
Protecting Against Compromised

Controllers in Software Defined

Networks Using an Efficient

Byzantine Fault Preventing

Control Plane

Joseph Gardiner

School of Computing and Communications

Lancaster University

August 2022

A thesis submitted to Lancaster University for the degree of

Doctor of Philosophy in the Faculty of Science and Technology

Abstract

Software Defined Networking (SDN) is a modern approach to com-

puter networks that involves the separation of the control and for-

warding planes. Using this approach, control is achieved through the

use of an SDN controller, which enables the delivery of far more in-

telligent, efficient and resilient networks.

Whilst the use of an SDN controller offers many potential benefits, the

centralisation of network control introduces a single point of failure

- if the SDN controller develops a fault, or is under attack, then the

network can be severely disrupted. From a security perspective, the

SDN controller represents a tempting target for an attacker - if the

attacker can gain control over the controller then they can act as

a malicious insider, gaining control over the operation of the whole

network. The actions of a compromised SDN controller can be seen

as an occurrence of byzantine (or arbitrary) faults. By introducing a

byzantine fault tolerant (BFT) element to the control plane, insider

attacks can be prevented.

This thesis explores the impact of a compromised SDN controller,

and provides a defence called SDBFT: Software Defined Byzantine

Fault prevenTing control. I reduce fault tolerance to fault prevent-

ing, which means fault detecting with recovery. SDBFT prevents a

compromised SDN controller from performing malicious actions in a

network. Within this thesis, I first analyse and demonstrate a num-

ber of attacks that can be performed from a compromised controller,

including an exploration of the impact of such attacks on a real-world

scenario involving Industrial Control Systems (ICS). I then propose,

implement and evaluate the SDBFT system, using novel algorithms

that are able to protect against faulty controllers. I demonstrate

through extensive experimentation that the SDBFT system far out-

performs approaches built upon a traditional BFT model, and only

represents a modest reduction in controller performance compared to

the traditional SDN architecture.

Acknowledgements

I would first like to thanks my PhD supervisors, Dr. Peter Garraghan

and Dr. Nicholas Race, who took over supervision duties on the depar-

ture of my former supervisor, Dr. Shishir Nagaraja. I am especially

grateful to Shishir for the initial encouragement to pursue a PhD and

the extensive support he has offered me during the initial years of my

PhD, and beyond.

I would also like to thank the colleagues who have supported me

during this process, in particular those who gave me encouragement

to complete this thesis even during tough times.

Finally, I would like to thank the family and friends who have given

me support during this process, and in particular my parents, Pauline

and Michael, who have supported me every step of the way.

Declaration

This thesis is my own work and no portion of the work referred to in

this thesis has been submitted in support of an application for another

degree or qualification at this or any other institute of learning. It is

the result of my own work with the exception of manuscript revision by

the supervisors Peter Garraghan, Nicholas Race and Shishir Nagaraja.

Contributing Publications

Joseph Gardiner, Adam Eiffert, Peter Garraghan, Nicholas Race,

Shishir Nagaraja, and Awais Rashid. 2021. Controller-in-the-

Middle: Attacks on Software Defined Networks in Industrial

Control Systems In Proceedings of the 2nd Workshop on CPS&IoT

Security and Privacy (CPSIoTSec ’21), ACM, New York, NY, USA,

63–68. DOI:10.1145/3462633.3483979

Contents

List of Figures xi

List of Tables xiii

List of Acronyms xv

1 Introduction 1

1.1 Background . 1

1.1.1 The Rise of SDN . 1

1.1.2 The Problem With SDN 2

1.1.3 Dealing With The Problems 5

1.2 Motivation . 7

1.3 Aims . 9

1.4 Contributions . 9

1.4.1 Exploration of Attack Capabilities From a Compromised

SDN Controller . 10

1.4.2 Design of a Consensus-Based Distributed Controller Archi-

tecture to Prevent Malicious Insiders 11

1.5 Thesis Structure . 12

2 Background 14

2.1 Introduction . 14

2.2 A History of Networking . 15

2.2.1 The Evolution of the Network 15

iv

CONTENTS

2.2.2 Network Routing . 16

2.3 Programmable Networks . 18

2.4 Software Defined Networking . 19

2.4.1 SDN Controller Architecture 20

2.4.2 SDN Deployment Architectures 22

2.4.3 Applications . 23

2.4.4 Security of SDN . 23

2.5 The OpenFlow Protocol . 24

2.5.1 OpenFlow Packets . 25

2.5.2 OpenFlow Handshake . 26

2.5.3 Flow Tables . 27

2.5.4 Other SDN Protocols . 29

2.6 SDN Operation . 30

2.6.1 Reactive . 30

2.6.2 Proactive . 30

2.6.3 Hybrid . 31

2.7 SDN Controllers . 32

2.7.1 Controller Placement . 34

2.8 Dependability and Faults . 35

2.8.1 Dependability . 35

2.8.2 Faults . 38

2.9 SDN Fault Tolerance . 40

2.9.1 Native OpenFlow Support 40

2.9.2 ONOS . 41

2.10 Consensus . 41

2.11 Byzantine Fault Tolerance . 44

2.11.1 Byzantine Faults . 45

2.11.2 Byzantine Fault Tolerant Algorithms 47

2.12 Conclusion . 56

v

CONTENTS

3 Literature Review and Related Work 57

3.1 Introduction . 57

3.2 Security of SDN . 57

3.3 Detecting Compromised SDN Controllers 59

3.3.1 Limitations . 61

3.4 Mitigating Attacks in SDN . 61

3.4.1 Securing the Controller . 61

3.4.2 Preventing Controller Poisoning 63

3.4.3 Protection Against Malicious Applications 64

3.4.4 Securing the Control-Data Plane (Southbound) Interface . 65

3.5 Multiple Controller SDN control 65

3.6 Primary-Backup Fault tolerant SDN control 67

3.7 Byzantine Fault Tolerant SDN Control 70

3.7.1 Consensus amongst administrators 73

3.8 Discussion . 74

3.9 Conclusion . 76

4 Insider Attacks in Software Defined Networks 78

4.1 Introduction . 78

4.2 Attacker Model . 79

4.2.1 Attacker . 79

4.2.2 Attack Vector . 79

4.2.3 Attacker Goals . 81

4.3 Attacks . 82

4.3.1 Denial of Service Attacks 83

4.3.2 Eavesdropping attacks . 84

4.3.3 Data Tampering Attacks 85

4.3.4 Service Degradation . 86

4.3.5 Other Attacks . 86

4.4 Attack Demonstration . 87

4.4.1 Setup . 87

4.4.2 Results . 92

4.4.3 Discussion . 100

vi

CONTENTS

4.5 Real World Impact — Industrial Control Systems 103

4.5.1 Industrial Control Systems 103

4.5.2 Attacker . 107

4.5.3 Setup . 109

4.5.4 Attacks . 112

4.5.5 Discussion . 118

4.6 Conclusion . 119

5 Designing An Efficient Consensus Approach for SDN Control 121

5.1 Introduction . 121

5.2 System Overview . 121

5.2.1 Requirements . 123

5.2.2 Notation . 125

5.3 Quorums . 126

5.3.1 Quorum Size . 126

5.4 SDBFT protocol . 127

5.4.1 Assumptions . 128

5.4.2 Normal Operation . 130

5.4.3 Failure Operation . 132

5.5 Signatures . 137

5.5.1 Controller Verification . 139

5.5.2 Limitations . 139

5.6 Controller Assignment . 140

5.6.1 Requirements . 141

5.6.2 Simple Algorithm . 142

5.6.3 Simple Algorithm Performance 145

5.6.4 Existing Approaches . 147

5.7 Controller Consistency . 148

5.7.1 Publisher-Subscriber Protocol 150

5.7.2 Existing Approaches . 151

5.8 Limitations of Approach . 152

5.8.1 Proactive Control . 153

5.8.2 Controller Diversity . 154

vii

CONTENTS

5.9 Conclusion . 155

6 Implementing the SDBFT Protocol 156

6.1 Introduction . 156

6.2 SDBFT Implementation Overview 156

6.3 Proxy Implementation . 159

6.3.1 Configuration . 159

6.3.2 Communication . 160

6.3.3 Message Acknowledgements 160

6.3.4 Signatures . 161

6.3.5 OpenFlow Message Handling 162

6.4 Controller modification . 166

6.4.1 Message serialising/deserialising 168

6.4.2 Xid setting . 168

6.4.3 Acknowledgement handling 168

6.4.4 Synchronisation . 169

6.5 Implementation of Comparative System 170

6.5.1 Configuration . 171

6.5.2 Protocol . 171

6.5.3 Proxies . 172

6.6 Conclusion . 177

7 Experimental Setup 178

7.1 Testbeds . 178

7.1.1 OpenVSwitch (OVS) Virtual Environment 178

7.1.2 Mininet . 180

7.1.3 Physical Switch . 182

7.2 Simple TCP Proxy . 184

7.3 Measurement Tools . 184

7.3.1 Ping . 185

7.3.2 Cbench . 185

7.4 Floodlight Configuration . 187

7.4.1 Applications . 188

viii

CONTENTS

7.5 Conclusion . 189

8 Evaluating The SDBFT Controller Architecture 190

8.1 Introduction . 190

8.1.1 Method of Analysis . 191

8.2 Baselines . 193

8.2.1 Setup . 194

8.2.2 Results . 196

8.2.3 Discussion . 203

8.3 Multi hop path test . 205

8.3.1 Setup . 206

8.3.2 Results . 206

8.3.3 Discussion . 210

8.4 Failure operation . 212

8.4.1 Setup . 212

8.4.2 Results . 213

8.4.3 Discussion . 215

8.5 High Throughput Benchmark . 217

8.5.1 Setup . 217

8.5.2 Results . 218

8.5.3 Discussion . 223

8.6 Testing on physical switch . 223

8.6.1 Setup . 223

8.6.2 Results . 224

8.6.3 Discussion . 228

8.7 Deployment of Physical Proxy . 228

8.7.1 Setup . 228

8.7.2 Results . 229

8.7.3 Discussion . 230

8.8 Network Traffic Load . 231

8.8.1 Setup . 231

8.8.2 Results . 232

8.8.3 Discussion . 233

ix

CONTENTS

8.9 Conclusion . 234

9 Conclusion 236

9.1 Thesis Contributions . 237

9.1.1 Exploration of Attack Capabilities From a Compromised

SDN Controller . 237

9.1.2 Design of a Consensus-Based Distributed Controller Archi-

tecture to Prevent Malicious Insiders 238

9.1.3 Research Impact . 241

9.1.4 Summary . 241

9.2 Future Work . 242

9.2.1 Proactive Control . 242

9.2.2 Controller Verification . 243

9.2.3 Anonymous Information Sharing 243

9.2.4 Native Implementation of SDBFT 244

9.3 Reproducibility . 244

9.4 Concluding Remarks . 245

Appendix A Implementation 246

A.1 SDBFT Proxy Configuration . 246

Appendix B Evaluation Setup 248

B.1 OVS Test Launch Script . 248

B.2 Mininet Python Configuration Example 249

B.3 Bash Launch Script . 251

Appendix C Evaluation 253

C.1 Baseline Results . 254

C.2 Multi-hop Path Test Results . 260

References 263

x

List of Figures

2.1 SDN Architecture . 20

2.2 OpenFlow Message Header . 26

2.3 Openflow Handshake . 27

2.4 Reactive Switch Control . 31

2.5 SDN Controller Components . 32

2.6 Floodlight Web Administrative Tnterface 34

2.7 Laprie Dependability Tree . 36

2.8 Byzantine Siege . 45

2.9 Byzantine Generals Problem . 47

2.10 PBFT Algorithm . 51

2.11 BFT-SMaRt Protocol . 55

4.1 Floodlight Web Administrative Interface 80

4.2 Attack Taxonomy . 83

4.3 Attack Demonstration Network 89

4.4 Amplified DOS Attack . 96

4.5 Attack Demonstration Network — Redirect Attacls 97

4.6 Redirect Eavesdropping Attack 98

4.7 Redirect Traffic Attack Results 100

4.8 Purdue Reference Architecture . 105

4.9 FactoryIO . 110

4.10 ICS Devices . 112

4.11 ICS Attack Demonstration Network Topologies 113

5.1 Traditional Controller Architecture 122

xi

LIST OF FIGURES

5.2 SDBFT Controller Architecture 122

5.3 Typical Switch to Controller Communication 129

5.4 Switch to Controller Consensus, Working State 129

5.5 Switch to Controller Consensus, Failure State 132

5.6 Signed Switch to Controller Communication 139

5.7 Controller Assignment Example 1 146

5.8 Controller Assignment Example 2 147

6.1 SDBFT Proxy Architecture . 158

6.2 SDBFT Proxy Switch to Controller Message Handling 163

6.3 SDBFT Proxy Controller to Switch Message Handling 165

6.4 Controller System Model . 167

6.5 BFT-SMaRt Proxy Architecture 173

7.1 Baseline Setup . 180

7.2 Physical Network Setup Design 183

7.3 Physical Network Hardware . 183

8.1 Baseline Network . 194

8.2 Baseline Direct and Simple Proxy Results 196

8.3 Baseline Unsigned SDBFT and BFT-SMaRt Results 198

8.4 Baseline Signed SHA512withRSA SDBFT and BFT-SMaRt Results200

8.5 Baseline Signed SHA256withRSA SDBFT and BFT-SMaRt Results202

8.6 Multi-hop Direct and Simple Proxy Results 208

8.7 Multi-Hop Unsigned SDBFT and BFT-SMaRt Results 209

8.8 Multi-Hop Signed SDBFT and BFT-SMaRt Results 211

8.9 Fault Recovery Results, Single Fault 214

8.10 Fault Recovery Results, Three Faults 216

8.11 Physical Switch Topologies . 224

8.12 Single Physical Switch Results . 225

8.13 Three Physical Switch Results . 227

8.14 Hardware Proxy Topology . 229

8.15 Hardware Proxy Results . 229

xii

List of Tables

2.1 Common OpenFlow packets . 28

2.2 A Selection of Commonly Used SDN Controllers 33

3.1 Existing literature in Byzantine Fault Tolerant SDN control . . . 75

4.1 Flow Rule Blocking Results . 114

5.1 Notation . 126

7.1 Summary of testbeds . 179

8.1 Summary of experiments . 192

8.2 Effect Size Classification . 193

8.3 Fault Recover Results . 215

8.4 CBench Output, Single Virtual Switch 219

8.5 CBench Output, Sixteen Virtual Switch 221

8.6 Physical Switch Results . 226

8.7 Network Traffic Load Results . 232

C.1 Baseline results without using signatures 254

C.2 Baseline Results Increasing Controller Counts 255

C.3 Baseline Results BFT-SMaRt versus SDBFT 255

C.4 Baseline Results Using SHA512 with RSA Signatures 256

C.5 Baseline Results Using SHA256 with RSA Signatures 257

C.6 Signed Baseline Results SHA512 with RSA Versus Unsigned . . . 258

C.7 Signed Baseline Results SHA256 with RSA Versus Unsigned . . . 259

xiii

LIST OF TABLES

C.8 Multi-hop Path Test Unsigned Results 260

C.9 Multi-hop Path Test Signed Results 261

C.10 Multi-hop Path Test Unsigned BFT-SMaRt Versus SDBFT 261

C.11 Multi-hop Path Test Signed BFT-SMaRt Versus SDBFT 262

xiv

List of Acronyms

BGP Border Gateway Protocol

CDPI Control-Data Plane Interface

DHT Distributed Hash Table

EGP Exterior Gateway Protocol

EIGRP Enhanced IGRP

ICS Industrial Control Systems

IDS Intrusion Detection System

IGRP Interior Gateway Routing Protocol

IPS Intrusion Prevention System

IP Internet Protocol

IS-IS Intermediate System to Intermediate System

ISPs Internet Service Providers

JVM Java Virtual Machine

NIB Network Information Base

NOS Network Operating System

OSPF Open Shortest Path First

RIP Routing Information Protocol

SDBFT Software-Defined Byzantine Fault Tolerant control

xv

SDN Software Defined Network

TCP Transmission Control Protocol

UDP User Datagram Protocol

xvi

Chapter 1

Introduction

This thesis presents the design of a novel consensus-based byzantine fault-tolerant

distributed architecture for a controller within an Software Defined Network

(SDN), to prevent against insider attacks through compromised controllers. In

this chapter, I provide a brief introduction to SDN and the issues in terms of se-

curity of the SDN paradigm that motivate the need for a fault-tolerant controller

architecture, including the limitations of current approaches. I then outline my

aims and key contributions and provide an overview of the structure of the rest

of this thesis.

1.1 Background

1.1.1 The Rise of SDN

In recent years, the notion of programmable networks has become an area of

increasing interest and research. In traditional networks the control and data

planes resided on the same device, with control being relatively static and deter-

ministic — the new model has shifted to moving the control plane into software,

allowing for real-time control of network flows.

The most well-known programmable network model is Software Defined Net-

working (SDN), wherein switches are purely forwarding devices which operate

1

1.1 Background

using a rule-based flow table which is populated through the use of an SDN con-

troller. The controller can either pro-actively install flow rules to control future

flows, or react to new flows seen on the switch and make routing decisions on

the fly. An SDN controller can run multiple applications, providing specific func-

tionality beyond normal routing, including load balancing, firewalls and traffic

monitoring. Typically, a switch will receive a packet and will attempt to match

it with a rule in its flow table. If matched, it will apply the action defined by the

rule. If there is no match, the switch will forward it to the controller, which will

then return a new flow rule (or set of rules) which will define some action, such as

to forward the flow to a particular port or drop all packets. SDN most commonly

refers to the specific OpenFlow [148] protocol for switch-controller communica-

tion used to establish SDN networks, providing the interface between the switch

and controller, as well as the specification for how the switch operates. Whilst

OpenFlow is already in use at major organisations, other protocols do exist.

Google uses a self-built high-speed SDN network for handling inter data centre

communications [104], while the NSA uses a locked down version of the Ryu con-

troller to control their intra-net1. SDN networks are also increasingly commonly

paired with network function virtualisation (NFV) technologies to provide the

routing mechanism within datacentres and cloud environments, where a dynamic

network is required to keep up with a rapidly changing topology.

1.1.2 The Problem With SDN

Typically in an SDN, a switch is controlled by a single controller, with one con-

troller responsible for many switches. In a small network environment, one con-

troller can easily control the entire network. Controllers are often large, complex

applications running on standard hardware and operating systems (for exam-

ple most Openflow controllers run as java or Python programs in user space on

Linux). Whereas; before routing decisions were made on the switch, meaning it

would be difficult, though not impossible, for an attacker to have an influence

over routing decisions, the control plane, and the decision making for routing,

1https://www.networkworld.com/article/2937787/nsa-uses-openflow-for-

tracking-its-network.html

2

https://www.networkworld.com/article/2937787/nsa-uses-openflow-for-tracking-its-network.html
https://www.networkworld.com/article/2937787/nsa-uses-openflow-for-tracking-its-network.html

1.1 Background

now operates on a general purpose computer which may well be connected to the

internet or other internal enterprise systems. This single point of failure becomes

a high-value target for an attacker [60, 207, 210, 206].

Modern operating systems are large, complex systems, and with that comes

the risk of vulnerabilities and exploits. Zero-day exploits can remain undetected

by defenders for months after being discovered by cyber criminals, and sold on the

black market [27, 149]. Older, well known vulnerabilities, while fixed by vendors,

can remain an issue for years following discovery on unpatched machines, such

as the critical EternalBlue exploit that still exists years after its discovery [178].

These exploits can give attackers full administrative control over a machine, often

with very little evidence of their presence. SDN controllers run as processes on

traditional operating systems, so it is therefore feasible for an attacker to gain

control of a machine running an SDN controller (e.g. by exploiting a vulnerability

in the operating system or other software installed on the system), or at the

very least gain the ability to intercept switch-controller communications on the

controller host, allowing them some degree of control over the network. Similarly,

with the increasing complexity of SDN controllers comes an increasing risk of

a vulnerability in the controller, or one of its dependencies. For example, in

December 2021 a major vulnerability, Log4Shell, was found in the log4j java logger

library1, which is utilised by many enterprise Java applications, including SDN

controllers such as the Floodlight controller used in this work. This vulnerability

allowed the attacker to connect to external services and potentially download, and

run, arbitrary code and affected hundreds, if not thousands, of software projects

that utilised the log4j library.

There are a wide range of actions an attacker could carry out if they were

in control of the SDN controller and routing decisions. The obvious examples

include denial-of-service attacks, wherein the attacker drops the network flows

of a particular target host, or all hosts. In a similar fashion, the attacker can

break the network through the introduction of illegal topologies, such as loops.

These sort of attacks are relatively easy to detect and prevent utilising existing

approaches which look for such topological errors in SDN control commands [111,

112, 7]. A more persistent attacker could perform more intelligent attacks that

1CVE-2021-44228

3

1.1 Background

do not cause obvious issues with the network, but affect it in other ways. For

example, an attacker could add a few extra hops on the paths of a particular

flow to introduce higher latency. While this may not seem like a major issue, in

a scenario such as a financial institution engaging in ultra-low latency trading,

where transactions need to happen very quickly (in the order of microseconds),

a delay of even a few milliseconds over the expected could result in major issues

such as trades being carried out after prices have changed [10]. An attacker who

has control over flows could facilitate person-in-the middle attacks by routing a

target flow through a machine that they own without the sending and receiving

parties realising.

In the past, the primary threat in cyber-security was individuals carrying out

relatively simple attacks for the fun and to earn respect amongst their peers.

There are still have low-impact threats — script-kiddies — inexperienced and

less-skilled attackers who use off-the-shelf malware or simple, widely available

tools to carry out simple attacks such as distributed denial-of-service (DDoS),

or credential harvesting. These types don’t usually have a specific target; if

they can’t get into a system easily they will move on. Now there is, however,

a growing threat from advanced attackers, namely criminal gangs and nation

state attackers. These new threats are well resourced, highly skilled, persistent

and targeted, which has led to the term Advanced Persistent Threat (APT).

These attackers work with the goal of stealing information, and disrupting critical

infrastructure. Two well known examples of this include attacks against western

defence companies from the east (it is suspected the Chinese J-20 jet fighter is

based on stolen plans of the USA’s F-22 and F-35 fighters1), or the (supposedly)

American and Israeli attack on Iranian nuclear enrichment plants in the form

of Stuxnet [110]. Such attackers can gather large amounts of intelligence about

their targets, discover their own zero day exploits, which are unknown even to

the software developers, and write single-use pieces of malware which can evade

detection. While a script-kiddie is unlikely to attack an SDN network, it is well

within reason that an APT level attacker would put the time and effort into

1https://www.cnbc.com/2017/11/08/chinese-theft-of-sensitive-us-military-

technology-still-huge-problem.html

4

https://www.cnbc.com/2017/11/08/chinese-theft-of-sensitive-us-military-technology-still-huge-problem.html
https://www.cnbc.com/2017/11/08/chinese-theft-of-sensitive-us-military-technology-still-huge-problem.html

1.1 Background

attacking the SDN control plane in order to assist in their other operations due

to the control that such a network would allow.

1.1.3 Dealing With The Problems

One approach to dealing with this problem is to detect attacks once they have

occurred, then react and repair the damage later, through the deployment of

a specialised Intrusion Detection System (IDS) or Intrusion Prevention System

(IPS). This is common within the host-based malware detection field, with the

caveat you often cannot detect the malware until it has already infected the

machine and started performing malicious actions. In a networking environment,

a large delay in detecting a malicious action may be a major problem — too

large a delay and the attack can be completed before it is detected. Because

many network flows are short lived, damage can be done even if there is a delay

of just a few seconds between an attack starting and a response occurring. For

example, this could be enough time for an attacker to redirect an important

request to a malicious server to disrupt a critical user request. This detection

approach requires an accurate data stream from the controller in order to apply

detection, which could be difficult to guarantee if the attacker has full control.

For example, the controller could report taking one action, but actually perform

another.

The second approach is to build protection into the controller architecture

which prevents attacks from occurring at all. This is akin to the network intru-

sion prevention system (IPS) model, where a detector sits on the network gateway

and blocks any flows which exhibit malicious, or unusual, behaviour. In an SDN

setting, this would require some system that sits between the switch and con-

troller, or on the switch itself, in order to analyse controller outputs — making

decisions about whether or not to accept the result. This would have to occur

outside of the controller, and its host, due to the risk of compromise. Applying

IPS-like autonomous detection can be a costly operation (including the potential

for false positives), and could reduce controller performance to the point that the

network suffers.

5

1.1 Background

A compromised SDN controller is effectively a malicious insider within the

network control architecture. For a discussion on how an SDN controller can be

compromised see Chapter 4. One way to look at insider attacks within SDN is

to consider the attacks as introducing faults to the network, with a compromised

controller being seen as a faulty service, causing byzantine (arbitrary) failures

within the network. A compromised controller can return a response to a switch

request which does not match the expected outcome, causing traffic to be routed

in an incorrect manner. A controller architecture that is resilient to insider attacks

could then be considered fault-tolerant if it is able to operate normally despite

compromised nodes. Within the distributed systems space there has been a large

amount of work designing protocols that enable systems to operate in the presence

of faults (see Section 2.11), ensuring that even if a portion of the nodes in a

distributed system are faulty the system operates without fault (in the best case

handling f faulty nodes with 2f + 1, or more commonly 3f + 1, nodes). In

the simplest fault tolerant protocol a client will make a request to a group of

servers, which then respond with a majority vote mechanism deciding on the

correct response. There has been work to provide fault tolerance within SDN,

however this is usually limited to fail-stop failures of a single controller (where

the controller goes offline either temporarily or permanently), and control simply

transitions to a backup controller which has access to a distributed datastore

containing switch state information shared with the primary and so can efficiently

gain control of the switch with existing knowledge of its state (see Sections 3.6

and 3.7).

What if we move to a distributed control architecture, where a switch com-

municates with multiple controllers at the same time and applies a fault tolerant

algorithm to prevent faults from occurring? This has the potential to prevent

almost all attacks resulting from compromised controllers, although introduces

some possible issues:

• Adding extra communication steps increases the latency of routing decisions

being made, degrading network performance.

• Introducing multiple controllers increases the required computing cost for the

control plane.

6

1.2 Motivation

• The network design becomes far more complex. For example, how are con-

trollers assigned to switches?

• How do we ensure controllers are in sync, such that they can reliably agree

on actions for specific flows?

• How are faulty or compromised controllers dealt with?

Typically, byzantine fault tolerant (BFT) algorithms require at least 3f + 1

(with some optimised algorithms reducing this to 2f+1) nodes in order to provide

fault tolerance, where f is the maximum number of faulty nodes. The protocols

usually require at least 4 rounds of communications, including multiple broad-

casts. For example, if I take perhaps the most well known algorithm, Practical

Byzantine Fault Tolerance, or PBFT [41], this requires 5 rounds of communica-

tion, including two rounds where all nodes broadcast to all other nodes. PBFT

also requires a node to take the role of leader, which is the primary node that

the client contacts, and then replicates the request to other members. If this

leader is not operating properly, there is a large time penalty in choosing a new

leader which could become unacceptable. A compromised leader could also mod-

ify, or even drop, client requests if requests are not signed by the client. The

key requirement of the existing algorithms is fault tolerance — as long as there

are fewer than f faulty nodes the algorithm will always handle the faults as part

of the protocol and complete fully. This is good for fault tolerance, but bad for

performance due to the latency and communication overhead of such algorithms.

If I assume a scenario where the servers are non-faulty for the majority of the

time, then the extra communication steps to handle faults that do not occur rep-

resent a large cost in terms of performance which is unacceptable in a low latency

scenario such as SDN control.

1.2 Motivation

Previous work around fault tolerance within SDN architectures has largely fo-

cused around handling fail-stop failures, where the primary controller no longer

responds to requests from switches. The typical approach is to utilise a backup

7

1.2 Motivation

controller which takes over control when required. This approach is suitable

for scenarios where a controller fails completely, either through genuine fault or

through a Denial-of-Service (DoS) attack, however it can not necessarily han-

dle byzantine faults introduced either through genuine fault, or through a more

advanced attacker, such as malicious routing decisions. Further, as I show in

Chapter 4, a particularly skilled attacker could inject malicious flow rules into

the network which are subtle enough to not adversely impact upon network per-

formance, meaning that detection is difficult.

One approach is to make use of a byzantine fault tolerant (BFT) architecture

which can handle arbitrary faults both from genuine faults and those caused by

an attacker [136, 137, 76, 158]. In these approaches, 3f+1 are required to handle

f faulty controllers — as long as no more than f controllers are faulty then the

fault is handled and the switch is correctly updated. However, this comes with a

large additional overhead as BFT algorithms are typically costly, requiring large

amounts of replication to provide 3f + 1 controllers per switch and operating

over multiple rounds of communication. This additional overhead translates to

additional latency when reacting to new flows. Whilst on a single hop path

this extra latency could be negligible, over a typical many-hop path this latency

becomes an issue.

From a network engineer’s perspective, who would want the network to per-

form optimally, the trade-off of large amounts of extra latency for extra security

may not be worth the additional complexity. It is well known that security sys-

tems that have a noticeable impact on users tend to not be used (as is often

the case with the tradeoff of usability vs security [35, 123, 165, 241]). This led

me to explore an approach that can still provide levels of protection that, in the

case of no fault, operates with a minimal impact on network performance, and

whilst under attack performs at a worst case equivalent to the traditional BFT

approach.

8

1.3 Aims

1.3 Aims

In this work I design a control architecture for SDN in which a switch commu-

nicates with multiple controllers at the same time, with a simple, and efficient,

byzantine fault-tolerant algorithm to provide agreement amongst controllers. I

relax the requirements of a traditional byzantine fault-tolerant algorithm to han-

dle faults within the protocol itself — I instead aim to identify when a fault

has occurred and then enter a failover protocol to handle it, rather than han-

dle directly in the initial run of the protocol. In this design, a switch directly

communicates with a quorum of controllers (without the use of a leader), and

then directly receives the responses back from all controllers. If all the controllers

return the same result, the switch accepts this result and updates the flow table.

If there is any disagreement in the responses (including any arbitrary difference),

then the switch enters a recovery node and rejects the response, picking a new

quorum of controllers from the pool. This represents a trade-off over traditional

fault-tolerant protocols, as in the non-faulty case control requires far less commu-

nication than PBFT (two rounds instead of five) and is hence more efficient, but

a slower recovery from fault than if it was directly handled within the initial run

of the protocol. This approach has the additional benefit of requiring only 2f +1

controllers, with f + 1 used during normal operation with a further f backup

controllers required when a fault is detected. An efficient BFT algorithm usually

requires at least 3f +1 nodes to provide fault tolerance. For example, a five node

system will tolerate one faulty node. In this system, a five node system will be

able to identify that a fault has occurred even if four of five controllers are faulty.

1.4 Contributions

In this section I outline the contributions of this thesis.

9

1.4 Contributions

1.4.1 Exploration of Attack Capabilities From a Compro-

mised SDN Controller

I provide an analysis of the capabilities of an attacker who has gained some

degree of control of an SDN controller. I begin by evaluating the attacker model,

including the method of controller compromise and the goals of such an attacker.

I then define a set of attacks that can be launched from a compromised SDN

controller, with a focus on attacks which cause modifications to the data plane

through the use of malicious flow rules. This is a combination of attacks from the

literature, as well as a number of novel attacks that to the best of my knowledge

are explored for the first time in this thesis. In many works which focus on the

security of controllers, the exploration of attacks that can be launched is limited

and so I aim to provide a focus on the potential impact of a compromised SDN

controller.

1.4.1.1 Practical Demonstration of Attacks

I implement the described attacks through a set of malicious applications for the

Floodlight SDN controller [187], and show their impact on a simulated network

using Mininet [130]. The impact of these attacks range from simple denial of

service, to less obvious attacks which introduce additional latency into network

communication, or support person-in-the-middle attacks. Whilst existing works

have implemented a subset of the individual attacks, to the best of my knowledge

this is the first piece of work to implement and evaluate the impact of multiple

attacks which modify the data plane from a compromised control plane.

1.4.1.2 Impact of Attacks on Industrial Control Systems

I examine the impact of the described attacks in a real-world setting of Industrial

Control Systems (ICS). Within ICS, the safety of systems is paramount and an

increasing use of real-time ethernet-based communication requires resilient net-

working. SDN is being increasingly proposed for use in industrial networks, in

10

1.4 Contributions

part due to the benefits to security and resilience afforded through reactive net-

work control, however there has been minimal discussion of the negative security

aspects of SDN in such environments. I further develop my attacker model for the

ICS case, and test the impact of my attacks on a combined physical and simulated

testbed utilising real-world ICS devices and protocols, a physical SDN switch and

a simulated physical process. I show that even simple attacks which introduce a

small amount of additional latency can fully disable real-time industrial network

protocols, and cause disruption to others.

To the best of my knowledge, this is the first piece of work that explores the

impact of a compromised SDN controller within the context of industrial control

systems. This work has been published as “Controller-in-the-Middle: Attacks on

Software Defined Networks in Industrial Control Systems” [87].

1.4.2 Design of a Consensus-Based Distributed Controller

Architecture to Prevent Malicious Insiders

I propose a novel consensus-based distributed architecture for byzantine fault

tolerant SDN control, which I refer to as SDBFT (Software Defined Byzantine

Fault prevenTing control). SDBFT is a lightweight protocol for applying con-

sensus within SDN controllers in order to identify, and handle, byzantine faults,

whilst requiring only f + 1 primary controllers to handle f faulty or malicious

controllers (reverting to 2f + 1 through the addition of f backup controllers on

the occurrence of a fault), compared to the 3f+1 used by comparable approaches

which utilise a traditional byzantine fault tolerant approach. The primary dif-

ference between SDBFT and the traditional BFT approach is that when using

BFT, all 3f + 1 controllers are used to handle all requests, whilst when using

SDBFT only the f +1 primary quorums handle requests, whilst the remaining f

backup capacity can be reserved on other controllers. Whereas traditional BFT

algorithms can prevent faults from happening as part of the core protocol, with

little difference in operation between the faulty and non-faulty state, I relax fault

tolerance to fault-identification with recovery, which allows for a far more efficient

protocol, with fewer communication steps to be used in the non-faulty scenario.

11

1.5 Thesis Structure

This is achieved through the use of a system where f + 1 primary controllers

are used if there is no disagreement amongst controllers, with the introduction

of an additional f backup controllers when disagreement occurs. The SDBFT

architecture is able to provide byzantine fault tolerance for SDN control with

a low additional packet processing time, and far fewer messages than compar-

ative systems using a traditional BFT approach, making it more viable for use

in real-world networks with a trade-off of a slight delay when handling faults.

Whereas existing works focus on one aspect of the problem, such as controller

assignment, this thesis represents thee first approach which covers all aspects

of the potential deployment including controller assignment, signature use and

controller consistency.

1.4.2.1 Implementing and Evaluating the SDBFT Architecture

I implement SDBFT using the Floodlight controller, and a switch proxy to repli-

cate the switch-side logic. I evaluate the performance of SDBFT using three

testbeds, including a Mininet environment, an OpenVSwitch virtual network and

a physical testbed using commercial SDN switches. I perform a number of tests

to measure the performance and resilience of SDBFT, compared to a non mod-

ified controller and a traditional BFT based approach which closely resembles

the related work. In particular this includes an evaluation of the performance

during the occurrence of fault, which is missing in existing work. This is the

most substantial evaluation of a fault-tolerant (or preventing) control plane to

demonstrate the practical viability of such approach. I show that the SDBFT ar-

chitecture provides fault tolerance with far less overhead than a traditional BFT

approach.

1.5 Thesis Structure

The thesis is structured into nine chapters. In Chapter 2, I provide a background

on SDN and fault tolerance. I describe the history of SDN, describe common ar-

chitectures and provide details on the most common SDN protocol — OpenFlow.

I give an introduction to consensus and describe byzantine fault tolerance.

12

1.5 Thesis Structure

In Chapter 3, I provide a literature review on the security of SDN, and cover

various techniques for providing security and fault tolerance within SDN con-

troller architectures.

In Chapter 4, I explore attacks against software-defined networks that can be

launched from a compromised SDN controller. This includes discussing the goals

and attack vectors of the attacker and an exploration of multiple attacks, some

from the literature and some new. I then look at a specific real-world use case

of SDN in the form of industrial control systems, and measure the impact of a

subset of the attacks against a number of industrial protocols.

Chapter 5 describes the design of my consensus-based fault-tolerant SDN con-

trol architecture, SDBFT, and I discuss my implementation of this architecture

in Chapter 6.

In Chapter 7, I describe my experimental setup for measuring the perfor-

mance and resilience of SDBFT, describing three simulated, virtual-networking

and physical switch based testbeds, along with the tools I utilise.

Using the testbeds developed in Chapter 7, in Chapter 8 I then evaluate

the SDBFT protocol utilising a number of tests, including baseline performance

experiments, high-throughput benchmarks and fault recovery time.

Finally in Chapter 9 I discuss future work and summarise my key contributions

and impact of my work.

13

Chapter 2

Background

2.1 Introduction

In this chapter I provide a brief history of networking and the development of

programmable networks. I then give an overview of Software Defined Networking

(SDN) and its operation, with a focus on the OpenFlow protocol. I then introduce

the concepts of dependability and byzantine fault tolerance.

In Section 2.2 I provide historical context with a history of the development of

networks, and the development of traditional routing algorithms. In Section 2.3

I then explore the concept of programmable networks which aims to provide

far greater control of networks than traditional network paradigms and routing

algorithms. I then examine the focus of this work, SDN, in Section 2.4, going into

detail on the architectures, applications and uses of SDN, and then in Section 2.5

I go into detail on the most widely-known SDN protocol, OpenFlow.

Section 2.6 explores the different modes of operation of SDN control, which

is followed by an overview of SDN controllers in Section 2.7. I also provide

an overview of the currently implemented fault-tolerance in SDN controllers in

Section 2.9.

Finally, Sections 2.8 to 2.11 introduce the concepts of dependability and faults,

consensus and byzantine fault tolerance.

14

2.2 A History of Networking

2.2 A History of Networking

2.2.1 The Evolution of the Network

The concept of a computer network in which two computers communicate with

each other was first proposed by J. C. R. Licklider in his 1960 paper “Man-

Computer Symbiosis” [138]:

“It seems reasonable to envision, for a time 10 or 15 years hence, a

“thinking center” that will incorporate the functions of present-day li-

braries together with anticipated advances in information storage and

retrieval and the symbiotic functions suggested earlier in this paper.

The picture readily enlarges itself into a network of such centers, con-

nected to one another by wide-band communication lines and to in-

dividual users by leased-wire services. In such a system, the speed of

the computers would be balanced, and the cost of the gigantic memo-

ries and the sophisticated programs would be divided by the number of

users.”

Shortly afterwards in October 1962 Licklider became the first head of the

computer research program at the Advanced Research Projects Agency (ARPA,

now known as the Defence Advanced Research Projects agency, or DARPA),

where he pushed research into his networking concept [134]. During this time,

Leonard Kleinrock at MIT introduced the concept of packet switching (where

individual packets are addressed and routable) [113], which would lead fellow MIT

researcher Lawrence G Roberts and Thomas Merril to first computer network in

1965, connecting two computers over a low speed dial-up telephone line.

In September 1969, ARPA launched ARPANET, the network that would even-

tually become what we now know as the internet [134]. In October 1969 the first

message was sent between computers at the Stanford Research Institute (SRI)

and the University of California, Los Angeles (UCLA). By the end of 1969, the

15

2.2 A History of Networking

University of California, Santa Barbara (UCSB) and the University of Utah were

also connected to the ARPANET, growing it to four site.

As the ARPANET grew, multiple other networks were developed across the

world (such as the Merit and CYCLADES networks), however these different net-

works were not compatible with each other, and so in 1974 Bob Kham of DARPA

and Vint Cerf of Stanford University published the “Transmission Control Pro-

gram”, a protocol that provided all of the transport and forwarding functionality

for the internet (coincidentally, this was the first time the word “internet” was

used) [44]. In 1978, version three of the Transmission Control Program separated

the singular protocol protocol into two protocols - the Internet Protocol (IP) for

addressing and the forwarding of single packets, and the Transmission Control

Protocol (TCP) for providing additional features, including the ability to handle

lost packets. The User Datagram Protocol (UDP) was also made available at

this time. Around the same time, Ethernet was developed as a physical layer

protocol by researchers at Xerox PARC, primarily led by Robert Metcalfe [154],

and standardised as IEEE 802.3 in 1983.

2.2.2 Network Routing

One of the first widely used routing protocols was the Routing Information Proto-

col (RIP), originally developed by Charles Hendrick in 1982 and standardised in

1988 [95]. RIP is an example of a distance-vector routing protocol, in which routes

are determined based on distance, in this case the number of hops. Distance-

vector based protocols are based upon the concept of routing tables, which con-

tains information about the routes to networks, that are shared amongst routers

along with other network information. Routing is performed by identifying the

next router which would have the shortest path to the target, and forwarding the

packet onto it. RIP attempts to prevent network loops occurring by limiting the

number of hopes a packet can take to 15. This can reduce the chance of loops,

but has the downside that it limits the protocol to smaller networks as packets

cannot travel more than 15 hops.

Another distance vector routing algorithm emerged in 1986 in the form of

the proprietary Interior Gateway Routing Protocol (IGRP) from Cisco [52], later

16

2.2 A History of Networking

followed by the Enhanced IGRP (EIGRP) protocol in 1993 [51]. IGRP removes

the 15 hop limit experienced by RIP, allowing routed up to 255 hops in length,

which allows for much larger networks that RIP. EIGRP builds on IGRP to sup-

port classless IP addressing, and therefore subnets. Further, EIGRP reduces the

amount of information exchanged between routers by only transmitting updates

to routing tables.

Link-state routing protocols are the alternate to distance-vector routing pro-

tocols, first described in the 1970s for use in ARPANET [151, 150]. In link-state

routing protocols, each node (switch or router) builds up a map of the network

showing the connectivity between nodes. This graph can then be used to calculate

the shortest path to the destination, for example through the use of Dijkstra’s

algorithm, which is able to find the shortest path between two nodes in a graph

with weighted edges [67]. Whereas in distance-vector routing algorithms routers

exchange routing tables with each other, in link-state protocols switches and

routers only exchange information on their neighbours. Two prominent exam-

ples of link-state routing protocols are the Open Shortest Path First (OSPF) and

Intermediate System to Intermediate System (IS-IS) protocols.

OSPF, originally designed in the 1980s, is a link-state routing protocol which

uses a form of Dijkstra’s routing algorithm for finding the shortest path to desti-

nations [161]. As well as the distance between routers, the protocol also considers

other factors including link throughput and availability. Version 2 of the proto-

col added support for IPv4 [162], with support for IPv6 also added later [81].

OSPF is still widely used today, in particular within enterprise networks. IS-

IS is another link-state routing protocol that emerged around the same time as

OSPF, and is very similar, also relying on Dijkstra’s algorithm [177]. IS-IS is

commonly used as the routing protocol in the networks managed by Internet

Service Providers (ISPs).

The Exterior Gateway Protocol (EGP) [157], later followed by the Border

Gateway Protocol (BGP) [141], are examples of exterior gateway protocols. Whereas

all of the previously described protocols are interior gateway protocols, designed

for routing within a network, exterior gateway protocols are designed to pro-

vide routing between networks (or autonomous systems). BGP is an example

17

2.3 Programmable Networks

of a path-vector routing algorithm, in which path information is shared be-

tween routers. An important aspect of BGP is that is relies heavily on network-

administrator configured routed. BGP is the backbone of the modern internet,

with failures in BGP, in particular those caused by misconfiguration causing ma-

jor outages on substantial portions of the internet [167, 85].

2.3 Programmable Networks

Software Defined Networking (SDN) is just one example of the concept of pro-

grammable networks, in which the control plane, which represents the intelligence

used for making routing decisions (using the algorithms described above) and the

data planes, which is responsible for the actual forwarding of packets on the net-

work, are separated (previously both functions existed within a switch itself).

Before the emergence of SDN, and in particular the OpenFlow protocol, there

was a rich history in the development of programmable networks [80, 11].

Before SDN, a similar but disjoint concept was developed in active networks,

the first work coming from Tennenhouse and Wetherall in 1996 [224]. The con-

cept of active networks is that programs can be injected into the nodes of the

network [225]. In the Tennenhouse and Wetherhall approach this is done by re-

placing traditional network packets with “capsules” — small programs that are

executed at each switch as they pass through them. This custom code brought

programmability to the network through the packets themselves, for example in-

cluding code which dictates the next hop the packet will take. The alternate to

the capsule model is the programmable router/switch model, where the code was

loaded onto switches and routers through an out-of-band channel [25]. Whilst

the active networks concept, in particular the capsule model, did not gain much

traction past the 1990s, the programmable switch approach is still in use, with

the P4 language being an example under active development [29].

One of the earliest works exploring the separation of the control and data

planes was Tempest, an architecture for providing the capability for multiple

asynchronous transfer mode (ATM) networks to be hosted on the same physical

18

2.4 Software Defined Networking

switches [153]. As part of this work, the idea of software controllers which would

allow control of packet forwarding was considered.

ForCES (Forwarding and Control Element Separation) is an early interface

for communication between the control and data planes, standardised by the In-

ternet Engineering Task Force (IETF) in 2004 [238]. Whilst ForCES allows for

the separation of the control and data planes as is the core principle of SDN, the

difference to the modern SDN architecture is that both planes still exist on a sin-

gle device, on separate devices in very close proximity. This was used to develop

SoftRouter, which used the ForCES API to facilitate the communication between

routers which maintained a forwarding table with a separate controller. ForCES

struggled with vendor adaption and was eventually abandoned [80]. Shortly af-

terwards the Routing Control Platform further explored the concept of logically

centralised control, however this used the existing BGP protocol for modifying

the forwarding tables of routers [80].

Ethane (which is based upon the previously proposed Sane [40]) is the first

approach which follows the modern SDN approach of a centralised controller and

flow tables on switches [39]. Ethane makes use of a logically centralised con-

troller for administering level access control, with a focus on enterprise networks.

The development of Ethane directly influenced and led to the development of

the OpenFlow protocol, primarily due to the deployment of Ethane at Stanford

University.

2.4 Software Defined Networking

The first work describing SDN, and in particular the OpenFlow protocol, was

published by McKeown et al. at Stanford University in 2008 [148]. This work

details the design of the SDN switch, controller and OpenFlow protocol. The

driving motivation of this work was experimentation — the SDN architecture

would allow researchers to run experimental networks alongside production net-

works on the same hardware. Many early works on SDN focus on the separation

of research and production networks [214, 215]. After being deployed on multiple

19

2.4 Software Defined Networking

campus networks, the OpenFlow architecture was adopted within industry, be-

coming popular for use within datacentres [89, 80]. Whilst most commonly used

within individual networks, specifically enterprise and data centre networks [169],

there have also been deployments of software-defined wide-area networks (SD-

WANSs) [240, 156, 139]. A well known example of a SDWAN is B4, which is a

private WAN owned by Google and used to manage the connection between their

datacentres [104]. B4 utilises logically centralised applications to control routing,

with a control plane built upon the Onix distributed SDN controller [115].

The OpenFlow protocol is now standardised and promoted by the Open Net-

working Foundation [173]. I give a deeper overview of the OpenFlow protocol

in Section 2.5. For the remainder of this work, I focus on the OpenFlow-based

architecture for SDN.

2.4.1 SDN Controller Architecture

SDN
Application

SDN
Application

SDN
Application

SDN Controller

CDPI (Southbound
Interface)

Northbound
Interfaces

Control
Layer

Data
 Layer

Application
Layer

Figure 2.1: SDN Architecture

In the SDN model, the network is split into three layers: the data plane,

control plane and applications [79, 120, 146].

20

2.4 Software Defined Networking

Data Plane The interconnected forwarding devices, either physical or virtual,

within the network (switches). These are the devices that perform the actual

forwarding within the network. The core components of data plane devices

are a set of forwarding engines, and a Control-Data Plane Interface (CDPI)

agent for handling communication with the control plane.

Control Plane The control plane, usually referred to as the SDN controller or

Network Operating System (NOS) is the logically centralised component re-

sponsible for communicating with data plane devices over the CDPI, including

translating commands from applications into flow rules useable by the date

plane, and providing a network view to the applications. A single controller

will communicate with multiple data plane devices, and the control plane

may be made up of multiple distributed, but logically centralised, controller

instances.

Applications (Management Plane) The application layer consists of a set

of applications for performing network functions, such as forwarding, load

balancing and firewalls. Applications communicate with the controller using

the northbound interface, including providing instruction to the controller

about actions that need to be taken within the network and receiving network

state information from the controller to use in application logic.

Communications between the layers is provided through the control-data

plane interface (CDPI, also commonly called the southbound interface) and the

controller-application interface (commonly referred to as the northbound interface

or API).

Control-data plane interface (CDPI)/Southbound interface The CDPI

allows communication between the switches of the data plane, and the SDN

controller. The CDPI will specify how the switches and controllers commu-

nicate, and will also dictate the instruction set of the forwarding device. The

CDPI provides functionality including the sending of switch events from the

switch to the controller, providing control of forwarding operations and col-

lecting statistics from the data plane. The most common CDPI is OpenFlow

(as discussed in Section 2.5).

21

2.4 Software Defined Networking

Controller-application interface/ Northbound interface The northbound

interface is used by applications to communicate with the SDN controller. The

northbound interface provides a layer of abstraction for the applications over

the low level instructions used by the data plane, with the controller con-

verting the high level instructions from the application. Whilst there is no

de-facto standard for the northbound interface (as OpenFlow is to the CDPI),

the northbound interface is most commonly implemented as a RESTful API.

There has been further attempts to provide a level of abstraction over SDN

in order to make the programming of networks easier. An example of this is

Frenetic, which is a high-level network programming language which can be used

for programming distributed collections of switches, which provides a layer of

abstraction over the SDN network below (in the provided example implemented

with the NOX controller) [84]. The language supports querying the network and

dictating traffic forwarding policies, which are translated into low-level flow rules

onto switches by a custom run-time system on top of the SDN controller.

2.4.2 SDN Deployment Architectures

An SDN deployment can take one of three architectures: centralised, distributed

and hierarchical. Each style of deployment has benefits and downsides which I

will briefly discuss.

Centralised In the centralised architecture, the entire network is controlled by a

single, centralised controller which maintains a complete view of the network.

Whilst this has the advantage that it is the easiest deployment, it provides a

severe limitation in terms of scalability, as well as provides a single point of

failure.

Distributed In the distributed approach, multiple controllers each control a lo-

cal partition of the network, with only knowledge of their local network view.

Approaches can be taken to synchronise information between controllers to

expand upon this view. Whilst this provides greater scalability, the limited

network view of an individual controller limits large-scale coordination across

22

2.4 Software Defined Networking

the network. I discuss a number of proposed distributed controller architec-

tures in Section 3.5.

Hierarchical In the hierarchical architecture, distributed controllers control a

local partition of the network, however a logically centralised root controller

with a global network view is used for making certain routing decisions.

2.4.3 Applications

One of the core components of the Software Defined Network is the applications

that run on or communicate with the controller in order to provide extended

functionality to the controller to perform specific functions. These can either be

part of the core SDN controller, or run as external services communicating with

the controller over an API. An SDN controller will typically come pre-loaded with

a set of applications which perform core functionality, such as routing, as well

as further applications for more advanced features. For example, the Floodlight

SDN controller comes with pre-built applications for forwarding, load balancing,

firewall and static flow pushers, amongst others [188].

As well as the default applications, the majority of the open SDN controllers

support user-designed apps, with most controllers providing programming guide-

lines for developers. One of the advantages of SDN applications is that they can

be used in a modular fashion and shared amongst users. As expected, this led to

the emergence of SDN application stores, with HP being the first to launch an

SDN application store in 2014 [99]1.

2.4.4 Security of SDN

Whilst centralising network control provides many benefits, this introduces a

single point of failure, as well as a single target for attackers to focus on to gain

both control and monitoring over a target network [60].

1At the time of writing, I was unable to find access to the HP app store, with the only
discoverable links being dead. It is unclear if it is still in operation as I was also unable to find
any references indicating its closure.

23

2.5 The OpenFlow Protocol

Kreutz et al. defines seven threat vectors for software defined networks [119].

These include direct attacks on switches and controllers, as well as the various

communication channels between components of the SDN. Whilst some of these,

such as the compromise of switches, is not specific to SDN, the impact of such

threats can potentially be augmented though the use of SDN.

There are numerous approaches that can be taken to compromise or other-

wise negatively effect an SDN controller. These can include launching poisoning

attacks against the network view held by the SDN controller [98, 168, 64, 230],

installing malicious SDN applications [235, 205] or directly compromising the

controller [194]. I discuss these approaches more in Chapter 4. Further, there

has been a large amount of discussion of the impact of denial-of-service (DoS)

type attacks against SDN controllers and switches [103, 69, 234, 108, 114, 244,

74, 70, 72, 71]. These DoS attacks can both send a large volume of requests to

the controller, exhausting resources, or alternatively send a large number of new

flows through a switch causing the flow table to be filled, requiring rules to be

removed and increasing the load on the controller.

