter space already satisfies this, by
exploiting the scaling property of the model explained above.

When inflation ends, and after imposing the above set of conditions to obtain
the valid region of the parameter space, we use the final values of the field and its
velocity as the initial conditions for the next cosmological era, as well as Eq.
for the radiation energy density, in order to solve Egs. and , with H
given by Eq. . The barotropic parameter of the fluid is of course 1/3 up until
the transition to the matter domination era, when it becomes w = 0. We model this
transition by a jump from 1/3 to 0 in the barotropic parameter of the background
at the time when the energy density of radiation is equal to its value at matter-
radiation equality, peq = 1.27 X 107'%m3 [8]. The simulation is finished when the
energy density ratio of the field, corresponding now to dark energy, is equal to the
central value obtained by Planck [§ of its value today, i.e., Qg) = 0.6889. At this

point we impose another set of conditions, which we list here.

e The temperature of the universe at the onset of radiation domination is above

TBBN ~ (0.1MeV.

e The barotropic parameter of the field is within the latest observational bounds

[8], i.e., w) < —0.95.
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e The running of the barotropic parameter of the field in the CPL parametriza-

tion is within the latest observational bounds [8], i.e., —0.55 < w? < 0.03.

e The energy density of the field at present is within one order of magnitude

from the central value obtained by Planck, pRiat = 7.26 x 10~"*'mj [§].

Importantly, we also consider the bound on the density parameter of GWs
coming from BBN constraints, 20 Q‘gg} < Qd ] as discussed in Sec. m By using
Eq. this bound translates to an allowed range of values for the non-minimal
coupling between the reheaton and gravity é . The successful values of é for each
point in the parameter space are presented in Table [5.1L The two points, for which
¢ is the largest (f ~ O(1)), are highlighted in black in Fig. [5.11| (while the rest are
in red).

The points that satisfy this extra set of conditions are the successful points of our
model. For them we have successful inflation, with correct inflationary predictions,
as well as a correct evolution during the expansion history of the universe, with

successful dark energy at the present time.

5.4.3 Numerical results for inflation

In this section, we present and analyze the obtained results for inflation. We remind
the reader that the power spectrum strength at the pivot scale, A, is fixed to its
observed value in all our results. In the left panel in Fig. we show an example
slice of the parameter space in the (log,,&s, <) plane with fixed 8 = —0.1 and
aM?*/m}, = 1.43. The blue points have a correct value for n, while the orange
points satisfy the full set of conditions for inflation stated in Sec. [5.4.2] In order
to understand the shape of the parameter space let us consider the f = 0 case,
for simplicity. First, we remember we have imposed the potential to be monotonic,
i.e., k2 > 4¢ = 4€,. The lower boundary of the parameter space region corresponds
to this requirement. The other consideration to take into account is Eq. ,

which, since in the 8 = 0 case the expressions for the slow-roll parameters in Eq.
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Figure 5.2: Left: Slice of the parameter space in the (log;, ., <) plane with 5 = —0.1
and aM*/m} = 1.43. The blue points have a correct value of the scalar spectral
index, while the orange points satisfy all observational constraints for inflation.
Right: A zoomed-in slice with 8 = —0.098 and aM*/m} = 1.43 x 10*, depicting the
bounds in parameter space corresponding to the bounds in the number of inflationary
e-folds. The red region is close to saturating the gravitational reheating bound
ptena) > 2.25 x 1072(H*"4)* (which corresponds to the upper limit in the number
of e-folds), while the green region is close to saturating the bound Q¢ < 0.1 (which

corresponds to the lower limit in the number of e-folds).

are exact, is an exact expression for the scalar spectral index (in the slow-
roll approximation). Since this is a quadratic equation in &, it can be algebraically
solved for, giving an expression depending on &, and ¢, (the field at horizon exit),
Kk = k(& ¢x). In Fig. [5.3]we plot in green the curve £(&,)|,,—0.9649, for many values
of the field at horizon exit, ranging from —30mp to 0 (in steps of 0.5mp). We can
see that the upper boundary of the parameter space coincides with the asymptotic
upper bound that the top curves form. In other words, above the upper boundary

of the blue region, the value of the scalar spectral index is incorrect, for any ¢,.

Increasing the range for ¢, does not change the shape of the upper boundary

of the parameter space in the (logyj&s, k) plane. Indeed, we also plot more

r(&)

We find that in the range —30mp to 0 we cover almost the entirety of the shown

n.—0.9649 curves, now in purple, with ¢, ranging from —200mp to —30mp.
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parameter space, while approaching more negative values simply covers a region of
the parameter space discarded by observations, located at smaller and smaller values

of k.

0.7

| arst/mb=1.43
0.6
[ B=0

0.5}

0.4}
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0.2
-24 -22 -20 -18 -1.6 -14 -1.2 -1.0

Logl O‘f*

Figure 5.3: Slice of the parameter space in the (log;,&., <) plane with g = 0 and
aM*/m}, = 1.43, where we plot many curves k(&,)|n.—0.0619 With o, ranging from
—30mp to 0 (green) and from —200mp to —30mp (purple), as well as the curve
k? = 4£(= 4&.) (red), so that the condition for a monotonic potential xk? > 4£(=
4¢,) is satisfied above it. The upper boundary of the parameter space coincides
with the asymptotic upper bound from the green curves. Increasing ¢, to more
negative values explores a region of the parameter space that is not in agreement
with observations, towards smaller and smaller k, as can be seen from the purple
curves. The parameter space of the theory lies between the asymptotic upper bound

from the /(&) |n.=0.9640 curves and the condition % = 4£(= 4&,), as it should.

It could also be that changing aM* would change the shape of the parameter
space. However, we find that the main effect of this is on r. Indeed, there exists a
bound, given by aM*/m} ~ 0.143 below which the size of the orange region in the
parameter space is reduced in size (although it never fully disappears, see the left
panel in Fig. , and above which its position shifts towards larger values of x and
&. This can be seen by comparing the middle and right panels in Fig. It is also
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straightforward to see from Eqs. (5.42) and (5.44) that r can be made arbitrarily

small by making aM* larger, as we have obtained in our numerical study (see Fig.
5.4). However, it is important to note that the shift in the orange region of the
parameter towards larger x and £ can change the subsequent cosmological evolution

after inflation ends, since these points serve as the initial conditions for the later

evolution.
e 1.4f ]
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Figure 5.4: The tensor-to-scalar ratio r as a function of log,,  for different values
of aM*, with fixed 8 = —0.0995. Blue points have a correct ng, as and N while
orange points also have a correct 7. As we make aM* larger we lower the values r
takes. Below the threshold value of aM?/mg ~ 0.143 there still exists an orange

region (left), while above it all blue points become orange (middle and right).
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Figure 5.5: Slices of the parameter space in the (logy, ., k) plane with 5 = —0.0995
and aM?*/mp = 1.43 x 107% (left), aM?*/mp = 1.43 (middle) and aM?*/mp =
1.43 x 10° (right). The shape of the parameter space is identical for both the panels
in the center and right, although the region with correct observational predictions
is shifted toward larger x and &, as we make aM* larger. Even for very small values

of aM* the orange region never disappears (left).
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We conclude that the shape of the blue region shown in Fig. [5.2]is an universal
feature of the model, with the caveat that the analysis concerning Fig. [5.3]is for the
B = 0 case. We expect only minor modifications to this figure when studying the
general non-zero [ case, since during slow-roll inflation the value of the field barely
changes and we choose the scale p to be approximately equal to the field value at
horizon exit ¢,, making the running in £ negligible. In the same spirit, it is obvious
that the shapes of the blue and orange regions in Fig. [5.3] for which 8 = 0, are very
similar to the analogous regions in Fig. for which g = —0.1.

To conclude this section, in Fig. [5.6] we show an example plot of the scalar
spectral index as a function of the number of e-folds before the end of inflation in
the Einstein frame. The shape of n,(N) in Fig. is general and for most of the
valid points of the parameter space, the equation n,(NN) = 0.9649 has two solutions,
e.g., N = 73.7 and N = 110.8 in the specific case of the figure under consideration.
Of course, only one of the two is selected via the bounds imposed on the initial
radiation energy density. We have not found a trend where only the first (or the
second) of the solutions are the correct ones. Indeed, depending on the region of
the parameter space under consideration we can have one or the other giving the

correct value for the number of e-folds.

5.4.4 Numerical results for post-inflationary evolution

In order to gain some understanding about the model, we start this section by
studying one specific benchmark point of the parameter space which leads to
correct dark energy predictions. After this we show the full parameter space of
our quintessential inflation model.

Let us look at the point in parameter space with parameter values given by

k=0284, log,& =—1.960, a=773x10",
(5.74)

M*/mp =185x107?, B=-0.100, and p= —6mp,

which satisfies all the conditions listed above required for correct inflation and dark

energy. This can be immediately confirmed by looking at Figs. and [5.8 In the
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Figure 5.6: Scalar spectral index as a function of the number of e-folds before the
end of inflation in the Einstein frame, for aM* = 1.43m3, 8 = —0.1, k = 0.30 and
log,, & = —2.09. N = 0 corresponds to the end of inflation. The horizontal dashed
line is located at n, = 0.9649, and it intersects ny(NN) at N = 73.7 and at N = 110.8.

left panel in Fig. we show the barotropic parameter of the inflaton and of the

whole universe, which are given by

Wy .mPr.m + D
wg = — and Wy = WrmPrm 7 Pg

SR (5.75)
Po Pr,m + Po

where w,, is equal to either 1/3 or 0 for a radiation (r) or a pressureless dust
(m) background with energy density p,m, respectively, and p, and p, are given by
Eq. . At the present time, which corresponds to N = 0 in both figures, the
energy fraction of the field is QY = 0.6889 (see the right panel in Fig. and
its barotropic parameter and running are wg = —0.95895 and w? = —0.17034, in
agreement with dark energy observations. As for the energy densities at present it
can be confirmed by looking at the right panel in Fig. [5.8] that the energy density of
the field is pg = 1.7 x 107'?%m}, while that of the fluid is p,, = 7.5 x 107*2'm$, which
are within an order of magnitude of observations. Finally, the temperature of the
universe at the onset of radiation domination, i.e., when wo, = 0.36 and €2, = 0.05,

is T = (30p/(m%g))/* ~ 2.49 x 10~ 3mp = 0.15 MeV, which is slightly above Tipx.
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Figure 5.7: Left: Barotropic parameter of the universe (blue) and of the inflaton
(orange) as a function of the elapsing number of e-folds in the Einstein frame. Right:
Energy density parameter of the background fluid (blue), which is radiation (r)
before and pressureless dust (m) after equality, and of the field (orange) as a function
of the elapsing number of e-folds in the Einstein frame. The horizontal dashed line
is located at 0.6889. For both graphs N = 0 corresponds to the present time and
N = —7.5 to matter-radiation equality.

As a far as inflationary observables and dark energy predictions go, the point
given by Eq. is fine. However, as the careful reader might have noticed, there
are two issues with the matter dominated era. As it can be seen in the left panel
in Fig. m, its duration Ny, = 7.5 is below what would be expected in a standard
cosmology, where Ny, ~ 8. Furthermore, the barotropic parameter of the universe
is not exactly zero (although it stays below 0.1). We can explain this behaviour by
taking a closer look at our model. We remind the reader that, as shown in Egs.
and , there is a coupling between the inflaton and the fluid (the last
term in both equations) coming from the conformal factor that appears in the matter
action after the conformal transformation to the Einstein frame. During inflation
we have p,,, = 0 and during kination and the radiation dominated era we have
that the barotropic parameter of the fluid is w = 1/3, so that the coupling is not
present until matter-radiation equality. However, as soon as we have a pressureless

dust-dominated universe, with w = 0, the coupling is turned on. In order to better
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Figure 5.8: Left: Contributions from the kinetic energy energy density p* = e /2
(blue), potential energy density V (orange) and quartic kinetic term Py =
3a(1+4aV/h?)¢ /4 (green) to the total energy density of the inflaton in the
Einstein frame in Planck units, as a function of the elapsing number of e-folds
in the Einstein frame. These contributions correspond to the first, second and third
terms in the action , respectively. Right: Einstein frame energy densities of
the background fluid (blue), which can be either radiation (r) or pressureless dust
(m), and of the inflaton (orange) as a function of the elapsing number of e-folds in
the Einstein frame. The horizontal dashed lines are located at log,,(p/mp) = —120,

N = 0 corresponds to the present time, and N = —7.5 corresponds to matter-

radiation equality.

understand this, after some simple algebra, one can rewrite Eq. (5.39)) as
p+3Hp(1 +we) =0, (5.76)

where

1-3 |
o = w+ — W) (5.77)

2fpH 2fr ’
3( Ir +1> 3<f1% +1)

where the last equality follows from working in the matter dominated era and a

prime denotes a derivative with respect to the Jordan frame number of e-folds.

Thus, weg will only be close to zero when the rate of change of fr satisfies

fh
T <1. (5.78)
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However, looking at the expression for fr in Eq. , and remembering that the
terms coming from the o contribution are negligible at late times, the rate of change
from Eq. is approximately fr/fr ~ ¢'/p. By noticing that the field is in free
fall, and, thus, has a non-negligible rate of change, during the matter dominated era
(its barotropic parameter is On€E| as can be seen in Fig. it immediately follows
that f/fr cannot be very small and weg will be generally larger than zero, as we
find.

As for the number of e-folds of the matter dominated era Ny, noting that from

Eq. (5.76) follows that p oc a—3(1T%et) g simple calculation reveals

NmatzlogS—;:mlog%:%bg%—%log%, (5.79)
where we have taken into account that weg < 0.1, as is the case for most of the valid
parameter space. Thus, Npyae will generally be smaller than its canonical value in
standard Einstein—Hilbert gravity, where there is no coupling between the fluid and

the inflaton so that weg = 0. Introducing the values of the energy density of the fluid

0—110 0—121 4

at equality, peq = 1.27 x 1 mp, and at the present time, py = 3.28 x 1 mp,
we find that N, could be decreased by as much as about one e-fold. We take this
into account in the parameter space scans, not neglecting points that a priori would
have been considered to have a too short matter dominated era. In this way, we
choose six as the smallest value N,.; can take when scanning over the parameter
space, although, as we will see below, for all valid points Ny.c will always be larger
than seven, in agreement with the approximation weg < 0.1 that we have taken
above.

In conclusion, we have obtained that the barotropic parameter of the universe
during the matter dominated era will generally be larger than zero and that the

length of this era will generally be shorter than in Einstein—Hilbert gravity. These

5Tt could be that the higher order kinetic terms that appear in the Einstein frame modify the
barotropic parameter of the field from its usual expression wy = ( %(22 -V)/ (%(;32 + V). This is
not the case, as can be seen in Fig. where it is clear that the quartic kinetic term plays a

subdominant role throughout the expansion history of the universe.
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Figure 5.9: Barotropic parameter of the universe (blue) and of the inflaton (orange)
as a function of the redshift in the Einstein frame. The vertical dashed line is
located at z = 4, corresponding to galaxy formation. The barotropic parameter of
the universe is very close to zero around this redshift, making structure formation

largely unimpeded.

effects are an inevitable consequence of working in our modified gravity setup.
However, we find that for most of the parameter space weg < 0.1 (and discard
the points which do not satisfy this), and in fact, around redshifts corresponding to
galaxy formation, i.e., Z ~ 4 (where z = a~* — 1) [419], the barotropic parameter is

very close to zero, thereby not significantly impeding structure formation (see Fig.
5.9).

Having discussed the effect of the inflaton-fluid coupling, modified gravity
manifests itself in the Einstein frame through one other effect: the existence of
a quartic kinetic term in the action (see the third term in Eq. ), which «a
priori cannot be discarded. However, as it can be seen from the left panel in Fig.
5.8} it remains subdominant throughout the expansion history of the universe. This
is a general behaviour in all the valid parameter space. In what follows we neglect

this term.
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Let us next examine the evolution of the system more carefully, stage by stage.
As the field approaches the end of the inflationary plateau and its velocity starts
increasing, the condition ey = 1 is satisfied and inflation ends. After the end
of inflation there is a transition period where the field is gaining kinetic energy
although its total energy density is still not dominated by it. This can be seen from
Fig. [5.10] where we show the energy density ratios
ﬁ?’in = O%Q%Z — and ﬁ?)t = OV — . (5.80)
Ps 5024V Ps 502+ V

Indeed, after the end of inflation, at N = —50.6, it is not until N ~ —40 that the
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Figure 5.10: Kinetic energy density of the field over its total energy density (blue)
and potential energy density of the field over its total energy density (orange) in the
Einstein frame as a function of N, from the end of inflation, at N = —50.6 to the
present time, at N = 0. The end of kination (reheating) occurs at N = —19.6 and
matter-radiation equality at N = —7.5.

energy density of the inflaton is kinetically dominated, while the energy density of
the universe is still dominated by that of the field (€2 is still equal to one as can
be seen from the right panel in Fig. , giving way to the kination era. This can
also be seen from the left panel in Fig. |5.7] where the barotropic parameter of the

field does not become equal to one until N ~ —40. Of course, at the moment when
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the field becomes kinetically dominated, remembering the quartic kinetic terms are

negligible, we have

-V _
1PT

During kination, the radiation energy density fraction approaches that of the field,

I= [N ]—=

w¢:

79
22 =1. (5.81)

until it takes over and approaches one around N = —19.6, see Fig. . This
moment corresponds to reheating. It is important to note that the scaling of the
energy density of the universe between N = —50.6 and N = —40 is not p oc a ¢
(but slower), and thus the exponent 6 on the right-hand-side of Eq. is only
an approximation. Effectively this means that we are able to have a reheating
temperature close to Tggn without violating the bound on ergcv{ discussed in Sec.
0.5.0l

After reheating, the universe is dominated by the background radiation, while
the field is still in free-fall, with its energy density being kinetically dominated. This
can be seen from the left panel in Fig. [5.7, where the barotropic parameter of the
field is still equal to one, as well as from the left panel in Fig. [5.§ and from Fig.
[5.10] This behaviour continues until briefly before matter-radiation equality, when
the field runs out of kinetic energy and starts to freeze (see Eq. ) Indeed, its
barotropic parameter approaches minus one (this can also be seen from Fig. |5.10|
where the kinetic density ratio goes from one to zero and vice versa for the potential
density ratio). However, the field never fully freezes. This is due to the change
in the barotropic parameter of the background from 1/3 to 0 at matter-radiation
equality. As explained above, at this point the coupling between the field and the
fluid is turned on and there is an energy transfer between the components. One
way to understand this is by noting that weg is larger than zero, meaning that the
background dilutes faster than in the canonical case, feeding its energy into the
kinetic energy of the field. Indeed, the barotropic parameter of the field jumps back
to unity and the inflaton goes back into free-fall during the entirety of the matter-
dominated era, only to run out of kinetic energy and freeze again (its barotropic

parameter going back to minus one) at the end of it.
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Figure 5.11: Slices of the parameter space in the (log, &, k) aM?/mp = 1.43 (up
left), aM*/mi = 14.3 (up right), aM*/m} = 143 (down left) and aM*/m} =
1.43 x 10 (down right). Points in the blue region have a correct value of ng, while
points in the orange region satisfy the whole set of constraints for inflation. Red
points satisfy the constraints for dark energy, while black points also satisfy strongest
the bound on Q¢ coming from BBN (where € ~ O(1) ). In the blue and orange
regions 3 takes values from the interval [—0.108, —0.099] in steps of 1073, while
points giving rise to correct dark energy are only found when either § = —0.099 or

B = —0.105.

Finally, the field does not simply slow down and freeze. If it did, we would not
find the small bump in its barotropic parameter after N = 0 in Fig. The
same bump can be found in Fig. [5.10l This is due to the local minimum of the

potential in the Einstein frame, located slightly before the local maximum around
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1+ &(Pmax) @20 /md = 0 (see discussion in Sec. [5.2.1)). Indeed, the field overshoots
the minimum and gains some kinetic energy, only to fall back to the minimum at
Omin = 884.03mp and finally freeze. The present time N = 0 corresponds to some

time briefly after overshooting the minimum but before turning back.

Having characterised the dynamics of a typical valid parameter space point,
including the effects of the modified gravity terms, let us now turn our attention to
the location and shape of the full valid parameter space. We show some example
slices in the (logyy &, <) plane for different values of aM* in Fig. [5.11] We also
scan over the parameter 3, which in the orange and blue regions in the figure takes
values in the interval [—0.11, —0.098] in steps of 1073. We find that points giving
rise to correct dark energy (shown in red and black), which satisfy the whole set of
constraints given above, are only found for f = —0.099 and f = —0.105. We also
show in Tab.[5.T]the actual parameter values all of the successful points take. We find
they form no specific shape in the (log,, &, k) plane, but expect a higher-resolution
scan to reveal more working points. Lowering the required minimum temperature
of the universe at the onset of the radiation dominated era, such that it is no longer
larger than Tggyn, makes the valid parameter space follow a curved area inside the
orange region. However, imposing the appropriate bound spoils this behaviour. It
is worth mentioning that although our selection criteria regarding the length of the
matter dominated era is for it to be longer than 6 e-folds, allowing for a non-zero
Wee to decrease Ny, all valid points actually have at least 7 e-folds, although they
are always below 8 e-folds. It is possible that the rest of constraints regarding the
energy density and the barotropic parameter make the parameter space to lie in this

interval.

To conclude, in this section we have characterised the behaviour, both for the
field dynamics and for the modified gravity effects, of a typical successful point in
the parameter space. We have also found the location of the valid points in the
(logyg &«, k) plane, having scanned over § in the [—0.11, —0.098] interval in steps of
1073 and over aM*/m} in the interval [1.43,1.43 x 10%] in steps of factor 10. We
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Successful Parameter Space Points

~

K logy &| aM* | Hewms/me| 100050 | w wy §
11 0.361]-1.96 1.43 |-0.105 |9.22-107% | 2.31 -0.954 | -0.185 | 0.36
210.36|-1.98 |1.43 |-0.105 | 9.17-107° | 6.69 -0.960 | -0.168 | 0.48
31036|-1.97 |1.43 |-0.105 |9.17-107% | 6.05 -0.969 |-0.149 | 0.39
410.361]-1.98 |14.3 |-0.105 | 2.95-107% | 1.26 -0.955 | -0.179 | 0.35
51036 (-1.99 | 14.3 | -0.105 | 2.96-107° | 3.66 -0.959 | -0.168 | 0.45
6 0.27| -1.96 | 143 | -0.099 | 9.78-107" | 2.44 -0.951 | -0.184 | 1.01
71 0.36|-1.99 | 143 -0.105 | 9.56-1077 | 1.92 -0.960 | -0.166 | 0.39
81| 0.27|-1.92 | 1430 | -0.099 | 2.89-10~7 | 3.63 -0.951 | -0.194 | 0.90

Table 5.1: Parameter values for the parameter space points which give rise to
successful inflation and dark energy. For each point we also show the value of f ,
the Hubble parameter at the time at which the cosmological scales exit the horizon
(in Planck units), energy density of the universe (in Planck units), the barotropic
parameter of the field and its running, all at the present cosmic time. The two
points which satisfy strongest the lower bound on f are highlighted in bold. aM*

and py are given in Planck units.

obtain definite predictions for all of the parameters of our model except from aM*?,
which just needs to be larger than a given lower bound aM* ~ O.lﬂ Indeed, the
most successful points have k = 0.27, log,, & = —1.9 and 8 = —0.099.

