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Braess Paradox in the Optimal Multiperiod Resource-Constrained Restoration 

Scheduling Problem 

Abstract: 

This study examines the Braess paradox in the context of the multiple-period restoration scheduling 

problem. A bilevel programming model is devised, where the upper-level problem is to determine the 

optimal sequence of recovery activities considering the limited resource constraint, while the lower-level 

problem is the traffic assignment model that captures passengers' responses to changes in the transportation 

network capacity. Then, a novel genetic algorithm (GA) is developed to solve the proposed restoration 

scheduling problem. Our case study first shows that the optimal restoration schedule does not concur with 

the results of the link importance measurement, and the former can achieve a 4% total travel time reduction 

compared with the latter. Then, various numerical experiments are conducted to illustrate the occurrence 

and properties of the Braess paradox, which is that the network performance in some restoration periods 

can be better than that before the disruption or after a damaged link is recovered. Moreover, it is revealed 

that with sufficient resources for multiple links to be repaired simultaneously, it is unnecessary to do so in 

the optimal rehabilitation schedule due to the existence of the Braess paradox. Finally, in terms of 

algorithmic performance, our proposed GA outperforms the particle swarm optimisation algorithm and can 

reduce the computation time by up to 14%. 

Keywords: Braess paradox; Traffic assignment; Bilevel network design; Network resilience; Restoration 

scheduling 

1 Introduction 

Transportation networks are the backbone of modern cities. Nevertheless, they are vulnerable and can suffer 

significant damage from disruptive events, such as earthquakes, hurricanes, floods, and tsunamis, resulting 

in enormous economic losses. For instance, the 1994 Northridge earthquake caused more than $40 billion 

in monetary loss and more than 140 road closures [1]. In October 2012, Hurricane Sandy struck New York 

City, causing approximately $7.5 billion in damage to the transportation system [2, 3]. In particular, the 

8.0-magnitude earthquake that struck Sichuan, China, in 2008 caused significant damage to 21 highways 

[4]. 

Although we cannot control losses during a disaster, we can carefully plan restoration and rehabilitation 

activities. Such activities also require significant time and cost [5] and profoundly impact the 

infrastructure's postdisaster performance [6]. Therefore, planning transportation infrastructure restoration 

given limited time and resources is highly important, and developing an efficient restoration schedule 

deserves additional research attention. 

In principle, the restoration scheduling problem is closely related to the problem of analysing 

infrastructure resilience. The term “resilience” was first introduced in the ecological domain [7] and can be 

summarised as the ability to resist, absorb, adapt to, and recover from a disruption. Most studies on 

resilience either focus on quantifying resilience or evaluating network performance. In recent years, 

resilience has been extensively studied in the transportation field. According to Gu et al. [8], quantitative 

indicators of resilience can be classified into topology-based, system-based and economic-based indicators. 
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Typical topology-based indicators include network diameter [9], average degree [9], betweenness centrality 

[10], connectivity-based [9, 11, 12], average shortest path [13, 14] and efficiency [10, 15]. System-based 

indicators include travel time [16-20] and travel demand [17, 21]. Economic-based indicators include total 

cost [22-24] and the economic loss ratio [25]. In addition, with further analysis of the effect of restoration 

on resilience, other resilience indicators, including total recovery time [1, 6, 26], recovery trajectory [1, 6, 

27], system crash frequency [19] and recovery ratios [28-30], have been identified. 

Among the various previous indicators, travel time is one of the most widely adopted. In general, travel 

time is affected mainly by infrastructure capacity. The scheduling of restoration tasks profoundly impacts 

travel time by affecting changes in infrastructure capacity during the whole scheduling period. Moreover, 

passengers adjust their route choice according to the rehabilitated infrastructure capacity within each 

subperiod, such as a week or a month. A few studies have addressed the optimal restoration scheduling 

problem in the transportation domain, considering user choice behaviour. There are two prevailing 

approaches, the simulation approach [18, 31] and the analytical approach [32-35], where the latter primarily 

builds upon the assumption of user equilibrium. Comparably, the simulation approach enables the capture 

of more practical features with a longer computation time, while the analytical approach is better suited to 

analysing the properties of the problem. 

In addition to the performance indicators considered, resource constraints are a critical factor affecting 

restoration scheduling. There are different types of limited resources, such as monetary budgets [22, 35] 

and materials and human resources [27, 28]. Resource constraints can affect restoration activities from 

various perspectives, among which is the number of restoration activities carried out within one period, 

which is primarily captured in mathematical models. The number of such activities could be either one [18, 

20] or many [27, 32]. 

Intuitively, the sooner and the more infrastructures can be rehabilitated, the better the system 

performance is. However, this may not be the case in a transportation network, considering the existence 

of the Braess paradox. The paradox states that network performance may not improve after a new link is 

added to a transport network [36]. It has been extensively discussed for different cases in the transportation 

field, such as under elastic demand [37-39], stochastic assignment [40-42] and user equilibrium [43]. This 

study focuses on the Braess paradox during damaged infrastructure restoration periods, and resource 

constraints are considered an important factor affecting the restoration of transportation networks. Although 

the restoration procedure resembles the setting of the paradox, i.e., providing a new link to a network, and 

the occurrence of this paradox could be expected, it has never been examined, particularly in the setting of 

multiple periods with limited capacity constraints. It will be interesting to explore whether this paradox 

occurs in such a setting and how it affects the recovery trajectory of the system's performance. Compared 

with the traditional Braess paradox, the most important differences in this study are as follows: 1) In the 

multiperiod resource-constrained restoration scheduling problem, we split the whole restoration phase into 

periods and study the Braess paradox phenomenon in each period rather than analysing it once, as in the 

traditional Braess paradox. 2) Traditionally, the index that measures whether there is a Braess paradox 

relies on adding a new link to a transportation network, where this added link leads to an increase in total 

travel time. However, we apply a unified network performance measure to determine the paradoxical 

phenomenon that captures travel time, traffic flows, and the importance of damaged links. 
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To address this research gap, this study first formulates a bilevel programming model for the optimal 

multiperiod restoration scheduling problem with resource constraints. The upper-level problem is to 

determine the optimal restoration schedule that minimises the total travel time, while the lower-level 

problem is to model passengers' route choice behaviour and capture passengers' responses to changes in the 

transportation network topology and capacity. Afterwards, various experiments are conducted to illustrate 

the occurrence of the paradox during the restoration process. 

