
A dynamic neural field model of vowel diphthongisation

Sam Kirkham1, Patrycja Strycharczuk2

1Lancaster University, UK
2University of Manchester, UK

s.kirkham@lancaster.ac.uk, patrycja.strycharczuk@manchester.ac.uk

Abstract
We advance a computational model of vowel diphthongisation
that situates phonological representations in dynamic neural
fields (DNFs), which represent the time-varying activation of
neural populations that are sensitive to a given phonetic pa-
rameter range. We model all long vowels as two separate inputs
to the DNF, with input timing governed by a coupled oscillator
model that generates an anti-phase relationship between inputs.
The location of time-varying maximum activation in the DNF
forms a noisy dynamic target, which is used as input to a task
dynamic model of gestural coordination. We find that spatial
characteristics of long vowels are well captured by the model,
which exhibits gradient variation between monophthongs and
diphthongs. We also show that a simplified model of produc-
tion/perception can simulate changes in a speaker’s phonolog-
ical planning representations, which could represent a mecha-
nism behind sound change if transmitted across a community.

Keywords: Articulatory Phonology, Task Dynamics, Dynamic
Field Theory, computational modelling, vowels

1. Introduction
The variable diphthongisation of vowels in English is a widely
attested form of synchronic variation, such as the monothongi-
sation of GOAT and PRICE in the dialects of Northern England,
as well as diphthongisation of tense monophthongs, such as
FLEECE and GOOSE (Hughes, Trudgill, and Watt 2012). Some
speakers even alternate between such variants, such as produc-
ing variably diphthongal or monophthongal vowels. The is-
sue of variable diphthongisation also underpins accounts of di-
achronic change, such as the diphthongisation of Middle En-
glish /i/ and /u/ into present-day /aI/ and /aU/, as a consequence
of the English Great Vowel Shift (Jespersen 1909).

In Strycharczuk et al. (submitted), we account for the gra-
dient nature of diphthongisation by proposing a compositional
two-target model for all long vowels (following precedents in
Labov, Ash, and Boberg 2006; Popescu and Chitoran 2022). In
this view, a short monophthong is short because it has a single
target, while a long monophthong is long because it is com-
prised of two sequentially-timed gestures, each of which has
identical targets. A diphthong has the same underlying structure
as a long monophthong (two targets), but has different param-
eters for each of the targets, thus yielding movement from the
first target to the second. However, this model does not contain
appropriate mechanisms that would help to explain observed
variability in vowels, such as the role of perceptually-driven
change and the mechanisms behind variability in an individual
speaker. One possibility is that each speaker has a single tar-
get for the component gestures, but that over time a community
drifts towards a new set of targets. This hypothesis is untenable,

as we know that speakers can also be highly variable. An alter-
native is that an individual speaker has a distribution of targets,
which would facilitate an account of observed variability. But
where do these distributions originate and how do they undergo
change?

We outline a solution by grounding phonological repre-
sentations in a dynamical planning field. Specifically, we use
the mathematical and conceptual insights of dynamic field the-
ory (DFT) (Schöner, Spencer, and The DFT Research Group
2016), which have proven to be a versatile tool for dynami-
cal models of phonological planning (Kirov and Gafos 2007;
Tilsen 2007; Roon and Gafos 2016; Tilsen 2019; Harper 2021;
Shaw and Tang 2023; Stern and Shaw 2023). A dynamic neural
field (DNF) model situates phonological planning in an activa-
tion field over a phonetic parameter range. A dynamical equa-
tion specifies the evolution of field activation until some value
reaches a threshold, which is selected as the parameter value
for speech production. We then model production and percep-
tion as inputs to the field, allowing us track how the field de-
velops over real-time speech planning, as well as over longer
timescales. The following model is inspired by integrative dy-
namical models of timing, planning and execution (Tilsen 2018;
Tilsen 2019), as well as by the proof-of-concept DFT model of
sound change in Kirov and Gafos (2007).