5.5 Discussion

In this chapter we studied a relatively simple model of quintessential inflation where

a single scalar field can unify the two epochs of accelerated expansion in the history

6This can be understood by remembering that r = 16ey, with ey given by Eq. (5.42)), and
noting how aM* enters the denominator, so that  can be made arbitrarily small by making o M*

arbitrarily large.
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of the Universe: inflation and dark energy domination. We worked in the framework
of Palatini gravity where the metric and the connection are treated as independent

variables. The three main ingredients in our action are:

e An exponential potential of the form M*e=*#/"® which for large positive values

of the scalar field produces the quintessential tail.

e An aRR? term which asymptotically flattens the potential for large negative

values and produces inflation in agreement with observations.

e A non-minimal coupling £¢?R between the quintessence/inflaton field and
gravity, where £ = &, is approximately constant and positive during inflation
but then runs to negative values with a slope § in order to reproduce the
correct late-time dark energy. Note that the region where £(p) is negative is

never probed since the field freezes before that.

The main advantage of employing the Palatini formalism is that the auxiliary field
introduced in order to parametrise the R? term turns out to be non-dynamical
and can therefore be eliminated through its equation of motion. The resulting
action is then single field, but contains a quartic kinetic term and a modified
effective potential. For sufficiently large values of «, the effective potential is always
asymptotically flat and can therefore accommodate slow-roll inflation.

In addition to the quintessence/inflaton field, we considered an ideal fluid
representing the matter and radiation content of the universe. We began our analysis
by examining the equations of motion for the field and the fluid in both the Jordan
and Einstein frames, while at the same time relating the quantities of interest in
the two frames. We determined the Jordan frame equations to be easier to solve
numerically. We then studied separately all the phases arising during the time
evolution of our model in a cosmological setup, namely, inflation, kination, reheating,
radiation and matter domination, and finally quintessence. To produce the radiation
component after inflation, we considered as an example Ricci reheating [98], 99, 289],

where an additional scalar field with a non-minimal coupling to gravity reheats the
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universe during a period of kination. For quintessence, we showed that the Einstein
frame scalar field potential develops a local minimum where the field eventually gets
stuck, behaving like dark energy afterwards. The minimum is generated by the non-
minimal coupling of the scalar field running to negative values. The dark energy
density there is generated through the interplay of the different parameters, all
taking natural values, avoiding the extreme fine-tuning of the cosmological constant

in the standard ACDM scenario.

In the end, we presented a thorough analysis of our numerical procedure and
results. We scanned over the inflationary parameter space and showed that, for
correct choices of the parameter values, the inflationary predictions of the model
match the Planck observations [I0]. For late-time evolution, we noted the emergence
of a coupling between the fluid and the scalar field, present in the Einstein frame
during matter domination. This coupling turned out to be the biggest obstacle
for our model building, threatening to disrupt the standard cosmic evolution by
transferring energy from the matter fluid to the rolling field. Nevertheless, we
found example points that satisfy all the criteria we set for a successful cosmological
scenario, in particular for the present-time energy density and barotropic parameter
of the quintessential dark energy component. We obtain definite predictions for all
of the parameters of our model. The preferred parameter values which give rise
to successful results are k = 0.27, log,, & = —1.9 and 8 = —0.099. We did not
find a preference for any specific value for the combination aM*, as long as it is
above the threshold aM*/m$ ~ 0.1, below which the tensor-to-scalar ratio is too
large to be compatible with observations. In addition to satisfying all the available
observational constraints, our model also offers testable predictions, to be probed
in the future by experiments such as EUCLID [420]. Indeed, a non-zero derivative
of the barotropic parameter of dark energy with respect to the scale factor (w, in
the CPL parametrization), as is the case in our model, would favor dynamical dark
energy models over a cosmological constant (as in ACDM). Our model offers specific

predictions for w,, which will be useful to discern between dynamical dark energy
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models as measurements become more precise. It also features a non-zero barotropic
parameter of the universe, probing redshifts between galaxy formation and equality,
i.e., Z ~500-1500.

To conclude, our model produces successful inflation and quintessential dark
energy from the above-listed simple set of ingredients alone, without the extreme
fine-tuning of ACDM. Our model is the first one (barring the toy-model in Ref. [I])
to produce successful quintessential inflation using modified gravity as the main

ingredient.
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Chapter 6

Observable Gravitational Waves

from Hyperkination in Palatini

Modified Gravity and Beyond

This chapter is based on the original research article published in The FEuropean
Physical Journal C [6] by the author, in collaboration with Konstantinos Dimopoulos,
Alezandros Karam, and Femeli Tomberg. In recognition of the fact that the author

made the primary contribution, his name is put first against alphabetical order.

6.1 Introduction

As we discuss in Chapter [2| (see Eq. and below), the production of a
stochastic background of primordial GWs is a generic prediction of inflation. These
GWs, which are coming within reach of observability in the near future [421], 422]
423, [424) [425], are tensor perturbations of the spacetime metric, generated in much
the same way as the scalar curvature perturbations behind the primordial density
perturbations, for which there is overwhelming evidence in the CMB. Because of
this, great interest has been developed in recent years for the observability of the

inflation-produced GWs either indirectly, through the B-mode polarization of the
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CMB [421], or directly from interferometers [422].

GWs were predicted by Einstein’s general relativity at the beginning of the
twentieth century. Almost exactly a hundred years afterwards, GWs were directly
observed by LIGO (Laser Interferometer Gravitational-Wave Observatory) and
Virgo in 2015 [426], [427]. This seminal observation heralded the birth of GW
astronomy, which enables the study of compact objects, such as astrophysical black
holes, which are typically shrouded by opaque accretion disks. It also allows, in
principle, a glimpse of the very early Universe, well beyond the last-scattering
surface, where the CMB was emitted. As such, there is hope to detect the stochastic
primordial GW background from Cosmic Inflation. Such observations will allow the
study of inflation at scales much different than the ones which correspond to the
CMB primordial anisotropy, opening up a new window in the understanding of
fundamental physics at extremely high energies (comparable to the energy of grand
unification), which is behind the process of Cosmic Inflation and remains a mystery

to this day.

This has, in part, motivated a number of future GW detection missions.
In the near future, Advanced LIGO (plus Virgo and KAGRA) [428, 429, [430),
431], 432] (LVK) and the space interferometer LISA (Laser Interferometer Space
Antenna) [433, 434, 435] are coming online; the launch date of LISA is in
2037. Another space interferometer DECIGO (DECi-hertz Interferometer GW
Observatory) [436], 437, 438] is also planned to be launched in the 2030s. More are
to follow, such as BBO (Big Bang Observer) [439], a proposed successor to LISA.
It seems an ideal time to investigate GW production by inflation and its potential

observational signatures.

However, there is a challenge in the study of the inflation-produced primordial
GW background. The background signal is too weak for any currently operational
GW detector to observe, and it may be decades before such an observation can
be made. Indeed, were the early Universe dominated by radiation, as assumed by

the concordance model, the primordial GW spectrum would be flat, i.e. like white
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noise, where the GW density parameter per logarithmic frequency interval Qaw(f)
is constant over the range of frequencies f corresponding to the GW modes that
re-enter the horizon during the radiation dominated period (they have been pushed
out of the horizon during inflation). The constant value of the flat spectrum is very
low, and the hope of detecting in the near future such inflation-generated primordial

GWs is little [423].

Fortunately, this is not the end of our hopes for detecting primordial GWs. While
there is observational evidence of the early Universe being radiation dominated,
provided by the delicate process of Big Bang Nucleosynthesis (BBN) taking place
a mere few seconds after the Big Bang itself, what the state of affairs was before
BBN is still unknown. If the Universe’s history before BBN was not dominated by
radiation, then the primordial GW spectrum does not need to be flat. This opens
up the possibility of a boosted GW spectrum, possible to detect even in the near

future.

An early realisation of this possibility was provided by modelling quintessential
inflation [I5] (see Sec. and Refs. [284] 285] for recent reviews). Quintessential
inflation aims to explain in a unified way both Cosmic Inflation in the early Universe
and Dark Energy at present. Most quintessential inflation models consider non-
oscillatory inflation [T100, 440] driven by a scalar field (the inflaton) with a runaway
potential, which can play the role of quintessence at late times and explain the
accelerated expansion of the Universe at present [229] 239] 242] 44T, 233, 442, 258,
257,259, 260], 256, [16]. In such models, there is a period after the end of inflation but
before reheating (i.e. the onset of the radiation era) when the kinetic energy density
of the inflaton field dominates the Universe. This period is called kination [286] (see
also [443, [444], 445]), characterised by a stiff equation of state with a barotropic
parameter w = p/p = 1. In Sec. (see Eq. and below), we show that,
for GW modes that re-enter the horizon during kination, the spectrum is peaked with
Qaw(f) o< f [294], 293] 446], 447, 448, 449, 450}, 4511 [452]. Unfortunately, this peak

corresponds to very high frequencies, which will be unobservable in the near future.
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Extending the period of kination does extend the peak to lower, possibly observable
frequencies, but then the peak becomes too large and the resulting primordial GWs

cannot but affect and destabilise the BBN process [294], 293], [453], 229] (see Figs.

and .

After the direct detection of GWs, there has been much interest in considering
modifications of the history of the Universe, safely before BBN, to boost the
primordial GW signal at observable frequencies. In Ref. [454], it was shown that
Qaw(f) f_Q(% , where w is the barotropic parameter of the Universe (w = 1/3
for radiation domination). In Refs. [455] and [456] models were considered where
there is a period of matter domination followed by kination, which would create a
mountain-like peak in Qgw (see also Ref. [454]). Another possibility is to consider a
stiff period after inflation that is not kination with w = 1, but has a milder value of
w =~ 1/2 and can be extended down to observable frequencies without destabilising
the BBN because the peak is not so steep as in usual kination [457]. A realisation

of this in hybrid inflation with a non-canonical waterfall field was investigated in

Refs. [458, 459].

In this chapter, we consider a different possibility, motivated by Palatini
modified gravity. The cosmological consequences of Palatini modified gravity
with £ o< R+ aR? and a non-minimally coupled scalar field in in the context of
quintessential inflation are considered in Chapters 4| and [5| (see also Refs. [460, 350])
and in Refs. [345] B46] in the context of inflation (see also Refs. [325, 461]
for reviews). When switching to the Einstein frame, the scalar field obtains an
additional quartic kinetic termE|. In most cases considered, this term plays a
negligible role in the dynamics of the scalar field. However, there are models for
which this is not the case. We investigate in detail what happens when the scalar
field dominating the Universe is governed by the quartic kinetic term in a period

we call hyperkination. We show that the barotropic parameter of the Universe

Tn Ref. [462] it was shown that the addition of the Holst and Holst? terms in the usual Palatini

quadratic action can generate a modification of the higher-order kinetic term.
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during hyperkination is the same as that of radiation domination, w = 1/3. As
a result, in a realistic model of non-oscillatory inflation with a runaway inflaton
potential, we consider a post-inflationary period of hyperkination, followed by a
period of regular kination, when the kinetic energy of the inflaton is quadratic as
usual. Kination is followed by radiation domination after reheating. This evolution
results in a truncated peak in the GW spectrum, which can be safely extended down
to observable frequencies without destabilising BBN. We calculate analytically the
GW spectrum during all phases of hyperkination, kination and radiation and we
verify our findings numerically. We explore the parameter space and show that we
can obtain a boosted primordial GW signal with unique characteristics, which will
be well-detectable by forthcoming observations. If such a signal is indeed detected,
it will be a strong hint of non-canonical kinetic terms for the inflaton field from
Palatini modified gravity or some other appropriate k-inflation or k-essence model.

This chapter is organized as follows. In Sec. [6.2] we introduce hyperkination, in
the context of Palatini R? gravity, and embed it into the full expansion history of
the Universe. In Sec. [6.3, we consider the primordial GWs, including their initial
conditions as fluctuations of the quantum vacuum. Sec. details our analytical
computation of the GW evolution. We compare our GW spectra to observational
bounds in Sec. and conclude in Sec. [6.6] Further technical and computational

details are relegated to the appendices.

6.2 Hyperkination

6.2.1 Quartic kinetic terms from Palatini R? inflation

We consider the same action in the Jordan frame as in Eq. ({5.1) and follow the
same procedure as in Sec. to arrive at the action in the Einstein frame [345] 340]

~ h? +4aV -
3007 + § it (00)' = U] + 527,01 ()

2
S = /d4xs/_—g[mPR—
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where
4
Vmp

U=_'"p
h? +4aV’

(6.2)

and we employed a field redefinition of the form

do _ \/ h(p)mi (6.3)

de h(p)? +4aV (p)

in order to render the quadratic kinetic term canonical, where the bars indicate
quantities in the Einstein frame. Note that the process of transforming from the
Jordan to the Einstein frame has generated a quartic kinetic termP] and a modified
potential U which will in general display a plateau for growing V', approaching
the asymptotic value mp/(4a) [345]. Also, importantly, in the present work, we
concentrate on the early era when the other matter components ¢ are a perfect
fluid of radiation. In this limit, the coupling between the inflaton and the matter
action in the last term of Eq. disappears [I], 3].

Neglecting the last term for the moment, we can rewrite the action as

S = / diey/ G {m%’ R+ P(o, X)] , (6.4)

2
with
P($,X)=X+L(¢)X*-U, (6.5)
where
X = —(8?2 and  L(¢) = %}i;—égv (6.6)

The action in Eq. (6.4) belongs to the general class of k-inflation [463] (where
inflation is kinetically driven) or k-essence [194] [195, [196] (where the non-canonical

kinetic terms can behave as quintessence).ﬂ

2Note that, in the context of Palatini gravity, models that contain a non-minimal derivative
coupling term G, 0"pd"¢ [334] or R, R"™) terms [363] B365] in the Jordan frame, can lead
to actions similar to (6.1]) in the Einstein frame after applying a disformal transformation of the

metric.
3In Ref. [352] it was shown that the Palatini R? models share common features with k-inflation

models.
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Varying the action in Eq. (6.1) we can obtain the equation of motion for ¢,
which reads [345]
4aV'\ 21 4oV 21 - - * d /vy d
1430 1+~ —] 3[1 |+ L —}H 32——<—) “U=o.
[+a(+h2)m§¢+ +a<+h2)m4p ¢+am4pd¢ 2 +d¢
(6.7)
Then, from the non-zero components of the energy-momentum tensor we can

obtain the energy density and pressure of the field, which read [362]

1| 3 4V ]
Ps == 1+—a(1+i)% F+U,

2 2 h? >
[ 1 s\ 21 08
Po =15 1+§a(1+7>m—% ¢* —U.
To complete the equations of motion, the Hubble parameter can be written as
3mpH? = py . (6.9)

Again, the above equations differ from those of a standard canonical scalar field due
to the higher-order kinetic terms. In the limit o — 0 they reduce to the minimal
case. The bars are dropped in what follows to avoid clutter. Unless otherwise stated
we always work in the Einstein frame.

The plateau in U mentioned above is ideal for slow-roll inflation, and can
easily produce CMB observables compatible with observations for simple forms of
the potential V' [345] 346]. However, it restricts the inflationary—and thus post-
inflationary—energy density to values lower than mp/(4c)). Unfortunately, this
severely restricts the parameter space considered in the following sections. One way
to overcome this problem is to consider an « that experiences a drastic change at the
end of inflation but remains constant afterwards. This is possible if a depends on a
degree of freedom that changes its value when inflation ends. A toy model discussing
this possibility is presented in [C.I} Another example of a model describing the full
inflationary history may be the one studied in Chapter 5], as long as it is enhanded
with the hybrid mechanism discused in[C.I} Moreover, we point out that the Palatini

R? models considered here act as an inspiration for the extra quartic kinetic terms
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in the action, but our analysis is more general, and we do not specify the details of

the inflationary part of the model.

6.2.2 Kinetic domination

While the quartic kinetic terms in Eq. are negligible during slow-roll
inflation [345], they may play an important role in the post-inflationary Universe.
We consider next such a scenario; a period of kinetic domination, where the potential
V' is negligible and the field rolls forward freely. In this limit, Eqgs. and

become

'2 .. ‘2 .
(1 + 3a%>¢ + 3(1 + a%)ﬁw =0, 3H?m3 =p,, (6.10)
P P

and the energy and pressure become

1 3 ¢?
= (14 = _> 2
Pe 2( )
Lo 162y
Py = —<1+—a—)¢. (6.11)
2 2 mp

It is instructive to change the time variable to the number of elapsing e-folds N =
Ina, with dN = Hdt, and eliminate H. We can assume gb > 0 without loss of

generality. The field time derivatives are related asﬂ

2 [2(6mg — ¢7)

b =mb S0d? (6.12)

Note that, due to the scaling with the heavily ¢-dependent H, the limit ¢ — 0
corresponds to ¢ — /6mp, and qb — oo corresponds to ¢ — 0. Egs. (6.10) and

4A prime denotes a derivative with respect to IV in this section only. In the rest of the thesis,
it denotes a derivative with respect to the conformal time 7, dyp = d¢/a. As an exception, ¢} in
Eq. (6.16)), which is used throughout this chapter, is always equal to ¢ = (;5/ H evaluated at the

end of inflation.
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(6.11]) become

_ §(6md — ¢?)(12m} + ¢7)

gbﬂ
6m%(12m% — ¢?) ’
B 2m$ [ 6md 1
Pé - a2 #"? )
- 2m$ [ 6m} 1) - 2m3
Dy - 3072 \ @2 )
1 ¢12
—_ (34
S’ ( i ml%> |

(6.13)

where wy = py/py is the barotropic parameter of the field. Note that o dropped

out of the equation of motion: changing « rescales the time and energy density but

leaves quantities like ¢, N, and w, untouched.

Nogp=15 [ de/dN

6 Qﬁndzlo—l() N

r 5 $oe

b | H=10"GeV Min
4+
2k V4 ]
0.. ........................................

0 5 10 15

Figure 6.1: N-derivative of the field obtained from the numerical simulation (full

blue line) and its initial approximation given in Eq. (6.16) (dashed orange line)

as functions of N. The dashed vertical line, labelled Ny,, corresponds to the time

at which kination starts in the numerical simulation, defined here as the moment

at which both addends inside the parenthesis in the energy density in Eq. (6.11])

become equal, while the dashed horizontal line corresponds to ¢/ = v/6mp. In the

legend, H denotes the Hubble parameter at the end of inflation Hepq.

If ¢ is small—that is, %a(jﬁé < m} and ¢’ =~ /6mp—the quartic extra kinetic
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terms are small, and Eq. (6.13)) give

¢ = 6(Vomp —¢) = ¢ ~V6mp (1—ce ™),

pe < (6mp — ) occ e oca™b, wy 1, (6.14)

where c is an integration constant and we are concerned with the large N limit. We
see that ¢’ = v/6mp is an attractor. It corresponds to standard kination [287, 288,
286, 239], 240}, 245] with a quickly diluting energy density and wy ~ 1.

In the opposite limit of %aéz > mp and ¢ ~ 0, the quartic kinetic terms
dominate, and Eq. gives

N
" ~q¢ = ¢ =ce xa,

1
po < () Poca™, wy 3 (6.15)

We name this phase hyperkination. The extra kinetic terms modify the dynamics
so that the energy density dilutes only as fast as radiation with w, ~ 1/3.

Hyperkination only lasts for a limited time. As spatial expansion dilutes the
field’s kinetically dominated energy density, qﬁ decreases and ¢’ grows. The quartic
kinetic terms are diluted faster than the quadratic ones, and eventually the latter
take over. Consequently, the field transitions into standard kination. We can use
Eqgs. and to approximate the time evolution of ¢’ as it approaches the
kination attractor as

§ ~ peV N <In(v6mp/¢)), (6.16)

V6mp N > ln(\/gmp/gb{)) ,

where ¢ is the initial value of ¢’ at N = 0, taken below to be the end of inflation.

Tuning ¢ lets us modify the length of hyperkination, which we define asﬂ

Nugp = 1n<f6mp /¢g) . (6.17)

SWith the restriction p, < mp/(4a) discussed at the end of section we would have
¢y > 2mp at N = 0, and Eq. (6.16) restricts hyperkination to last less than 0.20 e-folds, a

negligible amount. As mentioned, we omit this restriction in this paper.
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Figure compares Eq. (6.16) to a numerical solution of Eq. (6.13) in an example

case.
Due to the exponential growth of ¢, the transition from hyperkination to
kination is fast. Let us define the beginning of standard kination N,;, as the moment

when both addends inside the parenthesis in the energy density in Eq. (6.11)) become
equal. Using Eqgs. (6.12) and (6.16]), this condition reads
_ 3¢ _

= 94
2mp

1 62(Nhyp*Nkin) -1 & Nkin — Nhyp —In \/5 (618)

Thus, Npyp =~ Niin and we conclude that it is a good approximation to assume an
instantaneous transition between hyperkination and kination.

We end this section with a relation between «, the energy density at the start of
hyperkination (end of inflation) penq, and Nyy,. Equation together with the
definition of Ny, gives

401 _ ,—2N, 4 ANy,
mp(l —e7*r)  mpetthor
3e~Vhyp - 3

(6.19)

APend =

where we have assumed a non-negligible duration for hyperkination O(Nyy,) ~ 1 in

the last step. Note that Ny, = 0 corresponds to a = 0, as it should.