The use of SDN also introduces further opportunities for attackers to finger-

print networks to learn how which devices are connected and how the the network

operates. Cui et al. demonstrate a fingerprinting attack against SDN to learn the

packet-forwarding logic of the network, which can be performed both actively and

passively [59]. Conti et al. leverage a scenario where the attacker can read the

flow table on a switch in order to learn extensive detail about the configuration

of the network, including the security policies in place [54]. Multiple approaches

could be used by the attacker to learn the state of a flow table, including util-

ising a listening port on the switch [19], through default credentials on a switch

[243], observing switch-controller communications [184] or directly compromising

a controller.

2.5 The OpenFlow Protocol

When referring to SDN, most commonly the protocol in use for communicating

between a switch and a controller is the OpenFlow protocol, managed by the

24

2.5 The OpenFlow Protocol

Open Networking Foundation1, and originally developed by McKeown et al. at

Stanford University [148]. The initial version of the protocol, Version 1.1, was

released in 2011 [171]. The most recent publicly available version is Version 1.5.1,

released in 2015 [175]. Version 1.6 of the protocol was released to ONF mem-

bers in 2016. The most widely supported version of the protocol is version 1.3,

released in 2012 [174]. As well as providing a specification for switch-controller

communication, the OpenFlow standard also specifies the implementation of the

switch in order to operate in OpenFlow networks, including the handling of the

protocol and construction of flow tables.

The OpenFlow protocol operates over a TCP connection, and supports the

use of Transport Layer Security (TLS) to secure the channel between the switch

and controller, using port 6653 for communication.

2.5.1 OpenFlow Packets

Table 2.1 lists commonly used OpenFlow packets that are sent between a switch

and controller. As can be seen, there are four main groups of packet types —

those used in setting up a connection between a switch and controller, those used

in switch control operations, messages to relay flow statistics from the switch and

messages used for other specific purposes.

2.5.1.1 OpenFlow Packet Header

All OpenFlow packets contain the OpenFlow header, as shown in Figure 2.2. The

header specifies the OpenFlow version, the message type (as seen in Table 2.1,

represented by a numerical value), the total message length and a transaction id

(xID), used for pairing replies to requests. The xID field is optional, and is often

not implemented for all packet types on switches and controllers, defaulting to a

value of 0.

Fields specific to the OpenFlow packet type will then follow the header. Note

that some packet types, such as a FeatureReq message, will only consist of the

1https://opennetworking.org

25

https://opennetworking.org

2.5 The OpenFlow Protocol

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

OFVersion OFType Length

xID

Header

OpenFlow Message (Variable Length)
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh


Body

Figure 2.2: OpenFlow message header (Openflow 1.3 [174])

OpenFlow header, with the switch able to respond based on the message type

field in the header alone.

2.5.2 OpenFlow Handshake

When a switch is launched, it will connect to the controller. Typically this con-

nection is configured by IP and port number, often the default OpenFlow port

of 6653. The switch will then establish a TCP connection to the controller.

Once the TCP connection is established, a simple handshake protocol, as in-

structed by the OpenFlow specification, is performed, as shown in Figure 2.3.

The handshake begins with the sending of an OpenFlow Hello message, which

can be initially sent by either the switch or controller. The receiver will respond

with a second Hello message to confirm they are alive. The controller will then

send a FeaturesReq to the switch, which is used to gather information on the

switch. The switch will reply with a FeaturesRes message containing the ap-

propriate information. This can include the number of PacketIn messages that

can be buffered by the switch when sending requests to the controller, and the

number of flow tables supported by the switch. Once the FeaturesRes has been

received by the controller, the required portion of the handshake is complete, and

the switch can start sending PacketIn requests to the controller.

There are further optional messages that can be sent between the switch and

controller after the required handshake has been completed, which further con-

26

2.5 The OpenFlow Protocol

ControllerSwitch

Hello

Hello

FeatureReq

FeatureRes

Figure 2.3: OpenFlow Handshake (Openflow 1.3 [174])

figure the switch. The SetConfig can be used to set configuration parameters

on the switch, and a GetConfigReq and be used to query configuration param-

eters (returned through the matching GetConfigRes). The controller can use a

RoleReq to set the current role of itself (Master, Slave or Equal, see Section 2.9.1).

The switch must reply with a RoleRes, which follows the same structure as the

request and confirms the current role of the controller.

2.5.3 Flow Tables

One of the core components of the SDN switch is the implementation of a set

of flow tables. In the simplest case, a switch will maintain both a layer 3 and

a layer 2 flow table [91]. The flow table consists of a set of rules which include

match fields (for matching to a flow), action fields (dictating what to do with the

packet) and a set of statistics representing the rule (such as number of packets).

Flow rules can be set to expire after either a hard timeout, or after a certain

amount of time with no traffic utilising the rule.

When implemented onto a physical switch, flow tables are often implemented

in Content-Addressable Memories (CAMs), for layer 2 flow tables, and Ternary

Content-Addressable Memories (TCAMs) for layer 3 tables [201, 91]. The memo-

ries have a fixed size, which introduces a limit on the size of flow tables. If the flow

tables are full, then flow rules must be removed to introduce new rules into the

tables. There are various strategies for doing this, including simple approaches.

27

2.5 The OpenFlow Protocol

Table 2.1: List of common OpenFlow packets sent between the controller (C) and
switch (S) in OpenFlow 1.3

Group PacketName Direction Description

Handshake

Hello S→C,C→S Sent at beginning of communica-
tion. Used for version negotiation

FeatureReq C→S Requests an enumeration of the
switchs‘ abilities

FeatureRes S→C Response to FeatureReq
GetConfigReq C→S Query fragment handling properties

of packet handling pipeline
GetConfigResp S→C Acknowledgement of GetConfigReq
SetConfig C→S Set fragment handling properties of

packet handling pipeline
RoleReq C→S Request assignment of role (see Sec-

tion 2.9.1)
RoleRes S→C Returns role currently assigned to

controller

Switch
Operations

PacketIn S→C Used to send a packet from switch
to controller

PacketOut C→S Used to inject packet from controller
into data plane

FlowMod C→S Allows controller to modify state of
switch

FlowRemoved S→C Sent when entry in flow table is re-
moved.

PortStatus S→C Sent on change of status of a port
GroupMod C→S Used to modify group tables
PortMod C→S Used to modify state of OpenFlow

port
TableMod C→S Used to control what happens to

packet when not matched in the flow
table specified (or all tables)

Stats
MultipartReq C→S Used to request information (stats)

about individual flows
MultipartRes S→C Response to MultipartReq

Other

BarrierReq C→S Used for synchronisation. All state
control operations sent from con-
troller to switch must be performed
before BarrierRes is sent

BarrierRes S→C Response to BarrierReq
Error S→C,C→S Indicates failure of an operation
EchoReq S→C,C→S Simple packet for exchanging infor-

mation about latency, bandwidth
and liveness.

EchoRes S→C,C→S Response to EchoReq

28

2.5 The OpenFlow Protocol

such as first-in-first-out. This limitation can also be utilised by attackers in order

to perform denial-of-service attacks on the network, as these tables can be easily

filled by generating large volumes of traffic with unique source and destination

addresses, filling the table and requiring a large amount of controller interaction

to handle flows [234, 233].

2.5.4 Other SDN Protocols

Whilst the majority of SDN implementations utilise the OpenFlow protocol, there

are other protocols in use and being developed.

One example is the Interface to Routing System (I2RS) being developed by

the Internet Engineering Task Force (IEFT) [14]. I2RS utilises existing routing

algorithms between forwarding devices, including OSPF and BGP, however pro-

vides a southbound API allowing applications to modify routing tables. Also

developed by the IETF is NETCONF, which allows for the remote configuration

of switches [77].

OpFlex is an open source protocol developed by Cisco as a direct competitor

to OpenFlow [219, 209]. A primary difference between OpFlex and OpenFlow is

that whilst OpenFlow centralises all routing decisions to the controller, OpFlex

instead uses the controller to enforce policies which are sent to network devices,

which use local decision making to apply them.

The OpenVSwitch Management Database (OVSDB) protocol is equivalent

to an SDN southbound API, specifically for configuring OpenVSwitch virtual

network devices [182]. It is designed to be used in conjunction with OpenFlow

to manage the virtual switches themselves including functions such as creating

bridges and adding ports.

29

2.6 SDN Operation

2.6 SDN Operation

2.6.1 Reactive

In the reactive approach, on receiving a new flow the switch first performs a

lookup against the flow tables. If a match is found, then the action dictated

by the flow table is applied. If no match is found, then the switch generates a

PacketIn OpenFlow message, and sends to the controller. The controller will

then process the packet in (more specifically, the applications installed on the

controller), and will return a response instructing the switch how to proceed

as shown in Figure 2.4a. Typically, this will consist of a FlowMod OpenFlow

message which instructs the switch to add a new entry into the flow table, modify

an existing entry or delete an existing entry, as shown in Figure 2.4b. This is

accompanied by a PacketOut message which instructs the switch to forward the

buffered packet. The switch table rules will usually be set with a short time-to-

live value so that it frees space in the flow table later (the default is typically 5

seconds without a packet matching the flow rule). Note that multiple OpenFlow

messages can be included in a single network packet.

Reactive control has the benefit that it provides finer grained control of the

network “on-the-fly”, providing the ability to handle new flows as they arrive,

without having to pre-empt future flows. However, reactive flow control is expen-

sive both in terms of controller side computation in processing switch requests,

and in network communication overheads between the switch and controller. The

switch has to wrap the packet in a PacketIn message, and send to the controller

and then wait for a reply, potentially buffering new packets in the flow while

waiting. In scenarios where delays can cause issues, such as financial markets,

this can be unacceptable.

2.6.2 Proactive

In the proactive approach, the flow tables of the switch are populated by the

controller in advance, meaning that the majority of new flows can be handled by

the switch without querying the controller. This is largely done through the use

30

2.6 SDN Operation

ControllerSwitch

PacketIn

Response

(a) General reactive control

ControllerSwitch

PacketIn

PacketOut

FlowMod

(b) Typical operation

Figure 2.4: Reactive switch control

of more generalised flow table entries, for example matching on a longer prefix.

This is closer to the routing table model used in traditional networks.

This has the benefit that all packets are forwarded at line rate as the switch

no longer needs to query the controller with all new flows. The major downside is

that in a purely proactive model some of the finer grained control gained through

the use of SDN is lost — in order to modify the network state the controller needs

to first fetch flow statistics from the switch which introduces an extra latency.

2.6.3 Hybrid

Rather than utilise a purely proactive or reactive approach, the alternate is to

use a combination of the two. For known flows that do not require fine-grained

control, the flow tables are pro-actively filled allowing for high throughput on the

switch. The remainder of the flows, which may require fine-grained control, are

processed reactively and sent to the controller. For example, flows relating to

known devices on an enterprise network (such as web servers, email servers etc)

can be handled by pre-installed rules in the flow tables of network switches, but

flows relating to a previously unknown device can be handled reactively by the

controller (including applying any relevant security policies).

31

2.7 SDN Controllers

2.7 SDN Controllers

The SDN controller is one of the most critical aspects in SDN. There are many

SDN controllers available, both open source and commercial [179]. SDN con-

trollers are written in common programming languages, primarily Java, Python

and C, and are designed to run on general purpose operating systems (Windows,

Linux, MacOS). Table 2.2 provides a list of commonly used SDN controllers.

Northbound Interface

Southbound Interface

Core
Functions

Internal
Modules

Datastore

Applications

Switches

Figure 2.5: SDN Controller Components

Figure 2.5 demonstrates the primary components of a typical SDN controller.

In order to communicate with forwarding devices, a southbound interface is im-

plemented which maintains a connection with devices and handles the sending

and receiving of, usually OpenFlow, messages. Similarly, a northbound interface

is implemented, typically a RESTful interface, to communicate with external

applications. The controller then contains a set of core functions, which are re-

sponsible the core functionality of the controller. This can include device (switch)

management, maintaining the network topology and basic routing. Importantly,

this will include a component for forwarding switch requests to internal modules

or external applications, and sending the responses from these modules back to

32

2.7 SDN Controllers

Table 2.2: A Selection of Commonly Used SDN Controllers

Controller Language Open
Source

Developer/
Maintainer

Distributed

OpenDaylight [152] Java Y Linux Founda-
tion

N

Floodlight [187] Java Y Big Switch Net-
works 1

N

NOX [90] Python/C++ Y Nicira Networks N
POX [186] Python Y Nicira Networks N
Ryu [197] Python Y Independent N
ONOS [20] Java Y Linux Foun-

dation, Open
Networking
Foundation

Y

Beacon [78] Java Y Stanford Uni-
versity

N

Onix [115] C, Python N Nicira Net-
works, Google,
NEC, ICSI

Y

OVS-controller [176] C Y Independent N
1 Big Switch Networks no longer involved, though developers still contribute

the switches. This functionality will rely on a datastore used to store network

state information, including the currently observed topology, to be used by appli-

cations when making decisions, such as routing. This may be limited to a local

datastore in a fully centralised deployment, or may represent a distributed, yet

logically centralised, datastore is a distributed controller architecture is used.

A controller will also typically contain a set of internal modules which operate

as applications to perform network functions. These can include functionality

such as forwarding/routing, firewalls and load balancers. A controller will often

be distributed with a set of these modules, but may also allow for the development

of further modules by users.

Some SDN controllers provide an interface for management of the controller

itself, commonly through the use of a web-based interface over HTTP. An example

of this for the Floodlight controller can be seen in Figure 2.6

33

2.7 SDN Controllers

(a) Home Page

(b) Network Topology View

Figure 2.6: Floodlight web administrative interface

2.7.1 Controller Placement

An important consideration within SDN networks, in particular those with multi-

ple controllers, is the placement of controller in relation to switches [94, 61, 105].

In particular, a major impact on the performance of an SDN controller is the

latency of the switch-controller channel [183]. The two main factors that impact

how quickly a controller can process a request are the computational time on the

34

2.8 Dependability and Faults

controller in processing the request, and how long does it take for the request,

and associated reply, to travel between the two entities. Therefore, there is a need

to ensure that the switch-controller latency is reduced where possible. As well as

reducing latency, the placement of controllers can have an impact on the security

and robustness of the SDN control plane [163, 239, 93]. For example, a controller

located at a large distance from the switch over a high latency communication

channel will result in larger flow setup times.

2.8 Dependability and Faults

In this section I introduce the concept of dependability in computer systems. I

then go on to discuss different types of faults that can occur within computer

systems, and the failures that they can cause.

2.8.1 Dependability

Dependability is the ability of a system to, at any given time, provide the service

for which it is designed [132]. Dependability generally refers to a set of attributes

(as discussed in Section 2.8.1.1 below) which can be used to assess how dependable

a system is.

Dependability and security are closely related [107, 131]. The dependability

of a system is can be directly linked to how secure a system is. For example, if a

system is vulnerable to denial-of-service type attacks which can take the system

offline, and such an attack is carried out, then there is a direct impact on the

availability of the system.

The Laprie dependability tree, as seen in Figure 2.7, demonstrates the at-

tributes of dependability, as well as branches representing the means of achieving

those attributes and the impairments to dependability.

2.8.1.1 Attributes

The attributes of dependability are the properties which can be measured in order

to assess the level of dependability within a system. According to Avizienis et

35

2.8 Dependability and Faults

Dependability

Attributes Means Impairments

Availability

Reliability

Safety

Confidentiality

Integrity

Maintainability

Fault Prevention

Fault Tolerance

Fault Removal

Fault Forecasting

Faults

Errors

Failures

Figure 2.7: Laprie Dependability Tree [132]

al., dependability covers the following attributes [15]:

Availability The system is operating, or ready to operate, correctly. Usually

given as a percentage of uptime. For example, typically a server is highly

available if it meets the five nines threshold of 99.999% uptime, representing

less than 5.26 minutes of downtime per year. Note that availability indicates

uptime only (liveness), not correctness.

Reliability The ability of the system to provide the continuity of correct service.

Whereas availability representing the total uptime of a system, reliability mea-

sures the frequency of failures. Often represented as the mean time between

failures (MTBF), where

MTBF =
Total Uptime− Total Downtime

Number of Failures

Integrity The system, and in particular data, is unaltered, either by a fault or

outside (attacker) influence.

36

2.8 Dependability and Faults

Safety The system is operating without harmful effects on the user or environ-

ment.

Maintainability Represents how easy the system is to repair.

With the addition of the Confidentiality attribute, which covers the disclo-

sure of confidential information, Security can also be considered an attribute

of dependability being a summation of the CIA triad of confidentiality, integrity

and availability [107, 131, 202]. In some particular scenarios, safety may also be

a factor of security, such as in the example of cyber-physical systems as discussed

in Chapter 4, Section 4.5.

2.8.1.2 Means

The means represent a set of methods and techniques that can be utilised in order

to aid in the development of a dependable system and to increase dependability.

Fault Prevention Measures are taken to prevent the introduction of faults at

the implementation phase, for example through secure development method-

ologies

Fault Tolerance Measures are taken such that the system is able to operate

correctly and provide the required service, even with the presence of faults.

Fault Removal Discovered faults are removed. Can be applied during develop-

ment through testing and other verification methods, or during software use

through maintenance (patching, updates etc).

Fault Forecasting The occurrence and impact of future faults is predicted.

In this work I focus on the concept of fault tolerance.

2.8.1.3 Impairments (Threats)

Impairments (often called threats) are the things that cause an impact to the de-

pendability of a system. The primary thing that can cause a loss of dependability

are faults, which can in turn cause errors and failures. I discuss these further in

Section 2.8.2 below.

37

2.8 Dependability and Faults

Fault A defect (bug) in a system. Whilst a fault may exist in a system, it has to

be triggered during program execution in order to cause an error (and failure).

Error An error represents a deviation in the behaviour of a system from its

intended behaviour. An error can be caused by a fault, and can cause a

failure. Errors are generally not observable outside of the system unless they

cause a failure, but can be detected by monitoring the running process (such

as through the use of debuggers).

Failure A failure is when the delivered service deviates from the system speci-

fication. A failure is observable to a user (human or service) of the system.

2.8.2 Faults

It is first important to distinguish between the concepts of faults, errors and fail-

ures. A fault is a hardware defect or bug (programming mistake) within a system.

An error is the result of a fault that occurs within the operation of a system [116,

Ch. 1, p. 1-2]. Whilst a fault will always be present within the system, it will only

cause an error when the execution of the program triggers a fault. A failure is the

state in which the system deviates from its specification [132]. Whilst a failure

is caused by an error, not all errors will result in failure. For example, a error

which causes an exception to be thrown can be caught and handled to prevent a

failure occurring As per the example provided by Goren and Krishna [116, Ch.

1, p. 2], a programming fault that uses an absolute version of a function (that

always returns a positive value) could cause an error if passed a negative value,

where the result of the function should be a negative value. An error caused by

a fault may also cause further errors within a system if an erroneous result of the

error is passed into other components within the system, resulting in multiple

errors caused by a single fault.

In terms of security, a fault can be exploited by an attacker in order to cause

an error or failure. For example, in the case of a buffer overflow attack, in which

a programming error allows a user input to overflow a buffer, the attacker can

cause a controlled error to cause the program execution to deviate from it’s normal

operation and execute their own code.

38

2.8 Dependability and Faults

2.8.2.1 Types of Failure

A failure can manifest in a number of ways. According to Cristian, the classifi-

cation of failures in a distributed system are [58]:

Omission Error The server fails to respond to (one or more) incoming requests.

Crash Failure The server halts and fails to respond to all requests.

Timing Failure The server responds to a request either too early, or too late.

Response Failure The server responds incorrectly, either by returning an in-

correct output, or the state transition that occurs is incorrect.

Arbitrary Failure The server may produce an arbitrary response at arbitrary

times. This also encompasses all other types of failure.

These types of failures can have direct impact on the dependability attributes

discussed in Section 2.8.1. For example, omission and crash failures (also com-

monly known as fail-stop failures) which result in the system going offline or not

responding to requests has a direct impact on the availability and reliability of the

system. Similarly, response or arbitrary failures can result in a loss of integrity

in the system.

The failures can also be caused with malicious intent by an attacker. By

causing an omission, crash or timing failure, the attacker effectively performs a

denial-of-service attack (whilst timing attacks are not obviously denial of service,

if performance is degraded enough then a user will stop using the service, or

alternatively in real-time systems additional delay can cause system failure). If

the server were to become compromised, then the attacker can cause response

failures to respond to requests as they require, or cause the server to send arbitrary

responses. These types of attacker-induced failures are the focus of this work.

39

2.9 SDN Fault Tolerance

2.9 SDN Fault Tolerance

2.9.1 Native OpenFlow Support

As of version 1.2 of the OpenFlow specification [172], OpenFlow supports the

assigning of one of three roles to controllers relating to how they operate with

each switch:

Master A master controller has full read-write access to the switch. It can pro-

cess asynchronous messages from the controller, such as packet-in messages,

and can send commands, such as flow-mod, to the switch. Where multiple

controllers exist, only one controller can be the master for each switch, with

all other controllers being assigned slave roles.

Slave A controller assigned the slave role has read-only access to the switch,

and can only receive port-status messages.

Equal The default role, permitting full read-write access to the switch. Unlike

the master role, there can be multiple controllers with the equal role, each

with the same level of access. The switch performs no arbitration between

controllers.

In Version 1.1 of the OpenFlow protocol [171], controllers could not be as-

signed roles. If more than one controller was used within a network, a switch

could only connect to a single one.

Utilising a group of controllers provides tolerance to fail-stop failures of con-

trollers. If a single master, multiple slave setup is used, if the master controller

fails, one of the slave controllers will become the next master. If a group of equal

controllers is used, the switch communicates with all controllers, meaning that if

one fails it will simply continue to operate under the remaining controllers. Con-

trollers operating in equal mode need to be synchronised to ensure a consistent

view of the network state. As of Version 1.5.1 [175] the OpenFlow specification

does not dictate how the switch should partition control amongst different equal

controllers. The protocol does not specify any consensus or agreement protocols

40

2.10 Consensus

amongst controllers in the equal state, meaning that the protocol itself provides

no protection against rogue controllers.

2.9.2 ONOS

ONOS (Open Network Operating System) [20] is an SDN controller maintained

by the Open Networking Foundation [170]. ONOS is open source and built using

Java, and is one of the most full-featured controllers available. The controller

natively supports distribution, allowing controllers to run in a cluster. The moti-

vation behind this is both for fault-tolerance in the case of controller failure, and

also for scalability.

Distribution within ONOS operates using a single controller, single switch

model. For any given switch, there is one primary master controller which handles

all control for a particular switch. The primary controller is chosen by the pool of

controllers using a leadership election. If the primary controller fails, the switch

connects to one of the backup controllers.

ONOS is logically centralised, through the use of a distributed datastores,

with network state information disseminated as events.

2.10 Consensus

In consensus, or agreement, protocols, a set of processes will agree on a common

value from a set of proposed values [38]. In the broadest sense, two events occur.

Each process will propose a value, and all processes will then decide on a common

value. Any correct process will decide upon the same value. A consensus protocol

must meet a set of properties covering termination, validity, integrity and agree-

ment (which vary according to the particular protocol). Some consensus protocol

designs have built in fault tolerance.

Paxos [126] is one of the earliest and most widely known consensus protocols,

and comes in many variants. In basic Paxos, processes can be proposers, learners,

acceptors and leaders. At a high level, a proposer (the leader) sends a prepare

proposal to the acceptors. Acceptors can return a promise to accept no further

41

2.10 Consensus

proposals to the proposer. If a proposer receives promises from a quorum of

acceptors, it will send an accept request, containing its final proposal. An acceptor

will then accept the proposal (and its value), and send an accepted message to

the proposer and every learner. The key point in Paxos is that all proposals are

attached to a sequence number, which determines the order in which proposals

are accepted. For a more detailed explanation of the basic protocol I refer to

Lamport [127].

Moise [160] proposes a variant of Paxos that employs the optimisations de-

scribed in FastPaxos [28] and Fast Paxos [128] (note the addition of a space).

FastPaxos [28] provides an optimisation over Paxos in which the leader remains

stable. This is achieved by removing the initial prepare phase. Fast Paxos, pro-

posed by Lamport [128], uses the case where all proposers propose the same initial

value. The leader send a special signal to acceptors to accept the next proposal

they receive. Moise [160] makes use of both optimisations. The FastPaxos opti-

misation is run in every instance, while the Fast Paxos optimisation is only used

when suitable (the decision needs to be taken at runtime by the leader).

The previously described Paxos variants only provide tolerance to fail-stop

failures (crashes), requiring 2f + 1 processes, where f is the expected number of

faults. This is an improvement of earlier works that only tolerate non-byzantine

faults requiring 3f + 1 processes [181]. Lamport et al. [129] first discuss the

problems of consensus with Byzantine failures. Subsequent works have expanded

on Paxos to provide Byzantine fault tolerant properties. Martin et al. [145]

propose Fast Byzantine (FaB) Paxos. FaB Paxos requires 5f + 1 processes to

provide fault tolerance.

The k-set consensus protocols, as introduced by Chaudhuri [47], are an exten-

sion of the consensus protocol in which each processor decides on a single value,

such that the set of all decided values across all processes is of size at most k.

The number of choices is directly related to the number of allowable faults. The

protocol is designed for use in a totally asynchronous system. The author shows

that, due to the uncertainty condition that the set of values that could be chosen

is not pre determined, the final set determined over the run, that the limit is

a (k-1)-resilient protocol. The total number of processors must be greater than

2(k-1). In the protocol, each processor maintains a vector of size n, where the ith

42

2.10 Consensus

entry corresponds to the initial value of processor i if it knows it, ϕ otherwise (so

initially the vector held by each processor only contains its own initial value). In

each round, each processor broadcasts its vector, and receives the vectors of all

the other processors, which it will use to populate its own. As k − 1 processors

may be faulty, each processor only waits for n−k−1 vectors in each round. Once

a node receives n− k − 1 vectors that are identical to its own, it decides a value

based on that vector. It then broadcasts that vector, labelled as a decider vector.

De Prisco et al. [62] extend k-set consensus protocols to the case where Byzan-

tine failures may be present. In particular, they evaluate with 6 different validity

conditions. Three different protocols are proposed, that provide Byzantine toler-

ance in the message passing model, with differing validity conditions.

Dolev et al. [68] provide an agreement protocol that can reach agreement with

Byzantine faults without using authentication using 3f + 1 processes, in 2f + 3

rounds. The protocol assumes that the set of possible values is {0, 1} with 0

used as a default for faulty processes, and the setting is synchronous in that a

process knows when a round starts and ends. In the protocol, processes transmit

their value, and other processes indicate their support for processes for which it

receives values. In any round, if a process confirms that enough processes have

committed to 1, it also does. After 2f+3 rounds, if 1 is committed then it agrees

on 1, else 0. Bracha and Toueg [34] present an asynchronous protocol that can

tolerate fail-stop failures with ⌈(f +1)/2⌉ correct processes, and Byzantine faults

with ⌈(2n+ 2)/3⌉ correct processes.

Hurfin and Raynal [102] propose a asynchronous consensus protocol that in-

corporates a weak failure detector built out of a finite state automaton, a vot-

ing mechanism and the assumption that processes may change their mind dur-

ing a round. Unreliable failure detectors were first proposed by Chandra and

Toueg [45], however this original work uses a centralised setting. All unreliable

failure detector algorithms are based on a rotating coordinator paradigm, using

asynchronous rounds. In each round, a pre-determined process (the coordinator)

proposes a decision value, and then the protocol dictates how the processes co-

operate. In [45], the coordinator receives each processes estimate of the decision

value, computes a new estimate and distributes. If it receives an acknowledge-

ment from a majority of processes, it takes its estimate as the overall output

43

2.11 Byzantine Fault Tolerance

and informs all processes. Processes can send back a negative acknowledgement

if they believe the coordinator to be faulty. Hurfin and Raynal follow a similar

approach, where processes vote to move onto the next round (and a new coordi-

nator). The voting behaviour of processes is determined by a simple finite state

automaton. Consensus can be reached in 2 communication steps. However, as

this protocol allows processes to change their values arbitrarily, the protocol is

not Byzantine fault tolerant.

Fitzi and Garay [82] propose a consensus protocol that solves the δ-differential

consensus problem. The δ-differential problem differs to strong consensus [166],

where the decided upon value is proposed by a single process, no matter what

is proposed by the other processes, by deciding upon a value that is proposed

by the majority of the participants (assuming the input values are chosen from

some fixed domain) using a shared-coin protocol. This protocol has limitations

in the decentralised detection setting where inputs are probabilities/confidence

values as there may be no majority value from the inputs as it is likely that every

process provides a different input.

2.11 Byzantine Fault Tolerance

In Section 2.10 above I discuss a number of algorithms for providing consensus

amongst a set of participants. Whilst these approaches can be effective in allowing

a set of participants to agree on a value, even in the present of faulty or malicious

participants, these protocols do not translate well to the case of secure SDN

control, and similar scenarios, where a switch (client) needs to communicate with

a set of controllers (servers). Whilst the consensus protocols would allow the

controllers to agree on a single response to a switch request, they would not

provide protection for returning the result safely to the client. This led to the

development of byzantine fault tolerant algorithms.

In this section, I introduce the concept of byzantine faults and discuss a num-

ber of algorithms which provide byzantine fault tolerance.

44

2.11 Byzantine Fault Tolerance

(a) Coordinated Attack

Traitor

Traitor

Traitor

(b) Uncoordinated Attack

Figure 2.8: Byzantine Siege

2.11.1 Byzantine Faults

Generally, a byzantine fault can be described as a fault in which different symp-

toms are presented to different observers [75]. The concept of byzantine faults

was first proposed by Lamport et al. in “The Byzantine Generals Problem” [129].

The original work provides an example in which multiple units of the Byzantine

(as in the Byzantine empire) army are camped outside an enemy city, with each

unit commanded by its own general. Generals are able to communicate via mes-

senger. The goal of the generals is to agree on a plan of attack in order to siege

the city, with the caveat that some of the generals are traitors and aim to pre-

vent the generals from reaching agreement. In the basic problem, the plan can

either be to attack, or retreat. If all generals agree to attack (as in Figure 2.8a),

then the siege will be won. If any decide to retreat, then the siege will be lost

(as in Figure 2.8b). The risks are that a message may be lost or modified by

the messenger, or alternatively a malicious general may send messages aimed to

mislead the other generals. The generals need an algorithm which both ensures

that all loyal generals decide upon the same plan of action, and a small number

of traitors cannot cause the loyal generals to adopt a bad plan.

The problem is formulated as every loyal general must obtain the same infor-

mation v(1), ..., v(n), where v(i) represents the value (decision) of the ith general,

which they communicate to each other. The first condition is that each loyal

45

2.11 Byzantine Fault Tolerance

general must obtain the same set of values v(1), ..., v(n). This could lead to a

scenario where a traitorous general sends different values to different generals,

which means that a general cannot use the value of v(i) directly from the ith

general. The second condition is that the value v(i) sent by a loyal general, must

be used by all other loyal generals.

Within the original work, the problem is restricted to a scenario in which a

single general sends his value (order) to a set of lieutenants. This is the specified

“Byzantine General Problem” in which a) all loyal lieutenants must obey the

same order and b) if the commanding general is loyal, they all loyal lieutenants

should obey his order. Both the commanding general, and the lieutenants, can

be traitors.

Lamport et al. describe this as the three generals solution. If we consider the

scenario in which the loyal commander tells both lieutenants to attack, however

Lieutenant 2, who is a traitor, tells Lieutenant 1 that the commander told him

to retreat (as seen in Figure 2.9a). As the loyal Lieutenant 1 must obey the

command from the commander, then he must attack. Figure 2.9b shows an

alternate scenario where the commander is a traitor, and gives each lieutenant

a different order. It is impossible for Lieutenant 1 to know who is the traitor

here, as they do not know what order the commander gave to Lieutenant 2. In

this scenario, as both lieutenants are loyal they both follow the order that they

received from the commander, and the siege fails.

This leads to the claim that in the scenario where there are three generals, and

one is a traitor, there is no solution to the byzantine generals problem, meaning

that to handle f traitors, a minimum of 3f +1 generals are required. A full proof

of this is provided in [181]. This is why the byzantine-fault tolerant algorithms

below generally require 3f + 1 replicas in order to operate.

In distributed computing, a byzantine fault represents the scenario in which

a component may fail, but can appear to be both failing and functioning to

different servers. Typically, byzantine faults are considered in a client server

model in which a client sends a request to a set of replicas (servers) who must

agree on the ordering of requests, process the request, generate a response and

return to the client, with the client taking the majority response. A commonly

used example of this is a network file store where a client can make read and

46

2.11 Byzantine Fault Tolerance

Commander

Lieutenant 1 Lieutenant 2

Attack Attack

Commander: Retreat

(a) Lieutenant 2 is a traitor

Commander

Lieutenant 1 Lieutenant 2

Attack Retreat

Commander: Retreat

(b) Commander is a traitor

Figure 2.9: Byzantine Generals Problem

write requests to the servers. In these algorithms the servers, and in some cases

also the client, are potentially faulty.

2.11.2 Byzantine Fault Tolerant Algorithms

A typical byzantine fault tolerant (BFT) algorithm is designed to operate with a

set of replicas (servers) providing a service (a commonly used example is a net-

work file store), along with a client that will make requests to the replicas, which

will process the request and generate a response, and expect some reply. A BFT

algorithm will typically consist of two phases — agreement and execution. The

agreement stage is typically used to ensure all replicas are in a consistent state,

and most often relates to message ordering. This step usually requires multiple

rounds of communication requiring multiple multicast message, and so represents

a communication overhead, along with an encryption overhead if digital signa-

tures are used. The execution stage is where the replicas process a request and

return the result to the clients. This stage generally represents a computational

47

2.11 Byzantine Fault Tolerance

overhead, though this can vary with the exact application in use.

Lamport et al., when initially proposing the notion of byzantine faults as the

“Byzantine Generals Problem” (see Section 2.11.1 above), propose two solutions

to providing byzantine fault tolerance [129]. This covers two scenarios — one

in which the generals communicate orally, and one in which signed messages are

used.

In the oral messages approach, it is assumed that every message is delivered

correctly, the receiver of a message knows who sent it (meaning a traitor cannot

inject messages into the system), and the absence of a message can be detected.

The algorithm OM(f) aims to find a majority value amongst the generals. The

algorithm has two parts. In the case where f = 0, OM(0):

1. The commander sends his value to every lieutenant.

2. Each lieutenant uses the value received from the commander, or assumes an

order of retreat if no value is received.

For values f > 0, the algorithm OM(f):

1. The commander sends his value to every lieutenant

2. For each i, vi is the value received by Lieutenant i, or retreat if no value is

received. Lieutenant i then becomes the commander in OM(f − 1), sending

vi to the other lieutenants.

3. For each i, j where i ̸= j, vj is the value Lieutenant i received from Lieutenant

j in step (2), or retreat if no value was received. Lieutenant i uses the value

majority(vi, ..., vn−1), where majority() is either:

(a) The majority value in the set or received values

(b) The median value of the set of received values, assuming the possible values

come from an ordered set.

The problem with this approach is that participants can lie. This is solved

in the approach in which signed messages are used, with the assumption that a

loyal general’s signature cannot be forged, and anyone can verify the signature

of any general. The algorithm a function choice(V) that when applied to the set

48

2.11 Byzantine Fault Tolerance

of orders V , will obtain a single order. If V contains a single element, then that

is the accepted order, otherwise if the set it empty, then retreat is the accepted

order. The notation v : i is used to indicate order v has been signed by general i,

which can be chained to show multiple signatures (e.g. v : i : j indicates message

v : i has also been signed by general j). The algorithm SM(f) is as follows,

assuming initially Vi = ∅:

1. Commander signs and send his value to every lieutenant

2. For each i:

(a) If Lieutenant i receives message v : 0 from the commander, and has re-

ceived no other values, then:

i. Vi = v

ii. Send v : 0 : i to every other lieutenant

(b) If Lieutenant i receives a message v : 0 : j1 : ... : jk and v is not in Vi then:

i. add v to Vi

ii. If k < m, send message v : 0 : j1 : ... : jk, i to every lieutenant other

than j1 : ... : jk

3. If Lieutenant i receives no more messages, he accepts the order choice(Vi)

A proof of the correctness of both the OM(m) and SM(m) algorithms is

provided in the original paper [129]. Since this initial approach there has been a

number of attempts to improve on these algorithms. The best known algorithm,

and the basis for many future works, for providing byzantine fault tolerance is the

“Practical Byzantine Fault Tolerance” (PBFT) algorithm as proposed by Castro

and Liskov [41]. PBFT, as is the case with most BFT protocols, is a form of

state machine replication [125, 203], in which the service is represented by a state

machine that is replicated across a series of distributed nodes (replicas). In order

to handle f faults, 3f + 1 replicas are required. It is assumed that replicas are

deterministic, meaning that any correct replica should return the same result to

the same request. More replicas may be used, however as the authors note the

greater the number of replicas the greater the impact on performance. On each

run of the protocol, the replicas adopt a succession of views. In each view, one of

49

2.11 Byzantine Fault Tolerance

the replicas is designated as the primary, with the primary changing with each

new view. A failure of the primary results in a change to the next view (this is

similar to the approach as used by Paxos [126]). In the basic protocol:

1. The client send a request to the primary

2. The primary multicasts the request to the other replicas

3. Replicas prepare a response, and send a reply directly to the client

4. The client waits for f + 1 responses from the replicas with the same result,

which is then taken as the correct response.

The multicast step (step 2) is broken down into three phases, meaning the pro-

tocol is broken down to the request,pre-prepare, prepare, commit and reply phases,

as shown in Figure 2.10a. The three-phase multicast ensures that requests are

totally ordered. Messages between replicas are signed using public-key signatures

to ensure message integrity and authenticity. In the pre-prepare phase, the pri-

mary assigns a sequence number to the request and forwards to all of the replicas.

On accepting a pre-prepare message (based on a set of conditions), the replicas

each broadcast a prepare message to all replicas. Once a replica has received 2f

prepare messages form other replicas, it multicasts a commit message to the other

replicas (which contains a digest of the original client request). Once a replica

has received 2f +1 commits from other replicas, then the replica will process the

client request and send the reply directly to the client (the reply phase). In the

case of a single node failing, as shown in Figure 2.10b, the protocol can complete

despite replica 3 (R3) becoming faulty and not participating in the protocol.

The protocol is evaluated using an implementation of a network file store

(NFS) and compared with a standard NFS implementation. In testing, they show

that the BFT-based version only generates a 3% overhead over the standard im-

plementation, however this also includes the NFS operations. When performing

micro-benchmarks with null operations on the datastore, the overhead of using

replication can be as high as 309%. The overhead largely comes from the cryp-

tographic operation of signing messages, as well as the cost of the additional

communication steps. The authors propose some improvements to improve effi-

ciency, such as sending a tentative response to the client after the prepare phase,

50

2.11 Byzantine Fault Tolerance

R0C R1 R2 R3

Request

Pre-prepare

Prepare

Commit

Reply

(a) Normal Operation

R0C R1 R2 R3

Request

Pre-prepare

Prepare

Commit

Reply

(b) Faulty Replica 3

Figure 2.10: PBFT Algorithm [41]

on the assumption that if the client receives 2f + 1 matching replicas at this

stage then it can be assumed the replicas will move to the commit stage. Mes-

sage volume can also be reduced by only a single replica (specified by the client)

sending a full response, with the others returning a digest of their response which

can then be compared. The PBFT protocol was later expanded to incorporate a

recovery protocol in order to automatically bring faulty replicas back online and

51

2.11 Byzantine Fault Tolerance

up to state [42].

Since PBFT, there have been many approaches which aim to improve upon

the performance of the PBFT approach, by either improving the efficiency of the

agreement stage of the protocol, or by decoupling the agreement and execution

phases.

Yin et al. propose an approach in which the agreement and execution func-

tionality of replicas are separated in order to reduce replication costs [242]. Com-

pared to the traditional BFT approach in which replicas perform ordering, and

then execute requests, requiring 3f + 1 replicas, an ordering cluster of 3f + 1

replicas order requests, which are then sent to an execution cluster where replicas

process the request and return a reply to the clients. The execution cluster only

needs to return a simple majority of f + 1 matching replies, and so only 2f + 1

replicas are required to execute the request. When testing with an implemen-

tation based on the BASE library (an implementation of PBFT which allows

for non-deterministic servers) [43], the protocol is shown to have higher latency

than the reference BASE protocol, however is shown to have a lower per-request

processing cost when compared to BASE, allowing for higher throughput. Kotla

and Dahlin build upon this approach of agreement-execution separation by in-

troducing a paralleliser layer between the agreement and execution laters, which

permits the concurrent execution of requests (in part by relaxing the ordering

requirement for requests which do not read or write to the same variables) [117].

The limitation of this approach is that the paralleliser requires knowledge of the

system processing requests in order to identify non-overlapping requests. When

compared to BASE, the proposed approach, CBASE, is able to handle 4700 re-

quests/second when using 128 threads, compared to the 50 operations/second

handled by BASE (which is limited to a single thread).

Zyzzyva is a state-machine replication BFT protocol that aims to improve

performance by removing the three-phase ordering protocol of other algorithms,

with replicas instead speculating on the correct order to process messages [118]. In

the protocol, the primary attaches a sequence number to a request, and forwards

to replicas, who then process the request and send a reply and a representation

of their state history to the client. If the client receives 3f + 1 matching replies

and histories, they accept the reply. If they receive 2f +1 < n < 3f +1 matching

52

2.11 Byzantine Fault Tolerance

replies, they send a commit message to the replicas to ensure the replicas update

their states correctly. If fewer than 2f + 1 responses match, then the client

sends the request to all replicas, which request a new sequence number from the

primary. If the client subsequently identifies inconsistent sequencing from the

primary, it triggers the next view state and a new primary. When compared to

the PBFT, Q/U and HQ protocols, the protocol is shown to achieve 2.7, 3 and 9

times greater throughput respectively, as well as significantly lower latency.

There are BFT approaches that combine BFT protocols with the concept of

quorums. Assuming a universe of servers U (|U | = n), the quorum system is the

non-empty set of subsets of U , where each pair of subsets intersect. Each of these

subsets is a quorum. When performing a read or write operation, a client contacts

a quorum of servers. There have been multiple approaches utilising quorums for

protecting against non-byzantine faults [4, 49, 1, 86, 96, 164]. Malkhi and Re-

iter propose “Byzantine Quorum Systems”, in which the overlap of the quorums

provides protection against byzantine server failure, as quorums overlap by at

least 2f + 1 servers [143]. If a value is written to quorum Q1, and subsequently

read from quorum Q2, then the correct value can be read from the intersection

Q1∩Q2, on the assumption that if quorums overlap with 2f +1 replicas, then if

f servers are faults f + 1 should return the correct result.

Abd-El-Malek et al. attempt to address the limitation in many BFT ap-

proaches in that as the number of tolerated faults increases (an increase in f),

the performance of the system rapidly degrades [2]. The protocol, Query/Up-

date (Q/U), is a quorum-based protocol which assumes a failure model that can

handle both byzantine and crash faults [226, 5], with the performance degrading

more gradually as f increases. In the protocol, a query represents a read oper-

ation, and an update represents a write operation. 5f + 1 replicas are required,

and clients maintain a cache of replica histories. Under normal operation, the

protocol operates as a single phase – the client sends a request to the replicas,

receives responses (along with replica histories) and if a quorum of 4f+1 replicas

agree, it accepts the result. If 2f+1 < n < 4f+1 matching responses are agreed,

then a conflict resolution mechanism is triggered in which the client brings the

replicas up to a consistent state and resubmits the request. When compared to

53

2.11 Byzantine Fault Tolerance

the BASE PBFT implementation, increasing f from 1 to 5 results in just a 36%

drop in throughput with Q/U, compared to 83% for BFT.

Cowling et al. build on the idea of Q/U with the Hybrid Quorum (HQ)

protocol [57]. This quorum-based protocol aims to improve on the limiting factor

of Q/U in requiring 5f+1 replicas, instead requiring a quorum of 2f+1 replicas in

normal operation, and 3f +1 when under contention. Like Q/U, HQ is designed

to scale well with an increase in f . The system assumes a read/write model

for client operations. In normal operation, a 2-phase write protocol is used. In

the first phase, a client contacts a quorum of replicas requesting a certificate

indicating that they can make a write operation at a specified timestamp. If a

set of matching certificates is returned, the client moves onto phase 2, in which

they send their request, along with the certificate, to the quorum of replicas to

perform the write. If there is contention, i.e. multiple clients attempting to write

at the same timestamp, then the protocol falls back to the PBFT protocol to

order the multiple requests.

Typically, as can be clearly seen in the previously mentioned works, the de-

scribed protocols require a minimum of 3f+1 replicas in order to handle f faults.

Whilst this does provide fault tolerance, it represents a large cost in replication

(with a minimum of 4 replicas required to handle a singe fault). There has been

some work which has attempted to reduce this minimum to 2f+1 replicas. An ex-

ample of this is the MinBFT and MinZyzzyva protocols as described by Veronese

et al., which are adaptions of the PBFT and Zyzzyva protocols respectively [231].

Part of this reduction is achieved through the use of tamperproof components, a

Trusted Timely Computing Base (TTCB) and a Attested Append-Only Memory,

which have both previously been used to provide 2f + 1 byzantine fault toler-

ance [50, 55]. The tamperproof component acts as an oracle, which allows the

reduction in the number of required replicas [55]. The tamperproof module is a

unique service identifier generator (USIG), which is present on each server and

facilitates the secure generation of signed sequence numbers. The MinBFT algo-

rithm is functionally very similar to PBFT, except the prepare phase has been

removed, and the client sends the initial request to all replicas, not just the pri-

mary (though the primary is still responsible for assigning a sequence number and

forwarding to the replicas). Similarly, MinZyzzyva follows the Zyzzyva protocol,

54

2.11 Byzantine Fault Tolerance

R0C R1 R2 R3

Request

Propose

Write

Accept

Reply

Figure 2.11: BFT-SMaRt protocol, normal operation

utilising the same stages, however again the client sends the initial request to all

replicas, and not just the primary.

The BFT-SMaRt protocol, as proposed by Bessani et al. [22], is a java-based

BFT implementation that has been used to provide a byzantine fault tolerant

SDN controller. BFT-SMaRt builds upon the authors previous work in BFT state

machine replication [220, 23, 37], with the BFT protocol specifically modelled on

the MoD-SMaRt protocol found in [220]. BFT-SMaRt is very similar to the PBFT

protocol, with the core protocol being a 3-phase process consisting of propose,

write and accept, which can be seen in Figure 2.11. As with PBFT, and most

BFT protocols, BFT-SMaRt requires 3f + 1 replicas to handle f faults. When

consensus is not reached, or there is inconsistency, a state transfer protocol is used

in order recover replicas to a synchronous state [23]. As BFT-SMaRt is modular,

it is able to support a greater number of clients than PBFT and achieve a higher

throughput — PBFT reaches it’s maximum throughput of 78765 requests/second

with 100 client compared to 83801 with 1000 clients for BFT-SMaRt, with the

single-threadiness of PBFT being the limiting factor (increasing past 100 clients

causes a degradation in performance).

55

2.12 Conclusion

2.12 Conclusion

In this chapter I have provided a background on the key concepts of networking,

programmable networks and SDN, with a focus on the OpenFlow protocol. I

have also given an introduction to dependability and faults, consensus protocols

and byzantine fault tolerance.

In the next chapter I provide a more focussed look at the existing literature

on SDN security, with a particular focus on works which aim to add security to

the SDN control plane to prevent controller (or application) compromise. I also

examine existing work which attempts to provide byzantine fault tolerance in

SDN control.

56

Chapter 3

Literature Review and Related

Work

3.1 Introduction

In this chapter I provide an overview of the literature into the security of Soft-

ware Defined Networks (SDN). I begin with an overview of papers discussing the

general security of SDN, and then focus on security of the SDN controller. I first

discuss works which aim to detect compromised SDN controllers, and then cover

works which introduce security controls into SDN controllers in order to prevent

compromise. I then examine fault-tolerant SDN control architectures, includ-

ing those that follow a primary-backup model and those that apply byzantine

fault-tolerant protocols.

3.2 Security of SDN

The security issues surrounding SDN were made apparent in the early days of

SDN [207, 210]. Early work that proceeded SDN although explores the concept of

separated control and data planes, Sane [40] and Ethane [39], already highlighted

potential security issues through the use of centralised control. There have been

57

3.2 Security of SDN

numerous works focussing on the security of SDN, covering all layers of the SDN

architecture [206].

Kloti et al. apply the STRIDE security analysis framework ([97]) and attack

trees ([198]) to the OpenFlow protocol [114]. When using STRIDE, a data flow

diagram of the process is constructed and used to identify vulnerabilities (and

their impacts of the system) of the types Spoofing, Tampering, Repudiation,

Information Disclosure, Denial of Service, and Elevation of Privilege. Through

analysing the OpenFlow protocol they are able to identify information disclo-

sure, denial of service and tempering vulnerabilities. For example, an attacker

connected to an SDN switch through several other clients can infer which clients

have communicated with a server connected to a second switch by analysing the

flow setup times (a client that has communicated with the server will have a

lower flow setup time as a flow rule will already exist in the switches flow table),

leading to information disclosure.

Attacks on SDN has a large amount of overlap with the types of attacks

that can occur within conventional layer 2 and 3 networks, as shown by Abdou et

al. [3]. Many attacks that can be applied to a traditional network can be emulated

within SDN, though with a different approach, for example ARP poisoning in a

traditional network can be replaced by host profile poisoning [98]. Abdou et al.

argue that defending an SDN from such attacks is more difficult, for example

as the SDN control plane cannot be protect by edge based filtering which is a

standard approach in conventional networks.

There are works which explore the security of specific use cases for software-

defined networks. For example, Costa and Costa [56] demonstrate issues with

FlowVisor [215], which provides network isolation using SDN, when a malicious

controller is in use. The malicious controller can break isolation between net-

work slices, for example by installing flow rules which can modify the VLAN

IDs of flows. I demonstrate attacks that can be launched from a malicious SDN

controller in Chapter 4, and in an associated paper [87].

Whilst in this work I focus on the impact of compromised SDN controllers,

there has also been work on examining the impact of compromised SDN switches [12,

211].

58

3.3 Detecting Compromised SDN Controllers

3.3 Detecting Compromised SDN Controllers

One approach to limiting the impact of compromised SDN controllers is to detect

when malicious flow rules are installed into a network. Detected malicious flow

rules can then be removed, and the compromised controller repaired. The follow-

ing works discuss approaches which look to identifying problematic, though not

necessarily malicious, flow rules in SDN networks.

Veriflow is an example of such a system [111, 112]. Veriflow is a verification

mechanism for the data plane which aims to identify network-wide invariants,

such as loops, black holes and access control violations, utilising a checker which

sits on the CDPI and intercepts flow rules as the are travelling form the controller

to the switch. As the system sits on the CDPI and processes commands before

they reach the switch, the system operates in near real-time in order to minimise

additional latency. Veriflow works in three steps. First, equivalence classes are

generated, with each equivalence class representing a set of packets which are

forwarded in the same way. Secondly, a set of forwarding graphs are generated

for the equivalence classes, modelling the forwarding behaviour of the network.

Finally, these graphs are traversed in order to identify invariants and identify

problematic flow rules.

Similarly, FlowChecker is a system which makes use of Binary Decision Dia-

grams (BDDs) to identify conflicting rules within a single switches flow table [7].

FlowChecker is an extension of previous work, ConfigChecker, which uses a simi-

lar approach for verifying network configuration [8]. Compared to Veriflow, which

sits on the CDPI, FlowChecker behaves as a service which the controllers (and

applications) use to verify flow rules. This in itself a limitation of the work in the

scenario where controllers may be malicious and not perform verification.

3.3.0.1 Blockchain

There have been a number of blockchain-based approaches proposed to provide

protection against compromised SDN controllers [33, 140, 65].

Boukria et al. propose the use of a trusted third party node within the

network, along with the use of blockchain, to prevent against “False Flow Rule

59

3.3 Detecting Compromised SDN Controllers

Injection (FFJI)” attacks, in which an attacker performs a person-in-the-middle

attack against the switch-controller channel to inject false flow rules onto the

switch [33]. The controller, on sending a flow rule to the switch, stores a hash

of the flow rule as a block on the blockchain, of which the controller and third

party are members. On receiving a flow rule from the controller, the data plane

(switch) forward the received rule onto the third party, which compares the rule

received by the switch to the one stored on the blockchain. The system can then

run in one of two modes. In the detection approach, the switch installs the flow

rule anyway and the third party raises an alarm if there is a mismatch. In the

prevention approach, the switch will wait for confirmation from the third party

before installing the flow rule. This work is limited to only securing the connection

between the switch and controller — if the controller is compromised then the

malicious flow rule will be installed on the block chain and will be verified.

Lokesh and Rajagopalan propose a more complex method where three blockchain

instances are used to represent switches, controllers and applications [140]. All

transactions across the three layers are validated at each stage, with only fully

validated flow rules being permitted onto the switch. The focus of the work is on

malicious third-parties, in particular on the northbound API, and malicious third

party applications, however it provides little protection against compromised, but

authorised, applications or controllers.

Derhab et al. discuss BMC-SDN, a blockchain-based architecture for the mul-

tiple controller SDN network [65]. In this architecture, a primary controller is

responsible for a network domain, along with multiple backup controllers. Backup

controllers receive updates from the switch and process them, but do not directly

control the domain. On sending an instruction to the switch, the primary will

create a block and send it to the backup controllers, who will verify the update. If

consensus is reached, then the update is written to the blockchain. Controllers are

rated based upon a reputation mechanism, with controllers punished for pushing

malicious updates, or being in the minority in validating updates. A controller

with low enough reputation is flagged, ignored and reported to network admin-

istrators. The primary limitation in this work is that controllers push their own

updates, and there is no validation that the report generated by a controller

accurately represents the flow rule installed onto the switch.