2. Model architecture
2.1. Dynamic neural field model

A phonological planning representation is modelled as a dy-
namic neural field, which evolves according to (1) (Schöner,
Spencer, and The DFT Research Group 2016). τ dictates the
rate of field evolution, −u(x, t) is time-dependent activation at
each field site x, h is the resting level of the neural field, s(x, t)
represents an input to the field, and ξ(x, t) is Gaussian noise
scaled by a factor q.

τ u̇(x, t) = −u(x, t) + h+ s(x, t)

+

∫
k(x− x′)g(u(x′, t))dx′

+ qξ(x, t) (1)

An input s(x, t) represents any task-specific input, such as
phonological planning units or perceptual input, and is mod-
elled in (2) as a Gaussian distribution over a parameter x with
amplitude a, centroid p and width w. A model can have multi-
ple inputs, which are summed as s1(x, t)+ s2(x, t)+ sn(x, t).

s(x, t) =
∑
i

ai exp

[
− (x− pi)

2

2w2
i

]
(2)
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The interaction kernel k(x − x′) in (3) defines excita-
tory and inhibitory forces across the DNF. Each field location
only contributes to above-threshold activation when it exceeds
a threshold of u = 0. Interaction is excitatory for nearby lo-
cations and inhibitory for distal locations. cexc, σexc are the
mean and standard deviation of the excitatory component, while
cinh, σinh are the mean and standard deviation of the inhibitory
component. cglob is a global inhibition constant.

k(x− x′) =
cexc√
2πσexc

exp

[
− (x− x′)2

2σ2
exc

]
− cinh√

2πσinh

exp

[
− (x− x′)2

2σ2
inh

]
− cglob (3)

The interaction kernel is gated by a sigmoidal function
g(u), where β is the slope of the sigmoid and α is a threshold,
typically set to α = 0, whereby only activation values above
zero contribute to supra-threshold activation.

g(u) =
1

1 + exp(−β(u− α))
(4)

2.2. Coupled oscillator model of gestural timing

We model phonological planning as separate planning inputs
snuc(x, t), sglide(x, t) for the nucleus and offglide. The rela-
tive timing of these inputs is determined via the coupled oscil-
lator model in (5) (Tilsen 2018). Φij is the relative phase be-
tween oscillators i, j, such that Φij = θi − θj . Cij is a matrix
of coupling strengths between oscillators i, j, where Cij > 0 is
in-phase and Cij < 0 is anti-phase.

θ̇i = 2πfi +ΣjCij sin(Φij) (5)

We model all planning units with the same oscillator fre-
quency f = 4 Hz and each unit lasts for 200 ms. If two vowel
planning units of 200 ms are coupled anti-phase then the of-
fglide will begin 100 ms after the nucleus. This does not mean,
however, that the period of activation will be 300 ms, as there is
a time lag between an input to the DNF and activation reaching
the threshold. Above-threshold activation can also persist after
an input is removed, due to stability-promoting mechanisms in
the model. We ensure realistic vowel durations by setting input
amplitudes such that activation relaxes to resting level shortly
after an input is removed. While we believe that the timing of
gestural onsets via coupled oscillators is neurally plausible, the
notion of fixed input durations is likely not, so this represents
a simplifying heuristic in lieu of a more realistic mechanism,
such as feedback-induced gestural suppression (Tilsen 2019).

2.3. Task dynamic model

The DNF governs gestural selection, activation durations, and
time-varying gestural targets. We model gestural dynamics us-
ing the model in (6) from Saltzman and Munhall (1989), where
m is mass, b is a damping coefficient, k is a stiffness coefficient.
The task dynamic literature conventionally defines m = 1 and
b = 2

√
mk, which makes (6) a critically damped oscillator (see

Iskarous 2017 for an accessible overview of this model).

mẍ+ bẋ+ k(x− T (t)) = 0 (6)

Gestures are commonly represented by a single target T ,
but the DNF produces time-varying activations across a pa-
rameter range, which represent a dynamic target T (t). Tilsen

(2019) proposes a DNF model with dynamic targets, whereby
an activation-weighted target supplants the gestural blending
mechanism of Saltzman and Munhall (1989). In our study, the
target simply tracks the location of peak activation. This en-
forces stricter selection dynamics, as sudden changes in the lo-
cation of peak activation results in sudden changes in the target.