6.2.3 Full cosmic evolution

Let us now embed a period of kination into a full history of the Universe. Initially,
during cosmic inflation, the field energy density is dominated by potential energy.
Once inflation ends, the potential drops to zero and the field’s velocity increases as
the potential energy is transformed into kinetic energy. In typical models, the field is
trapped into a potential minimum, oscillating there and decaying into a thermal bath
of particles, reheating the Universe. In our models of interest, the post-inflationary
potential is of the runaway type—that is, flat and low—and the field keeps rolling
onward under kinetic domination. If the quartic kinetic terms dominate, this phase
starts with hyperkination, transitioning into standard kination later, as described

above.
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Figure 6.2: Left: Logarithm of the energy density of the Universe (full black),
the field (dashed orange) and the background radiation fluid (dashed blue) as a
function of the number of e-folds calculated from the end of inflation, obtained
by numerically solving the system. Right: Barotropic parameter of the Universe
from the same computation. The vertical dashed lines correspond to the start of
kination, reheating, and the BBN. The parameters for both panels are Ny, = 15,
Qerd = 10710 and H = 10" GeV.

To reheat the Universe, we assume a small amount of radiation is produced at the
end of inflation e.g. through Ricci reheating [98, 99, 289]. During hyperkination, the
radiation energy density is diluted as fast as that of the field, p, 4 o< a™*, so radiation
stays subdominant. However, when standard kination starts, the field energy density
dilutes faster, py o< a~%, and the radiation fraction grows until it overtakes the field.
The Universe is reheated and radiation domination starts. We assume this to take
place at high energies, above the BBN temperature Tggy ~ 1 MeV; afterwards, the
Universe follows the standard ACDM expansion history.

The behaviour of the system can be solved from the Friedmann equations

—4
BH?m2 = po+ ps, pr = 3(Hena)*m x Q™ (—) 7 (6.20)

Qend

combined with the first equations from Eqs. (6.10) and (6.11)). Here Q¢ is the
radiation energy density fraction (parameter) at the end of inflation and daenq

and H.,g are the scale factor and Hubble parameter at the end of inflation.
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6.2. Hyperkination

Figure [6.2] shows the behaviour of the energy densities solved numerically; for
details on the numerical implementation, see Appendix [C.2] It also shows the
corresponding evolution of the barotropic parameter w, defined as the ratio between
the total pressure and energy density of the Universe, taking values from w =
1/3 (hyperkination) to w = 1 (standard kination) back to w = 1/3 (radiation
domination).

In summary, we assume a cosmological evolution where inflation is followed by
two phases: hyperkination and kination, in this order. Reheating, which takes
places at temperatures larger than Tggy, signals the end of these phases. After
reheating, the conventional cosmic evolution with radiation and matter dominated
eras followd?]

The non-standard expansion history opens the door for new phenomenology. For
one, it changes the matching between scales in the early and late Universe. Indeed,
when inflation is followed by a stiff cosmological era with barotropic parameter w,

the number of inflationary e-folds is increased by [258, [445] [T, 272] (see Eq. (2.43))

1 1/4
AN = Y m(%m> (6.21)

3(1 4+ w) Tren
It follows that hyperkination, for which w = 1/3, has a vanishing contribution. This
is not the case for kination, with w = 1. Thus, in our scenario we have

1 p1/4
AN = —In | 2kn 6.22
3 " <Treh) ’ ( )

where pyin < Vinq is the energy density at the end of hyperkination and the onset
of kination proper. Typically, this increases the remaining number of inflationary
efolds after the cosmological scales exit the horizon to at most N, ~ 65, which

implies AN < 5, something that must be taken into account when calculating the

6Some authors (see Ref. [455] and the discussion on page 6 in Ref. [464]) have considered that
the stiff era takes place after BBN, but before recombination. This would relax the lower bound
for the temperature of the stiff phase to T' < 6 keV. However, this possibility is not considered in

the present work.
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inflationary observables!]

All in all, the CMB scales exit the Hubble radius approximately 60-65 e-folds
before the end of inflation instead of the standard 50-60, see e.g. [II,[36]. This affects
inflationary model building, although the effects are mitigated with respect to the
standard kination scenario. In addition, the spectrum of primordial GWs is altered

in ways that are sensitive to the duration of hyperkination.

6.3 Gravitational waves

6.3.1 Tensor perturbations and quantization

In this section we review the quantization of the primordial GWs, mainly following
Sec. (see Eq. and below). To study the behaviour of GWs, we write
the metric tensor as g,, = a? (Muw + hyuw), where 1, is the Minkowski metric so
that a®1,, = g, is the unperturbed FLRW metric, and Ay, is a small perturbation.
We expand the action in Eq. to second order in h,,, keeping only the tensor
modesﬁ7 which evolve independently of other perturbations in linear perturbation
theory. We obtain
2
0Ps =3 %/dnaz/d%(mgﬁ — ) (6.23)
5=0,®

where s indexes the two GW polarisations, and the polarization amplitudes h*® are

defined through the Fourier decompositions
S( d3k s _ik-@

so that h% describes oscillations of a given polarization in directions perpendicular

to the wave vector k.

"Such an increase has some effect on the inflationary observables, but this effect is minimal.
For example, in Starobinsky inflation [11] or Higgs inflation [390] (or a-attractors [465]), the scalar
spectral indexisng ~ 1 — Nl* With N, = 60 this results in ng, = 0.966. If we have NV, = 65 instead,

then ng = 0.969, which is still within the 1-o contour of the Planck satellite observations [10].
8The tensor perturbations obey Ouht” =0 and k¥, =0.
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The amplitudes h* behave as massless scalar fields, up to normalization, following

the Klein—Gordon equation
R 4 2HRY + V*h' =0 (6.25)

with wave solutions. Here H = a'/a and V2 = 0,0; where i is summed over the

spatial indices. The corresponding energy-momentum tensor is

2 6(6®8 2 1
T = = %g,w ) > % <8Mh58,,h5 — nggaﬁaahsaﬁhS) ., (6.26)
$=0,®

so that the GW energy density reads
— m S S
paw = a TG = 3 2 [(07)* + (VA (6.27)

In order to quantize the primordial GWs, we first go to the canonically

normalized variables v* = mpah?®/v/2, so that (after integration by parts) the action

in Eq. (6.23) becomes
2 1 3 2 o a” 2
s/ S
5s=6,8
This is the Minkowski space action for a free field with mass a”/a, quantized the

standard way by writing

~8 = d3k s ~s ik-@ S% ~st _ikz
#0.8) = [ G v + o i e (6.29)
where d%, dg are the ladder operators following the canonical commutation relations
(a3, 8] = 66O & — k). (6.30)

Time evolution is delegated to the mode functions v}, which follow the Mukhanov—

Sasaki equations derived from Eq. (6.28)),

a//
vy + (k’2 - Z) vp=0. (6.31)

Note that, due to the ladder operators, the mode functions v}, differ in normalization

from the classical Fourier modes v Abusing the notation slightly, we differentiate
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these by writing k instead of k as the mode function index—in an FLRW background,
the quantum mode functions only depend on the magnitude of the wave vector and
not its direction. Analogously, we define h* = v/20°/(amp), hi = V/2vi /(amp).
Deep inside the Hubble radius, £ > H, the GWs do not feel the expansion of
space, the mass term a”/a is negligible, and Eq. has the standard vacuum
solution
1

vy = ——e M vy = —ikuvj . (6.32)

Vek

When the mode functions follow Eq. , the state annihilated by aj, is the Bunch—
Davies vacuum [82]; we take the perturbations to start in this vacuum state during
inflation. Over their cosmic evolution, the modes stretch and exit the Hubble radius,
evolving beyond Eq. . After inflation, they re-enter the Hubble radius, this

time following the general sub-Hubble form
1
V2k

We will solve the coefficients Ay (k) for a given cosmic history in section [6.4.2} since

vp = [)\+(k‘)e—ik” + /\_(k)eik”] : (6.33)

the Mukhanov—Sasaki equation conserves the Wronskian of its solutions, we have
IA+|?—|A_|* = 1, set by the initial vacuum in Eq. (6.32)). The coefficient A_ contains
the GW excitations, the part beyond the vacuum solution in Eq. .

Let us next consider the energy density of the GWs induced by the above process.
The late-time GW energy density is dominated by high-k, sub-Hubble modes, for
which Eq. applies. Using this result, we replace h® by h* in the energy-

momentum tensor in Eq. (6.26)) and compute its expectation value. The result is

A md [ (dmk)E S din k)
Gaw) =3 " [ERDE gy \2+k2!hkl2)%/ (Il +1A-P)
s=@B,® k=
(dlnk:)k:4
:/ = AP+ (6.34)
k=H

where we used the Wrosnkian condition, and the fact that the integration limit
k > H restricts us to sub-Hubble modes. In the last line, we have taken the
polarization sum (starting from the Bunch-Davies vacuum, Ay are identical for

both polarizations).
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Note that, regardless of i, the final term of 1/2 makes Eq. diverge
for large k—this is the usual energy density vacuum divergence of quantum field
theory. Omne can regularize the result by normal ordering the ladder operators
in pgw. However, this has to be done with the late-time ladder operators which
annihilate the late-time Bunch-Davies vacuum. These are related to the original
ladder operators aj by a Bogoliubov transformation; for a detailed discussion, see

e.g. Ref. [82]. The regularized energy density becomes

o) = [ 5E 5 (6.35)

w2 gt
k=H

In practice, all of our modes of interest are highly excited with |[A_| > 1, so
that Eqgs. (6.34) and (6.35) are approximately equal. In this limit, the vacuum

contribution is negligible and the GWs are essentially classical.

6.3.2 Energy density scaling and the problem with kination

From Eq. , we see that the sub-Hubble GWs scale as radiation, with pgw o
a™*, as expected for massless degrees of freedom. In cosmology with a standard
expansion history, only a small amount of GWs are generated during inflation, and
they always stay subdominant compared to the background radiation energy density.
However, during kination, the background dilutes faster than radiation, and the GW
fraction grows. The resulting GW spectrum is peaked and tends to either clash with
bounds on the number of relativistic degrees of freedom during BBN or be hard to
observe in GW experiments [294], 293, [446|, 4477, [448], [449]. In the following sections,

we will demonstrate that adding a period of hyperkination helps with this issue,

opening a wider parameter space for allowed GW spectra.
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6.4 Analytical solution

6.4.1 Solving the background

Let us move on to solve the GW spectrum analytically. The first step is to solve the
background dynamics, in particular the scale factor a, in the presence of radiation,
as a function of the conformal time 7. This provides us with a”/a, allowing us to
later solve the Mukhanov—Sasaki equation for the GW mode functions.

The scale factor evolves through different epochs during the cosmic history:
inflation, hyperkination, kination, and radiation domination. The transitions
between the epochs, assumed to be instantaneous, happen at conformal times
Nena (end of inflation and start of hyperkination), my, (end of hyperkination and
start of kination), and 7., (end of kination and start of radiation domination, i.e.,
reheating), which we will also solve in terms of the model parameters below. We use
the same indices to refer to various variables evaluated at these times. We require
the continuity of a(n) and its derivative at the transition times; between them, we

solve a(n) from
dt da da [3m3
= —— = —. 6.36
a a*H a? p (6.36)
If we know how the Universe’s energy density p scales in a, we can integrate and
invert Eq. (6.36]) to obtain a(n) epoch by epoch. We will normalize the scale factor
so that

a(Mena) = 1, (6.37)

and write a = eV, so that N counts the e-folds since the end of inflation.
For inflation, we assume a generic slow-roll inflationary phase, with the end of
inflation 7epq < 0 determined by the usual condition
H
€=—"m = 1, (6.38)
where € is the first Hubble slow-roll parameter. For the reader’s benefit, we will

express our GW mode functions as a function of €, approximated to be constant. In
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the example spectra we consider in section [6.5] we work in the pure de Sitter limit
¢ = 0. To avoid clutter (and slightly abusing the notation), we will use H, as for
pure de Sitter, to refer to the Hubble parameter at the end of inflation Heyq.

For hyperkination, we get p(/N) from Eq. , where ¢’ follows the first branch
of Eq. and we write the initial field velocity ¢ in terms of Ny, as explained
below the equation. For kination and radiation domination, we use the standard
results p o< a=% and p o a=*. With these, the full behaviour of the scale factor

becomes

( [_ 1 ]1/(1—5)

(176)Hn 9 T] S nend 9

Mo sin [e M (Hyp + 1) 4+ sin™ e 2] | fena <17 < Miin
. (6.39)

QAkin \/QHkin (77 - nkm) + 1 ) Tlkin S n S Tlreh 5

\areh[Hreh(n - nreh) + ]-] 3 Treh S n.

For the hyperkination expression, we used

1 1
o = — 6.40
Tend =T TOH T T H (6.40)

which follows from Eq. (6.37)) and the first line in Eq. (6.39)). We also used Eq. (6.19))

with 3H?m% = pena to eliminate . For a long hyperkination period with Ny, 2 1,

we can approximate the expression as
a(n) ~= e sin [e Ve (Hn +2)] ~ Hn+2, (6.41)

where the right-hand-side is exactly the scale factor for a radiation-dominated
universe, compare to the last line in Eq. . Note that the last approximation
stops being valid at large times 1 ~ e¥»vv/H and one needs to use the middle
expression instead. This is the case below, when we obtain an analytical estimate
for Min-

For kination and radiation domination, the constants in Eq. (6.39)) are to be read
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off from the end values during the previous phase. Using Eq. (6.41]), we have

Qkin = eNhyp sin [e*NhyP (anin —+ 2)] ,
Areh = Qkin \/2Hkin(77reh - nkin) +1 5 (642)
and
He Noyp
Hkin = _N )
tan [e~NVove (Hnn + 2)]
7-[kin
H, = . 6.43
o 2Hin (Mreh — Miin) + 1 (6.43)
In practice, it is a good approximation to use
H +2 H —H (6.44)
Akin = in ) in — : '
g e g HT]kin +2

Let us next estimate the conformal times for the rest of the transition points. We
do this by solving an equation where a is expressed in two different ways, through
Eq. and through a condition related to our model parameters.

As a reminder, we define the beginning of kination as the time at which both
addends inside the parenthesis in the energy density in Eq. become equal.

Since this happens at large times n ~ e /H we use the middle expression in

Eq. (6.41)) together with Eq. (6.18) to obtain
@Nhyp

V2

ain = €' sin [e” Ve (Hipg, + 2)] = eMin = (6.45)

so that
Telwe — 2 el

in — ~ . 4
Mk I7i 11 (6.46)

The time of reheating n., can be estimated by noting that the total energy
density during kination scales as p o< a~%, while that of the radiation scales as
pr o< a~%. Thus, the density parameter of radiation during kination scales as €, oc a?.
By reheating, radiation is the dominant component, that is,

2 2
~ Oreh . Okin Qreh _ end 2H TkinTreh
1 ~ QI‘ ~ QI‘ (E) — QI' W 3 (6.47)
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so that

eN hyp

ST (6.48)

Mreh =

where we used QK" ~ Q@ since the field and radiation redshift similarly during

hyperkination, together with the approximation |fend| < Mkin <K Nren yielding aen ~

HA\/2minnen from Eqs. (6.42]) and (6.43)). We also used Eq. (6.45) for ay, and
Eq. (6.46)) for nn.

6.4.2 The gravitational wave mode functions

The next step is to obtain expressions for the GW mode functions. We proceed
by matching the solutions and their derivatives at the transitions between epochs.
To simplify the expressions, we do the matching in the super-Hubble limit, which
gives an excellent approximation except for modes entering the horizon around the
transitions. Our goal is to obtain the coefficients A\_(k) from Eq. for each
mode so that we can read off their asymptotic, sub-Hubble behaviour. We report
the details of the somewhat technical calculations in Appendix [C.3] while in the
present section we simply give the main results, as well as a comparison between
the analytical and numerical solutions in Fig. m (for details on the numerics see
Appendi.

We can summarize the scale factor time dependence from the last section as

(0" 3(w—1)
a= (a) : v 50+ 3u)’ (6.49)

where w is the corresponding barotropic parameter of the Universe, so that v = 3/2
(w = —1) for de Sitter, v = 3/2+ ¢ = vy for a more realistic quasi-de Sitter inflation
[425], v = 0 (w = 1) for kination and v = —1/2 (w = 1/3) for hyperkination and

radiation domination. We then get

a” 1 5\ 1
R - 6.50
a (4 Y ) n? (6.50)
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The constants 7. can be read from the previous section, giving

% 3 n S TNend
" 07 Tend S n S Tkin,
T (6.51)
a
_$7 Tkin S n S Threh s
\07 T]reh S 777
where we defined for kination
Tkin 1
=n— —. 6.52
=0t (6.52)

Note that a” = 0 during hyperkination. This feature is shared with the period of
radiation domination, during which the spectrum is flat, a result that was originally
derived in Ref. [292]. Therefore we expect the peak from kination to be truncated
by a secondary plateau.

With this, we can proceed to solve the Mukhanov-Sasaki equation ((6.31]).
Making the change of variables * = kn (z = —kn during inflation when n < 0)
and redefining the mode functions as v = y/zg, it can be recast as a Bessel equation

g dg
@—f‘l’a—l—(x —V)g—(), (653)

the most general solution of which is given by
g(x) = e HY(2) + o H? () , (6.54)

where HS" and H” are Hankel functions of the first and second kind respectively.
Using the values of v from above, the solutions during inflation, hyperkination,

kination, and radiation domination become

\/ V=Ene i 20 HD (— k) 1N < Nend »

s( ) \/%I [a-l—(k;)eiikn + oo (k)ezkn} ) Tend S n S Tlkin »
Up\N) =
= | Be(R)e ™ HEP (k2) + 8- (W)™ H (k)] . han < 0 < e
L \/LQ? [,y+<k)€—ikn + 7—(k)6ikn} ) Tlreh S m,

(6.55)
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where we fixed the coefficients c¢; o during inflation so that in the initial sub-Hubble
regime, —kn > 1, the mode functions obey the Bunch—Davies vacuum conditions
in Eq. . The constants and phases in the other branches have been chosen so
that the coefficients a1, S+, and 4 correspond to the AL of Eq. in the late
sub-Hubble limit kn > 1. Their values are fixed by requiring the continuity of v
and its derivative at the transition times 7end, Mkin, and nen. Matching the branches

in the super-Hubble limit yields

ox(h) = 31 (5) , (6.56)

2 \k
Bi(k) = 2ier*a_(k) k:’: (6.57)
Twk) = Fo (k)5 (6.58)

where
fle) = emﬂ%T : (6.59)

and Zyen ™ Mren 18 2z from (6.52)) evaluated at 7. For the scale-invariant case with

e — 0, f(e) — 1, the moduli squared of the coefficients take the simplified forms

H*
2 J—
(B = 1
H*
W = gk,
B0 = ok
H* g
2 kin
-k = 4k4 2npen, (6.60)

Note that since we did the matchings at the super-Hubble limit, the expressions
in Eqs. — and only apply for modes that are super-Hubble during
the corresponding transition. To find the final behaviour of a mode, we take the
last transition where this applies, track the following mode function from Eq.
to the sub-Hubble limit, where it takes the form in Eq. , and equate the a_,
B_, or y_ with the coefficient A_. Indeed, after a mode has settled to its asymptotic
sub-Hubble behaviour, its evolution is trivial—redshfiting gently like radiation—and

it won’t be sensitive to further changes in the equation of state of the Universe.
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From the Mukhanov—Sasaki solutions in Eq. (6.55]) we can also deduce the metric
perturbations hj. Using the scale factor expressions, a >~ Hn, a ~ H\/2n,n, and
a ~ H+\/Mn/(2Men)n during hyperkination, kination, and radiation domination,

respectively, and using Egs. (6.56])—(6.58)), we get

;

mpk3/2 f(E) (%)76 jO(kn) s Mend <N < Mkin
K0 = 2 f(6) () Jo(k2), Man <1< Mren s (6.61)
mpk3/2 f(e) (%)_6 jO(kn) s Theh <1,

where jo(kn) = /7 /(2kn)Jy 2(kn) = sinkn/(kn) is a spherical Bessel function of
the first kind and J; is a Bessel function of the first kind. For a comparison with
the numerical solutions in the scale-invariant case, see Fig. [6.3] We do not include
the inflationary metric perturbations in Eq. as they do not simplify as nicely
as the others.

Note that in the super-Hubble limit, all the expressions in Eq. (6.61]) freeze to

dio, i )( k ) oo, _H (6.62)

hi(n) mpkg/Qf € uH W,
where the last one is the standard scale-invariant result. Note that this result holds
also for inflation. In principle, one can use this as an initial condition and solve the
Klein—-Gordon equation to obtain Eq. separately in each phase without
the matching procedure described abovdﬂ. One can then use Eq. to obtain the
unregularized GW energy density. We use this method in our numerical solutions.
The expressions for ay, B+, and v4 are still needed to regularize the integral in
Eq. , and they are the conventional way to express the GW excitations in the

literature.

9In particular, GWs at the CMB scales stay frozen throughout the kination and hyperkination
periods and are thus not affected by the non-standard background evolution. The same is true for
the curvature perturbation R—see [466] for a linear treatment of R in a model with a non-standard
kinetic sector, Appendix B of [362] for an application to Palatini R?> models, and [467] for a general

proof that R freezes at super-horizon scales.
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Figure 6.3: Comparison between the analytical solution (solid blue lines) and its
numerical counterpart (dashed orange) of the imaginary part of the mode functions
hj as a function of the elapsing number of e-folds when the mode enters the horizon
during the hyperkination (top left), kination (top right) and radiation domination
(bottom left) periods. The match is excellent, except when the wavenumber of the
mode is comparable to the horizon size at a transition (bottom right). The vertical
dashed lines represent the time of horizon crossing £k = aH and the times at which
kination starts Ny, and reheating happens N,,. The parameters for all panels are

Nigp = 15, Q24 = 10710 and H = 10" GeV.

6.5 Gravitational wave observations

6.5.1 Gravitational wave spectrum

We are finally in a position to calculate the spectral energy density of the primordial

GW background. It is defined as

p(n) dnk p(n) m2a*(n) ’
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where p is the total energy density of the Universe and pgw (k,n) is the contribution
to the GW energy density from modes around k, given by Eq. for the
dominant, sub-Hubble modes. Here A_ is to be matched to ao_, f_, or v_ as
explained above.

To evaluate Eq. at a specific time, we note that the radiation energy

density can be written as (remember our normalization de,q = I)H

Pr(ﬁ) = Qr(ﬁ)ﬂ(n) = andpenda_4(77) ) (664)
so that
(D) (1) = pen (6.65)
p(m)a*(n) = pensgy s .

