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Abstract
Spoken language is characterised by a high-dimensional and
highly variable set of physical movements that unfold over time.
What are the fundamental dynamical principles that underlie
this signal? In this study, we demonstrate the use of physics-
informed machine learning (sparse symbolic regression) for
discovering new dynamical models of speech articulation. We
first demonstrate the model discovery procedure on simulated
data and show that the algorithm is able to discover the origi-
nal model with near-perfect accuracy, even when the data con-
tain extensive variation in duration, initial conditions and tar-
get positions, as well as in the presence of added noise. We then
demonstrate a proof-of-concept applying the same technique to
empirical data, which reveals a small set of candidate dynami-
cal models with increasing levels of complexity and accuracy.

Keywords: speech production, sparse symbolic regression, ar-
ticulatory phonology, task dynamics, articulatory data

1. Introduction
A fundamental aim in the study of language is the discovery
of abstract invariants that underlie the variability observed in
performance. For example, speech production involves a set
of low-dimensional combinatorial units that are physically re-
alised as a set of variable and high-dimensional motions. How
do we best model the relationship? One solution is proposed
by Articulatory Phonology/ Task Dynamics (AP/TD), in which
phonetics and phonology are isomorphic, with the fundamental
unit being the speech gesture: an abstract goal-driven force di-
recting the vocal tract to a target state (Browman and Goldstein
1992; Tilsen 2016; Iskarous 2017).

Saltzman and Munhall (1989) propose a model of the ges-
ture (hereafter abbreviated as SM89) as a critically damped har-
monic oscillator (1), where k is a stiffness coefficient, m is a
mass coefficient, and the damping coefficient b = 2

√
mk.

mẍ+ bẋ+ kx = 0 (1)

The SM89 model has long been the core gestural equa-
tion underpinning AP/TD, but it fails to capture the quasi-
symmetrical velocity profiles and time-to-peak velocities typ-
ical of empirical data. Byrd and Saltzman (2003) show this
can be solved via ramping functions, making gestural activation
time-dependent. Sorensen and Gafos (2016) argue that this is
an undesirable solution and that empirically realistic trajecto-
ries can be achieved by instead allowing the restoring force to
be non-linear via a cubic term dx3 in (2). This also eliminates
the need for time dependence once the gesture is initiated.

mẍ+ bẋ+ kx− dx3 = 0 (2)

This model reproduces many characteristics of empirical
velocity profiles, but there may still be some room for im-
provement. For instance, Elie, Lee, and Turk (2023) advance
a general Tau model that outperforms the SG16 model in fit-
ting empirical data. Beyond conventional models of the gesture,
there is also considerable scope for further developing task dy-
namic models of other domains, such as prosodic time-series
(Iskarous, Cole, and Steffman 2024), disordered speech (Parrell
et al. 2023), and signed languages. In many cases, we might
have a lot of data, but lack sufficient predictions of the under-
lying dynamics to propose a model, or we may seek alternative
models that better fit empirical data. This raises a question: how
can we efficiently develop new dynamical models of speech?

We solve the problem of model discovery by leveraging
recent developments in dynamical systems and machine learn-
ing that allow us to learn symbolic equations directly from data
(Schmidt and Lipson 2009; Brunton, Proctor, and Kutz 2016).
In such cases, we want to find a small number of model terms
that expose the underlying dynamics, as opposed to a neural net-
work that may have a very large number of parameters. Under-
pinning this is symbolic regression, whereby a function f can be
approximated from X, Ẋ – which represent time-varying states
x(t), ẋ(t) – as a combination of non-linear functions:

Ẋ = Θ(X)Ξ (3)
where Θ(X) is a library of non-linear functions

Θ(X) = [1XX2X3 . . . sinXcosX] (4)
and Ξ is a vector of coefficients corresponding to the func-

tions in Θ(X).

Ξ = [ξ1ξ2ξ3 . . . ξn] (5)
Without any constraints, the above model is likely to pro-

duce many non-zero coefficients in Ξ that do not contribute
much to the underlying system, adding model complexity and
increasing the risk of overfitting. In order to promote sparsity
in Ξ, sparse symbolic regression optimises for a sparse vector
of coefficients for each function in Θ(X). An example optimi-
sation is Sequential Thresholded Least-Squares, which solves a
least squares solution for Ξ, thresholds any coefficients below a
value λ, and repeats this process until an optimally sparse model
is determined (Brunton, Proctor, and Kutz 2016).

