1

First search for dark-trident processes using the MicroBooNE detector

2	P. Abratenko, ³⁸ O. Alterkait, ³⁸ D. Andrade Aldana, ¹⁵ L. Arellano, ²¹ J. Asaadi, ³⁷ A. Ashkenazi, ³⁵
3	S. Balasubramanian, ¹² B. Baller, ¹² G. Barr, ²⁸ D. Barrow, ²⁸ J. Barrow, ^{22, 25, 35} V. Basque, ¹²
4	O. Benevides Rodrigues, ¹⁵ S. Berkman, ^{12, 24} A. Bhanderi, ²¹ A. Bhat, ⁷ M. Bhattacharya, ¹² M. Bishai, ³ A. Blake, ¹⁸
5	B. Bogart, ²³ T. Bolton, ¹⁷ J. Y. Book, ¹⁴ M. B. Brunetti, ⁴¹ L. Camilleri, ¹⁰ Y. Cao, ²¹ D. Caratelli, ⁴ F. Cavanna, ¹²
6	G. Cerati, ¹² A. Chappell, ⁴¹ Y. Chen, ³¹ J. M. Conrad, ²² M. Convery, ³¹ L. Cooper-Troendle, ²⁹ J. I. Crespo-Anadón, ⁶
7	R. Cross, ⁴¹ M. Del Tutto, ¹² S. R. Dennis, ⁵ P. Detje, ⁵ A. Devitt, ¹⁸ R. Diurba, ² Z. Djurcic, ¹ R. Dorrill, ¹⁵
8	K. Duffy, ²⁸ S. Dytman, ²⁹ B. Eberly, ³³ P. Englezos, ³⁰ A. Ereditato, ^{7,12} J. J. Evans, ²¹ R. Fine, ¹⁹ O. G. Finnerud, ²¹
9	W. Foreman, ¹⁵ B. T. Fleming, ⁷ D. Franco, ⁷ A. P. Furmanski, ²⁵ F. Gao, ⁴ D. Garcia-Gamez, ¹³ S. Gardiner, ¹²
10	G. Ge, ¹⁰ S. Gollapinni, ¹⁹ E. Gramellini, ²¹ P. Green, ²⁸ H. Greenlee, ¹² L. Gu, ¹⁸ W. Gu, ³ R. Guenette, ²¹
11	P. Guzowski, ²¹ L. Hagaman, ⁷ O. Hen, ²² C. Hilgenberg, ²⁵ G. A. Horton-Smith, ¹⁷ Z. Imani, ³⁸ B. Irwin, ²⁵
12	M. S. Ismail, ²⁹ C. James, ¹² X. Ji, ²⁶ J. H. Jo, ³ R. A. Johnson, ⁸ YJ. Jwa, ¹⁰ D. Kalra, ¹⁰ N. Kamp, ²² G. Karagiorgi, ¹⁰
13	W. Ketchum, ¹² M. Kirby, ^{3,12} T. Kobilarcik, ¹² I. Kreslo, ² M. B. Leibovitch, ⁴ I. Lepetic, ³⁰ JY. Li, ¹¹ K. Li, ⁴² Y. Li, ³
14	K. Lin, ³⁰ B. R. Littlejohn, ¹⁵ H. Liu, ³ W. C. Louis, ¹⁹ X. Luo, ⁴ C. Mariani, ⁴⁰ D. Marsden, ²¹ J. Marshall, ⁴¹
15	N. Martinez, ¹⁷ D. A. Martinez Caicedo, ³² S. Martynenko, ³ A. Mastbaum, ³⁰ I. Mawby, ⁴¹ N. McConkey, ³⁹
15	V. Meddage, ¹⁷ J. Micallef, ^{22, 38} K. Miller, ⁷ A. Mogan, ⁹ T. Mohayai, ^{12, 16} M. Mooney, ⁹ A. F. Moor, ⁵ C. D. Moore, ¹²
10	L. Mora Lepin, ²¹ M. M. Moudgalya, ²¹ S. Mulleriababu, ² D. Naples, ²⁹ A. Navrer-Agasson, ²¹ N. Nayak, ³
18	M. Nebot-Guinot, ¹¹ J. Nowak, ¹⁸ N. Oza, ¹⁰ O. Palamara, ¹² N. Pallat, ²⁵ V. Paolone, ²⁹ A. Papadopoulou, ¹
10	V. Papavassiliou, ²⁷ H. B. Parkinson, ¹¹ S. F. Pate, ²⁷ N. Patel, ¹⁸ Z. Pavlovic, ¹² E. Piasetzky, ³⁵ I. Pophale, ¹⁸
20	X. Qian, ³ J. L. Raaf, ¹² V. Radeka, ³ A. Rafique, ¹ M. Reggiani-Guzzo, ^{11,21} L. Ren, ²⁷ L. Rochester, ³¹ J. Rodriguez
20	Rondon, ³² M. Rosenberg, ³⁸ M. Ross-Lonergan, ¹⁹ C. Rudolf von Rohr, ² I. Safa, ¹⁰ G. Scanavini, ⁴² D. W. Schmitz, ⁷
21	A. Schukraft, ¹² W. Seligman, ¹⁰ M. H. Shaevitz, ¹⁰ R. Sharankova, ¹² J. Shi, ⁵ E. L. Snider, ¹² M. Soderberg, ³⁴
23	S. Söldner-Rembold, ²¹ J. Spitz, ²³ M. Stancari, ¹² J. St. John, ¹² T. Strauss, ¹² A. M. Szelc, ¹¹ W. Tang, ³⁶ N. Taniuchi, ⁵
23	K. Terao, ³¹ C. Thorpe, ²¹ D. Torbunov, ³ D. Totani, ⁴ M. Toups, ¹² YT. Tsai, ³¹ J. Tyler, ¹⁷ M. A. Uchida, ⁵
25	T. Usher, ³¹ B. Viren, ³ M. Weber, ² H. Wei, ²⁰ A. J. White, ⁷ S. Wolbers, ¹² T. Wongjirad, ³⁸ M. Wospakrik, ¹²
25	K. Wresilo, ⁵ W. Wu, ²⁹ E. Yandel, ⁴ T. Yang, ¹² L. E. Yates, ¹² H. W. Yu, ³ G. P. Zeller, ¹² J. Zennamo, ¹² and C. Zhang ³
27	(The MicroBooNE Collaboration)*
20	¹ Argonne National Laboratory (ANL) Lemont IL 60439 USA
28 29	¹ Argonne National Laboratory (ANL), Lemont, IL, 60439, USA ² Universität Bern, Bern CH-3012, Switzerland
	² Universität Bern, Bern CH-3012, Switzerland ³ Brookhaven National Laboratory (BNL), Upton, NY, 11973, USA
29	 ² Universität Bern, Bern CH-3012, Switzerland ³ Brookhaven National Laboratory (BNL), Upton, NY, 11973, USA ⁴ University of California, Santa Barbara, CA, 93106, USA
29 30 31 32	² Universität Bern, Bern CH-3012, Switzerland ³ Brookhaven National Laboratory (BNL), Upton, NY, 11973, USA ⁴ University of California, Santa Barbara, CA, 93106, USA ⁵ University of Cambridge, Cambridge CB3 0HE, United Kingdom
29 30 31 32 33	² Universität Bern, Bern CH-3012, Switzerland ³ Brookhaven National Laboratory (BNL), Upton, NY, 11973, USA ⁴ University of California, Santa Barbara, CA, 93106, USA ⁵ University of Cambridge, Cambridge CB3 0HE, United Kingdom ⁶ Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid E-28040, Spain
29 30 31 32	² Universität Bern, Bern CH-3012, Switzerland ³ Brookhaven National Laboratory (BNL), Upton, NY, 11973, USA ⁴ University of California, Santa Barbara, CA, 93106, USA ⁵ University of Cambridge, Cambridge CB3 0HE, United Kingdom
29 30 31 32 33 34	 ² Universität Bern, Bern CH-3012, Switzerland ³ Brookhaven National Laboratory (BNL), Upton, NY, 11973, USA ⁴ University of California, Santa Barbara, CA, 93106, USA ⁵ University of Cambridge, Cambridge CB3 0HE, United Kingdom ⁶ Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid E-28040, Spain ⁷ University of Chicago, Chicago, IL, 60637, USA ⁸ University of Cincinnati, Cincinnati, OH, 45221, USA ⁹ Colorado State University, Fort Collins, CO, 80523, USA
29 30 31 32 33 34 35 36 37	 ² Universität Bern, Bern CH-3012, Switzerland ³ Brookhaven National Laboratory (BNL), Upton, NY, 11973, USA ⁴ University of California, Santa Barbara, CA, 93106, USA ⁵ University of Cambridge, Cambridge CB3 0HE, United Kingdom ⁶ Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid E-28040, Spain ⁷ University of Chicago, Chicago, IL, 60637, USA ⁸ University of Cincinnati, Cincinnati, OH, 45221, USA ⁹ Colorado State University, Fort Collins, CO, 80523, USA ¹⁰ Columbia University, New York, NY, 10027, USA
29 30 31 32 33 34 35 36 37 38	 ² Universität Bern, Bern CH-3012, Switzerland ³ Brookhaven National Laboratory (BNL), Upton, NY, 11973, USA ⁴ University of California, Santa Barbara, CA, 93106, USA ⁵ University of Cambridge, Cambridge CB3 0HE, United Kingdom ⁶ Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid E-28040, Spain ⁷ University of Chicago, Chicago, IL, 60637, USA ⁸ University of Cincinnati, Cincinnati, OH, 45221, USA ⁹ Colorado State University, Fort Collins, CO, 80523, USA ¹⁰ Columbia University, New York, NY, 10027, USA ¹¹ University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
29 30 31 32 33 34 35 36 37 38 39	 ² Universität Bern, Bern CH-3012, Switzerland ³ Brookhaven National Laboratory (BNL), Upton, NY, 11973, USA ⁴ University of California, Santa Barbara, CA, 93106, USA ⁵ University of Cambridge, Cambridge CB3 0HE, United Kingdom ⁶ Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid E-28040, Spain ⁷ University of Chicago, Chicago, IL, 60637, USA ⁸ University of Cincinnati, Cincinnati, OH, 45221, USA ⁹ Colorado State University, Fort Collins, CO, 80523, USA ¹⁰ Columbia University, New York, NY, 10027, USA ¹¹ University of Edinburgh, Edinburgh EH9 3FD, United Kingdom ¹² Fermi National Accelerator Laboratory (FNAL), Batavia, IL 60510, USA
29 30 31 32 33 34 35 36 37 38	 ² Universität Bern, Bern CH-3012, Switzerland ³ Brookhaven National Laboratory (BNL), Upton, NY, 11973, USA ⁴ University of California, Santa Barbara, CA, 93106, USA ⁵ University of Cambridge, Cambridge CB3 0HE, United Kingdom ⁶ Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid E-28040, Spain ⁷ University of Chicago, Chicago, IL, 60637, USA ⁸ University of Cincinnati, Cincinnati, OH, 45221, USA ⁹ Colorado State University, Fort Collins, CO, 80523, USA ¹⁰ Columbia University, New York, NY, 10027, USA ¹¹ University of Edinburgh, Edinburgh EH9 3FD, United Kingdom ¹² Fermi National Accelerator Laboratory (FNAL), Batavia, IL 60510, USA ¹³ University de Granada, Granada E-18071, Spain ¹⁴ Harvard University, Cambridge, MA 02138, USA
29 30 31 32 33 34 35 36 37 38 39 40	 ² Universität Bern, Bern CH-3012, Switzerland ³ Brookhaven National Laboratory (BNL), Upton, NY, 11973, USA ⁴ University of California, Santa Barbara, CA, 93106, USA ⁵ University of Cambridge, Cambridge CB3 0HE, United Kingdom ⁶ Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid E-28040, Spain ⁷ University of Chicago, Chicago, IL, 60637, USA ⁸ University of Cincinnati, Cincinnati, OH, 45221, USA ⁹ Colorado State University, Fort Collins, CO, 80523, USA ¹⁰ Columbia University, New York, NY, 10027, USA ¹¹ University of Edinburgh, Edinburgh EH9 3FD, United Kingdom ¹² Fermi National Accelerator Laboratory (FNAL), Batavia, IL 60510, USA ¹³ Universidad de Granada, Granada E-18071, Spain ¹⁴ Harvard University, Cambridge, MA 02138, USA
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43	 ² Universität Bern, Bern CH-3012, Switzerland ³ Brookhaven National Laboratory (BNL), Upton, NY, 11973, USA ⁴ University of California, Santa Barbara, CA, 93106, USA ⁵ University of Cambridge, Cambridge CB3 0HE, United Kingdom ⁶ Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid E-28040, Spain ⁷ University of Chicago, Chicago, IL, 60637, USA ⁸ University of Cincinnati, Cincinnati, OH, 45221, USA ⁹ Colorado State University, Fort Collins, CO, 80523, USA ¹⁰ Columbia University, New York, NY, 10027, USA ¹¹ University of Edinburgh, Edinburgh EH9 3FD, United Kingdom ¹² Fermi National Accelerator Laboratory (FNAL), Batavia, IL 60510, USA ¹³ Universidad de Granada, Granada E-18071, Spain ¹⁴ Harvard University, Cambridge, MA 02138, USA ¹⁵ Illinois Institute of Technology (IIT), Chicago, IL 60616, USA