In particular, using the current radiation temperature and total energy density,
To = 2.7 K = 0.23 x 107 MeV and py = 1.05 x 107'%m3, [§], we obtain p? =
8.79 x 107125m¢ and Q2 = 8.37 x 107°. We use the index ‘0’ to refer to quantities
today. With this and the de Sitter limit results in Eq. together with Eqgs.
and , the GW spectrum today becomes

.
2
Q0 (g
96 <m_P> ) k < kreh?
2
_ Q0
QGW(ka 770) - W <mip) %eNhYP, kreh <k< kkim (666)
2
QY H
| T2r2ad (m_p> ) Fiin < kb < kena-

Below, we will refer to the different branches as Q% Q&% and Qléyv% The

boundary values are given by k£ = H at the end of inflation and at the transition

times. Using Eqs. (6.42)) and (6.43), we get

kend = H )
1 4H
kkin = - N, ’
Tlkin e hyp
1 TQend [
Keehk = L , 6.67
" 2771feh QeNhyp ( )

10We neglect the change in the effective number of relativistic species contributing to the entropy
9+s(T) and to the energy density g.(T'). This introduces an additional mild scale dependence into
the spectrum. For further details, we refer the reader to Ref. [46§], and in particular to Fig. 4

therein.
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where we approximated |Nend| < Miin < Mreh-
In our figures, we show the spectrum as a function of f, the GW frequency today.

To relate f to our Wavenumbeﬂ k, we use Eq. (6.64) and p = 3H?*m}, yielding

k 1/ QH2\Y
f= oma  on (Q?ndm) k. (6.68)

An important frequency is the one that corresponds to BBN. It does not depend on
the early expansion history, and we can solve it explicitly as

fBBN = 1 aggnHpey 1 ( Py )1/4 (pBBN)1/2

o agp 27 \ peaN 3m3
1.36 x 107" Hz, (6.69)

12

where we used pppny = 3 x 107%m3. We present fgpx as a vertical dotted line in
our graphs.

We show a comparison between the numerical and analytical spectra, for an
example set of parameters, in Fig. We see that the analytical expressions for
the spectrum are very accurate. In Fig. we present some example analytical
spectra superimposed with the power-law integrated curves (PLICs) for future GW
experiments.

From Eqgs. and , we can straightforwardly understand the shape of
the spectrum. The height of the first plateau, corresponding to hyperkination, is
given by the combination H?/(Q"4m2), i.e., the larger the energy density at the
end of inflation and the smaller the reheating efficiency, the larger the energy density
spectrum amplitude will be. The third free parameter of our theory, the number
of e-folds of hyperkination NV, controls the length of the boosted spectrum; the
longer the hyperkination period lasts, the more stretched the boosted spectrum is.
In contrast, the height of the second plateau depends on H?/m3, i.e., it depends

on the energy scale at the end of inflation only, the standard result from a scenario

"Note that, since we have set a = 1 at the end of inflation instead of today as is customary, the
numerical values of our k differ from those of the usual comoving wavenumber. Equation (6.68)

takes this into account.
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Figure 6.4: Analytical spectral energy density of the primordial GWs (dashed
orange) and its numerical counterpart (full green). For details on the numerical
solution, we refer the reader to Appendix The vertical dotted lines represent
the frequencies associated with the start of kination, reheating and BBN, while the
horizontal dashed line represents the BBN bound on the spectrum. The numerical
spectral energy density is not well resolved at the largest frequencies because the
modes re-entering the horizon right after inflation are never frozen as assumed in
the code. This leads to the unphysical upslope around 10! Hz. The parameters
used are Ny, = 15, Q4 =107 and H = 10'® GeV.

with no period of kinetic domination, originally derived in Ref. [292]. Both plateaus
are connected via a region growing linearly with the frequency f, corresponding to
the kination period. At large frequencies, the spectrum is cut off at the last mode
to be excited by inflation. At small frequencies, there is no cutoff; the first line in

Eq. applies to all modes that re-enter during radiation domination.

Although it is easier to understand the shape of the spectrum in terms of Nyy,p,
the free parameter in the action in Eq. (6.1) is «. For this reason, we present below

our results regarding the parameter space of the theory in terms of o and not Nyyyp.
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The two are related by Eq. (6.19)). For completeness, we present here the spectrum

in terms of «, and with k replaced with f:

0 2
% (mip) ) f < frch;
3/4 2 / aH?2 m2 %
QGW(fu TIO) = <92§d> 6 513//2 2 <1+ 1+326 bl P) f, freh < f < fkina
r s 0 mP
0 2
L 12#252?“‘1 (m%) ’ fkin < f < fenda
(6.70)
where
077272\ /4 0772 772\ 1/4 577\
Foy = 1 (S HGH o= 2 (Q°HZH 1+ +/1+36aH?/m3
end — o Q(rend ) kin — 7T2 Q?nd 9
(6.71)
(e 2 a2 (14 /T 360H2/m3 \ °
freh = 4 9 (672)

Note that the frequencies of the modes that cause the truncated peak, corre-
sponding to hyperkination and kination, are always between f, and fenq, given
by Egs. and , respectively. The specific values depend on the Hubble
parameter at the end of inflation H, the density parameter of radiation at the end
of inflation Q4 and . In order to give some indicative values, let us assume GUT
scale inflation H ~ 10" GeV and electroweak-scale reheating p(1.en) =~ (200 GeV),
corresponding to Q4 = 1071 Changing a obviously leaves f.,q unchanged. In
Table [6.1] we show f.on and fonq for a few different a. Note that they are larger
than fggn, as they should be.

6.5.2 Parameter space and detectability

In the present section, we put our model to the test and analyse the detectability
of the generated spectrum of primordial GWs in the presence of a period of

hyperkination after inflation. Since our analytical expression for the spectrum
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Q freh fend

10 39x107°Hz 4.4 x 10" Hz
10%  22x10°Hz 4.4 x 10" Hz
10 1.2x107"Hz 4.4 x 10" Hz

Table 6.1: Values of the frequencies corresponding to reheating f.., and the end of

inflation fenq for different values of a, given that H = 10* GeV and Q4 = 10710,

approximates very well its numerical counterpart, as can be seen from Fig. [6.4] we
use it in order to compare with the PLICs of various detectors, namely LISA [433],
434, [435], ET 469, 470], LVK observing runs O3 and O5 [428], [429| 430}, [431], 432],
SKA [471], DECIGO [436], 437, 438] and BBO [439]. For each of them, we run a
scan over the parameter space {«, Q"4 H}. The successful parameter space can be
found in Fig.

Before we describe how the parameter space scan is performed, we comment on
some bounds that need to be imposed. First, BBN should happen during the period
of radiation domination. In other words, at (and below) the frequency associated
with BBN, the spectrum needs to be in its lower plateau, i.e., fien > fBBNn, Where

fren is given by Eq. (6.72)). This imposes a bound on the maximum value « can take.
Solving for « in Eq. (6.72)) gives

2
m (mgmsnd)wgm ) 1) .

<
¢S 36w 8 f2n
200 end\3 172
mp ()  H 85 d\3
= 6.9 x 10%(Q"9)°. 6.73
2304f§BN X ( T ) ( )

Importantly, we note here that the specific value we use for fggy in Eq.
comes from Tppgy = 1 MeV. However, recent studies [455, 464] have shown that
the stiff era is restricted to occur at temperatures 7' > 2.5 MeV. This means that
the value in Eq. would become a factor of 2.5 larger, and the bound in Eq.
a factor of 0.026 smaller. However, given that the available parameter space
for v spans many order of magnitude (see Fig. , this change does not affect our
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Figure 6.5: A few different spectra superimposed with the PLIC curves of the GW

experiments. The parameter values { N, H, Q4} are {17.5, 4.3 x 10" GeV, 10712}

for the blue curve, {25, 7.9 x 10 GeV, 107°} for the orange curve, {20, 7.9 x

10 GeV, 107°} for the green curve and {29.5, 1.7 x 10" GeV,107®} for the red

curve. We also show lines parallel (dashed gray) to the kination part of the spectrum.

If not for the hyperkination period the spectra would violate the BBN bound.

results appreciably. Nevertheless, the reader should keep in mind that our bound
T > 1MeV is an approximate one.

In addition, the GW energy density at BBN must be low enough not to disturb

the standard results. Eqgs. (6.63) and (6.64) give QE%N = Q% /9, allowing us to
translate the bound to into the GW energy density today, yielding [295]

Qg = /#hQQGW(f) <1.12x107°, (6.74)

where h & 0.7 is the dimensionless Hubble constant. In practice, however, for all
detectors except LVK O5 and ET, this bound is irrelevant. Indeed, it is sufficient
to impose that the hyperkination plateau be below the minimum of LVK O3, the
region excluded by now by LVK, which is below the BBN bound. Note that for LVK

05 and ET there exists some parameter space where the hyperkination plateau is
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between both limits. We take this into account in the scans by showing the excluded
region from LVK O3 in Fig. . There, for each value of H and Q, we show the
maximum value of «a, labelled ay,.y, below which the signal is not observationally
excluded.

We can also impose an upper bound on the energy scale at the end of inflation.
Using the slow-roll expression for the amplitude of the scalar power spectrum, we

can write the Hubble parameter at CMB scales as

PCMB 7T T

Hewp = (6.75)

where A; = 2.1 x 107 [8] and r is the tensor-to-scalar ratio. The latest constraint
on r is r < 0.036 [9]. The energy scale at the end of inflation is always lower than

at CMB scales, so Eq. (6.75]) provides an upper bound on H at the end of inflation,
H < 4.7 x 102 GeV . (6.76)

Further, the plateau corresponding to radiation domination should be below
the one corresponding to hyperkination, but this is not strictly guaranteed by our
approximative spectrum if the kination period is short. To ensure this condition is
satisfied, we impose

Qerd < 8 ~ (.81 6.77
T 2 b)
Y

see Eq. (6.70)).

The logic for the parameter scan is as follows. We consider a grid in the (H, Q)
plane, with the values of H lying in the interval [10% 4.7 x 103 GeV and those of
Qend lying in the interval [1072°,0.81], both in steps of 0.5 in logarithmic units.
Then, for each point in the grid, we find the minimum value a,,;,, such that our
spectrum is detectable by the specific experiment we are considering. Since the effect
of increasing « (or, analogously, Npy,) is to stretch the flat region corresponding to
hyperkination, if a signal is detectable for a,;,, it will also be detectable for every
@ > Quin- Note that for LVK O5 and ET, for a certain region in the (H, Q) plane,

there is also a maximum value that o can take, see Fig. [6.6] This limitation exists
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Figure 6.6: Parameter space of the theory excluded by LVK O3. For each value of
H and Q4. there is a maximum value for a, labelled .y, above which the signal

is observationally excluded.

only for values where the height of the hyperkination plateau is above the minimum

of the LVK O3 PLIC.

In order to determine whether a signal can be detected, we compute the PLICs
[472] for each experiment. Then, for each set of parameters, we find the minimum
Qmin such that the energy density spectrum is at least as large as the PLIC under
consideration. An easy way to picture this procedure is to realise that the spectra
with o = ay;, are tangent to the PLICs. Increasing o increases the length of the
hyperkination plateau, so if the spectrum is tangent to a PLIC, it will be above it

for some frequency range if o > aypy.

In Fig. 6.5, we show some example spectra with a large enough SNR,
superimposed with the PLICs for all considered experiments. In the same figure,

we also show a grid of lines with the same slope as Q&% (f,70) to showcase how in
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a setup with inflation being followed by usual kination most of the signals would
violate the BBN bound. Hyperkination fixes this by truncating the spectrum and

introducing a new plateau at high frequencies.

log,g@min log,@min log;¢@min
32 34 36 38 40 42 44 46 25 30 35 40 45 10 15 20 25 30 35 40 45 50

DECIGO

105 11.0 11.5 12.0 12,5 13.0 135

log,,H/GeV log,H/GeV

log,@min log,@min 10g)@min
10 15 20 25 30 35 40 45 50 40 42 44 46 48 50 52 54 56 58 60.0 62.5 65.0 67.5 70.0 725 75.0 715

/

8 9 10 11 12 13 11.0 11.5 12.0 125 13.0 135 12.9 13.0 13.1 13.2 13.3 13.4 13.5 13.6
log, H/GeV log,,H/GeV log, H/GeV

Figure 6.7: Parameter space of the theory for the minimum « such that the signal
is detectable by LVK O5 (top left), ET (top middle), DECIGO (top right, BBO
(bottom left), and LISA (bottom middle) and SKA (bottom right). For each value
of H and Q4 there is a minimum value for «, labelled i, above which the signal

is always detectable (minus the excluded region in Fig. W for LVK O5 and ET).

We report the results of parameter space scans as contour plots in Fig. [6.7]
There, for each pair (H,Q), we give the minimum «,;, such that the signal is
detectable, for each experiment. We emphasize that the totality of the successful

parameter space is contained in these figures. Besides the maximum value of H from
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Eq. , the parameter space is bounded at small H by the BBN timing condition
freh > fBBN, at small Q¢ by the BBN energy density condition in Eq. and
the LVK O3 exclusion bound, and at large Q" by the requirement that the higher
hyperkination plateau must reach the lower end of the sensitivity band for the given
experiment.

We conclude that there is ample parameter space to accommodate detectability
by all experiments. Indeed, as can be seen from Fig. [6.7, for a Hubble parameter
H < 10" GeV, somewhat below the GUT scale, and a reheating efficiency in the
range of 1071 < Qed < 1072, which can be easily accommodated by a variety
of reheating mechanisms [100], 473 O8, 99 289, 290, 291], we can always find a
detectable signal. We emphasize that the size of the parameter space is large, and
there is no need for fine-tuning to obtain a detectable signal. Indeed, in Fig.
we report the minimum value « has to take in order for the signal to be detectable.
However, any value of « larger than au,;, also leads to a detectable signal.

The value of ay,, is quite large for most experiments. This can be understood
from Eq. . Indeed, we can find a lower bound on ay,;, by taking the limit

Nyyp < 1. It gives

4
2mp

QPend = TNhyp. (678)

Using a GUT energy scale penq ~ 107m3, considering an almost non-existent
period of hyperkination with Ny, = 0.1, we obtain a rough lower bound vy, = 10™.
As soon as we have a larger Nyyp, min grows exponentially with it. This is in line
with our findings in Chapter [5, where we study quintessential inflation with an
action of the form in Eq. (5.1). There, we find o ~ 10! for successful quintessential

inflation, without considerable hyperkination.

6.6 Discussion

We have investigated the spectrum of primordial GWs generated by cosmic inflation

in a model where after inflation but before reheating we have a period when the
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Universe is dominated by the kinetic energy density of the inflaton scalar field ¢,
when the field is characterised by both the usual quadratic kinetic term and also by
a higher-order quartic kinetic term. This is natural in theories of quadratic R+ aRR?
gravity in the Palatini formalism, where in the Einstein frame the quartic kinetic
term is proportional to «a, the coefficient of quadratic gravity. However, we can
equally well envisage a k-inflation scenario where the kinetic term of the scalar field

includes a term oc aX?, where X = %qf)z.

This kinetically dominated period is divided into two parts. In the first part,
the inflaton kinetic energy density is dominated by the higher-order kinetic term; a
period which we call hyperkination. In the second part, the higher-order kinetic term
becomes negligible and the inflaton kinetic energy density is dominated by the usual
quadratic term; a period called kination. We have shown that, while kination is a
stiff phase with barotropic parameter w = p/p = 1, as is well known, hyperkination
is not; the barotropic parameter during hyperkination is that of radiation w = 1/3.
As a result, the modes of inflation-generated primordial GWs which re-enter the
horizon during hyperkination form a flat spectrum, in the same way as the modes
which re-enter the horizon after reheating, in the usual radiation era. However,
during usual kination, the GW spectrum is not flat but the GW density parameter
per logarithmic frequency interval is Qgw(f) o f. This means that, for modes re-
entering the horizon after inflation and before reheating, the GW signal is boosted.
This boost corresponds to a truncated peak in the GW spectrum; truncated because
the spectrum corresponding to hyperkination is flat but it can be of much larger
amplitude than that corresponding to the eventual radiation era. Consequently, the
period of kinetic domination (kination + hyperkination) can be made to last longer
and the boosted spectrum to extend to lower frequencies without the danger of the
production of excessive primordial GWs. In particular, the truncated spectrum can
avoid the upper bound imposed by the requirement that Big Bang Nucleosynthesis
(BBN) remains undisturbed. Thus, primordial GWs in all observable frequencies

can be enhanced without a problem.
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We have analytically and numerically studied thoroughly the inflationary
production and the subsequent evolution of GW modes and obtained the resulting
GW spectrum, linking it with the model parameters. The characteristic shape of
the spectrum will be testable in the near future by forthcoming observations, such
as advanced LIGO-Virgo-KAGRA, LISA, DECIGO, BBO and ET, as depicted in
Fig.[6.5 If observed, such a spectrum can provide insight into the underlying theory,
such as the energy scale of inflation, the reheating efficiency and the coefficient a.
The latter is directly related to the duration of the hyperkination phase. Indeed,
when hyperkination lasts Ny, then Eq. suggests

4
(0%

= 4N, 6.79
3,0end eXp( hyp) 9 ( )

where peng = 3H?m? is the energy density at the end of inflation, and H is the
corresponding Hubble scale. Typically, inflation is at the scale of grand unification,
which implies H? ~ 1071%m2. In this case, the above suggests that eMwve ~ 1073a!/4,

which means that

Niyp =~ 10 = a ~ 10%. (6.80)

Note that, in the usual Starobinsky R? inflation we have o = 1.1 x 10°. Such large
values of alpha are non-perturbative, but this is no more a problem in our setup
than it is in Starobinsky gravity.

Important information can also be deduced by the amplitude of the truncated
peak corresponding to hyperkination. Indeed, Eq. suggests that the value of
the GW spectrum on the hyperkination plateau is given by

. 1 Q0 (HY\?
QG}%\){ - 1272 (Qend m_P ’ (681)

where Q0 ~ 107* is the density parameter of radiation at present and Q9 is the
density parameter of radiation at the end of inflation, also called reheating efficiency,
because the larger it is the sooner reheating takes place. As discussed, in order
not to destabilise BBN, we need Q}éyv% < 107%. Thus, we obtain a lower bound
on the reheating efficiency as Q¢ > (H/mp)?. Typically for inflation we have

H? ~ 107m2, which implies Q4 > 10710,
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In an effort to stay generic, we have not considered a specific mechanism for
producing the radiation which eventually reheats the Universe. We note however,
that a number of such mechanisms exist, such as instant preheating [100, 473],
curvaton reheating [290, 291] or Ricci reheating [98], 99, 289] to name but some.
It is even possible to avoid introducing additional degrees of freedom and consider
that reheating occurs due to the dissipating properties of the inflaton field itself, as
discussed in Ref. [272], where such processes become negligible after inflation.

Additional important information can be obtained by the observation of the

frequency of the knee in the GW spectrum, shown in Figs. and [6.5] which is
given by fyin in Eq. (6.71]). Combining this with Eq. (6.81)), in the large Npy, limit,

we obtain
Sfan 2 24 gy [mp
ey~ e\ 3 (6.82)

Where pg = 3HZm? is the energy density of the Universe at present. Putting the

numbers in the above, we find

Jxin Q}éyv% o 12 —1/4 | ™Mp
(B (o)~ o5 (6.8

Observations might provide the values of the left-hand-side of the above, which
means that « could be estimated provided H is known (e.g. H? ~ 107'1%m} for
inflation at the grand unified energy scale).

In Fig. we display our findings with respect to observability by different
missions, such as LVK 05, ET, BBO, LISA DECIGO and SKA. There, we show
the minimum value « has to take in order for the spectrum to be detectable.
Above this value, which we label ay,;,, the spectrum is always detectable. We
see that observability requires that the reheating efficiency is smaller the lower the
inflation energy scale is (the lower H is). Also, the values of o, are larger for
large inflationary energy scales. For LVK 05 and LISA we find that observability
requires apmin ~ 10376 while for ET, BBO and DECIGO the numbers are smaller
Qmin ~ 101750 For the reheating efficiency, we find that observability requires that

end

the density parameter of radiation at the end of inflation is Q&% = 10716 a value
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which may increase up to unity or so in the case of ET, BBO or DECIGO. Such a
high reheating efficiency implies that the kinetic regime is very small or even non-
existent (prompt reheating). This is possible because, the ET, BBO and DECIGO
might be able to detect very faint signals at frequencies higher than LISA, which
means that they could even marginally observe the flat GW spectrum generated by
the usual radiation era (no kinetic epoch). This is why there is a region (for ET,
BBO and DECIGO) when H is large (H ~ 10'® GeV) where suddenly a can be very
small (or even zero). The parameter space for this is very small though.

We conclude that, with our mechanism, the observability of primordial GWs is
much enhanced compared to traditional models. We obtained concrete predictions
involving H, a and the reheating efficiency in the case the characteristic form
of the GW spectrum—a truncated peak—is indeed observed. Observation of the
primordial GW signal would not only confirm another prediction of cosmic inflation
but would also be a tantalising hint towards the quantum nature of gravity, which is
behind the assumption of the Bunch-Davies vacuum in Eq. . Forthcoming GW
observations may reveal new and surprising details about the physics of inflation and

fundamental physics in general. Our work serves to explore such a possibility.
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Chapter 7

Non-oscillating Early Dark Energy
and Quintessence from

a-attractors

This chapter is based on the original research article published in Astroparticle
Physics [4] and in the conference paper published in Proceedings of Science [5] by

the author, in collaboration with Lucy Brissenden and Konstantinos Dimopoulos.

7.1 Introduction

In the last few decades cosmological observations of the early and late Universe have
converged into a broad understanding of the history of our Universe from the very
first seconds of its existence until today. Thus, cosmology has developed a standard
model called the concordance model, or in short ACDM.

However, the latest data might imply that the celebrated ACDM model is not
that robust after all. In particular, there is a 8% discrepancy, at a confidence
level of 50, between the locally measured and cosmologically inferred values for the
expansion rate today Hy. This Hubble tension (see Sec. for a full discussion on

this topic) has undermined our confidence in ACDM and as such it is investigated
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intensely at present.

In this chapter we study a toy model of unified EDE and DE, which can
simultaneously raise the inferred value of the Hubble constant Hy coming from early-
time data and explain the current accelerated expansion with no more tuning that in
ACDM. We introduce a scalar field ¢ in the context of a-attractors, which is frozen
at early times and unfreezes around matter-radiation equality, briefly behaving as
a subdominant dark energy component to then undergo free-fall, redshifting away
faster than radiation. At late times ¢ behaves as quintessence. In contrast to most
other works in the literature, the field does not exhibit oscillatory behaviour (see
however Refs. [I80, 179, 474, [475] for earlier attempts, the first two also in the

context of a-attractors).