The remainder of this study is organised as follows: Section 2 presents the model formulation for the 

restoration scheduling problem. Section 3 introduces a genetic algorithm approach to solve the bi level 

optimisation model. Numerical examples are presented in Section 4 to examine the occurrence of the Braess 

paradox during the restoration process and how it affects the trajectory of network performance. Finally, 

Section 5 concludes the study and discusses future research directions. 

2 Problem description and formulation 

2.1 Problem description 

We consider a general transport network denoted by ( ),G N A= , where N  and A  represent the sets of 

nodes and links in the network, respectively. After a disruptive event, the set of links that need restoration 

is given by R . The planned restoration horizon is denoted by H , where the restoration time for each link 

is measured as a multiple of a common minimum period  , such as one week or one month. Moreover, 

restoring each link requires both time and variable resources, such as human and construction materials. 

The total resources that can be utilised within one period are limited. Depending on the required resources 

for repairing a link, multiple links may be reconstructed within the same period. Developing a reasonable 

plan is the key to restoring the disrupted network as quickly as possible, and it is important to note that the 

network is considered to be eventually restored to its predamaged state. Based on this problem description, 

the investigated multiperiod resource-constrained restoration scheduling problem aims to determine the 

order of repair of the disrupted links considering the limited resource constraints. 

The following assumptions are made to facilitate the model development. A1) For simplicity, different 

resources can be converted into one monetary value. Hence, the resource constraint can be formulated as a 

budget constraint associated with each period. A2) The resources required for each disrupted link are given 

and known. This is reasonable because the disruption associated with a link can be measured after a disaster, 

and the time and resources required to fix it can be estimated accordingly. A3) The restoration of each 

disrupted link is initiated at the beginning of each period. Moreover, once the reconstruction starts, it 

continues until the link is fully repaired. A4) The damaged part of the link will be functional only if it is 

fully repaired and its capacity returns to its designed level. A5) The total travel demand between each OD 

pair is constant over the planning horizon. A6) Travellers adjust their route choices based on the capacity 

of the transportation infrastructure from period to period, while their route choice is assumed to be 

calculated by the traffic assignment model. 
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2.2 Bilevel formulation 

Based on the program description, a bilevel programming model is devised, where the upper-level problem 

is to determine the order of the repaired links with the resource constraint, and the lower-level problem is 

the traffic assignment problem. The upper- and lower-level formulations are presented in the following two 

subsections, and the notation used in developing the model is given in Table 1. 

Table 1 List of notation 

 

2.2.1 Upper-level formulation 

The upper-level problem focuses on minimising the total travel time. In this problem, although the 

restoration time is not explicitly taken as the objective function, it is expected that a rehabilitation plan that 

recovers the network in a short time leads to a lower total travel time, as a fully functional network generally 

has a lower total travel time than a network with disrupted links. Therefore, to a certain extent, if we use 

the objective of minimising the total travel time, we can capture a shorter restoration time requirement. 

Mathematically, the upper-level problem is formulated as follows: 

Notation Definition 

Sets  

N  Set of nodes 

A  Set of links 

R  Set of disrupted links to be restored 

W  Set of OD pairs 

H  Set of restoration periods, ( )max1,2,...,H T=  

wK  Set of paths connecting OD pair w in period  , H  , w W  

Parameters  
wg  Travel demand of OD pair w in period  , H  , w W  

maxT  Upper bound on the restoration period 

C  Maximum units of available resources in each period 

aT  Recovery periods required for restoring link a, a R  

aC  Resources required for restoring link a, a R   

M  A sufficiently large positive number 

Variables  

,av   Flow travelling via link a in period  , a A , H   

,at   Travel time on link a in period  , a A , H    
w

  Equilibrium travel time between OD pair w in period  , H  , w W  

,

w

kf   Flow travelling on path k connecting OD pair w in period  , 
wk K , H  , w W  

as  Starting period of restoring link a 

ae  Ending period of restoring link a 

,ay   
Binary variable indicating whether a link is under restoration: , 1ay  =  if link a is under 

restoration during period  ; otherwise, , 0ay  =  

, ,

w

a k   
Binary variable indicating whether a path traverses link a: , , 1w

a k  =  if path k traverses link a in 

period  ; otherwise, , , 0w

a k  =  
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, ,

, ,
min
s v y

a a

H a A

v t 
 

  (1) 

 ,a a ae s T a R= +    (2) 

 ( ),1 , ,a as M y a R H −  −      (3) 

 ( ), 1 , ,a ae M y a R H −  −      (4) 

  
, ,a a

a R

C y C H 


     (5) 

 , ,a as e H a R    (6) 

  , 0,1 , ,ay a R H      (7) 

The objective function of the upper-level model, Eq. (1), is to minimise the total travel time through the 

whole restoration horizon.  s as= , 
,v av 

 =   , and 
,y ay  =    are the vectors associated with the decision 

variables, namely, the starting time of rehabilitating a disrupted link, the flow travelling via each link, and 

a binary variable indicating whether a link is under repair during period  . Eq. (2) captures the relationship 

between the starting and ending times for restoring link a. Eqs. (3) and (4) together require that during the 

restoration period  , ,ay   is set to 1 if link a is under restoration; otherwise, it is equal to 0. Eq. (5) 

represents limited resource constraints, stating that the total resources used do not exceed the available 

resources for each period. Finally, Eqs. (6) and (7) are the definitional constraints for the decision variables. 