The sparse symbolic regression method outlined above
falls into a general class of SINDy (Sparse Identification of
Non-linear Dynamics) models. SINDy models can accurately
discover the governing equations of known systems, such as
chaotic Lorenz and fluid dynamic equations, as well as discover
new models in applications such as astrophysics (Pasquato et al.
2022). For more details see Brunton, Proctor, and Kutz (2016)
and Champion et al. (2020).
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2. Methods
The first step in model discovery is obtaining one or more time-
series that represent the output of the system under study. In
our case, this is the position and velocity of the vocal tract ar-
ticulators. We aim to model a single speech gesture, so each
trajectory represents a single gesture, defined as the interval be-
tween a pair of successive zero crossings in the velocity signal.

The next step is to select a library of candidate functions.
From AP/TD research reviewed above, we know that articula-
tory signals are often well-approximated by polynomial func-
tions, such that a function f(x) can be approximated as a sum
of polynomials of increasing order, as in (6), where an is the
coefficient of each term (note that a0 is a constant). In this
instance, we do not allow interactions between terms, such as
xẋ2, but allowing this would be a trivial addition.

f(x) = a0+a1x+a2ẋ+a3x
2+a4ẋ

2+a5x
3+a6ẋ

3+. . . (6)

A key aspect of SINDy is that we can incorporate phys-
ical constraints on the discovered model, such that a discov-
ered coefficient must have a specific value, or two coefficients
must be in a particular ratio. To illustrate, take the equation
ẍ = −bẋ − kx. In order to discover or numerically solve a
second-order differential equation, we split it into a series of
first-order equations with the introduction of a new variable y,
such that y = ẋ and ẏ = −by− kx. If SINDy finds y = 1.00ẋ
then we can just substitute this value easily into the second
equation. If it finds a more complex equation, however, such
as y = 43.62 − 1.55x + 0.90ẋ, then it would yield a final
model of ẍ = −b(43.62− 1.55x+ 0.90ẋ)− kx.

To avoid this level of complexity, we place a physical con-
straint on y such that y !

= 1.00ẋ. We later show that relaxing
this constraint results in models that better fit the data, but also
add significant complexity. We implement constraints using the
SR3 (sparse relaxed regularized regression) algorithm (Cham-
pion et al. 2020), which aims to minimise (7), where R(W ) is a
regularisation function that acts as a prior on sparsity promotion
and λ weights this constraint. Note that λ = η2/2ν, where ν
determines the closeness of the match between Ξ and W .

min
Ξ,W

1

2
||Ẋ −Θ(X)Ξ||2 + λR(W ) +

1

2ν
||Ξ−W ||2 (7)

We use weighted ℓ0 regularisation, with a coefficient
threshold of η = 0.1 and ν = 1. A model is discovered for
each trajectory and we perform model ensembling over these
individual models to arrive at a final model. We evaluate the
accuracy of the model by generating a prediction from the dis-
covered model for each token. We then score the accuracy of
the predicted trajectory using R2 and RMSE metrics.

3. Discovering models from simulated data
3.1. Generating simulated data

In order to test the ability of SINDy to discover models from
data, we generated a simulated data set with a number of pa-
rameters varied across a set of trajectories. Specifically, we
simulated data across combinations of duration = {0.05, 0.10,
0.15, 0.20} seconds, initial position = {0.0, 0.1, ..., 1.0}, target
= {0.0, 0.1, ..., 1.0} and noise = {normal, noise}. In all sim-
ulations, k = 2000 and b = 2

√
k. The noise condition corre-

sponds to the addition of random Gaussian noise between [0,

1], scaled by a factor of 0.01, to each position and velocity
sample from the simulated solution. We removed cases from
the above parameter combinations where the target was equal
to the initial position, as the trajectory does not move from
its initial condition in these instances. These parameters were
used as inputs to the SM89 second-order differential equation
ẍ + bẋ + kx = 0 which was solved numerically using the
scipy.integrate.solve_ivp function in Python. This
resulted in 880 unique simulated trajectories.