Models of EDE are subject to significant constraints; the primary consideration
being that EDE must be subdominant at all times and should redshift away faster
than radiation, i.e., p o a™™ with n > 4 [I59], in order for it to be negligible at the
time of last scattering. So far, in previous works, this has been achieved via a variety
of mechanisms, such as first or second-order phase transitions [I73], [I7§], although
these might have undesirable side-effects such as the generation of inhomogeneities
from bubble collisions or topological defects. Other popular models typically feature
oscillatory behaviour [179, 130}, 1611 159) 173, [174] [175] 176] [162], 177, 178 to achieve
the required energy scaling. In this case, as with the original proposal in Ref. [161],
after unfreezing, the EDE field oscillates around its vacuum expectation value in a
potential minimum which is taken to be of order higher than quartic. As a result, on
average, the scaling of its energy density with the scale factor reads p o a™™, with
4 < m < 6. In contrast, in our model, the EDE scalar field experiences a period of

6

kinetic domination, such that its density decreases as p o a™°, exactly rather than

approximately.
Our model unifies EDE with late DE (see Refs. [I80), 475] for earlier attempts)

in the context of a-attractorg]| continuously interpolate between those of chaotic

Tn the context of inflation, the predictions of models featuring the construction of a—attractors
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inflation [94] and those of Starobinsky [11] and Higgs inflation [390]. [476, 477,
478, 479, [465] [480), 481], 482, 483]. a-attractors appear naturally in supergravity.
Introducing curvature to the internal field-space manifold can give rise to a non-
trivial Kahler metric, which results in kinetic poles for some of the scalar fields of the
theory. The free parameter « is inversely proportional to said curvature. As for the
word “attractor”, it is used to refer to the fact that the inflationary predictions are
largely insensitive of the specific characteristics of the potential under consideration.
Such an attractor behaviour is attained for sufficiently large curvature (small o) in

the internal field-space manifold.

In practical terms, the scalar field has a non-canonical kinetic term, featuring
two poles, which the field cannot transverse. To aid our intuition, the field can
be canonically normalised via a field redefinition, such that the finite poles for the
non-canonical field are transposed to infinity for the canonical one. As a result, the
scalar potential is “stretched” near the poles, resulting in two plateau regions, which
are useful for modelling inflation [484], 1485 480, 487, [488), [489], or quintessence [260],
or both, in the context of quintessential inflation [260, 259] 258].

Before we start describing our model, we bring the attention of the reader to
the fact that EDE may have a significant drawback in that not only it does not
address the og tension (associated with matter clustering), but might exacerbate
it [142, 490, [497] 492]. However, recent theoretical progress seems to indicate that
it may be possible to alleviate both the og and the Hubble tension simultaneously,
via axion models of coupled EDE and dark matter [493] 1494 [495| 496, 497]. It is
conceivable that an a-attractor model such as ours could feature a similar interaction

term.

This chapter is organised as follows. In Sec. [7.2] we introduce the model, in
the context of a-attractors, and analytically study the asymptotic behaviour of the
scalar field around the origin and infinity. In Sec. we detail how we perform
the numerical simulation of the system. In Sec. we report the results from

the numerics, namely the viable parameter space and the field behaviour. Sec.
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[.5 deals with the theoretical motivation behind the initial conditions of the field
and we conclude in Sec. [7.6l In Appendix [D] we consider the posibility of the
EDE/quintessence field also being the inflaton.

7.2 The Model

Following the standard recipe, we introduce two poles at ¢ = +v6amp by
considering the Lagrangian

—3(0p)?
(-

2
6amp

L= - U(SO) ) (7'1)

where ¢ is the non-canonical scalar field and we use the short-hand notation (9p)? =
"0, 0,¢. We then redefine the non-canonical field in terms of the canonical scalar

field ¢ as

dep ¢
g G Voo 7-2)

It is obvious that the poles ¢ = +v/6amp are transposed to infinity.

In terms of the canonical field, the Lagrangian now reads

L= —1(00) - V(o) (7.3

where

V(g)=U (mp\/@ tanh (ﬁ)) . (7.4)

We consider a potential of the form
Ulp) =Vx exp(—)\e”@/mp), (7.5)

where

Vy = exp(—)\e“ 6a> Vi, (7.6)

and a, k, A are dimensionless model parameters, Vx is a constant energy density

scale and ¢ is the non-canonical scalar field. In the above, V) is the vacuum density
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at presemﬂ In terms of the canonical field, the potential reads
V(p) = exp ()\e“ 6“) Vi exp [—)\e”‘/ﬁztanh(‘f’/‘/ﬁzmp) ) (7.7)

As usual, the Klein-Gordon equation of motion for the homogeneous canonical
field is
O+3Ho+V'(¢) =0, (7.8)

where the dot and prime denote derivatives with respect to the cosmic time and the
scalar field respectively, and we assumed that the field was homogenised by inflation,

when the latter overcame the horizon problem.

7.2.1 Asymptotic behaviour of the scalar potential

We are interested in two limits for the potential in Eq. (7.7): ¢ — 0 (¢ — 0) and
¢ — +00 (p = +v6amp). The first limit corresponds to matter-radiation equality.
In this limit, the potential is

Veq ™ €xp [)\(e” B _ 1)] Vi eXp(—KA Geq/mp) , (7.9)

where the subscript ‘eq’ denotes the time of matter-radiation equality when the field
unfreezes. It is assumed that the field was originally frozen there. We discuss and
justify this assumption in Sec. [7.5]

After unfreezing, it is considered that the field has not varied much, for the above

approximation to hold, i.e.,
0 S eq < VOamp . (7.10)

This is a reasonable assumption given that the field begins frozen at the origin

shortly before matter-radiation equality, unfreezing at some point during this time

Bl

2Tn the parameter scans of the model, we scan over Vx rather than over Vj.
3There is no suggestion in the EDE literature [179} 130} 161}, 159, 173}, 174} 175} 176, 162, 177,

178] that the field has to unfreeze at any particular time, as long as it does not grow to larger than

the allowed fraction and its energy density is essentially negligible by the time of decoupling.
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At large ¢ (i.e. ¢ — 00), the non-canonical field is near the kinetic pole (¢ —

++v6amp). Then the potential in this limit is

NG 200
Vo =~ Vi |1+ 26Xe"V0/6a exp (—— , (7.11)
V6o mp

which, even for sub-Planckian total field excursion in ¢, should be a good

approximation for sufficiently small «. The subscript ‘0’ denotes the present timeﬂ

~115;

-116; —— Canonical Potential
[ Approximation at Low Field Values ]

Sl -7

Approximation at High Field Values

<
N
~ | VA _ 1 -120.068
R DR e
, @ =0.0002
~119- k=200
| 1=0.01
~120* ' ' ' ' '
0.0 0.5 1.0 1.5 2.0 2.5 3.0
_%
mp /(6 @)

Figure 7.1: Graph of the canonical potential and its two approximations for small
and large field values, given in Eqs. , respectively. These approximations
are useful because they are simple exponential potentials with well-known attractors.
It can be readily seen that, after leaving the origin, the field jumps off a potential

plateau and is free-falling as a result.

The above approximations describe well the scalar potential near equality and
the present time, as shown in Fig. [T.]l As we explain below, in between these
regions, the scalar field free-falls and becomes oblivious of the scalar potential as

the term V’(¢) in its equation of motion (7.8) becomes negligible.

4Note that, as the field becomes sufficiently large, the potential approaches the positive constant
VA, which corresponds to non-zero vacuum density with w = —1, as in ACDM. Thus, our model
outperforms pure quintessence (with —1 < w < —0.95 [§]), which can push Hj to lower instead of

higher values [498] [499].
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7.2.2 Expected Field Behaviour

Here we explain the rationale behind the mechanism envisaged. We make a number
of crude approximations, which enable us to follow the evolution of the scalar field,
but which need to be carefully examined numerically. We do so in the next section.

First, we consider that originally the field is frozen at zero (for reasons explained
in Section [7.5]). Its energy density is such that it remains frozen there until equality,
when it thaws following the appropriate exponential attractor, since V,q in Eq.
is approximately exponential [213]. Assuming that this is the subdominant attractor

requires that the strength of the exponential is [113] 27]
7 =r\A> V3. (7.12)

The subdominant exponential attractor dictates that the energy density of the rolling
scalar field mimics the dominant background energy density. Thus, the density

parameter of the field is constant, given by the value [213, [113] 27]

3 3
N~ — =—— <1 1
o =T T < (7.13)

This provides an estimate of the moment when the originally frozen scalar field,
unfreezes and begins rolling down its potential. Unfreezing happens when (2, (which
is growing while the field is frozen, because the background density decreases with
the expansion of the Universe) obtains the above value.

However, after unfreezing, the field soon experiences the full exp(exp) steeper
than exponential potential so, it does not follow the subdominant attractor any
more but it free-falls, i.e., its energy density is dominated by its kinetic component,
such that its density scales as pg ~ %gbz o a~%, until it refreezes at a larger value ¢p.
This value is estimated as follows.

In free-fall, the slope term in the equation of motion ([7.8]) of the field is negligible,
so that the equation is reduced to gzﬁ +3H gb ~ 0, where H = 2/3t after equality. The

solution is

O(t) = Peq + < < — t—‘*) , (7.14)

teq t
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where C' is an integration constant. From the above, it is straightforward to find

that <z$ = Ct~2. Thus, the density parameter at equality is

12,4 )
e Po 50 teq 3 C — \/g
Qq:_ = = — :}O: _Qq te:— te ’ 715
Pl 587 8(mete)’ 3005 Mpteg = 5 M teq s (7:15)

where we used Eq. 1} Do ™ %gzﬁz and that p = 1/67Gt* = 3(mp/t)?. Thus, the

field freezes at the value

V8

Po = Peq + C/teq = Peq + e (7.16)

where we considered that teq < treeze < to -

Using that teq ~ 10*y and ¢y ~ 10y, we can estimate

(O o 2
Veq ~ e e 30 Y 5 x 10" (7.17)
Vo 0.7p0  T(kM)? T(kA)?

12

teq

Now, from Egs. (7.9), (7.11]) we find

Veq eAeYoo-1) exp(—KA peq/mp)

~ . 7.18
Vo o 1426\ enVoa/6a eXp(—2¢0/\/6a mp) (7.18)

In view of Eqs. (7.10)), (7.16]), the above can be written as
V:eq BA(GR\/@*D (7 19)

Vo 1 + 2K\ erVBa, /6o e—2V8/rAGa |

Taking Q;q ~ (.1 as required by EDE, Eq. (7.13) suggests
KA~ V/30. (7.20)

Combining this with Eq. (7.17) we obtain

e R 0127 (7.21)

where we have ignored the second term in the denominator of the right-hand-side

of Eq. (7.19).

From the above we see that, x is large when « is small. Taking, as an example,

a = 0.01 we obtain £ ~ 18 and A ~ 0.30 (from Eq. (7.20)). With these values, the
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second term in the denominator of the right-hand-side of Eq. , which was
ignored above, amounts to the value 3.2. This forces a correction to the ratio Vo, /Vo
of order unity, which means that the order-of-magnitude estimate in Eq. is
not affected.
Using the selected values, Eq. suggests that the total excursion of the field
is
V8

Agb = gbo — gbeq = Hmp ~ 0.5 mp, (722)

i.€., it is sub-Planckian. In the approximation of Eq. , we see that the argument
of the exponential becomes kKAA@/mp ~ 2.7 > 1, where we used Eq. . This
means that the exponential approximation breaks down and the exp(exp) potential
is felt as considered, as depicted also in Fig. [7.1]

For small «, the eventual exponential potential in Eq. is steep, which
suggests that field rushes towards the minimum at infinity. However, the barotropic

parameter is w ~ —1 because the potential is dominated by the constant V.

7.2.3 Tuning requirements

Our model addresses in a single shot two cosmological problems: firstly, the Hubble
tension between inferences of Hy using early and late-time data; and secondly, the
reason for the late-time accelerated expansion of the Universe; late DE. However,
its parameters, namely a, A, k and Vj, are subject to some tuning.

As we have seen k and \ seem to take natural values, not too far from order
unity. Regarding o we only need that it is small enough to lead to rapid decrease
of the exponential contribution in the scalar potential in Eq. , leaving the
constant V to dominate at present. We show in the next section that ao ~ 107 is
sufficient for this task. This leaves V) itself.

Planck 2
The required tuning of this parameter is given by Vy = (%) Vilanck where
0

Planck 2 .
VPlanck — Q) pg. Since (%) ~ (%)2 = 0.8525 we see that the required fine-

tuning of our V} is not different from the fine-tuning introduced in ACDM. However,
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in contrast to ACDM, our proposal addresses two cosmological problems; not only

late DE but also the Hubble tension.

7.3 Numerical Simulation

In order to numerically solve the background dynamics of the system, it is enough
to solve for the scale factor a(t), the field ¢(t) and the background perfect fluid
densities pn(t) and p.(t) (of matter and radiation respectively), as every other
quantity depends on these. They are governed by the Friedmann equation, the
Klein-Gordon equation and the continuity equations respectively. Of course, the
Klein-Gordon equation is a second order ordinary differential equation, while the
continuity equations are first order so that we need the initial value and velocity of
¢ and just the initial value of p,, and p, as initial conditions. As described above, the
field starts frozen and unfreezes around matter-radiation equality. Effectively, this
means using ¢im; = 0 and ¢y = 0 as initial conditions, while the initial radiation and
matter energy densities are chosen to satisfy the bounds obtained by Planck [8] at
matter-radiation equality, i.e., scaled back from py,(teq) = pr(teq) = 1.27x 1071 0m7},
at some arbitrary redshift z,; = 10%.

For convenience, we rewrite the equations in terms of the logarithmic energy
densities p,(t) = In(pn(t)/mp) and p.(t) = In(p.(t)/mp). Plugging the first

Friedmann equation in the Klein-Gordon equation, gives

() + fn’; ® 4 + % o, (7.23)
Flt) + ip 0y, (7.24)
bu(t) + g :;pp 0 _y (7.25)

where 3mRH2(t) = plt) = po(t) + [exp(Fn(t)) + exp(F(B)md and pyt) =
K(o(t)) + V(o(t)) where K(¢(t)) = %qbQ(t) and V(¢(t)) is given by Eq. (7.7).
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As mentioned in Section[7.5] we assume the field to be initially frozen at an ESP,
such that it could have been the inflaton or a spectator field at earlier times. The

time of unfreezing is then controlled only by the parameters of the potential.

The simulation is terminated when the density parameter of the field becomes

equal to the density parameter of dark energy today 2, = 0.6889 []].

Parameter | Description Constraint
g Structure 0.015 < Q;q < 0.107 [175]
formation

unimpeded  while

EDE actually has

an effect
o EDE undetectable | {25 < 0.015 [159]

in the CMB
Q3 and QF Consistency check | £25% > (28
QY Observational 0.6833 < 129 < 0.6945 [§]
w Observational 1< wg < —0.95 [§]
wg Observational —0.55 < wj <0.03 [§]
Hy [km/s/Mpc] | Observational 72.00 < Hy <74.08 [130]
A¢ Sub-Planckian field | @g — Peq < mp

excursion

Table 7.1: Table describing and justifying constraints used to identify the viable

, cf. Eq. (2.208).
0

dw
a )
parameter Space. In the above, w¢ = da
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7.4 Results and analysis

7.4.1 Parameter Space

We perform a scan of the parameter space of the theory, at the background level,
imposing the conditions in Table We report our findings in Fig. |7.2, Fig. 7.3}
We find that our model is succesful for x ~ 10? and A\ ~ 1073 — 1072, which are
rather reasonable values. In particular, the value of k suggests that the mass-scale
which suppresses the non-canonical field ¢ in the original potential in Eq. is
near the scale of grand unification ~ 1072 mp. Regarding the curvature of field space
we find a ~ 1074, which again is not unreasonable.

The viable parameter space suggests that kKA > /3, which contradicts our
assumption in Eq. . This implies that, unlike the analytics in Sec. , the
field does not adopt the subdominant exponential scaling attractor but the slow-roll
exponential attractor, which leads to domination [213], 27]. As the field thaws and
starts following this attractor, the approximation in Eq. breaks down as the
field experiences the full exp(exp) potential, which is steeper than the exponential
(see Fig. . Consequently, instead of becoming dominant the field free-falls. This
contradiction with our discussion in Sec. is not very important. The existence
of the scaling attractor provided an easy analytic estimate for the moment when the
field unfreezes. It turns out that, because the scaling attractor has been substituted
by the slow-roll attractor, the field unfreezes because its potential energy density
becomes comparable to the total energy density, going straight into free-fall. It is
much harder to analytically estimate when exactly this takes place, but the eventual

result (free-fall) is the same.

5The apparent structure found in Fig. is spurious in origin. In the left panel of the figure
we show the valid points in the A — « plane for a range of values in k (and analogously for the
right panel). However, would we show a different color for each value of k, we would find simple
curves in the A — « plane. In other words, the apparent structure only has to do with how the grid

of points for the scan was chosen.
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Figure 7.2: Parameter space slice in the x — a plane with 0 < A < 0.027 and
Vi = 10712006831 The blue dotted line is the boundary of the region that produces
non-inflationary results (see below), while the orange region is constituted by the
successful points, i.e., those for which the constraints detailed in Table are
satisfied. Note that the region bounded in blue is not equal to the range of the scan,
which is 0 < k¥ < 700 and 0 < o < 0.00071. This is because points with potential
larger than a certain starting value result in the field beginning the simulation
dominant, which means that the Universe goes into inflation which cannot terminate
and will never lead to successful EDE. These points are very close to the viable

parameter space for these two parameters and therefore must be thrown away.

We obtain that the matter-radiation equality redshift is z.q >~ 4000, larger than
the Planck value z,, = 3387 & 21 [§]. It should be however noted that, in
our simplified background analysis, we use the Planck matter density parameter
2n0 = 0.3111 £ 0.0056 with the SHOES value for the Hubble constant H, =
73.04+1.04 km/s/Mpc, which is bound to give a value for wy, = {2, 0h? incompatible
with Planck. A simple back-of-the-envelope calculation shows that there is a factor
of (my = (%)2 = 1.187 difference, which leads to a new zgg;dated +1 =

hPlanck 0.67
(1.18)3(2¢q + 1), i.c., resulting in z2Pd2ed ~ 3500. This pushes ze, to higher values,
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Figure 7.3: Parameter space slice in the A — « plane with 0 < k < 700 (left) and
in the A — x plane with 0 < a < 0.00071 (right), both with V) = 10720:0684
The orange region is constituted by the successful points, i.e., those for which the

constraints detailed in Table are satisfied.

closer to our findings. We emphasize, however, that a full fit to the CMB data
is required in order to obtain the actual value for z, derived from our model. In
contrast, the redshift of last scattering is where we would expect it at 2z, >~ 1087.
Theoretical constraints suggest z; ~ 1090 [500], and the observations of the Planck
satellite suggest zj; = 1089.80 & 0.21 [8]. We note here that the best-fit values for
the cosmological parameters from ACDM are expected to somewhat change when
incorporating EDE. In this way, the constraints in Table [7.1] should be considered

as approximate only.

7.4.2 Field Behaviour

The field behaves as expected, with the mild modification of the attractor
solution at unfreezing (slow-roll instead of scaling), which leads to free-fall. The
evolution is depicted in Fig. (7.4, Fig. for the example point {a,k,\} =
{0.0005, 145,0.008125}, and V, fixed to the SHOES cosmological constant [136].
The observables obtained in this case (i.e. the values of Hy, wy and w,) are shown

in Table[7.2] The behaviour of the Hubble parameter is a function of redshift as can
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be seen in the left panel of Fig. [7.4]
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250\ T ‘ ‘ ‘ ‘ ‘ ‘

-105

" -~ loglpm/m})]
pcOM o
T loglo,/m]
110 P
200¢ —— Hcomonly ] .
log[pg/mp]
— Hacom

- F 4
R A ] s . 10G1(Pry+,)/m}
- ZA 120068
m:,
oot 1 -120r @ =0.0005
k=145
S0t ‘ ‘ ‘ ‘ ‘ 1 _12s 1=0.008125 ‘ ‘ ‘
8.0 8.2 8.4 8.6 8.8 9.0 92 0 2 4 6 8

Figure 7.4: Left: The Hubble parameter (in units of km s 'Mpc™") of a universe with
an EDE/quintessence field (green), a ACDM universe (black), and one with only
matter and radiation (blue), as a function of redshift (top) and e-folds (bottom)
elapsed since the beginning of the simulation. The presence of the field leads
to a higher value of Hy than in the ACDM scenario. Right: The logarithmic
densities of matter (dot-dashed red), radiation (dotted orange), the sum of both
(solid blue) and the scalar field (dashed green), as a function of redshift (top) and
e-folds (bottom) elapsed since the beginning of the simulation, for & = 0.0005, xk =
145, XA = 0.008125, and Vj = 107120984~ The horizontal solid line represents the
SHOES energy density of the Universe at present. The EDE scalar field becomes
momentarily subdominant near equality, then redshifting away faster than radiation

to become negligible at decoupling.

As shown in Table[7.T], the maximum allowed value of the EDE density parameter
at equality is just over 0.1. However, it is possible that this is too lenient a constraint
because unlike the models for which this constraint was developed, our model has a
true free-fall period, which means it redshifts away ezactly as a=% rather than below
this rate as in oscillatory behaviour (see the right panels of Fig. Fig. E|
Note that for oscillating EDE in a potential V' oc ¢*", as the original EDE [162],

there is a limit n < 3 (n < 5) for matter (radiation) domination. This is because

6A more accurate constraint of ~ 0.086 for non-oscillatory models is provided in Ref. [474],

which does not significantly narrow our allowed parameter space.
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Figure 7.5: Left: The density parameter of the scalar field, for a = 0.0005, k =
145, A = 0.008125, and V) = 1071200%pd " as a function of redshift (top) and e-
folds (bottom) elapsed since the beginning of the simulation. The density parameter
experiences a bump with fgpg = 24(2eq) S 0.1, before the EDE redshifting away
and refreezing to become dark energy today. Right: Barotropic parameter of the
scalar field (dotted green), of the background perfect fluid (solid blue) and of the
sum of both components (solid black), for « = 0.0005, £ = 145, A = 0.008125,
and Vy = 107120084 Tt is apparent that the scalar field becomes immediately
kinetically dominated (w, = 1) after thawing, remaining in freefall until it refreezes

again.

for n > 3 (n > 5) there exists an scaling attractor ¢ oc t'/(!=™ which means that
oscillations are impeded [217,212]. Recently, a similar result was found in Ref. [164],
where it is shown that the data favours 2 < n < 3.4 at the 68% C.L. Since EDE
typically unfreezes around matter-radiation equality, this implies that the density

9/2

of oscillating EDE cannot decrease faster than pg oc ™/, i.e., not as fast as true

6

free-fall, where py o< a™ as we obtain.