2.2.2 Lower-level formulation 

Within each period, the links that are not disrupted or repaired form the operational transport network for 

travellers. Based on assumption (A6), the passenger flows distributed within each period   follow user 

equilibrium. In line with the classic Beckmann transformation [44, 45], the following minimisation problem 

is solved to obtain the passenger flow distribution for each period  . 

 ( )
,

,
0

min
v

av

a

a A

t v dv





  (8) 

 , ,
w

w w

k

k K

f g w W



 



=    (9) 

 
, , , ,

w

w w

a k a k

w W k K

v f a A



 
 

=     (10) 

 , 0, ,w w

kf w W k K      (11) 

The objective function in Eq. (8) is the sum of the integrals of the link performance functions. It does not 

have any intuitive economic or behavioural interpretation and should be viewed strictly as a mathematical 

construct that is utilised to solve equilibrium problems [45]. Eq. (9) is the flow conservation constraint for 

each OD pair. Eq. (10) is the definitional constraint between the link flow and path flow. Eq. (11) is the 

nonnegative constraint for the path flow. The lower-level formulation is essentially a user equilibrium 

traffic assignment problem. The equivalence between the user equilibrium condition and the mathematical 

programming problem can be established by checking the necessary Karush–Kuhn–Tucker (KKT) 

conditions, as shown in [45]. To guarantee the uniqueness of the solution to the problem, the feasible region, 
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which is defined by Eqs. (9) and (11), must be convex, and the objective function Eq. (8) must be strictly 

convex in the vicinity of the optimal link flow (and convex elsewhere). Specifically, the convexity of the 

feasible region is guaranteed by the linear equality constraints. It is worth noting that the convexity of the 

objective function in Eq. (8) is assured as long as the link performance function is strictly convex. Therefore, 

theoretically, it can be verified that at optimality, the KKT conditions of the above minimisation problem 

satisfy the user equilibrium condition, meaning that all the paths used have equal travel times. 

3 Solution procedure 

The developed model can be classified as a bilevel network design model, which is generally acknowledged 

as an NP-hard problem [46] and is challenging to obtain exact solutions for. The brute force method can 

enumerate all possible restoration schedules to ensure a global optimal solution, but this approach is not 

applicable to large-scale networks. In general, the prevailing methodology is to develop metaheuristic or 

heuristic methods, such as genetic algorithms [47], artificial bee colony algorithms [48], ant colony 

algorithms [49], Tabu search [50], and simulated annealing [51], to solve this problem. Shayanfar and 

Schonfeld [47] showed that the GA performs better in terms of finding the near-optimal solution for the 

sequence and scheduling problem. Therefore, the GA is employed to optimise the restoration scheduling 

problem. Afterwards, given a certain schedule, the Frank–Wolfe algorithm [45] is employed to solve the 

lower-level traffic assignment problem. 

3.1 Chromosome representation and generation 

In this study, each chromosome is encoded by two substrings of numbers, namely, 1sg  and 2sg . Let 

( )
1 1 1 1

11 2

1= , ,..., ,
s s s s

R R

sg g g g g
−

 be a substring consisting of R  gens, where R  is the number of disrupted 

links. The gen value 
1s

ig  of 1sg  represents the index of the disrupted link, and the value of i is an integer 

between 1 and R . It is worth noting that each number between 1 and R  appears only once in 1sg  to 

indicate the restoration sequence and the continuity of each restoration activity. Moreover, let 

( )
2 2 2 2

11 2

2 = , ,..., ,
s s s s

R R

sg g g g g
−

 be the second substring of a chromosome. The gen value 
2s

ig  of 2sg  denotes 

the starting period of each disrupted link, and this value is an integer between 1 and maxT . The smaller 
2s

ig  

is, the earlier the end of the restoration activity. Fig. 1 shows an example of a chromosome representation 

in which the repair order and the starting period are generated randomly, whereas the disrupted links and 

the corresponding restoration periods are determined. The procedure of the GA is given below. 

Step 1. Initialisation. 

     Step 1.1. Set the required parameters for the GA, including the maximum number of iterations maxG , 

population size N , crossover rate cp  and mutation rate mp . 
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    Step 1.2. Set the number of iterations 0G =  and generate N  initial solutions by including all the 

disrupted links. Then, determine whether 
a

a R

C C


  or 0a

a R

C


=  in period  . If so, the solution is 

not feasible, and another solution needs to be generated until a feasible one is found. 

     Step 1.3. Calculate the travel time in each restoration period according to the lower-level traffic 

assignment model, and then obtain the fitness value (i.e., the reciprocal of the total travel time) of 

each feasible solution.  

Step 2. Iteration process. 

     Step 2.1. Sort the population from best to worst according to the fitness values, and then select the best 

solution and place it directly into the next-generation population. 

     Step 2.2. Select the parents by roulette wheel selection and generate the offspring using crossover and 

mutation operators. 

      Step 2.3. Repair the newly generated solution, if necessary, and generate the new population for the 

next iteration. 

      Step 2.4. Check the termination criterion. If 
maxG G= , terminate the iteration process and output the 

optimal solution; otherwise, set 1G G= +  and return to Step 2.1. 

1 2 3 4 5 1 1 2 2 3 

 

1sg  2sg  

Fig. 1 Example of a chromosome 

3.2 Operators 

3.2.1 Selection 

As mentioned above, the fitness value of a chromosome is equal to the reciprocal of the total travel time. 

A chromosome with the highest fitness is inserted directly into the new population as the elite individual 

to replace the worst chromosome. Moreover, the fitness determines the probability that the chromosomes 

are selected as parent chromosomes by the roulette wheel. If the fitness of the jth chromosome satisfies the 

following condition, the jth chromosome is selected as the parent chromosome. 