The presence of neural noise in the DNF means that the lo-
cation of peak activation is often a noisy function of time, so
how do we avoid overly noisy gestural trajectories? The key
concept is that the time-varying location of peak activation is a
dynamic input T (t) to the model in (6), not the actual articula-
tory movement trajectory. The stiffness term k acts as a restor-
ing force that governs the acceleration of the system. Lower
values of k constrain movement between dynamic target values,
essentially acting as a low-pass filter that forces smoothness on
trajectories. Importantly, this is not a form of ad-hoc smoothing,
but inherent to the dynamics of the system, allowing smooth
gestural trajectories to emerge from noisy neural outputs.

2.4. Computational implementation

All computational models in this paper were implemented
in Python 3.9.13, with numerical integration computed using
scipy.integrate.solve_ivp. Numerical parameters
are as follows: DNF [x = [−10, 10], τ = 50, h = −2,
ξ = N (0, 1), q = 3, ∆t = 0.001, ∆x = 0.1]; kernel: [cexc =
1, cinh = 0.5, cglob = 0.1, σexc = 1, σinh = 3], sigmoid:
[α = 0, β = 1.5]; coupled oscillator: [∆t = 0.001, f = 4];
task dynamics: [∆t = 0.001, m = 1, k = 2/∆t]. Parameter
values encode relative relationships between elements and the
specific values are not integral to the model.

3. Simulation results
3.1. Long monophthongs vs. diphthongs

Figure 1 shows example DNFs for three cases: (1) a long
monophthong with two identical targets, p = [0,0]; (2) a diph-
thong with two different targets, p = [3,0]; (3) a diphthong with
a bigger distance between two targets, p = [5,0]. The first target
has amplitude a = 3 and the second a = 6 to represent the
difference in relative blending weight in favour of the offglide
in traditional task dynamic models. The parameter range rep-
resents an abstraction for Tongue Body Constriction Location
(TBCL), where 0 is a palatal vowel and 5 is a pharyngeal vowel
(the parameter range is purely heuristic for the purposes of illus-
tration). In the top row, the left panel shows a single peak: the
second input is at the same location as the first, thereby boosting
the peak to a higher activation level. The middle panel shows
the emerge of two peaks, which briefly overlap, causing a sud-
den change in the location of maximum activation. The right
panel shows a similar dynamic, but the first input sits at a higher
value on the parameter range, resulting in a larger difference in
the location of peak activation between onset and offset.

The second row of Figure 1 shows the location of peak
activation on the parameter axis (the noisy field means there
are minor jumps in this value between time-steps). The third
and fourth rows show the output of task dynamic simulations,
with the dynamic target as time-varying input (initial position
x = −1; initial velocity = 0 for all examples). Note that the
position and velocity trajectories are moderately smooth, with
some minor perturbations in the velocity signal. This demon-
strates that the distinction between a long monophthong (single
velocity minimum) and a diphthong (two velocity minima) can
be captured by the model.
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Figure 1: ROW 1: DNFs for three vowels with increasing degrees of diphthongisation from left-to-right (grey plane = threshold).
ROW 2: time-varying location of peak activation in each DNF. ROWS 3 & 4: Task dynamic simulation based on dynamic targets from
each DNF. Time in rows 2–4 corresponds to the interval between the onset and offset of supra-threshold activation in each field.

3.2. Production-perception model

We now present a model of how a speaker’s phonological plan-
ning representation could undergo change from a long monoph-
thong to a diphthong. This is a highly simplified model of
production-perception inspired by Kirov and Gafos (2007) in
which two speakers (A and B) interact. Specifically, speaker A
produces a long monophthong with two identical targets. They
then perceive speaker B producing the same vowel, but with a
slightly different phonetic target for the nucleus. This represents
perceptual input to speaker A’s DNF, which changes their mem-
ory trace for the next production to a minor degree. This process
repeats, with speaker A producing a vowel, perceiving speaker
B’s vowel, and so on. This is obviously a highly idealised model
of interaction, as the influence is unidirectional (speaker B in-
fluences speaker A, but speaker A does not influence speaker
B) and the only variation in speaker B’s production is due to the
addition of random noise added to their target value.