60

3.4 Mitigating Attacks in SDN

3.3.1 Limitations

The primary limitation of efforts to detect faulty, or malicious, controllers through

analysing the flow rules they install is that these approaches rely on knowing in

advance what constitutes a problematic flow rule, which is usually a clear network

violation such as a loop. If the compromised controller is able to install malicious

flow rules which have an impact on traffic, they could potentially evade detection.

Similarly, the attacker could perform their own analysis in order to test if their

malicious flows will be detected. This type of approach is already performed in

the field of adversarial-machine learning [88].

3.4 Mitigating Attacks in SDN

3.4.1 Securing the Controller

Scott-Hayward identifies three attributes for secure and resilient SDN controllers:

secure controller design, secure controller interfaces and controller security ser-

vices [204], and evaluates a number of SDN controllers against these attributes.

Secure controller design includes application isolation, policy (rule) conflict res-

olution, multiple controller and application instances (for resilience) and secure

storage. Secure controller interfaces covers secure control layer communication

(for example use of TLS) and the security of any graphical interfaces and REST

APIs. Finally, the controller security services includes IDS/IPS integration, au-

thentication an authorisation, resource monitoring and logging/auditing services.

None of the analysed controllers covered all of these features, partly due to the

controllers being designed with a different focus (distribution vs resilience vs se-

curity).

ROSEMARY focusses on securing the network operating system from buggy

or malicious applications by implementing application containment through launch-

ing applications in independent “micro-NOS” instances [216]. A micro-NOS is

an individual instance of ROSEMARY itself, which isolates the application from

61

3.4 Mitigating Attacks in SDN

the underlying NOS kernel, as well as other applications. ROSEMARY sup-

ports the monitoring of resource usage by applications, and is capable of limiting

resource usage, and can also limit the access of applications to privileged com-

ponents, such as specific system calls. A motivating example within the work

is a malicious application removing link information from the controllers datas-

tore, which ROSEMARY is successfully able to prevent. ROSEMARY is shown

to perform comparably with the BEACON and NOX SDN controllers, and with

a much greater throughput than Floodlight, despite the overhead of the use of

micro-NOS.

LegoSDN is a system to provide protection against application crashes, which

could be caused by a malicious action such as a denial-of-service, which takes a

sandboxing approach for SDN application [46]. Application crashes can cause

inconsistencies in the data plane, for example if an application is installing a

three switch path for a flow and crashes after installing flow rules on the first two

switches, then the path will be incomplete. LegoSDN also applies a transactional

approach to interactions with applications - a transaction is generated when a

request is sent to an application, and is complete once the full response from

the application has been received. A transaction buffer is maintained so that

if the application crashes, it can be restarted and the request re-sent to being

the application to the correct state. This is supported by functionality to create

snapshots of application states. On application crash, LegoSDN can also revert

any partial changes to the data plane, for example be removing any flow rules

installed by the failed transaction. When tested using a modified version of the

Floodlight controller, LegoSDN is shown to be able to recover from application

failure in less the a second, much faster than a full controller reboot (which also

causes a loss of network control). Rebooting an application is more efficient,

only taking a few milliseconds, however a rebooted application will fail again if

the switch request was deterministically faulty. LegoSDN incorporates an event

transformer which can translate a switch request into multiple requests to correct

against deterministic faults.

FortNOX is an extension to the NOX SDN controller which incorporates role-

based authorisation and security constraint enforcement for SDN control [185].

The goal of FortNOX is to prevent flow rules from being installed within a switch,

62

3.4 Mitigating Attacks in SDN

which conflict with the pre-existing rule set, for example those of security appli-

ances. The example conflict, dubbed dynamic-flow-tunnelling, describes an at-

tack where HTTP access from a → b is blocked by a firewall. In the attack, flow

rules with the set command change the source and destination IPs to modify the

packet going through the firewall to appear to go to host c, however the packet

is actually directed to host b, bypassing the firewall rule. FortNOX, applications

are authorised with priority to install flow rules into switches, through the use of

digital signatures. Proposed flow rules are checked for conflicts with the existing

flow sets by reducing them to alias reduced rules (ARRs), which can be com-

pared against existing flows. When conflict arises, flow rules are installed based

on priority of the application that generated the rule.

Jo et al. propose a more complete solution for security network operating

systems in the form of NOSArmor, which utilises several security building blocks

(SBBs) to protect different network assets, which includes a rule conflict mediator

derived from FortNOX [106]. Other SBBs include a host location tracker, link

verifier and resource manager. Each SBB is implemented and its effectiveness

tested. The performance impact of each SBB is shown, measured using the

cBench tool [196]. Incorporating the SBBs does have a measurable impact on

controller throughput (in responses/second) when compared to the base controller

(Barista), with up to three of the SBBs tested at any one time.

3.4.2 Preventing Controller Poisoning

Deng et al. propose an approach for preventing controller poisoning through

malicious PacketIn messages, in which the attacker sends packets through a switch

with spoofed packet headers (including IP and MAC addresses) to greatly distort

the controllers view of the network [64]. In this approach, hosts are mapped to

physical switch ports by MAC addresses. If a new packet is observed for a mac

address on a switch port and there is no stored mapping, the flow is legitimate.

If there is an existing mapping for a host and a new packet is seen on a different

switch port, the PacketIn is labelled as malicious and dropped.

63

3.4 Mitigating Attacks in SDN

3.4.3 Protection Against Malicious Applications

Wen et el. initially proposed a set of permissions for SDN applications, in partic-

ular the scenario of the use of third-party apps [235]. This approach is designated

PermOF. In the proposed system, applications are granted access token allowing

certain permissions, such as subscribing to certain notifications (such as PacketIn

messages or topology updates) and the ability to add or remove flow rules from a

switches flow table. This work was followed by SDNShield, a complete permission

control system for SDN allowing administrators to apply fine-grained permission

to applications, as well as allowing developers to handle rejected permissions

gracefully [236].

OperationCheckpoint is an extension of the Floodlight controller which aims

to secure the northbound API through the use of application permissions [205]. A

set of permissions covering read (covering read operations that access controller

information such as the network topology), write (such as installing/modifying

flow rules) and notification (such as subscribing to PacketIN events) operations

within Floodlight are defined, and a LinkedHashMap structure is used to store

the permissions granted for applications. This covers both remote applications

using the RESTful API, as well as local controller modules which function as

applications.

SDN-Guard is a proposed architecture for preventing SDN rootkits [223].

SDN-Guard sits as a proxy between the switch and controller, and builds a model

of the network view of the switch by monitoring flow rules on the switch-controller

connection, and the network view of the controller by communicating the north-

bound interface of the controller. The focus is on rootkits which install malicious

flow rules into the network but make attempts to hide their actions by modifying

the controllers network view, causing a difference in the controllers network view

and the actual state of the network. SDN-Guard utilised a detection component

which can identify malicious flow rules using the network views, and then perform

actions to remove them from the network (such as deleting malicious flow rules

or re-inserting maliciously deleted rules).

64

3.5 Multiple Controller SDN control

3.4.4 Securing the Control-Data Plane (Southbound) In-

terface

The control-data plane interface (CDPI) is also a potential route for an attacker to

gain control over the network, both to inject control commands through person-

in-the-middle attacks, as well as eavesdrop on switch-controller communication to

learn details about the network. The Open Networking Foundation‘s only recom-

mendation for securing this channel is to utilise TLS on this connection, as spec-

ified in the OpenFlow switch specifications. This itself provides challenges due

to the complexity and security challenges of secure key distribution for TLS [232,

155], as well as the additional extra latency and reduction in performance [165,

122].

To overcome the limitations of TLS, there have been works which address the

security of the CDPI in a more lightweight fashion. Kreutz et al. describe the

KISS protocol for security the control channel, utilising the light-weight NaCL

cryptographic library [122, 21]. The core components of KISS are a shared secret

key for encryption messages between the switch and controller, as well as an

integrated device verification value (iDVV) for verifying devices.

3.5 Multiple Controller SDN control

Replication is a commonly suggested as a way to provide resilience in SDN [119].

Kreutz et al argue for replication, in particular with the diversity of control

elements (for example utilising different SDN controllers) in order to protect

against wide-scale compromise through common software vulnerabilities [119].

There have been many proposed and implemented approaches to introducing

multiple controller SDN architectures [121]. There are multiple benefits to utilis-

ing multiple controllers, including scalability and robustness to failure. Of course,

with distributing the SDN control plane comes challenges, including greater com-

plexity and potentially reduced performance, as demonstrated by Levin et al. who

show the trade off in state synchronisation versus performance of a distributed

SDN load balancing application [135].

65

3.5 Multiple Controller SDN control

HyperFlow is the first distributed control planes for OpenFlow [229]. Hyper-

Flow is a distributed but logically centralised architecture which makes use of

a publish/subscribe model for providing consistency (built using WheelFS [221].

Due to WheelFS being resilient to partitioning, HyperFlow also is (as controllers

are able to make decisions without contacting other controllers as part of the

decision making process).

Controllers store updates within a distributed storage medium, and read up-

dates from this system in order to maintain a global network view. As the con-

troller does not contact other controllers to make routing decisions, there is no

additional latency. The main difficulty is the controllers becoming inconsistent

in periods of high load (if they cannot keep up with network updates). This is

limited by the read rate of the storage system (writes can be concurrent so this

is less of a bottleneck).

Whilst many SDN controllers support multiple controllers, ONOS was one of

the first and is one of the most widely known distributed controllers [20]. ONOS

replicated controllers with a goal of providing scalability. Multiple controllers run

on servers. Each switch has a master controller, which is solely responsible for

its programming, and also connects to a set of backup controllers that can take

over as primary in the case of failure. The primary controller is chosen using a

leadership election, built upon ZooKeeper [101].

ONOS maintains a global network view using a Blueprints graph implemen-

tation1 over RAMCloud distributed key-value store. The individual controller

instances are built using the Floodlight controller [187].

Jury is a consensus-based controller architecture in which multiple controller

instances are used to verify the actions of a primary controller [142]. Jury is

a module installed within controller instances and a separate validator, which

receives updates from the controllers. There is an assumption that all controller

instances are deterministic, and will return the same output for the same input

query. This is partially backed by the use of a logically centralised datastore

shared between the controller instances. Jury replicates switch requests amongst

the secondary controllers, and all responses are sent to the validator to check if

the response of the primary matches the majority of the backups. The system

1https://github.com/tinkerpop/blueprints

66

https://github.com/tinkerpop/blueprints

3.6 Primary-Backup Fault tolerant SDN control

will not actively block controller actions, but can very quickly raise an alert if a

fault is detected.

SDN-RDCD is a distributed SDN control architecture which detects compro-

mised SDN devices, both switches and controllers [245]. The Openflow controller

roles of master and slave are augmented with a third state as auditor. Each switch

is controlled by a master controller, as well as one to several audit controllers.

A switch sends PacketIn messages to both the master and the auditor(s). On

receiving a request, the master also forwards this request to the auditor. The

master sends its response to the switch and the auditor(s), and the switch then

forwards this response, and the network state update, to the auditor. The audi-

tor(s) can then use this set of information to identify if the switch or controller

is compromised based on inconsistencies, and alert an administrator. This can

also identify attacks such as a person-in-the-middle on the control network. If all

auditors are compromised, the system fails, however just one non-compromised

auditor is required to identify inconsistencies and alert an administrator. The

approach is shown to be able to quickly identify compromised devices (within

milliseconds), and has a low mCPU and memory overhead when compared to the

base controller (ONOS).

3.6 Primary-Backup Fault tolerant SDN control

The majority of work to provide fault tolerance in the SDN control architecture

utilises a primary-backup model. In these approaches, a single controller is re-

sponsible for a switch, with a set of backup controllers available to take over

control of the switch in the case of failure of the primary controller. This most

commonly refers to a fail-stop failure, where the primary controller becomes of-

fline, for example through a software crash. These approaches commonly feature

a logically centralised replicated datastore for ensuring consistent views of the

network state across controllers. It is important to note that in this approach

there may be multiple primary controllers operating within a network, however

only a single controller acts as primary for any given switch. These approaches

67

3.6 Primary-Backup Fault tolerant SDN control

often utilise the MASTER and SLAVE controller roles as specified by OpenFlow (see

Section 2.9.1).

One of the earliest architectures that utilises a primary-backup model is

SMaRtLight, as proposed by Botelho et al. [30, 109]. SMaRtlight assume a single

primary controller is responsible for all of the switches within the network, with

a number of replicas on different servers acting as backups, ready to take over as

primary if required. To ensure controllers have an up-to-date view of the network

a state shared datastore is used, built on top of replicated state machines [203, 31],

implemented through the use of Paxos [126].The system is tolerant to fail-stop

faults, where the controller stops working completely.

The primary controller is chosen by the datastore using a simple approach in

which each controller, primary or backup, periodically request a lease from the

datastore for a specified time. If there is no primary or the lease is expired, the

invoker is made the new primary. If the invoker is the lease owner, they renew the

lease. To reduce the amount of read operations to the datastore, controllers also

maintain a local cache. The datastore responds to a request with the id of the

current leaseholder and the time remaining on the lease. If a backup controller

is made the leaseholder, then they must change their role to OFPCR ROLE MASTER

on all switches.

The controller is built upon the Floodlight controller [187] and throughput

is tested using cBench. The environment uses 2 controllers and three datastores

tolerating a single fault on each layer. The system is evaluated with 1–64 switches,

and a fixed number of hosts (1000). The system assume different caching levels

for different applications (10%, 50% and 90%) which dictates how many read

operations have to be made to the datastore. With 90% of operations absorbed

by the cache, throughput is 367k flows/sec (compared to floodlights 2.5m). With

only 10% of operations absorbed by the cache, the performance is reduced to

55k flows/sec. When a controller is made to be faulty, a backup becomes the

new primary within 1 second, with the network returning to normal throughput

after 4 seconds (this time includes the new primary updating its status on the 10

switches).

Fonesca et al. present a similar system for controller fault tolerance based

on the primary-backup model, built upon the Nox controller [83]. The primary

68

3.6 Primary-Backup Fault tolerant SDN control

difference between this approach and SMaRtLight is that in this approach, the

primary controller shares updates directly with the backup controllers. On re-

ceiving a switch request, the primary will look for a matching entry in its storage

table, and if one exists will respond to the switch with the flow rule. If there is no

entry, it creates one and send a state update to the secondary controller(s), waits

for an acknowledgement and then provides the switch with an response. Failure

occurs when the primary stops responding to requests (a fail-stop failure). This is

identified both by the switch using a timer when waiting for controller responses,

and the switch periodically sending echo requests to the controller to check for

liveliness. If the primary fails, the switch will then contact the secondary, who

will become the new primary. The new primary will send status updates to the

previous primary in order to inform them of the change, and instructing the

previous primary to become a secondary.

The system is tested using a simple mininet network. The primary experi-

ment has one primary and one secondary, and measures the latency for controller

responses (for the purpose of this experiment all packets in a flow are sent to the

controller). In normal operation, the latency is around 22ms, which increases to

almost 900ms when the primary fails, due to the changeover, before gradually

decreasing once the network stabilises. A second experiment measure the effect

of the number of replicas, as the primary has to contact these before replying to

the switch. With no replicas, the response time is around 8ms. For one replica,

this increases to 14ms, 2 replicas 40ms and 3 replicas 62ms. This provides some

doubt on the scalability of the technique.

Ravana is a SDN controller tolerant to fail-stop crashes of both controllers and

switches [109]. The key difference to the previously described approaches is the

consistency guarantees provided by the system, which ensures state updates and

switch request are processed in the correct order across all controllers. The system

also has a goal of keeping the architecture transparent to application developers

— the controller still appears as a single controller to controller applications.

Ravana provides fault tolerance to f faults with 2f + 1 replicas.

Ravana treats the entire event-processing cycle (from event delivery from the

switch to command execution on the switch) as a transaction, and either all or

none of the components of this transaction are completed. Ravana also guarantees

69

3.7 Byzantine Fault Tolerant SDN Control

that transactions are totally ordered across replicas and each is executed exactly

once across the system. The controllers are based on replicated state machines

with a mechanism to ensure consistency. The master controller is chosen using a

leadership election built using ZooKeeper [101].

Ravana uses a two-phase replication protocol to deal with switch-state con-

sistency. Each phase involves adding event-processing information to a repli-

cated in-memory log. The first stage ensures that every received event is reliably

replicated, and the second conveys if the event-processing transaction has been

completed. Further, the system introduces acknowledgements for messages sent

between the switch and controller.

At any one time, the master replica is responsible for actually controlling a

switch, while the replicas act as slaves, receiving messages from switches but not

controlling the switches. On controller failure, a leader election runs on the slaves

to choose a new master. It then finishes processing any logged events (without

sending any commands to the switch), and informs the switch that it is the new

master.

The controller is implemented on top of Ryu 3.8. Using the PyPy interpreter,

vanilla Ryu and Ravana has throughputs of 67.6k and 40.4k responses per second

respectively. Ravana is capable of processing most events on average in 12ms

(with network latency removed). In the case of failure, Ravana can recover in

75ms (std dev of 9ms).

3.7 Byzantine Fault Tolerant SDN Control

In Section 3.6 I discuss works that apply a primary-backup model to SDN control

which utilises multiple controllers, however only a single controller is responsible

for a switch at any one time. In this section I discuss works in which multiple

controllers are simultaneously responsible for a switch through the use of some

form of consensus mechanism, such as a majority vote or the application of a

byzantine fault-tolerant (BFT) algorithm.

In one of the earliest pieces of work to examine the effectiveness of a BFT

architecture in SDN, Li et al. [136, 137] explore the issue of controller assignment

70

3.7 Byzantine Fault Tolerant SDN Control

in a BFT architecture, taking into account the differing levels of security required

by individual switches (a switch with higher security requirements is assigned a

greater number of controller replicas to provide greater resilience). For this pur-

pose they first define the controller assignment in a fault-tolerant SDN (CAFTS)

problem. CAFTS represents the problem of assigning controllers to switches,

satisfying the requirements of the BFT algorithm in use, minimising the latency

between controllers assigned to a single switch (to aid in the performance of the

BFT algorithm) and to maximise the utilisation of controller resources. Their re-

quirements first assignment (RQFA) algorithm is shown to provide more efficient

controller assignment than a randomised approach. The suggested fault tolerant

algorithm is PBFT [41]. They perform a simple evaluation of BFT control using

both local replicas, and replicas hosted within a public cloud (Google compute),

for setting up flows of increasing path lengths (up to 10 switches). They find

that the additional latency introduced by BFT is minimal (up to 13% for 10

switches when using replicas in the cloud), in particular for short paths of less

than 4 switches, though they do not specify which BFT protocol is in use for

these practical tests and how many replicas were utilised. Further, it is not clear

from the presented results what level of additional latency is incurred when using

local controllers as this is only represented in plotted results, however on visual

inspection this seems greater than the 13% increase worst case quoted for the

public cloud scenario.

ElDefrawy and Kaczmarek implement the BFT-SMaRt protocol ([22]) within

an SDN controller architecture [76]. This work focusses on the performance im-

pact of applying the BFT protocol. Testing was performed by producing modified

versions of the OpenFlowJ and Beacon SDN controllers, and the use of a proxy

between the switch and controllers to implement the switch logic. When evalu-

ated using a Mininet [130] network of 64 hosts and 63 switches in a binary tree

layout, on setting up a flow with a path length of 11 switches the BFT approach

results in a 2× slowdown with the modified OpenFlowJ controller, and a 6× slow-

down with the modified Beacon controller. For a single switch, the flow setup

time when using BFT increased from 9.44ms to 31.7ms when using OpenFlowJ,

and 0.5ms to 14.5ms when using Beacon, with the number of flows able to be

processed per second also reduced by similar amounts.

71

3.7 Byzantine Fault Tolerant SDN Control

Sakic et al. propose a solution for handling both byzantine and fail-stop fail-

ures in SDN control, utilising an approach in which a switch contacts a primary

controller, but also a set of secondary controllers, and uses the multiple responses

to identify inconsistencies [199]. In the approach, MORPH, a switch communi-

cates with a minimum of 2FM + FA + 1, where FM is the tolerated number of

byzantine-failed controllers, and FA is the tolerated number of offline (fail-stop)

controllers. The focus of the work is on the problem of controller reassignment in

such a controller architecture — on detecting a malicious or unavailable controller,

the system applies a reassignment function in order to automatically reassign the

switch to a new set of controllers, excluding those suspected of failure. One aspect

of the approach is that as faulty controllers are detected, the number of required

primary or secondary controllers for a switch is reduced. It is explained that

this is to minimise the control plane overhead, but without further reason. It

is assumed that as controllers are removed, reducing the requirement per switch

allows the control plane to continue functioning with less resources. As the pa-

per does not consider malicious controllers, it is unclear if this controller removal

could be abused to cause a denial-of-service attack on the MORPH system, Eval-

uation assumes that Fm and FA are both 5, so 16 controllers are required for

operation, along with 34 switches. As well as being shown to handle faults, the

system is shown to improve performance, in particular in terms of control-plane

synchronisation overheads, as faulty controllers are removed from the network.

Further, as the number of required controllers is reduced with the detection of a

faulty node, switch request processing time reduces as more failures are detected.

Mohan et al. explore a solution that utilises f + 1 primary controllers which

interact directly with the switch, and a further f backup controllers which can

be consulted in the case of a failure [158, 159]. The work focuses on the issue of

controller assignment, where they find that in their approach up to 50% fewer

controllers are required than in the traditional 3f + 1 BFT approach, with each

controller on average experiencing 50% less load. Whilst this work simulates the

controller assignment problem, they do not evaluate the effectiveness or perfor-

mance of the approach. The proposed solution is similar to the SDBFT approach,

however the work focusses on the controller assignment problem and not the core

72

3.7 Byzantine Fault Tolerant SDN Control

protocol itself. It should be noted that this work was released after development

of the SDBFT protocol had been completed.

Qi et al. describe a simple fault-tolerant approach in which multiple (M)

controllers are contacted by the switch (where M ≥ 3), with the majority output

from controllers taken [190]. The architecture incorporates a “scheduling plane”

which sits in front of the switch and selects from the pool of controllers, processing

responses from controllers and sharing topology information between the set of

controllers. In order to provide robustness the set of controllers is chosen to be

diverse, for example a switch will contact an instance of the POX, NOX and

Floodlight controllers, however each diverse controller is expected to return the

same result. This work is not, however, practically evaluated.

Across all of these examples, except for the works by Mohan et al. and Qi et

al., a full BFT protocol is utilised, which has the drawback of the overheads of the

BFT protocols including additional rounds of communication (and the associated

network load), and additional latency. The longer it takes to process a switch

request, the fewer requests can be handled by the control architecture. The works

which utilise lighter BFT protocols (Mohan et al. and Qi et al.) have limited

practical evaluation of their designs, with, for example, Mohan et al. focussing

on the controller assignment problem rather than the core protocol.

3.7.1 Consensus amongst administrators

Whilst the previously mentioned works focus on consensus amongst software in

the form of controllers, Matsumo et al. utilise consensus amongst network admin-

istrators in order to prevent malicious administrators from deploying malicious

configurations to controllers [147]. The proposed solution is the Fleet controller

— a logically centralised but distributed controller in which each administrator

has their own instance of the controller, managed by an administration layer,

and a switch intelligence layer (which is also part of the controller) which me-

diates communication between the switches and administration layer. Fleet can

take one of two proposed approaches. In the single configuration approach a

threshold of administrators must agree on a configuration, with 2k + 1 admin-

istrators required to handle k malicious administrators. Switch configurations

73

3.8 Discussion

are encrypted using a threshold encryption standard (in this case Shamir’s secret

sharing [212]), and the switch intelligence layer can successfully decrypt the con-

figuration as long as the majority of responses match. In the second approach,

dubbed multi-configuration, each administrator installs a routing configuration

and installed into the network providing multiple routing planes, any of which

can be used. As long as one is non-malicious then the network should be able to

function. This has the challenge of how to choose which routing plane to use at

any one time, for example by introducing flow metrics onto the switch to evaluate

how well a particular routing plane is working.

3.8 Discussion

The previous work on preventing failures takes two main approaches. The first

approach involves the addition of attack detection and prevention mechanisms

to a single controller (as discussed in Sections 3.3 and 3.4). Many of these sys-

tems have limitations in that they often apply to auxiliary aspects of the control

plane, such as applications, and would not function properly if the controller it-

self is compromised. Similarly, most approaches of this type stop protection at

the controller level and do not examine the southbound interface, meaning that

if an attacker was able to perform a person-in-the-middle attack and modify con-

troller responses these would not be detected. The system proposed in this work,

SDBFT, solves this problem by moving the verification step to the switch level

and so provides protection if any aspect of the control architecture outside of the

switch is compromised.

The second approach is to make use of multiple controllers, such as through the

use of distributed control planes (Section 3.5), which usually result in a primary-

backup approach where on detecting a fault with a primary controller, a backup

controller can be utilised to maintain control of a switch (Section 3.6). These

approaches have a major limitation in that the majority of these approaches

only provide protection against fail-stop faults where a controller stops operating

completely, and would not protect against an actively malicious or compromised

controller.

74

3.8 Discussion

Table 3.1: Existing literature in Byzantine Fault Tolerant SDN control. f =
number of faulty nodes

Paper Approach Paper Fo-
cus

Required
Nodes

Practical Evaluation Performance
Overhead
vs single
controller (if
provided)

Li et
al. [136,
137]

PBFT con-
trol plane

Controller
assignment
and load
balancing

3f + 1 Some limited evaluation, num-
ber of nodes not clear. Lo-
cal and cloud controller place-
ment tested. Evaluation focus
on controller assignment

13% in local
deployment,
not provided
for cloud de-
ployment but
much greater.

ElDefrawy
and Kacz-
marek [76]

BFT-
SMaRt
control
plane

Deployment
of control
plane and
perfor-
mance
overhead

3f + 1 Implemented as modified ver-
sions of OpenFlowJ and Bea-
con controller. Tested using
Mininet, 1 and 10 switch path
lengths with 4 replicas

2x slowdown
(best result)

Sakic et al.
[199]

Backup
verified
control
plane
(single pri-
mary with
multiple
backups
for verifi-
cation

Controller
reassign-
ment

2FM +
FA + 1,
where
FM =
byzantine
faults and
FA = fail
stop faults

OpenVSwitch and Docker
setup

N/A (Reas-
signment and
switch re-
configuration
tested only)

Mohan et
al. [158,
159]

Multiple
controller
primary-
backup
consen-
sus based
control
plane

Controller
assignment
and reas-
signment

f + 1 with
f backup
(2f + 1)

None (numerical only) N/A

Qi et
al. [190]

Majority
vote mul-
tiple
controllers

Controller
schedul-
ing and
assignment

≥ 3 None N/A

SDBFT Multiple
controller
primary-
backup
consen-
sus based
control
plane

Protocol
design,
security
through
signatures,
controller
synchro-
nisation,
controller
assign-
ment,
perfor-
mance
overhead,
practical
evaluation

f + 1 with
f backup

Three test platforms (Mininet
simulation, virtual environ-
ment, physical switches).
Baseline performance test-
ing, failure operation and
controller load testing

4 controllers:
60% without
signatures,
178% with
signatures

75

3.9 Conclusion

More relevant to this work is are the distributed control plane approaches

which apply a BFT, or similar, algorithm in order to prevent compromised con-

trollers from performing malicious actions, as discussed in Section 3.7 above, and

summarised in Table 3.1. These existing works usually require a minimum of

3f + 1 controllers to handle f faulty (or compromised) controllers, over many

rounds of communication. This presents a very large communication overhead,

and also requires a large amount of replication of controllers due to the require-

ment of all 3f + 1 controllers assigned to a switch to actively handle all requests

from that switch. SDBFT reduces this to f +1 with f backup nodes by relaxing

the fault tolerant requirement to fault detecting with recovery. The previous work

by Mohan et al. follows a similar approach, however the work focusses on the

controller assignment problem rather than the core performance, and therefore

practical usability, of the approach [158, 159]. Those that do provide practical

evaluations generally do not test with malicious or faulty controllers in place, or

give further considerations to wider security properties such as non-repudiation.

Within this space, SDBFT represents the first approach which covers all aspects

of the potential deployment including controller assignment, signature use and

controller consistency backed up by an extensive practical evaluation.

The standard practice within the literature is to measure the flow setup time

in milliseconds, measured through the use of a ping request and extracting the

round trip time of the first packet. A baseline is generated using a traditional

single controller setup. This can then be used to directly measure the additional

overhead of the modified control plane by measuring the difference in the round

trip time between the baseline and modified controller. Further, a large amount

of the literature measures the controller bandwidth in flows handled per seconds,

computer using a controller benchmarking tool such as cbench. This allows the

measurement of controller performance whilst under load.

3.9 Conclusion

In this chapter I discussed various works which cover the security of SDN con-

trollers. This includes works which aim to detect compromised controllers, secure

76

3.9 Conclusion

the control plane from compromise and introduce fault tolerance into the control

plane.

In the next chapter I explore the impact of a compromised SDN controller

by examining the network-level attacks that can be launched through a compro-

mised controller, demonstrating these attacks in a simulated network environ-

ment. I also explore the impact of these attacks in the specialised environment

of Industrial Control Systems (ICS).

77

Chapter 4

Insider Attacks in Software

Defined Networks

4.1 Introduction

When designing a defensive system, it is important to examine which threat

actors we are defending against, including what their end goals are. It is also

important to understand the impact of the attacks which I am trying to defend

against. This knowledge can help us to ensure that implemented defences are

adequate to protect against the attacks which may occur. In previous works it

it is often stated that if an SDN controller were to become compromised, then

the attacker could cause serious harm to the underlying network ([119, 207, 210,

206]), but in what ways and to achieve what attackers’ goals?

In this chapter, I first give an overview of the attacker who would compromise

an Software Defined Network (SDN) controller, including their goals and attack

vectors. I then discuss a number of potential attacks against a network that can

be launched from a compromised SDN controller, and demonstrate a number of

these on a small-scale virtual network. I then also provide an exploration of the

impact of SDN based attacks on a real-world scenario in the form of industrial

control systems, where network availability is paramount to ensuring the safe

operation of the systems.

78

4.2 Attacker Model

4.2 Attacker Model

In this section I discuss the types of attacker that may attempt to attack an SDN

network. I then discuss how that may actually introduce malicious flow rules

into the network, and then talk about the various goals they may have when

attacking.

4.2.1 Attacker

I assume a targeted, well resourced attacker that is focused on a particular net-

work. The attacker would compromise the SDN controller in a targeted fashion

to disrupt the network below in the ways discussed in this chapter. Whilst the

attacks described in this chapter are relatively simple to implement at a technical

level, a high level of manual effort is required in order to perform anything past

basic examples. I assume the attacker will be part of an organised crime gang,

a nation state or similar which are targeting the network of a particular organi-

sation for either financial or political motivation. These types of attackers often

come under the term Advanced Persistent Threat (APT) groups.

There are of course risks to the SDN controller host becoming compromised by

wider-ranging malicious campaigns such as ransomware, however I assume that

a controller affected by such malware will become non-operational producing a

fail-stop failure, rather than malicious control within the network.

4.2.2 Attack Vector

There are a number of possible ways in which an attacker could compromise the

integrity of a controller in order to send malicious commands to a switch [208].

As well as directly compromising the controller code, an attacker could also com-

promise third party applications that communicate with the controller, or the

communication channels of the northbound or southbound interfaces. For the

majority of the approaches it is assumed that the attacker has already gained

some level of access to the target network. An attacker could compromise, or

interfere with, the controller in one of the following ways:

79

4.2 Attacker Model

(a) Static flow pusher

(b) Firewall configuration

Figure 4.1: Floodlight web administrative interface

• Compromised administrative interface Most SDN controllers provide

functionality for remote administration of the SDN controller through APIs

or administrative interfaces (such as web-based pages). If a host is compro-

mised that is authenticated to these interfaces (such as an administrators

terminal) then the attacker can gain access to the control provided by the

administrative interface, and all functions provided by it. Typically this will

include changing the set of installed applications or manually installing/mod-

ifying flow rules on switches [119]. Figure 4.1 shows the web interface for the

floodlight controller, which is unauthenticated, and allows the installation of

flow rules and configuration of the firewall.

• Compromised Northbound Interface The attacker compromises a north-

bound interface in order to interact with the controller, for example, by per-

forming a person-in-the-middle attack on a RESTful interface, or by exploiting

a lack of authentication on the interface.

• Compromised Southbound Interface The attacker compromises the Open-

Flow connection between the switch and controller — for example, by per-

forming a person-in-the-middle attack — and modifies requests and responses

between the two, or injects packets into the channel. Whilst the use of an

80

4.2 Attacker Model

encrypted channel through TLS is recommended within controller documen-

tation, this is usually not the default when installing a controller (with a

simple TCP connection being standard), and requires appropriate certificates

to be installed and managed.

• Malicious Application A malicious application is installed on the controller

by either a malicious administrator, through administrator error or through

the compromise of an existing application. The application is limited to

the functionality of applications provided by the controller, and not more.

Matsumo et al. focus on providing defences against a malicious administra-

tor [147].

• Poisoning Controller Network View The attacker uses crafted packets

on the network to poison the topology datastore of the controller, causing

routing errors [98, 168]. Ujcich et al. demonstrate an attack in which a

malicious application poisons the shared control plane to cause a legitimate

application with higher privilege to install its desired flow rules [230].

• Compromised Controller Through a software vulnerability, the attacker

gains control over the controller. As an example, Röpke and Holz describe

a proof-of-concept rootkit able to infect a network operating system (or con-

troller), specifically OpenDayLight and HP SDN Wan [194].

• Compromised Host In the most severe case, the host on which the controller

resides is compromised, resulting in full attacker control over the controller

software, and traffic in/out of the host.

Within this work, I focus on the worst case compromised host/malicious con-

troller and application use case in which the attacker gains arbitrary control over

the routing decisions made by the controller, though the majority of the attacks

would also be possible using the alternate attack vectors.

4.2.3 Attacker Goals

I define five main goals of the attacker who has gained control of the SDN con-

troller:

81

4.3 Attacks

• Denial-of-service The attacker wishes to prevent either a single host (tar-

geted) or set of hosts (indiscriminate) from communicating by preventing all

communication of the hosts.

• Eavesdropping The attacker wishes to collect the traffic of either a single

host (targeted) or group of hosts (indiscriminate), without affecting the avail-

ability of the network service, in order to gather information.

• Data tampering The attacker wishes to change the contents of packets for a

particular host in order to carry out a person-in-the-middle attack, or redirect

a victim to an attacker controller service.

• Service degradation The attacker wishes to degrade the performance of the

network for a single host (targeted) or all hosts (indiscriminate) in order to

make the network unusable, or to introduce errors in external applications that

rely on high speed communications. Similarly, the attacker can cause failure

in SDN-based applications. For example, Costa and Costa [56] demonstrate

issues with FlowVisor [215], which provides network isolation using SDN,

which can break isolation between network slices.

• Attack Augmentation The attacker uses malicious flow rules to assist in

further attacks, for example by allowing attack traffic through firewalls [185].

4.3 Attacks

I now provide an overview of the set of attacks that can be performed by a

compromised controller, separated by type. Each of the following attacks could

be implemented by either a malicious or compromised controller application, or

by a controller itself being compromised. A taxonomy of these attacks can be

seen in Figure 4.2. Attacks for which citations are provided are taken from the

literature, whilst those without citation are novel to this work.

82

4.3 Attacks

Attacks

Denial of Service

Sinkhole

Drop Packets

Amplified DOS
Flooding

Targeted

Controller Crash

Eavesdropping
Redirect Eavesdropping

PacketIn Eavesdropping

Data Tampering

Controller Packet Tampering

Person In The Middle (PITM)

TrafficRedirect

Service Degradation
Route Increase

Flow Mod Blocking

Other Data Deletion

Figure 4.2: Attack Taxonomy

4.3.1 Denial of Service Attacks

The denial of service attacks attempt to prevent hosts from communicating. They

can range from causing all traffic to be dropped, or being targeted to the level of

preventing one host from accessing one service.

• Sinkhole In the sinkhole attack, the compromised controller directs targeted

flows to a port that leads to a sinkhole, so the traffic will eventually be

dropped. In a coordinated version of this attack, the sinkhole is located a

few hops away from the target host and the compromise controller routes the

packet down a path to the sinkhole to make it appear as a genuine routing

error.

• Drop packets The simpler version of the sinkhole attack is to simply install

flow rules that dictate the packet should be dropped. This can be targeted to

only drop packets relating to a particular source/destination, or be generalised

by installing flow rules that cause all packets to be dropped.

83

4.3 Attacks

• Amplified DOS (flooding) In this attack, the attacker can insert flow rules

that push packets out of all available ports on a switch by utilising multiple

action fields within a flow rule. This will cause packets to be repeatedly

duplicated at switches, flooding portions of the network. The more switches

under the control of the attacker, the greater the effect of the attack. The

overall effect will be a drop of performance for all hosts within the network,

potentially to the point where the network becomes too congested.

• Amplified DOS (targeted) Similar to the previous attack, this involves

pushing packets out of multiple ports on a switch in order to cause a perfor-

mance hit at a target destination. However, in this approach I assume the

attacker knows the network topology and ensures the packets are duplicated

along particular paths only. This means that the rest of the network should

be largely unaffected, but a target host could be taken offline.

• Controller crash In an extreme case, the controller can be taken offline

by terminating the running instance. This attack was previously described

by Shin et al. [216]. Note that this is the only described attack that is not

directly preventable through the use of SDBFT, as no responses are sent from

the controller to the switch, however SDBFT will enter failure mode if a non

operational controller is detected. In a variation of this attack, Shin et al. also

demonstrate an attack against the Floodlight controller in which the attacker

increases the resource usage of the controller until it surpasses the available

system memory, causing the java virtual machine to crash and exit.

4.3.2 Eavesdropping attacks

These attacks allow the attacker to intercept the traffic on the network that they

would not usually have access to.

• Redirect eavesdropping In this attack, the attacker redirects traffic to

another location where data can be collected. This can be done either by

directing the flow through an alternate route (as in the route increase attack

below), or through packet duplication (a copy of the packet is sent out a

84

4.3 Attacks

second port to a collector), effectively configuring a mirror port on the switch.

A version of this attack is presented in [100].

• PacketIN eavesdropping The attacker prevents a matching flow rule being

installed on a switch for a target flow. Depending on the switch configuration

packets are either buffered on the switch with only packet headers included

in the PacketIN message, or the packet is not buffered and the full packet

data is included. If full packets are sent to the controller, then a malicious

application can log these packets and the contents can be parsed to extract

information. This has the secondary impact of a timing attack, as requiring

all packets to pass through the controller will introduce extra latency to flows,

and is functionally equivalent to the flow mod blocking attack described below,

therefore I do not demonstrate this attack specifically.

4.3.3 Data Tampering Attacks

The data tampering attacks allow the attacker to modify network packets, either

directly on the controller itself, or by redirecting traffic to an alternate location

on the network.

• Controller packet tampering An extension to the flow mod blocking and

PacketIN eavesdropping attacks, in this attack the controller goes further and

modifies packet contents whilst they are being processed, effectively perform-

ing a controller in the middle attack.

• Person-in-the-middle (PITM) attack The above eavesdropping, with

slight modification, can be used to aid in person-in-the-middle (PiTM) at-

tacks [12]. The attacker can redirect packets through a device that they

control within the network, then return the packet back to the switch to be

forwarded onto the intended target. The attacker can then read the packets

to collect data, or modify them as required. This is effectively the same as

the previous attack, although packets are not duplicated.

• Traffic Redirect In this attack, the attacker performs a variation on the

PiTM attack, which allows them to build a malicious replica of a target server,

and redirect client requests to the attackers replica instead of the target. This

85

4.3 Attacks

could, for example, aid in phishing attacks. The client believes they are

accessing the correct domain name, and indeed server IP, however all requests

are redirected to the attacker controlled server.

4.3.4 Service Degradation

The attacker wishes to degrade the performance of the network for either a tar-

geted host, or set of hosts. This is another form of denial-of-service attack,

however unlike the previous set of attacks which completely block communica-

tion, these attacks reduce network performance to cause a loss of performance of

running services. This could be be particularly problematic for systems which

require real time, or near real time, communication.

• Route increase In this attack the attacker introduces an extra hop into the

path of the packet wherever possible. This is done by pushing the packet to an

alternate port on the switch than the one that would usually be chosen. It is

assumed the at the next switch the packet route will be corrected ensuring that

the packet actually arrives, just with an additional delay. The attacker can

repeat this attack on multiple switches that they control in order to introduce

further delay.

• Flow mod blocking Lee et al. [133] demonstrate an attack against the ONOS

controller, which can be easily generalised to apply to the compromised con-

troller scenario. In the example, the attacker uses a malicious application to

change the ONOS properties to result in the PACKET OUT ONLY option to be set

to true. This prevents the forwarding application from installing flow rules on

the switch, only being able to respond to PacketIn messages with PacketOut

messages. This results in all traffic being sent through the controller, which

degrades network performance. In the example given, ping times increase

from 1ms to 4ms.

4.3.5 Other Attacks

• Data deletion In this attack, as described by Shin et al. [216], an attacker-

controlled application modifies entries within the controllers datastore in order

86

4.4 Attack Demonstration

to affect the operation of other applications running on that same controller.

An example provided is the removal of network link information from the

datastore, causing a monitoring application to display the wrong information.

This attack can be extended to apply to a distributed controller architec-

ture, wherein multiple controller share single, yet distributed, datastore. In

this scenario, a controller can modify dataset entries or misreport network

state (such as the existence of links), causing other controllers to see invalid

information. I do not replicate this attack in my environment, however I re-

fer to the related work in which the attack is demonstrated against multiple

Openflow controllers [216].

4.4 Attack Demonstration

To demonstrate the effectiveness of these attacks, I produce an implementation

of each attack and test, depending on the attack goal, the impact on network

performance, or if the outcome of the attack is achieved (in the case of data

tampering attacks).

4.4.1 Setup

To demonstrate the attacks I create a malicious instance of the Java-based Flood-

light controller. Attacks were implemented by writing a malicious application for

each attack, mostly achieved by making modified copies of the default Forwarding

routing application. As Floodlight allows applications to specify their own posi-

tion in the packet processing queue, the malicious applications were configured

to be executed before the default routing applications (where applicable). An

example of this is shown in Listing 4.1. In this example, the two functions dic-

tate that for PacketIN messages, the packets should first be processed by the

DeviceManager application before the malicious application, and should not be

processed by the default Forwarding application until after the malicious appli-

cation has processed the packet. An application can prevent further applications

87

4.4 Attack Demonstration

from processing the packet by returning Command.STOP from the message pro-

cessing function (returning Commmand.CONTINUE allows the request to move onto

the next application in the queue). Configuration for the malicious applications

(setting target IP/MAC addresses) was done through the default Floodlight prop-

erties file, as is also the case for legitimate applications.

@Override

public boolean isCallbackOrderingPrereq(OFType type, String name) {

return (type.equals(OFType.PACKET_IN) &&

(name.equals("devicemanager")));

}

@Override

public boolean isCallbackOrderingPostreq(OFType type, String name) {

return (type.equals(OFType.PACKET_IN) && (name.equals("forwarding")

|| name.equals("virtualizer")));

}

Listing 4.1: Malicious application ordering insertion code

Testing was performed using the Mininet platform [130]. Mininet is a simulated

SDN development and testing platform deploys can deploy virtual SDN switches

(OpenVSwitch) and simulated hosts with a given topology. This was chosen as it

is an easy way to build a large scale network with a custom topology, and also to

tear down and cleanup the network after the attack has occurred. As some of the

attacks, such as the amplified DoS, require a large number of switches and routes,

Mininet provides an easy way to achieve this scale. Further, Mininet can be easily

configured to use sequential MAC addresses for switches and hosts, meaning that

it is easy to predict which hosts and IP addresses map to which MAC addresses

A simple topology of six switches, each with one connected host, was used for

the majority of testing, which can be seen in Figure 4.3. This topology is not

necessarily designed to replicate a real-world topology, but it allows me to clearly

demonstrate the effectiveness of the attacks. In a real-world setting, the effect

of some attacks may be limited, in particular in a sparser network with fewer

available routes.

88

4.4 Attack Demonstration

S1

S2

S3

S4

S5

S6

H1

H2

H3

H4

H5

H6

Figure 4.3: Simple network used for attack demonstrations with six switches and
six hosts

4.4.1.1 Malicious Applications

I will now describe the specific actions taken by each malicious application.

• Sinkhole I do not explicitly demonstrate the Sinkhole attack, as I clearly

demonstrate the rerouting of packets through the route increase, redirect

eavesdropping and traffic redirect attacks, and the overall outcome of the

attack is identical to the drop packets attack described below.

• Drop packets

An application, TargetDropper, was produced which takes a list of IP addresses

from the Floodlight properties file and instructs the switch to drop (through an

action-less flow rule) packets for flows for which one of the target IPs is in the

destination. This application is based on the default Forwarding application,

and is set to be run before any other application. The target dropper will

return Command.STOP if a target IP is seen to prevent packets being passed

onto the Forwarding application. If the packet is not for a targetted IP, the

application will allow the packet to pass onto the next application in sequence

for normal processing. The processPacketInMessage method where this

89

4.4 Attack Demonstration

decision is made can be seen in Listing 4.2. The doDropFlow function already

exists within the forwarding application, and installs a flow rule directing

the switch to drop matching packets. Similar logic is used for all malicious

applications where a target is used.

@Override

public Command processPacketInMessage(IOFSwitch sw, OFPacketIn pi,

IRoutingDecision decision, FloodlightContext cntx) {

Ethernet eth = IFloodlightProviderService.bcStore.get(cntx,

IFloodlightProviderService.CONTEXT_PI_PAYLOAD);

IPacket pkt = eth.getPayload();

if (pkt instanceof IPv4) {

IPv4 ip_pkt = (IPv4) pkt;

log.info("Packet found: " +

ip_pkt.getDestinationAddress().toString());

if (targets.contains(ip_pkt.getDestinationAddress().toString())) {

doDropFlow(sw, pi, decision, cntx);

return Command.STOP;

}

}

return Command.CONTINUE;

}

Listing 4.2: TargetDropper main logic

• Amplified DoS (flooding) The AmplifiedDOS application is a modified

version of the default Forwarding application. Any flows destined to target

IP addresses are handled by the AmplifiedDOS application, all other flows are

passed on to the standard Forwarding application for processing. The appli-

cation installs a flow rule on every switch the packet traverses with multiple

action fields, one for each active port on the switch. The multiple action fields

direct the switch to forward the packet out of all available ports on the switch.

Eventually every switch under the attackers control will forward the flow out

90

4.4 Attack Demonstration

of all available ports, which causes an exponential growth in the number of

packets being forwarded as packets are repeatedly duplicated. Whilst this is

not a targeted attack, I specify a target flow to duplicate so other hosts can

be used to test the effect.

• Amplified Dos (targeted) The AmplifiedDOSTargeted is similar in func-

tionality to the AmplifiedDOS application, however when generating a flow

rule it will only duplicate the flow to a subset of the ports of a particular

switch which will direct the duplicate packets in the direction of the target

host. For testing purposes this is hard-coded into the application. For the

example network in Fig 4.3, if I assume H4 is the target and I have a flow

from H1 to H4. The application will cause the flow to be forwarded to switch

S2 and S6. The application will then instruct S2 to forward to S3 and S6, and

switch S6 to forward to S2 and S5, and so on. In order to prevent exponential

packet growth, the flow rules prevent packets being sent back out of the port

they came in on. This results in duplicate packets being received by the target

with less chance of flooding the network. For example, on the test network

a flow from H1 to H4, with H4 as the target, the attack results in 8 packets

being received by the H4 for every packet sent by H1.

• Controller crash This application terminates the current Java Virtual Ma-

chine (JVM) instance when a PacketIn message to a particular IP address is

observed. The JVM is terminated by a simple call to System.exit(0).

• Redirect eavesdropping The Eavesdropping application is almost identical

to the default forwarding application, except that for any flow to or from the

target addresses, an extra action will be added to the flow rule outputted by

the application mirroring the traffic to the appropriate port where the data

collection machine is sat.

• Person-in-the-middle (PiTM) The PiTM application is a modified version

of the Forwarding application which is programmed to configure flow rules for

the target flow to output on the first port on which the attack machine is

connected. The attack machine has two connections to the switch, and will

output packets on the alternate connection to the one they were received

91

4.4 Attack Demonstration

on. The malicious application will forward any flows coming from the second

attack port onto the original target. This is done in both directions for the

target flow.

• Traffic Redirect The Redirect application, built upon the Forwarding ap-

plication, intercepts packets to the target server IP address. For any pack-

ets destined for that address, the application sets the outbound port for the

FlowMod and PacketOUT to the port on which the attacker controlled host is

connected.

• Route increase The RouteIncrease application manually modifies the in-

stalled route between H1 and H4. By default, the route that is installed

would be H1–S1–S2–S3–S4–H4, representing a path length of 5. Through

modifying flow rules, the malicious application instead directs the flow on

the H1–S1–S2–S6–S5–S3–S4–H4 path which visits all switches, increasing the

path length to 7.

• Flow Mod Blocking, PacketIN Eavesdropping and Controller Packet

Tampering

The RuleBlocker application is used for preventing the controller from in-

stalling flow rules onto the switch. This application is almost identical to the

standard Forwarding application, except that it will only allow target packets

to be forwarded through PacketOutmessages, and will not generate flow rules.

This means that all packets in the flow have to pass through this application.

Packets that are not in target flows are passed onto the next application for

normal processing. The application can modify packet contents, allowing for

packet tampering. The attack can be targeted or indiscriminate.

4.4.2 Results

For testing, I use host H4 as a target for attack. To measure a baseline perfor-

mance, I make 10 pings of 4 packets each from H1 to H4, with a 6 second pause

between each (the default flow rule inactivity timeout is 5 seconds), and take the

mean round trip time (RTT) of the packets. A ping from H1 to H4 has an aver-

age RTT on the first packet (where flow setup occurs) of 7.95ms (SD 1.62), with

92

4.4 Attack Demonstration

the subsequent packets, matched to a flow rule, having a mean RTT of 0.105ms

(SD 0.042). These figures assume the controller already knows the location of

each host, which would be the case in an established network. In cases where

the destination is not know, the flow setup time is greater as an initial packet

flood is performed to identify the location of the host. This results in a slightly

larger flow setup time, with greater variation, however subsequent packets on the

flow are unaffected. I also use the pingall command provided by mininet to test

connectivity between all hosts. This performs a single packet ping between each

pair of hosts, printing X if there is no connection between two hosts. An example

of the output of pingall when not under attack is below:

mininet> pingall

*** Ping: testing ping reachability

h1 -> h2 h3 h4 h5 h6

h2 -> h1 h3 h4 h5 h6

h3 -> h1 h2 h4 h5 h6

h4 -> h1 h2 h3 h5 h6

h5 -> h1 h2 h3 h4 h6

h6 -> h1 h2 h3 h4 h5

*** Results: 0% dropped (30/30 received)

Listing 4.3: Mininet pingall example

4.4.2.1 Denial-of-Service

Controller Crash When a packet destined for H4 is seen, the malicious appli-

cation kills the JVM, resulting in the controller going offline. As no backup has

been configured, no communication is possible within the network. This can be

seen in the pingall output below:

93

4.4 Attack Demonstration

mininet> pingall

*** Ping: testing ping reachability

h1 -> h2 h3 X X X

h2 -> X X X X X

h3 -> X X X X X

h4 -> X X X X X

h5 -> X X X X X

h6 -> X X X X X

*** Results: 93% dropped (2/30 received)

Listing 4.4: Controller Crash pingall Output

Drop Packets I drop all packets destined for H4 using the TargetDropper

malicious application. The output of pingall is below:

mininet> pingall

*** Ping: testing ping reachability

h1 -> h2 h3 X h5 h6

h2 -> h1 h3 X h5 h6

h3 -> h1 h2 X h5 h6

h4 -> X X X X X

h5 -> h1 h2 h3 X h6

h6 -> h1 h2 h3 X h5

*** Results: 33% dropped (20/30 received)

Listing 4.5: Drop Packets pingall Output

All packets destined for H4 were dropped, meaning each host received no ping

response. Similarly, as responses from other hosts to H4 are also dropped, H4

is unable to receive responses from any other host (however, requests from H4

are received by other hosts as the blocking is unidirectional), meaning that the

pingall output shows no connectivity from H4 to other hosts. I only focus on

destination IP addresses in this test, but it would be trivial to match a source IP

address as well to prevent communication between a specific pair of hosts whilst

allowing other hosts to communicate normally.

94

4.4 Attack Demonstration

Amplified DOS (Flooding) I trigger the malicious application whenever a

packet destined for H4 is seen on any switch. As the packet is replicated at every

switch, the number of packets grows exponentially and very quickly the network

is overloaded. To demonstrate this more clearly, I send a single ping packet from

H1 to H4, and then attempt to ping from H3 to H5:

mininet> h1 ping -c 1 h4

PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.

64 bytes from 10.0.0.4: icmp_seq=1 ttl=64 time=1013 ms

--- 10.0.0.4 ping statistics ---

1 packets transmitted, 1 received, 0% packet loss, time 0ms

rtt min/avg/max/mdev = 1013.590/1013.590/1013.590/0.000 ms

mininet> h3 ping -c 4 h5

PING 10.0.0.5 (10.0.0.5) 56(84) bytes of data.