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	 ² Universität Bern, Bern CH-3012, Switzerland ³ Brookhaven National Laboratory (BNL), Upton, NY, 11973, USA ⁴ University of California, Santa Barbara, CA, 93106, USA ⁵ University of Cambridge, Cambridge CB3 0HE, United Kingdom ⁶ Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid E-28040, Spain ⁷ University of Chicago, Chicago, IL, 60637, USA ⁸ University of Cincinnati, Cincinnati, OH, 45221, USA ⁹ Colorado State University, Fort Collins, CO, 80523, USA ¹⁰ Columbia University, New York, NY, 10027, USA ¹¹ University of Edinburgh, Edinburgh EH9 3FD, United Kingdom ¹² Fermi National Accelerator Laboratory (FNAL), Batavia, IL 60510, USA ¹³ University of Technology (IIT), Chicago, IL 60616, USA ¹⁵ Illinois Institute of Technology (IIT), Chicago, IL 60616, USA ¹⁶ Indiana University, KSU), Manhattan, KS, 66506, USA
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	 ² Universität Bern, Bern CH-3012, Switzerland ³ Brookhaven National Laboratory (BNL), Upton, NY, 11973, USA ⁴ University of California, Santa Barbara, CA, 93106, USA ⁵ University of Cambridge, Cambridge CB3 0HE, United Kingdom ⁶ Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid E-28040, Spain ⁷ University of Chicago, Chicago, IL, 60637, USA ⁸ University of Cincinnati, Cincinnati, OH, 45221, USA ⁹ Colorado State University, Fort Collins, CO, 80523, USA ¹⁰ Columbia University, New York, NY, 10027, USA ¹¹ University of Edinburgh, Edinburgh EH9 3FD, United Kingdom ¹² Fermi National Accelerator Laboratory (FNAL), Batavia, IL 60510, USA ¹³ Universidad de Granada, Granada E-18071, Spain ¹⁴ Harvard University, Cambridge, MA 02138, USA ¹⁶ Inliana University, Bloomington, IN 47405, USA ¹⁷ Kansas State University (KSU), Manhattan, KS, 66506, USA
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	 ² Universität Bern, Bern CH-3012, Switzerland ³ Brookhaven National Laboratory (BNL), Upton, NY, 11973, USA ⁴ University of California, Santa Barbara, CA, 93106, USA ⁵ University of Cambridge, Cambridge CB3 0HE, United Kingdom ⁶ Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid E-28040, Spain ⁷ University of Chicago, Chicago, IL, 60637, USA ⁸ University of Cincinnati, Cincinnati, OH, 45221, USA ⁹ Colorado State University, Fort Collins, CO, 80523, USA ¹⁰ Columbia University, New York, NY, 10027, USA ¹¹ University of Edinburgh, Edinburgh EH9 3FD, United Kingdom ¹² Fermi National Accelerator Laboratory (FNAL), Batavia, IL 60510, USA ¹³ Universidad de Granada, Granada E-18071, Spain ¹⁴ Harvard University, Cambridge, MA 02138, USA ¹⁵ Illinois Institute of Technology (IIT), Chicago, IL 60616, USA ¹⁶ Indiana University, Bloomington, IN 47405, USA ¹⁷ Kansas State University, Lancaster LA1 4YW, United Kingdom ¹⁹ Los Alamos National Laboratory (LANL), Los Alamos, NM, 87545, USA
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	 ² Universität Bern, Bern CH-3012, Switzerland ³Brookhaven National Laboratory (BNL), Upton, NY, 11973, USA ⁴ University of California, Santa Barbara, CA, 93106, USA ⁵ University of Cambridge, Cambridge CB3 0HE, United Kingdom ⁶ Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid E-28040, Spain ⁷ University of Chicago, Chicago, IL, 60637, USA ⁸ University of Cincinnati, Cincinnati, OH, 45221, USA ⁹ Colorado State University, Fort Collins, CO, 80523, USA ¹⁰ Columbia University, New York, NY, 10027, USA ¹¹ University of Edinburgh, Edinburgh EH9 3FD, United Kingdom ¹² Fermi National Accelerator Laboratory (FNAL), Batavia, IL 60510, USA ¹³ University, Cambridge, MA 02138, USA ¹⁵ Illinois Institute of Technology (IIT), Chicago, IL 60616, USA ¹⁶ Indiana University, Bloomington, IN 47405, USA ¹⁷ Kansas State University, Lancaster LA1 4YW, United Kingdom ¹⁹Los Alamos National Laboratory (LANL), Los Alamos, NM, 87545, USA ²⁰ Louisiana State University, Baton Rouge, LA, 70803, USA ²¹ The University of Manchester, Manchester M13 9PL, United Kingdom
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	 ²Universität Bern, Bern CH-3012, Switzerland ³Brookhaven National Laboratory (BNL), Upton, NY, 11973, USA ⁴University of California, Santa Barbara, CA, 93106, USA ⁵University of Cambridge, Cambridge CB3 0HE, United Kingdom ⁶Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid E-28040, Spain ⁷University of Chicago, Chicago, IL, 60637, USA ⁸University of Cincinnati, Cincinnati, OH, 45221, USA ⁹Colorado State University, Fort Collins, CO, 80523, USA ¹⁰Columbia University, New York, NY, 10027, USA ¹¹University of Edinburgh, Edinburgh EH9 3FD, United Kingdom ¹²Fermi National Accelerator Laboratory (FNAL), Batavia, IL 60510, USA ¹³Universidad de Granada, Granada E-18071, Spain ¹⁴Harvard University, Bloomington, IN 47405, USA ¹⁵Illinois Institute of Technology (IIT), Chicago, IL 60616, USA ¹⁶Indiana University (KSU), Manhattan, KS, 66506, USA ¹⁸Lancaster University, Lancaster LA1 4YW, United Kingdom ¹⁹Los Alamos National Laboratory (LANL), Los Alamos, NM, 87545, USA ²⁰Louisiana State University, Baton Rouge, LA, 70803, USA ²¹The University of Manchester, Manchester M13 9PL, United Kingdom ²²Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
29 30 31 32 33 34 35 36 37 38 39 40 41 41 42 43 44 45 46 47 48 49 50	 ² Universität Bern, Bern CH-3012, Switzerland ³Brookhaven National Laboratory (BNL), Upton, NY, 11973, USA ⁴ University of California, Santa Barbara, CA, 93106, USA ⁵ University of Cambridge, Cambridge CB3 0HE, United Kingdom ⁶ Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid E-28040, Spain ⁷ University of Chicago, Chicago, IL, 60637, USA ⁸ University of Cincinnati, Cincinnati, OH, 45221, USA ⁹ Colorado State University, Fort Collins, CO, 80523, USA ¹⁰ Columbia University, New York, NY, 10027, USA ¹¹ University of Edinburgh, Edinburgh EH9 3FD, United Kingdom ¹² Fermi National Accelerator Laboratory (FNAL), Batavia, IL 60510, USA ¹³ Universidad de Granada, Granada E-18071, Spain ¹⁴ Harvard University, Bloomington, IN 47405, USA ¹⁵ Illinois Institute of Technology (IIT), Chicago, IL 60616, USA ¹⁶ Indiana University (KSU), Manhattan, KS, 66506, USA ¹⁸ Lancaster University, Lancaster LA1 4YW, United Kingdom ¹⁹ Los Alamos National Laboratory (LANL), Los Alamos, NM, 87545, USA ²⁰ Louisiana State University, Blaom Rouge, LA, 70803, USA ²¹ The University of Manchester, Manchester M13 9PL, United Kingdom ²² Masachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	 ²Universität Bern, Bern CH-3012, Switzerland ³Brookhaven National Laboratory (BNL), Upton, NY, 11973, USA ⁴University of California, Santa Barbara, CA, 93106, USA ⁵University of Cambridge, Cambridge CB3 0HE, United Kingdom ⁶Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid E-28040, Spain ⁷University of Chicago, Chicago, IL, 60637, USA ⁸University of Cincinnati, Cincinnati, OH, 45221, USA ⁹Colorado State University, Fort Collins, CO, 80523, USA ¹⁰Columbia University, New York, NY, 10027, USA ¹¹University of Edinburgh, Edinburgh EH9 3FD, United Kingdom ¹²Fermi National Accelerator Laboratory (FNAL), Batavia, IL 60510, USA ¹³Universidad de Granada, Granada E-18071, Spain ¹⁴Harvard University, Bloomington, IN 47405, USA ¹⁵Illinois Institute of Technology (IIT), Chicago, IL 60616, USA ¹⁶Indiana University (KSU), Manhattan, KS, 66506, USA ¹⁸Lancaster University, Lancaster LA1 4YW, United Kingdom ¹⁹Los Alamos National Laboratory (LANL), Los Alamos, NM, 87545, USA ²⁰Louisiana State University, Baton Rouge, LA, 70803, USA ²¹The University of Manchester, Manchester M13 9PL, United Kingdom ²²Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	 ²Universität Bern, Bern CH-3012, Switzerland ³Brookhaven National Laboratory (BNL), Upton, NY, 11973, USA ⁴University of California, Santa Barbara, CA, 93106, USA ⁵University of Cambridge, CB3 0HE, United Kingdom ⁶Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid E-28040, Spain ⁷University of Chicago, Chicago, IL, 60637, USA ⁸University of Cincinnati, Cincinnati, OH, 45221, USA ⁹Colorado State University, Fort Collins, CO, 80523, USA ¹⁰Columbia University, New York, NY, 10027, USA ¹¹University of Edinburgh, Edinburgh EH9 3FD, United Kingdom ¹²Fermi National Accelerator Laboratory (FNAL), Batavia, IL 60510, USA ¹³Universidad de Granada, Granada E-18071, Spain ¹⁴Harvard University, Bloomington, IN 47405, USA ¹⁵Illinois Institute of Technology (IIT), Chicago, IL 60616, USA ¹⁶Indiana University, Lancaster LA1 4YW, United Kingdom ¹⁹Los Alamos National Laboratory (LANL), Los Alamos, NM, 87545, USA ²⁰Louisiana State University, Baton Rouge, LA, 70803, USA ²¹The University of Manchester, Manchester M13 9PL, United Kingdom ²²Massachusetts Institute of Technology (MT), Cambridge, MA, 02139, USA ²³University of Michigan, Ann Arbor, MI, 4809, USA