At present, the exponential contribution to the potential density in Eq. is
largely subdominant to Vj, so the contribution of the scalar field to the total density
budget is almost constant, as in ACDM. Its barotropic parameter is, therefore,
wy =~ —1 (see the right panel of Fig. [7.5). Technically, it is not exactly -1 but its
running is negligible, with the viable parameter space for w, fitting easily within

the constraint in Eq. (2.210)) by some ten orders of magnitude (see Table [7.2]).
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Constraint Example Value
0.015 < 259 < 0.107 0.05178
2 <0.015 0.001722
250 > (0% YES
0.6833 < 29 < 0.6945 0.6889
—1 < wf) < —0.95 -1.000
~0.55 Swj=— G| <003 | 4850 x 107"
72.00 < — o <7408 | 73.27
— kms ! Mpc™! =
KA 1.178
(90 — Peq)/mp < 1 0.4274

Table 7.2: Table giving the constraints and their corresponding values for an example
point, a = 0.0005, k = 145, A = 0.008125, and V), tuned to the SHOES cosmological
constant, in the viable parameter space. The Hubble constant obtained in this

example is Hy = 73.27km/s Mpc.

7.5 Initial Conditions

Our model accounts for both EDE and late-time dark energy in a non-oscillatory
manner (in contrast to Ref. [I79]). The field is frozen at early times, thawing just

before matter-radiation equality when its density grows to nearly 0.1 of the total
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value (see left panel of Fig.[7.5), as set by constraints in Ref. [I75]. A steep exp(exp)
potential then forces the field into free-fall, causing its energy density to dilute away
as py < a”%. After this, the field hits the asymptote of the exponential decay and
refreezes, becoming dominant at present (see the right panel of Fig. [7.4]).

Thus, we achieve DE-like behaviour at the present day by ensuring that the field
refreezes after its period of free-fall, therefore remaining at a constant energy density
equal to the value of the potential density at that point. Although this constant
potential density is initially negligible, the expansion of the Universe causes the
density of matter to decrease. Because the field refreezes at a potential density that
is comparable to the density of matter at present, the field starts to become dominant
at the present day. Once it begins to dominate the Universe, the field thaws again,
but the density of the Universe is dominated by a constant contribution V}, as with
ACDM.

The obvious question is why our scalar field finds itself frozen at the origin in
the first place. One compelling explanation is the following.

We assume that the origin is an enhanced symmetry point (ESP) such that, at
very early times, an interaction of ¢ with some other scalar field y traps the rolling
of ¢ at zero. The idea follows the scenario explored in Ref. [501]. In this scenario,

the scalar potential includes the interaction

1
AV = Sg%°x", (7.26)

where the coupling g < 1 parametrises the strength of the interaction. Note that
here ¢ is the non-canonical scalar field, appearing in the Lagrangian in Eq. ,
related to its canonical version ¢ via Eq. . It is also featured in our potential,
when it is first introduced in Eq. (7.5)).

We assume that initially ¢ is rolling down its steep potentia]ﬂ. Then, the
interaction in Eq. provides a modulated effective mass-squared m?; = g*©?

to the scalar field y. When ¢ crosses the origin, this effective mass becomes

"Far away from the origin, the scalar potential V() does not have to be of the form in Eq. (7.5)).
In fact, it is conceivable that ¢ might play the role of the inflaton field too (see Appendix .
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momentarily zero. If the variation of the ¢ field (i.e. the speed || in field space) is
large enough, then there is a window around the origin when |reg| > m?%; (because,
|| > p? ~ 0). This violates adiabaticity and leads to copious production of -
particles [S01]f]

As the field moves past the ESP, the produced y particles become heavy, which
takes more energy from the ¢ field, producing an effective potential incline in
the direction the ¢ field is moving. Indeed, the particle production generates an
additional linear potential ~ g|p|n, [501], where n, is the number density of the
produced y-particles. This number density is constant because the duration of the
effect is much smaller than a Hubble time, so that we can ignore dilution from
the Universe expansion. The rolling ¢ field climbs up the linear potential until its
kinetic energy density is depleted. Then the field momentarily stops and afterwards
reverses its motion (variation) back to the origin. When crossing the origin again,
there is another bout of x-particle production, which increases n, and makes the
linear potential steeper to climb. This time, ¢ variation halts at a value closer to
the origin. Then, the field reverses its motion and rushes through the origin again.
Another outburst of y-particle production steepens the linear potential further. The

process continues until the ¢-field is trapped at the origin [27], 501].

The trapping of a rolling scalar field at an ESP can take place only if the y-
particles do not decay before trapping occurs. If they did, the n, would decrease
and the potential g|¢|n, would not be able to halt the motion (variation) of the
p-field. The end result of this process is that all the kinetic energy density of the
rolling ¢ has been given to the y-particles. Now, since ¢ is trapped at the origin,
the effective mass of the y-particles is zero, which means that they are relativistic
matter, with density scaling as p, o< a™*. As far as ¢ is concerned, it is trapped at
the origin and its density is only p, = V(¢ = 0) = e *Vx = constant (c¢f. Eq. (7.5)).

After some time, it may be assumed that the y-particles do eventually decay

8Near the origin, when ¢ ~ 0, the ¢-field is approximately canonically normalised, as suggested

by Eq. (7.2)), so the considerations of Ref. [501] are readily applicable.
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Figure 7.6: Schematic log-log plot depicting the evolution of the density of the
scalar field p, (solid blue line) and the density of radiation and matter p, + pp,
(dashed red line) in the case when the decay of the kinetic energy density of the
trapped scalar field generates the thermal bath of the hot Big Bang (as in Ref. [16]).
Originally the ¢-field is rushing towards the minimum of the potential, dominated
by its kinetic density, so that p, oc a™® (free-fall). When it crosses the enhanced
symmetry point (ESP) its interaction to the x-field (c¢f. Eq. (7.26))) traps the rolling
¢-field at the ESP while all its kinetic energy is given to y-particles, which soon
decay into the radiation and matter of the hot Big Bang (the decay is assumed
to be quick, just after trapping). Afterwards, the ¢-field stays frozen, with energy
density V(¢ = 0) = e *Vx (¢f. Eq. (7.5)) until much later, when its potential density
is comparable to the background. Then it unfreezes before dominating, acting as
EDE at the time near matter-radiation equality, and subsequently free-falls to its
value ¢g, with potential density approximately V) = constant. The field stays there

until the present when it dominates the Universe and becomes late dark energy.

into the standard model particles, which comprise the thermal bath of the hot Big
Bang. The confining potential, which is proportional to n,, disappears but, we

expect the ¢-field to remain frozen at the origin because the scalar potential V' (y)
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in Eq. is flat enough there. As we have discussed, the -field unfreezes again
in matter-radiation equality. The above scenario is depicted in Fig. |7.6

For simplicity, we have considered that, apart from the obvious violation of
adiabacity at the ESP, the x direction is otherwise approximately flat and the x-
field has a negligible bare mass compared to the ¢ field. It would be more realistic
to consider a non-zero bare mass for the y-particles, which when they become non-
relativistic (much later than the trapping of ¢) can safely decay to the thermal bath
of the hot Big Bang, reheating thereby the Universe, e.g. in a manner not dissimilar
to Ref. [16].

The above scenario is one possible explanation of the initial condition considered
and not directly relevant to the scope of this chapter - we simply assume that the
field begins frozen at the origin. Other possibilities to explain our initial condition
exist, for example considering a thermal correction of the form 6V oc T%p?, which
would make the origin an effective minimum of the potential at high temperatures

and drive the ¢-field there.

7.6 Discussion

In conclusion, we have proposed a toy model that unifies EDE and DE via a scalar
field in the context of a-attractors. We have studied the background dynamics in
detail, finding that the value of the Hubble parameter, coming from early-time data,
can be raised while simultaneously explaining the current accelerated expansion,
with no more fine tuning than ACDM.

Our work differs from Ref. [179], in that the field is not oscillating; instead
after equality, it free-falls with energy density decreasing as p oc a9, faster than

most EDE proposals and the fastest possibleﬂ Although, from our background

9Causality implies that the barotropic parameter w of a perfect fluid cannot be larger than

unity because the speed of sound of the fluid ¢ = w cannot be superluminal. This implies w < 1

and so, the density of an independent perfect fluid p oc a=21+%) cannot decrease faster than a=©.

— Pxin—V

Pkin+V’ where

However, a homogeneous scalar field can be represented as a perfect fluid with w
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analysis, we find a larger value of z,, than found by Planck, it should be realised
that Planck assumes a ACDM scenario to derive this quantity and hence it may not
be fully applicable to other models, particularly one with a significant scalar field
contribution at that time as in our case. Of course, a full fit to the CMB data is
needed in order to obtain the actual z.q derived from our model.

In our proposed scenario, the scalar field lies originally frozen at the origin, until
it thaws near the time of equal matter-radiation densities, when it becomes EDE.
Afterwards it free-falls until it refreezes at a lower potential energy density value,
which provides the vacuum density of ACDM. We showed that the total excursion
of the field in configuration space is sub-Planckian, which implies that our potential
is stable under radiative corrections.

One explanation of our initial conditions is that the origin is an ESP. Our scalar
field is originally kinetically dominated until it is trapped at the ESP when crossing
iﬂ. As we discuss in , the scalar field could even be the inflaton, which after
inflation rolls down its runaway potential until it becomes trapped at the ESP.

Our potential in Eq. really serves to demonstrate that a model unifying
EDE with ACDM can be achieved with a suitably steep runaway potential. With
the parameters of our model assuming rather natural values, thereby not introducing
fine-tuning additional to that of ACDM, we show that this is indeed possible with
a simple design.

The challenge lies in constructing a concrete theoretical framework for such a
potential. Furthermore, although the background analysis is promising, a full fit
to the CMB data is lacking. We plan on running a Markov Chain Monte Carlo
(MCMC) doing this in a future work. This is of paramount importance since it

would show what values (if any) from our a priori viable parameter space lead to a

Pkin 1 the kinetic energy density of the scalar field and V' the potential. It seems that w > 1 could
indeed happen when the field transverses an AdS minimum of V', such that V' < 0. As a result,
the density of such scalar field could decrease faster than a~¢. The scenario of such EDE has been

considered in Refs. [I80, [502].
10A thermal correction to the scalar potential can have a similar effect.
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best fit to the data.
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Chapter 8

Conclusions

Inflation not only solves the horizon and flatness problems of the Hot Big Bang
but also provides an elegant mechanism that accounts for the initial conditions
of the primordial density perturbations that seed all structure in the Universe.
The predicted statistical properties of these fluctuations for the simplest models,
namely a quasi-scale invariant spectrum, well described by a Gaussian distribution
with adiabatic initial conditions, are largely model-independent. The available
observational evidence firmly supports this picture and so the inflationary paradigm
has become a cornerstone of the concordance model of cosmology. However, there
exists a plethora of models that agree with observations and there is currently no way
to discriminate between them, until observations are improved. On the other hand,
ever-improving observations have already ruled out many different classes of models,
and this trend will likely continue as observational bounds keep being pushed. This
is the case for some of the, arguably, simplest and best theoretically motivated
potentials, such as chaotic and power-law inflation. Chapters 4| and [5| provide a
simple and natural way of bringing them back in agreement with observational

constraints, in the context of modified gravity.

One might argue that general relativity is one of the most successful physical
theories ever constructed, surviving experimental tests for a century and even

providing predictions, such as the existence of black holes and gravitational waves
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(GWs), which have been experimentally confirmed in spectacular fashion. So why
should we consider modifications of the theory? Perhaps the simplest answer is
because we can. Exploring the limits of a theory is always worthwhile and, even
if somehow they are excluded by experiments, theories of modified gravity have
insights to be gained regarding the theory of gravitation. Further, even if general
relativity is so successful at the scales it has been tested at, most of the density
of the Universe corresponds to unknown dark substances. It may be that at the
relevant scales of dark matter and dark energy the Einstein-Hilbert action is not
a valid description. Finally, from a more fundamental perspective, we know that
general relativity is not the end of the story, as it in principle should have a quantum
description. Quantum corrections to the gravitational action include higher order
terms of the Ricci scalar as well as non-minimal couplings between the fields of the

theory and gravity.

In Chapter 4] we consider arguably the simplest model of inflation with arguably
the simplest modification of gravity, namely chaotic inflation with V' ~ ¢" and a
Starobinski term «R? added to the Einstein-Hilbert action. Working in the Palatini
formalism, we calculate the inflationary observables analytically. We find that the
amplitude and tilt of the scalar power spectrum are unaffected by the addition of
the Starobinski term, while the tensor-to-scalar ratio becomes inversely proportional
to the coupling constant o. As long as a 2> 10%, we are able to bring the hitherto
discarded potentials V = m?¢?/2 and V' = \¢*/4! back within the 1o and 20 Planck

constraints, respectively.

In Chapter [5| we consider a scalar field governed by an exponential potential
and with a non-minimal coupling to gravity, as well as the same Starobinski term
as in Chapter @l Working in the Palatini formalism, we solve numerically the full
non-linear dynamics in the Jordan frame, being able to bring back the hitherto
discarded exponential potential within the 1o Planck constraints. We find ample
parameter space with natural parameter values, with no more fine-tuning than in

regular Starobinski inflation.
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Allin all, Chapters 4] and [5| provide a valuable contribution to inflationary model-
building, showing how a minimal and theoretically motivated modification of gravity
can resurrect models otherwise discarded by the data. However, this is not the
full extent of their contribution, as the aim is also to account for the dark energy

observations, in the context of quintessential inflation.

In ACDM, dark energy is described by introducing a cosmological constant,
i.e., a source of negative pressure that does not dilute with the expansion of the
Universe. This cosmological constant has two possible contributions, a classical one
from the Einstein equations and a quantum one coming from the energy density of
the vacuum. Although it accounts for the observed current accelerated expansion,
it requires an incredible amount of fine-tuning. Indeed, both contributions should
cancel out with a precision of 60 significant digits. One way out of this fine-tuning
problem is to assume both contributions exactly cancel out, due to some unknown
symmetry, and to describe dark energy via some other mechanism. This is the
motivation behind quintessence, where dark energy is described by a dynamical
degree of freedom, namely a scalar field. However, it is in general challenging to
endow quintessence with attractor properties, and the fine-tuning problem of ACDM
just changes shape into one of the initial conditions of quintessence. Quintessential
inflation tackles this issue by identifying the inflaton with the quintessence field. In

this way, the initial conditions of quintessence are fixed by the inflationary attractor.

In Chapter 4] we augment the chaotic inflation potential with an inverse-power-
law potential V' ~ ¢~ at large positive field values for the quintessence regime. It is
well known that utilising the attractor regime of this potential leads to a barotropic
parameter of dark energy incompatible with observations. However, it is still a viable
model in the freezing-thawing regime, although the initial conditions then need to be
explained. Of course, since now the quintessence field is identified with the inflaton,
they are given by the inflationary attractor. We find that the contribution from the
modified gravity setup is negligible for the evolution of quintessence, and achieve

successful dark energy with fairly natural parameter values, thereby improving the
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extreme fine-tuning of ACDM. We also find that the model passes solar system tests
of modified gravity.

In Chapter 5| we utilise a single-branch exponential potential for both inflation
and dark energy. It is notoriously difficult to endow exponential quintessence with
attractor properties. Indeed, once the field enters the subdominant attractor regime,
with its energy density imitating that of the background, it can never come to
dominate (unless the setup is augmented, often introducing an amount of fine-
tuning comparable to ACDM). In our case, the running of the non-minimal coupling
between the field and gravity generates a minimum in the potential at large field
values. At late times, the field ends up freezing at the minimum, thereby behaving
as dark energy. However, the dynamics of quintessence during the matter dominated
are affected by the modified gravity setup. Indeed, the coupling between the Einstein
frame field and the matter action, which is zero during the radiation dominated
regime, obtains an important contribution during the matter dominated era coming
from the non-minimal coupling between the field and gravity (a coupling that did
not feature in the action of Chapter [)). The leading effect of this coupling is an
energy transfer between the field and the background, amounting to a rise in the
effective barotropic parameter of the Universe, above w = 0. After solving the full
dynamics numerically and running a parameter scan of the theory, we find that this
effect narrows the viable parameter space, although not dramatically. We again find
natural parameter values, in a very minimal setup which is able to account for both

inflation and dark energy, with significantly less fine-tuning than in ACDM.

In Chapters |4] and [o| we consider different reheating mechanisms. In the former,
we consider gravitational reheating, following the minimalist philosophy of the model
and studying how the reheating temperature affects the number of inflationary e-
folds. As for the latter, we consider Ricci reheating, where a scalar field other than
the inflaton is also non-minimally coupled to gravity. During inflation, the field is
trapped at the minimum of its effective potential, but the change in sign of the

Ricci scalar after the end of inflation makes it oscillate around the newly formed
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minimum, thereby decaying into the particles of the standard model. We ensure

that reheating is efficient enough so as not to overproduce GWs.

Any viable potential for quintessential inflation must bridge an inflationary
region with energy density of order p ~ 107} and a quintessence region with
energy density of order p ~ 107'%m3, i.e., the potential must bridge regions
with a difference of around 110 order of magnitude in energy density. This is
typically achieved with a new region of V(¢) with very large slope, in between
the inflationary plateau and the quintessential tail. As the field approaches it, its
kinetic energy density grows and dominates. The field becomes oblivious to the
potential, engaging in free-fall during a period called kination. Among the different
observational consequences, perhaps the most important one is the generation of a
peak in the density spectrum of GWs for the modes that re-enter the horizon during
this period. In more physical terms, since the density of GWs scales as p o a~*
when sub-horizon and the background density scales as p o< a~% during kination, the
contribution of GWs to the total density budget grows until radiation becomes the
dominant component. Therefore, if kination lasts too long, there may be enough

GWs to disturb to delicate process of BBN. This is a generic issue with quintessential

inflation models and one needs to ensure that reheating is efficient enough.

In Chapter [6] we address the issue of overproduction of GWs during kination by
considering the same modified gravity setup as in Chapter [f| In the Einstein frame,
other than the coupling between the field and the matter action (see above), the
modified gravity setup also leads to the appearance of a quartic kinetic term for the
field. In Chapters [4 and [5] we ignore this term, as it is negligible for the region in
parameter space under consideration. In Chapter [6] we consider another limit, with
a very large, after undergoing a post-inflationary sudden change in value, and study
the post-inflationary evolution in the kinetic domination regime, i.e., in the regime
where the field becomes oblivious to the potential. We find a new period of cosmic
expansion, which we call hyperkination, during which the background density, still

dominated by the field, scales as radiation. This period takes place prior to regular
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kination, and we find that the latter is an attractor; the field always ends up engaging
in regular free-fall during kination. We calculate the density spectrum of GWs both
analytically and numerically and find that the spectrum for modes that re-enter
the horizon during hyperkination is flat, as for radiation, effectively truncating the
kination peak. This allows us to bring the spectrum within observable frequencies
without violating the BBN bound. We run a parameter space scan, looking for
the required parameter values such that the gravitational wave signal is observable
by upcoming gravitational wave experiments, such as LISA or ET, and find ample
parameter space. It should be emphasized that our analysis is completely model-
independent. This is because, during both hyperkination and kination, the field is

kinetically dominated and therefore oblivious to the potential.

The spectrum we find has a distinctive shape. If it was detected, it would provide
valuable insights into the background theory. Indeed, it would strongly suggest the
existence of higher-order kinetic terms in the action. Furthermore, the position of
the “knee” could yield the value of the coupling constant «, were the energy scale

of inflation known.

The value of the density of the Universe today measured by Planck is not only at
odds with the value expected from theoretical considerations, as we comment above,
but also with local measurements, in what is called the Hubble tension. Although
the latter is much less dramatic than the former, its statistical significance has
led the cosmology community to take it more and more seriously, both from an
observational and a model-building point of view. From a theoretical standpoint,
the proposals that perhaps are best suited to address the problem are those that
are able to reduce the comoving sound horizon at the time of decoupling. Among
those, early dark energy (EDE) is the one that has received more attention, making
it the leading candidate. Of course, if observational evidence in favour of EDE was
to grow, one of the more pressing issues would be to embed it in a more complete

theoretical framework.

In Chapter [7| we propose a toy model of unified EDE and quintessence. There,
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a scalar field is initially frozen at an enhanced symmetry point. At a redshift close
to matter-radiation equality, it thaws and briefly behaves as EDE, to then quickly
free-fall with density p oc =% and re-freeze at a later time. Finally, when the energy
density of the background becomes comparable to that of the field, it unfreezes again
and accounts for dark energy. The free-fall, a distinctive behaviour different from
most EDE models where the field oscillates around the minimum of its potential, is
achieved via a potential which we take to be of the form V' ~ exp(—exp(¢)). Such
a choice is phenomenological; our purpose is to show that a steep enough potential
can lead to the desired behaviour. Of course, finding a potential better grounded

from a theoretical standpoint is the logical next step for future work.

The research presented in this thesis leaves room for exciting new avenues. For
example, the modified gravity setup used in Chapters could help ameliorate
the Hubble tension. Indeed, we found that the coupling between the matter action
and the quintessence field depends on the trace of the background fluid energy-
momentum tensor. In this way, the coupling disappears for a background fluid with
w = 1/3 but is turned on for w = 0. This is reminiscent of Ref. [168], where the
same coupling in the matter action is found and a scalar field receives an energy
injection from a neutrino field around matter-radiation equality to act as EDE.
In the same spirit, the inflaton could briefly act as EDE around matter-radiation
equality, a behaviour coming solely from the modified gravity setup, to then become
quintessence at late times. I believe this is a very attractive idea since the Hubble

tension could be resolved without the introduction of any new degree of freedom.

One other possible way to address the issue with kination generating a spike in
the spectrum of GWs large enough to disturb BBN would be to couple the inflaton
field to a non-Abelian gauge field, via a Chern-Simmons term. Indeed, the coupling
with a gauge field is expected to act as extra friction for the field [503], thereby
possibly reducing the barotropic parameter of the Universe and therefore also the
slope of the peak in the GW spectrum. The need for the gauge field to be non-

Abelian is slightly more technical, having to do with the suppression of the large
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scale anisotropy that one would obtain if simply working with abelian gauge fields
[504]. Exploring the effects of one such coupling on a stiff period of the history of
the Universe after the end of inflation could help obtain information about reheating
from the observation of the stochastic GW background, an exciting prospect with
the launch in the near future of ground and space-based observatories such as the
ET or DECIGO, or the relatively futuristic BBO.