3.2. Results

We perform SINDy discovery on the SM89 model using a sim-
ple candidate library containing the terms x and ẋ, which means
that the maximal equation is:

ẍ = a0 + a1x+ a2ẋ (8)

The SINDy models finds equation (9) for all trajectories.
Note that SINDy reports the target as kC, but we can substitute
kx − kC with k(x − C). As such, we correctly identify the
original equation that simulated the data, even in the presence
of the variable durations, targets, initial conditions and noise.

ẍ = −bẋ− k(x− C) (9)

In the no noise condition, parameter estimation is near
100% accuracy, with the difference between real/estimated co-
efficients at C = 0.01% (σ = 0.01), k = 0.08% (σ = 0.02), b
= 0.03% (σ = 0.01). Reconstruction of the simulated trajecto-
ries is also highly accurate, with mean R2 = 1.00 (σ = 0.01)
and mean RMSE = 0 (σ = 0.02). The addition of noise affects
parameter estimation to a minor extent, with mean R2 = 0.99
(σ = 0.12) and mean RMSE = 0.03 (σ = 0.02). The differ-
ence between real and estimated coefficients in the noisy con-
dition is C = 0.57% (σ = 1.20), k = 3.00% (σ = 3.78), b =
3.96% (σ = 4.37). The worst performing noisy trajectory had
R2 = 0.84
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Figure 1: Simulated trajectories and SINDy predictions for
noise-free data. The y-axis varies across each plot to fit the
data’s range.

Figure 1 shows 5 randomly sampled trajectories comparing
simulated data and discovered model predictions. The model
estimates the underlying trajectories with a very high degree of
accuracy, even when the data are truncated as in the top two
panels. We are unable to show a plot of the noisy data due to
space constraints, but reconstruction of the underlying trajec-
tory is also near-perfect in this condition, even in the presence
of considerable random noise.
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4. Discovering models from empirical data
We now move on to a proof-of-concept example, showing how
we can discover parsimonious models from empirical data.

4.1. Data

We use data from the X-Ray Microbeam corpus (Westbury
1994). As a case study, we only analyse data from a single
speaker (JW11), as this allows us to explore the initial inter-
pretation of model coefficients, without having to take into ac-
count the significant added complexity introduced by between-
speaker variation. Specifically, we use a task in which speak-
ers produce a string of repetitions of the syllable /p@ p@ p@ .../.
This allows us to examine repetitions of the same gesture, which
acts as a valuable test of how sensitive the model discovery pro-
cedure is to small variations within one speaker. We see this
evaluation as a necessary step prior to applying the method to
data with a much greater range of variation. We calculated lip
aperture as the Euclidean distance between upper and lower lip
sensors, and approximated velocity as the first-derivative of the
position values. Gestures were segmented into separate clo-
sure and release gestures based on zero-crossings in the velocity
signal. In total, we obtained 29 individual gestural trajectories
from repetitions of /p/ for this speaker.

4.2. First-order models

We begin by fitting a simple model to the data: a first-order
differential equation for ẋ. Note that here we are only solving
for the velocity of the gesture, unlike the SM89 model which
solves for acceleration ẍ. We predict that a first-order model
may be a worse fit for the data than a second-order model, but
we begin with a simpler model to assess its baseline accuracy.

Table 4.2 shows a first-order model fitted with different fea-
ture libraries of polynomial degrees between one and four. Note
that prediction accuracies are for the gesture’s position variable
only, because SINDy integrates over the velocity to return po-
sition. We comment on the model’s accuracy in estimating ve-
locity later in this section. A first-degree model performs very
poorly with mean R2 = 0.02, second/third-degree models have
mean R2 = 0.92, and the fourth-degree model has mean R2 =
0.89. It is clear that the addition of cubic terms has only a negli-
gible effect and the quartic term actively degrades performance,
so we now explore this first-order second-degree model further.

degree R2 mean R2σ R2 min R2 max
1 0.02 0.02 0.00 0.07
2 0.92 0.01 0.89 0.94
3 0.92 0.01 0.90 0.94
4 0.89 0.17 0.01 0.94

Table 1: R2 statistics for first-order models with different poly-
nomial degrees fitted to lip aperture data.