55	²⁸ University of Oxford, Oxford OX1 3RH, United Kingdom
56	²⁹ University of Pittsburgh, Pittsburgh, PA, 15260, USA
57	³⁰ Rutgers University, Piscataway, NJ, 08854, USA
58	³¹ SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
59	³² South Dakota School of Mines and Technology (SDSMT), Rapid City, SD, 57701, USA
60	³³ University of Southern Maine, Portland, ME, 04104, USA
61	³⁴ Syracuse University, Syracuse, NY, 13244, USA
62	³⁵ Tel Aviv University, Tel Aviv, Israel, 69978
63	³⁶ University of Tennessee, Knoxville, TN, 37996, USA
64	³⁷ University of Texas, Arlington, TX, 76019, USA
65	³⁸ Tufts University, Medford, MA, 02155, USA
56	³⁹ University College London, London WC1E 6BT, United Kingdom
67	⁴⁰ Center for Neutrino Physics, Virginia Tech, Blacksburg, VA, 24061, USA
68	⁴¹ University of Warwick, Coventry CV4 7AL, United Kingdom
69	⁴² Wright Laboratory, Department of Physics, Yale University, New Haven, CT, 06520, USA
70	(Dated: December 19, 2023)
71	We present a first search for dark-trident scattering in a neutrino beam using a data set corre