A long vowel is comprised of two inputs: snuc(x, t) and
sglide(x, t). We keep sglide(x, t) constant across production-
perception loops, but vary snuc(x, t) according to (7), where α
and γ are weights for the respective task and perceptual inputs.
Nucleus and glide both begin with p = 0, w = 0.7, with input

amplitudes of a = 3 (nucleus) and a = 6 (offglide). Across
production-perception loops, the current sinuc(x, t) is:

sinuc(x, t) = αsi−1
nuc(x, t) + γsperception(x, t) (7)

sperception(x, t) is defined as in equation (2) for s(x, t),
with a = 0.3, w = 0.7, except p is calculated as:

p = argmax
x

u(x, t) + bias+ qξ (8)

where argmaxx u(x, t) is the TBCL parameter corre-
sponding to the location of maximum activation (sampled at t
= 100), bias is a numerical value representing the difference
between speaker A’s target and the perceived phonetic target
from speaker B (here bias = 1.5), and q is a weighting factor
that scales Gaussian noise ξ in the range [0,1]. The task input
snuc(x, t) is weighted by α = 0.99, representing very slow
memory decay, and the sperception(x, t) input is weighted by
γ = 0.2. Higher values of γ increase the influence of the per-
ceptual input, resulting in faster change over repeated loops.

The production-perception loop was run for 150 iterations
and the resulting activation distributions at several iteration
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steps are shown in Figure 2. After a number of interactions with
this ‘biased’ speaker B, speaker A’s activation field for the nu-
cleus shifts away from the initial state towards a new peak. No-
tably, the offglide peak does not change very much at all, show-
ing that this target remains stable. The nucleus, however, un-
dergoes change, with the resulting vowel being gradually more
diphthongal because the centroid of the nucleus distribution in-
creasingly diverges from the offglide as the iterations increase.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Parameter value

6

4

2

0

2

4

Ac
tiv

at
io

n

0
25
50
75
100
125
150

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Parameter value

6

4

2

0

2

4

6

Ac
tiv

at
io

n

0
25
50
75
100
125
150

Figure 2: Activation distributions at selected steps of the
production-perception loops for nucleus target sampled at t =
100 (top) and offglide target at t = 300 (bottom).

4. Discussion and conclusion
In summary, we model gestural selection, activation and artic-
ulatory dynamics using a combination of dynamic field theory,
coupled oscillators and task dynamic models. This allows us to
pose specific mechanistic connections between different com-
ponents of the model, which yields behaviourally-realistic ar-
ticulatory trajectories for long monophthongs and diphthongs,
grounded in neurally-plausible dynamical mechanisms. We
also use the same mathematical and conceptual language to
propose a mechanism for variation and change in the phono-
logical representations of individual speakers, thereby identi-
fying a clear link between short-term synchronic variation and
medium-term change in the diphthongisation of long vowels.

In terms of future research, the model assumes that gestu-
ral parameters, such as TBCL, are directly retrievable in per-
ception. While speakers can undoubtably infer articulatory ges-

tures from acoustics, the mapping is unlikely to be linear or per-
fect and a more realistic model requires a perceptual-acoustic
field that projects to a tract variable field. Second, our model
of between-speaker interactions is highly idealised and our fu-
ture research aims to develop more complex models of interac-
tion between small groups of speakers. Finally, while our DNF
claims to be a neural model, we make no claims about cortical
or subcortical localisation. Instead, the DNF is an abstraction
that models the functional behaviour of a neural population,
which may actually be distributed over different areas of the
brain (Schöner, Spencer, and The DFT Research Group 2016).
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