From 10.0.0.3 icmp_seq=4 Destination Host Unreachable

--- 10.0.0.5 ping statistics ---

4 packets transmitted, 0 received, +1 errors, 100% packet loss, time 3081ms

Listing 4.6: Amplified DoS Attack

As can be seen, the first ping is successful (though experiences a heavy delay).

Even after the initial ping has stopped, I see a very large number of packets

entering the controller. On the ping from H3 to H5 (which are both not targeted

by the attack), the connection fails as the network is overloaded and the controller

is dealing with a very large number of requests. As an example, I perform a packet

capture on a single port on one of the switches, seen in Figure 4.4. After just 10

seconds, the packet capture contains more than 390,000 duplicated packets from

a single ping (all packets have matching ids and sequence numbers), with the rate

increasing as more and more packets are duplicated.

95

4.4 Attack Demonstration

Figure 4.4: Amplified DOS Attack

Amplified DOS (Targeted) I start the targeted DOS attack against host H4.

As can be seen by observing the network traffic using Wireshark configured on

H4, on sending a ping from H1 to H4, for each packet sent by H1, 8 are received by

H4, and H1 received 8 responses back. Whilst this is not enough to overload the

host, it shows the attack is feasible. If a heavier (higher throughput) application

when compared to ping is used, it is expected that H4 will be taken offline as

the attack essentially emulates a distributed denial of service attack. Below is

the ping output from pinging H1 to H4, after the malicious flow rules have been

setup:

mininet> h1 ping -c 2 h4

PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.

64 bytes from 10.0.0.4: icmp_seq=1 ttl=64 time=0.126 ms

64 bytes from 10.0.0.4: icmp_seq=1 ttl=64 time=0.186 ms (DUP!)

64 bytes from 10.0.0.4: icmp_seq=1 ttl=64 time=0.190 ms (DUP!)

64 bytes from 10.0.0.4: icmp_seq=1 ttl=64 time=0.194 ms (DUP!)

64 bytes from 10.0.0.4: icmp_seq=1 ttl=64 time=0.197 ms (DUP!)

64 bytes from 10.0.0.4: icmp_seq=1 ttl=64 time=0.200 ms (DUP!)

64 bytes from 10.0.0.4: icmp_seq=1 ttl=64 time=0.203 ms (DUP!)

64 bytes from 10.0.0.4: icmp_seq=1 ttl=64 time=0.206 ms (DUP!)

64 bytes from 10.0.0.4: icmp_seq=2 ttl=64 time=0.197 ms

96

4.4 Attack Demonstration

--- 10.0.0.4 ping statistics ---

2 packets transmitted, 2 received, +7 duplicates, 0% packet loss, time 1021ms

rtt min/avg/max/mdev = 0.126/0.188/0.206/0.028 ms

Listing 4.7: Amplified DoS Targeted Attack

The first ping request (icmp seq=1), is duplicated 8 times by the network, and

8 responses are returned to the sender (which the ping utility correctly identifies

as duplicates). Note that in the example 2 pings were sent, but only a single

response is shown for the second ping (icmp seq=2). This is because the ping

tool will exit on receiving the first response to the final request, even though 8

responses are actually received. If the ping tool is only instructed to send a single

packet, it will only count a single response, even though 8 are received.

4.4.2.2 Eavesdropping

Redirect Eavesdropping To demonstrate the redirect eavesdropping attack,

I use a simpler topology, as seen in Figure 4.5. In this topology, H3 is the attacker

controlled machine, and H1 and H2 are the communicating hosts. The malicious

application, on seeing traffic to or from H1 (10.0.0.1), will add an additional action

to the flow rule to output traffic to port 3, where H3 is connected. Figure 4.6

shows the Wireshark capture on the ethernet interface of H3, whilst a ping is

made from H1 to H2 (10.0.0.2). The ICMP packets between H1 and H2 are also

received on H3, which would normally not be able to observe these packets, even

if capturing in promiscuous mode (in this case promiscuous mode is disabled).

S1

H2

H1 H3

Figure 4.5: Simple network used for redirect eavesdropping and redirect traffic
attacks

97

4.4 Attack Demonstration

Figure 4.6: Redirect Eavesdropping Attack

4.4.2.3 Data Tampering

Controller Packet Tampering For a demonstration of this attack, please see

Section 4.5.4.4.

Person-in-the-Middle For a demonstration of this attack, please see Sec-

tion 4.5.4.5.

Traffic Redirect To demonstrate the traffic redirect attack, I again make use

of the simpler topology seen in Figure 4.5. In this scenario, H1 (10.0.0.1) is

the target server, H3 (10.0.0.3) is the client, and H2 is the attacker controlled

machine. I run a simple web server on H1, running on port 998, using the Python

3 http.server. The folder in which Mininet runs contains 2 folders, host1 and

host2, which each contain a file called host.txt, which indicates on which host

the web server is being run. I start a web server on H1, using the host1 folder as

the root. The host.txt file within this folder contains “This is host 1 (10.0.0.1)”.

When not under attack, if H3 requests this file from IP address 10.0.0.1, they will

receive a file from host 1. This can be seen in Figure 4.7a.

I then introduce an attacker machine, H2, which is configured to have the

same IP and mac address as H1. H2 is also running a web server, also bound to

IP 10.0.0.1 on port 998, but in this case serving the contents of folder host2. The

malicious application, in seeing a packet destined for 10.0.0.1 (H1), will direct it

out of port 2 where H2 is located, instead of port 1 where H1 is located. This

means that, when H3 sends a request to H1, the request is instead redirected to

98

4.4 Attack Demonstration

H2, and the contents of the host.txt file within the host2 folder is returned.

This can be seen in Figure 4.7b. As can be seen in the output, the returned file

is that of H2.

4.4.2.4 Service Degradation

Flow mod blocking & PacketIN Eavesdropping On preventing flow rules

from being installed for a target, I repeat the 10 repeated pings and take the

mean packet times, excluding the first packets. The mean RTT for packets was

4.16ms (SD 0.95), which is a substantial increase on the normal case (0.105ms).

Note that this attack only works in one direction, preventing flow rules from being

installed for packets towards H4, but not the return path to H1, which means

that the latency is a substantial increase, but does not extend to the 7.95ms mean

bi-directional setup time.

Below is an example of pinging from H1 to H4 whilst H4 is the target of the

attack:

mininet> h1 ping -c 5 h4

PING 10.0.0.4 (10.0.0.4) 56(84) bytes of data.

64 bytes from 10.0.0.4: icmp_seq=1 ttl=64 time=11.9 ms

64 bytes from 10.0.0.4: icmp_seq=2 ttl=64 time=4.81 ms

64 bytes from 10.0.0.4: icmp_seq=3 ttl=64 time=5.88 ms

64 bytes from 10.0.0.4: icmp_seq=4 ttl=64 time=3.50 ms

64 bytes from 10.0.0.4: icmp_seq=5 ttl=64 time=4.35 ms

--- 10.0.0.4 ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 4009ms

rtt min/avg/max/mdev = 3.507/6.110/11.983/3.035 ms

Route Increase The effect of the route increase attack was first verified by

monitoring packet captures on individual switches. By doing this, I confirm that

the H1-H4 flow does indeed pass through the longer route. The RTT of packets

increases slightly from 0.105ms (SD 0.042) to 0.114ms (SD 0.016). This is a

99

4.4 Attack Demonstration

(a) Request from H3 to H1 whilst not under attack

(b) Request from H3 to H1 when under attack

Figure 4.7: Redirect traffic attack

smaller increase than expected, which I believe is down to the efficient nature of

Mininet, in which all links feature minimal latency. To verify this, I ran a simple

test of the packet RTT between H1 and H2 (a 3 hop path) and H1 and H3 (a 4

hop path). These achieve mean packet RTT of 0.089ms and 0.1 ms respectively, a

very small increase. Whilst the attack has a minimal impact in this test scenario,

in a real-world setting where inherently slower links exist the effect of this attack

can become more noticeable.

4.4.3 Discussion

As can be seen in Section 4.4.2, I have been able to successfully demonstrate

almost all of of the proposed attacks within a simple network environment, with

100

4.4 Attack Demonstration

the remainder demonstrated against an industrial control system environment

later.

For denial-of-service type attacks, the effect of these can be clearly seen. For

example, the controller crash and flow mod blocking attacks clearly prevent com-

munication from occurring. Whilst the controller crash and amplified DOS at-

tacks would impact the whole network, the targeted amplified DOS and drop

packets attacks can be targeted to particular hosts whilst leaving the rest of the

network unaffected.

The service degradation attacks also have a clear effect on the network per-

formance. The impact of these attack very much depends on the type of traffic

being affected. For simple web browsing type traffic, the noticeable impact of

these attacks would be minimal. However, in scenarios that rely on maintaining

low latency communication, for example video conferencing, these attacks could

have a major impact. Of particular concern are real-time systems, which I ex-

plore in the context of industrial control systems in Section 4.5. The differing

attacks have different levels of detectability. The flow mod blocking attack is

going to create a very noticeable change in the switch-controller traffic, as the

switch now has to forward every packet to the controller. On the other hand,

the route increase attack is set up as a normal flow would be, just with a longer

path, which would be harder to identify.

Whilst the PacketIN eavesdropping attack has a noticeable impact on the

underlying traffic, the redirect eavesdropping attack allows the flows to be routed

as normal, with only the addition of the mirror ports. This can allow the attacker

to capture traffic that they would otherwise not be able to. This attack could

also be performed by compromising the switch, and if it is supported, configuring

a mirror port.

Finally, the data tampering attacks represent the most interesting set of at-

tacks that really show the potential impact om SDN. The traffic redirect attack in

particular could be extremely useful to an attacker in facilitating further attacks

such as phishing. Whilst these types of attacks could be achieved using more

traditional means such as ARP spoofing, these are easy to identify using intru-

sion detection systems to the the more active nature of them. The SDN-based

attacks, on the other hand, do not require the attacker controller machine to send

101

4.4 Attack Demonstration

any additional packets, only to receive and forward traffic sent to them, which is

far less obvious.

Some of these attacks could be detected/prevented by existing systems de-

signed for preventing malicious controllers, such as [6, 7, 111, 185, 195]. This par-

ticularly applies to attacks which terminate communication, such as the sinkhol-

ing DoS attack, or the Amplified DoS attack, which introduces network loops. As

these type of systems usually apply some kind of detection function to identify

attacks occurring, then it is not possible to be able to identify all malicious con-

troller responses with 100% accuracy if a single controller is in use, in particular

when the more subtle attacks, such as route increase, are used, as very similar

effects could be caused by legitimate application such as load balancers. A con-

sensus approach, such as SDBFT, will be able to identify any of these attacks

occurring as long as there is a single correct controller, as all of these attacks will

result in a controller response different to the normal, non-malicious case.

Difficulty in Performing Attacks Within this simple scenario, these attacks

do not require a large amount of skill to perform. The most difficult aspect is

reverse engineering the Forwarding application to identify the normal flow of op-

eration and the locations where this application can be modified to achieve the

desired goal. Within this testing, the malicious applications are hard coded to per-

form attack actions, such as forwarding packets to specific destination addresses

out of specific ports. This itself represented a manual process to implement the

logic within the malicious application, requiring knowledge of the ports to which

hosts are connected. A particular example of this is in the RouteIncrease appli-

cation, which requires almost 300 lines of additional code consisting of condition-

als to handle the target flow at each switch on the path. Rather than implement

this type of attack through a malicious application, it could be possible to instead

modify the datastore used by Floodlight, which stores connection information for

devices and switches, to cause the Floodlight topology manager to return desired

routes for target flows.

Similarly, some of the described attacks require the attacker to know the

topology of the network, to the level of which ports on switches connect to which

102

4.5 Real World Impact — Industrial Control Systems

devices or other switches. Again, this information is stored by Floodlight (as-

suming the network has been operational for some time and all device locations

are known), and so an attacker who has access to the Floodlight instance could

extract this information.

4.5 Real World Impact — Industrial Control

Systems

Our previous attack demonstrations show the impact of attacks happening within

a simulated network environment featuring simple traffic. Whilst that can clearly

show the base impact of the attacks, it is not a real-world application. In this

section, I use a case study of Industrial Control Systems (ICS) as an example of

a real-world environment where SDN use is proposed, and attacks could have a

major impact. In particular, within an ICS setting real-time protocols are used

extensively, and so I can demonstrate the impact of some simple SDN based

attacks on such protocols in a lab environment consisting of physical industrial

devices interacting with a simulated physical process. This work has been pub-

lished as “Controller-in-the-Middle: Attacks on Software Defined Networks in

Industrial Control Systems” [87].

4.5.1 Industrial Control Systems

ICS, as the name suggests, are the systems that control industrial processes.

Typical examples of these types of processes include manufacturing, power gen-

eration and distribution and water treatment. Many elements of critical national

infrastructure (CNI) involve the use of industrial control systems as key compo-

nents [36]. As ICS interacts with real-world, physical processes, it is an example

of a cyber-physical system (CPS). Operational technology (OT), as opposed to

information technology (IT), refers to the devices and software that makes up

an industrial control system. Whilst there is some overlap between OT and IT

systems, generally they will be handled by different teams within an organisation,

103

4.5 Real World Impact — Industrial Control Systems

with OT largely maintained by engineers, and IT systems by more traditional IT

professionals.

In a traditional IT system, the confidentiality, integrity and availability triad

of attack impact is largely applicable in that order i.e. the confidentiality and

correctness of data is prioritised over its availability. In an OT system, a 4th

concept is introduced in safety, which is given the highest priority, very closely

followed by availability [124, 73]. The safety aspect refers to the fact that an ICS

often controls large, physical process in dangerous environments. If the control

system were to malfunction, either through error or malicious action, it could

potentially cause serious injury, or even death, to those in the vicinity of the

process. Availability has both a financial impact, as a process that is not running

does not generate revenue (e.g. in manufacturing), and also the knock on effect

of a services process being disrupted, e.g. if a water treatment plant or power

generator goes offline, then it could potentially affect thousands of people who

rely on those services.

To demonstrate a standard architecture for an industrial control system, I

will use the Purdue Enterprise Reference Architecture (more commonly known

as the Purdue Model), which is commonly used as the basis for industrial control

systems architectures [237, 246]. A representation of the Purdue model can be

seen in Figure 4.8.

Levels 0 to 3 represent the OT environment. At the lowest level, level 0,

there is the physical process, made up of a number of devices such as sensors,

actuators, drives and robots. These are connected to the process control devices,

found in level 1. This connection is often physical wiring, or sometimes wireless

protocols such as WirelessHART. The devices in level 1 are the key specialist

devices within ICS, consisting of devices such as programmable logic controllers

(PLCs), remote telemetry units (RTUs) and distributed IO devices. Common

vendors for such devices include Siemens, Allen Bradley (Rockwell Automation),

Honeywell, Delta, Schneider and General Electric. In the simplest ICS, a PLC

runs a program (referred to as the ”logic”), which reads inputs from the sensors

and sets the state of the drives and actuators. It is usually physically wired to

these inputs and outputs. A distributed IO device can reduce the amount of

physical wiring required by providing a local device which communicates with

104

4.5 Real World Impact — Industrial Control Systems

Level 0
Physical Process

Sensors Actuators Drives Robots

Level 1
Process Control

Level 2
Area Supervisory

Control

Level 3
Site Operations

and Control

DMZ

Level 4
Enterprise

PLCs Distributed IO RTUs

Engineering
WS

Local HMI SCADAWiFi

Level 5
Internet DMZ

Domain
Controller

Web Server
Business
Server

Enterprise
Desktops

Historian

HistorianRemote
Access Server

Patch
Management

Server

Application
Server

Internet

Domain
Controller

Database
Server

HMI

Web ServerEmail Server

Figure 4.8: Purdue Reference Architecture [237, 246]

a secondary controller over either a serial or ethernet connection. ICS devices

are designed to last a number of years and operate with close to zero downtime,

however in terms of security they are often lacking even basic security controls

by default and suffer from many simple yet critical vulnerabilities, which often

go unpatched [227, 228].

The level 1 devices can communicate with local area supervisory control sys-

tems in level 2, commonly referred to as Supervisory Control and Data Acquisi-

105

4.5 Real World Impact — Industrial Control Systems

tion (SCADA) systems. These provide human-machine interface screens within

a control centre, allowing operators to interact with and monitor the process.

Level 3 covers the site wide operations and control, including engineering

workstations, HMIs, application servers, data historians and domain controllers.

Devices in level 1 use a number of ICS-specific protocols for communicating

with each other, and level 2 and 3 services. Some of these are vendor specific and

proprietary, such as Siemens S7Comm, whilst others such as Ethernet/IP and

Modbus are open standards used by multiple vendors.

Between the OT and enterprise environments is the industrial demilitarised

zone (DMZ), which is accessible to both the enterprise and OT networks, but

provides a barrier between the two.

Finally Levels 4 and 5 represent the enterprise network of the organisation.

In level 4 there are the core enterprise systems, including domain controllers,

business servers, internal web servers and enterprise PCs. Level 5 is the internet

DMZ, where the publicly accessible servers are located, such as email and web

servers.

Communication from levels 1 upwards is nowadays provided through IP net-

works. Traditionally, for security purposes, there would be a physical air-gap

between Levels 3 and 4 with no connection between the two, however this is of-

ten no longer the case, especially with the increased use of the cloud and the

industrial internet-of-things with the shift to “Industry 4.0” [191].

OT networks are relatively static when compared to enterprise IT networks.

It is not common to add new devices, and devices will stay connected for long pe-

riods of time, with predictable traffic patterns. For example, a data historian will

consistently read from a PLC once every second. Within OT networks it is very

common to use security appliances such as firewalls and intrusion detection sys-

tems. Firewalls, in particular, are an important tool in preventing unauthorised

access to devices, with only specific servers and workstations able to commu-

nicate with devices and network segmentation being a key security mechanism.

This lends well to an SDN deployment — the security functions of the network

can be built into the controllers, and new devices added to the network can be

handled appropriately. In particular, an ICS-SDN deployment would most likely

106

4.5 Real World Impact — Industrial Control Systems

heavily relay on proactive flow rule configuration rather than reactive due to the

static nature of the underlying network

Proposed uses of SDN in ICS There have been a number of proposed uses

of SDN in an ICS environment. As well as utilising SDN to help reduce network

management overhead, SDN is used as a tool to enable dynamic defences against

attack [48]. I discuss a selection of these here.

Silva et al. propose a multipath routing mechanism built using SDN as a

method for mitigating eavesdropping attacks [217] in ICS networks. In this ap-

proach, shortest paths are computed between pairs of devices (using Dijkstra’s

algorithm [67]), and chosen. After a short timeout, the cost of the used path is

increased, and the shortest path is recalculated, with the new shortest path is

then used. This means that the flow changes path frequently making it harder

to eavesdrop on a flow for a continuous period.

Another use for SDN as a security mechanism is as a network intrusion de-

tection system (NIDS). Silva et al. propose a one-class NIDS in which the SDN

controller collects snapshots of Openflow statistics from switches which are sent

to a data historian and then used to detect attacks, relying on the generally static

nature of ICS networks [218].

Derhab et al. propose an SDN-WAN based architecture for IDS, which mi-

grates the control layer to the cloud [66], along with a intrusion detection sys-

tem to detect forged commands to ICS devices, and a blockchain-based integrity

checking system for identifying attacks which modify switch flow rules.

One particular use case that has been proposed for SDN in an ICS environ-

ment is within smart grids. Rehmani et al, provide a details survey of SDN

use within smart grids, including the security and privacy scheme within such

architectures [193].

4.5.2 Attacker

ICS networks are generally not the targets of low-level attackers, such as script

kiddies, due to the highly sensitive nature of the targets. As ICS often make

up aspects of critical national infrastructure, then there is a much higher risk

107

4.5 Real World Impact — Industrial Control Systems

in attacking such systems, for relatively little financial gain. Rather, ICS are

generally the target of far more highly motivated attackers, including nation

states, cyber-terrorists and organised crime who are trying to cause widespread

disruption to services, or extort for financial gain.

Attacker Goals The overall goal of the attacker is usually going to be one of

the following two scenarios. First the attackers overall goal is to cause disruption

to the physical process to cause physical damage or disruptions. The well known

example of this is Stuxnet, which was a worm, believed to be a joint effort between

the US and Israel, that targeted the Iranian nuclear program. Stuxnet targeted

the centrifuges used to enrich uranium. By targeting the controllers, the worm

was able to rapidly speed up and slow down the centrifuges, causing them to

become damaged, disrupting the Iranian nuclear program. It is believed that

up to one fifth of Iran’s nuclear centrifuges were destroyed by the attack [110].

This form of attack has largely non-financial motivations, and will be the goal of

nation state attacker and cyber terrorists. A similar example of a successful, yet

mitigated, attack on an ICS system occurred in 2021 where a hacker attacked a

Florida water treatment facility and increase the amount of sodium hydroxide in

the treated water to toxic levels [18]. Fortunately, this attack was detected by an

operator and no unsafe drinking water escaped the plant.

The other potential attack goal is to cause the threat of disruption to the

physical process, and require ransoms to be paid to recover the process/prevent

attack. As well as the increasing threat of ransomware, of which ICS are becoming

an increasing target [180], more targeted attacks where an attacker shuts down a

process and refuses to allow it to recover until a ransom has been paid could occur.

Though this hasn’t occurred on OT devices as of the time of writing, it inevitably

will. Ransomware has had an impact, however. In 2021, the US Colonial Pipeline

in the US, which supplies fuel to the east coast [17], was affected by a ransomware

attack affecting its billing systems. Whilst the attack did not directly affect the

OT networks, it shut down operations on the pipeline as billing could not be

carried out. This type of attack is more likely to be attributed to organised

crime gangs or hacker groups than nation state level attackers, as traditional

ransomware is an attack for financial rather than political gain.

108

4.5 Real World Impact — Industrial Control Systems

Many ICS focussed protocols are real time in nature, and require minimal

latency. An attack launched by a malicious SDN controller could easily introduce

latency into the communication, enough to break real-time properties. As an

example, the IEC 61850 standard for power systems specifies that the latency for

fault isolation and protection services shall not exceed 3ms [92]. As I have shown

in Section 4.4.2.4 above, and demonstrate against the real-time Profinet protocol

below, achieving this additional latency is feasible even with a single switch.

The compromise of the SDN controller can both be used to directly launch

attacks, as well as to assist in performing traditional host-based attacks within

the network. As the attacked gains a large amount of control over the routing of

the network, as well as potentially other networking functions such as firewalls,

gaining control over the SDN controller could become a key target for an attacker,

in particular for facilitating further attacks.

4.5.3 Setup

To measure the impact of SDN-based attacks within an ICS I have created a

small-scale testbed, consisting of real-world, physical PLCs controlling a virtual

factory process. This small-scale testbed represents Layers 0 and 1 of the Purdue

model, as found in Figure 4.8.

4.5.3.1 Physical Process

In order to measure the effect on a physical process, I use FactoryIO from Real-

Games [192]. FactoryIO is designed to be used for learning PLC programming,

with the ability to build large scale factory simulations which are controlled by

real-world devices. The software talks to PLCs using an Ethernet connection

and is able to utilise a number of industrial protocols, including S7Comm, Eth-

ernet/IP and Modbus. This allows me to easily connect it up to different devices

over a SDN network and measure the impact of the attacks on the different pro-

tocols. The scene I test with is a simple sorting scene, in which small and large

boxes are moved down a conveyor belt and measured. The larger, taller boxes are

109

4.5 Real World Impact — Industrial Control Systems

(a) FactoryIO scene used for testing. The larger, cube-shaped
boxes are pushed off the main conveyor, the rectangular boxes
are not

(b) FactoryIO when under the flow rule blocking attack

Figure 4.9: FactoryIO

pushed onto a secondary conveyor, whilst the shorter boxes are not. An example

of this scene can be seen in Figure 4.9a.

4.5.3.2 SDN

Networking is provided by a Dell EMC PowerSwitch S3048-ON 1000BASE-T

48-port 1GbE top-of-rack (ToR) switch, which features support for SDN using

OpenFlow (versions 1.0 and 1.3), and can operate with 3rd party controllers

110

4.5 Real World Impact — Industrial Control Systems

and operating systems (the ON portion of the model number represents Open

Networking). The switch is running Dell EMC Networking OS9 (specifically 9.13),

and has been configured to use Openflow 1.0. I use the Floodlight controller [187]

to provide network control.

4.5.3.3 Devices and Protocols

I make use of four common ICS protocols in this testing:

Profinet - Profinet is a real-time protocol commonly used by Siemens devices.

In particular, it is the protocol in use for providing communication between

Siemens PLCs and HMIs, as well as when using remote IO . I make use of two

S7-1200 PLCs running firmware version 4.2. One operates as the controller,

and the second as the remote IO device. The laptop running FactoryIO is

connected to the remote IO device over Ethernet, using S7Comm to commu-

nicate. The SDN switch sits between the two PLCs for these tests.

S7Comm - The S7Comm protocol is the primary protocol used for workstations

and SCADA systems to interact with Siemens PLCs. As well as downloading

programs to the device, it can be used to read and write memory addresses to

the device. As an example, it is common for software such as data historians to

use S7Comm to read values from devices. S7Comm is unencrypted, though

newer devices use S7CommPlus which do use encryption (though this has

been shown to be insecure [26]). S7Comm is used between FactoryIO and the

remote IO PLC, with the SDN switch moved between the two. The connection

between the two PLCs is instead through a standard Mikrotik switch.

Ethernet/IP - Ethernet/IP is an open protocol, most commonly used by Allen

Bradley devices for communication, including remote IO, although unlike

Profinet it is not a real-time protocol. I use an Allen Bradley Micro850 PLC,

connected to FactoryIO over the SDN switch.

Modbus/TCP - Finally, I use the common Modbus/TCP protocol. I use

OpenPLC1 installed on a Raspberry Pi 4 Model B (4Gb Ram). OpenPLC is

an open source PLC commonly used for research projects using the Modbus

1https://www.openplcproject.com

111

https://www.openplcproject.com

4.5 Real World Impact — Industrial Control Systems

protocol [9]. To use FactoryIO with OpenPLC, FactoryIO runs a Modbus

server, which OpenPLC treats as a slave device. The SDN switch sits between

OpenPLC and FactoryIO.

(a) Siemens S7-1200 PLC

(b) Siemens S7-1200 PLC
and HMI in box

(c) Allen Bradley Mi-
croLogix 850 and HMI in
box

Figure 4.10: ICS devices

The topologies for each protocol are shown in Figure 4.11. In the diagrams,

the labels on lines indicate the protocols in use. Note that the SDN controller

is not shown, however it running on a blade server directly connected to the

switches management port. Where two devices are not shown to be connected

using a switch, they are connected through a direct Ethernet connection.

4.5.4 Attacks

4.5.4.1 Flow Rule Blocking

I apply the flow mod blocking attack to the ICS environment. This attack should

cause a large amount of additional latency, which should have a major impact

on the real-time Profinet protocol, and a noticeable impact on the three non

real-time protocols. For the non real-time protocols, I expect this latency will

introduce delays into the operation of the physical process.

112

4.5 Real World Impact — Industrial Control Systems

SDN

FIO

S7-1200

S7-1200

S7Comm

Profinet

(a)
Profinet

SDN

FIO

S7-1200

S7Comm

(b)
S7Comm

SDN

FIO

Micro850

Ethernet/IP

(c) Ether-
net/IP

SDN

FIO

OpenPLC

Modbus/TCP

(d) Mod-
bus/TCP

Figure 4.11: Topologies used for testing. SDN = SDN Switch. FIO = FactoryIO
host.

Demonstration I apply this attack to all four protocols in the test setup. The

attack is targeted to the PLC device; any other flows will be unaffected. On first

seeing a request to the target device, the malicious application will allow any

handshakes to complete, and after 20 second clear the flow table of the switch

and then apply the attack. I apply flow rule blocking with no additional delay

introduced by the controller (except the delay of contacting the controller itself,

which is 3-4ms), and also with artificial additional delay on sending responses

from the controller to measure how much extra latency is enough to cause the

physical process to no longer sort blocks.

I presents the results of this attack on the four protocols in Table 4.1. As can

be seen in the third column, all of the protocols, other that Profinet, were able

to operate whilst under this attack. Profinet, the only real-time protocol, quickly

113

4.5 Real World Impact — Industrial Control Systems

Protocol
Real-
time?

Operates with
blocking?

Physical process
affected?

Additional de-
lay for failure

Profinet Yes No Yes -
S7Comm No Yes No 40ms
Ethernet/IP No Yes Yes 10ms
Modbus/TCP No Yes Yes 10ms

Table 4.1: Results of flow-rule blocking attack.

raises an alarm once the attack begins, triggering an error state on the PLC. On

inspecting the requests to the controller, Profinet messages are sent at a sufficient

rate that the controller is unable to process requests and forward packets quick

enough and a backlog forms. This, along with the additional latency, breaks the

real-time properties of the protocol and causes Profinet to fail.

For those protocols that still managed to operate when under attack, only

S7Comm showed no obvious impact on the physical process. Both Ethernet/IP

and Modbus/TCP, when faced with the additional latency of passing packets

through the SDN controller, both exhibited a noticeable lag in the pusher oper-

ation in the physical process, pushing blocks late and in some cases late enough

that the block remain on the main conveyor. This clearly shows that there is a

potential safety impact from this attack, as the reaction time of the process for

any aspects which rely on this network communication are impaired.

Finally, I measure how much additional latency is required to cause the pusher

to completely miss blocks, preventing sorting. S7Comm requires 40ms of addi-

tional delay, whilst Ethernet/IP and Modbus/TCP both only required 10ms ad-

ditional controller delay to fail. This small value indicates that both Ethernet/IP

and Modbus/TCP could be vulnerable to other SDN attacks that increase la-

tency, for example through increasing path lengths. This effect can be seen in

Figure 4.9b.

4.5.4.2 PacketIN Eavesdropping

The PacketIn eavesdropping attack could be applied to an ICS environment. For

an attacker there are two obvious benefits to this. First, it is useful in asset dis-

covery, as it reveals IPs, MAC addresses and protocols in use to the controller.

Further, in some protocols, such as S7Comm, device specific details such as model

114

4.5 Real World Impact — Industrial Control Systems

numbers and firmware versions are sent as part of the protocol which can also aid

in asset discovery. The second benefit is that if the protocol in operation can be

observed, then the attacker can potentially learn about the behaviour of the un-

derlying process by observing transmitted data. For example, Ethernet/IP reads

and writes each individual register, including the register name, as individual

requests. If these are used for remote IO or a data historian, an attacker could

monitor these over a period of time to learn which registers could be tampered

with to affect the process.

4.5.4.3 Redirect Eavesdropping

I apply the redirect eavesdropping attack to the physical topology. Whilst this

attack performs no differently to the example shown in the simulated environ-

ment, this does show the attack also works on a physical topology with clearly

separated devices.

Demonstration Our malicious forwarding application, on creating a flow rule,

adds an additional action field to output packets to the port where the attack

laptop is connected, on which I run Wireshark. As soon as a new target flow

is setup, then Wireshark will start capturing all traffic on the flow. S7Comm

packets only appear into the network capture only begins when the attack is

started, as the laptop does not usually have visibility onto those packets, even

when running in promiscuous mode.

It is important to note that for established flows, the simple version of this

attack will not work as the controller will not be contacted to install the flow

rule for the target device. The controller will have to direct the switch to delete

the existing flow rule, and then install an updated flow rule proactively. The

controller can do this in one command, which will prevent any disruption to the

existing network.

4.5.4.4 Controller Packet Tampering

I apply the controller packet tampering attack to modify the packets of the in-

dustrial protocol. In cases where the full packet is sent to the controller, and the

115

4.5 Real World Impact — Industrial Control Systems

protocol is unencrypted (as S7Comm, Ethernet/IP and Modbus/TCP all are by

default) I can make arbitrary modifications to the packets to perform a person-

in-the-middle attack. The advantage of this attack is that no new routes are

created — the switch already communicates with, and forwards packets to the

controller. The primary effect on the network is a large increase in the volume

of packets sent from the switch to controller. In this example, I wish to over-

write the values relating to the pusher in the example process, to prevent blocks

from being pushed off the main conveyor. Packets are modified by modifying the

packet data when the PacketOUT message is created by the malicious forward-

ing application.Note that I cannot apply this to the Profinet connection, as the

connection fails if packets are routed through the controller due to the additional

latency.

One small issue arose when developing this attack. If the data is simply

changed, the packets TCP checksum is then incorrect and FactoryIO disconnects.

This means that the malicious application needs to deconstruct the TCP layer

of the packet, modify the TCP payload, and then rebuild the TCP header. This

adds a very small amount of additional overhead to the packet processing, and

hence latency to the connection.

Demonstration For S7Comm, FactoryIO uses a ReadVar S7Comm packet to

read the state of the output addresses on the PLC. Within the response, the

final 2 bytes of the packet, containing the read values, are returned, which are

B100 when the pusher is not being pushed, and B900 when the pusher is active.

Therefore, for any packets from the target device which contain B900 as the

final 2 bytes, these are replaced by B100 successfully preventing the pusher from

operating.

In the Modbus/TCP setup, OpenPLC updates the coil state to FactoryIO

using the Write Multiple Coils request type, sending 2 bytes of data over.

When the pusher is inactive, these 2 bytes are B300, changing to BB00 when the

attack is active. Similarly to S7Comm, these are the final 2 bytes of the packet.

Again, the attack successfully blocks the pusher from operating.

The attack is a little more complicated in the case of Ethernet/IP. Whereas

S7Comm and Modbus/TCP both request/write all of the output registers in a

116

4.5 Real World Impact — Industrial Control Systems

single request, within Ethernet/IP each individual output register is requested

individually. This means that I need to observe the request from FactoryIO to

the PLC for the register corresponding to the pusher (in this case BOOL OUT 3),

and then only modify the following response, replacing the final 3 bytes of the

packet — C10001 with C10000’. As with this other two protocols the attack is

successful.

In this demonstration I prevent the pusher from pushing, however the same

attack could be applied to, for example, overwrite values being sent to a SCADA

server, potentially preventing alarms from being raised.

4.5.4.5 Person-in-The-Middle

In this implementation of the person-in-the-middle attack, the attacker wishes to

modify the packets sent between the PLC and FactoryIO (the physical process)

in order to make the process go wrong.

Demonstration I demonstrate this attack using FactoryIO with a Siemens S7-

1200 PLC using S7Comm. I introduce a third device into the network, a laptop

running Ubuntu 18.04. This laptop simulates a host within the network that is

under control of the attacker, for example a host they were able to successfully

compromise. The laptop has two Ethernet connections to the switch, and on

the laptop a virtual network switch is deployed using OpenVSwitch (OVS), with

both physical adapters added as ports to the virtual switch. The OVS switch

is controlled by its own Floodlight instance, which simply directs packets out of

the adapter which the did not come in on, effectively making the virtual switch

a proxy. The OVS controller instance also has the controller packet tampering

application installed, and so will intercept all target packets and modify them

in the same way as the previous attack, however this behaviour is contained to

the attacker laptop. Note that using the controller packet tampering approach

within the attacker machine does introduce a small amount of additional latency,

and is only used as a proof of concept. With greater effort the attacker could use

an alternate approach, such as through use of a proxy, to remove this additional

117

4.5 Real World Impact — Industrial Control Systems

latency. On the core SDN switch, flow rules are manually installed through a

malicious application to direct target flows through the laptop.

Through this attack, I was successfully able to perform a person-in-the-middle

attack without the use of traditional techniques such as ARP spoofing. Within the

data plane there are no unusual packets, only flows taking an unusual route. As

with the controller packet tampering attack, as well as interfere with the physical

process this attack could be used to modify packets sent back to SCADA systems

to prevent monitoring and alarms.

4.5.5 Discussion

The aim of these demonstrations were to show the impact of some of the pro-

posed attacks within a real-world setting, in particular the setting of an industrial

control systems environment. I show the impact on one real time, and three non

real-time (though used as real-time protocols in some scenarios) protocols, and

also demonstrate the attacks agains a commercial, physical SDN switch.

As I have shown, the timing related attacks are able to completely break the

real-time properties of the Profinet communication. If used for distributed IO,

as is the case here, this could have a devastating impact on the operation of the

physical process as all control would be lost, with only separate safety systems

remaining to ensure the process returns to a safe state. Even in the non-real

time protocols, adding only small amounts of additional latency (<10ms) allows

the protocols to continue operating, but provides a delay to the physical process

which causes failures in the normal operation of the process. Whilst Ethernet/IP

and Modbus/TCP are not real-time protocols, they are used for distributed IO

and so latency should be kept to a minimum.

The two tampering attacks also demonstrate a clear serious safety issue within

the industrial control system. In particular, the person in the middle attack

could allow an attacker to intercept packets with minimal additional latency. As

I demonstrate, this could be used to interfere with IO packets to cause disruption

to the physical process. It could also similarly be used to modify data sent

to historians and SCADA control systems, which could cause human operators

118

4.6 Conclusion

within control centres to see incorrect information, which is again a major safety

concern as operators may take incorrect actions.

Difficulty in Performing Attacks The core routing modifications of these

attacks is no more difficult than the examples provided in Section 4.4.2, as the

underlying network is similar. The attacks could be made more difficult if non-

SDN firewalls and access control were used, which could potentially require the

attacker to have to be more careful in the routes they configure. Usually, ICS

networks have much tighter firewalls and access control than enterprise and other

networks, which the attacker may have to work around. Of course, if these

network functions were performed by the SDN controller, then this would be far

less of an issue.

4.6 Conclusion

In this chapter I aimed to provide an overview of the attacker who would com-

promise an SDN controller, and demonstrate the attacks that such an attacker

could perform.

I began by modelling the type of attacker, including their goals and attack vec-

tor. I envision that these attacks would be restricted to well-resourced attackers,

such as nation state or organised crime gangs who are well resource, highly skilled

and well motivated. Their goals can include both directly interfering with the

operation of the underlying network to perform attacks such as denial-of-service,

but also to facilitate traditional, host-based attacks such as person-in-the-middle

attacks which would usually require techniques such as ARP spoofing.

I then propose a number of attacks, some of which are new and some of which

are taken from the literature, and demonstrate a number of these within a simu-

lated network environment. I then go on to demonstrate a subset of these attacks

within a real-world setting, namely that of industrial control systems, where in

particular I show the impact of attack on real-time protocols, and demonstrate

how these relatively simple attacks can have a major safety impact on a physical

process.

119

4.6 Conclusion

To the best of my knowledge, this represents one of the most comprehensive

demonstrations of attacks that can be launched using a compromised SDN con-

troller, and the first such exploration of these attacks within an industrial control

systems setting.

In the next chapter, I propose a system, Software-Defined BFT (SDBFT),

which is able to prevent all of the described attacks from occurring.

120

Chapter 5

Designing An Efficient Consensus

Approach for SDN Control

5.1 Introduction

In the previous chapter, I discussed and demonstrated the potential impact from

a compromised SDN controller. I showed that even simple malicious updates

from a compromised controller can have severe impacts on the operation of the

network, which could cause major issues, in particular in real-time systems. In

this chapter I propose a protocol, Software-Defined Byzantine Fault Tolerant

control (SDBFT), for providing fault handling in a distributed SDN controller

architecture, which is able to prevent a compromised SDN controller from pushing

malicious updates to switches.

5.2 System Overview

In the traditional SDN model, as seen in Figure 5.1, an SDN switch is controlled

by a single controller. The switch is connected to a single controller, and sends re-

quests to the controller, usually in the form of PacketIn messages, and receives

a response from that controller, usually consisting of PacketOut and FlowMod

121

5.2 System Overview

Control Network

Switch

Controller

Figure 5.1: Traditional controller architecture

Control Network

Switch

Controllers

Figure 5.2: SDBFT controller architecture

messages. The connection from the switch to the controller is either direct, or

through a network. The control network can either be separated from the un-

derlying SDN-controlled data plane, or could in some cases be provided over the

controlled data plane. I assume for this work that the switch to controller net-

work is isolated from the SDN controlled data plane provided by the switches.

Whilst multiple controllers may exist within this environment to provide scalabil-

ity and redundancy in the case of controller failure, at any one point in time the

switch is only controlled, and receives instruction from, a single controller. This

is a clear single point of failure, either for genuine controller fault, or malicious

122

5.2 System Overview

compromise.

I propose Software-Defined Byzantine Fault prevenTing control (SDBFT), an

architecture in which the switch contacts multiple controllers simultaneously, and

applies a simple fault-preventing (fault detecting with recovery) protocol to pre-

vent compromised controllers from installing malicious flow rules onto switches.

Figure 5.2 provides an overview of the SDBFT controller architecture. In this de-

sign, a switch has an additional component, the response processor, which collects

the responses from the multiple controllers and chooses a command (flow rule,

packet out etc) to be followed by the switch. If a faulty or compromised controller

is detected, then a fault recovery protocol is applied to bring in further controllers

from a backup pool and apply a majority vote in order to prevent the malicious

flow rules from being installed. Previous work where a full byzantine fault-tolerant

protocol is applied [136] is also able to provide fault tolerance against malicious

controllers, although has the downside of requiring 3f +1 controllers to handle f

faults, and requires multiple rounds of communication (typically 5 as is the case

with PBFT [41]), which increases the amount of time to reach consensus. This

extra communication also utilises a large amount of bandwidth on the control

network, which has an impact on scalability. The key difference between SDBFT

and traditional BFT algorithms is the relaxing of the definition of fault tolerance

to fault detection, with recovery, which allows me to, in the case without fault

(which should represent the default situation), require 2f + 1 controllers, utilis-

ing just f + 1 controllers, and a just two rounds of communication under normal

operation, with the addition of f further backup controllers, and a additional two

rounds of communication when a fault has been detected, reverting to two rounds

of communication for subsequent switch requests. When acting as a backup, a

controller performs minimal processing relating to the switch, and so only a small

amount of controller capacity needs to be reserved to act as a backup if required.

5.2.1 Requirements

I define a set of four requirements for the SDBFT protocol:

123

5.2 System Overview

R1: Low latency The additional actions required to apply quorums to the

controller architecture should introduce little extra latency to responses to

switch requests.

R2: Fault-preventing The protocol should be able to prevent both arbitrary

byzantine failures, as well as targeted malicious insiders.

R3: Consistency As the system relies on properly replicated controllers, it

is important to ensure that there is consistency in the states of the different

controllers, as well as the back end datastore(s). Consistency is an important

requirement in any distributed SDN control architecture [16].

R4: Scalable The protocol should provide scalability and be able to support

large numbers of controllers and switches as the size of the network (and

network load) grows.

There are further optional requirements that, whilst not required for operation

of the protocol, can be met with simple additions to the protocol in order to

provide stronger security guarantees, with a cost to performance:

R5: Non-Repudiation Message senders should be verifiable in order iden-

tify which controllers send malicious updates to switches. Similarly, non-

authorised controllers should not be able to send updates to switches by

spoofing authorised controllers.

R6: Message Integrity Messages should not be modifiable on the wire, for

example through the use of man-in-the-middle attacks.

5.2.1.1 Message Ordering

A key requirement of traditional BFT approaches (as described in Section 2.11.2)

is the message ordering requirement, which dictates that server replicas should

process messages in the same order in order to guarantee consistency. This mes-

sage ordering is responsible for a large portion of the required communication

steps within these protocols, which introduces both communication overhead and

additional latency. This ordering ensures that the state of the replicas is consis-

tent, as requests to the replicas can modify the state of each replica, and hence

124

5.2 System Overview

the responses they generate. As an example, a data store is commonly used as an

example use case for BFT algorithms — if reads and writes are not synchronised

then subsequent reads and writes across replicas may return different results.

The SDBFT protocol does not enforce message ordering within the proto-

col. For many core SDN applications, including routing, the operation of these

applications is deterministic. For example, the routing applications in the Flood-

light controller (Forwarding and LearningSwitch), both apply the deterministic

Dijkstra‘s algorithm to the current view of the network topology held by the con-

troller. Therefore, two SDN controllers holding the same view of the network

should return the same result to a request from the switch. This can hold for

other applications such as Firewalls. As long as the knowledge maintained by the

controller is up to date, then requests from the switch do not update the state

of the controller. When a new device is added to the network this knowledge

is included into the controller’s view, and so as soon as a device sends its first

packet in the network then the controller gains knowledge of its location within

the network and adds it to the view it maintains. This mode of operation means

I can relax the ordering requirement for the SDBFT protocol to reduce traffic

overhead, on the assumption that only deterministic controller applications are

used, and that there is a process for propagating network view updates across

controllers.

5.2.2 Notation

I define the set of all switches S = {S1, S2...Sm} where m is the number of

switches. I also define the set of all controllers C = {C1, C2...Cl} where l is

the number of controllers. Each controller is a replicated state machine, where

I assume that in the correct state each controller on receiving the same event

notification from a switch will produce the same response.

I use the term quorum to define the set of controller that are controlling one

particular switch. Within a network, there will be a number of possible quorums.

I define the set of quorums Q = {Q1, Q2...Qq} where q is the total number of

quorums, and Qi ⊆ C where 0 ≤ i ≤ q. The size of the quorums |Qi| = k is a

125

5.3 Quorums

Table 5.1: Notation

Symbol Description
C Set of all controllers
F ⊂ C Set of faulty controllers
CC ⊂ C Set of non-faulty controllers
S Set of switches
l Number of controllers
m Number of switches
k Primary quorum size
b Backup quorum size
f Number of faulty controllers
Q Set of possible quorums
q Number of possible quorums
PQSi

Primary quorum for switch Si

BQSi
Backup quorum for switch Si

EQSi
Extended quorum for switch Si

H Hash function
rq Request from switch
R Multiset of responses for a given request

rq
rc ∈ R Response for controller c for given re-

quest rq

system parameter, chosen to provide the required level of fault tolerance. This is

discussed further in Section 5.3.1.

A full overview of all used notation is available in Table 5.1.

5.3 Quorums

I use the term quorum to refer to a set of controllers that are responsible for

the operation of an individual switch. As mentioned, a switch will communicate

with a set of controllers rather than a single controller, as is the case in the tradi-

tional model. The formation of quorums is dictated by the controller assignment

method. I discuss some approaches to this problem in Section 5.6 below.

5.3.1 Quorum Size

A limitation of byzantine fault tolerant agreement systems from the literature

is the requirements for the number of replicated processes that are required to

126

5.4 SDBFT protocol

handle a pre-defined number of faults, f . The best that can be achieved while

maintaining the fault tolerance guarantee is n ≥ 2f + 1. Typically, BFT ap-

proaches, including PBFT requires 3f + 1 replicas. These systems are designed

to reach agreement with the presence of faults. This has two limitations. First,

it requires the designer to choose a value for f beforehand based upon on the

expected number of faults. Secondly, it requires a large amount of replication

in all runs of the algorithm to handle the case where there are faults, when in

reality faults should only occur in the minority of cases. In particular for complex

services such as SDN controllers, this can have an impact on scalability and cost,

as extra replicas require further resources. Increasing the number of replicas can

also lead to increased processing time for switch events due to the extra network

communications involved.

Therefore, I make use of an approach that only requires 2f + 1 replicas,

using f + 1 when under normal operation, reverting to 2f + 1 if a fault occurs.

This is done by relaxing the fault tolerant requirement to a level more akin to

fault detection, with a recovery process built into the protocol to provide fault

tolerance, but only when required. I assume that there are further quorums of

controllers outside of the primary quorum, which are able to be called upon if

required. This allows me to use an all-or-nothing approach to consensus. If at

any point there is disagreement, the switch will choose a second quorum of size

f , combining the responses from this new quorum with the original and take a

majority vote with a 2f +1 level of fault tolerance. This allows for more efficient

processing of flows in scenarios where no fault occurs, but still provides tolerance

when faults do occur.

5.4 SDBFT protocol

SDN controllers can operate in both reactive mode, where the switch sends a

request to the controller, and the controller sends a response, and proactive mode,

in which the controller sends instructions to the switch without a switch event to

trigger the action. I focus on the reactive case, and leave the handling of proactive

controller behaviour to future work. This does limit the suitability of controller

127

5.4 SDBFT protocol

applications to those that are purely reactive in nature. Even some applications

which at first glance appear to be reactive are not necessarily suitable, for example

the Floodlight controllers Forwarding application only activates in reaction to a

request from a switch, however will proactively install flow rules to route a new

flow on all switches in the path under its control.

This protocol differs from existing Byzantine fault tolerant protocols in two

ways. Firstly, the fault-tolerance of the protocol is relaxed to instead be fault-

detecting, with a recovery process to prevent a detected fault from impacting

the network. This allows for the simpler consensus protocol described below,

and meet requirement R1 (low latency), whilst also meeting requirement R2

(fault tolerant). Secondly, the protocols relaxes the ordering requirement usu-

ally found in fault tolerant protocols. Within an SDN network there is not a strict

requirement that requests from switches are handled by a controller in any partic-

ular order, especially if the controller has a reliable view of the network topology.

I do not enforce message ordering, which reduces the amount of communication

steps required and further helps meet requirement R1. By reducing the num-

ber of controllers required as part of the primary quorum, I also help to meet

requirement R4 (scalable) as fewer controllers are required within the system

compared to traditional BFT approaches, with a reduced number of messages

(and hence network load).

5.4.1 Assumptions

I assume controllers are deterministic. Controllers are running applications which,

on receiving a request from a switch, should give the same result, on the assump-

tion that different controller instances share the same up to date view of the

network. As an example, the Floodlight Forwarding and LearningSwitch appli-

cations, the two default used for routing, utilise an implementation of Dijkstra‘s

algorithm to identify the shortest route to the destination, which is a determin-

istic algorithm. Other applications, such as firewalls, should operate similarly.

For more complex applications, such as load balancers, this may not hold true

and would rely on sufficient data being shared amongst controllers to ensure an

up-to-date view of the network state is maintained.

128

5.4 SDBFT protocol

ControllerSwitch

PacketIn

Response = FlowMod, PacketOut

Acknowledge

Figure 5.3: Typical switch to controller communication

C1S C2 C3

Request

Response

Acknowledge

Figure 5.4: Switch to controller consensus, working state

I assume that an individual controller only requires knowledge of the switches

for which it is a member of the primary quorum and the backup quorum. A

controller itself does not require knowledge of which other controllers form the

primary quorum, and which controllers form the backup quorum, because the

SDBFT protocol does not require messages to be sent between controllers for the

protocol. Further, a controller does not know which controllers are responsible for

other switches within the network. This knowledge is only known to the network

administrator. In the current SDBFT approach, controllers learn the identity of

the other controllers in the primary and backup quorums due to the publisher-

subscriber model used for consistency (as discussed in Section 5.7). An attacker

in the network could use this information in order to perform targeted attacks on

switches by identifying which controllers to compromise. At this stage, I do not

consider this kind of insider threat as part of the threat model.

129

5.4 SDBFT protocol

Algorithm 1 Switch action on receiving packet not covered by existing flow rule,
normal operation (reactive control)

Require: Primary Quorum PQSi

procedure ProcessPacketIn(p)
for all Cj ∈ PQSi

do
sendPacketIn(p,Cj)

end for
waitForAllResponses()
if allResponsesEqual() then

forwardToSwitch(response)
sendAcknowledgement(PQSi

)
else

PQSi
= faulty

contactBackupQuorum(BQSi
)

end if
end procedure

5.4.2 Normal Operation

On receiving an unmatched packet, the switch will send a request rq (usually a

PacketIn message) to the set of controllers in the current primary quorum PQSi
.

Each controller will process the request and generate a response (rc), which is

returned to the switch. The switch will then collect the responses from each

controller, forming the multiset R (under normal operation, all elements should

be equal and so a multiset is required). All responses have been received when

|R| = k = |PQSi
|. The root set (the set of distinct elements) of R should have

a cardinality of 1, and the correct controller response should have a multiplicity

of the quorum size k. If this holds, then all responses are equal and the switch

will process the response and perform the command (install a flow rule, send

packet out, etc.), and will send an acknowledgement to each controller indicating

acceptance. The acknowledgement contains a copy of the switch request, and

controller response. Each controller can then update its datastore with the new

switch state. Optionally, all messages can be signed by the sender to allow for

verification later. An example of the communication between a switch and single

controller can be seen in Figure 5.3. Figure 5.4 shows the full communication

between a switch and quorum in the non failure state for a quorum of size 3.

130

5.4 SDBFT protocol

Note that only two rounds of communication are required between the switch and

controller to complete the routing decision and allow the network flow to proceed,

as the acknowledgements are only used for verification. As acknowledgements do

not need to be received instantly by the controller, they may also be buffered on

the switch and then sent in batches at regular intervals to reduce communication

overhead.

5.4.2.1 Proof

I now provide a proof of correctness of the protocol in normal operation. In the

first instance, I prove that under normal operation all honest (non-faulty) con-

trollers should return the same result. I then provide a proof that under normal

operation, the protocol will complete in at most two rounds of communication.

Lemma 5.4.1. Given a primary quorum PQ of controllers of size k, if all con-

trollers are honest (non-faulty) then the set of returned responses R for a given

request rq should be equal, which is accepted by the switch.

Proof. If all controllers (and running applications) are deterministic and share

an equal view of the network (see Section 5.4.1), then for a given request rq,

each controller c ∈ PQ, where c ∈ CC should handle this request and return a

response rc ∈ R, such that ∀rc ∈ R • c ∈ CC → correct(r), and on receiving

all responses |R| = k As all controllers are non-faulty, the switch will eventually

receive a response from every controller.