sponding to 7.2×10^{20} protons on target taken with the MicroBooNE detector at Fermilab. Proton interactions in the neutrino target at the Main Injector produce π^0 and η mesons, which could decay into dark-matter (DM) particles mediated via a dark photon A'. A convolutional neural network is trained to identify interactions of the DM particles in the liquid-argon time projection chamber (LArTPC) exploiting its image-like reconstruction capability. In the absence of a DM signal, we provide limits at the 90% confidence level on the squared kinematic mixing parameter ε^2 as a function of the dark-photon mass in the range $10 \le M_{A'} \le 400$ MeV. The limits cover previously unconstrained parameter space for the production of fermion or scalar DM particles χ for two benchmark models with mass ratios $M_{\chi}/M_{A'} = 0.6$ and 2 and for dark fine-structure constants $0.1 \le \alpha_D \le 1$.

A wealth of astronomical data at different scales pro-81 vide evidence for the existence of dark matter (DM): the 82 motion of galaxies and the stars within them, gravita-83 tional lensing, the cosmic microwave background, and 84 the large-scale structure of the universe [1]. The nature 85 of dark matter, however, remains elusive. Non-baryonic 86 particles predicted by dark-sector models are candidates 87 for dark matter [2]. The search for their production at 88 accelerators is a focus of the high-energy hadron collider 89 program at the LHC [3] and of fixed-target experiments 90 exposed to high-intensity beams [4]. 91

72

73

74

75

76

77

78

79

80

The dark-trident process has been proposed as a new 92 way to search for low-mass dark-matter particles in neu-93 trino beams [5]. In this Letter, we report a first search 94 for such dark tridents with the MicroBooNE liquid-argon 95 time projection chamber (LArTPC) [6]. In the future, 96 similar searches can be performed with the DUNE near 97 detector [7] and the detectors of the Fermilab short-98 baseline program [8]. 99

A pair of DM particles, $\chi \bar{\chi}$, is produced in the dark-100 trident process through the decay of neutral π^0 or η 101 mesons, which was created by the interactions of the pro-102 tons and by secondary interactions in the neutrino target 103 (Fig. 1a). The decays $\pi^0, \eta \to \gamma \chi \bar{\chi}$ are mediated by a vir-104 tual, off-shell dark photon $A^{\prime *}$. The masses of the dark 105 photon, $M_{A'}$, and of the dark fermion (or scalar), M_{χ} , 106 are parameters of the model. 107 112

The DM particle χ (or $\bar{\chi}$) then travels uninterrupted to¹¹³ the MicroBooNE detector where it could scatter off argon¹¹⁴ nuclei through the trident process $\chi + \text{Ar} \rightarrow \chi + \text{Ar} + \text{Ins}$ A' (see Fig. 1b). The dark photon A' promptly decays¹¹⁶

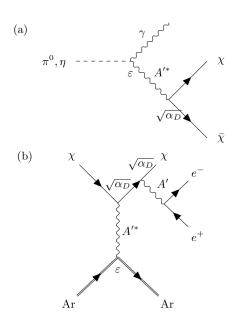


FIG. 1. (a) A pair of DM particles, $\chi \bar{\chi}$, is produced in a π^0 or η^0 decay; (b) in the dark-trident process, χ (or $\bar{\chi}$) scatters off an argon nucleus to produce a dark photon A' decaying into an e^+e^- pair with a branching ratio of 1. The rate depends on the kinematic mixing parameter ε and the dark fine-structure constant α_D .

inside the detector into an e^+e^- pair. The χ production rate depends on the kinematic mixing parameter ε and a dark fine-structure constant α_D , which is defined in terms of the dark-photon gauge coupling g_D as $\alpha_D = g_D^2/(4\pi)$. We consider the mass ratios $M_{\chi}/M_{A'} = 0.6$ and 2 in this ¹¹⁷ search as proposed in Ref. [5]. Since $M_{\chi}/M_{A'} > 0.5$,¹⁷³ the dark photons need to be off-shell to decay into $\chi \bar{\chi}$ ¹⁷⁴ ¹¹⁹ pairs, and, when on-shell, they will exclusively decay to¹⁷⁵ ¹²⁰ e^+e^- . The signal rate therefore scales with $\varepsilon^4 \alpha_D^3$. Other¹⁷⁶ ¹²¹ recent experimental searches cover the mass range where¹⁷⁷ ¹²² A' decays invisibly [9–11]. ¹⁷⁸

We use data recorded with the MicroBooNE detec-179 123 tor [6] between 2015 and 2018. The detector's LArTPC180 124 has an instrumented volume of 85 tonnes of liquid ar-181 125 gon inside a cryostat. Ionization charge drifts across an¹⁸² 126 electric field of 273 V/cm and is read out by one charge¹⁸³ 127 collection and two induction planes forming the anode.184 128 The LArTPC was simultaneously exposed to the on-axis185 129 booster neutrino beam (BNB) [12] and the off-axis beam186 130 of neutrinos from the main injector (NuMI) [13]. Only¹⁸⁷ 131 NuMI data are used in this search, as the higher av-188 132 erage energy of the NuMI beam gives access to higher189 133 values of $M_{A'}$. The NuMI data used here correspond to¹⁹⁰ 134 7.2×10^{20} protons on target (POT), which were taken¹⁹¹ 135 in two operating modes – forward horn current (FHC)192 136 with 2.2×10^{20} POT (Run 1) and reverse horn current¹⁹³ 137 (RHC) with 5.0×10^{20} POT (Run 3). This data set 138 has previously been used to search for heavy neutral lep-139 tons [14, 15] and Higgs portal scalars [15, 16], and to 140 measure neutrino cross sections [17, 18]. 141