 

1

1 1

1 1

j j

q q

q q

N N

j j

j j

F F

F F



−

= =

= =

 

 

 
 (12) 

where jF  denotes the fitness value of the jth chromosome and   is a uniformly distributed random number 

between 0 and 1. 

3.2.2 Crossover 

Crossover is used to generate offspring by exchanging the genetic information of the parent chromosomes. 

Notably, simple crossover strategies that may cause duplication and gaps do not apply to our problem 

because each disrupted link can be restored only once. Therefore, partially mapped crossover is employed 

for the substring 1sg  in this study. Fig. 2 illustrates an example of partially mapped crossover. 
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3.2.3 Mutation 

To prevent the algorithm from being trapped in a local optimum and improve its efficiency, we adopt a 

mutation operation on the chromosomes. Consistent with the processing objective of the crossover 

operation, random right-shift mutation is employed for the first substring. This operator, which is shown in 

Fig. 3, randomly selects a gen value and inserts it to the right. 

Parent 1 1 2 3 4 5 1 1 2 2 3 

 

Parent 2 3 5 1 2 4 1 2 2 3 3 

 

Offspring 1 3 5 1 4 2 1 1 2 2 3 

 

Offspring 2 1 2 3 5 4 1 2 2 3 3 

Fig. 2 Crossover operation 

 

1 2 3 4 5 1 1 2 2 3  1 3 4 2 5 1 1 2 2 3 

 

Fig. 3 Mutation operation 

3.2.4 Repair 

The procedures for performing crossover and mutation cannot guarantee the feasibility of the solution, 

which may result in a

a R

C C


  or 0a

a R

C


=  in period  . To address this, a repair operator is constructed 

and applied to repair the newly generated chromosomes. After the crossover operation, the steps for repair 

are described as follows. 

Step 1. Obtain the resource consumption. 

     Step 1.1. Set 1j = . 

     Step 1.2. Calculate the consumed resources for the jth chromosome, a

a R

C


 , that is, the sum of the 

resources required for restoring the disrupted links in period  . 

Step 2. Compare a

a R

C


  and C . 

     Step 2.1. If 0 a

a R

C C


   in period  , let 1j j= +  and return to Step 1.2; otherwise, proceed to Step 

2.2. 

Step 2.2. If a

a R

C C


  in period  , select the corresponding gene of the chromosome and increase the 

starting period by one until a

a R

C C


= , then set 1j j= +  and return to Step 1; otherwise, proceed to 

Step 2.3. 
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Step 2.3. If 0a

a R

C


=  in period  , select the corresponding gene of the chromosome and reduce the 

starting period by one until 0a

a R

C


 . Set 1j j= +  and return to Step 1.2. 

Step 3. Repeat Steps 1 and 2 until j N= . 

In this study, the repair procedure after applying the mutation operator is consistent with the above 

procedure; thus, we do not go into much detail here. 

4 Numerical examples 

The following experiments are conducted to illustrate the properties of the proposed model and evaluate 

the performance of the proposed algorithm. We first use a six-node network to examine the effect of travel 

demand and tolerance in the event of complete damage. The second numerical example applies the Nguyen-

Dupuis Network to show how the resource level and damage level affect the restoration schedule if a link 

is partially disrupted. All the experiments were coded using Microsoft Visual Studio Community 2022, and 

all the following numerical applications were performed on a laptop with 16 GB RAM and an Intel (R) 

Core (TM) i7-10510U CPU @ 1.80 GHz. The parameters for the GA in our study are as follows: maximum 

iteration number 
max 2000G = , population size 20N = , and crossover and mutation rates of 0.8 

and 0.2, respectively. 

4.1 Six-node network 

The six-node network is constructed as shown in Fig. 4. The link performance functions are given by 

( )1 1 18t v v= , ( )2 2 225 0.5t v v= + , ( )3 3 32t v v= , ( )4 4 425 0.5t v v= + , ( )5 5 550t v v= + , ( )6 6 610t v v= , 

( )7 7 710t v v= + , ( )8 8 85t v v= , and ( )9 9 92t v v= + . Moreover, the travel demand between OD pair 1-6 is set 

to 6.0. Five links, i.e., 4, 6, 7, 8, and 9, are disrupted. 

1

4

2

5

3

6

1

2

3

4

5

6

789

 

Fig. 4 Six-node network 

4.1.1 Occurrence of the paradox 

In the case of multiple disrupted links, the traditional empirical approach usually determines the restoration 

sequence according to the importance of each disrupted link. Therefore, based on the research of Qiang and 

Nagurney [52], determining the increment in the total travel time when a link is removed from the network 

is regarded as an empirical strategy. Table 2 presents the rankings of these links. 

Table 2 Ranking of links under normal-level demand 
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Ranking Link no. Total travel time after removing the link 

1 6 589.9 
2 9 558.3 
3 8 546.3 
4 4* 526.1 
5 7* 521.9 

*Remark: Links 4 and 7 are considered to be Braess paradox links, as the total time 

without any disruption is 526.1. 
 

In this experiment, only one link can be restored in each period, and one period is needed to rebuild one 

disrupted link. Furthermore, the five disrupted links are assumed to be completely closed. To obtain the 

optimal restoration schedule for the six-node network using the proposed optimisation model and to explore 

and investigate the Braess paradox in the restoration scheduling problem, the brute force method is adopted 

to enumerate all the possible restoration schedules. Table 3 lists two restoration schedules. One is the 

optimal solution of the model, and the other is the schedule determined according to the importance of these 

links. In other words, a link with a higher importance rank will be scheduled to recover earlier. Interestingly, 

the optimal restoration schedule does not accord with the importance rank of the links. The total travel time 

obtained from the optimal schedule decreases by more than 4% compared with that from the schedule 

following the rank shown in Table 2. 