Lemma 5.4.2. Given the multiset of received responses R where |R| = k, with

the cardinality of the root set of R being 1, then the protocol will complete in no

more two rounds of communication

Proof. If, as by Lemma 5.4.1, all responses returned from the set of controllers

are equal, indicating that all controllers are honest (non-faulty), then a switch

will not need to take any further communication with the controllers in order

131

5.4 SDBFT protocol

C1S C2 C3 C4 C5 C6

Request

Reply

Failure
Resend Request

Reply

Acknowledge

Figure 5.5: Switch to controller consensus, failure state. C3 sends an incorrect
response to the switch. Second quorum of {C4,C5,C6} is contacted.

to take an action with the processed network flow/packet. Given the primary

quorum PQ, then if ∀c ∈ PQ • c ∈ CC, the switch will receive a correct response

rc ∈ R from each controller. Once |R| = k, the response can be sent to the

switch. Therefore, only two rounds of communication are required — the first is

the broadcast of the request to the controllers of the primary quorum, and the

second is the sending of a response from each controller to the switch. Controllers

can send this response simultaneously without communicating with each other.

This is equal to the traditional SDN control model, where communication is also

completed within two rounds.

5.4.3 Failure Operation

There are two fault scenarios which could cause disagreement: fail-stop and

byzantine faults.

Fail-stop faults A fail-stop fault will manifest when a controller goes offline and

does not respond to a switch request. This is either caused through controller

crash, or maliciously through termination of the controller process or a block

on the controller from responding to messages. In the case where the controller

process is terminated, this can be caught through a broken socket. In the case

132

5.4 SDBFT protocol

Algorithm 2 Switch action on receiving packet not covered by existing flow rule
whilst in failure state (reactive control)

Require: ExpandedQuorum EQSi
= PQSi

∪BQSi

procedure ProcessPacketIn(p)
agreed=false
for all Cj ∈ EQSi

do
sendPacketIn(p,Cj)

end for
waitForResponses()
while agreed=false do

receiveResponse()
if hasMajorityResponse() then

forwardToSwitch()
acknowledge()
agreed=true

end if
end while

end procedure

where the controller takes too long to respond, a timeout can be used. The

timeout should be set based on the average response time of controllers. In

this scenario the cardinality of the multiset of responses |R| < k, however the

cardinality of the root set is still 1.

Byzantine faults A byzantine fault will manifest as a controller response that

does not match the correct operation. As mentioned, to allow for smaller

quorum sizes I take an all-or-nothing approach for consensus. If even one

controller return a response different to that of the others, then the switch

will enter recovery mode and choose a new quorum. This activity can be

performed as soon as the switch receives a response that does not match

those previously received. In this scenario, the cardinality of the multiset of

responses is |R| = k, whilst the cardinality of the root set is greater than 1.

In practice, a scenario could occur where both a fail stop and byzantine fault

occurs simultaneously, however the same protocol applies.

On receiving a set of responses from the control quorum that are not in com-

plete agreement, the switch will move into failure mode. The switch will contact

133

5.4 SDBFT protocol

the assigned set of backup controllers, BQSi
. The goal of the switch is to construct

an extended quorum, EQSi
, of size |EQSi

| ≥ 2f+1, where EQSi
= PQSi

∪BQSi
.

The switch will send the original request to the quorum of backup controllers,

and collect responses from each. The switch will then accept the majority re-

sponse from both the primary and backup controllers. For future requests, the

switch will contact both the full extended quorum EQSi
in one step, and always

take the majority response. This will continue until manual intervention from an

administrator to remove the faulty/compromised controller(s).

When a failure occurs, the switch acknowledgement will include the original

request and a copy of each response from the controllers. This can be logged

by controllers to be used by network administrators to identify the malicious

controller based on the response.

Figure 5.5 shows the recovery protocol for an initial quorum of size 3, where

one is faulty. A second quorum of 3 controllers is incorporated, and the switch

forwards the initial request to them. In the recovery state, 2 extra rounds of com-

munication are required over the normal case. For all subsequent communication

whilst under the failure state, the switch will send all request to the expanded

quorum as is done in the working state, resulting in 2 rounds of communica-

tion (including acknowledgements), with the only difference being the use of a

majority vote for responses.

5.4.3.1 Proof

I will now prove the correctness of the protocol under failure operation. I will

first show that as long as one controller is honest (non-faulty), then the presence

of faulty or malicious controller can be identified and failure operation triggered.

I will then prove that, on the occurrence of a fault the protocol will complete in at

most 4 rounds of communication, and then revert to two rounds of communication

in further rounds.

Lemma 5.4.3. Given a primary quorum of controllers of size k, where k = f+1,

as long as one controller is honest (non-faulty), then the protocol will enter failure

mode even if all other controllers are malicious or faulty.

134

5.4 SDBFT protocol

Proof. In the case of failure there exists a faulty subset of the primary quorum

FQ ⊂ PQ, where ∀c ∈ FQ, c ∈ F and |FQ| ≤ f . There also exists a correct

subset CQ ⊂ PQ, where ∀c ∈ CQ, c ∈ CC, |CQ| ≥ 1. These two sets are

disjoint, CQ ∩ FQ and |CQ|+ |FQ| = k.

If all controllers in PQ return a response rc to form the set of responses R,

then it can be assumed that the set of responses will contain a subset of incorrect

responses FR ⊂ R, where |FR| = |FQ|, and a subset of correct responses CR ⊂

R, where |CR| = |CQ|. This will result in the cardinality of the root set of

R becoming greater than 1, which will trigger failure mode. Note that this

assumes byzantine failures — any indication of a fail stop failure where a controller

disconnects from the switch or fails to return a response within a given timeframe

will trigger failure mode. This can be formalised as if the request was sent at

time T with a pre-defined timeout t, then if at time T + t the set of responses

|R| < k, then a failure can be assumed to have occurred.

Lemma 5.4.4. Given an extended quorum EQ = PQ∪BQ, where |EQ| ≥ 2f+1,

then as long as f + 1 controllers are honest (non-faulty) the protocol will return

a correct response, meaning that a switch is required to be mapped to 2f + 1

controllers to handle f faulty controllers.

Proof. In the case of failure mode there exists a faulty subset of the extended

quorum FQ ⊂ EQ, where ∀c ∈ FQ,C ∈ F and |FQ| ≤ f . There also exists a

correct subset CQ ⊂ EQ, where ∀c ∈ CQ, c ∈ CC and |CQ| ≥ f + 1. These two

sets are disjoint, CQ ∩ FQ and |CQ|+ |FQ| ≥ 2f + 1.

The expanded set of responses R from the extended quorum will contain

FR ⊂ R faulty responses where |FR| = |FQ|, and CR ⊂ R correct responses

where |CR| = |CQ|. In order to provide a majority vote, |CR| > |FR|, and

therefore |CQ| > |FQ|, so to handle f faulty nodes |EQ| ≥ 2f + 1. To simplify,

135

5.4 SDBFT protocol

on receiving a set of responses R from the extended quorum of controllers of

size 2f + 1, the switch will look for the most common response within this set,

representing the majority response from the controllers. If f+1 of the controllers

are honest and non-faulty, and therefore return a correct response that is received

by the switch, then this will always form the majority response, as the non-faulty

controllers outnumber the f faulty controllers. Therefore the minimum number

of controllers to ensure this majority is 2f + 1 to handle f faulty nodes. In the

case of fail stop failures, if faulty controllers fail to send responses, the switch can

complete the protocol as soon as it receives f + 1 matching responses from the

correct controllers.

Lemma 5.4.5. Given an extended quorum EQ, where |EQ| ≥ 2f + 1, then the

protocol will complete in no more than 4 rounds in handling the first request where

a fault is identified.

Proof. As per Lemma 5.4.3, on the initial request rq from the switch where at

least one controller is faulty such that FQ ⊂ PQ and |FQ| ≥ 1, then failure mode

will be triggered. This initial request will require two rounds of communication

as in normal mode (see Lemma 5.4.2).

The protocol now needs to form the extended quorum EQ = PQ ∪ BQ by

resending the request to the backup quorum BQ. This will again require two

rounds of communication — to send the request to each c ∈ BQ and to receive for

a response from each with an aim to collect a set of responses R where |R| = |EQ|.

On the assumption that the correct subset CQ ⊂ EQ is sufficiently large, such

that |CQ| ≥ f + 1, then after all correct members of the backup quorum BQ

have returned a response, the subset of correct responses CR ⊂ R will represent

the majority response of all controllers such that |CR| ≥ f + 1, resulting in a

accepted response by the switch and the completion of the protocol.

Lemma 5.4.6. Given an extended quorum EQ, where |EQ| ≥ 2f+1, the protocol

136

5.5 Signatures

will complete in no more than 2 rounds for all further requests following the

occurrence of a fault.

Proof. As in the normal operation and Lemma 5.4.2, on future requests following

the triggering of failure mode the switch broadcasts the request to both the

primary and backup quorums (the extended quorum EQ in one round. Each

controller in EQ will return a response whether faulty or non-faulty (or will not

send a response in the case of fail-stop failures), such that the set of responses

R will contain a subset CR ⊂ R of correct responses, where |CR| ≥ f + 1.

On receiving f + 1 matching responses, then the switch can perform the action

contained in the response and requires no further communication with controllers.

No inter-controller communication rounds are performed.

5.5 Signatures

The first benefit to introducing signatures into the SDBFT protocol is to meet

requirementR5 (Non-Repudiation). By only permitting signed messages from

controllers, the switch can verify that a controller is part of its primary (or backup

when in failure mode) quorum and discard messages from other controllers, or

third-party hosts injecting forged messages from a spoofed controller. Further-

more, the use of signatures also provide message integrity, meeting requirement

R6 (Message Integrity). Once the controller has signed a message, the signa-

ture can be used to ensure that the message has not been changed in transit.

In order to use signatures, both controllers and switches are required to gener-

ate a public key, pk and a private key, sk. The private key must be kept securely

on the switch, or controller host. I assume that each switch knows the public key

of all the controllers within the network, and similarly each controller knows the

public key of all switches. In the simplest case, the keys can be generated and

distributed manually on setup. Secure key distribution is a complex problem and

is out of scope of this work, and so I make the assumption that public keys have

already been securely distributed to the relevant parties.

137

5.5 Signatures

For each message sent between the switch and controller, a cryptographic

signature is generated, and sent along with the plaintext message. The specific

signature algorithm in use can be chosen by the implementor of the protocol

to provide the require level of security to performance impact (see 5.5.2). In

this implementation of the protocol, I use the Java Crypto library for providing

signatures, using RSA with a 1024 bit key with the SHA512 hashing algorithm

(as discussed in Section 6.3.4).

To generate the signature, the plaintext message is first hashed, and then this

hash is encrypted using the private key of the sender. I represent this action

through the use of a Sign{message, key} function where message is the message

to be signed, and key is the private key sk of the sender. I use the skn notation

to refer to the secret key of sender n. The Sign function returns a cipher-text,

cs which is the cryptographic signature. This is appended to and sent with the

plaintext message.

On receiving a signed message, the receiver extracts the signature. Using

the known public key pkn of the sender, they use a V erify{message, cs, pkn}
function, which takes the plaintext message, signature and public key and verifies

that the message is correct. This is usually done by computing the hash of the

plaintext message, decrypting the signature (which should return the hash of

the sent message), and check that both the hash of the received message and

signature hash match. If both match, then the message is genuine and the sender

is verified. An example of signed communication can be seen in Figure 5.6

The Sign and V erify functions are provided by a cryptographic library, for

example the Java Crypto library or OpenSSL.

For the SDBFT protocol itself, only messages sent from controllers to switches

need to be signed, as the SDBFT protocol is designed to protect against malicious

controllers, with the assumption that the switch itself is not compromised. It is

strongly recommended, however, that messages from the switches are also signed.

This ensures message integrity and non repudiation on behalf of the switch. As I

have previously mentioned, an attacker could intercept responses from a controller

to a switch through a person-in-the-middle attack to inject faults into the network.

It is possible that an attacker could also intercept a request from a switch to a

controller, and modify the PacketIn message to cause the controller to return

138

5.5 Signatures

ControllerSwitch
Request = request, Sign{request, sks}

Response = response, Sign{response, skc}
Ack = ack, Sign{ack, sks}

Figure 5.6: Signed switch to controller communication

an incorrect response. Signing messages from the switch provides a mitigation

against such attacks. Further, it provides some level of protection against a

compromised switch, which even though is out of scope of this work, is a valid

concern in a network under attack.

5.5.1 Controller Verification

When a fault occurs, the switch, on receiving an update from the expanded quo-

rum, will send an acknowledgement to all controllers containing the original signed

request, as well as the signed responses from all controllers. This can be logged by

controllers and used by network administrators to verify which controllers were

compromised, with the signatures used to verify that controllers send the updates

(and can be crossed checked with controller logs). The acknowledgement mes-

sages could be expanded to apply automated verification amongst controllers, for

example by applying a version of the SDN-RDCD protocol as proposed by Zhou

et al., although I leave this to future work [245].

5.5.2 Limitations

The primary limitation of introducing signatures is the cost associated with sign-

ing all messages. For an individual switch request, two signing and two verifica-

tion operations need to be carried out before the flow rule can be installed on the

switch (the signing of acknowledgements does not need to occur for a flow rule to

be installed). These operations increase the processing time for a request, and so

increase request latency. Furthermore, in particular for a high-traffic, dynamic

network where a large number of switch requests need to be processed, this can

139

5.6 Controller Assignment

represent a substantial additional amount of processing, in particular on the con-

troller side, which reduces the volume of requests controllers can handle. This

represents a decision on behalf of the network operator in order balance the re-

quired network performance, with the security benefits of using signed messages.

Whilst OpenFlow is designed to be sent over TCP connections, which provides

some protection against replay attacks through the TCP protocol, OpenFlow it-

self does not feature any anti-replay mechanism. It is therefore feasible that an

attacker who can sit on the connection between the switch and controller and per-

form a person-in-the-middle attack, for example through the use of ARP spoofing,

could replace packets with previously collected and signed OpenFlow requests or

responses, which would pass the verification step. This could be prevented by

incorporating an anti-replay mechanism into the OpenFlow protocol. A simple

approach to this would be to use the xID field within the OpenFlow packets as

a sequence number, and ensuring that messages received from the switch do not

use a previously seen xID field. Alternatively, an anti-replay token could be incor-

porated into the encrypted signature, which can be checked and removed before

the hash is verified.

5.6 Controller Assignment

The problem of controller assignment is one of the more difficult problems to solve

when considering a consensus based SDN control approach. Whilst the problem

is also an issue in traditional distributed SDN architectures where multiple con-

trollers are in use, it becomes more complicated when a single switch needs to

communicate with multiple controllers at the same time.

The controller assignment has two main impacts on the network. First, con-

troller assignment in the SDBFT architecture corresponds to the construction of

the primary and backup quorums for a given switch. Secondly, the controller as-

signment approach, in particular how efficiently controller resources are utilised,

can dictate how many controllers are required in the network.

In this Section I define the requirement for controller assignment in SDBFT,

and provide a simple algorithm for performing controller assignment in the SDBFT

140

5.6 Controller Assignment

architecture. Using a Java-based simulation I then perform a simple evaluation

of its performance across various network sizes.

There has already been a large amount of work in the literature providing

solutions to the controller assignment problem, both in the context of single-

primary with multiple backup controller architectures, as well as in the multiple

primary controller scenario. In Section 5.6.4 I provide an overview of existing

approaches to this problem from the literature, indicating how these could be

applied to the SDBFT architecture.

5.6.1 Requirements

The factors that need consideration when assigning controllers to switches are as

follows:

Switch to controller latency The switch to controller latency is the primary

limiting factor on the performance of the SDBFT system. More specifically,

as the protocol requires a response from all controllers within the primary

quorum, the highest latency controller limits the time to a response. There-

fore, minimising this latency is important. The switch to controller latency

to controllers in the backup quorum is also important, as in the failure state

the performance is then limited by the slowed switch to controller connection

in the controller set formed by the primary and backup quorums.

Controller load A controller has a maximum number of requests per second

that it is able to handle. Different switches will generate a varying number of

requests per second, depending on their traffic load. Therefore, when assigning

switches to controllers, this controller capacity must be respected. A controller

also needs to maintain some capacity as a member of backup quorums to

ensure it does not become overloaded when it becomes in use.

When using a traditional BFT approach, the controller to controller latency

is also an important factor as controllers need to communicate with each other

as part of the protocol. Whilst the controllers within the SDBFT system do

communicate to share network state information, this is out of band of the main

protocol and so inter-controller latency is not a major issue.

141

5.6 Controller Assignment

5.6.2 Simple Algorithm

Algorithm 3 Simple Controller Assignment Algorithm

procedure Assign Primary Controllers
for all Si ∈ S do

SortControllerList()
while |PQSi

| < k do
for all Cj ∈ C do

if hasCapacity(Cj) then
assign(Cj, PQSi

))
reduceCapacity(Cj)

end if
end for

end while
end for

end procedure
procedure Assign Backup Controllers

for all Si ∈ S do
SortControllerList()
while k + |BQSi

| < 2f + 1 do
for all Cj ∈ C do

if hasCapacity(Cj) and Cj /∈ PQSi
then

assign(Cj, BQSi
))

reduceCapacity(Cj)
end if

end for
end while

end for
end procedure

I present a simple algorithm for performing controller assignment in the SDBFT

architecture, an overview of which can be seen Algorithm 3.

I assume a set of switches, S, and a set of controllers, C. Each controller

Ci ∈ C has a capacity(Cj), which indicates the available capacity of the controller,

i.e. the number of switches it is able to control. In the simple case, this will be

equal for all controllers. For each switch Si ∈ S, there is a list of latency(Si, Cj)

pairs, which represents the latency of switch Si to controller Cj.

The algorithm then operates as follows:

142

5.6 Controller Assignment

1. For each switch Si ∈ S do the following to assign primary controllers:

(a) Construct a list of < Cj, latency(Si, Cj), capacity(Cj) > tuples, one for

each available controller.

(b) Sort this list of controllers

(c) Iterate through the list of controllers, and if the controller has available ca-

pacity, add it to the primary quorum PQSi
. Reduce the available capacity

for controller Cj.

(d) Stop once |PQSi
| = k

2. For each switch Si ∈ S do the following to assign backup controllers:

(a) Construct a list of < Cj, latency(Si, Cj), capacity(Cj) > tuples, one for

each available controller.

(b) Sort this list of controllers

(c) Iterate through the list of controllers, and if the controller has available

capacity, and the controller has not been assigned to the primary quorum,

Cj /∈ PQSi
, add it to the backup quorum BQSi

. Reduce the available

capacity for controller Cj.

(d) Stop once k + |BQSi
| = 2f + 1

The step of sorting the list of controllers is the key aspect in how the protocol

will assign controllers. The algorithm can either prioritise minimising switch–

controller latency, or maximising controller usage (ensuring control load is as

evenly spread as possible). If latency is prioritised, then the list of controllers will

be sorted first by increasing switch–controller latency, then decreasing available

controller capacity. This has the effect that switches will pick the lowest latency

controllers for the primary quorum first, but at the expense of a less evenly

distributed switch load amongst the controllers. If controller usage is prioritised,

then the controller list is first sorted by decreasing controller availability, and then

increasing switch–controller latency. If there is sufficient controller capacity, then

this will result in an even distribution of switches across the pool of controllers,

at the expense of switch–controller latency.

143

5.6 Controller Assignment

Assuming each controller has the same initial capacity, the minimum number

of required controllers is equal to the size of the number of controllers required per

switch, multiplied by the number of switches, and divided by the initial capacity

of a single controller, such that:

requiredCapacity = s(k + b)

requiredControllers = ⌈requiredCapacity/controllerCapacity⌉

So, for example, with a primary quorum size k = 4, and backup quorum size

b = 3, with 100 switches, then the total required capacity is 700. If I assume,

for example, that a single controller can handle 40 switches, then the minimum

number of controllers is 17.5, which must be rounded up to 18 full controllers.

Note that by default this algorithm assumes that the assignment of a backup

controller requires as much controller capacity as the assignment of a primary

controller. In normal operation the switch does not utilise any capacity of the

backup controllers, unless a fault has occurred. However, to ensure there is

sufficient capacity amongst controllers to handle failures, then the capacity for

backups should be reserved. This is however up to the network owner — the

algorithm can be configured to reduce utilised controller capacity by a smaller

amount for backup assignments than primary assignments, which will result in

a requirement for less controllers, but at the expense of backup capacity in the

case of a large number of faults.

I also assume that each switch has an equal impact on controller capacity

meaning that every switch added to a controller will have the same reduction in

available capacity for that controller. In practice, however, switches have different

capacity requirements based upon their type and location within the network

(backbone switches will require much more capacity than edge switches). The

assignment algorithm can be extended to support different controller capacities

by assigning each switch a cost LSi
, which is deducted from the available capacity

of a controller when that switch is assigned as a primary or backup. This would

144

5.6 Controller Assignment

change the computation of required capacity in the network to:

requiredCapacity =
∑
Si∈S

LSi
(k + b)

5.6.3 Simple Algorithm Performance

5.6.3.1 Implementation

In order to test the performance of the controller assignment algorithm, I utilise

a Java-based simulation. The simulation takes as a parameter the number of

switches and controllers to generate, the capacity of an individual controller and

the size of the primary and backup quorums. The simulator will then generate the

required number of switches and controllers, and for each switch will randomly

generate a latency from that switch to each controller. For testing purposes this

is an integer value in the range 1 to 10.

The simulator is able to calculate the minimum number of controllers required

to operate by taking the number of switches, and attempting to perform controller

assignment with an increasing number of controllers until there is sufficient ca-

pacity for all switches to have complete primary and backup quorums.

To provide a comparison, I also implement a fully randomised approach in

which the list of potential controllers is shuffled instead of sorted, resulting in a

random set of controllers for the primary and backup quorums.

5.6.3.2 Simple Example

To demonstrate the controller assignment algorithm I first use a simple example

of a 5 switch, 7 controller network, in which k = 4 and b = 3. In this example,

I assume a controller has a capacity of 10, and each switch has equal cost. I

provide the results of three tests — assignment prioritising switch-controller la-

tency, assignment prioritising controller capacity, and fully random assignment.

Switch to controller latencies are constant across the three tests, and can be seen

in Figure 5.7a.

145

5.6 Controller Assignment

Controllers
ID 1 2 3 4 5 6 7

Switches

1 6 6 3 1 5 3 5
2 2 10 7 5 2 1 3
3 4 4 8 10 2 9 4
4 1 1 4 7 8 7 5
5 2 10 2 8 4 2 3

(a) Switch to controller latencies

Latency Capacity Random

Switches

1
Primary 3,4,5,6 3,4,5,6 1,2,3,5
Backup 1,2,7 1,2,7 4,6,7

2
Primary 1,5,6,7 1,2,6,7 2,3,4,6
Backup 2,3,4 3,4,5 1,5,7

3
Primary 1,2,5,7 1,2,5,7 1,2,4,5
Backup 3,4,6 3,4,6 3,6,7

4
Primary 1,2,3,7 1,2,3,4 2,4,5,7
Backup 4,5,6 5,6,7 1,3,6

5
Primary 1,3,6,7 3,5,6,7 2,3,4,6
Backup 2,4,5 1,2,4 1,5,7

(b) Controller assignments

Latencies Assignments
Primary Backup Primary Backup

Mean S.D. Mean S.D. Mean S.D. Min Max Mean S.D. Min Max
L 2.7 1.27 7.33 1.85 2.86 0.99 1 4 2.14 0.99 1 4
C 3.3 2.15 6.53 2.39 2.86 0.35 2 3 2.14 0.35 1 3
R 5.3 2.88 3.87 2.36 2.86 1.25 1 5 2.14 1.25 0 4

(c) Statistics. Modes L=Latency, C=Capacity, R=Random

Figure 5.7: Controller assignment example with 5 switches, 7 controllers. Primary
quorum size 4, backup quorum size 3, controller capacity 10

Figure 5.7b provides the output of this example, and Figure 5.7c shows the

overall characteristics of the outputs of the three approaches. Latency values

represent the mean switch-controller latency for a primary (or backup) quorum

connection. As can be seen, prioritising latency results in primary quorums with

the smallest mean latency, with less variance, whilst prioritising for controller

capacity results in slight higher latencies, but with much more variance. A ran-

dom controller assignment results in a high switch-controller latency. However,

prioritising latency has the impact that the lower latency connections are used

by primary quorums, resulting in higher latency connections for backup quorums

when compared to the approach prioritising controller capacity.

146

5.6 Controller Assignment

Latencies Assignments
Primary Backup Primary Backup

Mean S.D. Mean S.D. Mean S.D. Min Max Mean S.D. Min Max
L 1.78 0.95 3.47 1.1 30 2.65 26 36 22.5 3.51 15 20
C 3.01 2.13 3.74 2.17 30 0 30 30 22.5 0.5 22 23
R 5.79 2.82 5.55 2.85 30 6.26 18 43 22.5 4.56 16 34

Figure 5.8: Controller assignment example with 150 switches, 20 controllers with
100 capacity each.

Conversely, prioritising capacity results in much more evenly distributed con-

troller load, shown by the lower variance in Figure 5.7c. Note that all approaches

result in the same mean value for primary and backup assignments - this is be-

cause the total of primary and backup assignments is always the same. The way

in which this load is distributed, shown by the variance, does change across ap-

proaches. The effect is limited in this example as a large amount of controller

load is utilised, however if I look at a large example of 150 switches, 20 controllers

(with 100 capacity each), as seen in Figure 5.8, then the benefit of prioritising

controller capacity is made more apparent. In this example, controller load is

almost perfectly distributed when prioritising controller capacity over latency.

Conversely, in this example prioritising latency results in substantially lower la-

tencies for primary quorums, and comparable latency for backup quorums. As in

the simple example, the random approach generates slower quorums with much

more uneven distribution of controller load.

5.6.4 Existing Approaches

Li et al. [136, 137] explore the issue of controller assignment in an architecture

utilising a BFT approach for SDN controllers. They define the controller assign-

ment in fault-tolerant SDN (CAFTS) problem. CAFTS represents the problem

of assigning controllers to switches, satisfying the requirements of the BFT al-

gorithm in use, minimising the latency between controllers assigned to a single

switch (to aid in the performance of the BFT algorithm) and to maximise the

utilisation of controller resources. The proposed controller assignment algorithm

takes into account the differing levels of security required by individual switches

147

5.7 Controller Consistency

(a switch with higher security requirements is assigned a greater number of con-

troller replicas to provide greater resilience). Their requirements first assignment

(RQFA) algorithm is shown to provide more efficient controller assignment than

a randomised approach.

Mohan et al. explore a solution for fault tolerant SDN control that is similar

to the SDBFT protocol, with the work focusing on the controller assignment

problem. [158, 159]. The work focuses on the issue of controller assignment, where

they propose an algorithm that aims to minimise the total number of controllers

whilst considering the switch to controller latency and controller capacity. The

approach is similar to the simple approach described above, however also supports

the remapping of controllers when a failure occurs. The proposed algorithm,

MINCON, also prioritises controller assignment for switches with higher loads

in terms of flow counts to increase performance. It is worth considering that

although the approach aims to minimise the number of controllers, this may

not always be the best approach if the capacity to host additional controllers is

available, as a greater number of controller replicas can handle a greater number

of faults, with fewer switches under the control of controllers if they were to

become compromised.

5.7 Controller Consistency

Controller consistency is a well-known issue within distributed SDN controller ar-

chitectures [16]. Requirement R3 (consistency) dictates that controllers should

be properly replicated. The primary element of replication required within a dis-

tributed SDN control plane is the the knowledge stored by the controller on

the current state of the network. In order to provide routing functionality, the

controllers need to maintain information about where devices are located within

the network. At a low level, this includes the specific ports on switches to which

devices and hosts are connected, as well as the connections between switches. Dif-

ferent routing controller applications required different amounts of information

about the network topology when pushing a route. For example, the Floodlight

controllers layer 2 LearningSwitch application only considers the next hop on

148

5.7 Controller Consistency

the route, i.e it knows which port to forward the packets to on a per-switch basis

(previously learnt using LLDP probes or observed packets). The Forwarding

application operates differently to this, and uses the Floodlight Topology ser-

vice to compute the complete route to the destination using Dijkstra’s algorithm,

installing appropriate flow rules on all switches along the path.

In the scenario where a single controller controls the network however this is

not an issue as the controller has a singular view of the network topology. If a

device location is not known, then it can flood packets in order to locate it and

updates its datastore. However, if multiple controllers are in use, each controlling

only a limited portion of the network, then controllers will have different views of

the current network topology. In particular, controllers in a backup quorum will

need to have a up-to-date view of the switch state so that they can make suitable

routing decisions if called upon.

If controllers are not properly replicated, the returned responses will not nec-

essarily match. As a simple example, if controller A has an up to date view of

a switch and sees a packet to device D, which it knows the location of, it will

return a PacketOut and a FlowMod directing the flow out of the correct port. If

controller B does not have this information, then it will only return a PacketOut

which will be flooded to all ports to identify which is the correct port to use. An

example of when this may occur is when the SDBFT protocol moves into failure

mode and the set of backup controllers are utilised, which have not received any

earlier requests from the switch.

Therefore, there needs to be a process for controllers to synchronise in order

to share information on the network topology. This approach could be expanded

to also include more detailed information about the network state to aid in more

complex applications, such as load balancing.

Consistency is either defined as strong or eventual. Strong consistency pro-

vides the guarantee of consistency — updates are pushed and action is only taken

once all replicas have received and processed the update, but at the cost of ad-

ditional latency (whilst an update is being replicated, no further requests can

be processed). Eventual consistency, on the other hand, only assumes that all

replicas will become consistent eventually, with the cost that some replicas may

149

5.7 Controller Consistency

respond to requests with stale data. Applications using eventual consistency must

be able to handle responses based upon stale data.

I assume for SDBFT a requirement of eventual consistency. The primary

quorum will be consistent for a given switch state, as each request from a switch

will update the network state information stored by that controller. Backup

controllers will receive updates from primary controllers, and on being contacted

in the case of failure will also receive switch requests which can update stored

network state. Further controllers within the control plane will need to receive

updates, but a small amount of latency on these updates is acceptable. In the

case where inconsistency occurs, this will appear as a fault, triggering the fault

recovery protocol. As long as f + 1 of the combined 2f + 1 controllers of the

primary and backup quorum have an updated network state view, then the switch

will receive a correct response.

This does limit the potential applications that can be utilised. In the Flood-

light example, the single hop LearningSwitch application should be utilised

rather than the Forwarding application, which requires a wider view of the net-

work state.

5.7.1 Publisher-Subscriber Protocol

I use a publisher-subscriber model for distributing network state updates through-

out the network. In the simplest approach, all controllers act as publishers, and

are subscribed to updates from all other controllers. On handling a switch request

that generates new knowledge about the network state, e.g. device a is connected

to port b on switch c, a controller will publish an update. I do not specify

the exact format for this update, as it may vary based upon the specific SDN

controller being used. As an example, the Floodlight controller DeviceManager

application already writes updates to the Floodlight CommsService, which is a

publisher-subscriber system, whenever a new device is seen (for more informa-

tion see Section 6.4.4). All controllers controlling a switch will publish updates

whenever a new controller is seen.

In normal mode, on receiving f + 1 matching updates from the primary quo-

rum, the controller will then update its datastore with the new value. If f + 1

150

5.7 Controller Consistency

updates are received, but they are not matching, then it can be assumed a fault

has occurred. In this scenario, the receiver will wait for f +1 matching responses

to be received, as this represents a majority from the primary and backup quo-

rums. This is a simplified version of the SDBFT protocol.

In the case where a fault occurs on a switch request for a new device, the

backup may not have received an update from a primary controller, or may

have received a malicious update from a compromised primary controller. In this

scenario, the backup will be sent the original request from the switch, which it can

process as the primary controllers would in order to extract sufficient information

to bring it up to the same state as the primary quorum.

In order to provide non-repudiation and message integrity, the updates can be

signed using the same public and private keys used for signing switch-controller

messages, previously described in Section 5.5. This also prevents controllers from

publishing false updates, as a full quorum of controllers will need to agree on the

update. For an additional level of protection, the original signed request from

the switch can also be included within the update, which would allow a receiving

controller to verify the switch state update is caused by an actual switch event.

5.7.2 Existing Approaches

There are a number of works which explore the concept of adaptive consistency

for distributed SDN controllers [13, 16, 200]. Rather than make the assumption

that all updates must be propagated fully consistently (strong consistency), it is

assumed that updates may take longer to propagate leading to different results

being returned from different controllers (eventual consistency), however applica-

tions are designed to tolerate this inconsistency. The adaptive approach applies

different consistency requirements to different types of controller decisions, with

more network critical decisions reliant upon strong consistency, with less critical

updates allowed to take longer to propagate. Whilst this approach may work in

the distributed controller architecture in which a single controller is responsible

for a particular switch, it would not work in solutions where multiple controllers

are responsible for a single switch, which requires strong consistency.

151

5.8 Limitations of Approach

A common approach taken by existing work is to apply a distributed datastore

across the distributed controllers. For example, the Onix distributed controller

architecture applies multiple techniques in order to synchronise its Network Infor-

mation Base (NIB) which stores information about switch and network state [115].

Onix utilises a transactional database for slow, but reliable, network state up-

dates. For network state updates requiring a higher update rate and availability

a Distributed Hash Table (DHT) (based upon Dyname [63]) is used. This DHT

supports one-hop, eventually-consistent, updates similar to my publisher sub-

scriber model, however comes with the limitation that only a single controller

can insert updates for a given value at any one time, otherwise collisions may

occur.

Botelho et al. propose a fault tolerant key-value datastore for a distributed

SDN controller architecture able to provide strong consistency [32]. Fault toler-

ance and consistency is achieved through the use of replicated state machines and

a total-order multicast protocol, in this case BFT-SmaRt [22]. One particular el-

ement of the design is that datastore writes include an counter field, which aims

to prevent inconsistencies from concurrent datastore writes, though it is unclear

how well this would work when a large number (f + 1 or more) controllers are

writing the same value simultaneously. A number of optimisations are proposed

to increase throughput and reduce latency of datastore operations, though in all

cases there is a noticeable impact on controller performance, as datastore reads

can take 3-5ms to perform.

5.8 Limitations of Approach

In this section I discuss some limitations and open issues with the SDBFT proto-

col, and suggest some potential solutions that can be explored as part of future

work.

152

5.8 Limitations of Approach

5.8.1 Proactive Control

The SDBFT protocol focusses on the reactive SDN mode of operation, in which

the controller only sends commands to the switch in response to a request from

a switch. There will be some scenarios where the proactive mode of operation is

also required in order to setup flow rules in advance. This could be down to proac-

tive applications on the controller, or through human administrators manually

configuring routes within the network. This presents two main challenges:

1. In the proactive application case, how can applications be synchronised to

send requests at the same time with requests that can be matched across con-

trollers? In the reactive case, a switch request triggers an immediate response

form every controller, with each individual response matched to a switch re-

quest.

2. A human administrator would not want to connect to multiple controller

instances in order to apply a single configuration change to a switch. This

increases the human cost in terms of time, and increases the likelihood of

erroneous updates being pushed by the administrator. This also has similar

issues to the proactive application case in matching the controller requests on

the switch.

It is feasible to assume that the majority of the functionality of proactive

applications can be adapted to operate in the reactive mode. This will have the

impact of a slight reduction in performance as the target flow will need to be sent

to the controller rather than being handled by a flow rule already installed on the

switch.

For the human administrator case, this could be partially solved through

the use of a master controller that exists on a heavily secured machine, and

does not take part in the normal control network but exists purely for manual

administrator configuration. This controller can be kept offline when not in use

to reduce the likelihood of compromise. This controller can authenticate to the

switch for example using signed messages, with the master controllers public key

loaded on the switch at install time and the private key kept securely. This

153

5.8 Limitations of Approach

controller can proactively install flow rules on the switch without requiring the

consensus protocol to be run.

Of course, this approach does not limit the impact of a malicious administra-

tor. Similarly, if the master controller does become compromised, then it would

gain arbitrary control over the network (though only when the master controller

is active).

5.8.2 Controller Diversity

A particular challenge of consensus-based SDN control is the problem of controller

diversity. The reasoning behind utilising multiple controllers is to limit the im-

pact of a subset of these controllers from becoming compromised, assuming the

majority of controllers are not compromised. The diversity of controllers, and

the architecture supporting them, provides a challenge to this assumption. As an

example, assume every controller consists of the Floodlight controller, deployed

into an Ubuntu 18.04 virtual machine, running Java version 10, with the same

user credentials across all virtual machines. On top of potential vulnerabilities

within the Floodlight controller itself, a critical vulnerability found within the

used libraries, java subsystem or operating system (or any other software on the

machine), or indeed compromised credentials could allow an attacker to poten-

tially gain control of every controller instance as if they find an access route into

one controller, then the same route can be applied to all as every instance is

identical.

This problem affects all consensus-based SDN control architectures. [136, 137,

22, 158, 159, 190]. The work by Qi et al. suggests controller diversity through

deploying different controllers (in the paper POX, NOX and Floodlight are used),

with the assumption that these controllers will still deterministically return the

same result to a switch request [190]. Utilising multiple controllers in this fashion

provides extra challenges — for example each application needs to be implemented

for each controller and tested to ensure it is deterministic. Further, this only limits

the compromise of the controller itself — if all controllers are running on identical

hosts then an attacker could still gain control of each instance.

154

5.9 Conclusion

Whilst I do not attempt to solve this problem in this work, there are some

steps that can be taken to help increase diversity and reduce the potential for an

adversary to compromise all machines. Simple actions such as ensuring different

passwords are configured for individual hosts can help reduce attack surfaces.

Operating system defences such as Address Space Layout Randomisation (ASLR)

and stack canaries can make exploiting vulnerabilities such as buffer overflows

more difficult to exploit across multiple machines. Finally, removing unnecessary

software and regularly patching machines can help reduce the attack surface to

an attacker.

5.9 Conclusion

In this chapter, I discussed the design of the SDBFT protocol for fault-tolerant

SDN control. I gave an overview of the operation of the protocol, including how

it operates both under normal circumstances, and when a failure occurs. I then

discussed the application of signatures in order to enforce message integrity and

provide non-repudiation for controller messages. To support the SDBFT protocol,

I also provide the design of a solution to the controller assignment problem, and

a method for ensuring consistency amongst controllers.

In the next chapter, I discuss the challenges of implementing the SDBFT

systems, and then in Chapters 7 and 8 I experimentally evaluate the performance

of the SDBFT controller.

155

Chapter 6

Implementing the SDBFT

Protocol

6.1 Introduction

In Chapter 5 I proposed a novel protocol for Byzantine fault tolerate agreement

amongst SDN controllers, SDBFT. In this chapter I describe an implementation

of the SDBFT protocol, and the challenges of implementing such a protocol.

The primary implementation is that of the SDBFT proxy, which sits on the

connection between a switch and a controller and carries out the switch-side logic

of the SDBFT protocol, without having to modify a switch firmware.

I also describe the implementation of a comparative system using a tradi-

tion byzantine fault tolerant protocol. For this purpose I use the BFT-SMaRt

protocol, implemented through the use of a publicly available Java library [22,

24].

6.2 SDBFT Implementation Overview

As the core SDBFT algorithm computation is performed on the switch side,

the main focus of the implementation needs to be on the switch. The optimal

156

6.2 SDBFT Implementation Overview

approach would be to take an existing virtual switch implementation, such as

OpenVSwitch, and modify the switch firmware to incorporate the SDBFT logic.

Whilst this would likely provide the most efficient implementation, this approach

has some drawbacks. Firstly, this would require kernel-level programming, which

is complex, and inserting the new logic into the switch whilst maintaining func-

tionality could prove challenging. Secondly, this limits evaluation to that one par-

ticular switch implementation. For example, if I were to modify OpenVSwitch, a

virtual switch commonly used for testing, I would be unable to test the logic on

a physical switch without also implementing the logic into the physical switches

firmware.

Rather than modify physical or virtual switch firmware, I decided to produce

an OpenFlow proxy that will sit on the connection between the switch and the

controller acting as a bump-in-the-wire device, leaving the switch unmodified.

As well as providing a generalised solution for testing purposes, the proxy can

support older switch hardware that would not be modifiable to handle multiple

controllers, and so the use of a proxy can be applied to older SDN networks. This

is a similar approach as taken by ElDefrawy and Kaczmarek, and Sherwood et

al., within SDN controller architectures [76, 215].

Whilst implementing SDBFT as a proxy is easier, and more flexible for testing,

it also has some potential drawbacks. Primarily, the proxy introduces an extra

communication step, which requires the processing of packets, including parsing

the OpenFlow messages from the intercepted packets, and then re-encoding them

as raw data to send onto the controller. These extra steps would not be required

if implemented on the switch, as the SDBFT logic can be applied before and

after messages are sent to and received from the controller. To measure this

effect, I perform testing with a simple TCP proxy in Chapter 8, which enables

me to learn the baseline impact of introducing a proxy into the connection. There

are potentially further efficiency improvements to be had with a native C based

implementation rather than using a Java implementation, however I are unable

to measure this without implementing the native version.

As well as the SDBFT proxy, I also require an SDN controller. I decided to

use the Floodlight controller for this purpose, which is a Java based open-source

controller [187]. Floodlight has a number of benefits for this use. Floodlight uses

157

6.2 SDBFT Implementation Overview

the OpenFlow Java library provided by Loxigen [189], which can also be used

for the proxy to provide consistency. Whilst other Java based controllers exist,

such as ONOS, Floodlight is a fully featured controller, which supports multiple

applications to be run simultaneously, whilst being a relatively small code base.

As the controller requires modification, the smaller code base makes this task

easier.

Controller 1

SDBFT Proxy

Controller 2

Switch 1

SDBFT Proxy

Switch 2
Controller 3

Controller 4

Figure 6.1: SDBFT Proxy Architecture

While Floodlight supports all OpenFlow versions up to 1.5, I focus on Open-

Flow 1.3 for development and testing purposes due to its wide support on SDN

switches. The SDBFT proxy also supports all OpenFlow versions up to 1.5 due

to the capability provided by the OpenFlow Java library.

158

6.3 Proxy Implementation

6.3 Proxy Implementation

The SDBFT proxy, implemented in Java intercepts all OpenFlow messages be-

tween the switch and controller(s). When configuring the switch, the IP address

and port number of the proxy is used as the controller configuration. An indi-

vidual instance of the proxy needs to be deployed for each switch in the network,

however a single proxy will connect to multiple controllers. An example of this

architecture can be seen in Figure 6.1.

The proxy is implemented using the OpenFlow Java library that is generated

by Loxigen [189]. Loxigen generates OpenFlow libraries for C, Python and Java,

based upon the OpenFlow specification. All versions of OpenFlow up to 1.5.1

are supported, though versions 1.0, 1.3.1 and 1.4.1 are intended for use in pro-

duction [189]. The library is generated as source code, which is directly included

within the Java project and compiled along with the proxy code. The library

includes readers for extracting OpenFlow messages from raw byte arrays, and

also includes factories for generating OpenFlow messages for a specified version

of the Openflow protocol.

The only modification to the switch is that it is configured such that it con-

nects to the proxy rather than to the controller. On receiving a connection from

a switch, the proxy connects to the appropriate controller instances. On receiv-

ing a packet, the proxy will use the OpenFlow library to parse the packet and

extract the OpenFlow message. It can then extract message type and perform

the appropriate action, which are discussed in Section 6.3.5.

6.3.1 Configuration

The implemented proxy is configured by the use of a simple configuration file, an

example of which can be found in Appendix A.1. The proxy implementation ac-

tually includes three proxy implementations — a simple TCP proxy, the SDBFT

proxy and the BFT-SMaRt proxy (see Section 6.5), and the same configuration

file is used for all three. The key parameters for the SDBFT proxy are the list

of primary controllers, and the list of backup controllers. If signatures are in use,

the configuration file is used to specify the parameters for the signing engine.

159

6.3 Proxy Implementation

6.3.2 Communication

Java sockets are used for communication. On launching the proxy, a ServerSocket

is started to accept a connection from a switch. On receiving a connection from a

client, a client specific socket is generated, and a new ClientConnection object

is generated. The ClientConnecticon is a Runnable object, which is responsible

for reading messages form the client socket, and sending messages to the client

over the socket. When the ClientConnection is created, a new thread is started

to allow the connection to be repeatedly read from.

When the client has connected, the proxy then creates a connection to each

controller, and creates a ServerConnection instance for each controller, which

is functionally similar to the ClientConnection. A thread is started for each

controller to allow concurrent communication with multiple controllers.

For certain switches, the switch makes an initial connection to the controller

before participating in the OpenFlow handshake. For example, this always occurs

when using the Mininet network simulator built upon OpenVSwitch. When these

types of switches are used, the first connection from a switch is ignored, though

from the switch perspective the controller is live. This connection is due to

Mininet first opening a connection to the controller to test for liveness before

instructing the switches themselves to connect. The proxy then waits for the

second connection from the switch before connecting to the controllers. If this

is not done, the controller will initiate the handshake on receiving a connection

which the switch will then ignore, and the handshake will not complete.

6.3.3 Message Acknowledgements

As part of the SDBFT protocol, the proxy needs to send an acknowledgement

of switch responses. When processing a response from the controller, the proxy

generates this acknowledgement and sends to each controller. As these acknowl-

edgements are not time-critical, the proxy can be configured to either send these

acknowledgements immediately on receiving a response, or alternatively these re-

sponses are added to a buffer on the proxy. A new thread process is started, which

sends the contents of this buffer to all of the controllers, clears the buffer and then

160

6.3 Proxy Implementation

waits for a pre-defined amount of time (for testing purposes this is 100ms). This

batch sending of acknowledgements reduces the amount of messages that needs

to be send between the switch and controller, allowing the proxy to handle a

greater number of switch requests.

6.3.4 Signatures

The signing of messages is performed using the Java java.security package.

The signing algorithm, key generation algorithm, key size and signature length

are selected using the configuration file. For testing purposes, keys are generated

when launching an instance of the proxy. As I are primarily interested in the

performance of signatures during testing, whilst keys are generated using the

SecureRandom class provided as part of java.security, the seed is hard coded

to ‘999’, which causes every instance of the proxy to generate the same key pair

(and can be repeated on the controller). Whilst this is unsuitable for a real-world

deployment, it is sufficient for testing purposes, and will need to be replaced by

a full key-distribution algorithm in a production environment.

The signatures are generated just before messages are sent to the controller,

and after they have been converted into a byte array for sending (as the sign

function requires a byte array as input). The returned signature is also a byte

array. The signature and message are sent to the controller in a single request,

with the signature sent first. This signature is sent first for easier parsing, as it

is of a constant size.

On receiving a message from the controller, the parser is responsible for ex-

tracting signatures and verifying against the received message. Whereas in the

unsigned version the OpenFlow library can be provided with a byte array and

extract multiple OpenFlow messages, this is not possible when signatures are also

included within the array. The parser instead first extracts the signature, and

then manually reads the length of the OpenFlow packet from the packet header

(stored in the second 2 bytes of the header, and so 2 bytes from the end of the

signature bytes in the byte array). Using the OpenFlow length, the bytes of the

current message are extracted, and the signature is then verified. If the signature

is verified, then the reader provided by the OpenFlow library is used to extract

161

6.3 Proxy Implementation

the OpenFlow message. The next signature and message are then extracted and

verified. This process is repeated until all messages have been extracted, and

verified, from the received data.

6.3.5 OpenFlow Message Handling

The primary activity of the proxy is the handling of OpenFlow messages. The

proxy parses these messages using the OpenFlow java library, and then performs

actions on them depending on the specific OpenFlow message type. As part of

this, the proxy needs to maintain state regarding switch and controller requests.

Two objects are used for this purpose:

SwitchEvent A switch event represents a request from the switch. It stores

the Xid of the PacketIn message, a copy of the PacketIn message, and two

ArrayLists to store the returned PacketOut and FlowMod messages.

ControllerRequest A controller request represents a request from a controller

to a switch. These are primarily used during the switch-controller handshake

phase. A controller request stores the controller id, OpenFlow packet type,

and Xid of the controller request.

The proxy maintains a collection of each of these. The collections are for-

mulated as HashMaps, with the message Xid as the key, and an instance of a

SwitchEvent or ControllerRequest as the value. A HashMap is used due to the

efficient value retrieval compared to other collection types. In order to reduce

memory usage, once all replies to a request have been received, the SwitchEvent

or ControllerRequests is deleted from the relevant HashMap.

6.3.5.1 Switch to controller communication

The proxy need to ensure that communication from the switch is handled cor-

rectly. Introducing multiple primary controllers means that the proxy needs to

handle certain switch requests to prevent multiple replies coming back from the

multiple controllers, which can cause the switch to reset its connection to the

proxy.

162

6.3 Proxy Implementation

ClientConnection

OpenFlowPacket
Parser

Control

ServerConnection
1

ServerConnection
2

ServerConnection
N

Controller 1

Controller 2

Controller N

1

2 3 4
5

6

Figure 6.2: Proxy switch to controller message handling

Figure 6.2 shows the typical flow of OpenFlow messages from the switch to

the controller. The flow of messages is as follows:

1. The switch sends a request to the controller through the proxy. A single

request may include multiple OpenFlow messages. The ClientConnection

class reads the message from the socket into a byte array.

2. The ClientConnection class calls the parse method in the

OpenFlowPacketParser, which receives a byte array, and uses the Open-

Flow Java libraries reader methods to extract the OpenFlow messages. If

signatures are used, these messages are signed.

3. The OpenFlowPacketParser returns a list of OpenFlow messages. The

ClientConnection loops through these messages. For any Hello and

EchoRequest messages, a response is generated and sent back to the switch.

Any other messages are forwarded to the master Control class for processing.

4. The Control class processes the messages. For specific message processing by

OpenFlow packet type, see below.

5. After processing each message, the Control class calls the send method in the

ServerConnection instance matching the controller (or set of controllers) the

message is destined for.

163

6.3 Proxy Implementation

6. The ServerConnection writes any messages destined to the controller it rep-

resents onto the socket, and the message is sent to the controller.

Specific message processing for OpenFlow message types:

PacketIn On receiving a PacketIn message from the switch, the proxy creates

a new SwitchEvent, with a copy of the PacketIn message. The Xid field of

the PacketIn message is set to a new value generated by the proxy. This is

used to link switch requests to responses from the controller.

EchoRequest and Hello If the switch sends an EchoRequest or Hello, the

proxy will generate a reply and send it to the switch directly.

Reply packets Messages replying to controller requests, such as FeaturesReply

or RoleReply messages, are matched by Xid to a controller request, and

forwarded only to the controller that sent the matching request. To aid in

this, the proxy maintains a lookup matching OpenFlow request message types

to their relevant response types.

Other packets All other packets are sent on to the set of controllers without

any further processing.

The majority of messages from the switch are sent to all controllers. However,

I found that Floodlight does not handle multiple or unexpected replies to certain

request messages, primarily those exchanged during the OpenFlow handshake,

often disconnecting the switch. To correct this, specific requests from the con-

troller are logged by the proxy by Xid, and replies from the switch are only sent

to the controller that sent the matching request.

6.3.5.2 Controller to switch communications

Figure 6.3 shows the typical flow of messages from the switch to controller. Note

that a single ServerConnection is shown, when in reality there is one instance

per controller. Each instance follows the same process, so I only include one into

the diagram for clarity. The flow of messages is as follows

164

6.3 Proxy Implementation

ServerConnection

OpenFlowPacket
Parser

Control Controller 1
6

3 24
1

ClientConnection
5

AckSender

9
7

8

Figure 6.3: Proxy controller to switch message handling

1. The controller sends a packet to the switch, consisting of one or more Open-

Flow messages. The ServerConnection reads the message from the socket

into a byte array.

2. The ServerConnection class calls the parse method in the

OpenFlowPacketParser, which receives a byte array, and uses the Open-

Flow Java libraries reader methods to extract the OpenFlow messages. If

signatures are used, these are verified.

3. The OpenFlowPacketParser returns a list of OpenFlow messages. The

ServerConnection loops through these messages. As is also the case for the

switch connections, for any Hello and EchoRequest messages, a response is

generated and sent back to the controller. Any other messages are forwarded

to the master Control class for processing.

4. The Control class processes the messages. For specific message processing by

OpenFlow packet type, see below.

5. After processing each message, the Control class calls the send method in the

ClientConnection instance.

6. The ClientConnection writes any messages destined to the switch it repre-

sents onto the socket, and the message is sent to the switch.

165

6.4 Controller modification

7. (Optional) If the message from the controller is a response to a switch request,

the Control class generates an acknowledgement message, and forwards to the

AckSender.

8. (Optional) If batched acknowledgements are in use, the AckSender adds

the acknowledgement to a buffer, and then forwards onto the appropriate

ServerConnection to be sent to the controller. If batched acknowledge-

ments are not used, the message is not buffered and forwarded directly to

the ServerConnection.

9. (Optional) The ServerConnection sends the acknowledgement to its con-

troller.

Specific message processing for OpenFlow message types:

PacketOut The proxy will match the PacketOut to a switch event, and will store

the message in switch event object. If the number of PacketOut messages

stored in the switch event match the number of controllers, the PacketOut is

forwarded to the switch.