We simulate the dark-trident process with a dedicated 142 generator in three steps: the neutral meson flux in the 143 beamline, the decay of the neutral mesons, and the scat-144 tering of the DM particles on argon. First, the kinemat-145 ics of the π^0 and η mesons for both beam configurations, 146 FHC and RHC, are obtained using the g4NuMI simula-147 tion [19], which is based on a full GEANT4 description of 105148 the beamline geometry. The full simulation results in_{196} 149

a significantly higher meson rate compared to Ref. $[5]_{197}$ since it includes mesons produced within the $\approx 1 \text{ m}_{198}$ long graphite target by secondary interactions and within₁₉₉ other beamline components.

We then simulate the radiative decays $\pi^0, \eta^0 \to \gamma \chi \bar{\chi}_{201}$ 154 with BdNMC [20]. In addition to the scalar DM produc-202 155 tion supported by BdNMC, we added the option to generate₂₀₃ 156 fermions. We calculate the rate of the scattering process₂₀₄ 157 $\chi + Ar \rightarrow \chi + Ar + A'$ inside the LArTPC as a function of₂₀₅ 158 the energy of the DM particle and the path traveled in-206 159 side the detector [21]. We compare our signal simulation₂₀₇ 160 to the calculations of Ref. [5] and find good agreement in₂₀₈ 161 the kinematics, e.g., the distribution of the e^+e^- opening₂₀₉ 162 angle as a function of the energy of each lepton. The cross₂₁₀ 163 section of the process shown in Fig. 1b is simulated us-211 164 ing GenExLight [21]. We find an agreement better than $_{212}$ 165 1% when comparing these cross sections to calculations₂₁₃ 166 obtained with MadGraph [22]. 167 214

We use a "beam-on" data sample to search for the₂₁₅ dark-trident signal where the event triggers coincide with₂₁₆ the arrival time of neutrinos from the NuMI beam. The₂₁₇ background is modeled considering three contributions.₂₁₈ Beam-on background events that are triggered by a cos-₂₁₉ mic ray and not a neutrino interaction are modeled by a "beam-off" sample collected under identical trigger conditions but when no neutrino beam is present. The "beam-off" sample is scaled so that its normalization corresponds to the number of beam spills of the beam-on sample. Neutrino-induced background from the NuMI beam is modeled using a GENIE Monte Carlo simulation [23] embedded in the LArSoft software framework [24]. The "in-cryostat ν " sample contains interactions of neutrinos with the argon inside the cryostat, and the "out-of-cryostat ν " sample describes interactions with the material surrounding the detector.

We reconstruct neutrino interactions and cosmic rays within the argon with a chain of pattern-recognition algorithms, implemented using the **Pandora** software development kit [25, 26]. The algorithms use hits that are formed from the waveforms read out by the charge collection and the two induction planes. Collections of hits are reconstructed as a track, as expected for a minimum ionizing particle, or a shower, consistent with being an electron or photon conversion.

TABLE I. Numbers of events that remain after preselection normalized to POT for the data and the background model.

Sample		Run 3 (RHC)
POT	2.2×10^{20}	$5.0 imes 10^{20}$
Beam-off	2410	4826
In-cryostat ν	1262	2759
Out-of-cryostat ν	354	402
Sum of predictions	4026	7987
Beam-on (data)	4021	7684

We use the results of the Pandora reconstruction to select events that are consistent with the signal hypothesis. Dark-trident events are frequently reconstructed as a single shower due to the small opening angle of the e^+e^- pairs and, in a few cases, as two showers arising from a common vertex. Background processes that can mimic the signal topology are neutral current (NC) ν interactions with $\pi^0, \eta \to \gamma \gamma$ decays in the final state or with emission of single photons that are reconstructed as an e^+e^- pair. Each event is therefore required to have at least one vertex, at least one shower, and no tracks. The efficiency of this preselection for a DM signal lies in the range of (32-40)% for masses in the range (10-400) MeV. We find good agreement between the number of data events and the sum of the predictions for the background processes after this preselection (Table I).

We use a convolutional neural network (CNN) based on the previous development of such algorithms in Micro-BooNE for multiple particle identification (MPID) for discriminating signal and background [27]. Convolutional neural networks (CNNs) are deep-learning networks that are ideally suited for images reconstructed from LArTPC data [28–30]. The CNN architecture is based on a model for dense images with adaptations for ²²⁰ LArTPCs. Convolution filters of size 3×3 allow scan-²²¹ ning of the information contained in showers. The output ²²² layer has two neurons that correspond to the probability ²²³ for signal or background.

We only consider images from the charge collection 224 plane, as it has the best signal to noise ratio [27]. The 225 size of each image in pixels corresponds to 3456 wires 226 multiplied by 6048 time ticks. To improve processing 227 time, we first compress the time axis by a factor of 6 228 and then crop the images around the interaction vertex 229 producing a region of interest (ROI) of 512×512 pixels. 230 After compression, each pixel has a resolution of $\approx 3 \times$ 231 3 mm^2 . 232

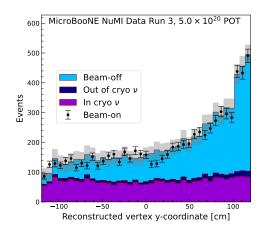


FIG. 2. Distribution of the y coordinate of the reconstructed vertices for the Run 3 data after preselection compared to the background model. The positive direction of the y axis points vertically upwards. The gray band represents the systematic uncertainty in the background model.

We validate the agreement of the vertex reconstruc-233 tion by comparing data and the background model after 234 the preselection (Fig. 2). The increase of beam-off events 235 towards the top of the detector due to cosmic rays is re-236 produced by the background model. While we use the 237 reconstructed vertices for the data and background sam-238 ples, the true vertex location is used for the training. 239 This prevents the CNN from training on an ROI that 240 does not contain the interaction of interest, which can²⁵⁵ 241 occur when a vertex is reconstructed at a large distance²⁵⁶ 242 from the true interaction vertex. 243

For the training of the CNN we prepare a dedicated²⁵⁸ 244 training data set. We use a single signal sample with the $^{\scriptscriptstyle 259}$ 245 parameters α_D = 0.1, $M_{A'}$ = 50 MeV, and $M_{A'}/M_{\chi}$ =260 246 0.6. As background samples we use cosmic rays simu-261 247 lated with CORSIKA [31] and ν interactions leading to π^{0}_{262} 248 mesons simulated with GENIE [23]. In addition, we over-263 249 lay the hits of cosmic rays simulated with CORSIKA to the²⁶⁴ 250 ν interaction background and the signal samples. A test²⁶⁵ 251 set, comprising 10% of the events included in the training²⁶⁶ 252 set, is used to evaluate the progress of the CNN training.²⁶⁷ 253 The CNN model is trained during $\approx 10k$ iterations₂₆₈ 254

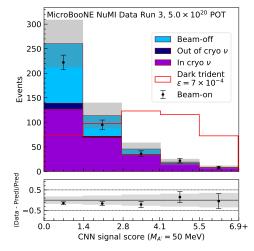


FIG. 3. Comparison of the CNN signal score distribution for Run 3 data with the background model after the preselection. The gray band corresponds to the total systematic uncertainty in the background. The signal distribution for $\alpha_D = 0.1$, $M_{A'} = 50$ MeV, and $M_{A'}/M_{\chi} = 0.6$ is superimposed, scaled by an arbitrary factor.