The first-order second-degree model returns a simple
quadratic equation:

ẋ = a− bx+ cx2 (10)

There is a linear relationship between a, b, c, such that in
these data a ≈ −14b ≈ 830c. As this is a quadratic equation,
the quartic term cx2 determines the width of the velocity peak,
the linear term bx controls symmetry around the y-axis, and the
constant a determines the y-intercept.

Figure 2 shows randomly sampled lip aperture trajectories
and SINDy predictions. We can see very good reconstruction
of the position data, but the velocity profiles are less accurate:
while the qualitative shape is maintained, the onset/offset are
displaced from zero and there are some noticeable mismatches.
In summary, a first-order model provides a simple qualitative
model that approximates the system, but clearly underperforms
in predicting change in velocity. As a result, we anticipate that
a second-order model should improve performance.
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Figure 2: Lip aperture trajectories and SINDy first-order model
predictions, with polynomial terms up to quadratic. The y-axis
varies across each plot to fit the data’s range.

4.3. Second-order models

We now fit a second-order model to the data, solving for the
system’s acceleration ẍ. This should allow us to better cap-
ture changes in velocity. Note that we impose a physical con-
straint on the velocity as detailed in Section 2, which simply
aims to reduce model complexity and aid interpretability. Ta-
ble 4.3 shows a second-order model fitted with different fea-
ture libraries of polynomial degrees between one and four. The
first- and second-degree models have mean R2 = 0.96, which is
slightly better than the higher polynomials. This suggests that a
first-degree model can perform well, so we explore this further.

degree R2 mean R2σ R2 min R2 max
1 0.96 0.00 0.95 0.96
2 0.96 0.00 0.95 0.96
3 0.95 0.01 0.92 0.96
4 0.94 0.02 0.90 0.96

Table 2: R2 statistics for second-order models with different
polynomial degrees fitted to lip aperture data.

The second-order first-degree model returns (11), which is
equivalent to the Saltzman and Munhall (1989) model.

ẍ = −bẋ− k(x− C) (11)

Figure 3 shows the same 5 lip aperture trajectories as in
Figure 2, with SINDy predictions from the second-order model.
The discovered model fits better than the first-order model, but
with some inaccuraries towards the end of the velocity trajec-
tory. We do find, however, that this model is able to generate
more symmetrical velocities than the SM89 model by relaxing
the critical damping constraint. This introduces a different con-
straint: the model parameters must exist in a non-linear relation-
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ship between b, k and duration in a way that avoids oscillation
(Shaw and Chen 2019).
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Figure 3: Lip aperture trajectories and SINDy second-order
model predictions. Model includes first-degree polynomials and
physical constraints. The y-axis varies across each plot to fit the
range of the data.

If we relax the physical constraint y !
= 1.00ẋ in ẍ = −by−

kx then SINDy discovers the more complex model in (12):

ẍ = −b(a− cx+ dẋ)− kx (12)
Figure 4 shows example model predictions, with much im-

proved fit between data and model. This comes at the cost, how-
ever, of adding significant complexity into the model.
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Figure 4: Lip aperture trajectories and SINDy second-order
model predictions. Model includes first-degree polynomials but
no physical constraints. The y-axis varies across each plot to fit
the data’s range.

5. Discussion and conclusion
This paper demonstrates how sparse symbolic regression can
be used to identify dynamical principles of articulatory dynam-
ics. The discovered models show a trade-off between simplicity
and accuracy, from a simple first-order model that fits less accu-
rately to a second-order model with no physical constraints that
fits near-perfectly but is quite complex. In some cases, however,
capturing the system’s attractor dynamics may be more impor-
tant than predicting trajectories, so the simpler models should
not be immediately discounted. In future research, we will ex-
plore the discovered models via simulation to probe the dynam-
ical principles they expose around the underlying system. In

addition to this, we aim to test how well the discovered models
generalise to different data sets. We note that the models should
be treated with caution at this stage, as they are based on 29
trajectories of the same gesture from a single speaker, so these
data may not be a good representation of all gesture types or
speakers. This minimal proof-of-concept was driven by inter-
pretability, but it clearly motivates extending this approach to a
larger data set, which is the focus of ongoing research.
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