FlowMod As with PacketOut messages, the proxy will wait for a full set of

matching FlowMod messages before sending one to the switch.

Requests Request messages, such as FeatureRequest or RoleRequest mes-

sages, are logged by the proxy with the request type, sending controller and

Xid. This allows for replies to be matched to requests.

6.4 Controller modification

As mentioned above, the Floodlight controller was chosen as the controller used

for testing the SDBFT system. Floodlight was chosen partly due to the authors

familiarity with Java, therefore providing an easier pathway to understanding the

architecture. It was chosen over other Java based controllers, such as ONOS and

OpenDaylight, due to it being a smaller code base therefore making modifications

easier without causing unknown effects.

166

6.4 Controller modification

While being a well-known controller, there is limited documentation which

made locating parts of the code base required for modification difficult. For

example, locating the classes responsible for receiving and parsing OpenFlow

messages was difficult and was only achieved by tracing the flow of OpenFlow

messages through the controller backwards from the Forwarding application.

Socket

Network Applications

SyncService

Message
Serialiser

Message
Deserialiser

Signature
Engine

Switch
Comms

Controller Logic

= Existing architecture/little modified architecture

Socket

Network Applications

Device
Manager

SyncService

Switch
Comms

Controller Logic

AckTracker Forwarding
Device

Manager
AckTrackerForwarding

Message
Serialiser

Message
Deserialiser

Signature
Engine

To Proxy To Proxy

Controller Controller

Figure 6.4: Controller system model

Figure 6.4 provides a high level overview of the SDN controller architecture.

This model only shows the core components that were modified to support the

SDBFT protocol. Elements highlighted in grey required only minimal modifica-

tion compared to the base implementation. The only additional elements that

were added were the AckTracker application, and the additional message seri-

aliser and deserialiser to handle signed messages. All other modifications were

achieved through the use or implementation of existing services provided by the

controller.

167

6.4 Controller modification

6.4.1 Message serialising/deserialising

Floodlight uses Netty sockets in order to communicate with switches. The Netty

library requires a serialiser and deserialiser interface which converts a Byte-

Buffer to a list of Objects, and vice versa. In Floodlight, these two classes

are OFMessageEncoder and OFMessageDecoder. These classes were duplicated

and modified to produce versions which sign messages destined for the switch

(OFMessageEncoderSign), and verify messages sent from the switch

(OFMessageDecoderSign). By incorporating signatures here, no further modifi-

cation is required to the core Floodlight controller. The controller chooses the

signed versions, or the original unsigned versions, depending on the current con-

figuration, as specified by the controller properties file.

6.4.2 Xid setting

Openflow packets feature a Xid field, which is used to identify messages and match

requests to responses. The default Floodlight applications do not set this field

when sending responses to the switch. As I need to match controller responses to

a particular request so I can ensure grouping, I must ensure the controller sets this

field to match the request it received. Therefore, I went through any applications

which communicate with the switch in response to PacketInmessages, and ensure

they set the Xid field on any responses they send to match that of the incoming

PacketIn.

6.4.3 Acknowledgement handling

For ease of implementation, switch acknowledgements are sent using OFError

messages. OFError messages are used as they support writing arbitrary data into

the message, which can then be parsed by the controller. This required modifying

the error handling mechanism of the controller. Normally, error messages are

not handled by applications on the controller (though applications can register

to receive them), instead the controller, upon seeing an error message, enters

an error state. The controller was modified to inspect error messages, and if

168

6.4 Controller modification

the message is of the acknowledgement format (where the message begins with

###ACK###), to push them to the application layer and not enter an error state.

The AckTracker application can then read these messages. Note that for the

purposes of testing, the AckTracker simply reads the acknowledgement messages.

In future versions, the AckTracker could write these acknowledgements to a log

file or similar.

The OpenFlow protocol officially supports custom, deployment specific mes-

saging through the Experimenter message type (Vendor in version 1.0 of the

protocol), which allows messages containing arbitrary data for vendor specific

use. This would have been a better implementation approach, however this mes-

sage type has not been properly implemented by Loxigen, and so is not included in

the OpenFlow Java library used by both the proxy, and the Floodlight controller.

The intention is that protocol definitions used by Loxigen would be updated by

a vendor. It is unclear how this would impact the Floodlight controller, in part

as the internal controller logic sorts messages by type, so I decided to use the

similar OFError message type which are already handled by the controller, with

the small modification to the controller to support my particular use case.

6.4.4 Synchronisation

It is important that the backup controllers that will form the expanded quorum

when a failure is detected know the state of the devices connected to the switch

before they take over. As a simple example, if the backup controllers do not know

which switch port a device is connected to on receiving a PacketIn message, it will

flood the PacketOut through all active ports on the switch, and not install a flow

rule. This prevents consensus from occurring as the controllers of the existing

quorum know the topology of devices whereas the backups do not. In order to

implement the publisher–subscriber model as described in Section 5.7, I utilise

the experimental SyncService built into Floodlight. The SyncService provides

the ability for controllers to writes to a datastore, and publish the updates to

other controllers, in a publisher-subscriber model. This functionality can be built

into any module. One module that uses this service is the DeviceManager, which

maintains a record of devices attached to switches under its control. By default,

169

6.5 Implementation of Comparative System

this service pushes an update to the datastore for every new device that it sees,

however it will only pull from the datastore if the controllers is moving from

the SLAVE to the MASTER state for a given switch. I modify this module to

subscribe to receive updates from other controllers, and update its own datastore.

This means that the controller will know the correct switch topology as soon as is

required. In order to allow this to function, the switch connects to the controllers

of the backup quorum, as well as the primary, on initialisation, and completes

the setup handshake, but sends no further packets to the backups until a fault

occurs.

This functionality could be extended to provide a simple synchronisation

method to allow all controllers within to learn the topology of the full network,

to aid in routing. As the SyncService operates on a publisher-subscriber model,

then it would only requires all controllers to sign up for updates for all other

controllers. Currently, the DeviceManager requires a handshake with a switch in

order to store information about the devices connected to it. The two options

are that either the switch can complete a handshake with every controller, which

would allow the controller to store the relevant information received from other

controllers, or alternatively the DeviceManager could be modified to incorporate

a datastore of switches and their connected devices which have not completed the

handshake, but can be used by the other services (such as the TopologyManager)

which use this information.

6.5 Implementation of Comparative System

In order to provide a comparison to related work, a version of the system was

constructed which makes use of a traditional BFT algorithm for providing fault-

tolerance. Rather than implementing this from scratch, this was achieved through

the use of the BFT-SMaRt library [22, 24]. BFT-SMaRt was previously applied

to the SDN control scenario by ElDefrawy and Kaczmarek [76], and is the only

example from related work which has been fully tested for performance (although

code is not available). The protocol requires 5 rounds of communication, and

170

6.5 Implementation of Comparative System

2n+ 3n2 messages for n replicas. The BFT-SMaRt protocol is discussed in more

detail in Section 2.11.2.

BFT-SMaRt provides a Java library for providing a fault-tolerant system,

with the provisioning for both replicas (servers), and clients. Within the library,

multiple instances of a server are configured (as the system uses a PBFT approach,

four (3f+1) instances are required as a minimum). BFT-SMaRt was implemented

as an extension to the SDBFT proxy, with both a client-side and server-side proxy

being implemented.

6.5.1 Configuration

The BFT-SmaRt library uses its own set of configuration files for configuring the

BFT system. The two primary files are the system.config and hosts.config

files. The system.config file is used to configure the parameters of the BFT-

SmaRt instance, such as the IP address to bind to, the number of replicas in use,

the use of signatures, and whether to handle byzantine faults, or just fail-stop

faults.

The hosts.config file contains a list of all replicas within the system. For

each replica, the file contains an ID number, the IP address, and the port number

which the replica is to run on. The ID number is used when launching a server

replica, and the IP address of the host must match the IP address provided in the

file. The replicas to be used by a client are configured in the system.config file

by providing a list of the ID numbers. Errors in this file prevent the BFT-SMaRt

library from functioning.

The BFT-SMaRt proxy also utilises the SDBFT configuration file, as seen in

Appendix A.1

6.5.2 Protocol

One issue with adapting BFT-SMaRt for use with floodlight, is that the utility

type communication between the switch and controller, in particular the hand-

shake, needs to be done on an individual basis between the switch and each

controller. To allow this, two connections are used. The first connection utilises

171

6.5 Implementation of Comparative System

portions of the SDBFT proxy to handle handshake messages. This connection is

used to send any messages which do not require use of the BFT protocol.

The second connection is the connection provided by the BFT-Smart library,

built on Netty sockets. This connection carries all messages which need to be

handled by the BFT protocol, primarily PacketIn messages and the associated

responses. This connection is not accessed directly, rather the BFT-SmaRt library

provides an abstraction layer over the communication.

BFT-Smart can handle requests both in synchronous and asynchronous mode.

In synchronous mode, on sending a request the code must then wait for a reply

before proceeding. This is not suitable for a situation where multiple flows are

coming into the switch in short succession. In the asynchronous mode, on sub-

mitting a request to the server a response handler is set up which then waits for

the reply. This means that queueing happens on the server side, whilst allowing

the switch to send multiple requests in short succession and not lock. I only make

use of asynchronous requests in my implementation.

6.5.3 Proxies

Two proxies are used to allow the BFT communication. A client proxy sits in

front of each switch, acting as the client for the BFT-SMaRt library. A server

proxy also sits in front of each controller, and is implemented as a BFT-SMaRt

server replica. It was decided to utilise a server side proxy rather than modify

the floodlight controller to natively utilise the BFT-SMaRt library as it would

require a large amount of modification to the controller architecture.

Figure 6.5 presents an overview of the BFT-SMaRt proxy architecture. In

this example, 2 controllers are used. Dashed lines represent components that are

implemented fully within the BFT-SMaRt library.

6.5.3.1 Client Proxy

A BFT client proxy is deployed for each switch within the network. A single

client proxy is responsible for the communications of a single switch, meaning

there should be as many instances of the client proxy as there are switches.

172

6.5 Implementation of Comparative System

ServerConnection

BFTClientConnection

ClientConnection

Control

Server Proxy

Controller 1

ClientConnection

BFT-SMaRt

ServerConnection
1

Control

Client Proxy

ServerConnection

BFTClientConnection

ClientConnection

Control

Server Proxy

Controller 2

ServerConnection
2

Switch

Figure 6.5: BFT-SMaRt proxy architecture

A client proxy will talk to just one switch, but multiple server proxies. The

client proxy is very similar to the proxy used within the SDBFT system, with the

primary difference that on receiving a packet from the switch, the proxy will either

forward it directly to the controller proxy using a TCP connection (for packets

which should not be processed using the BFT-SMaRt system), or through the

BFT-SMaRt system for packets which should be processed by the BFT-SmaRt

system. Largely, any packet other than a PacketIn messages bypasses the BFT-

SMaRt system.

The proxy parses all packets it has received over a TCP connection, either

from the switch, or through the TCP connections to the server proxies. This is

only used to direct the packets to the correct communication method for forward-

ing based upon their OpenFlow type. No other processing is performed on the

packets.

The client makes use of a AsynchServiceProxy object from the BFT-SMaRt,

which allows the application to submit asynchronous requests to the BFT replicas.

Asynchronous requests are used as it prevents the client from blocking whilst wait-

ing for a response from the sever (it is expected that the switch will often have to

deal with multiple simultaneous new flows that need to be processed in quick suc-

173

6.5 Implementation of Comparative System

cession). On establishing the AsynchServiceProxy, a client id is provided, which

is user supplied in the proxy properties file. This is used to identify clients on the

server side. The request is submitted through use of the invokeAsynchRequest()

function of the AsynchServiceProxy, which also requires the provision of a

listener to process the response. I provide a BFTReplyListener, which col-

lects the responses from the servers through the implementation of an inherited

replyReceived method, and checks that there are a sufficient number of match-

ing responses, q, as defined in Listing 6.1. In this calculation getCurrentViewN()

returns the number of replicas, and getCurrentViewF() the handled number of

faults. N will equal 3F + 1. The implementation of the ReplyReceived method

can be seen in Listing 6.2. It is worth noting that the listener does not need to

wait for a response from every controller before returning a result to the switch.

As long as the number of matching responses exceeds the threshold, on receiving

enough matching responses, the listener forwards the response onto the switch,

and clears the request, closing the listener. Responses are in the form of byte

arrays, and are matched using the Java Arrays.equals(a,b) utility.

int q = Math.ceil((double) (serviceProxy.getViewManager().getCurrentViewN() +

serviceProxy.getViewManager().getCurrentViewF() + 1) / 2.0);

Listing 6.1: BFT-SMaRt threshold calculation.

ArrayList<TOMMessage> responses;

@Override

public void replyReceived(RequestContext context, TOMMessage reply) {

int sameContent = 1;

for (TOMMessage tomMessage : responses) {

if (Arrays.equals(tomMessage.getContent(), reply.getContent())) {

sameContent++;

}

}

responses.add(reply);

if (sameContent >= q) {

174

6.5 Implementation of Comparative System

control.sendToClient(reply.getContent(), reply.getContent().length);

serviceProxy.cleanAsynchRequest(context.getOperationId());

}

}

Listing 6.2: BFT-SMaRt ReplyListener message verification

The proxy reads two lists of server addresses, which should be the same. The

first is in the SDBFT properties file, which is used for setting up the list of TCP

connections to controller proxies.

The second list is defined in the BFT-SMaRt hosts.config file, where each

server is represented by a replica id and an IP address. The number of servers is

defined in the system.config file, which specifies the number of servers, number

of handled failures (the number of servers must be greater than 3f + 1), and the

list of replica ids to connect to.

6.5.3.2 Server Proxy

A BFT server proxy is deployed for each controller within the network. A server

proxy talks to a single controller, but will accept connections from multiple client

proxies representing multiple switches. As with the client proxy, it is based

upon the SDBFT proxy with modifications to support the BFT-SMaRt library.

The major challenge with the server proxy is handling connections from multiple

switches at the same time, and ensuring that responses from the controller are

forwarded to the correct switch.

As with the client proxy, the server proxy supports two different communica-

tion channels with each client proxy (one TCP and one BFT-SMaRT).

On receiving a connection from a new client proxy, the server proxy will setup

a new socket connection to the controller. For each connected switch, the server

proxy will maintain an individual connection to the controller. The controller

expects that each switch will connect on its own socket, so this helps ensure

the controller operates as normal. The socket from the client and socket to the

controller are linked, so that any packets can be sent between the two. For

example, if client A connects to the server proxy over a TCP connection A−SP ,

175

6.5 Implementation of Comparative System

then a connection A − C is set up between the server proxy and the controller.

Any packets coming in on A−SP are then forwarded onto A−C, and any packets

coming to the proxy on A−C are forwarded onto A−SP . This removes the need

to processing these packets on the server side, as communication on this channel

should be sent directly to the controller, and responses straight back to switches.

On setting up the TCP connection, the first packet sent by the client contains

the BFT client ID set by the user, which is read by the server proxy. This is used

to populate a HashMap, with the BFTClientID as keys, and the ServerConnection

created for that client as a value. This allows packets that come in over the BFT

system to be sent to the controller over the previously established controller

connection for that client.

The BFT-SMaRt connection is provided through implementing a class that ex-

tends DefaultSingleRecoverable from the BFT-SMaRt library, which is called

by the library on receiving a message. The class can implement two methods:

appExecuteOrdered and appExecuteUnordered, which are called depending on

whether the request was sent from the client as an ordered or unordered re-

quest. In this system I only use ordered messages, and so the appExecuteOrdered

method is implemented.

On receiving a request over the BFT system, the method first extracts the

BFT client id from the request. The server proxy then creates an empty ByteBuf

and stores in a HashMap, with the requests packet XID as the key. This is where

the response from the controller will be stored. The request is then forwarded to

the controller, and the method then enters a loop, checking for that buffer to be

filled. On each loop, there is a test for either the buffer containing two openflow

messages, or a single PacketOut message. Floodlight will reply to a PacketIn

either with both a PacketOut and a FlowMod packet if the destination is known,

or just a PacketOut with the flood action type if the destination is unknown.

The proxy parses responses and checks the action field on the packet out, setting

a flag if the output action is to flood. As the BFT-SMaRt library expects the

full response to a request to be sent in a single response, I must ensure that all

responses from the controller are gathered by the server proxy before forwarding

to the client (the controller send PacketOut and FlowMod packets separately).

176

6.6 Conclusion

6.5.3.3 Other Elements

Signatures As with the SDBFT proxy, signatures within BFT-SMaRt are also

provided using the java.security package. The signature handling within BFT-

SMaRt is hidden from the user. Signatures are enabled through the system.config

file, where the user is also able to configure the specific signature algorithm.

System State The BFT-SMaRt library maintains a view of the replicas through

the use of a system.currentview file. This file contains the state of the replicas,

and is used to reduce startup time. The issue with this file is that if the set of

replicas change, then the setup stage of the BFT-SMaRt protocol can fail as the

current real-world state is different to the state stored int his file. This is solved

by deleting this state file whenever any changes are made to the set of replicas.

6.6 Conclusion

In this chapter, I provide an overview of the practical implementation of the

SDBFT protocol, through the development of the SDBFT proxy, and the deploy-

ment of a modified instance of the Floodlight SDN controller. I also provide the

details of the implementation of a comparative system using a traditional BFT

approach, built using the BFT-SMaRt library. I use these implementations as

the basis of the evaluation in Chapter 8, using a number of testbed configurations

discussed in the next chapter.

177

Chapter 7

Experimental Setup

In this chapter I give an overview of the testbed setups and tools I make use

of to evaluate the performance of SDBFT. Three different experimental setups

are used, two virtual and one physical. The two virtual setups consist of a vir-

tual network consisting of virtual machines and OpenVSwitch virtual switches to

emulate a network setup similar to that found in a data centre, and a Mininet

virtual network used for testing more complex network topologies. Finally, I also

test with a commercial, off-the-shelf physical SDN switch to measure real world

performance. A summary of these testbeds can be seen in Table 7.1.

7.1 Testbeds

7.1.1 OpenVSwitch (OVS) Virtual Environment

I evaluate the system using a virtualised environment that resembles a simple dat-

acentre setup. The hardware consists of a server running the KVM hypervisor

and Open vSwitch (OVS) version 2.7. OpenVSwitch (OVS) in an open source,

production quality virtual switch designed for use in virtual environments, includ-

ing cloud deployments1. As a particular example, OVS is the core networking

1https://www.openvswitch.org

178

https://www.openvswitch.org

7.1 Testbeds

Table 7.1: Summary of testbeds

Testbed Type Size Equipment/Software
OpenVSwitch
Virtual En-
vironment

Virtual 1 Switch, 4
Hosts

CirrOS virtual hosts, Open-
VSwitch virtual switches, Flood-
light controller in Ubuntu Server
20.04 VM (1 per instance)

Mininet Virtual
(Simu-
lated)

1-10
Switches, 2
Simulated
Hosts

OpenVSwitch virtual switches,
emulated hosts managed by
Mininet, All Floodlight con-
troller instances running on host.

Physical
Switches

Physical
(Hard-
ware)

3 Switches,
4 Hosts

3 Dell EMC PowerSwitch S3048-
ON switches, 4 Raspberry Pi
4 hosts, Floodlight controller
instances running on physical
server

component used in the open source OpenStack cloud infrastructure platform1.

OVS supports many protocols, but of particular importance to me is its support

of the OpenFlow protocol which allows it to function as a SDN switch. The server

has 4 AMD Opteron 6376 16 core 2.3GHz CPUs, with 1TB RAM, and runs Cen-

tos 7. Controllers are run inside headless Ubuntu Server virtual machines with 4

vCPUs and 4GB RAM. The control and data planes are separated, such that the

controllers are connected to a Linux Virtual bridge deployed using ip link add

br0 type bridge, with virtual hosts connected to OVS virtual bridges (which

act as our SDN switches). The SDBFT proxy sits between the OVS bridge and

the Linux bridge.

In order to maximise server capacity an extremely lightweight Linux distri-

bution, cirrOS2, was used to create host virtual machines for baseline testing.

Originally designed for testing Openstack installations, it contains all basic OS

functionality, including ping and ssh support, which is ideal for our use case.

Tests are launched using a bash script, which uses SSH to run commands

on the controller VMs and cirrOS host VMs to start controller instance and

perform pings between hosts. An example of one of these scripts can be found in

1https://www.openstack.org
2https://launchpad.net/cirros

179

https://www.openstack.org
https://launchpad.net/cirros

7.1 Testbeds

Appendix B.1.

Since version 2.5, OVS has not worked with the Floodlight controller due

to extra fields sent along with PacketIn messages which Floodlight is unable to

parse, so OVS version 2.7 was patched to not send this extra data. The switches

were configured to use OpenFlow version 1.3 in all tests.

Baseline Setup An overview of the baseline experiment setup is provided in

Fig. 7.1. This setup consists of a basic topology of a single switch (an OVS bridge)

with four connected virtual hosts (cirrOS vm). The OVS bridge connects to the

controllers through a Linux virtual bridge, except for when a proxy is in use, in

which case this sits between the OVS bridge and Linux bridge, running directly

on the host OS. There are 10 controller VMs deployed within the system to allow

for testing with quorum sizes of 1 to 10 controllers.

OVS Bridge

Linux Bridge

Virtual Hosts

Controllers
(VMs)

Proxy (Host)

H1 H2 H3 H4

C1 C2 C3 CN...

Figure 7.1: Baseline Setup

7.1.2 Mininet

Mininet is a python-based network simulation tool, specifically designed for exper-

iment with software-defined networking [130]. Mininet deploys virtual switches

180

7.1 Testbeds

using OpenVSwitch, and can launch virtual hosts. The hosts are not virtual ma-

chines, rather they are spawned processes that can perform basic actions such as

pings or file transfers. Whilst Mininet can be launched using a simple command

line utility, deploying a basic topology of switches and hosts, the preferred ap-

proach is to write Python scripts which specify switches, hosts, the connections

between them and the actions that hosts can take. The advantage of Mininet is

that complex topologies can be deployed and torn down within seconds, far easier

that with the manual approach taken above.

To enable automation when running experiments, Mininet was configured

using Python scripts. An example of such a script, for launching a single switch,

single controller network with two hosts, and performing pings between the hosts,

is available in Appendix B.2. Note that this assumes that any controller instances

are already launched.

To run a complete experiment, a simple Bash script was used, an example

of which is available in Appendix B.3. In this example four instances of the

Floodlight controller are launched, along with an instance of the SDBFT proxy.

The Mininet Python script is then run. This bash and python script handles

a complete test run, and can be repeatedly launched using a looping script to

repeat the experiment the required number of times.

Mininet 2.2.2, utilising OpenVSwitch 2.9.8, is installed on Ubuntu Server

18.04.5 LTS. This is running on a Dell Precision T7610 workstation, equipped

with two Intel Xeon CPU E5-2650 processors (8 core, 16 thread, 2.0-2.8 GHz per

CPU) CPUs, along with 128GB RAM.

There is a slight issue when using Mininet with the SDBFT proxy. Whilst

a normal SDN switch will only make one connection to the controller, Mininet

actually makes two connections to the controller. Mininet will first make a con-

nection to the controller when adding a controller to the network using the

net.addController function (as can be seen in Appendix B.2), and then the

switch will connect to the controller once the controller is linked to the switch

using the switch.start function. As the proxy expects only one connection from

the switch at a time, this prevents the OpenFlow handshake from completing. To

prevent this, when using Mininet as a test platform, the first connection from a

switch is ignored, and the connection to the controllers is only initialised on the

181

7.1 Testbeds

second connection from the switch. This applies to both the SDBFT proxy, and

the BFT-SMaRt proxy.

7.1.3 Physical Switch

I also evaluate SDBFT with a physical, commercial SDN switch. I use a Dell EMC

PowerSwitch S3048-ON 1000BASE-T 48-port 1GbE top-of-rack (ToR) switch1,

which features support for SDN using OpenFlow (versions 1.1 and 1.3), and can

operate with 3rd party controllers and operating systems (the ON portion of the

model number represents Open Networking). The switch is running Dell EMC

Networking OS9 (specifically 9.13), and has been configured to use OpenFlow 1.3.

Configuration is carried out using a serial connection to the management port of

the switch for initial setup, and then through telnet to start and stop OpenFlow

instances.

The switch can simultaneously run as an SDN switch, and traditional switch,

depending on the specific configuration. To utilise SDN, OpenFlow instances

are launched, with either individual ports, or VLANs, assigned to that instance.

Any traffic over those ports or VLANS is then controlled using SDN. I use the

OpenFlow instance in VLAN mode — I create a VLAN and attach it to the

OpenFlow instance, and add the required ports to that VLAN. The OpenFlow

instance is assigned a remote controller, and when the OpenFlow instance is

started it will complete the handshake with the controller. When the OpenFlow

instance is stopped, the connection to the controller is closed and communication

will no longer happen between devices on the assigned VLAN.

Our physical setup is visible in Figures 7.2 and 7.3. Specifically, I use three

switches, S1, S2 and S3. Each one has ports 1-6 assigned to a vlan, which is

connected to the OpenFlow to the network, with 2 connected to S1, and one

each to S2 and S3. There is also a connection from S1-S2 and S2-S3 within the

OpenFlow VLANS. I call this the core network, forming a line topology. The

first switch has two further port groups assigned to two separate VLANS. The

first is used for orchestrating the Pi hosts over SSH. The second of these operates

1https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/

Documents/Dell-S3048-ON-Spec-Sheet.pdf

182

https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell-S3048-ON-Spec-Sheet.pdf
https://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell-S3048-ON-Spec-Sheet.pdf

7.1 Testbeds

H4H4H2H2H1H1

Server

Controller
1

Controller
2

Controller
3

Controller
4

Proxy 1 Proxy 2 Proxy 3

S1

H3H3

S2 S3

Eth0 Eth1

Key:

Switch-Controller

Pi Orchestrration

Network

Figure 7.2: Physical Network Setup Design

Figure 7.3: Physical Network Hardware

as a management network for the switches, with each switches management port

183

7.2 Simple TCP Proxy

connected into this port group. The switch management port is used for the

connection to the SDN controllers. The server has two connections into the

testbed, one for accessing the management network, and one for accessing the Pi

network. The three subnets (core, Pi orchestration and controller management)

are all assigned their own /24 subnet, with all IP addresses manually configured.

The server is a Dell PowerEdge R740 with two Intel Xeon Silver 4114 2.2G,

10C/20T CPUs, along with 192GB of RAM. Networking to the switches is through

a Broadcom 5720 Quad Port 1GbE ethernet card. The server is responsible for

running both proxy and controller instances. The SDN switches OpenFlow in-

stances are instructed to connect to a controller at the servers IP address on the

management network, with the port specifying which controller or proxy instance

each switch connects to.

7.2 Simple TCP Proxy

In order to measure the impact of introducing a proxy between the switch and

controller, I make use of a simple TCP proxy to provide baseline results. The

simple TCP proxy is based on the SDBFT proxy, however all packet processing

has been removed and so it only receives a messaged from the client, and forwards

it onto the server, and vice versa. The simple proxy is designed to only work with

a single client and server, and so, as is also the case with the SDBFT and BFT-

SMaRt proxies, an instance should be deployed for each switch in use. As the

proxy is limited to a single server connection, it can only connect to a single

controller and so all tests using the simple proxy use a single controller.

7.3 Measurement Tools

In order to capture experimental data the ping and Cbench tools re used for

testing the network performance of the SDN network and to benchmark the SDN

controller architecture.

184

7.3 Measurement Tools

7.3.1 Ping

The primary tool used to evaluate the performance of SDBFT and the compar-

ative BFT-SMaRt implementation is through use of the standard ping tool that

is distributed with most modern OSs. For the OVS and physical switch setups,

this is the ping client that is installed on the cirrOS virtual hosts on the virtual

testbed and Raspbian hosts as used with the physical switch. For the Mininet

setup, it is the ping tool that comes as part of Mininet. Ping is used for this as

it is a simple tool for testing connectivity between two hosts, and also outputs

packet latency for each individual packet sent, the first packet displaying the flow

setup time.

The output from the ping command was redirected to text files, which are

then parsed using a simple Java program to extract the latency values for the

required packets. For the majority of tests, this is the first packet as is the packet

which experiences delays due to flow setup, however for some tests I extract the

latency values for all subsequent packets.

7.3.2 Cbench

Cbench is an OpenFlow controller benchmarking tool available as part of the

OFLOPS framework1 for benchmarking OpenFlow switches [196]. Written in C,

Cbench launches a number of basic virtual switches (the default is 16, however

this is a tuneable parameter). In both cases a large number of PacketIn messages

are sent to the controller, and then the virtual switch waits for either a PacketOut

or FlowMod response. The latency and throughput modes differ as follows:

Latency Mode In latency mode, the switch sends a single PacketIN to the

controller, and waits for the response. On receiving the response, it will then

send another PacketIN, and repeat this process measuring how many requests

can be processed sequentially by the controller per second.

Throughput Mode In throughput mode, the switch fills a buffer (initial size

65535) with PacketIN messages, sends them all to the controller and sees how

1https://github.com/mininet/oflops

185

https://github.com/mininet/oflops

7.3 Measurement Tools

many responses are returned per second. The primary difference to latency

mode is that all the PacketIN messages are sent immediately without waiting

for responses between each packet. This test measures how many requests can

be handled concurrently, and in particular shows how well multi-threading is

implemented on the controller.

An example of Cbench running in throughput mode against a simple controller

can be found in Listing 7.1. In this example, 16 tests of 1 second each are

run, with the first discarded as a ‘warmup’ test. Only a single virtual switch is

used. The final output is an average of 208.39 responses/second, meaning that

the controller can, on average, handle 208 flows per second. Running against

the same controller with 16 switches results in a slightly lower average of 188.5

response/second, representing 10-13 flows per switch per second. this reduction

is due to overheads on the controller in handling a large number of requests form

multiple switches, as every switch sends 65535 packets at the same time.

As Cbench is designed to test a single controller, I had to modify the code

slightly to be able to test with more than a single virtual switch, as each switch

is required to connect to a different instance of the SDBFT proxy. To achieve

this, I hardcoded an integer array within the cbench.c class file that sets up a

connection to the controller for each virtual switch. Instead of using the default

6653 or user supplied port, the function will instead use the port number defined

in the array in the position matching the number of the virtual switch.

$./cbench -p 6653 -s 1 -t

cbench: controller benchmarking tool

running in mode ’throughput’

connecting to controller at localhost:6653

faking 1 switches offset 1 :: 16 tests each; 1000 ms per test

with 100000 unique source MACs per switch

learning destination mac addresses before the test

starting test with 0 ms delay after features_reply

ignoring first 1 "warmup" and last 0 "cooldown" loops

connection delay of 0ms per 1 switch(es)

186

7.4 Floodlight Configuration

debugging info is off

08:59:55.581 1 switches: flows/sec: 198 total = 0.197892 per ms

08:59:56.684 1 switches: flows/sec: 204 total = 0.203424 per ms

08:59:57.785 1 switches: flows/sec: 200 total = 0.199931 per ms

08:59:58.888 1 switches: flows/sec: 197 total = 0.196416 per ms

08:59:59.992 1 switches: flows/sec: 212 total = 0.211152 per ms

09:00:01.096 1 switches: flows/sec: 205 total = 0.204187 per ms

09:00:02.200 1 switches: flows/sec: 212 total = 0.211216 per ms

09:00:03.302 1 switches: flows/sec: 208 total = 0.207486 per ms

09:00:04.404 1 switches: flows/sec: 214 total = 0.213602 per ms

09:00:05.508 1 switches: flows/sec: 215 total = 0.214332 per ms

09:00:06.609 1 switches: flows/sec: 216 total = 0.215735 per ms

09:00:07.710 1 switches: flows/sec: 208 total = 0.207893 per ms

09:00:08.812 1 switches: flows/sec: 215 total = 0.214482 per ms

09:00:09.916 1 switches: flows/sec: 209 total = 0.208249 per ms

09:00:11.024 1 switches: flows/sec: 205 total = 0.203434 per ms

09:00:12.127 1 switches: flows/sec: 215 total = 0.214319 per ms

RESULT: 1 switches 15 tests min/max/avg/stdev = 196.42/215.74/208.39/5.70

responses/s

Listing 7.1: Example output of Cbench controller benchmarking tool. The ‘-p

6653 -s 1 -t’ parameters instruct the tool to connect to a controller running on

localhost port 6653, creating a single virtual switch and running in throughput

mode. Note that by default, the first test is discarded as a ‘warmup’

7.4 Floodlight Configuration

I deploy instances of the modified floodlight controller discussed in Section 6.4.

The primary modifications to the controller are that applications that respond

to switch requests set xID fields in the responses to match the requests (which is

not done by default), and when using the signed SDBFT protocol, an alternate

message serialiser and deserialiser that can sign and verify messages is used. When

187

7.4 Floodlight Configuration

using a direct controller connection or the simple TCP proxy, these changes have

no impact on performance. When using the OVS setup described in Section 7.1.1,

Floodlight instances are launched in individual virtual machines with unique IPs,

and all run OpenFlow on port 6653. When using the Mininet (Section 7.1.2) and

Physical (Section 7.1.1) testbeds, multiple Floodlight instances are deployed onto

the host, with sequential OpenFlow ports.

7.4.1 Applications

There are two primary routing applications that come as part of the Floodlight

package that I use for testing purposes: the LearningSwitch and the Forwarding

applications.

Learning Switch The LearningSwitch is a simple L2 learning-switch appli-

cation, a version of which can be found on many simple SDN controllers such

as NOX and RYU. On receiving a switch request as a PacketIn message, the

application will either forward the packet onto the next hop switch on the path

to the destination (if the port that leads to the destination is known), other-

wise the packet is flooded out all enabled ports. For both types of forwarding,

a PacketOut message is used. If the outbound port leading to the destination is

known, a flow rule is also installed into the switch table using a FlowMod packet.

The LearningSwitch will only forward and install a flow rule on a single switch

at a time. This has the downside that for a new flow, the controller needs to be

contacted by every switch on the path if suitable flow rules do not exist within

their tables. The benefit to consensus SDN is that this is a purely reactive ap-

proach: a switch sends a request to the controller, and only that switch receives

a response.

Forwarding The Forwarding application is the routing application loaded as

part of the default Floodlight configuration. The Forwarding application at-

tempts to build the full path to the destination when receiving a new flow through

a PacketIn message. This application uses the TopologyManager application,

188

7.5 Conclusion

which maintains information about the network topology and can compute short-

est paths between pairs of nodes using Dijkstra‘s algorithm. On receiving a

PacketIn message, the Forwarding application will query the TopologyManager

for the route to the packets destination. If one exists, then the application will

forward the packet out of the appropriate port (using a PacketOut message), and

then attempt to install flow rules on each switch along the route that it controls,

to allow the packet to be forwarded without querying the controller at each hop.

The benefit of this application is that it is far more efficient and results in re-

duced flow setup times, as the controller can pre-load the path onto all required

switches. The downside to this is that this then means that the applications

becomes partially proactive from the perspective of the subsequent switches on

the path, which will receive FlowMod without having seen a packet on the flow,

which then has to be handled by the proxy.

7.5 Conclusion

In this chapter I have given an overview of the experimental setup used to evaluate

the implementation of the SDBFT protocol and the comparative BFT-SMaRt

implementation. I discuss the various testbeds used, along with the measurement

tools used to gather data.

In the next chapter, I present the results of our evaluation of the SDBFT

protocol using the setup discussed in this chapter.

189

Chapter 8

Evaluating The SDBFT

Controller Architecture

8.1 Introduction

In this chapter I perform an experimental evaluation of the implementation of

the SDBFT system (outlined in Chapter 6), comparing against the BFT-SMaRt

approach described in Section 6.5 and a traditional SDN model with a switch

connected to and controlled by a single controller instance. Testing is performed

using the various testbeds described in Chapter 7.

As well as collecting a set of baseline results on the performance of the SDBFT

protocol, I also apply further tests to evaluate the real-world performance of the

SDBFT protocol, and analyse the benefits and drawbacks versus the BFT-SMaRt

implementation. This includes introducing faulty controllers into the network,

performing a stress test with a controller benchmarking tool and deploying the

protocol with a physical, commercial switch.

Our evaluation consists of the following tests, (summarised in Table 8.1):

Baselines This set of tests measure the baseline performance of the SDBFT

protocol in a single switch topology, versus the traditional SDN model and

BFT-SMaRt protocol. I measure performance with an increasing number of

190

8.1 Introduction

controllers forming the primary quorum, as well as measuring the performance

impact of introducing signed messages into the protocol.

Multi-Hop Path Tests I measure how well SDBFT can handle multiple

switches and routing flows across them.

Failure Operation I introduce compromised controllers into the network to

evaluate the SDBFT failover protocol, and compare this to the fault-tolerant

BFT-SMaRt protocol.

High Throughput Benchmark I use the Cbench controller benchmarking

tool to measure how well the SDBFT system performs under load.

Testing on Physical Switch I replace the virtual switches used in previous

tests with physical, commercial SDN switches to evaluate how well SDBFT

works when controlling physical switches and hosts.

Deployment of Hardware Proxy I deploy the SDBFT proxy onto a Rasp-

berry Pi to emulate a hardware proxy and measure the impact on performance

when running the proxy on a low cost, relatively low powered device.

Network Traffic Load I run the SDBFT and BFT-SMaRt protocols and cap-

ture the network traffic generated by the two protocols. I measure the differ-

ence in network load that arises from the two protocols.

8.1.1 Method of Analysis

Each experiment in this evaluation shows summary results of repeated tests (for

most tests n = 50), with median (η), mean (µ) and standard deviation (σ) pre-

sented for each. In the majority of tests I measure the flow setup time in mil-

liseconds, measured through the use of a ping request and extracting the round

trip time of the first packet. A baseline is generated using a traditional single

controller setup. This is standard practice with the literature as it can be used to

directly measure the additional overhead of the modified control plane by mea-

suring the difference in the round trip time between the baseline and modified

controller. I test for statistical significance of key results.

191

8.1 Introduction

Table 8.1: Summary of experiments

Experiment Testbed Purpose
Baseline OVS Baseline performance, effect of signature use
Multi-hop Path
Tests

Mininet Performance over longer network path lengths

Failure Opera-
tion

OVS Ability to handle failures and impact on per-
formance

High Through-
put Benchmark

None
(Cbench
tool)

Ability of solution to handle large volume of
requests (controller load)

Physical Switch Physical Deployment of solution to physical switch and
verify performance on real-world hardware

Hardware Proxy Physical Viability of proxy to physical hardware
(bump-in-the-wire) for existing switches

Traffic Volume OVS Network overhead (number of packets) of so-
lution

I make use of one of two methods to compute statistical significance. Where

the test results are non-normally distributed (determined by visual inspection

of the data combined with application of the Shapiro-Wilk’s test [213]), an

independent-sample Mann-Whitney U test is used [144]. If the data is normally

distributed, then an independent t-test is used. In both cases, the result is classed

as significant if p < 0.05. Both tests measure if there is a statistically significant

difference between two sets of samples. If p > 0.05, then the two samples are said

to be not statistically significantly different from each other, and therefore equal.

When using the Mann-Whitney U test, effect size is measured using the stan-

dardised effect size, computed as

z√
n1 + n2

where z is the z-statistic outputted by the Mann-Whitney U test, and n1 and

n2 are the size of the two samples. The z-statistic reflects the difference between

two samples — a negative value indicates that elements of the second sample are

on average greater than the first. When using the independent-variable t-test,

effect size is computed using the Cohen’s d measure of the standardised difference

192

8.2 Baselines

between two means, which assigns a value from 0 to infinity [53]. Cohen’s d is

computed as:
MeanSample1 −MeanSample2

Pooled Standard Deviation

Effect size classifications, drawn from the literature, are shown in Table 8.2 [53,

222].

Effect Size Classification
<0.2 None (S)
0.2-0.49 Small (S)
0.5-0.79 Moderate (M)
0.8-1.29 Large (L)
>1.3 Very Large (VL)

Table 8.2: Cohen‘s d effect size classification [53, 222]

8.2 Baselines

This set of experiments is designed to measure the core performance of the

SDBFT proxy, enabling comparison against the traditional SDN model and the

BFT-SMaRt system. These experiments are broken down into four main tests:

Traditional Model This simple test replicates the traditional SDN model of a

single switch communicating directly with a single controller. This provides

a baseline to compare against.

Effect of Proxy I use a simple TCP proxy to measure the impact of a proxy

between the switch and controller, without performing any processing on mes-

sages other than forwarding. This measures how much additional latency is

introduced through my decision to implement the additional switch side pro-

cessing as a proxy. By measuring this extra latency, I can estimate perfor-

mance of the SDBFT system if it were implemented directly into the switch.

Effect of Multiple Controllers In this test, I measure the performance of

the SDBFT system, as well as BFT-SMaRt, with an increasing number of

controllers forming the primary quorum. This measures how well the system

scales to a greater number of replicas to provide tolerance to a larger number

193

8.2 Baselines

of faults. Testing SDBFT with a single controller allows me to measure the

impact of the extra packet processing that occurs on the proxy.

Signature Use In this final test, I add signatures to messages between the

switch and controller and measure the impact on performance. Cryptographic

signatures are computationally expensive and so this test measures how much

extra latency is introduced through signature use.

8.2.1 Setup

I perform these tests using the OVS-based virtual network (as discussed in 7.1.1).

I use a simple topology of four virtual hosts connected to a single OVS bridge.

This topology can be seen in Figure 8.1. In each test, I perform a ping between

hosts H3 and H4 to warmup the controller (the first flow setup after launching

the controller is substantially slower than for further flows). I then perform two

pings between hosts H1 and H2, logging the flow setup time for the second flow.

I only log the second flow because during the first flow setup the controller is still

learning which ports devices are connected to, which provides unreliable results

for flow setup times in the normal case. These two pings are performed six seconds

apart, because the default flow rule expiration on inactivity set by Floodlight is

5 seconds. For all tests the default Forwarding routing application (as discussed

in 7.4) is used by Floodlight.

S1

H1

H2

H3

H4

Figure 8.1: Simple network used for baseline testing

The specific setups for each of the four baseline tests are as follows:

Traditional Model The switch is connected directly to a single instance of the

Floodlight controller.

194

8.2 Baselines

Effect of Proxy I deploy the simplified TCP proxy (described in Section 7.2)

which is connected to a single controller.

Effect of Multiple Controllers I use the full SDBFT and BFT-SMaRt proxy

setups and connect to multiple controllers. For SDBFT, I are able to test

with 1–10 controllers. For BFT-SMaRt, I test with 4–10 controllers (4 is the

minimum number required for the protocol to function). Each controller is

running inside its own virtual machine. Messages are unsigned in this test.

BFT-SMaRt is run in both the default ordered mode, where client request

order is maintained and the full BFT protocol is run. Unordered mode, where

the server replicas simply return the result to the client, is also used. I test

with unordered mode because BFT-SMaRt uses Netty sockets rather than

the standard Java sockets used in SDBFT. Netty sockets, unlike Java sockets,

are non-blocking. The primary difference between blocking and non-blocking

sockets is that blocking sockets hold up execution whilst waiting to read data

from the socket. Non-blocking sockets by contrast allow execution to continue,

utilising a listener to process incoming data. This has benefits for programs

with multiple concurrent connections.

Signature Use Finally, I use the SDBFT and BFT-SMaRt proxies with

signed messages. For SDBFT, I use the signed version of the proxy,

whilst the Floodlight controller uses modified message serialiser/dese-

rialisers. For BFT-SMaRt, signatures are activated by setting the

system.communication.useSignatures option ‘1’ in the system.config

file. Because both the SDBFT and BFT-SMaRt use the Java Security sig-

nature system, I can use the same algorithm specification for each. I test

using the SHA512withRSA option (which uses a SHA512 hash signed using

RSA with a 1024 bit key), which is the default option for BFT-SMaRt. I also

test using the SHA256withRSA option, which uses a SHA256 hash signed using

RSA with a 512 bit key. I test both options because the differing key sizes

have substantially different impact on latency, representing a tradeoff between

greater cryptographic security vs performance. SHA512 with 1024 bit RSA

is the strongest signature provided by the Java Security library. RSA 512 is

195

8.2 Baselines

breakable within a few hours and for $100 when using the cloud1, therefore

is shown for comparison only. Key generation uses a fixed seed, allowing all

parties to compute the same set of keys for signing. Whilst this is not at all

secure, it is sufficient for allowing me to measure the impact of signature use.

8.2.2 Results

10

15

20

25

30

35

40

45

50

55

60

D
ire

ct

Pro
xy

Setup

F
lo

w
 S

e
tu

p
 T

im
e

 (
m

s
)

Figure 8.2: Flow setup time for a direct controller connection, and through a
simple TCP proxy. X=mean.

Traditional Model A single direct controller achieves a median flow setup

time of of 12.18ms (µ=13.53ms σ=5.87), shown in Figure 8.2 and Appendix C.1.

Table C.1). There is one particularly large outlier of 49.939ms. I believe that

these are caused by the Floodlight controller (a large, complex, multi threaded

Java application) — the controller regularly communicates with the switch for

liveness tests and to broadcast LLDP traffic, which if occurring at the same time

as the flow setup test can result in a small amount of additional latency.

1https://github.com/eniac/faas

196

https://github.com/eniac/faas

8.2 Baselines

Effect of Proxy Figure 8.2 shows a slight increase in flow setup time when

introducing a simple TCP proxy (η=13.98, µ=15.62ms ,σ=7.59), a statistically

significant increase over the direct controller connection (Mann-Whitney U: U =

578, z = −4.6292, p < 0.00001, effect = 0.46(S)), however the effect size is small,

so further testing may be needed to establish if this difference is truly consistent

over a larger testing regime.

Effect of Multiple Controllers In Figure 8.3 I present the results of SDBFT,

when using non-signed messages (see Appendix C.1 Table C.1 for complete results

and statistical significance tests compared to the direct controller connection).

All controller counts represent a statistically significant increase over the direct

controller connection (see Appendix C.1 Table C.1). For a single controller, the

median flow setup time is 15.75ms (µ=16.05ms, σ=2.01), increasing to 28.92ms

(µ=30.0ms, σ=8.32) for 10 controllers. For a single controller, this represents a

statistically significant increase over a direct controller connection with a mod-

erate effect size (Mann-Whitney U: U = 2286, z = −7.13857, p < 0.00001, ef-

fect = 0.71(M)). This is also a statistically significant increase over the simple

TCP proxy, although with a small effect size (Mann-Whitney U: U = 616, z =

−4.3672, p < 0.00001, effect = 0.44(S)), suggesting that the additional process-

ing required by SDBFT has only a minimal impact. This is as expected, as the

additional processing required by SDBFT for a single controller is minimal. Ap-

pendix C.1 Table C.2 shows that each additional controller adds minimal extra

latency, with each additional controller introducing a statistically significant (but

small effect) increase over the previous one. This is as expected, as the primary

source of latency is the SDBFT proxy. It is believed that the additional latency

per extra controller comes from an additional socket write to send to each con-

troller, and the deserialising of the response to process the OpenFlow messages

and check all responses match. The controllers themselves can process packets

in parallel and, in the absence of signatures, perform no additional operations

on requests compared to a standard deployment. The amount of variance does

increase with additional controllers, as shown by the standard deviation values

for each test. This is likely due to variance in network latency on the proxy-

controller connections, as well as the variance in a single controller responding to

197

8.2 Baselines

BFT Unor 10

BFT Unor 9

BFT Unor 8

BFT Unor 7

BFT Unor 6

BFT Unor 5

BFT Unor 4

BFT Ord 10

BFT Ord 9

BFT Ord 8

BFT Ord 7

BFT Ord 6

BFT Ord 5

BFT Ord 4

SDBFT 10

SDBFT 9

SDBFT 8

SDBFT 7

SDBFT 6

SDBFT 5

SDBFT 4

SDBFT 3

SDBFT 2

SDBFT 1

Proxy

Direct

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

Flow Setup Time (ms)

Te
st

Figure 8.3: Unsigned protocol flow setup time (ms) for 2–10 controllers in quorum
using SDBFT vs. 4–10 controllers using the BFT-SMaRt protocol in ordered and
unordered mode. X=mean. 50 repetitions.

198

8.2 Baselines

messages (which can be seen in the direct controller connection results presented

in Figure 8.2). All controllers need to return a response in order for the protocol

to complete, therefore additional latency on any single controller will result in a

slower flow setup time; a greater number of controllers increases the chance that

this may occur.

The results for BFT-SMaRt are presented in Figure 8.3. All tests show a sta-

tistically significant increase over the direct controller connection, with a large ef-

fect size (see Appendix C.1 Table C.1). When using 4 controllers in ordered mode,

the median setup time is 38.5ms (µ=43.7ms, σ=25.03), increasing to 53.14ms

(µ=66.27,σ=38.98) when using 10 controllers. This is a substantial increase over

SDBFT with a large effect statistical significance, as seen in Appendix C.1 Ta-

ble C.3. For example, if I compare this to SDBFT when using 4 controllers the

difference is statistically significant with a moderate effect size (Mann-Whitney

U: U = 143, z = −7.62815, p < 0.0001, effect = 0.76(M)), supporting my finding

that BFT-SMaRt results in significantly higher flows setup times than SDBFT.

The amount of variance is also substantial when using BFT-SMaRt. This is in

particular noticeable for 7 and 8 controllers, where the median setup times are

71.61ms (µ=96.51ms,σ=71.33) and 70.44ms (µ=94.75ms, σ=67.26) respectively.

This variance is largely caused by a number of outliers, as can be seen in Fig-

ure 8.3. This large amount of variance makes a direct comparison more difficult,

although as show in Appendix C.1 Table C.3, this is still statistically significant

against SDBFT (with a large effect size).

When using BFT-SMaRt in unordered mode, which forgoes the full BFT

protocol, the results are closer to those of SDBFT. The median flow setup time

increases only slightly from 26.39ms(µ=26.61ms,σ=2.49) when using 4 controllers,

up to 29.5ms (µ=30.45ms, σ=8.72) when using 10 controllers. This is as expected.

Firstly, BFT-SMaRt uses Netty sockets, which are very efficient for broadcasting,

meaning there little extra latency introduced through sending requests to extra

controllers. Secondly, the system only needs to receive a majority of matching

responses in order to reach consensus, and pass the result onto the switch. It is

worth noting that BFT-SMaRt is intended to be used in ordered mode only, and

so this data is presented for comparison of the sockets used only.

199

8.2 Baselines

BFT Unor 10

BFT Unor 9

BFT Unor 8

BFT Unor 7

BFT Unor 6

BFT Unor 5

BFT Unor 4

BFT Ord 10

BFT Ord 9

BFT Ord 8

BFT Ord 7

BFT Ord 6

BFT Ord 5

BFT Ord 4

SDBFT 10

SDBFT 9

SDBFT 8

SDBFT 7

SDBFT 6

SDBFT 5

SDBFT 4

SDBFT 3

SDBFT 2

SDBFT 1

Proxy

Direct

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

Flow Setup Time (ms)

Te
st

Figure 8.4: Signed protocol using SHA512withRSA flow setup time (ms) for 2–10
controllers in quorum using the SDBFT approach vs. 4–10 controllers using the
BFT-SMaRt protocol in ordered and unordered mode. X=mean. 50 repetitions.

200

8.2 Baselines

Signature Use Figure 8.4 presents the flow setup times for SDBFT when using

the SHA512withRSA algorithm in the Java Security library, which uses RSA with

a 1024 bit key to sign SHA512 hashes of the message. Appendix C.1 Table C.4

contains full results and statistical significance tests against a direct controller

connection, whilst Table C.6 show statistical significance against the unsigned

protocols with equivalent controller counts. For SDBFT, the median flow setup

time for a single controller is 31.18ms (µ=32.02ms, σ=4.19), increasing to 47.37ms

(µ=54.16ms, σ=31.74) when using 10 controllers. Both are statistically signif-

icantly different to the direct controller connection with a large effect size (see

Appendix C.1 Table C.4). The increase in median between 1 and 10 controllers

when using a signed connection (31.18 vs 47.37) is a smaller relative increase

compared to the unsigned version (15.75 vs 28.92). When using signatures, sign-

ing is the more expensive operation, which is only performed once per request by

the proxy before forwarding to the controllers. When the controllers are signing

the responses, this happens across all of them in parallel and so there is little

additional impact through using additional controllers.

Similarly, the results for ordered BFT-SMaRt show an impact when using

signatures, as presented in Figure 8.4. The median flow setup time ranges from

56.77ms (µ=71.66ms, σ=42.83) up to 63.18ms (µ=64.83ms, σ=8.32) for 4 to 10

controllers respectively. These are interesting results. There is an immediate ef-

fect when using 4 controllers, with a statistically signifiant increase with moderate

effect size when using signatures over the unsigned version (Mann-Whitney U:

U = 147, z = −7.59354, p < 0.0001, effect = 0.76(M)). However, with an increas-

ing number of controllers, this impact reduces and in fact for 8 and 10 controllers

the flow setup time is lower than when not using signatures. The results for 7

(Mann-Whitney U: U = 1081, z = −1.16161, p = 0.2454, effect = 0.12(N)) and

8 (Mann-Whitney U: U = 1155, z = −0.65147, p = 0.5147, effect = 0.07(N))

show no statistical significant difference over the unsigned versions. The use of

signatures is managed within the BFT-SMaRt library, with just the algorithm

configured to use signatures through the configuration file. As with the SDBFT

case, server replicas can perform signatures in parallel, and so, as with SDBFT

the introduction of additional controllers should have minimal impact. This re-

sult, along with the unsigned results, indicates there may be some issue with the

201

8.2 Baselines

BFT-SMaRt library which introduces additional latency when using more than

4 to 5 replicas, which masks the additional latency caused by signature use.