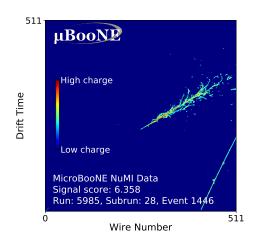


FIG. 4. A dark-trident candidate with a CNN score of 6.4, within the ROI of 512×512 pixels ($\approx 1.5 \times 1.5$ m²). A cosmic ray crosses in the lower right-hand corner.

 $(\approx 5 \text{ epochs})$ with a batch size of 32 images and a learning rate of 0.001 [28]. Dropout layers, regularization terms, and batch normalization are implemented during the CNN training to prevent overfitting. The training progress is monitored with a Binary Cross Entropy (BCE) loss function and using the accuracy, which is defined as the fraction of correctly classified images over the total number of images processed by the CNN. As an additional figure of merit, we use the receiver operating characteristic curve (ROC) to decide the number of training steps where the CNN model is frozen. Figure 3 shows the discrimination between signal and background for CNN signal scores > 0.

We use a single CNN model that has been optimized

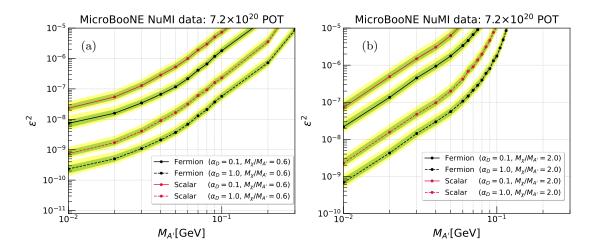


FIG. 5. The 90% CL observed limits on ε^2 as a function of $M_{A'}$ for $\alpha_D = 0.1$ and $\alpha_D = 1$, and (a) $M_{\chi}/M_{A'} = 0.6$ and (b) $M_{\chi}/M_{A'} = 2$, together with the 1 and 2 standard deviation bands around the median expected limits. We use a linear interpolation between the mass points. A total of 13 mass values have been simulated for $M_{\chi}/M_{A'} = 0.6$, equally spaced between 10–100 MeV and between 100–400 MeV and a total of 19 mass values for $M_{\chi}/M_{A'} = 2$, an additional 6 mass values are added at higher M_A . A table of the limits at each point is provided as supplementary material.

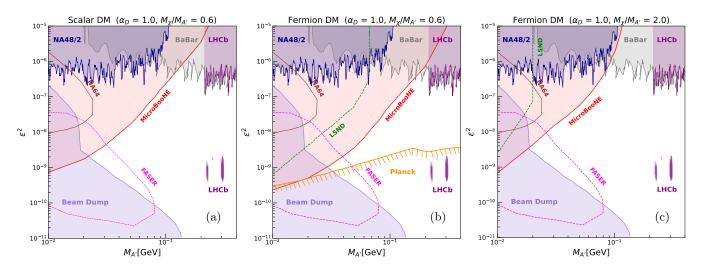


FIG. 6. The 90% CL limits on ε^2 as a function of $M_{A'}$ for (a) scalar DM with $\alpha_D = 1.0$, $M_{\chi}/M_{A'} = 0.6$; (b) fermion DM with $\alpha_D = 1.0$, $M_{\chi}/M_{A'} = 0.6$; (c) for fermion DM with $\alpha_D = 1.0$, $M_{\chi}/M_{A'} = 2.0$. The constraints provided by the NA48/2 [32], BaBar [33], NA64 [34], and LHCb collaborations [35], and by beam dump experiments [36–38] are displayed as shaded regions. The reinterpretations of LSND results [5, 39] and the unpublished FASER [40] limits are shown as dashed lines. The two isolated contours at $M_{A'} \approx 200$ –300 MeV are also excluded by LHCb data. The upper limits on ε^2 from Planck data [41, 42] apply for fermion DM with $M_{\chi}/M_{A'} = 0.6$.

with a benchmark signal point trained against the NC π^{0}_{280} and cosmic-ray background samples. The areas under the²⁸¹ curve for the ROCs of the different signal points relative²⁸² to the full background sample (see Table I) agree within²⁸³ (1-2)% with the benchmark CNN model. ²⁸⁴

A data event with a high CNN signal score is shown²⁸⁵ in Fig. 4, where the shower points in the direction of the²⁸⁶ NuMI beam. By modifying the training events, we deter-²⁸⁷ mine that the CNN learns about the kinematics (angles,²⁸⁸ energies) of the scattering process through the number of²⁸⁹ pixels and the orientation of pixel clusters.²⁹⁰ We evaluate systematic uncertainties that could modify the CNN score distributions for signal and background. For the in-cryostat ν background, we consider the impact of the neutrino flux simulation (10–20)% [19], the neutrino-argon cross-section modeling (12–20)% [43], hadron interactions with argon ($\approx 1\%$) [44], and detector modeling ($\approx 30\%$) [45]. The beam-off sample is taken from data and therefore has no associated systematic uncertainties other than statistical fluctuations. The impact of the normalization uncertainty on the outof-cryostat sample and of the POT counting is negligi²⁹¹ ble [15].

²⁹² The sum of the detector-related systematic uncertain-³⁴⁸ ²⁹³ ties on the signal is in the range (10-20)%. A form fac-³⁴⁹ ²⁹⁴ tor accounts for the spatial distribution of the argon nu-³⁵⁰ ²⁹⁵ cleus in the χ -Ar scattering [5]. Recalculating the cross₃₅₁ ²⁹⁶ sections with different form factors [46, 47] yields un-³⁵² ²⁹⁷ certainties in the range (2-20)% in the mass range $(10-_{353})$ ²⁹⁸ 200) MeV.

²⁹⁹ The signal rate also depends on the NuMI π^0 and η_{355} ³⁰⁰ flux simulated by g4NuMI. We confirm that the ratio of₃₅₆ ³⁰¹ π^0 production relative to π^{\pm} production in g4NuMI is con-³⁵⁷ ³⁰² sistent with expectations of isospin symmetry. We there-³⁵⁸ ³⁰³ fore use the beam flux uncertainty of 22% determined³⁵⁹ ³⁰⁴ for the charged meson flux [17], which includes hadron³⁶⁰ ³⁰⁵ production and beam line modeling uncertainties. ³⁶¹

The CNN score distributions are found to be consis-362 306 tent with the background expectation and used to derive₃₆₃ 307 limits on the squared mixing parameter ε^2 as a function₃₆₄ 308 of $M_{A'}$. The limit setting is done with the pyhf algo-₃₆₅ 309 rithm [48], which is an implementation of a statistical₃₆₆ 310 model to estimate confidence intervals [49]. Systematic₃₆₇ 311 uncertainties are treated through profile likelihood ratios.₃₆₈ 312 The results are validated with the modified frequentist₃₆₉ 313 CL_s calculation of the COLLIE program [50]. The ob-₃₇₀ 314 served limits of Fig. 5 are shown at the 90% confidence₃₇₁ 315 level ($CL_s = 0.1$) for several benchmark points. Since we₃₇₂ 316 use a single CNN model for all signal points, the CNN_{373} 317 score distributions for background are highly correlated₃₇₄ 318 between the different mass hypotheses $M_{A'}$. All observed₃₇₅ 319 limits are therefore consistently within the 1 and 2 stan- $_{376}$ 320 dard deviation ranges around the median expected limit.₃₇₇ 321 In Fig. 6, we compare the results for a scalar dark mat-₃₇₈ 322 ter particle χ with existing constraints on dark-trident₃₇₉ 323 processes from rare pion decays measured by the NA48/2324 collaboration [32], beam dump experiments [36–38], and 325 searches for promptly decaying dark photons into e^+e^- 326 pairs by the BaBar [33], FASER [40], and NA64 [51] col-327 laborations. The limits obtained by the LHCb collabo-³⁸⁰ 328 ration [35] apply for higher masses $M_{A'} > 200$ MeV. The³⁸¹ 329 most sensitive constraints are obtained for $\alpha_D = 1$ and β_{333} 330 $M_{\chi}/M_{A'} = 0.6.$ 331