Table 3 Single-link restoration scheduling 

 
 Restoration period Total travel 

time 1 2 3 4 5 

Optimal 

schedule 
Link under reconstruction 9 4 6 8 7 

2895.7 
Travel time in each period 696.0 589.9 589.9 498.0 521.9 

Schedule based 

on Table 2 
Link under reconstruction 6 9 8 4 7 

3025.7 
Travel time in each period 696.0 696.0 589.9 521.9 521.9 

 

The difference in the total travel time between the two solutions lies in Periods 2 and 4. To explain their 

differences, Fig. 5 is plotted to compare the recovered networks of the two solutions in each period. In the 

figure, a solid line represents a fully functional link, while a dotted line represents the link under 

reconstruction in the period, which cannot be used. By recovering link 9 in the first period, a new path 

traversing links 2-9-3-5 is formed under the optimal plan compared with the plan based on the importance 

rank. The total travel time is thus reduced due to the reduced congestion of the path that traverses links 1-

3-5. As shown in Fig. 5 (a), the newly recovered link 6 could divert flow from link 9 in period 4, which 

would mitigate the congestion cost and result in a lower total time. In Fig. 5 (b), a new path traversing links 

2-9-8-6 is generated with the restoration of link 8; however, the newly recovered link plays a small role and 

cannot divert flow from link 9. 

   
Period 1 Period 2 Period 3 
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                          Period 4 Period 5 

(a) Networks from the optimal schedule 

   
Period 1 Period 2 Period 3 

  
                        Period 4 Period 5 

(b) Networks from the schedule obtained according to the importance rank 

Fig. 5 Comparison of the networks of the two solutions during the restoration phase 

In summary, the results justify the motivation for developing an optimal restoration model instead of 

relying on the link importance indicators to determine the recovery schedule. Theoretically, the importance 

associated with one link is determined by removing the link independently from the network. Moreover, its 

importance is measured with respect to the network without disruption. When a disruptive event occurs, 

the network for determining link importance varies. Therefore, relying on the importance of the link 

element determined from a normal network to form a restoration plan may not be optimal. 

Furthermore, we can plot the changes in the network performance curve (Fig. 6). In this study, we adopt 

the unified network performance measure (UNPM) proposed by Qiang and Nagurney [52] to measure 

network performance. Mathematically, it is expressed as 

 ( )
( )

1
,v

v

w

w
w W

g
H

W




 

 


=    (13) 

where v  is the vector notation for the traffic flow and ( )v
w

   denotes the equilibrated travel time 

between OD pair w in period  . Both are obtained by solving the lower-level problem. 
wg  is the travel 

demand between OD pair w, and W  is the number of OD pairs. According to the above equation, at a 

given demand level, a lower travel time leads to a higher ( )v . Then, for ease of comparison of different 

settings, we further normalise the network performance measurement as follows: 

 ( )
( )

( )
0

100%,
v

v
H






  


=     (14) 
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where 
0  denotes the normal time period before or after the disruptive event and ( )

0
v represents the 

UNPM computed in period 
0 . When there is no disruption and the network performs normally, 

( ) 100%  = . Based on Eq. (13), the lower the value of ( )   is, the worse the network performance is, 

and vice versa. In particular, ( ) 100%    indicates that the network performance is better than the normal 

performance without disruption. This characteristic is utilised to visualise and identify the Braess paradox 

in the figures. 

To illustrate the process clearly, in Fig. 6, we plot two additional normal periods, where the network 

performance is 100%, before and after the restoration periods. As shown in Fig. 6, the network performance 

for the optimal schedule is generally better than that based on ranking. In particular, following the former 

schedule, the network performance in time period 6 is 105.6%, which is greater than the original value. 

This means that before completely repairing all the transport infrastructure, the network performance is 

better than that in a normal period. Then, when all the links are repaired after period 8, the network 

performance decreases compared to that in period 6. This finding highlights the paradox that the existence 

of newly recovered links may degrade network performance. 

 

Fig. 6 Changes in network performance 

For comparison, one of the most commonly used topology-based indicators, network efficiency ( )E G , 

is also applied to quantify system resilience. In network graph theory, network efficiency is calculated as 

the average of the inverse of the shortest path distances between all pairs of nodes [3, 15] and is 

mathematically expressed as 

 ( )
( )

1 1

1 i j N ij

E G
dN N  

=
−

  (15)  
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where N  is the total number of nodes and 
ijd  denotes the shortest path distance between node i and node 

j. The upper-level formulation is subsequently transformed into the problem of maximising the total 

network efficiency within the minimum restoration period, which is mathematically characterised as 

follows: 

 
( ), ,

1 1
max

1s v y
H i j N ijdN N   −
   (16) 

where 
ijd   represents the 

ijd  in period  . The results obtained from ( )E G  and the UNPM are presented 

in Table 4. The main difference in the total network efficiency between the two solutions lies in periods 3-

5. To better explain the solutions, in Fig. 7, we plot the network recovered from the schedule obtained from 

( )E G  in each period; the results obtained from the UNPM are shown in Fig. 5 (a). The solid and dotted 

lines in the figure below have the same meaning as described above. Note that by recovering link 8 in the 

second period, the shortest paths between node pairs 1-5, 2-5 and 4-5 traverse the newly recovered link 

simultaneously. The network efficiency is thus increased because the shortest path distances between these 

node pairs are no longer considered infinite. In contrast, as shown in Fig. 5 (a), the newly recovered link 4 

is on the shortest path between two node pairs in period 3; however, the length of the link itself is great. As 

a result, the effect of early restoration of link 4 is not significant. A comparison of Fig. 7 with Fig. 5 (a) 

reveals that the first recovered link is 9 and the third is link 6, indicating that the link restored in period 2 

leads to a change in network efficiency in period 4. Finally, two shortest paths traversing the newly 

recovered link 7 are formed in period 5 under the schedule based on ( )E G  compared with the schedule 

based on the UNPM, which reduces the shortest path distances between the node pairs and results in greater 

network efficiency. In summary, when network efficiency is used as a resilience indicator, the optimal 

restoration sequence is always 9-8-6-7-4. 