Finally, from a more open-ended perspective, I believe it would be interesting to
study the generation of scalar-induced GWs in the context of Palatini modified
gravity. Indeed, as discussed above, when departing from the Einstein-Hilbert
action, the metric and Palatini formalisms of general relativity do not agree with
each other. In particular, the appearance of a quartic kinetic term may affect the
generation of large scalar perturbations, possibly leading to the formation of PBHs,
as well as the generation of GWs from second-order scalar perturbations. If detected,
this could provide valuable insights regarding the different formalisms of the theory

of gravity.
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Appendix A

Detailed Calculations

A.1 Gauge Transformations of Perturbations

Let us study the transformation properties of perturbations under the general gauge
transformation

ot Tt =t 4 M (L, x), (A1)

where &* is assumed to be small and can thus be treated as a perturbation. Thus,

ot [1+(&) 0 ot [1=(&7)" —0" (A.2)
o\ €y gaaE) 9T\ €Y 5o
where a prime denotes a derivative with respect to conformal time.
Working to linear order, we expand all quantities as
x(n,x) = X(n) + 0x(n,%), (A.3)

where x(n,x) stands for any cosmological field, like the metric g, or the matter

fields in the energy-momentum tensor 7, such as the inflaton ¢ or the background

2
density p and pressure p. Note that in Eq. (A.3)) we have split x into a homogeneous
background part y, which only depends on cosmic time, and a small perturbation .
Since the latter satisfies 0y < x, the perturbed Einstein and continuity equations,

6G,, = 0T,,/m} and V,0T" = 0, approximate well the full non-linear solution.
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Another advantage of working to linear order is that the Einstein equations do
not mix scalar, vector and tensorial perturbations [32]. It is therefore convenient
to use the scalar-vector-tensor (SVT) decomposition for perturbations [51]. For a

3-vector B; this simply means

where B is a scalar and B; is a divergenceless 3-vector, i.e., ;B° = 0. For example,

the spatial part of the gauge transformation in Eq. (A.1) would be decomposed as
& =0k +6, (A.5)

where ¢ is a scalar and 9;&' = 0.

For a (0,2) symmetric tensor £;; we have
Eij = Coij + 040y E + a(iEj) + hij, (A.6)

where C' and E are scalars, E;is a divergenceless 3-vector, i.e., 9E* = 0 and hij; is
a traceless and divergenceless (0,2) symmetric tensor, i.e., 9;h¥ = 0 and h’; = 0.

We have also defined

1
~ 1 N ~

Note that Eq. (A.7)) is the traceless contribution from the scalar perturbations.
The most general FRW metric perturbed to first order reads [49, [50]

ds® = (G + 0g,) dz*da”

= a’*(n) [-(1+24)dn* + 2B,dnda’ + (0;; + 2E;;) da'da’],  (A.9)

where the factors of 2 have been chosen for convenience. Note that with the SVT
decomposition, the 10 d.o.f. of the metric have been decomposed into 4 scalars (A,
B, C and E), two divergenceless 3-vectors (B; and E;) and one divergenceless and

traceless symmetric (0, 2) tensor (h;;).
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In order find how the metric perturbations transform under Eq. (A.1)) we take

into account that the spacetime interval is invariant

oz* 0z
2 v~ aepsr  ~
ds® = g, dz¥d2” = g, dz"dz” = o8 v

dztdaz”, (A.10)

where we have relabelled indices. Thus, the equation relating the metric in the old

coordinates z* to the metric in the new coordinates 7* reads

_ . 07% 03P
g (@) = gaﬁ(m)@ o

(A.11)

Using Eq. (A.2)) it is straightforward to find that the scalar perturbations transform

as
A A=A — (&%) —HE, (A.12)

B—B=B+¢& ¢, (A.13)

0H0=C—H@—%Wg (A.14)

E—E=E—¢, (A.15)

where ¢ is the scalar part in Eq. (A.5). The vector perturbations transform as

where & is the divergenceless vector part in Eq. (AJ5). Finally, the tensor

perturbations are gauge invariant

Note that we can use the freedom to choose the gauge functions £ and ¢ in order to
set two of the four scalar perturbations to zero. There are different possible choices,
but perhaps two of the most useful ones are the Newtonian gauge, with B = F = 0,
and the spatially flat gauge, with C'= F = 0.

We now deal with the perturbations of the energy-momentum tensor. They can
be written as

T% = —(p+dp), (A.19)
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Ty = —(p+D)vi = g, (A.20)
T = (p+ 6p)d, +11';, (A.21)

where v’ is the bulk velocity (notice it is a perturbation) and we have defined the
momentum density ¢; and anisotropic stress IT;, which is traceless IT); = 0. Since
the different contributions to the energy-momentum tensor are additive, the total
perturbations share the same property. For example, the total momentum density
8 ¢ =Y Z(a), where (a) labels the different contributing species. Note that that
the velocities v; do not add, only the momentum densities do.

In order to find how the matter perturbations transform we use the same
producedure as for the metric. Indeed, under coordinate transformations, the

energy-momentum tensor transforms as

T (x) = % gii [(%) (A.22)
Using Eq. again, we obtain
Sprs0p=0bp—pe, (A.23)
Sp — 0p = 6p — p'E°, (A.24)
G — @ = ¢+ (p+ D)&;, (A.25)
' — I, = IT',. (A.26)

A.2 The Second Order Action for Tensor Pertur-

bations

We decompose the metric into a background part g, (n) = a*(n)n plus a small

perturbation dg,,(n,x) = a*(n)h,, as

G (1, %) = Gy (1) + 6Gy (0, %) = a*(0) (N + ) , (A.27)

266



A.2. The Second Order Action for Tensor Perturbations

where h,g = 0;h"7 = h'; = 0. Its inverse reads
g =a () (" = 1), (A.28)

Note that writing g, in this way, h,, corresponds to a linear metric perturbation
in Minkowski. Thus, since Minkowski and FRW are conformally related, we can
straightforwardly obtain the scalar curvature of the perturbed FRW metric from
the perturbed Minkowski one. Indeed, given two metrics g, and g,, related to each
other via a conformal transformation g,, — g, = Q?¢,,, the corresponding Ricci

scalars are related via

~ 1

R— R= e [R—6V,V°InQ -6V, InQV7InQ)], (A.29)

In our case 2 = a, thus
FRW 1 MK 2 a'\’ B B\ T0
R = a2—(77) R -+ 6877 (ln a) + 6 (E) + 6(77 —h )Faﬂan Ina
RMK 6 9 , H ..
= — — 3—=h"Nh, A.

a(n) * a? (H +H) 3a2 W’ (A.30)

where RFEW and RMX are the Ricci scalars in perturbed FRW and Minkowski,

respectively, and Fgﬁ are the Christoffel symbols of the perturbed Minkowski metric
Ny + Iy In the last step, we have used that

1 1
Tag = 5 (0™ = h™)(Qalirg + Oshaa = Orhap) = = 50" Orhag, (A.31)

since hy,, is purely spatial. Furthermore,

ij)

1 1. ..
(™ — ) Tos = —5(77a5 — W) Ozhap = —Eh”h/“ (A.32)

where we have also used that h,,, is traceless.
We now sketch the calculation of the scalar curvature for the perturbed
Minkowski metric. In order to obtain the linearized action we proceed as usual,

first by computing the Riemann tensor

R, = 0,10, — 0,17, + rg;ﬁu AN A (A.33)

pm
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to then obtain the scalar curvature R = (n** — h**) R,,,, from the Ricci tensor R, =

R? . To first order in hy, the Christoffel symbols read

1
FZV = Enp)\ (a,uhl//\ + auh,u)\ + a/\huu) s <A34)

and only the OI' terms of the Riemann tensor contribute, since the I'? are second
order in h,. After some algebra, it is not difficult to find that the scalar curvature

to first order in h,, reads
Y =9,0,h" — Oh = 0. (A.35)
To second order in h,, we have in principle three contributions, since
R=0"—-M")R,, = n“”Rl(fV) — h“”Rl(}V). (A.36)

The first are the I'? terms with the Christoffel symbols given by Eq. (A.34)). This

gives the contribution

1
g (DTGP = TRTON) = 0 (0uhod b+ Db — Oshy 0
+ 200, 0yhr, — 20Mh%, 05 R, — Ouhag0,h™)
1
— Z(zaAh()aoh — Ophd7h + Oy by, 07 W — 2077 05" (A.37)

The second are the OI' terms with the second order Christoffel symbols
1
FZI/ = _§hp>\ (a,uhl/)\ + 8th>\ + a)\h,uz/> . <A38)

This gives the contribution

v (9,1, — 0,917 ) = %n‘“’h”* (8,00hy + 0,00, — 0p0uhir, — 0yOxh,.)
+ % (a RO\ by + 0,172 Dh, — 0?20 hiyy, — Oph Db, )
= % *(0,05h + Ohy, — 0,0,h,% — 9,05h,7)
ro (a hPO\h + 0, W 0" by, — 20,7 0,h,7) (A.39)

The third come from
1
—h"R() = —5h (00,17, + 0,0,h°, — 9,0,h — Ohyy) (A.40)
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where RLI,,) is the Ricci tensor to first order in hy,.

Using that 9, = h*, = 0 and summing the three contributions in Egs.
, and gives the second-order scalar curvature for the perturbed
Minkowski metric
3
4
Finally, combining Eqs. and with Eq. we obtain the scalar

curvature for the perturbed FRW metric to all order up to two.

1
R® Ophpo 0" hP" — §auhyﬁa”h#ﬁ + W Oh,, (A.41)

(O)RFRW _ %(HQ +HI)

(1)RFRW = 0
1 3 o 1 v v i
(2) RFRW 5 | 70uhoo 0" h"7 = =050 W% + W Oh,, — 3HRY R | (A.42)

In order to obtain the action to second order in h;; we still have to perturb the

determinant of the metric. We start by writing

—g = —det(a®(nu + huw)) = —det(a’n,.) det (67, + 17" hyy)

= a®det (67, + n7"hyy). (A.43)

Now we use the series expansion of the determinant which, schematically, reads

2

det(l1+eA)=1+eTrA+ % [(Tr A)* — Tr(A%)], (A.44)
where € simply keeps track of each order in the expansion. In our case A = n°7h,, =
h?,. Thus, only the zeroth and second order in the expansion of the determinant

have surviving terms. From Eq. (A.43)), we have

O(=g) =

D(—g) = 0 (A.45)
CL8 a8

O=g) = 5T h",) = = huh™

Therefore, the full expansion of y/—g, up to second order in h,,,, reads

VTG =yt = Dyt = a1 L = ot - T A6
- a 2 nv =a 9 (224 =a 4 1224 ) ( : )
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or, order by order,

Ov=g = a
Wy/=g =0 (A.47)

a4

Ay=g = —Thuh

We are getting closer to our final result. The Einstein-Hilbert part of the action,

to second order, reads

3a?

@(/=gR) = ©/=¢®R+ (2)\/—_9(0)}%:—7

3 . 1 ” ” ij
+a? [Zaﬂhpgauhp — éaﬂhy;ﬁ h*P 4 h*Oh,, — 3HA R, | - (A.48)

Py " (H? + H)

By using hg, = 0, this expression can be further simplified to obtain

2
_3mp

4

5?8 =

/d3xd77 a’ (H2 + 7—[') by W
2 3 3 | .
—l—% /d3:£d17 a? [ — Z—l(hij)'(h”)' + Zakhijakh” - éakhijazhk]
—hIR, + W0 Dy — 3Hhijh;j]. (A.49)

Noting that the prefactor in the integrand depends only on time, we can integrate
by parts the spatial derivatives without picking up an extra term. This kills the
third term and the fifth can be combined with the second to give

Sm% 3 2 2 ' v
S = 1 d’zdna (”H —i—’H)hWh“ (A.50)

2
mp

T3

/dgl'd?? CL2 (_Z(hij)/(hw)/ _ Zakhz‘jakhw — hl]h;/] — 3thjh;]) .

Now, integrating by parts the third term gives
3m123 3 2 2 l nv A
S = - d’zdna® (H* +H') huh (A.51)
m? 1 | g g
+ TP/dgdidT] CL2 (Z<hij>/<h”)/ - Z(?khijakh” - Hh”h;j) .

Finally, integrating by parts the last term, we arrive at

4

m2 17147\ ¥ m ! ijp!
5= ?P/dgxdWQ ((hy)' (W) — Okhij0"h7) — Tp/dgdeGZ(QH + M) Dy
(A.52)
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The last contribution comes from the matter action. We do this for the Palatini

Lagrangian in Eq. (5.15)), but the the proof is general. As before, we have two terms
(remember (V/=—g = 0)

O(y=gLs) = Ov=grL,+ Ov=3"c,, (A.53)

where

Lo = —50" 0,00, + 5 F(0)(0" 000,0) (4" 06030) ~ V. (A54)

The zeroth-order Lagrangian is simply

WL, = —%g“ 00,0 + f(<z>)( g 0,90,¢) (5" 0apOs0p) — (A.55)

while to second order, using the inverse metric (A.28]), we have

—4 —4
DLy = =R D00, +

F(@) (W 8,00,0) (h*?0ad030) =0,  (A.56)

where we have used that ¢ = ¢(t) and h% = 0. This means that the second-order

matter action reads

4
(2)(\/_—g£¢) _ (2)\/__9(0)£¢ — _azh,uuhlw (ﬁgb& + Oé4f(f)¢ V)

ol
= _Zhwhwm, (A.57)

where we have used the second line in Eq. ((5.34]).
Solving for p, in the Friedmann equations and plugging it back in Eq. (A.57))

finally gives

2

e / Erdna® (2 +H) b b, (A58)

S = [ dtady (=50 = 7

which exactly cancels the second integral in Eq. (A.52]).
Putting everything together, the action to second order in the tensor perturba-

tions finally reads
m2
S = £ / Ad*a/=gg*? 0 h" O5h,, (A.59)

= _F / dnd’za® | — Ophi;0™ RV . (A.60)
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A.3 The Gravitational Wave Density Spectrum
During Kination

We give here some details regarding the calculation of the GW density spectrum
during a period of kination, followed by a period of radiation domination.
The first step is to obtain the scale factor by solving the first Friedmann equation.

It reads

p 1 1/(1—eg)
_ <
|: (1 — EH)HendT]:| 3 1> Tend

a =9 V 2Hend77 + 37 Tend < n < Tlreh 5 <A61)
Hen + Mre +3
a(n7 + Tren) ’ Teen < 17,
\ V 2Hend7]reh + 3

where Heyq and nenq < 0 are the Hubble parameter and conformal time at the end

of inflation, respectively, and 7., is the time of reheating. We have assumed that
the first Hubble slow-roll parameter ey is constant during inflation and normalised

the scale factor as a(nenq) = 1. We also approximate

1 1 1
g = — ~_ . A.62
Mfend (1 - 6H)I—[end Hend H ( )

where, to avoid clutter, and slightly abusing notation, we have defined H = Hcpq.
Note that in the pure de Sitter case, with ez = 0, the Hubble parameter is constant
and equal to H.

The next step is to solve the equation

a//
(fe)" + (k2 - ;) fi =0, (A.63)
where f? are the GW mode functions and, from Eq. (A.61]),
(24 3¢
9 ) n S Tend
n
a// 1
P Wy A.64
a 422 ) Tend S n S Threh s ( )
\07 Tlreh S m,
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where

3
2= + ﬁ <A65)

We solved Eq. (A.63) for constant slow-parameters (and to first order) during
inflation in Sec. (see Eq. ([2.146]) and below). Following an analogous procedure

for kination and radiation domination, we find
\/ T /el i Cut) HY (—kn), 1N < Nend »
i) = ‘/EW“Z o W)™ HP (k2) + a_ ()™ H (k2)] . tena < 1 <

[ﬁ—l—(k)e_ikn + 6—(1{:)6%”} ) Tlreh S UE
(A.66)

1
\ V 2k
where

3

In order to fix the coefficients a4 and 54, we impose continuity of the mode functions
and their derivatives at each transition
lm fiG) = lm fiG) and  lm f0)= lm f@), (A6S)
n_>nend 77_>77end n_>nend 77_>77end
and likewise at 7. Defining the new variable

k
Lend = ﬁ, (A69)

we have

knend = —Tend and kZend = erHd . (A70)

The continuity of the mode functions at the end of inflation reads
\/ﬁei%@“‘H)Hl&l)(ZEend) = a+e_i7r/4Hé )(ernd) + a_ 6”/4H( )(wznd), (A.71)
while the continuity of their derivatives reads

1 H;(Ll)(xend) Tend —in/4 17(2) Lend
(§+u) A i) i ()| = (72 e ()

1
V 2xend

T (2p+1)

64

i Lend
+o_e MH{”(—)] -

5 [cue‘”“Hé )(xe;d) +a_ 6”/4H( )(xeznd)} , (AL72)
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where we have omitted the k& dependence of ay to avoid clutter. The second

continuity condition can be simplified by plugging Eq. (A.71) in Eq. (A.72) to

obtain
izur) |2 3 H (tend)  — )
¢ Tend |\ 2 M V/Zend = Vel (Ten)

= a+€_iﬁ/4H{2)<%) + a_e”/lel(l)(%). (A.73)

In order to obtain a_ (ay) we multiply Eq. (A.71) by H}Q)(%T“d) (Hfl)(%T“d)) and
Eq. (A.73) by Hém (Fepd) (Hél)(’”eT“d)) and substract one from the other. The result

reads

metm(pt1)/2 1 (2) ; Tend (2) ;Tend 3 1
a_ = —T xendH}(L )(xend)H1 (T) — Hy™( 2 ) <§ + “) Hu )(xend)
gY A.T4
Lend u+1(xend> ) ( . )

imetm /2 (1) (1) Tend (1) (Lend 3 1
o, = T TenaH, (Tena) Hy (T) — Hy'( 5 ) 2 +p ) Hy (Tena)
_ g A.T5
Lend u+1(xend) ( ' )

In the super-horizon limit, ¢.e., in the limit where zq,q < 1, they read

- 2 1 ' en _
o = 2r732em D2 () [—— —1 (§ — ,u) <— —Im? d>} x ki, (A.76)
7r

2 7 2

. 2 3 1 ) en _
ay = i2ﬂ—3/2€zﬂ(u+1)/2r(u) |:—— +Z (- — ,M) (5 + i In sz):| xenlfi‘ (A??)
T T

Defining the new variable

Treh = knreh = kzreh; <A78)

where in the last step we have taken into account that 7, > 7enq, the continuity

of the mode functions at reheating reads

T reh
2

e ™ HP (@) + ae™ D (@) | = Bremmn 4 B, (A79)
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while the continuity of their derivatives reads

LT 1 —im s
\[5 {w— e T ) + @ ()

Ve |0 T HP () + 0 HD (@) } = Bre i — B_¢imen (A.80)

Subtracting (summing) Eq. (A.80]) from Eq. (A.79)) we find

ﬂ-eiixreh . 3
P = \/; 2 {m[o‘+em/4Hc()2)($reh)+a6”/4Hc()1)(1’reh)]

+ [a+e_”/4H((]2) (Tren) + oz_ei”/‘*Hél)(xreh)}
2 Lreh
F i/Tren [aJre’”/‘lHl@) (Zren) + a,e”/‘lHl(l)(xreh)] } (A.81)

In the super-horizon limit, ¢.e., in the limit where ., < 1, they read

m 1 l : ; 1 . ,
= 44/= — —im/4 _ im/4 Z(24+1 - —im/4 3 im/4
ﬂi \/QQ Lreh [2 <a+€ a-e ) + 7T ( tinr h) (OZ+6 a-€ )

i7r(2u+1)/42,u,—31" 3 o 2)
= 4° MW)(M——) LD T MY R
\/7_T TrehTeong 2 Tlend (H - 5)

where we have used the relations

(A.82)

—im/4 im/4 3
e = i (5 ), (A.83)
67,71'/42;1—3/2eur(/H—l)/Ql"(Iu)xenli1 2

—im /4 _eim/4 4 2 /3 on
__a4€ 7 ta-c — = ————|=—pu In Zend. (A.84)
eim/42—8/2gim () 2T (1) 7P T 7 \2 2

In the scale-invariant case, with ez = 0 and p = 3/2, the coefficients read

67j57r/4
a_ = —iOé+ "y <A85)
ﬁ$e£d
fbr=F ! (A.86)
+ =+ =75 .
2/ [Trenong

The coefficients in Eqgs. (A.85)-(A.86) can be further simplified. The time of
reheating 7., can be obtained by remembering that during kination the background

density scales as p o< a~% while the radiation density escales as p oc a—*. Therefore,
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the density parameter of radiation scales as €, o a®. Noting that at reheating

radiation is the dominant component we have

Qend

2
1~ Qieh = Qend (ﬁ> = Q™ (2Hnyen + 3) =~ 20 Hjyen,, (A.87)

where we used Eq. (A.61)) and the normalization a(7e,q) = 1. Thus, also using Egs.
(A.69) and (A.78), we find

H? HAQe
2 2 r
o =T and 181 = — e

(A.88)

276



Appendix B

Appendix of Chapter

B.1 Solving for the Hubble parameter

In this appendix, we solve the Jordan frame Hubble parameter H in ([5.20]) explicitly

in terms of ¢, ¢, and the fluid energy density p. We begin by using (5.18)), (5.23)),
and (5.25)) to decompose the time derivative of fr as

Oofr=A+HB, (B.1)
where
.2 - / — ¢ .z
Al el 20 <3V (%) 590]%) L 2av9E (B.2)
m? 4 €02 2\? '
2 mi (1+ %) mé (1+2)
and
.2 _ _
B 3a 297 — p(1+w)(1 = 3w) | (B.3)

1 2
mp 1—|—%

where € and T are given by Eqs. (5.26)) and (5.19) respectively. Note that by using
Eq. (5.17)), the expression for A can be simplified further to obtain

2pp€ 20T 6apV’
P22 |+ A
i (1+42) ) mi(14+5%)
mp P

(B.4)

2
mp
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With these, Eq. (5.20) can be recast as

3 3 3 T «
H?(3Fr+3B+ —B? | +H(34A+ —AB | +— A2 -2 _ 2=0 (B.
(3 r+3 +4FR >+ (3 +2FR )+4FR m% 4m%R 0 (B.5)
and solved for H as
_ A \/3fR(4T00 + OéR2) (B 6)
B +2fR 3(B + 2fr) ’ ’

with R, Fr, and Tp from Egs. (5.17)), (5.18) and (5.22)), respectively. Demanding H

to be real sets the requirement fr > 0 (note that Tyy and R? are always positive).