BFT Unor 10

BFT Unor 9

BFT Unor 8

BFT Unor 7

BFT Unor 6

BFT Unor 5

BFT Unor 4

BFT Ord 10

BFT Ord 9

BFT Ord 8

BFT Ord 7

BFT Ord 6

BFT Ord 5

BFT Ord 4

SDBFT 10

SDBFT 9

SDBFT 8

SDBFT 7

SDBFT 6

SDBFT 5

SDBFT 4

SDBFT 3

SDBFT 2

SDBFT 1

Proxy

Direct

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

Flow Setup Time (ms)

Te
st

Figure 8.5: Signed protocol using SHA256withRSA flow setup time (ms) for 2–10
controllers in quorum using the SDBFT approach vs. 4–10 controllers using the
BFT-SMaRt protocol in ordered and unordered mode. X=mean. 50 repetitions.

202

8.2 Baselines

Figure 8.5 shows the performance when using the less secure SHA256withRSA

algorithm, which uses RSA with 512 bit keys to sign SHA256 hashes. Ap-

pendix C.1 Table C.5 contains full results and statistical significance tests against

a direct controller connection, whilst Table C.7 show statistical significance against

the unsigned protocols with equivalent controller counts. In the case of SDBFT,

whilst all tests show the addition of signatures results in a statistically significant

differences in flow setup time, as the number of controllers increases, the effect

size decreases from large to small. Interestingly, increasing from 2 to 3 and 3 to

4 controllers actually results in a slight reduction in median setup time (24.92ms

vs 29.74ms), however this is not statistically significant (3 to 4 Mann-Whitney

U: U = 1323, z = −0.4998, p = 0.6172, effect = 0.05(N)). It is likely this is

caused by the outliers visible in Figure 8.5 for 2 and 3 controllers, skewing the

distribution of the data and inflating means.

BFT-SMaRt, as shown in Figure 8.5, experiences a similar reduction in ad-

ditional latency when using 4 controllers using the smaller key size (with a me-

dian flow setup time of 56.03ms (µ=56.9ms, σ=5.06)), however makes little dif-

ference when using 10 controllers, with a median flow setup time of 63.64ms

(µ=63.66ms, σ=5.87). In the unordered case, the result are very similar to the

SHA512withRSA case (for example, the Mann-Whitney U result for 10 controllers

between SHA256 and SHA512 is U = 1202.5, z = −0.324, p = 0.7459, effect

= 0.032(N), which shows no statistically significant difference between the two),

further confirming that the use of signatures within BFT-SMaRt has a minimal

impact on latency.

8.2.3 Discussion

Effect of Proxy I find that the addition of the proxy alone results in a small,

but significant increase in latency compared to a direct connection. This is a

median flow setup time of 13.98ms. When I use the unsigned SDBFT proxy with

a single controller, this median flow setup time increases to just 15.75ms. From

this, I can infer that the additional processing when using the SDBFT proxy

only introduces 1-2ms extra latency, with the use of a proxy responsible for a

substantial proportion of the additional delay over a direct connection. From

203

8.2 Baselines

this I can reason that if the SDBFT protocol were to be built directly into a

switches firmware, then the flow setup time when using SDBFT could be much

closer to a direct controller connection. This isn’t true of BFT-SMaRt where

a minimum of 4 controllers are used, with a median setup time is 38.5ms, an

almost 25ms increase over the simple proxy, compared to around 7ms when using

SDBFT with 4 controllers.

Effect of Multiple Controllers When increasing the number of controllers,

both SDBFT and BFT-SMaRt scale well. However, I find that even when using

10 controllers, SDBFT outperforms BFT-SMaRt using just 4 controllers.

I do find some unusual results when using SDBFT, in that when using signa-

tures with 4 and 8 controllers (when using SHA512withRSA) and 4 controllers

(when using SHA256withRSA) both result in a reduction in flow setup time when

compared to 3 and 7 controllers respectively. It is unclear why this occurs, how-

ever it is worth considering that across all of these tests, the difference between

a single and 10 controllers is relatively small across each test, with only a small

difference in adding each additional controller (as shown by significance tests in

Appendix C.1 Table C.8), and so normal variance could account for these anoma-

lies.

Signature Use I find that, even when using the stronger SHA512withRSA

encryption, the SDBFT proxy performs well, increasing flow setup time by ap-

proximately three times compared to a direct controller connection. Using the

less secure SHA256withRSA halves this increase. This is as expected, because

the signing time for SHA256withRSA is around half that of SHA512withRSA. To

demonstrate this, if I sign a 32 character string 1000 times using SHA512withRSA

with a 1024 bit key, the mean signing time is 0.378ms, and mean verifying time

just 0.027 ms. The signing time is reduced to 0.179ms for signing when using the

SHA256withRSA signing algorithm with a 512 bit key. The verification time re-

mains constant across both algorithms, with signing being the far more expensive

operation. Note that these examples are from a test run on a Macbook Pro 2.3

GHz Quad-Core Intel Core i5. As well as the actual signing action itself, when us-

ing signatures the SDBFT proxy and controller signed message deserialiser have

204

8.3 Multi hop path test

to perform extra processing on received packets. The proxy and controller re-

ceive byte arrays, and have to manually read the OpenFlow packet length before

extracting the OpenFlow message bytes and signature bytes before the Open-

Flow library can parse the message, and the signature can be verified. This is

an expensive operation which is not required when not using signatures and so

likely accounts for a proportion of the additional latency. To verify this, I mea-

sure the time taken to complete the parsing on the both the unsigned and signed

implementations. Note that on the signed version, this includes the verification

of signatures. If I take a simple message, an EchoRequest from the controller,

in the unsigned version this only takes around 0.03ms-0.04ms to parse the mes-

sage. In the signed version, this increases substantially to 0.15-0.3ms. If I remove

the verification step from the signed version, the parsing still requires 0.035ms-

0.055ms, an increase on the unsigned version. This shows that the majority of

this latency originates from the verification step. It is also worth noting that the

verification is only one side of the communication. If I measure the time to sign

and append the signature of an EchoReply (which is identical to the matching

request), this takes around 0.5ms. Whilst individual messages do not introduce

a large amount of latency individually, a flow setup for a ping requires at least 6

messages to be sent (a PacketIn from the switch to the controller, and a FlowMod

and PacketOut in response, repeated in both directions of travel), which all need

to be signed, parsed and verified.

8.3 Multi hop path test

While measuring a single hop path can provide insight into the raw performance

of the controller, in most cases in the real world paths are longer than this.

Introducing longer paths will produce a cumulative additional delay. To measure

this effect, I measure flow setup time for a line topology of increasing length (from

1–10 switches), with a host connected at either end. For this test, I compare a

direct controller connection, through a simple tcp proxy, through the SDBFT

proxy and through the BFT-SMaRt proxy.

205

8.3 Multi hop path test

8.3.1 Setup

The mininet setup was used for this test. Mininet was used here, as it allows

the easy deployment of more complex topologies. In each test, I launch the

controllers, then any required proxies, and then launch Mininet. When using the

simple and SDBFT proxies, an instance of the proxy is deployed for each switch.

When using BFT-SMaRt, an instance of the client proxy is deployed for each

switch, along with an instance of the server proxy for each controller.

I then perform two pings between the pair of hosts, and log the flow setup

time for the second ping. The LearningSwitch Floodlight application was used

for control. I use this application rather than the Forwarding application as it

will only install flow rules on a single switch at a time, rather than attempt to

build the full route on the first packet seen, allowing me to measure the worst

case scenario.

BFT-SMaRt is only run in ordered mode in this test, as that is the intended

mode of operation by the library. For SDBFT and BFT-SMaRt, 4 controllers are

used. When using signatures, SHA512withRSA signatures using a 1024 bit RSA

key are used. Each test is repeated 50 times.

8.3.2 Results

Baseline Figure 8.6 shows the flow setup time for 1 to 10 switches with a

direct connection from the switches to a single controller, and with all switches

connecting to a single controller through a simple TCP proxy deployed for each

switch (see Appendix C.2 Table C.8 for full results, and significance test results

of unsigned protocols against the direct controller connection). The results for

these tests are normally distributed (confirmed through visual inspection and

application of the Shapiro Wilks test), so a two sample T-test is used instead of

Mann-Whitney U tests for this data.

For a direct controller connection, each additional switch on the path adds

a similar amount of additional latency in flow setup time of 3-4ms per switch.

The median flow setup time for a single switch is 4.07ms (µ=3.98ms, σ=0.64),

increasing to 30.9ms (µ=30.35ms, σ=3.34) for 10 switches. With the addition of

206

8.3 Multi hop path test

a simple TCP proxy, shown in Figure 8.6, there is a large statistically significant

increase over the direct connection to 4.86ms (µ=4.78ms, σ=1.06) for a single

switch (T-test: t = −4.57884, df = 81.01979, p < 0.00001, effect = 0.90(L)), up

to 42.15ms (µ=41.32ms, σ=4.19) for 10 switches (T-test: t = −14.46773, df =

93.32191, p < 0.00001, effect = 2.89(V L)). With each additional switch the effect

size increases (see Appendix C.2 Table C.8) which is expected, due to the effects

of additional latency caused by the addition of a proxy being cumulative with

each additional switch.

Unsigned Communication For unsigned communication, SDBFT, shown in

Figure 8.7 also follows the clear pattern of increasing latency as the path length

increases. For a single switch, the median latency is 7.89ms (µ=7.81ms, σ=1.1),

increasing to 53.65ms for 10 switches (µ=53.72ms, σ=6.84), with each switch

adding an additional 5-7ms extra latency. This represents statistically significant

increase over the direct connection with a very large effect size for all path lengths

(see Appendix C.2 Table C.8).

BFT-SMaRt median flow setup time increases from 22.105ms (µ=21.95ms,

σ=1.44) for a single switch up to 152ms (µ=151.76ms, σ=7.8) for 10 switches,

with an additional latency of approximately 15ms per switch. This represents a

very large increase in latency over a direct controller connection, both statistically

significant with a very large effect size ((T-test: t = 80.34816, df = 67.76206,

p < 0.00001, effect = 16.07(V L)) for 1 switch, (T-test: t = 101.15677, df =

66.34967, p < 0.00001, effect = 20.23(V L)) for 10 switches). Appendix C.2 Ta-

ble C.10 provides a cross-comparison T-test between SDBFT and BFT-SMaRt,

and shows that for all path lengths, BFT-SMaRt provides statistically significant

increased flow setup times, with very large effect size. This clearly demonstrates

that SDBFT far outperforms BFT-SMaRt. As an example, a 10-hop path is a

statistically significant 183% increase over SDBFT (T-test: t = −66.81835, df =

96.34406, p < 0.00001, effect = 13.26(V L)), although the BFT-SMaRt approach

is more consistent, with less relative variance than the SDBFT approach.

Signed Communication As expected, the signed communication follows a

similar pattern to the unsigned and baseline results. Figure 8.8 shows the perfor-

207

8.3 Multi hop path test

Simple 10

Simple 9

Simple 8

Simple 7

Simple 6

Simple 5

Simple 4

Simple 3

Simple 2

Simple 1

Direct 10

Direct 9

Direct 8

Direct 7

Direct 6

Direct 5

Direct 4

Direct 3

Direct 2

Direct 1

0 4 8 12 16 20 24 28 32 36 40 44 48

Flow Setup Time (ms)

S
w

itc
he

s

Figure 8.6: Flow setup time (ms) for increasing path lengths of 1 to 10, with
a direct controller connection, and through a simple TCP proxy. X=mean. 50
repetitions.

208

8.3 Multi hop path test

Simple 10

Simple 9

Simple 8

Simple 7

Simple 6

Simple 5

Simple 4

Simple 3

Simple 2

Simple 1

Direct 10

Direct 9

Direct 8

Direct 7

Direct 6

Direct 5

Direct 4

Direct 3

Direct 2

Direct 1

0 4 8 12 16 20 24 28 32 36 40 44 48

Flow Setup Time (ms)

S
w

itc
he

s

Figure 8.7: Flow setup time (ms) for increasing path lengths of 1 to 10, with
SDTBFT and BFT-SMaRt, without using signatures. X=mean. 50 repetitions.

mance of SDBFT when using signed messages. Appendix C.2 Table C.9 presents

full results and T-Test significance tests against the direct controller connection.

209

8.3 Multi hop path test

A single switch has a median latency of 10.5ms (µ=10.51ms, σ=1.54), increas-

ing to 69.55ms (µ=69.54ms, σ=6.29) at 10 switches, both statistically significant

with a very large effect size ((T-test: t = −27.68683, df = 65.70923, p < 0.00001,

effect = 5.54(V L)) for 1 switch, (T-test: t = −38.89269, df = 74.53187, p <

0.00001, effect = 7.78(V L)) for 10 switches). Interestingly, increasing from 8 to 9

switches results in no statistically significant increase in flow setup time (T-test:

t = −0.4254, df = 96.3133, p = 0.6715, effect = 0.085(S)). It is unclear why this

occurs, as there are no extreme outliers in the results for either 8 or 9 switches,

and both have similar variance of 4.73 and 4.14. Further testing may be needed

to establish if this difference is truly consistent over a larger testing regime.

The results for BFT-SMaRt follow a clearer pattern. A single switch has a

mean flow setup time of 30.05ms (µ=29.83ms, σ=2.38, median=30.05ms), increas-

ing to 223ms (µ=223.58, σ=8.53) for 10 controllers, both statistically significant

with a very large effect size when compared to the direct controller connection.

((T-test: t = 74.23714, df = 56.16721, p < 0.00001, effect = 14.85(V L)) for 1

switch, (T-test: t = 149.14835, df = 63.65559, p < 0.00001, effect = 29.83(V L))

for 10 switches). As in the unsigned case, this represents a significant increase

on the direct controller connection. Appendix C.2 Table C.11 shows that in all

cases, the results for BFT-SMaRt are statistically significantly higher than those

when compared to SDBTF when using signatures, demonstrating clearly that, as

with the unsigned case, SDBFT far outperforms BFT-SMaRt.

8.3.3 Discussion

In this test, I evaluate the performance of the SDBFT and BFT-SMaRt proxies

when setting up multi-hop routes. I find that both systems scale as expected, with

a stable increase in flow setup time with each additional switch that is introduced.

When using unsigned messages, the flow setup time for a 10-hop path is almost

three times as much when using BFT-SMaRt compared to SDBFT. This is also

reflected in the signed results, with an approximate 2.5 times increase in flow

setup time for a 10-hop path.

This result shows that the SDBFT proxy performs well when handling multi-

hop routing. The difference between the direct controller connection and SDBFT

210

8.3 Multi hop path test

BFT 10

BFT 9

BFT 8

BFT 7

BFT 6

BFT 5

BFT 4

BFT 3

BFT 2

BFT 1

SDBFT 10

SDBFT 9

SDBFT 8

SDBFT 7

SDBFT 6

SDBFT 5

SDBFT 4

SDBFT 3

SDBFT 2

SDBFT 1

0 10 20 30 40 50 60 70 80 9010
0
11

0
12

0
13

0
14

0
15

0
16

0
17

0
18

0
19

0
20

0
21

0
22

0
23

0
24

0

Flow Setup Time (ms)

S
w

itc
he

s

Figure 8.8: Flow setup time (ms) for increasing path lengths of 1 to 10, with
SDTBFT and BFT-SMaRt, using signatures. X=mean. 50 repetitions.

is slightly greater than found in my baseline tests found in Section 8.2, with

roughly twice as much of an increase in flow setup time when compared to the

211

8.4 Failure operation

baseline test. This same pattern is also found with when using BFT-SMaRt,

so is potentially down to CPU differences in the host machine on which the

experiments are run.

For both SDBFT and BFT-SMaRt, the effect sizes when compared to the

direct connection, seen in Appendix C.2 Tables C.8 and C.9, do not increase or

decrease with longer path lengths (though they do vary), an effect not seen with

the simple TCP proxy where the effect size steadily increases with longer path

lengths. This effect occurs both when using signatures, and without. In both

cases median flow setup times increase steadily with each additional switch.

8.4 Failure operation

In this set of experiments, I aim to measure the performance of the SDBFT

controller architecture whilst an attack occurs. More specifically, I measure the

latency introduced when the failover handover operation occurs, and the perfor-

mance of subsequent new flows using the expanded quorum of controllers.

8.4.1 Setup

I make use of the OVS-based setup described in 7.1.1. The network consists of four

hosts (H1, H2, H4, H4) connected to a single switch (as shown in Figure 8.1). I

load the AmplifiedDOS malicious application (as described in 4.4), with a single

host being targeted (H4). I measure the time taken for flow setup under no

attack, flow setup on the flow where the attack initially occurs, which includes

the time taken to contact the backup controllers after the primaries, and then

for the following flow setups using the expanded controller quorum, with the

attack continuing. For SDBFT I measure performance using a primary quorum

of 4 controllers, with 3 further controllers as backup. I compare this with the

traditional BFT approach utilising 4 controllers (to handle a single faulty node).

In this scenario, a single controller is malicious.

I then load the TargetDropper malicious application (described in Section 4.4),

which installs an empty flow rule onto the switch with no actions, causing packets

212

8.4 Failure operation

on the target flow to be dropped by the switch. This application is used as it

has a clear effect on the network, in that if the attack is successful, then the

target flow will undergo a denial-of-service attack. In this test, I make 3 of the 4

controllers malicious. Each experiment is repeated 20 times.

8.4.2 Results

The results for a single failure are presented in Figure 8.9 and Table 8.3. As

can be seen, there is a large increase in latency on the flow where the attack

occurs, with a median flow setup time of 197.9ms (µ=193.98ms, σ=18.57), as

the protocol contacts the secondary quorum. This then stabilises at 27.26ms

for subsequent flows. This is a statistically significant increase over the setup

time before the attack (Mann-Whitney U: U = 62, z = −3.9133, p < 0.0001,

effect = 0.59(L)), however this increase in setup time is equivalent to the increase

seen when increasing the controller count seen in Section 8.2. As expected, the

BFT approach maintains its performance whilst under the presence of a single

fault, with pre, during and post attack median flow setup times of 26.84ms,

26.4ms and 26.83ms respectively. The during and post attack values represent

no statistically significant difference when compared to the pre attack time, with

the flow setup time during attack having Mann-Whitney U results of U = 207, z =

0.1738, p = 0.862, effect = 0.028(N), and the post-attack setup having a result of

U = 199, z = −0.9893, p = 0.9893, effect = 0.0021(N). Whilst this has a benefit

on the first flow the fault occurs, it remains constant whilst SDBFT recovers

performance close to normal levels for subsequent flows which is statistically the

same as BFT-SMaRt (Mann-Whitney U: U = 215, z = 0.388, p = 0.698, effect

= 0.062(N)).

Figure 8.10 presents the results for 3 out of 4 controllers becoming compro-

mised, running the TargetDropper malicious application. In the case of SDBFT,

on the flow where the attack occurs there is a median flow setup time of 230.48ms

(µ=239.27ms, σ=23.05). This represents a statistically significant increase with

large effect size on the single failure result (Mann-Whitney U: U = 4, z =

−6.3826, p < 0.0001, effect = 0.84(L)). This increase is down to the time taken to

send the request to the backup controllers and then reach the majority threshold

213

8.4 Failure operation

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220

SD
BFT N

o
Fau

lt

SD
BFT O

n
Fau

lt

SD
BFT P

os
t F

au
lt

BFT N
o

Fau
lt

BFT O
n

Fau
lt

BFT P
os

t F
au

lt

Flow

F
lo

w
 S

e
tu

p
 T

im
e

 (
m

s
)

Figure 8.9: Fault recovery under SDBFT and BFT-SMaRt with a single fault.
X=mean. 20 repetitions.

of f + 1 matching responses. In the single failure scenario, where only 1 of the

f +1 primary controllers is faulty, and so f are correct, then only a single correct

response from one backup is enough to reach that threshold. If, however, f of

the f + 1 are faulty, then the responses from all f backups need to be collected

to reach the threshold.

For the subsequent flows, this reduces to a median of 28.23ms (µ=30.07,

σ=5.28), again close to the pre-attack flow setup time. Whilst the flow setup

time is delayed, the flow is successfully setup and the hosts can communicate.

Even though the majority of the primary quorum is compromised, the single be-

nign controller differs in response, and so the failover protocol is triggered. The

backup quorum is brought in, increasing the total number of controllers to 7,

with a majority of 4 being correct (assuming that no controllers in the backup

quorum are compromised), meaning the correct flow rule can be installed on the

switch. In the case of BFT-SMaRt, however, where 4 controllers can only handle

214

8.4 Failure operation

Table 8.3: Mean, standard deviation and median (in milliseconds) of failure mode
flow setup times before, during, and after attack, for a single faulty controller and
3 faulty controllers.

Mean SD Median

Single Fault

SDBFT
Pre 21.03 5.08 18.45

Attack 193.98 18.58 197.92
After 27.32 1.54 27.26

BFT
Pre 26.90 1.83 26.84

Attack 27.91 4.42 26.40
After 28.73 7.23 26.83

Three Faults

SDBFT
Pre 23.59 7.16 21.80

Attack 239.37 23.05 230.48
After 30.07 5.28 28.23

BFT (4 Nodes)
Pre 34.62 4.94 34.05

Attack 27.83 3.32 27.69
After - - -

BFT (10 Controllers)
Pre 30.50 2.61 30.44

Attack 35.65 8.44 32.11
After 44.08 41.26 29.81

a single faulty node, the 3 malicious nodes hold the majority and the malicious

flow rule is installed onto the switch (this results in a flow setup time of 0ms as

the ping fails).

BFT-SMaRt requires 10 replicas to handle 3 faulty replicas, and so I repeat

the test for BFT-SMaRt with 10 controllers. As can be seen in Figure 8.10,

10 controllers are able to handle the 3 malicious controllers, and the flow is

successfully setup.

8.4.3 Discussion

The results demonstrate the key tradeoff when utilising the SDBFT approach

compared to a traditional BFT approach. As can be seen in Figure 8.9, whilst

the flow on which the attack occurs experiences a far higher setup time than

normal, this stabilised for all subsequent flows. Whilst the stable point still

represents a slightly higher flow setup time due to the use of additional controllers,

it remains at the same level as BFT-SMaRt approach, even when not under

attack. Whilst BFT-SMaRt has minimal impact from the attack (for a single

failure), this requires additional latency on every flow, even whilst not under

215

8.4 Failure operation

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

300

SD
BFT N

o
Fau

lt

SD
BFT O

n
Fau

lt

SD
BFT P

os
t F

au
lt

BFT N
o

Fau
lt

BFT O
n

Fau
lt

BFT P
os

t F
au

lt

BFT 1
0

C
on

tro
lle

rs
 N

o
Fau

lt

BFT 1
0

C
on

tro
lle

rs
 O

n
Fau

lt

BFT 1
0

C
on

tro
lle

rs
 P

os
t F

au
lt

Flow

F
lo

w
 S

e
tu

p
 T

im
e

 (
m

s
)

Figure 8.10: Fault recovery under SDBFT and BFT-SmaRt, 3 faults. X=mean.
20 repetitions.

attack/fault. This clearly demonstrates the intended tradeoff of SDBFT of a

lower latency whilst not under attack, for a substantially higher latency on the

flow where the attack occurs.

The second benefit of SDBFT is shown in the second test consisting of multiple

malicious controllers. To handle the three faults, only 4 controllers are required,

increasing to 7 once the attack occurs. Even whilst under attack, this is still lower

than the minimum of 10 controllers required by BFT-SMaRt, which are required

on all flows, even before the attack occurs. This reduction in the number of

required replicas can provide much greater scalability.

216

8.5 High Throughput Benchmark

8.5 High Throughput Benchmark

In this test, I measure the performance of the SDBFT system whilst under a

high load by using the Cbench tool, as described in 7.3.2. This test represents

a worst-case scenario, as the Cbench tool is designed to find the maximum load

that a controller can handle. I expect that SDBFT will have a noticeable impact

on the Cbench results, as a large amount of extra processing is applied to pack-

ets between the switch and controller. As I have shown in the baseline testing

(Section 8.2), SDBFT can process switch requests with lower latency than the

comparative BFT-SMaRt implementation, and so therefore I expect that SDBFT

should also have noticeably better Cbench results than BFT-SMaRt. I test with

both a single emulated switch, and sixteen. Utilising the latency mode of opera-

tion in Cbench with a single switch, where a single request is sent at a time, will

reveal how well SDBFT and BFT-SMaRt can process messages in quick succes-

sion. Running Cbench with 16 switches in throughput mode represents a very

high load on the controller, which will push the SDBFT and BFT-SMaRt proto-

cols to their limits, and in particular measure how well they can handle multiple

simultaneous requests.

8.5.1 Setup

I perform this test on a workstation machine — a Dell Precision T7610 worksta-

tion, equipped with two Intel Xeon CPU E5-2650 processors (8 core, 16 thread,

2.0-2.8 GHz) CPUs and 128GB RAM. The controllers, proxies and Cbench tool

are all run on the host operating system (Ubuntu 18.04). The Cbench tool is run

in both latency and throughput modes (as described in 7.3.2). I measure perfor-

mance of a direct controller connection, through a simple TCP proxy, and through

the SDBFT and BFT-SMaRt proxies both using 4 controllers. The Floodlight

controller is using the LearningSwitch application for forwarding.

Cbench was run with both a single switch, and the default 16 switches. When

16 switches were in use, 16 instances of the simple TCP proxy, SDBFT proxy,

or BFT-SMaRt client proxy were launched (one for each switch). For each test,

Cbench was run once, with 80 loops. The first 20 are discarded as warmup. In

217

8.5 High Throughput Benchmark

particular when proxying, it takes approximately 10-15 loops for the results to

stabilise, so I ignore the first 20 loops to allow for variance in this. I then measure

for 60 loops, which is six times as many loops as the default setting of 10, and

represents a full minute of testing under load (each loop is 1 second). A delay of 5

seconds was applied between the beginning of the switch to controller handshake

and the starting of testing to ensure the switch to controller connection is properly

established.

When using ordered BFT-SMaRt with 16 switches in throughput mode, the

BFT-SMaRt system fails due to message timeout, caused by an overloading of

the BFT system. The default request timeout is 2 seconds. I have confirmed that

the controller responds to all requests within 100ms of receiving them, which

indicates this delay is rooted within the BFT protocol. To enable BFT-SMaRt to

complete the test, I set the request timeout to 0, which disables timeouts. This

allows the test to complete.

For each test, I present the min, max, mean and standard deviation in re-

sponses per second as reported by Cbench. For each test Cbench is run 3 times,

and the result with the highest mean responses/second is reported.

8.5.2 Results

Single Switch I present the results of Cbench when run with a single emulated

switch in Table 8.4. As can be seen in this table, a direct controller connection

performs similarly when running in both latency and throughput modes, process-

ing a mean of 33594 and 33812 requests/second respectively. The introduction

of the simple TCP proxy actually improves the result in the latency tests, and

only slightly decreases performance in the throughput test. It is unclear why it

has this effect on the latency test. When the test was repeated, the result was

similar.

When performing the latency test, both SDBFT and BFT-SMaRt perform

noticeably worse than a direct controller connection. SDBFT when run with

a single controller without using signatures, only experiences a small drop in

performance to a mean 24874 responses/second. This decreases further to 16072

and 5619 responses/second for 4 and 10 controllers respectively. BFT-SMaRt,

218

8.5 High Throughput Benchmark

Table 8.4: Cbench benchmarking result with a single virtual switch. N = number
of controllers. S = Signed (Y/N) Values = responses/second (rounded to nearest
whole integer)

Latency Throughput
N S Min Max Mean SD Min Max Mean SD

Direct 1 24935 51149 33594 8133 24753 50838 33813 7579
Simple 1 25573 51153 38968 8563 22252 42980 32723 3646
SDBFT 1 N 21356 29387 24874 2339 994 43938 5220 9563
SDBFT 1 Y 1865 2231 2093 101 1531 2520 1948 215
SDBFT 4 N 5627 20441 16072 3822 723 3373 1326 617
SDBFT 4 Y 1820 2256 2084 108 1591 2342 1952 166
SDBFT 10 N 1425 6761 5619 1244 484 2585 993 437
SDBFT 10 Y 1804 2428 2162 121 1543 2356 1994 212
BFT (Ord) 4 N 1265 6303 1627 942 6901 10656 9094 952
BFT (Ord) 4 Y 684 2326 849 288 2131 2466 2337 75
BFT (Unor) 4 N 4021 9905 4746 981 9698 12828 11840 752
BFT (Unor) 4 Y 1178 2663 1298 252 2451 2871 2768 90
BFT (Ord) 10 N 364 2452 973 329 1283 10685 5070 1909
BFT (Ord) 10 Y 299 1032 597 150 651 1538 1310 189
BFT (Unor) 10 N 2508 4427 3016 305 5282 11700 8327 1214
BFT (Unor) 10 Y 540 2012 1317 202 2143 2372 2271 49

when using ordered messages, only manages 1627 responses/second when using

4 controllers, and 973 when using 10. I expect BFT-SMaRt to perform worse in

this test, as it relies on the proxies processing responses quickly, and as I show

in the baseline experiments BFT-SMaRt requires a higher flow setup time than

SDBFT.

The throughput tests, however, see the reverse. In these tests, BFT-SMaRt

outperforms SDBFT in almost every test. I believe this is largely down to the

use of Netty sockets in BFT-SmaRt, compared to the standard Java sockets used

in SDBFT. Netty sockets are non-blocking and are built upon listeners, rather

than waiting and reading from a socket as is the case with standard Java sockets

which are blocking. This allows BFT-SMaRt to receive packets and process them

at a higher rate that the SDBFT proxy. This is confirmed with the results for

the unordered BFT-SMaRt proxy, which whilst similar in operation to SDBFT,

outperforms it.

Incorporating signatures has a major impact on the Cbench output. For

example, whilst SDBFT with a single controller in the latency test processes 24874

219

8.5 High Throughput Benchmark

responses/second, this drops to 2093 when using signatures. The reduction is less

pronounced for 4 and 10 controllers. This is most likely explained by the extra

packet processing required to parse and verify the signed messages. This is done in

the same thread that reads from the socket, and so blocks subsequent reads until

it is done. This could also explain why this effect is reduced for BFT-SMaRt, as

the non-blocking sockets do not get restricted by the extra time. An interesting

observation is that for SDBFT, when using 1, 4 or 10 controllers and signed

messages, the performance does not decrease with an increased controller count.

It is unclear why this is the case, however as is shown in the benchmark testing

increasing the controller count for SDBFT has a minimal impact on performance.

This similar performance in contrast to the unsigned version when there is a

greater drop could again be down to the extra processing on signed messages

stabilising the performance.

Conversely, when running in throughput mode, SDBFT performs better with

4 and 10 controllers when using signatures than without. This may be due to

the generally slower communication when signatures are in use — the controller

can send responses at a slower rate as it has to sign messages which prevents the

proxy socket thread from becoming overloaded.

Sixteen Switches Table 8.5 presents the Cbench results when simulating 16

switches. As can be seen in the direct results, the controller processes 110532 and

294646 responses/second in the latency and throughput tests respectively. In the

throughput test, 800 PacketIn messages are sent to the controller at a time,

which explains why the mean responses/second are so high. The simple proxy

causes a small reduction in responses in the latency test, but actually increases

the number of responses in the throughput test.

The introduction of SDBFT with a single controller only has a small impact

on the performance in latency mode, with just a 0.7% drop on the direct controller

connection, and performs better that the simple proxy. Increasing to 4 and 10

controllers introduces a greater drop when compared to the single switch test, to

26207 and 10908 responses/second respectively, a 76.11% and 90.01% decrease.

In the single switch test, increasing the controller count only resulted in a 35.39%

and 77.4% drop. It is unclear exactly why this performance is worse, as the

220

8.5 High Throughput Benchmark

Table 8.5: Cbench benchmarking result with sixteen virtual switches. N = num-
ber of controllers. S = Signed (Y/N) Values = responses/second (rounded to
nearest whole integer)

Latency Throughput
N S Min Max Mean S/D Min Max Mean S/D

Direct 1 83036 128736 110532 11050 273604 472480 294646 35283
Simple 1 83857 198516 94884 5696 240690 381428 330364 24747
SDBFT 1 N 84366 135646 109691 9807 6978 313665 140261 85698
SDBFT 1 Y 17573 20997 19643 856 6325 18149 13662 2459
SDBFT 4 N 21176 29555 26207 1651 3263 148405 32806 32575
SDBFT 4 Y 6299 7222 6759 204 2407 6214 4539 890
SDBFT 10 N 8506 12419 10908 841 0 89146 13228 16294
SDBFT 10 Y 2797 3597 3057 159 1547 3331 2562 433
BFT (Ord) 4 N 4488 7765 6975 619 1554 5829 4095 1045
BFT (Ord) 4 Y 4018 6892 5840 573 2739 6811 5552 989
BFT (Unor) 4 N 14104 20621 18228 1492 8326 26009 20707 4248
BFT (Unor) 4 Y 7753 11655 10301 810 10531 15651 13905 1451
BFT (Ord) 10 N 851 2883 2770 701 233 3981 1709 1078
BFT (Ord) 10 Y 805 3312 2034 567 462 3707 1960 800
BFT (Unor) 10 N 4147 7969 6039 679 2189 8894 6186 2112
BFT (Unor) 10 Y 2898 6516 5356 653 1217 7546 5959 1619

SDBFT proxy only represents a single switch. A potential explanation is that

whilst in latency mode, Cbench will wait until it has received the response to

the previous request before sending the next request. As previously discussed,

the use of standardised sockets potentially causes congestion on the proxy. This,

combined with congestion on the host machine caused by the traffic of 16 switches

to 10 controllers, could cause sufficient delays in the final responses from the

controllers being processed by the proxy and forwarded to the switch (as the

response from all primary controllers needs to be processed before sending to

the switch). This is less apparent in BFT-SMaRt, which is able to forward the

response to the switch as soon as the threshold number of matching responses is

reached.

BFT-SMaRT performs very poorly in latency mode when using ordered mes-

sages, being able to process just 6975 requests with 4 controllers, and 2770 with

10. I expected BFT-SMaRt to perform worse due to its slower response time as

shown by the baseline testing. The reduction is consistent with the single switch

test however, as for 16 switches 4 and 10 controllers experience a 93.69% and

97.49% drop over the direct connection, compared to 95.16% and 97.1% in the

221

8.5 High Throughput Benchmark

single switch test.

When running in throughput mode, both SDBFT and BFT-SMaRt suffer from

a heavily reduced performance when compared to the direct controller connection

and simple TCP proxy. SDBFT with 4 controllers is only able to process 32806

requests/second, a 88% reduction when compared to the direct connection. For

BFT-SMaRt, this reduction is 98.61%. For SDBFT, this slowdown is most likely

due to threading issues as I have previously discussed. For BFT-SMaRt, as I

mentioned in the setup description above, I had to disable request timeouts in

the BFT protocol, as the protocol was becoming overloaded when running the

throughput tests. A reason why SDBFT performs better than BFT-SMaRt in

this case is that Cbench sends 800 PacketIN messages in a single request, which

SDBFT is able to forward onto to the controller in a single request as it can

receive responses to any requests it has processed and then process each message.

In BFT-SMaRt, as the protocol requires a single response to a request, the BFT-

SMaRt client proxy creates an individual request for every PacketIN message

seen, even if multiple are sent by the switch in one request. This means that

the server proxy does not need to wait for many responses from the controller

before forwarding to the client, but for scenarios such as this test with a very

large number of requests there is a large network overhead in sending all of the

requests individually.

There is one anomaly in the SDBFT throughput testing with 10 controllers.

In all of the throughput tests when not using signatures, on at least one loop of

Cbench no responses were received, which causes a minimum value of zero. Of

the 80 loops I run (discarding the first 20 as a warmup), in all cases this happens

within the first 30, and so could possibly be caused by a slower warmup time due

to the load.

As was the case with the single switch tests, introducing signatures causes a

significant reduction in performance across the SDBFT tests for both latency and

throughput. As I have found throughout this testing, this effect is less pronounced

when using BFT-SMaRt.

222

8.6 Testing on physical switch

8.5.3 Discussion

I have found that both the SDBFT and BFT-SMaRt proxies represent a substan-

tial decrease in performance when tested with Cbench when compared to a direct

controller connection. This is somewhat as expected, as the proxies introduce a

large amount of extra processing onto requests which will have an impact on how

many requests can be handled per second. This result indicates that considera-

tion should be made when deploying the SDBFT proxy, especially in a scenario

of high rate, diverse traffic that will require a high amount of requests to be made

to the controller.

As I have shown, a limitation of the SDBFT implementation is the use of

Java sockets for communication. When faced with very high loads, these sockets

struggle to keep up with the rate of packets when compared to the Netty sockets

used in BFT-SMaRt. In future iterations of the SDBFT proxy, a migration to

Netty sockets, or similar, should be considered.

It is important to consider that Cbench results can be affected quite sub-

stantially with different setups, and represent a best case scenario. For example,

I originally attempted to run Cbench on the OVS setup, however the results

were substantially lower across all tests, including a direct connection, due to the

controllers being located inside virtual machines. Because of this results from

Cbench should only be taken as an estimate of peak performance.

8.6 Testing on physical switch

Our previous tests have all been performed using virtual switches. In this test,

I aim to verify that the SDBFT proxy works with a commercial, physical SDN

switch, along with physical hosts. I compare the performance of SDBFT with a

simple TCP proxy, along with the BFT-SMaRt proxy.

8.6.1 Setup

For this test I use the physical network setup described in 7.1.3. I use two different

topologies in this test, as shown in Figure 8.11. The first of these is a single

223

8.6 Testing on physical switch

switch topology, using a single switch and four Raspberry Pi hosts connected to

that switch. The second uses three switches in a line topology, with two RPis

connected to the first switch, and then a single RPi to each of the other two

switches. In this test, all of the required proxies and controllers are run on a

single server. When using three switches, a proxy is deployed for each switch. In

each test, I first ping between H2 and H3 to warm up the controller, and then

measure the second flow setup time between H1 and H4. Each test is repeated

50 times, with the OpenFlow instance on the switch reset after each test, which

requires the OpenFlow handshake to be run on each test. All protocols are run

without using signature in this test. SDBFT is run with a single, 4 and 10

controllers, whilst BFT-SmaRt is run with 4 and 10 controllers.

S1

H1

H2

H3

H4

(a) Single Switch

S1 S2 S2

H1

H2

H3 H4

(b) Three Switches

Figure 8.11: Topologies used for physical switch testing. X=mean.

8.6.2 Results

I found that when using the physical switches, all tests resulted in a larger amount

of variance, and therefore greater proportion of, and proportionally larger, out-

liers in the flow setup time results, including when utilising a direct controller

connection.

After investigation, I believe one of the primary reasons for large outliers is the

LinkDiscoveryManager module within Floodlight, which send out regular LLDP

floods out of all available network ports in order to identify connected devices.

If this flood occurs around the same time that the ping test is occurring, then

it will result in a larger flow setup time due to a delay caused by the Floodlight

224

8.6 Testing on physical switch

0

50

100

150

200

D
ire

ct

Sim
pl
e

SD
BFT 1

SD
BFT 4

SD
BFT 1

0

BFT 4

BFT 1
0

Controllers

F
lo

w
 S

e
tu

p
 T

im
e

 (
m

s
)

Figure 8.12: Testing with single physical switch. X=mean. 50 repetitions.

TopologyManager recomputing the network topology. Further variance is caused

by some element of the physical setup causing additional latency which is not

present in other tests, which are run on a single host machine. In some cases,

examining network traffic reveals that the physical switches and hosts generate

additional network traffic which virtual hosts do not, in particular ARP and

LLDP packets, which also have to be processed by the controller. This also

increases flow setup time if these occur during tests.

Single Switch The results for a single physical switch can be found in Fig-

ure 8.12 and Table 8.6.

A direct connection from the switch to the controller results in a median flow

setup time of 7.28ms. Introducing the simple TCP proxy increases this slightly to

7.88ms, a statistically significant increase, though with a small effect size (Mann-

Whitney U: U = 572, z = −4.67075, p < 0.0001, effect = 0.47(S)). This is

a similar level to what I measured in baseline tests in Section 8.2, which also

showed a small, but significant, increase in flow setup time with the introduction

of the simple TCP proxy.

225

8.6 Testing on physical switch

Table 8.6: Physical switch results and statistical significance tests. Mean and
median in milliseconds. Mann-Whitney U tests against direct controller connection.

Mann-Whitney U
Switches Approach Mean S.D. Med. U Z P Effect

Direct 13.39 31.13 7.28 - - - -
Simple 8.02 0.52 7.88 572 -4.67075 <0.0001 0.47 (S)
SDBFT 1 9.43 0.50 9.31 193.5 -7.28031 <0.0001 0.73 (M)
SDBFT 4 19.56 27.77 10.35 152 -7.56644 <0.0001 0.76 (M)
SDBFT 10 19.07 27.90 11.80 145 -7.61573 <0.0001 0.76 (M)
BFT 4 38.30 20.27 33.65 2401 -7.93186 <0.0001 0.79 (M)

One

BFT 10 47.24 34.06 36.55 2405 -7.95954 <0.0001 0.80 (L)
Direct 48.55 67.96 18.60 - - - -
Simple 58.58 70.04 22.00 653.5 -4.32757 <0.0001 0.43 (S)
SDBFT 1 61.23 69.87 25.40 525 -5.18758 <0.0001 0.51 (M)
SDBFT 4 56.70 58.45 29.80 537 -5.10716 <0.0001 0.51 (M)
SDBFT 10 83.18 87.21 30.10 480 -5.48852 <0.0001 0.54 (M)
BFT 4 135.47 99.62 79.10 2283.5 -6.57614 <0.0001 0.65 (M)

Three

BFT 10 179.12 94.17 165.00 2363.5 -7.11158 <0.0001 0.70 (M)

The SDBFT proxy with a single controller increases the flow setup time

to 9.31ms, a statistically significant increase over a direct connection (Mann-

Whitney U: U = 193.5, z = −7.28031, p < 0.0001, effect = 0.73(M)), which is a

comparative increase as observed in baseline testing (Section 8.2. Increasing to

4 and 10 controllers results in median flow setup times of 10.35ms and 11.7ms,

a statistically significant increase with moderate effect size over the direct con-

nection. Whilst the mean actually decreases when increasing from SDBFT with

4 to 10 controllers, this still provides a statistically significant increase with a

small effect size (Mann-Whitney U: U = 595.5, z = −4.7169, p < 0.0001, effect

= 0.47(M)). Examining Figure 8.12 reveals 5 outliers when using 4 controllers

which increase the mean and median values for 4 controllers slightly.

For BFT-SMaRt, the median setup time for 4 controllers is 33.65, statistically

significant increase with moderate effect size on the direct case (Mann-Whitney

U: U = 2401, z = −7.93186, p < 0.0001, effect = 0.79(M)), increasing to 36.55ms

for 10 controllers. Comparing SDBFT and BFT-SMaRt with 4 controllers shows

a statistically significant different (Mann-Whitney U: U = 250, z = −7.0281, p <

0.0001, effect = 0.7(M)), demonstrating that SDBFT clearly outperforms the

BFT-SMaRt approach.

226

8.6 Testing on physical switch

0

30

60

90

120

150

180

210

240

270

300

330

360

390

420

450

480

D
ire

ct

Sim
pl
e

SD
BFT 1

SD
BFT 4

SD
BFT 1

0

BFT 4

BFT 1
0

Controllers

F
lo

w
 S

e
tu

p
 T

im
e

 (
m

s
)

Figure 8.13: Testing with three physical switches, X=mean. 50 repetitions.

Three Switches The results for a three physical switches can be found in

Figure 8.13 and Table 8.6. A direct switch to controller connection provides with

a 3-hop path provides a median flow setup time of 18.6ms. The simple proxy

increases this to 22ms, a statically significant increase, though with small effect

size (Mann-Whitney U: U = 653.5, z = −4.327571, p < 0.0001, effect = 0.43(S)).

This effect size is almost the same as in baseline tests (Section 8.2), where the

tcp proxy resulted in a significant increase with effect size 0.46.

The SDBFT proxy with a single controller results in a flow setup time of

25.4ms, which increases to 29.8ms and 30.10ms for 4 and 10 controllers re-

spectively. In this case, the increase from 4 to 10 controllers is not statisti-

cally significant (Mann-Whitney U: U = 1212.5, z = −0.5857, p = 0.5581, effect

= 0.058(N)). As with the single switch example, there are a number of outliers

visible in Figure 8.13, which could explain this lack of increase when increasing

the controller count.

Using the BFT-SMaRt proxy results in median flow setup times of 79.10ms

and 165.0ms for 4 and 10 controllers respectively. As shown in Table 8.6, both of

these represent statistically significant increases over the direct controller connec-

227

8.7 Deployment of Physical Proxy

tion. If I compare SDBFT and BFT-SMaRt with 4 controllers, as with the single

switch case this represents a statistically significant increase with moderate effect

size, again showing that SDBFT outperforms BFT-SMaRt (Mann-Whitney U:

U = 387, z = −6.1108, p < 0.0001, effect = 0.61(M)).

8.6.3 Discussion

The aim of this test was to demonstrate the SDBFT proxy in use with a physical

testbed, using a physical, commercial SDN switch, as well as physical hosts.

The test demonstrates that the proxy works well with physical devices — the

SDBT proxy successfully provides control to both a single switch, and multiple

switches. In both cases, the SDBFT proxy outperforms the equivalent BFT-

SMaRt deployment, with even a 10 controller SDBFT deployment resulting in a

lower flow setup time that a BFT-SMaRt deployment with just 4 controllers.

8.7 Deployment of Physical Proxy

In Section 8.6 I demonstrated that the SDBFT proxy works with a physical SDN

switch. However, in that test the proxy was deployed on the same server as the

controllers, with a network between the switch and the proxy. In this test, I

explore the feasibility of deploying the proxy on a physical device as a hardware

proxy, connected directly to the switch. This is a potential solution to applying

the SDBFT protocol to older devices without modifying the device firmware.

8.7.1 Setup

I use a single switch, using the same topology as seen in Figure 8.11a, however I

use one of the four Raspberry Pis as the proxy, resulting in the topology seen in

Figure 8.14. The proxy is launched on the RPi over SSH. In this test, I perform

two pings between H1 and H2, and record the flow setup time of the second ping.

Note that as the control machine can no longer access the remote management

interface of the switch, the starting and stopping of the OpenFlow instance on the

switch is performed through the Pi. In a real-world deployment, the hardware

228

8.7 Deployment of Physical Proxy

proxy can also proxy these connections. Each test is repeated 20 times. The

LearningSwitch Floodlight application was used for routing. SDBFT was run

with 4 controllers. Each test was repeated 20 times.

S1

H1

H2

Proxy Device

H3

Controller

Figure 8.14: Hardware proxy topology

8.7.2 Results

6

8

10

12

14

16

18

20

22

24

26

28

D
ire

ct

Sim
pl
e

SD
BFT

Setup

F
lo

w
 S

e
tu

p
 T

im
e

 (
m

s
)

Figure 8.15: A direct switch to controller connection, and through the simple
and SDBFT proxies running on a Raspberry Pi. X=mean. 20 repetitions.

229

8.7 Deployment of Physical Proxy

A direct connection from the switch to the controller has a median flow setup

time of 7.27ms. Introducing the Pi based proxy, running the simple TCP proxy,

results in a median flow setup time of 8.63ms (µ=8.89ms, σ=0.86), a statistically

significant increase (with large effect size) of 18.7% (Mann-Whitney U: U =

72, z = −8.2188, p < 0.0001, effect = 0.81(L)). This is a larger increase of

introducing the simple TCP proxy, with a larger effect size, than when the proxy

was deployed on the same host as the controllers in the physical switch tests

(Section 8.6). The extra latency is due to the extra physical hop on the network

introduced by the RPi, as well as a lower CPU clock speed of the RPi compared

to the server-grade machine the physical switch tests were performed on.

The median flow setup time for SDBFT is 14.7ms (µ=15.22, σ=3.56), a statis-

tically significant increase with moderate effect size on the direct controller con-

nection (Mann-Whitney U: U = 59, z = −5.7589, p < 0.0001, effect = 0.68(M)).

This is a 102% increase over the direct connection, compared to 60.3% for SDBFT

with 4 controllers in the baseline test, and 42.17% in the physical switch tests.

This larger increase compared to the simple proxy is caused by CPU differences

between the 2 tests. The Raspberry Pi 4 Model B uses a Quad core Cortex-A72

(ARM V8) CPU with a clock speed of 1.5GHz, compared to the server on which

the baselines were run, which uses 4 AMD Opteron 6376 16 core 2.3GHz CPUs.

8.7.3 Discussion

This test aimed to demonstrate the effectiveness of the SDBFT proxy when de-

ployed as a physical device, using a Raspberry Pi to host the proxy. The results

clearly show that this is a viable option, even with the relatively cheap hardware

provided by the Raspberry Pi. The newer generation Raspberry Pis, which fea-

ture quad core CPUs, can handle the SDBFT proxy, which is a heavily threaded

application, well, with only a small increase in latency when compared to baseline

tests performed on a single machine.

230

8.8 Network Traffic Load

8.8 Network Traffic Load

One of the advantages of the SDBFT system is that only two rounds of com-

munication are required for a client to receive a response from a server, when

compared the the 3 BFT rounds used by BFT-SMaRt. In this test, I run each

protocol a number of times and capture the network packets sent between the

SDBFT proxy and the controllers (in the case of SDBFT), and the number of

packets between the BFT-SMaRt client proxy and server proxies, and the com-

munication between the server proxies, in the case of BFT-SMaRt. I also measure

the number of packets sent during a normal, direct connection between the switch

and controller.

For a direct connection, I would expect that there would be two PacketIn

messages from the switch to the controller, one for each direction of the flow. I

would expect two responses from the controller for each PacketIn: a PacketOUT

and a FLowMod, for a total of 6 messages. When using SDBFT with 4 controllers,

this should increase to 24. When using BFT-SMaRt, I expect these 24 packets,

plus the communication between the replicas, which should equal 32 transmissions

per request.

8.8.1 Setup

For this test I use the OVS testbed described in 7.1.1. I use a single switch

topology, with two hosts. I then perform 2 pings between the pair of hosts. I

start a tcpdump capture before the second ping, and terminate as soon as the

ping is complete. I then use tshark to output the packet counts per TCP port. For

SDBFT, I count packets where the source or destination port are the OpenFlow

port used by the controllers (on the OVS setup all controllers use port 6653, so I

count all packets to this port number). For BFT-SMaRt, I count packets between

any of the assigned replica ports defined in the hosts.config file, as well as the

port assigned to the server proxy for non-bft communication (which is set in the

server proxy configuration file). This allows me to collect traffic both from the

client to the replicas, and between the replicas. I repeat these tests 20 times each.

231

8.8 Network Traffic Load

Table 8.7: Packet Counts

Controller Min Max Median Mean Std. Dev.
Direct 33 40 40 38.35 2.16
SDBFT 4 95 147 106 111.6 15.95
SDBFT 10 231 346 272 278.4 38.91
BFT 4 203 232 210.5 213.5 8.68
BFT 10 1770 2165 2033 2027.9 70.46

The network capture is captured on the any interface. There are a large

number of TCP retransmissions and duplicate ACKs within the capture files.

These are caused by theWireshark capture collecting messages across the different

virtual switches, which represent multiple interfaces in the capture. I cleanup all

files using tshark to remove these retransmissions and duplicates, by using a not

tcp.analysis.retransmission && not tcp.analysis.duplicate ack filter.

8.8.2 Results

The results of this test are presented in Table 8.7. For a direct connection, the

median number of packets is 40 (µ=38.35, σ=2.15). This is substantially higher

than my estimate of 6, however analysis of the packet capture reveals that in that

approximately 7 second period that packet capture was live for, 26 OpenFlow

packets were captured. This includes two echo requests from the controller to

the switch (which generate 4 packets total with the responses), an extra pair of

PacketIN messages for a flow from one of the virtual hosts to the switch, and a

number of PacketOUT messages sent by the controller as part of host discovery.

When using SDBFT with 4 controllers, the number of packets increases to 106,

a 165% increase in the number of packets. This is roughly as expected. Whilst a

direct connection requires 6 packets to be sent between the switch and controllers,

using SDBFT with 4 controllers multiplies this by 4, meaning a single flow setup

should instead take 24 packets. Increasing to 10 controllers should increase the

number of packets required to 60, there is an average of 272 packets in out test,

an increase of 580%.

BFT-SMaRt with 4 controllers generates on average 210.5 packets, a 426.25%

increase on a direct connection. If I look at the BFT smart protocol [22], there

232

8.8 Network Traffic Load

are two broadcast rounds each requiring n2 packets to be sent (where n is the

number of replicas), as well as n messages from the client to the replicas in the

initial request, n − 1 messages sent from the leader to the other replicas in the

prepare stage, and a further n messages when the replicas respond to the client.

For a 4 replica setup, a single request then generates 43 messages, which is itself

a 616% increase over a direct connection, and so the packet counts are in line

with this.