Table 4 Restoration results based on ( )E G  and the UNPM 

 
 Restoration period Total network 

efficiency 1 2 3 4 5 

Schedule based 

on ( )E G   

Link under reconstruction 9 8 6 7 4 
0.2380 ( )E G  in each period 0.0033 0.0373 0.0540 0.0687 0.0747 

Schedule based 

on UNPM 

Link under reconstruction 9 4 6 8 7 
0.1886 ( )E G  in each period 0.0033 0.0373 0.0393 0.0400 0.0687 

 

   
Period 1 Period 2 Period 3 
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                          Period 4 Period 5 

Fig. 7 Networks from schedules obtained according to network efficiency 

4.1.2 Effect of the demand level on the paradox 

To illustrate the effect of travel demand on the restoration schedule, the proposed model is tested under 

different demand scenarios. We introduce a demand scale parameter, , for varying the demand level, which 

is set to 0.5, 1.0, 1.5 and 2.0. The resulting restoration schedules are presented in Table 5. The restoration 

schedule obtained under  = 1.0 is the same as that obtained under  = 1.5, while the schedules obtained 

under  = 0.5 and  = 2.0 are both distinctive. On the one hand, the results demonstrate that the demand 

level indeed affects the schedule. On the other hand, they show that the effect can be significant or minor. 

For example, when  = 0.5, links 9 and 4 are the last two links to be prepared. In contrast, the two links are 

prioritised when  is 1.0 or greater. 

Table 5 Restoration scheduling under different demand scenarios 

Demand level  
Restoration period Total 

travel time 1 2 3 4 5 

 = 0.5  6 8 7 9 4 1100.2 

 = 1.0  9 4 6 8 7 2895.7 

 = 1.5  9 4 6 8 7 5045.2 

 = 2.0  9 4 6 7 8 7670.5 
*  is the demand scale parameter; e.g.,  = 1.0 is the normal demand, and  = 2.0 is twice the normal 

demand. 

 

Fig. 8 Changes in network performance under different demand levels 
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To further analyse the effect of traffic demand on the occurrence of the paradox during the restoration 

of the disrupted network, we also trace the changes in network performance in each period, as illustrated in 

Fig. 8, which shows the effect of demand on the occurrence of the paradox. First, by examining the network 

performance values in time period 3, it is concluded that after a disaster occurs, the higher the demand level 

is, the more the network performance decreases. Then, between time periods 3 and 6, the recovery trajectory 

varies for different demand levels, implying that a monotonic relationship may not exist between the 

demand level and the recovery trajectory. Interestingly, by comparing the changes in the network 

performance measurements between periods 6 and 7, it can be seen that when a paradox occurs, higher 

demand does not necessarily mean a greater drop in network performance. To clarify this phenomenon, the 

detailed travel times are plotted in Fig. 9. In the figure, a dotted line represents the travel time without any 

disruption. When  = 1.0, the travel time gap between the two periods is the largest. 

 

Fig. 9 Travel time in time periods 6 and 7 

4.1.3 Effect of tolerance on the paradox 

Our optimal restoration schedule depends on the flow values determined by the lower-level model, which 

are affected by the tolerance of the termination condition of the lower-level problem. Therefore, this 

subsection presents the numerical application to determine the effect of the tolerance. In this test, it is 

assumed that each link requires two periods to be rebuilt, and the maximum number of links to be 

reconstructed is 2 in each period. 

The numerical results with respect to the optimal values and restoration schedules, considering the 

tolerance factor of lower-level problems, are summarised in Table 6. Although the tolerance and the total 

system travel time vary widely, the restoration schedules are exactly the same. This result, while specific 

to small-scale networks, also holds for real networks as long as the tolerance meets a certain threshold. In 

addition, the results reveal that the objective values gradually converge with decreasing tolerance. 

Table 6 Restoration scheduling under different tolerance conditions 

Tolerance  
 Restoration period Total 

travel time 1 2 3 4 5 6 

1.0e - 2  4,6 4,6 9 9 7,8 7,8 3363.4 
1.0e - 3  4,6 4,6 9 9 7,8 7,8 3381.3 
1.0e - 4  4,6 4,6 9 9 7,8 7,8 3383.8 

197.6 526.1 876.0 1282.0 
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1.0e - 5  4,6 4,6 9 9 7,8 7,8 3383.8 

 

In addition to presenting the optimal restoration schedule under different tolerance conditions, we plot 

the changes in network performance in each period, as shown in Fig. 10. Fig. 10 illustrates that, for the 

optimal schedule, only one link is selected to be recovered during time periods 5 and 6. This indicates that 

although there are enough resources for repairing multiple links simultaneously in one period, all of them 

may not necessarily be used. One reason is the possibility of inducing the Braess paradox when a certain 

link is covered, which results in a longer total travel time. This can be verified by the changes in the total 

travel time. The network performance increases to 105.6% following the full recovery of links 4 and 6. 

Afterwards, as the tolerance value decreases, it does not change until the restoration activity is complete, 

implying that link 9 cannot divert flow from link 1 in periods 7 and 8. Finally, by recovering links 7 and 8 

in the last two periods, the network performance drops to 100% because the newly recovered links 7 and 8 

make a negative contribution. The above observation verifies that if a link is completely disrupted, the 

paradox can still occur under multiresource constraints. 

 
(a) Restoration sequence                                                        (b) Recovery trajectories 

Fig. 10 Characteristics of the optimal restoration schedule 

4.2 Nguyen-Dupuis Network 

In this example, the proposed method is applied to solve the problem of restoring the Nguyen–Dupuis 

Network (see Fig. 11) to test the algorithm's performance. Figure 11 shows four OD pairs, namely, OD 

pairs 1-12, 1-13, 2-12 and 1-13, the travel demands of which are set to 100, 300, 400 and 200, respectively. 