For the fermion model, we also compare to reinterpre-385 332 tations of LSND results [5, 39]. Cosmological constraints³⁸⁶ 333 on $\chi \bar{\chi}$ annihilation in the early universe are obtained us-³⁸⁷ 334 ing Planck measurements on the cosmic microwave back- $^{\scriptscriptstyle 388}$ 335 ground [41, 42]. The $\chi \bar{\chi}$ annihilation cross section is 336 only relevant for a fermion χ and $M_{\chi}/M_{A'} = 0.6$. The₃₉₁ 337 cosmological data constrain ε^2 from below, since the₃₉₂ 338 thermal relic dark-matter density becomes too small for₃₉₃ 339 larger ε^2 [5]. 340

In summary, we apply convolutional neural networks to³⁹⁵ obtain first constraints on the production of dark matter³⁹⁶ in a liquid-argon detector exposed to a neutrino beam.³⁹⁷ We consider fermion and boson dark-matter particles χ_{399} produced in a dark-trident process with $M_{\chi}/M_{A'} = 0.6_{400}$ and $M_{\chi}/M_{A'} = 2$, and dark fine-structure constants in⁴⁰¹ the range $0.1 \leq \alpha_D \leq 1$. The constraints in the plane of the squared kinematic mixing parameter ε^2 and the darkphoton mass $M_{A'}$ exclude previously unexplored regions of parameter space in the range $10 \leq M_{A'} \leq 400$ MeV.

347

This document was prepared by the MicroBooNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. Micro-BooNE is supported by the following: the U.S. Department of Energy, Office of Science, Offices of High Energy Physics and Nuclear Physics; the U.S. National Science Foundation: the Swiss National Science Foundation; the Science and Technology Facilities Council (STFC), part of the United Kingdom Research and Innovation; the Royal Society (United Kingdom); the UK Research and Innovation (UKRI) Future Leaders Fellowship; and the NSF AI Institute for Artificial Intelligence and Fundamental Interactions. Additional support for the laser calibration system and cosmic ray tagger were provided by the Albert Einstein Center for Fundamental Physics, Bern, Switzerland. We also acknowledge the contributions of technical and scientific staff to the design, construction, and operation of the MicroBooNE detector as well as the contributions of past collaborators to the development of MicroBooNE analyses without whom this work would not have been possible. We also thank the authors of Ref. [5] for useful discussions about the darktrident model. For the purpose of open access, the authors have applied a Creative Commons Attribution (CC BY) public copyright license to any Author Accepted Manuscript version arising from this submission.

* microboone_info@fnal.gov

- N. Aghanim *et al.* (Planck Collaboration), Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. **641**, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)].
- [2] A. Arbey and F. Mahmoudi, Dark matter and the early Universe: a review, Prog. Part. Nucl. Phys. 119, 103865 (2021).
- [3] T. G. Rizzo, Portal Matter and Dark Sector Phenomenology at Colliders, in *Snowmass 2021* (2022) arXiv:2202.02222 [hep-ph].
- [4] C. Antel *et al.*, Feebly-interacting particles: FIPs 2022
 Workshop Report, Eur. Phys. J. C 83, 1122 (2023).
- [5] A. de Gouvêa, P. J. Fox, R. Harnik, K. J. Kelly, and Y. Zhang, Dark Tridents at Off-Axis Liquid Argon Neutrino Detectors, J. High Energy Phys. **01**, 001.
- [6] R. Acciarri *et al.* (MicroBooNE Collaboration), Design and construction of the MicroBooNE detector, J. Instrum. **12** (02), P02017.
- [7] B. Abi *et al.* (DUNE Collaboration), Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment, Eur. Phys. J. C 81,

322(2021).

402

- [8] P. A. Machado, O. Palamara, and D. W. Schmitz, The⁴⁶⁷
 Short-Baseline Neutrino Program at Fermilab, Ann. Rev.⁴⁶⁸
 Nucl. Part. Sci. **69** (2019).
- 406 [9] A. Aguilar-Arevalo *et al.* (MiniBooNE-DM Collabora-470
 407 tion), Dark matter search in nucleon, pion, and electron471
 408 channels from a proton beam dump with MiniBooNE,472
 409 Phys. Rev. D 98, 112004 (2018).
- [10] D. Akimov *et al.* (COHERENT Collaboration), First474
 probe of sub-gev dark matter beyond the cosmological475
 expectation with the COHERENT CsI detector at the476
 SNS, Phys. Rev. Lett. **130**, 051803 (2023). 477
- 414 [11] Y. M. Andreev *et al.* (NA64 Collaboration), Search for 478
 415 Light Dark Matter with NA64 at CERN, Phys. Rev. Lett. 479
 416 131, 161801 (2023). 430
- A. A. Aguilar-Arevalo *et al.* (MiniBooNE Collaboration),481
 The neutrino flux prediction at MiniBooNE, Phys. Rev.482
 D79, 072002 (2009).
- [13] P. Adamson *et al.*, The NuMI neutrino beam, Nucl. In-484
 strum. Meth. A806, 279 (2016).
- [14] P. Abratenko *et al.* (MicroBooNE Collaboration), Search486
 for heavy neutral leptons in electron-positron and487
 neutral-pion final states with the MicroBooNE detector,488
 (2023), accepted by Phys. Rev. Lett., arXiv:2310.07660489
 [hep-ex].
- P. Abratenko *et al.* (MicroBooNE Collaboration), Search⁴⁹¹
 for long-lived heavy neutral leptons and Higgs portal⁴⁹²
 scalars decaying in the MicroBooNE detector, Phys. Rev.⁴⁹³
 D **106**, 092006 (2022).
- [16] P. Abratenko *et al.* (MicroBooNE Collaboration), Search⁴⁹⁵
 for a Higgs Portal Scalar Decaying to Electron-Positron⁴⁹⁶
 Pairs in the MicroBooNE Detector, Phys. Rev. Lett. **127**,⁴⁹⁷
 151803 (2021).
- [17] P. Abratenko *et al.* (MicroBooNE Collaboration), Mea-499
 surement of the flux-averaged inclusive charged-current500
 electron neutrino and antineutrino cross section on ar-501
 gon using the NuMI beam and the MicroBooNE detector,502
 Phys. Rev. D **104**, 052002 (2021).
- [18] P. Abratenko *et al.* (MicroBooNE Collaboration), First504
 measurement of inclusive electron-neutrino and antineu-505
 trino charged current differential cross sections in charged506
 lepton energy on argon in MicroBooNE, Phys. Rev. D507
 105, L051102 (2022). 508
- [19] L. Aliaga *et al.* (MINERvA Collaboration), Neutrino⁵⁰⁹
 Flux Predictions for the NuMI Beam, Phys. Rev. D **94**,⁵¹⁰
 092005 (2016), [Addendum: Phys. Rev. D 95, 039903⁵¹¹
 (2017)].
- [20] P. deNiverville, C.-Y. Chen, M. Pospelov, and A. Ritz,⁵¹³
 Light dark matter in neutrino beams: production mod-⁵¹⁴
 elling and scattering signatures at MiniBooNE, T2K and⁵¹⁵
 SHiP, Phys. Rev. D **95**, 035006 (2017). ⁵¹⁶
- [21] R. A. Kycia, J. Turnau, J. J. Chwastowski, R. Staszewski,⁵¹⁷
 and M. Trzebiński, The adaptive Monte Carlo toolbox for⁵¹⁸
 phase space integration and generation, Commun. Com-⁵¹⁹
 put. Phys. 25, 1547 (2019). ⁵²⁰
- 457 [22] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni,521
 458 O. Mattelaer, H. S. Shao, T. Stelzer, P. Torrielli, and522
 459 M. Zaro, The automated computation of tree-level and523
 460 next-to-leading order differential cross sections, and their524
 461 matching to parton shower simulations, J. High. Energy525
 462 Phys. 07, 079 (2014). 526
- ⁴⁶³ [23] C. Andreopoulos, C. Barry, S. Dytman, H. Gallagher,⁵²⁷
 ⁴⁶⁴ T. Golan, R. Hatcher, G. Perdue, and J. Yarba, The⁵²⁸
 ⁴⁶⁵ GENIE Neutrino Monte Carlo Generator: Physics and⁵²⁹