From Eq. (5.18)), this reads
£p? > aT a
1425 ) >—F=— — 4V (p) — p(1 — 3w)) . B.7
( oz ) T a =@ (¢) = p(1 = 3w)) (B.7)
During inflation, the background matter energy density p = 0, and the condition
is always satisfied when the potential dominates the kinetic term, 4V (p) > ©?, in
particular during slow-roll. It is also easy to satisfy later on, when p > 0 becomes

important and a contributions become irrelevant.

B.2 A bound on the bare mass-squared of the
spectator field

Let us estimate the upper bound of |m?|, the mass squared of the spectator field 1)
from , such that it remains negligible at least until reheating. Firstly, let us
obtain an upper bound of the value of (¢?) at the end of inflation. Imposing the
requirement that g < g™, as found by Ref. [289], and using that ﬁfpnd = IN(y?)?,
we find

<¢2>end < 6\/5 (é/\/X) ﬁgnd : (BS)

where we considered Eq. (5.51). Considering that the typical value of the amplitude
of the oscillating condensate at a given location is of the order |¢| ~ /(1?),

we can estimate how it evolves after the end of inflation. Indeed, because
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AUt = py x a™*, we have [¢| < a~*. Thus, we obtain

Gend 2 A ~ 2H2d
|1/}‘reh = a |w|end = |¢‘reh <6 <_> 53/ i? (Bg)

reh A mp

where we used Egs. (5.53)) and (B.8).

The quadratic term in Eq. (5.50) takes over from the quartic term at a critical

value 12 when 1m?y2 = 2\, which suggests

P2 =2m?/\. (B.10)

X

To make sure that this does not happen until reheating, we simply require ¢2 < |¢|%,

(]| is reducing in time). Then the bound in Eq. results in the bound

.,
m? < ml,, = 18V2\ P —2d | (B.11)
m

max
P

The above is too strict because, if py, < p, after the end of inflation, then py
can remain subdominant until reheating even if the quadratic term in V(¢) takes
over before reheating. So the above bound is sufficient but not, strictly speaking,

necessary. Its numerical value may be estimated using the range obtained in

Eq. (5.57). Taking A ~ 1, we find
102 GeV < miax < 10" GeV. (B.12)

The lower bound in the above might be unrealistic because such a particle could
have been already observed in the LHC. But we see that the mass range extends

well above the TeV scale so there is no real conflict with the observational data.

B.3 Energy density of gravitational radiation at
the end of inflation

The energy density of GWs is [505]

(hi; (T, x)hi; (T, %))
327Ga? ’

(B.13)

Paw (Ta X) =
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where the prime denotes derivatives with respect to conformal time 7, h;; are the
spatial components of the metric perturbation and we consider superhorizon scales.
We consider the Einstein frame and omit the overbar for simplicity. Switching to
momentum space, we can define the density parameter of GWs per logarithmic
momentum interval

1 dpgy (7, k)

where p. = 3H?m%. GWs generated by inflation obtain a predominantly scale-

Q

invariant superhorizon spectrum given by [425]

2 Hend ? k " 2 Hend 2
AR (k) = = ( o ) (1?) ~ = ( - > , (B.15)

where |n;| < 1 ia the tensor spectral index, the star denotes the pivot scale and

(hij(T,x)hy; (T, %)) :/d—:Ai(k)(T, k). (B.16)

Then, the final expression of the stochastic GW background from inflation is [423]

- () ()40

for arbitraty evolution a(7), where a,Hy = k corresponds to horizon re-entry of scale

k. Evaluating the above at the end of inflation and integrating over all superhorizon

1 (Hea)’
end . end

modes we obtain

where we considered that the integral is dominated by the highest k (i.e. kenq)-
Using that p.,, = Qg pe, we find

1

~ —H!

Paw 472 end)’ (Blg)

which agrees nicely with the estimate in Ref. [97].
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C.1 A toy model for a drastic change of a at the
end of inflation

The coefficient o parametrising quadratic gravity can experiece a drastic change at
the end of inflation if it is a function of a degree of freedom which changes rapidly
at that time. For example, if inflation takes place at the energy of grand unification,
as is typically the case, then this degree of freedom could be the Higgs field x of a
Grand Unified Theory (GUT). If the breaking of grand unification takes place via
spontaneous symmetry breaking, then the expectation value of y changes from zero
to M ~ 106 GeV.

A toy model example of the inflaton potential, which leads to the GUT phase

transition but still retains the runaway nature assumed in this work is

Loy | s ) e <0
V(%X):Z)\(X - M?7)" + e s 6 , (C.1)

where m and p are mass scales with 0 < u < m < M and \,g < O(1). By taking
A =0 = g, we recover the (n,q) = (2,4) case of the quintessential inflation potential
in an R + aR? Palatini modified gravity theory, which was investigated in Ref. [1].

This potential, in turn, is a minor modification of the original quintessential inflation
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potential in Ref. [I5]. Switching A and g on, and considering the limit |p| > p with
¢ < 0, we obtain the original hybrid inflation potential [96].

Let us first consider standard gravity without an R? term. In the beginning,
¢ < —u. Then the effective mass-squared of the GUT Higgs field y is positive,
which sends y to zero. The scalar potential then becomes

1 1

When the constant term dominates, we have an inflationary plateau. The effective
mass-squared of the GUT Higgs field is mZ;, = g°p* — AM?. Thus, mZ;, is positive
as long as |p| > |@e|, where .= —(v/A\/g)M, where for simplicity we assume
|©c| > p. Inflation ends when ¢ = ¢, which triggers a phase transition that sends
the GUT Higgs field towards its vacuum expectation value (VEV) x = M, in which
case miz, = 2AM?. At this time, the effective mass-squared of the inflaton field
becomes mZ;, = g>M?* > 0, when the inflaton is still negative ¢. < ¢ < 0. This
propels the inflaton to the origin.

When ¢ becomes positive, it free-falls in its steep runaway potential. In the limit

© > 1, the potential is
%QQMQ,UG
o

where we assumed gM > m. The above inverse quartic potential can indeed work

V= , (C.3)

not as tracker quintessece, as in the original quintessential inflation model [I5], but as
a freezing-thawing quintessence, which unfreezes at present provided the mass-scale
(%g2M 25)1/8 is of the correct magnitude to satisfy the coincidence requirement.
Inflation, however, as described above would not work. Indeed, the original hybrid
inflation model of Ref. [06], which is characterised by the inflationary potential in
Eq. , produces a blue spectral index for the scalar curvature perturbation.

As shown in Ref. [I], things change when we embed the above model in R+ aR?
Palatini modified gravity. We assume that A is small enough, such that the potential
in Eq. during inflation is V' =~ 1m?y? Then, the inflationary plateau is

due to the quadratic gravity term, which flattens the potential and creates the
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inflationary plateau with U, ~ m$ /4 as discussed in Sec. . As mentioned,
the scenario with A = 0 = g was investigated in Ref. [1], which found that successful
quintessential inflation in achieved if m ~ 10" GeV and (1g2M?u%)1/® ~ 10 GeV,
which means p ~ ¢g~/3107* GeV. The assumption g > m/M ~ 1072 suggests that
p < O(MeV).

In Ref. [1] it was shown that for successful quintessential inflation with this model
we need o ~ 10%, so that U;l/fél ~ 106 GeV. The canonical inflaton field rolls down
the Palatini inflationary plateau Ui, until it triggers the GUT phase transition and
sends the GUT Higgs field to its VEV. Then, the potential V' is reduced drastically
so that the system exits the Palatini plateau and U ~ V.

The change of the expectation value of the GUT Higgs field x at the phase

transition not only terminates inflation but may also affect the value of o provided

the latter depends on y. Indeed, suppose that
a = aly) = age™M (C.4)

where £ = O(10) is a coefficient and o ~ 108. Before the phase transition, xy = 0
and @ = g ~ 103, After the phase transition, y = M ~ 10 GeV and xkx/M < 102
As a consequence, a becomes huge. Indeed, for the range x =5 — 166 we find
a ~ 1018 which comfortably includes the values considered in Fig.[6.7] Note that
a should not depend on the inflaton field, a # a(p), because the latter changes
substantially during kination and hyperkination, while « is taken to be constant.
Finally, it must be pointed out that the period of hyperkination in the post-
inflationary history would modify the treatment of Ref. [I] somewhat. As a result,
the value of u for successful coincidence might change, but this is beyond the scope

of the present work.

C.2 Nwumerical solutions

To check our analytical results, we solve numerically the time evolution of the

background composed of the field and radiation and the GW mode functions. The
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full set of equations reads

0"\
<1+3a—)¢+3<1+a—4>H¢: ,
mp

pr=—3Hp;(1+wys), 3H*mi = py+ py, (C.5)
1 3 12 /

Pe =51+ ¢4 &, hy + 22@/ +k*h = 0.
2 2" ) a

Many of the variables vary by orders of magnitude during cosmic evolution. To
make numerics easier, we define new, rescaled variables x, y, and Z, a new time

variable s, and a constant sy through

1/2 —so—s+x 4 -1 _—2s9— 23+y

ST
$ =mpa e . Pf=mpa e

H= mpa_l/zZe_SO_s, so=—In (2\/&H0/mp) ,
dt = mp'vae®ds, (C.6)

where Hj is the initial Hubble parameter. Definitions in Eq. (C.6|) are chosen
to ensure the new numerical quantities remain of order one throughout the

computation. The equations of motion become

. 3z(1 + 6—250—2s+2z) .
t = 1= 1 + 3e—2s0—2s+2z Y= 2- 32(1 + ’lUf) ’
%(1 4 26—250—25+2x 62;r 4 ey’

372 =

(}(L)k + <3Z - 1);% + ae25+250hk = 0, (C?)

mba?
where a circle over a variable indicates a derivative with respect to the new time
variable s.

The initial conditions for the field velocity and fluid energy density are set
as described in the text, engineered to match a desired end-of-inflation Hubble
parameter Hgnq, duration of hyperkination Ny, and initial radiation energy density
fraction 2", We then follow their evolution from the end of inflation until the BBN
temperature is reached, see Fig. 6.2l The GW modes are evolved from their frozen

super-Hubble state in Eq. (6.62)) starting somewhat before they re-enter the Hubble
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radius, until somewhat after the re-entry, after which they are taken to behave as
radiation. To get the mode energy density, we use the first equation in Eq. (6.34])—as
explained in the text, the error related to regularization is negligible for all relevant

modes. Iterated over a number of modes, this produces the spectra in Fig. [6.4]

C.3 Mode function matching

In this appendix, we report the more technical results concerning the mode function
matching at the transition between the different cosmological eras. We start with

the transition from inflation to hyperkination, which takes place at 7.,q. During the

hyperkination, the Mukhanov Sasaki equation reads (see Eqgs. (6.31]) and (6.51))

vi”" + kK*f = 0. (C.8)

The solution is simply a superposition of plane waves,

S(p) =
Uk(”)_\/ﬁ

Matching this to the standard slow-roll result (see the first line of Eq. (6.55))) at nena

(cpe™ +a_e™) (C.9)

gives
eri ) \/gx/@Hﬁl)(ivend) = apelflenal 4o tklenal (C.10)

where Teng = K|Nena| and we dropped the subindex I from v. Matching the
derivatives gives

LT v 1 1 1
1 56 (142 )[\/ﬁ(é + V) H,Sl) (-Tend) -V :EendHile(xend) =

— ageklmenal o emikimenal (€ 11)

Summing (subtracting) both expressions, we obtain

ei%(l—i-QV)ii:cend T

ax=———F—1/3 [ngl)(xend) <\/xend +

l

V/ Lend

v+ 3)) F ivFaiH ()]
(C.12)

We now take the super-Hubble (small argument) limit ze,q < 1. Noting that
the leading contributions come from the terms proportional to Hlsl)(a:end) /1/Tenda and

285



Appendiz C. Appendiz of Chapterﬂ

Hrgr)l (xend) V/Zend, 1t reads

L2 (1 )F( )t (C.13)
Oy =x——F+—— | =—v V)———. .
' var o \2 (klenal)*

Using v = 3/2 + ¢, this expression can be further simplified to

2 1eim/21(3/2 + €) (H\***
== — : C.14
o v (%) (€40
For pure de Sitter, with € — 0, we obtain
H2

We continue with the transition from hyperkination to kination, which takes

place at ny,. During kination, the Mukhanov—Sasaki equation takes the form

1
4l ="+ 5]

Ulf;”"' k2 _

5| vp=0. (C.16)

Making the change of variables y = k(n — man/2+ 1/H) (where y = kz in the
notation of Eq. (6.52)) and redefining the mode functions as g = /yv, this equation
can be recast as a Bessel equation with v = 0 (see Eq. (6.53)). Thus, the solution

reads

) = [ i WP )+ e wE W], @

where the overall constant and phase has been chosen such that the mode functions
have a simple sub-Hubble (y > 1) limit, as discussed below Eq. (6.55)). We match
this equation (and its derivative) with Eq. (C.9) (and its derivative) at time 7y,

1.e., at

k 2 knkin
in = in)] — & in - | = 3 1
Yin = Y(Thain) 5 (Uk + H) 5 (C.18)

where we have taken into account that 7, > nenq. To avoid clutter we also define

r = /%, /7 /2. Equating the mode functions gives

ape e e — |t BB () + B H ()] . (C19)
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while doing so for the derivatives gives

7 (_a+e—ikﬁkin + a_eiknkin) _

7B HS (o) + 1 HS (1)

2\/Yiin
dH df;”
+\/ Ykin [T*ﬁ—‘r dyo (ykin) + Tﬁ—d—;(ykin) . (C20)

Now, using Eq. (C.19) in Eq. (C.20) allows us to rewrite the latter as

1 , 1 .
|:Oé+ (_Z _ _) efzknkin + o_ (Z _ _) elknkin:|
2ykin 2ykin

C.21
R dHé2)( e dH(()l)( § (C.21)
- Ykin + dy Ykin — dy Ykin .

In order to obtain S_ (fy), we multiply Eq. (C.21)) by HSQ) (Yxin) (Hél)(ykin)) and
Eq. (C.19) by dHéz)/dy (dHél)/dy), subtract the latter from the former and use the

Wronskian of the Hankel functions. The results read

_ —iw/4V TYicin H(2) |: ( : 1 ) —1kNkin ( 1 ) iknkin:|
_=e —_— m)|lar | —1——— e +a_(1——— ¢
p @'2\/5 { 0 (yk ) * 2Yxin 2Uxin

+ HI(Q) (ykin) <a+e—i/€77kin + a_eik’ﬁkin) }

(C.22)
and
_ in/4V TYxin (1) [ ( : 1 ) —1kNkin
= —e"""—V1< H )|y | —1 — e
B+ 22 { o (Yiin) |t 2 in
(C.23)
1 . . .
+ o <Z — f) e””’k“’] + Hl(l)(ykin) (Oz+e_m”k“‘ + a_em”ki“> } .
kin
Noting that ay = —a_, these expressions can be rewritten as
i TYkin
f_=e /4\/%04{%2)(3/1{111) [cos (K1cin)
(C.24)
20 Sin<knkin)] + H{? (i) sin (knkin)}
and
; T Ykin
5+ = _e“r/4 / %@_ {Ho(l)(?/kin) [COS (knkin)
(C.25)

~ 3 sin (k'nkin):| + Hfl)(ykin) sin (knkin)} :
Ykin
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We can now take the super-Hubble limit kny, << 1. Using knwn = 2Ykin, the

term in brackets multiplying H(()l’Z) (yxin) cancels out, and we obtain the result

i k in
By = 2ietim/4q_ [ KT ’ (C.26)
™

where a_ is given by Eq. (C.14)). Note that
By =1if_. (C.27)
For pure de Sitter, we have the simplified expression

i . H 2 k”l]k
_ joxim/4 [ 1 in
By = te ( . ) \/ - (C.28)

Finally, we consider the transition from kination to the radiation-dominated era

at Meen. During the latter, the Mukhanov—Sasaki equation is identical to the one

corresponding to hyperkination,
vy + ki =0, (C.29)
the solution to which reads
vi(n) = —= (yre™™ +y_e™) . (C.30)

The matching conditions at 7., now read

V Yreh |:T*B+H(§2) (yreh) + TB—H(gl)(yreh)} = (’Y+€_iknreh + ’V_Giknreh> (031)
and
1 (2) (1)
: H re 7H re ]
3 [ ) B ()
. dHP gy _ y ‘
+ V/Yren [7“ ﬁ+d—y0(yreh) + Tﬁ—d—;(yreh) =i (—rype Weh oy glhhen)
(C.32)
where
in 1
Yreh = k (nreh - 771; + ﬁ) = knrehv (033)

288



C.3. Mode function matching

where we have taken into account that nen >> Nkin >> Nend. Summing (subtracting)

both expressions gives

eiiknreh . ) 1 )
Y+ = r BJr |:H(()2) (yreh) (\/ Yren +i ) + 7/\/ yrehHl(Q) (yreh):|
2 2\/ Yreh
(C.34)

o1 ,

+ Tﬁ, |:H(gl) (yreh) (\/ Yreh + 22\/%) + Z\/ yrehHl(l) (yreh):| } .

We use Eq. (C.27)) and take the super-Hubble limit k7., < 1 to obtain

TLCE (C.35)

2 V Yreh ’
where §_ is given by Eq. (C.26)). For pure de Sitter, we have the simplified expression

H2 Tlkin
= T 2 (G38)
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Appendix D

Appendix of Chapter

D.1 Quintessential Inflation

Is it possible that our scalar field can not only be early and late dark energy, but also
be the inflaton field, responsible for accelerated expansion in the early Universe?

The a-attractors construction leads to two flat regions in the scalar potential of
the canonical field, as the kinetic poles of the non-canonical field are displaced to
infinity. This idea has been employed in the construction of quintessential inflation
models in Refs. [260], 259, 258], where the low-energy plateau was the quintessential
tail, responsible for quintessence and the high-energy plateau was responsible for
inflation.

However, if we inspect the potential in Eq. at the poles ¢ = +v/6a mp,
we find that the potential for the positive pole is V (¢, ) = V) as expected, while
for the negative pole we have V(p_) = Vj exp [2)\ sinh(/f 6&)}. For the values of
the parameters obtained (k ~ 10%, A ~ 1072 and o ~ 107%) it is easy to check that
V(¢-) is unsuitable for the inflationary plateau. Thus, our model needs to be

modified to lead to quintessential inflation.

The first modification is a shift in field space such that our new field is

o=+, (D.1)
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where ® is a constant. The a-attractors construction applies now on the new field
¢ for which the Lagrangian density is given by the expression in Eq. ((7.1)) with the
substitution ¢ — ¢. The poles of our new field lie at ¢ = +v/6a mp, where & is

the new a-attractors parameter.

We want all our results to remain unaffected, which means that, for the positive

pole, Eq. (D.1) suggests
. - _1(@ ?
g0+:\/6ozmp:g0+—(1>:v6ozmp—(1>:>oz:6 — +Vba | . (D.2)
mp

The above, however, is not enough. It turns out we need to modify the scalar
potential as well. This modification must be such that near the positive pole the

scalar potential reduces to the one in Eq. ((7.5). A simple proposal is
V() = Vx exp{—2Asinh[x(p — @)/mp]}, (D.3)

which indeed reduces to Eq. when k(¢ — ®) = kg > mp. Note that xv/6a > 1
is implied from the requirement that near the positive pole we have kv6amp =
K@Yy > mp.

The ESP discussed in Sec. is now located at ¢ = ®, such that Eq. is
now AV = 1g%(¢ — )]

We are interested in investigating the inflationary plateau. This is generated for

the canonical field near the negative pole p_ = —v/6a mp, where the scalar potential

of the canonical field “flattens out” [465].

Assuming that ® > +/6amp, we have that p_ — & = =20 — /6amp >~ —20,
where we used Eq. (D.2)). Hence, for the potential energy density of the inflationary

plateau we obtain

!Near the ESP the potential does not approximate Eq. (7.5)). However, we assume that, after
unfreezing, the field rolls away fast from the ESP, such that soon the exp(exp) form of the potential

becomes valid and the evolution is the one discussed in the main text of our paper.
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Vit = V(p-) =~ Vyxexp[—2Asinh(—2xk®/mp)]
~ exp()\e” 60‘>VAexp[)\eXp(2f<;<I>/mp)]

= exp [A(e“‘/@ + ezmp/mp)} Vi = Viexp(Ae®™®m) . (D.4)

where we used Eq. and that in —2sinh(—z) ~ ¢, when z > 1.

With a-attractors, the inflationary predictions are ny = 1 — 2/N and r = 12a/N?
[465], where ng is the spectral index of the scalar curvature perturbation and r is
the ratio of the spectrum of the tensor curvature perturbation to the spectrum of
the scalar curvature perturbation, with N being the number of inflationary efolds
remaining after the cosmological scales exit the horizon. Typically, N = 60 — 65 for
quintessential inflation, which means that ny, = 0.967 — 0.969, in excellent agreement
with the observations [10]E|. For the tensor-to-scalar ratio the observations provide
the bound r < 0.036 [9], which suggests @ < 0.003 N? = 10.8 — 12.7.

The COBE constraint requires Vips ~ 107 mg. Using that V) ~ 107120 mg,
Eq. suggests that x®/mp =1In(110In10/X). Hence. the conditions
® > v6amp and k6o > 1 suggest

1
1 < kVba < kK®/mp = §ln(1101n 10/)). (D.5)

Our findings in Section [7.4]are marginally in agreement with the above requirements.
For example, taking a = 0.0006 and x = 100 we find xv/6c = 6 and then Eq.
suggests A < 1.556 x 1072, We also find ®/mp > V6a = 0.06, which is rather
reasonable. Then, Eq. implies & > 12a = 7.2 x 1073, which comfortably
satisfies the observational constraint on r. In fact, taking N ~ 60, we find
r=12a/N? > /25 =2.4 x 107°.

The above should be taken with a pinch of salt because the approximations

employed are rather crude. However, they seem to suggest that our augmented

21t should be however noted that recent results [506}, 507, 508, 509] suggest that, in the presence
of EDE, the data seems to favour larger values of ng, closer to unity. This would somewhat

undermine the use of a-attractors.
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model in Eq. (D.3)) may lead to successful quintessential inflation while also resolving
the Hubble tension, with no more fine-tuning than that of ACDMP| A full numerical

investigation is needed to confirm this.

3Unifying inflation, EDE and late DE in f(R) modified gravity has been investigated in
Refs. [510] 511].
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