The detailed attributes of each link in the normal state are listed in Table 7. Then, the travel time on link a 

in period  is calculated by the following Bureau of Public Roads (BPR) function: 

 
,0

, ,

,

= 1+ , ,
a
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v
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



 



 
  
     

    

 (17) 

where ,aQ   denotes the traffic capacity of link a in period   and 
0

,at   represents the free-flow travel time 

on link a in period  .   and   are constant parameters equal to 0.15 and 4, respectively. Table 8 shows 
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that the length of each potential disrupted link 
al  is an important parameter affecting the recovery periods 

required to restore the disrupted link. 
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Fig. 11 Nguyen-Dupuis Network 

Table 7 Link attributes of the Nguyen-Dupuis Network 

Link no. Free-flow travel time Capacity Link no. Free-flow travel time Capacity 

1 7 300 11 9 500 

2 9 200 12 10 550 

3 9 200 13 9 200 

4 12 200 14 6 400 

5 3 350 15 9 300 

6 9 400 16 8 300 

7 5 500 17 7 200 

8 13 250 18 14 200 

9 5 250 19 11 200 

10 9 300    

Table 8 Potentially disrupted links and their lengths 

Link no. Length Link no. Length 

2 9 12 10 

4 12 13 9 

9 5 17 7 

11 9 19 11 

 

The above experiments are based on a situation in which the disrupted links are completely closed; 

however, in many cases, links may still be running but with a decreased capacity and free-flow speed. Thus, 

by focusing on partial closure, the following subsections develop the optimal recovery sequence and 

explore the Braess paradox during the restoration process. 

After a given disruptive event, the eight disrupted links are assumed to be partially disrupted at the same 

damage level am . Therefore, the capacity and free-flow speed of link a are reduced by am . Additionally, 

assume that the maximum number of links to be reconstructed is 2 in each period and that the recovery time 

required for restoring link a is a am l     , where     is the ceiling operator and   is the manipulated 

variable. To facilitate the analysis, the manipulated variable is set as 0.5 = . 
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4.2.1 Algorithmic performance 

According to our previous tests, the proposed bilevel model can determine the optimal restoration plan and 

verify the occurrence of paradoxes if multiple links are completely disrupted. Hence, in this section, we 

examine the effectiveness of the proposed model and algorithm when links are partially disrupted. The 

damage level 
am  is set to 0.3. 

To better illustrate the performance of the GA, the brute force method and particle swarm optimisation 

algorithm (PSO) are used for comparison. The former is applied to enumerate all the possible restoration 

schedules, while the latter is performed in 20 runs with the same random seeds as our proposed GA. For a 

fair comparison, the two metaheuristic algorithms use the same solution representation, population size and 

termination criterion. In PSO, the two acceleration constants, the initial inertia weight and  the 

largest velocity are set to 2, 0.9 and 30, respectively, and the initial positions of the particles are randomly 

generated. Additionally, for better comparison, we appropriately adjust the tolerance of the UE on the 

original basis. 

The numerical results with respect to the total travel time, CPU time and maximum number of best 

solutions obtained out of 20 runs for the different methods are summarised in Table 9. The average total 

travel times are almost the same; however, the GA obtains a better total travel time than does the PSO. 

Regarding the CPU times, the average CPU time for the 20 runs of the GA is 781.7, which is approximately 

14% less than that of the PSO algorithm. According to the results in Table 9, the GA succeeded in obtaining 

the best solutions in each of the 20 runs, with a success rate 20% higher than that of PSO. 

Table 9 Comparison between the GA and the compared methods 

 Brute force PSO GA 

Average of total travel time 329909.1 329930.8 329909.1 
Average CPU time (s) 43319.1 892.8 781.7 

Best optimal total travel time 329909.1 329909.1 329909.1 

Number of best solutions obtained 20 16 20 

 

The restoration sequences and the convergence plots are presented in Fig. 12. The GA begins to 

converge at the 46th generation, which is much earlier than the convergence of PSO. This indicates that the 

global optimal solution can be obtained by using metaheuristic algorithms. Nevertheless, the GA 

outperforms the PSO algorithm in finding high-quality solutions within a small number of iterations. 

Moreover, we can see that only link 17 is selected to be recovered during time periods 9 and 10. The results 

verify that the available resources may not necessarily be exhausted in each period despite the partial 

damage to multiple links.  
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(a) Convergence of the algorithms                                                (b) Restoration sequence 

Fig. 12 Optimal results for 0.3am =  

4.2.2 Effect of damage level on the paradox 

The damage level 
am  is determined by the disruptive event. Keeping the other parameters constant, 

Figs. 13 and 14 present the resulting optimal restoration schedules and the changes in network performance 

under different damage levels. In this experiment, the damage level am  is increased from 0.3 to 0.8. As 

mentioned in Section 4.1.1, we also plot some additional normal periods before and after the corresponding 

restoration periods. It is obvious that the restoration period is longer for a larger am , as shown in Fig. 13. 

In addition, the figure shows that the restoration sequences vary with increasing am . As expected, not all 

the available resources in each period are consumed, as observed in Figs. 13 (a) and (f). 