User Manual, (2015), arXiv:1510.05494 [hep-ph].

466

- [24] E. L. Snider and G. Petrillo, LArSoft: Toolkit for Simulation, Reconstruction and Analysis of Liquid Argon TPC Neutrino Detectors, J. Phys. Conf. Ser. 898, 042057 (2017).
- [25] J. S. Marshall and M. A. Thomson, The Pandora Software Development Kit for Pattern Recognition, Eur. Phys. J. C75, 439 (2015).
- [26] R. Acciarri *et al.* (MicroBooNE Collaboration), The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector, Eur. Phys. J. C 78, 82 (2018), we use v03_14_04_01 of the Pandora LArTPC algorithms.
- [27] P. Abratenko *et al.* (MicroBooNE Collaboration), Convolutional neural network for multiple particle identification in the MicroBooNE liquid argon time projection chamber, Phys. Rev. D **103**, 092003 (2021).
- [28] R. Acciarri *et al.* (MicroBooNE Collaboration), Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber, J. Instrum. **12** (03), P03011.
- [29] P. Abratenko *et al.* (MicroBooNE Collaboration), Cosmic ray muon clustering for the MicroBooNE liquid argon time projection chamber using sMask-RCNN, J. Instrum. **17** (09), P09015.
- [30] P. Abratenko *et al.* (MicroBooNE Collaboration), First demonstration for a LArTPC-based search for intranuclear neutron-antineutron transitions and annihilation in ⁴⁰Ar using the MicroBooNE detector, (2023), arXiv:2308.03924 [hep-ex].
- [31] D. Heck et al., CORSIKA: A Monte Carlo code to simulate extensive air showers, CORSIKA: A Monte Carlo code to simulate extensive air showers, FZKA-6019 (1998).
- [32] J. R. Batley *et al.* (NA48/2 Collaboration), Search for the dark photon in π^0 decays, Phys. Lett. B **746**, 178 (2015).
- [33] J. P. Lees *et al.* (BaBar Collaboration), Search for a Dark Photon in e^+e^- Collisions at BaBar, Phys. Rev. Lett. **113**, 201801 (2014).
- [34] D. Banerjee *et al.* (The NA64 Collaboration), Improved limits on a hypothetical x(16.7) boson and a dark photon decaying into e^+e^- pairs, Phys. Rev. D **101**, 071101 (2020).
- [35] R. Aaij *et al.* (LHCb Collaboration), Search for Dark Photons Produced in 13 TeV *pp* Collisions, Phys. Rev. Lett. **120**, 061801 (2018).
- [36] J. D. Bjorken, S. Ecklund, W. R. Nelson, A. Abashian, C. Church, B. Lu, L. W. Mo, T. A. Nunamaker, and P. Rassmann, Search for Neutral Metastable Penetrating Particles Produced in the SLAC Beam Dump, Phys. Rev. D 38, 3375 (1988).
- [37] E. M. Riordan *et al.*, A Search for Short Lived Axions in an Electron Beam Dump Experiment, Phys. Rev. Lett. 59, 755 (1987).
- [38] A. Bross, M. Crisler, S. H. Pordes, J. Volk, S. Errede, and J. Wrbanek, A Search for Shortlived Particles Produced in an Electron Beam Dump, Phys. Rev. Lett. 67, 2942 (1991).
- [39] Y. Kahn, G. Krnjaic, J. Thaler, and M. Toups, DAE δ ALUS and dark matter detection, Phys. Rev. D **91**, 055006 (2015).
- [40] J. Boyd et al. (FASER Collaboration), First Results from the Search for Dark Photons with the FASER Detector

- at the LHC, (2023), CERN-FASER-CONF-2023-001.
- [41] M. S. Madhavacheril, N. Sehgal, and T. R. Slatyer, Cur-553
 rent Dark Matter Annihilation Constraints from CMB554
 and Low-Redshift Data, Phys. Rev. D 89, 103508 (2014).555
- [42] T. R. Slatyer, Indirect dark matter signatures in the cos-556
 mic dark ages. I. Generalizing the bound on s-wave dark557
 matter annihilation from Planck results, Phys. Rev. D558
 93, 023527 (2016).
- ⁵³⁸ [43] P. Abratenko *et al.* (MicroBooNE Collaboration), News60 CC0 π GENIE model tune for MicroBooNE, Phys. Rev.561 D **105**, 072001 (2022). 562
- [44] J. Calcutt, C. Thorpe, K. Mahn, and L. Fields, 563
 Geant4reweight: a framework for evaluating and propa-564
 gating hadronic interaction uncertainties in geant4, Jour-565
 nal of Instrumentation 16 (08), P08042.
- [45] P. Abratenko *et al.* (MicroBooNE Collaboration), Novels67
 approach for evaluating detector-related uncertainties in568
 a LArTPC using MicroBooNE data, Eur. Phys. J. C 82,569
 454 (2022). 570
- 549 [46] H. De Vries, C. W. De Jager, and C. De Vries, Nuclear571
 charge and magnetization density distribution parame-
- ⁵⁵¹ ters from elastic electron scattering, Atom. Data Nucl.

Data Tabl. 36, 495 (1987).

552

- [47] G. Duda, A. Kemper, and P. Gondolo, Model Independent Form Factors for Spin Independent Neutralino-Nucleon Scattering from Elastic Electron Scattering Data, JCAP 04, 012.
- [48] L. Heinrich, M. Feickert, G. Stark, and K. Cranmer, pyhf: pure–python implementation of histfactory statistical models, Journal of Open Source Software 6, 2823 (2021).
- [49] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71, 1554 (2011), [Erratum: Eur. Phys. J. C 73, 2501 (2013)].
- [50] W. Fisher (DØ Collaboration), Systematics and limit calculations, FERMILAB-TM-2386-E, 10.2172/923070 (2006).
- [51] Y. M. Andreev *et al.* (NA64 Collaboration), Search for pseudoscalar bosons decaying into e⁺e⁻ pairs in the NA64 experiment at the CERN SPS, Phys. Rev. D 104, L111102 (2021).