   
(a) 0.3am =                                                                      (b) 0.4am =  
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(c) 0.5am =                                                                       (d) 0.6am =  

   
(e) 0.7am =                                                                       (f) 0.8am =  

Fig. 13 Restoration schedules under different damage levels 

In Fig. 14, a red dotted line represents the beginning of a restoration period, while the other coloured 

dotted lines represent the ends of the corresponding restoration periods. Initially, the higher the damage 

level is, the worse the network performance. Fig. 14 (a) shows that for the optimal restoration schedule 

under a partially damaged state, the paradox can still occur. The network performance increases to 101.3% 

following the full recovery of links 12 and 13 when 0.3am = , and after period 10, it drops to 100%. Similar 

results are found when the damage level is increased to 0.4. For 0.4am = , the network performance peaks 

at 100.1% in period 11, after which the Braess paradox also arises. At damage levels of 0.5, 0.7 and 0.8, 

network performance improves progressively along with restoration activities. A full picture of the network 

performance with respect to am  and   is shown in Fig. 14 (b). It is notable that the performance curve at 

0.6am =  has a reverse mutation in both periods 5 and 12, which clearly does not occur at the other three 

damage levels. The main reason for this is that, at this damage level, the main routes in use pass through 

the newly recovered links 11 and 19, and the traffic flows on the last restored links 9 and 4 exceed the initial 

capacity. 

In general, the changes in network performance, similar to the formulation of the restoration schedule, 

are related to the damage level. Paradoxically, the recovery trajectory varies with time and is not always 

negatively correlated with damage levels. Fig. 14 (b) demonstrates this counterintuitive phenomenon in 

detail. As shown in the figure, for 0.5am = , the network performance in time period 5 increases to 61.7%, 

while for 0.6am = , it can reach 66.6%. Furthermore, we note that the performance measurements between 

periods 12 and 13 and between periods 16 and 17 obtained under 0.7am =  are much lower than those 

obtained under 0.8am = . This result reveals that a higher damage level does not necessarily mean a lower 

network performance. It can be concluded that the damage level influences the restoration schedule and the 

recovery trajectory. Nevertheless, a monotonic relationship may not exist between the damage level and 

the recovery trajectory. This counterintuitive phenomenon could be considered a paradox. The paradox in 

this section also implies that an increase in damage level may sometimes substantially degrade performance. 
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(a) Slight damage 

 
(b) Moderate damage and severe damage 

Fig. 14 Changes in network performance under different damage levels 

4.2.3 Effect of resource level on the paradox 

The effect of the resource level on the paradox is examined using the change in the maximum available 

resources from 1 to 4 in each period. In other words, this subsection addresses the problem of multiple-link 

restoration scheduling and examines the effect of resource constraints. In this experiment, we set the 

damage level to 0.3. The optimal schedules and changes in network performance are illustrated in Figs. 15 

and 16, respectively. The dotted lines have the same meaning as in Section 4.2.2. 

A comparison of the restoration schedules in Fig. 15 reveals that the restoration sequences under the 

different resource levels are completely consistent. This means that with further increases in resource levels, 

the restoration period is indeed reduced but does not change the restoration sequence. The incomplete 
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utilisation of resources is also observed, as shown in Figs. 15 (b) to (d), which is consistent with the view 

presented in the previous sections. 

   
(a) 1C =                                                                             (b) 2C =  

   

(c) 3C =                                                                            (d) 4C =  

Fig. 15 Restoration schedules under different resource levels 

Fig. 16 shows that as the time period progresses, the network performance generally shows an upwards 

trend, and for 3C = , there are two peaks in the curves where the performance is better than that without 

any disruption. However, during the restoration process, the network performance for 4C =  is less than 

100%. This implies that the Braess paradox is more likely to occur when the resource level is lower. 

Furthermore, by comparing the changes in the network performance measurements between periods 6 and 

10 and between periods 15 and 16, it can be seen that when a paradox occurs, a higher resource level does 

not necessarily indicate better network performance. 
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Fig. 16 Changes in network performance under different resource levels 

5 Conclusions 

This study analyses the classic Braess paradox in the multiperiod restoration scheduling problem with 

limited resources, which mainly affects the number of links that can be repaired simultaneously within one 

period. A bilevel model is formulated, where the upper-level problem is to determine the optimal restoration 

scheduling considering resource constraints, while the lower-level problem is to determine the traffic 

assignment model that captures passengers' response to changes in network topology and capacity as a 

result of restoration activities. To investigate the Braess paradox under the optimal solution, a modified GA 

method is implemented to search for the optimal restoration schedule for the upper-level problem. The 

Frank–Wolfe algorithm is adopted to solve the lower-level traffic assignment model. The main findings 

from the numerical studies include the following: 1) The optimal restoration schedule differs from the 

schedule based on the link importance measurement. This contradicts our intuition that a more critical link 

should be repaired first but justifies the necessity of developing a mathematical model to determine the 

optimal restoration schedule. 2) The Braess paradox can occur during the restoration period, meaning that 

without repairing all disrupted links, network performance is better than that before the disruption or after 

a new link is recovered. 3) When multiple links can be repaired within the same period, the Braess paradox 

can still occur, and not all resources need to be exhausted in the optimal rehabilitation schedule. 4) The 

optimal restoration schedule is related to the damage level, but this does not mean that a large value of am  

leads to much worse network performance. 5) We compare the optimal schedules under different resource 

levels, and the results indicate that the restoration sequences are identical. Remarkably, a higher resource 

level does not imply a greater improvement in network performance when the Braess paradox occurs. 

This study yields various directions for future research. First, the study only examines the optimal 

restoration schedule for road networks, assuming that the time and the resources required to recover each 

disrupted component are given. It would be interesting to analyse network performance under uncertainty. 

Second, the lower-level model is the static deterministic traffic assignment model, which can be extended 
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and enhanced using a stochastic or dynamic traffic assignment model. Third, this study considers only a 

single resilience indicator to quantify network performance. Considering the diversity of network 

performance measurements, developing a multiobjective bilevel model is a necessary research direction. 

Fourth, although the proposed methodology is applied to restoration scheduling problems for transportation 

networks, it can be useful for other research areas involving scheduling problems. In future studies, it would 

also be worthwhile to consider the application of these methods in other contexts, such as 

power distribution network restoration projects and road network capacity improvement projects. 

 