BFT-SMaRt with 10 controllers represents a much larger increase in packet

counts, with a median of 2033 packets. This is an increase of 4982.5% over a

direct connection. BFT-SMaRt with 10 controllers should generate 239 packets

per request (largely caused by two broadcast rounds of 100 packets each), which

is a 2883% increase over a direct connections 6 packets. It is not entirely clear

where the extra messages come from, though they are all sent between the replicas

through the BST-SMaRt connections. Through analysing the packet captures it

is unclear exactly what causes these extra messages, but it is worth considering

that a single extra request passing through the BFT system generates 239 extra

messages, even if no response is received, which can quickly bring the total number

of packets up, an effect which is heavily reduced when using SDBFT or a direct

connection.

8.8.3 Discussion

In this test I aim to get an estimation of how much extra network load is in-

troduced through the use of the SDBFT and BFT-SMaRt protocols. I find that

SDBFT performs roughly as expected, with a roughly 3.5x increase in the number

of packet when using 4 controllers, and 8.5x when using 10 controllers. As the

SDBFT proxy broadcasts messages to all replicas, this is roughly as expected.

The variance is caused by traffic noise — captures contain all packets between

the proxy and switch, which includes packets not part of the flow setup. I show

that BFT-SMaRt, as expected, results in a far greater increase in packet counts

due to the repeated broadcasts.

233

8.9 Conclusion

8.9 Conclusion

In this chapter I aimed to evaluate the performance of the implementation of the

SDBFT protocol, and provide a comparison with both the traditional SDN model

of a direct switch to single controller connection, as well as to the comparative

BFT implementation built using BFT-SMaRt.

In Section 8.2 I showed that SDBFT performs well on a small scale topology,

providing substantially faster flow setup times when compared to BFT-SMaRt,

and close to the traditional model. I show that SDBFT scales well with an

increasing number of controllers forming the primary quorum, and show the im-

pact of introducing signed messages into the protocol. I expanded this testing to

multi-hop paths in Section 8.3.

Section 8.4 evaluated SDBFT when under attack. In these tests, I showed that

whilst SDBFT suffers a substantial increase in flow setup time on the initial flow

that is attacked, once the failover has been initialised the system returns to close

to normal performance. I also demonstrated that, when 3 out of 4 controllers

are compromised, the SDBFT protocol is able to identify a fault has occurred

and successfully trigger the failover protocol. This confirms that SDBFT can

operate with f + 1 replicas, compared to the 3f + 1 required by traditional BFT

algorithms such as BFT-SMaRt.

in Section 8.5 I used the Cbench controller benchmarking tool to perform high

throughput testing of the SDBFT proxy implementation. I find that, whilst it

generally performs better than BFT-SMaRt, that there are potential implemen-

tation issues caused by the use of Java sockets and threading rather than a more

efficient alternative. These particular results can help lead future development of

the SDBFT implementation.

I also demonstrated SDBFT deployed against physical switches (Section 8.6,

and show that SDBFT is able to outperform BFT-SMaRt and operate with a

small extra amount of latency when compared to a direct controller connection.

Further, I found that SDBFT performs well when deployed on a Raspberry PI as

a hardware proxy, as shown in Section 8.7.

234

8.9 Conclusion

Finally, when comparing the network loads caused by the SDBFT and BFT-

SMaRt protocols, I find that SDBFT performs as expected, with a substantial

increase in packet counts when compared to a direct controller connection, but

substantially less that when using BFT-SMaRt, in particular when using 10 con-

trollers. These results were presented in Section 8.8.

235

Chapter 9

Conclusion

In this thesis I propose a solution to the problem of malicious controllers in

software-defined networks. Through the centralisation of the network control

plane into an SDN controller running as software, a single point of failure is in-

troduced which can cause disruption to the network either through genuine fault,

or through compromise of the SDN controller. A compromised SDN controller

can gain large amounts of, if not total, control of the underlying network, includ-

ing the routing and other network functions such as firewalls. The actions of a

compromised controller within the network manifest as byzantine (or arbitrary)

faults within the network control.

The proposed protocol, Software-Defined Byzantine Fault prevenTing con-

trol (SDBFT), solves this problem by introducing replication to the SDN control

plane and the application of an efficient byzantine fault-preventing (fault detect-

ing with recovery) protocol in order to prevent malicious controllers from in-

stalling malicious flow rules onto switches. Compared to previous solutions that

utilise traditional byzantine-fault tolerant algorithms such as PBFT, requiring

3f + 1 controllers and multiple rounds of communication to handle f faulty (or

malicious) controllers, SDBFT requires only 2f+1 controllers, utilising only f+1

under normal operations, with a further f controllers brought in as backup when

a failure occurs, operating over just 2 rounds of communication. Experimental

evaluation shows that it is able to operate with a minimal impact of flow setup

time when compared against a normal direct controller connection, and provides

236

9.1 Thesis Contributions

much lower flow setup times when compared to approaches utilising traditional

BFT algorithms.

9.1 Thesis Contributions

9.1.1 Exploration of Attack Capabilities From a Compro-

mised SDN Controller

I provided a threat model of the attacker who would compromise an SDN con-

troller, including the types of attacker, the method of compromising the SDN

controller and the goals of the attacker.

I then examined a number of attacks that can be launched from a malicious

controller to achieve the goals of the attacker. These include both new attacks

and existing attacks from the literature. To the best of my knowledge, this is

the widest-ranging exploration of practical attacks that can be launching from a

compromised SDN controller.

9.1.1.1 Practical Demonstration of Attacks

In order to practically demonstrate the impact of the described attacks, I im-

plemented the discussed attacks through a set of malicious applications for the

Floodlight SDN controller, and a virtual network built upon the Mininet plat-

form. I demonstrated a number of attacks that can introduce additional latency

into the network, including by directing all traffic for a target flow through the

SDN controller, and by directing traffic over a non-optimal routes in the network.

I also demonstrated denial-of-service attacks including a simple sinkhole attack,

and a resource-consumption denial-of-service attack which duplicates flow in the

the network to cause debilitating network congestion.

9.1.1.2 Impact of Attacks on Industrial Control Systems (ICS)

In order to demonstrate the impact of the attacks on a real-world scenario, I also

measured the impact of the attacks on the use case of ICS. ICS is a particularly

237

9.1 Thesis Contributions

interesting use case due to the reliance on real-time protocols for communication

between devices, which provides susceptibility to attacks which can introduce

additional latency into the network without blocking communication. Whilst the

use of SDN (and programmable networks in general) is currently limited within

ICS environments, it is increasingly being proposed as a future direction for ICS

environments due to the additional control provided by SDN.

I showed that the real-time Siemens Profinet industrial protocol is very sus-

ceptible to attack, with only the small amount of latency of requiring all packets

to pass through the controller enough to break the real-time properties of the

communication, causing devices to disconnect. For the non real-time protocols of

S7Comm, Modbus and Ethernet/IP, introducing extra latency through the SDN

controller does not cause a failure in communication, but does cause problems

with the underlying physical process due to the additional latency.

I also showed that a compromised SDN controller can be used to facilitate

person-in-the-middle attacks on the industrial protocols.

To the best of my knowledge, this is the first exploration of the impact of a

compromised SDN controller on ICS networks. This work has been published as

“Controller-in-the-Middle: Attacks on Software Defined Networks in Industrial

Control Systems” [87].

9.1.2 Design of a Consensus-Based Distributed Controller

Architecture to Prevent Malicious Insiders

To prevent an compromised SDN controller from carrying out malicious control

actions within a network, I designed a consensus-based byzantine fault-tolerant

protocol, Software-Defined Byzantine Fault Tolerant control (SDBFT), which is

able to prevent malicious control with a minimal impact on performance.

Existing approaches for providing byzantine-fault tolerance to the SDN con-

trol plane utilise traditional BFT algorithms derived from the PBFT algorithm

by Liskov and Castro [41]. Such algorithms require a minimum of 3f + 1 con-

trollers to handle f faulty (or malicious) controllers, and require multiple rounds

238

9.1 Thesis Contributions

of communication to operate. The SDBFT protocol only requires 2f + 1 con-

trollers (f+1 during normal operation with a further f when a fault is detected),

allowing more controllers to become faulty yet detected, and just two rounds of

communication in the normal case by relaxing the requirement to handle faulty

nodes in the normal operation of the protocol. This reduction in the required

number of controllers results in an overall reduction in the number of replica

controllers required in the system. Instead, if there is any disagreement between

the set of controllers, then a backup quorum of controllers is incorporated and

the majority response is taken, only requiring one additional round of commu-

nication. This works on the assumption that for the majority of time, the SDN

control architecture would not be compromised and so reducing the complexity

during normal operation to provide more efficient network control is worthwhile

with the tradeoff of higher latency on the occurrence of a fault.

I expanded the SDBFT protocol with signatures in order to provide authen-

tication of controllers and non-repudiation, allowing the verification of malicious

controllers and preventing packet tampering on the switch to controller connec-

tion. I also described a method for state synchronisation between controllers in

order to ensure backup controllers have a consistent view of the network state.

9.1.2.1 Implementing and Evaluating the SDBFT Architecture

I implemented the SDBFT protocol as a Java-based proxy to enable testing with a

variety of switch types. This proxy, which sits between the switch and controllers,

operates the SDBFT protocol without having to modify the switch itself. I evalu-

ated the performance of SDBFT in comparison with a direct switch to controller

connection, a simple TCP proxy and an implementation of a traditional BFT

based approach utilising the BFT-SMaRt Java library. This utilised three test

environments — a simulated network based upon the Mininet network simula-

tion tool, a virtualised environment using OpenVSwitch virtual switches, and a

physical testbed using Dell OpenNetworking hardware SDN switches.

On testing with a single virtual switch, I showed that the SDBFT protocol,

with a single controller and no signature used, resulted in only a small increase

in flow setup time over a direct controller connection, a latency which could

239

9.1 Thesis Contributions

be reduced if the SDBFT protocol was implemented natively on a switch, as I

demonstrated that the simple act of introducing a proxy between the switch and

controller is responsible for a large proportion of the additional flow setup time.

Utilising 4 and 10 controllers with the SDBFT protocol results in great. but

manageable, additional flow setup time over a direct controller connection. Com-

paratively, the BFT-SMaRt implementation with 4 and 10 controllers resulted in

a a much larger increase in flow setup time over the direct connection, significantly

more than the SDB FT protocol. I also showed that, as expected, introducing

signatures into the protocol increases latency, resulting in 3x additional latency

over the unsigned SDBFT.

When tested with multi-hop paths of increasing lengths from 1 to 10 switches

in the Mininet environment, I show that the SDBFT protocol results in a small

additional flow setup time for a 1-hop and 10-hop path over the direct connection

respectively, with BFT-SMaRt resulting in statistically significantly higher flow

setup times than SDBFT. Both approaches show a reduced impact on flow setup

time with longer path lengths.

When testing under failure, I demonstrated the intended performance of the

SDBFT protocol in that a large amount of latency is introduced on setting up the

flow where the flow occurs due tot he second round of communication with the

backup controllers, which drops back to normal levels for subsequent flows as the

backup controllers are utilised in the same round of communication as the primary

set. As expected, the BFT-SMaRt implementation handles the faults with no

impact on performance, however this is still represents a greater flow setup time

that the SDNFT protocol. I also demonstrated that the SDBFT protocol was

able to successfully operate with all but one of the primary controllers becoming

malicious, whereas in the same situation the BFT-SMaRt approach results in

malicious flow rules being installed within the network.

I performed a high throughput benchmark of the SDBFT protocol to measure

performance under a high network load. I showed that both the SDBFT and

BFT-SMaRt protocols resulted in a major drop performance when compared to

a direct controller connection, which indicates that consideration should be given

to the use of fault-tolerant approaches in highly dynamic networks which require

a large amount of controller input to switches.

240

9.1 Thesis Contributions

9.1.3 Research Impact

Firstly, this thesis demonstrates the need to consider insider threats within SDN,

and in particular the issue of compromised controllers. With the increasing move

to SDN across various use cases and the centralisation of network control and func-

tions into the SDN controller comes a tempting target for attackers. I demonstrate

the impact of these attacks through practical experimentation, clearly showing

the damage that can arise from a compromised SDN controller.

Secondly, I propose a solution to the problem of compromised SDN controllers

that is successfully able to prevent a compromised controller from influencing

the operation of a network. In particular, the proposed solution, SDBFT, is

able to handle a greater number of faulty nodes with fewer replicas compared

to previous works which utilise traditional byzantine fault tolerant algorithms.

Through extensive experimentation I demonstrate that my approach is able to

operate with a minimal impact on flow setup time compared to existing work, and

is certainly feasible for use in real-world networks. This is backed by a complete

implementation of the protocol as a network proxy which allows the SDBFT

protocol to be applied to existing switch hardware without modification to the

switch itself.

9.1.4 Summary

In summary, this thesis has made the following contributions:

• Explored the practical impact of a compromised SDN controller on networks.

• Provided the first exploration of the impact of malicious SDN controllers in

the context of ICS.

• Proposed the design of an efficient protocol for providing byzantine fault tol-

erance in the SDN control plane.

• Realising the designed protocol as a prototype implementation consisting of a

Java-based network proxy and a modified version of the Floodlight SDN con-

troller, allowing testing of the protocol with multiple types of SDN switches.

241

9.2 Future Work

• Performed extensive evaluation of the prototype implementation on multiple

types of SDN network, providing a comparison against the traditional SDN

model, and a comparative system built using a traditional byzantine fault-

tolerant approach.

9.2 Future Work

9.2.1 Proactive Control

In this work I have focussed on the reactive SDN control model, in which the

switch sends a request to the controllers which then generate a response. The

alternative to reactive control is proactive, where the controllers push updates to

switch without a corresponding request from the switch. This reduces the load

on the controller. In reality, many deployments utilise a hybrid approach where

proactive rules are installed for known devices and routes, with new, previously

unseen devices then handled in a reactive manner.

The current SDBFT protocol relies on a reactive model in order to provide

fault tolerance, and controller responses are mapped to a particular switch re-

quest. The switch triggers an event, and the controller is expected to respond in

a short period. Part of the challenge of a proactive mode is that proactive con-

troller commands may not occur from all controllers simultaneously (this partially

depends on the level of determinism in the set of applications).

The actual act of matching controller commands is straight forward, as if all

controller commands match then the logic for testing for consensus is the same as

testing the responses to a switch request. The difficulty is that with the current

SDBFT approach, backup controllers do not communicate with switches and so

if there is disagreement and the backups need to be contacted, there is no switch

request to be forwarded. This means that a protocol needs to be developed that

allows the backups to generate a proactive command on demand. This could take

the form of the switch forwarding the received set of proactive commands to the

backups, which then analyse the commands and pick one of the received ones to

use.

242

9.2 Future Work

9.2.2 Controller Verification

Currently in the case where a controller exhibits faulty/malicious behaviour, the

extended SDBFT protocol is used until an administrator can investigate and

remove or repair the faulty controller.

A more efficient approach could be to perform an automated verification of

the switch-controller communication in order to identify the faulty or malicious

controller, and remove them from the set of controllers until they can be repaired,

allowing a return to the standard protocol. This could be done by the primary

and backup set of controllers for a switch, on observing a fault, sending a report

to the complete pool of controllers which can then perform verification over the

controller actions in order to identify the faulty controllers. This information can

be forwarded to the switch which can then sever connections to the controllers

which are identified as malicious.

This has the challenge of ensuring that the pool of controllers has sufficient

information in order to be able to verify controller responses. For example, con-

trollers in the wider pool may not have up-to-date information about the complete

state of the network outside of the switches that they control. The decision made

by a controller can change based upon the information it has, and so verifica-

tion can only occur if the verifier is making its judgement based upon the same

information the suspect controller had at the time it made its decision.

9.2.3 Anonymous Information Sharing

In the current implementation of the SDBFT protocol, controllers within the

network can observe the identities of controllers within the primary and backup

quorums for a given switch by observing the consistency protocol used to share

network updates between controllers. This could potentially allow an attacker

who is in the network to learn which controller should be targeted in order to

affect the operation of a particular target switch.

Future versions of the SDBFT system could be expanded to allow the sharing

of the information required to maintain consistency (switch and host connectivity

243

9.3 Reproducibility

information) in an anonymous fashion to prevent the controller from being identi-

fied. This comes with the additional challenge in authenticating this information

without revealing the source controller in order to prevent a malicious insider

from publishing false updates to the network.

9.2.4 Native Implementation of SDBFT

The current implementation of the SDBFT protocol relies on a Java-based TCP

proxy running separately from the switch itself. Whilst this made the imple-

mentation much simpler for testing the core protocol, and also more versatile for

testing in different scenarios, this has an impact on the performance of the proto-

col due to the extra networking and packet processing overhead. The next step is

the implementation of SDBFT is to produce a native implementation on an SDN

switch, moving the packet processing required for SDBFT onto the switch itself,

removing the need for the proxy and the additional packet processing required

for it. A logical first step for this could be to implement the protocol into the

OpenVSwitch virtual switch environment as this is an open source project and

runs on general purpose hardware.

9.3 Reproducibility

It is important to support reproducibility within scientific research. To allow

this, the code required to reproduce the results of this work will be released onto

GitHub1.

• The documented source code of the implemented proxy, which includes the

implementation of the following:

– Simple TCP proxy

– The SDBFT proxy

– The BFT-SMaRt proxy (client and server)

– Configuration files for each type of testing

1https://github.com/josephgardiner/sdbft

244

https://github.com/josephgardiner/sdbft

9.4 Concluding Remarks

• An implementation of the Floodlight controller, with SDBFT modifications

included and a set of malicious applications and suitable configuration files

• The Mininet and bash scripts used for testing

• Details on recreating the setup for the Industrial Control Systems testbed

used in Chapter 4.5, including project files where possible.

This code is provided with instruction, and will allow third parties to replicate

the experiments described in this thesis, including the comparative tests, with

minimal effort. The Mininet software used for testing is readily available and well

documented for installation and operation. Instructions on how to reproduce the

virtual environment used in baseline testing are also provided.

9.4 Concluding Remarks

In this thesis I designed an efficient, byzantine fault-tolerant protocol, SDBFT, for

preventing the actions of compromised controllers in software-defined networks.

Through the use of a prototype proxy-based implementation, I was able to exten-

sively evaluate the performance of the proposed approach and show favourable

performance against the existing approach taken by the literature, and only a

minimal drop in network performance compared to the traditional SDN control

model.

The SDBFT protocol can be applied to existing SDN networking hardware

through the use of a network proxy implementation, or could be incorporated into

future SDN switches natively with a smaller impact on network performance.

Whilst the system would not work for all network types, in particular highly

dynamic, high throughput networks which require extensive amounts of controller

interaction, the proposed approach could prove valuable in securing software-

defined networks.

245

Appendix A

Implementation

A.1 SDBFT Proxy Configuration

Listing A.1 presents an example configuration file for the SDBFT proxy. The

configuration is used by both the SDBFT and BFT-SMaRt implementations,

which are both included within the same project. The “version” option specifies

which version of the proxy should be used, selected from ’“simple” (for a simple

TCP proxy), ”unsigned” and ”signed” (for the SDBFT proxy) or ”bftclient” and

“bftserver” (for the BFT-SMaRt proxy). Note that as the configuration file is

used for multiple variations of the proxy, not all options are required.

version=unsigned

localport=55413

controllers=[\

{"id": 1, "ip": "127.0.0.1", "port":6653},\

{"id": 2, "ip": "127.0.0.1", "port":6654},\

{"id": 3, "ip": "127.0.0.1", "port":6655},\

{"id": 4, "ip": "127.0.0.1", "port":6656}\

]

loadbackups=false

backupcontrollers=[\

{"id": 1, "ip": "127.0.0.1", "port":6657},\

246

A.1 SDBFT Proxy Configuration

{"id": 2, "ip": "127.0.0.1", "port":6658},\

{"id": 3, "ip": "127.0.0.1", "port":6659},\

{"id": 4, "ip": "127.0.0.1", "port":6660}\

]

signaturetype=SHA256withRSA

signaturekey=RSA

keysize=512

siglength=64

ofversion=1.0

batchacks=True

startxid=600000

bftid=12

bftclientid=1111

Listing A.1: Example SDBFT configuration file

247

Appendix B

Evaluation Setup

B.1 OVS Test Launch Script

Listing B.2 shows an example bash script for launching four instances of the

Floodlight controller on four VMs, starting the SDBFT proxy, setting the con-

troller of the OVS bridge to the proxy and performing ping tests between cirrOS

hosts, logging the outputs to a text file.

#!/bin/bash

ssh netsec@192.168.122.142 "cd finalfloodlight ; java -jar -server

-XX:+UseCompressedOops target/floodlight.jar -cf

target/bin/floodlightdefault.properties &" &

ssh netsec@192.168.122.143 "cd finalfloodlight ; java -jar -server

-XX:+UseCompressedOops target/floodlight.jar -cf

target/bin/floodlightdefault.properties &" &

ssh netsec@192.168.122.144 "cd finalfloodlight ; java -jar -server

-XX:+UseCompressedOops target/floodlight.jar -cf

target/bin/floodlightdefault.properties &" &

ssh netsec@192.168.122.145 "cd finalfloodlight ; java -jar -server

-XX:+UseCompressedOops target/floodlight.jar -cf

target/bin/floodlightdefault.properties &" &

sleep 5

248

B.2 Mininet Python Configuration Example

java -jar -XX:+UseCompressedOops -XX:+UseNUMA proxy.jar proxy.properties &

sleep 5

ovs-vsctl set-controller br1 tcp:127.0.0.1:55413

sleep 12

ssh cirros@172.16.1.174 "ping -c 4 172.16.1.175"

sleep 6

ssh cirros@172.16.1.171 "ping -c 4 172.16.1.173" >> "test$1.txt"

sleep 6

ssh cirros@172.16.1.171 "ping -c 4 172.16.1.173" >> "test$1.txt"

ssh netsec@192.168.122.142 "pkill -9 java"

ssh netsec@192.168.122.143 "pkill -9 java"

ssh netsec@192.168.122.144 "pkill -9 java"

ssh netsec@192.168.122.145 "pkill -9 java"

pkill -9 java

Listing B.1: Bash script for launching controllers, proxy and performing ping

tests in OVS setup

B.2 Mininet Python Configuration Example

The Python example code presented in Listing B.2 creates a mininet network

consisting of a single switch, connecting to a single controller. IPv6 is disabled

on the switch due to limited support by the Floodlight controller. Two hosts are

added, with the default IP addresses 10.0.0.1 and 10.0.0.2, and are connected

to the switch Once the network has been built, host 1 pings host 2, with the

output printed to a file. The script waits for 6 seconds (to allow the flow rule to

expire on the virtual switch), and then repeats the ping, printing the output to

the same file. The network is then shut down.

from mininet.net import Mininet

from mininet.node import Controller, OVSSwitch, OVSKernelSwitch,

RemoteController

from mininet.link import TCLink

249

B.2 Mininet Python Configuration Example

from mininet.cli import CLI

from mininet.log import setLogLevel

import sys

import time

def multiControllerNet(num):

"Create a network from semi-scratch with multiple controllers."

net = Mininet(controller=RemoteController, switch=OVSSwitch,

build=False, autoSetMacs = True, autoStaticArp = True)

print "*** Creating (reference) controllers"

c1 = net.addController(’c1’, controller=RemoteController,

ip="127.0.0.1", port=55413)

print "*** Creating switches"

s1 = net.addSwitch(’s1’ , protocols=["OpenFlow13"])

s1.cmd("sysctl -w net.ipv6.conf.all.disable_ipv6=1")

s1.cmd("sysctl -w net.ipv6.conf.default.disable_ipv6=1")

s1.cmd("sysctl -w net.ipv6.conf.lo.disable_ipv6=1")

print "*** Creating hosts"

h1 = net.addHost(’h1’)

h2 = net.addHost(’h2’)

net.addLink(s1, h1)

net.addLink(s1, h2)

print "*** Starting network"

net.build()

250

B.3 Bash Launch Script

c1.start()

s1.start([c1])

print "***Setup Done"

time.sleep(25)

print "*** Testing network"

net.pingAll()

f = open("results/1/test" + num + ".txt", "a")

res1=h1.cmd(’ping -c 4 10.0.0.2’)

print(res1)

f.write(res1)

time.sleep(6)

res2= h1.cmd(’ping -c 4 10.0.0.2’)

print(res2)

f.write(res2)

f.close()

print "*** Stopping network"

net.stop()

if __name__ == ’__main__’:

setLogLevel(’info’) # for CLI

multiControllerNet(sys.argv[1])

Listing B.2: Mininet Python Configuration, Single Switch to Single Controller

B.3 Bash Launch Script

Listing B.3 shows the bash script used to launch four Floodlight instances, the

SDBFT proxy and the mininet python script found in Appendix B.2.

#!/bin/bash

mn -c

251

B.3 Bash Launch Script

java -jar -server -XX:+UseCompressedOops

singlehopcontrollers/floodlight1/target/floodlight.jar -cf

singlehopcontrollers/floodlight1/target/bin/floodlightdefault.properties &

java -jar -server -XX:+UseCompressedOops

singlehopcontrollers/floodlight2/target/floodlight.jar -cf

singlehopcontrollers/floodlight2/target/bin/floodlightdefault.properties &

java -jar -server -XX:+UseCompressedOops

singlehopcontrollers/floodlight3/target/floodlight.jar -cf

singlehopcontrollers/floodlight3/target/bin/floodlightdefault.properties &

java -jar -server -XX:+UseCompressedOops

singlehopcontrollers/floodlight4/target/floodlight.jar -cf

singlehopcontrollers/floodlight4/target/bin/floodlightdefault.properties &

sleep 5

java -jar -XX:+UseCompressedOops -XX:+UseNUMA proxy.jar proxy.properties &

sleep 5

python 1hop.py $1

pkill -9 java

sleep 2

Listing B.3: Bash script for launching controllers and mininet (run as root)

252

Appendix C

Evaluation

This appendix contains tables containing the complete results of various experi-

ments performed in Chapter 8, including the results of various statistical signifi-

cance tests. Effect size classified according to Cohen [53, 222]:

Effect Size Classification
<0.2 None (S)
0.2-0.49 Small (S)
0.5-0.79 Moderate (M)
0.8-1.29 Large (L)
>1.3 Very Large (VL)

253

C.1 Baseline Results

C.1 Baseline Results

Table C.1: Baseline results without using signatures. Mann-Whitney U test
against direct controller. Mean, SD and median results in milliseconds. N =
Number of controllers

Mann-Whitney U
Approach N Mean SD Median U Z P Effect
Direct 1 13.53 5.87 12.18 - - - -
Simple 1 15.63 7.60 13.98 578 -4.62923 <0.0001 0.46 (S)

SDBFT

1 16.05 2.01 15.75 2286 -7.13857 <0.0001 0.71 (M)
2 18.97 3.75 17.96 2356 -7.62112 <0.0001 0.76 (M)
3 20.06 3.71 19.21 2372 -7.73142 <0.0001 0.77 (M)
4 22.37 7.29 19.53 2379 -7.77982 <0.0001 0.78 (M)
5 23.42 6.25 19.95 2387 -7.83485 <0.0001 0.78 (M)
6 25.16 9.26 20.90 2396 -7.89687 <0.0001 0.79 (M)
7 26.37 8.44 22.91 2404 -7.95202 <0.0001 0.80 (L)
8 26.40 6.50 23.53 2412 -8.00717 <0.0001 0.80 (L)
9 26.80 6.95 26.09 2415 -8.02785 <0.0001 0.80 (L)
10 30.00 8.32 28.92 2424 -8.08990 <0.0001 0.81 (L)

BFT Ordered

4 43.70 25.03 38.50 46 -8.29671 <0.0001 0.83 (L)
5 51.94 34.09 42.12 41 -8.33118 <0.0001 0.83 (L)
6 66.00 52.75 42.96 31 -8.40012 <0.0001 0.84 (L)
7 96.51 71.33 71.61 13 -8.52421 <0.0001 0.85 (L)
8 94.75 67.26 70.44 17 -8.49663 <0.0001 0.85 (L)
9 61.63 39.40 48.07 30 -8.40701 <0.0001 0.84 (L)
10 66.27 38.98 53.14 21 -8.46906 <0.0001 0.85 (L)

BFT Unordered

4 26.61 2.49 26.39 79 -8.06922 <0.0001 0.81 (L)
5 27.15 5.47 26.30 129 -7.72453 <0.0001 0.77 (M)
6 26.69 4.19 27.26 120 -7.78657 <0.0001 0.78 (M)
7 28.11 2.13 27.92 63 -8.17952 <0.0001 0.82 (L)
8 27.89 2.62 27.61 69 -8.13815 <0.0001 0.81 (L)
9 28.83 2.09 28.42 58 -8.21399 <0.0001 0.82 (L)
10 30.45 8.72 29.50 100 -7.92445 <0.0001 0.79 (M)

254

C.1 Baseline Results

Table C.2: Baseline Mann-Whitney U test results comparing increasing controller
counts, no signatures. Numbers in test columns represent controller count.

Mann-Whitney U
Test 1 Test 2 U Z P Effect
SDBFT 4 SDBFT 10 2002 -5.18080 <0.0001 0.52 (M)
BFT Ordered 4 BFT Ordered 10 2332 -7.45567 <0.0001 0.75 (M)
BFT Unordered 4 BFT Unordered 10 2183 -6.42849 <0.0001 0.64 (M)
SDBFT 1 SDBFT 2 404 -5.82874 <0.0001 0.58 (M)
SDBFT 2 SDBFT 3 890.5 -2.47489 0.01333 0.25 (S)
SDBFT 3 SDBFT 4 1122 -0.87898 0.37941 0.09 (N)
SDBFT 4 SDBFT 5 886 -2.50595 0.01221 0.25 (S)
SDBFT 5 SDBFT 6 1095 -1.06510 0.28683 0.11 (N)
SDBFT 6 SDBFT 7 1048 -1.38910 0.16480 0.14 (N)
SDBFT 7 SDBFT 8 1154 -0.65836 0.51031 0.07 (N)
SDBFT 8 SDBFT 9 1270.5 -0.13788 0.89034 0.01 (N)
SDBFT 9 SDBFT 10 1547 -2.04402 0.04095 0.20 (S)
BFT Ordered 4 BFT Ordered 5 350 -6.20099 <0.0001 0.62 (M)
BFT Ordered 5 BFT Ordered 6 1131 -0.81692 0.41398 0.08 (N)
BFT Ordered 6 BFT Ordered 7 831 -2.88506 0.00391 0.29 (S)
BFT Ordered 7 BFT Ordered 8 1271 -0.14132 0.88761 0.01 (N)
BFT Ordered 8 BFT Ordered 9 1596 -2.38181 0.01723 0.24 (S)
BFT Ordered 9 BFT Ordered 10 1561 -2.14053 0.03231 0.21 (S)
BFT Unordered 4 BFT Unordered 5 1101 -1.02373 0.30596 0.10 (N)
BFT Unordered 5 BFT Unordered 6 1157 -0.63768 0.52368 0.06 (N)
BFT Unordered 6 BFT Unordered 7 905 -2.37492 0.01755 0.24 (S)
BFT Unordered 7 BFT Unordered 8 1364 -0.78245 0.43395 0.08 (N)
BFT Unordered 8 BFT Unordered 9 898 -2.42318 0.01539 0.24 (S)
BFT Unordered 9 BFT Unordered 10 1562.5 -2.15088 0.03149 0.22 (S)

Table C.3: BFT-SMaRt statistical significant test against SDBFT, no signatures.

Controllers
Mann-Whitney U 4 5 6 7 8 9 10
U 143 27 72 119 20 56 113
Z -7.62815 -8.42772 -8.11747 -7.79346 -8.47595 -8.22777 -7.83483
P <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Effect 0.76 (M) 0.84 (L) 0.81 (L) 0.78 (L) 0.85 (L) 0.82 (L) 0.78 (M)

255

C.1 Baseline Results

Table C.4: Baseline results using SHA512 with RSA signatures. Mann-Whitney
U test against direct controller. Mean, SD and median results in milliseconds. N
= number of controllers

Mann-Whitney U
Approach N Mean SD Median U Z P Effect
Direct 1 13.53 5.87 12.18 - - - -

SDBFT

1 32.02 4.19 31.18 2450 -8.26914 <0.0001 0.83 (L)
2 34.09 5.67 32.53 2452 -8.28292 <0.0001 0.83 (L)
3 36.52 6.50 34.37 2452 -8.28292 <0.0001 0.83 (L)
4 37.08 6.64 34.07 2451 -8.27606 <0.0001 0.83 (L)
5 42.19 17.21 37.65 2457 -8.31739 <0.0001 0.83 (L)
6 40.59 18.88 36.14 2407 -7.97270 <0.0001 0.80 (L)
7 45.65 17.25 43.96 2459 -8.33118 <0.0001 0.83 (L)
8 41.47 7.31 40.25 2457 -8.31739 <0.0001 0.83 (L)
9 46.48 23.30 43.23 2461 -8.34497 <0.0001 0.83 (L)
10 54.16 31.74 47.37 2464 -8.36565 <0.0001 0.84 (L)

BFT Ordered

4 71.66 43.39 56.77 5 -8.57936 <0.0001 0.86 (L)
5 82.27 54.20 58.74 2 -8.60004 <0.0001 0.86 (L)
6 79.62 47.80 62.71 1 -8.60693 <0.0001 0.86 (L)
7 96.37 58.00 81.61 0 -8.61383 <0.0001 0.86 (L)
8 90.30 62.37 69.19 54 -8.24156 <0.0001 0.82 (L)
9 65.91 26.83 60.97 1 -8.60693 <0.0001 0.86 (L)
10 64.83 8.07 63.18 0 -8.61383 <0.0001 0.86 (L)

BFT Unordered

4 42.12 5.29 41.16 49 -8.27606 <0.0001 0.83 (L)
5 42.83 4.85 41.90 47 -8.28982 <0.0001 0.83 (L)
6 41.06 6.47 41.52 99 -7.93134 <0.0001 0.79 (M)
7 42.89 2.68 42.15 49 -8.27603 <0.0001 0.83 (L)
8 45.30 5.17 44.27 45 -8.30361 <0.0001 0.83 (L)
9 44.35 2.97 43.97 48 -8.28295 <0.0001 0.83 (L)
10 44.57 4.88 44.02 48 -8.28295 <0.0001 0.83 (L)

256

C.1 Baseline Results

Table C.5: Baseline Results Using SHA256 with RSA Signatures. Mann-Whitney
U test against direct controller. Mean, SD and median results in milliseconds.

Mann-Whitney U
Approach N Mean SD Median U Z P Effect
Direct 1 13.53 5.87 12.18 - - - -

SDBFT

1 24.05 4.76 22.35 2406 -7.96583 <0.0001 0.80 (L)
2 27.90 6.21 25.06 2417 -8.04164 <0.0001 0.80 (L)
3 27.63 6.30 24.92 2419 -8.05543 <0.0001 0.81 (L)
4 26.78 5.01 24.74 2418 -8.04853 <0.0001 0.80 (L)
5 28.42 5.50 26.39 2421 -8.06922 <0.0001 0.81 (L)
6 31.34 7.58 28.93 2429 -8.12437 <0.0001 0.81 (L)
7 32.01 6.63 30.50 2432 -8.14505 <0.0001 0.81 (L)
8 33.90 7.49 31.16 2444 -8.22777 <0.0001 0.82 (L)
9 34.40 7.45 32.64 2447 -8.24848 <0.0001 0.82 (L)
10 34.66 7.14 32.22 2446 -8.24156 <0.0001 0.82 (L)

BFT Ordered

4 56.69 5.06 56.03 1 -8.60693 <0.0001 0.86 (L)
5 93.53 65.34 63.34 1 -8.60693 <0.0001 0.86 (L)
6 117.38 66.21 102.28 0 -8.61383 <0.0001 0.86 (L)
7 60.55 17.18 55.38 3 -8.59315 <0.0001 0.86 (L)
8 69.14 23.44 61.28 2 -8.60004 <0.0001 0.86 (L)
9 64.95 16.78 60.66 0 -8.61383 <0.0001 0.86 (L)
10 63.66 5.87 63.64 0 -8.61383 <0.0001 0.86 (L)

BFT Unordered

4 43.64 4.54 42.70 45 -8.30361 <0.0001 0.83 (L)
5 42.66 1.98 42.39 50 -8.26916 <0.0001 0.83 (L)
6 42.37 1.80 42.28 50 -8.26914 <0.0001 0.83 (L)
7 43.66 3.06 43.01 49 -8.27603 <0.0001 0.83 (L)
8 42.92 6.58 43.49 99 -7.93134 <0.0001 0.79 (M)
9 45.27 5.37 44.52 48 -8.28292 <0.0001 0.83 (L)
10 45.30 2.43 44.99 46 -8.29674 <0.0001 0.83 (L)

257

C.1 Baseline Results

Table C.6: Baseline results using SHA512 with RSA signatures. Mann-Whitney
U test against equivalent unsigned approach.

Mann-Whitney U
Approach Controllers U Z P Effect

SDBFT

1 0 -8.61385 <0.0001 0.86 (L)
2 53 -8.24846 <0.0001 0.82 (L)
3 26 -8.43459 <0.0001 0.84 (L)
4 230 -7.02840 <0.0001 0.70 (M)
5 135 -7.68319 <0.0001 0.77 (M)
6 307 -6.49743 <0.0001 0.65 (M)
7 185 -7.33847 <0.0001 0.73 (M)
8 112 -7.84172 <0.0001 0.78 (M)
9 111 -7.84861 <0.0001 0.78 (M)
10 136 -7.67627 <0.0001 0.77 (M)

BFT Ordered

4 148 -7.59354 <0.0001 0.76 (M)
5 251 -6.88348 <0.0001 0.69 (M)
6 627 -4.29140 <0.0001 0.43 (S)
7 1081 -1.16161 0.2454 0.12 (N)
8 1155 -0.65147 0.5147 0.07 (N)
9 593 -4.52579 <0.0001 0.45 (M)
10 706 -3.74679 0.00018 0.37 (M)

BFT Unordered

4 2500 -8.61385 <0.0001 0.86 (L)
5 2452 -8.28292 <0.0001 0.83 (L)
6 2450 -8.26914 <0.0001 0.83 (L)
7 2500 -8.61383 <0.0001 0.86 (L)
8 2500 -8.61383 <0.0001 0.86 (L)
9 2500 -8.61385 <0.0001 0.86 (L)
10 2402 -7.93826 <0.0001 0.79 (M)

258

C.1 Baseline Results

Table C.7: Baseline results using SHA256 with RSA signatures. Mann-Whitney
U test against equivalent unsigned approach.

Mann-Whitney U
Approach Controllers U Z P Effect

SDBFT

1 46 -8.29676 <0.0001 0.83 (L)
2 169 -7.44877 <0.0001 0.74 (M)
3 192 -7.29021 <0.0001 0.73 (M)
4 517 -5.04981 <0.0001 0.50 (M)
5 641 -4.19490 <0.0001 0.42 (S)
6 567 -4.70503 <0.0001 0.47 (S)
7 620 -4.33966 <0.0001 0.43 (S)
8 571 -4.67746 <0.0001 0.47 (S)
9 583 -4.59474 <0.0001 0.46 (S)
10 824 -2.93332 0.0034 0.29 (S)

BFT Ordered

4 162 -7.49703 <0.0001 0.75 (M)
5 198 -7.24885 <0.0001 0.72 (M)
6 396 -5.88388 <0.0001 0.59 (M)
7 1639 -2.67825 0.0074 0.27 (M)
8 1321 -0.48601 0.6270 0.05 (N)
9 578 -4.62920 <0.0001 0.46 (M)
10 732 -3.56755 0.0004 0.36 (M)

BFT Unordered

4 2500 -8.61383 <0.0001 0.86 (L)
5 2450 -8.26916 <0.0001 0.83 (L)
6 2500 -8.61383 <0.0001 0.86 (L)
7 2500 -8.61383 <0.0001 0.86 (L)
8 2447 -8.24846 <0.0001 0.82 (L)
9 2500 -8.61383 <0.0001 0.86 (L)
10 2400 -7.92447 <0.0001 0.79 9M)

259

C.2 Multi-hop Path Test Results

C.2 Multi-hop Path Test Results

Table C.8: Multi-hop path tests without using signatures. T-test significance test
against direct controller connection. Mean, SD and median results in milliseconds.

T-Test
Approach Hops Mean SD Median T DF P Effect

Direct

1 3.98 0.64 4.07 - - - -
2 7.44 1.23 7.36 - - - -
3 10.15 1.62 10.45 - - - -
4 14.39 1.49 14.25 - - - -
5 17.75 2.39 18.10 - - - -
6 20.14 2.57 19.9 - - - -
7 22.47 2.62 22.4 - - - -
8 25.63 3.05 25.55 - - - -
9 26.45 3.26 26.6 - - - -
10 30.36 3.34 30.9 - - - -

Simple

1 4.78 1.06 4.86 -4.57884 81.01979 <0.0001 0.92 (L)
2 9.15 1.41 9.26 -6.47428 96.17939 <0.0001 1.29 (L)
3 12.98 1.62 13.10 -8.73321 97.99922 <0.0001 1.75 (VL)
4 17.60 2.10 17.65 -8.81824 88.23011 <0.0001 1.76 (VL)
5 21.78 2.89 22.25 -7.59963 94.66134 <0.0001 1.52 (VL)
6 25.68 3.35 25.15 -9.28525 91.75634 <0.0001 1.86 (VL)
7 29.95 3.63 29.40 -11.82885 89.25281 <0.0001 2.37 (VL)
8 33.39 3.68 33.90 -11.46863 94.66938 <0.0001 2.29 (VL)
9 35.89 4.75 36.95 -11.58802 86.86495 <0.0001 2.32 (VL)
10 41.32 4.19 42.15 -14.46773 93.32191 <0.0001 2.89 (VL)

SDBFT

1 7.81 1.10 7.89 -21.25165 79.09807 <0.0001 4.25 (VL)
2 13.10 1.72 12.90 -18.93358 88.55849 <0.0001 3.79 (VL)
3 18.57 1.73 18.45 -25.10514 97.61997 <0.0001 5.02 (VL)
4 25.31 2.84 25.10 -24.10981 74.05099 <0.0001 4.82 (VL)
5 29.66 2.72 29.35 -23.27545 96.40587 <0.0001 4.66 (VL)
6 36.79 6.41 35.90 -17.05230 64.31690 <0.0001 3.41 (VL)
7 41.63 7.05 40.45 -18.02573 62.32604 <0.0001 3.61 (VL)
8 44.37 6.21 43.80 -19.15106 71.30473 <0.0001 3.83 (VL)
9 46.73 3.32 46.65 -30.79620 97.97104 <0.0001 6.16 (VL)
10 53.72 6.84 53.65 -21.70866 71.08825 <0.0001 4.34 (VL)

BFT

1 21.95 1.44 22.10 80.34816 67.76206 <0.0001 16.07 (VL)
2 36.85 1.35 36.85 114.12296 97.11770 <0.0001 22.82 (VL)
3 51.35 2.27 51.80 104.25377 88.69011 <0.0001 20.85 (VL)
4 68.02 3.26 68.50 105.81683 68.52997 <0.0001 21.16 (VL)
5 82.84 3.79 82.80 102.65045 82.58556 <0.0001 20.53 (VL)
6 95.97 3.00 96.40 135.78274 95.67701 <0.0001 27.16 (VL)
7 109.82 4.46 110.00 119.36269 79.27073 <0.0001 23.87 (VL)
8 121.86 4.99 122.00 116.44010 81.13481 <0.0001 23.29 (VL)
9 135.60 3.96 136.00 -150.42344 94.55750 <0.0001 30.08 (VL)
10 151.76 7.80 152.00 101.15677 66.34967 <0.0001 20.23 (VL)

260

C.2 Multi-hop Path Test Results

Table C.9: Multi-hop path test using signatures. T-test significance test against
direct controller connection. Mean, SD and median results in milliseconds.

T-Test
Approach Hops Mean SD Median T DF P Effect

SDBFT

1 10.51 1.54 10.50 -27.68683 65.70923 <0.0001 5.54 (VL)
2 17.54 1.56 17.55 -36.04592 92.88393 <0.0001 7.21 (VL)
3 24.82 3.41 24.25 -27.49073 70.19136 <0.0001 5.50 (VL)
4 34.26 5.79 32.95 -23.49598 55.42899 <0.0001 4.70 (VL)
5 38.47 3.31 38.40 -35.91880 89.19606 <0.0001 7.18 (VL)
6 46.57 3.12 46.90 -46.23749 94.43678 <0.0001 9.25 (VL)
7 53.25 7.80 51.65 -26.46955 59.95856 <0.0001 5.29 (VL)
8 56.85 4.73 56.65 -39.24091 83.73440 <0.0001 7.85 (VL)
9 57.23 4.14 56.65 -41.28726 92.95098 <0.0001 8.26 (VL)
10 69.54 6.29 69.55 -38.89269 74.53187 <0.0001 7.78 (VL)

BFT

1 29.83 2.38 30.05 74.23714 56.16721 <0.0001 14.85 (VL)
2 52.64 2.60 53.20 111.33972 69.81660 <0.0001 22.27 (VL)
3 74.90 3.47 74.85 119.52754 69.51201 <0.0001 23.91 (VL)
4 97.24 3.70 97.15 146.90353 64.41852 <0.0001 29.38 (VL)
5 117.36 4.89 116.50 129.51607 71.17541 <0.0001 25.90 (VL)
6 139.36 5.01 140.00 149.78734 73.05438 <0.0001 29.96 (VL)
7 160.06 5.64 160.50 156.49082 69.27583 <0.0001 31.30 (VL)
8 182.36 8.92 181.50 117.52917 60.27968 <0.0001 23.51 (VL)
9 200.26 6.14 201.00 176.80821 74.65966 <0.0001 35.36 (VL)
10 223.58 8.53 223.00 149.14835 63.65559 <0.0001 29.83 (VL)

Table C.10: Multi-hop path test without using signatures. T-test significance
test comparing SDBFT to BFt-SMaRt.

T-Test
Test 1 Test 2 T DF P Effect
SDBFT 1 BFT 1 55.07926 91.52218 <0.0001 11.02 (VL)
SDBFT 2 BFT 2 76.85285 92.72016 <0.0001 15.37 (VL)
SDBFT 3 BFT 3 81.13188 91.47875 <0.0001 16.23 (VL)
SDBFT 4 BFT 4 69.89536 96.14613 <0.0001 13.98 (VL)
SDBFT 5 BFT 5 80.55168 88.83049 <0.0001 16.11 (VL)
SDBFT 6 BFT 6 59.14316 69.52158 <0.0001 11.83 (VL)
SDBFT 7 BFT 7 57.81489 82.83928 <0.0001 11.56 (VL)
SDBFT 8 BFT 8 68.79486 93.62073 <0.0001 13.76 (VL)
SDBFT 9 BFT 9 -121.62148 95.11430 <0.0001 24.32 (VL)
SDBFT 10 BFT 10 66.81835 96.34406 <0.0001 13.36 (VL)

261

C.2 Multi-hop Path Test Results

Table C.11: Multi-hop path test using signatures. T-test significance test com-
paring SDBFT to BFt-SMaRt.

T-Test
Test 1 Test 2 T DF P Effect
SDBFT 1 BFT 1 48.28170 83.89063 <0.0001 9.66 (VL)
SDBFT 2 BFT 2 81.99545 80.21435 <0.0001 16.40 (VL)
SDBFT 3 BFT 3 72.82507 97.96825 <0.0001 14.57 (VL)
SDBFT 4 BFT 4 64.79139 83.28631 <0.0001 12.96 (VL)
SDBFT 5 BFT 5 94.54526 86.12298 <0.0001 18.91 (VL)
SDBFT 6 BFT 6 111.14289 82.10120 <0.0001 22.23 (VL)
SDBFT 7 BFT 7 78.51023 89.24015 <0.0001 15.70 (VL)
SDBFT 8 BFT 8 87.88877 74.49681 <0.0001 17.58 (VL)
SDBFT 9 BFT 9 136.63902 85.92238 <0.0001 27.33 (VL)
SDBFT 10 BFT 10 102.73519 90.15558 <0.0001 20.55 (VL)

262

References

[1] A. E. Abbadi and S. Toueg. “Maintaining Availability in Partitioned Replicated Databases”.

In: ACM Trans. Database Syst. 14.2 (1989), 264–290. issn: 0362-5915. doi: 10.1145/6

3500.63501. url: https://doi.org/10.1145/63500.63501 (page 53).

[2] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J. Wylie. “Fault-

Scalable Byzantine Fault-Tolerant Services”. In: Proceedings of the Twentieth ACM

Symposium on Operating Systems Principles. SOSP ’05. Brighton, United Kingdom:

Association for Computing Machinery, 2005, 59–74. isbn: 1595930795. doi: 10.1145

/1095810.1095817. url: https://doi.org/10.1145/1095810.1095817 (page 53).

[3] A. R. Abdou, P. C. Van Oorschot, and T. Wan. “Comparative analysis of control plane

security of SDN and conventional networks”. In: IEEE Communications Surveys and

Tutorials 20.4 (2018), pp. 3542–3559. issn: 1553877X. doi: 10.1109/COMST.2018.283

9348 (page 58).

[4] D. Agrawal and A. El Abbadi. “An Efficient and Fault-Tolerant Solution for Distributed

Mutual Exclusion”. In: ACM Trans. Comput. Syst. 9.1 (1991), 1–20. issn: 0734-2071.

doi: 10.1145/103727.103728. url: https://doi.org/10.1145/103727.103728

(page 53).

[5] M. K. Aguilera, W. Chen, and S. Toueg. “Failure Detection and Consensus in the

Crash-Recovery Model”. In: Distrib. Comput. 13.2 (2000), 99–125. issn: 0178-2770.

doi: 10.1007/s004460050070. url: https://doi.org/10.1007/s004460050070

(page 53).

[6] A. Akhunzada, E. Ahmed, A. Gani, M. K. Khan, M. Imran, and S. Guizani. “Secur-

ing software defined networks: taxonomy, requirements, and open issues”. In: IEEE

263

https://doi.org/10.1145/63500.63501
https://doi.org/10.1145/63500.63501
https://doi.org/10.1145/63500.63501
https://doi.org/10.1145/1095810.1095817
https://doi.org/10.1145/1095810.1095817
https://doi.org/10.1145/1095810.1095817
https://doi.org/10.1109/COMST.2018.2839348
https://doi.org/10.1109/COMST.2018.2839348
https://doi.org/10.1145/103727.103728
https://doi.org/10.1145/103727.103728
https://doi.org/10.1007/s004460050070
https://doi.org/10.1007/s004460050070

REFERENCES

Communications Magazine 53.4 (2015), pp. 36–44. doi: 10.1109/MCOM.2015.7081073

(page 102).

[7] E. Al-Shaer and S. Al-Haj. “FlowChecker: Configuration Analysis and Verification of

Federated Openflow Infrastructures”. In: ACM Workshop on Assurable and Usable Se-

curity Configuration. SafeConfig ’10. Chicago, Illinois, USA: Association for Computing

Machinery, 2010, 37–44. isbn: 9781450300933. doi: 10.1145/1866898.1866905. url:

https://doi.org/10.1145/1866898.1866905 (pages 3, 59, 102).

[8] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. ElBadawi. “Network configuration in

a box: towards end-to-end verification of network reachability and security”. In: 2009

17th IEEE International Conference on Network Protocols. 2009, pp. 123–132. doi:

10.1109/ICNP.2009.5339690 (page 59).

[9] T. R. Alves, M. Buratto, F. M. de Souza, and T. V. Rodrigues. “OpenPLC: An open

source alternative to automation”. In: IEEE Global Humanitarian Technology Confer-

ence (GHTC 2014). 2014, pp. 585–589. doi: 10.1109/GHTC.2014.6970342 (page 112).

[10] R. Anderson. Reaching Ultra Low Latency in Trading Infrastructure. https://ffnews.

com/thought-leader/reaching-ultra-low-latency-in-trading-infrastructure/

. Accessed: 2022-7-18. 2021 (page 4).

[11] N. Anerousis, P. Chemouil, A. A. Lazar, N. Mihai, and S. B. Weinstein. “The Origin

and Evolution of Open Programmable Networks and SDN”. In: IEEE Communications

Surveys Tutorials 23.3 (2021), pp. 1956–1971. doi: 10.1109/COMST.2021.3060582

(page 18).

[12] M. Antikainen, T. Aura, and M. Särelä. “Spook in Your Network: Attacking an SDN

with a Compromised OpenFlow Switch”. In: Secure IT Systems: 19th Nordic Con-

ference, NordSec 2014, Tromsø, Norway, October 15-17, 2014, Proceedings. Ed. by

K. Bernsmed and S. Fischer-Hübner. Cham: Springer International Publishing, 2014,

pp. 229–244. isbn: 978-3-319-11599-3. doi: 10.1007/978-3-319-11599-3_14. url:

http://dx.doi.org/10.1007/978-3-319-11599-3{_}14 (pages 58, 85).

[13] M. Aslan and A. Matrawy. “Adaptive consistency for distributed SDN controllers”. In:

2016 17th International Telecommunications Network Strategy and Planning Sympo-

sium (Networks). 2016, pp. 150–157. doi: 10.1109/NETWKS.2016.7751168 (page 151).

264

https://doi.org/10.1109/MCOM.2015.7081073
https://doi.org/10.1145/1866898.1866905
https://doi.org/10.1145/1866898.1866905
https://doi.org/10.1109/ICNP.2009.5339690
https://doi.org/10.1109/GHTC.2014.6970342
https://ffnews.com/thought-leader/reaching-ultra-low-latency-in-trading-infrastructure/
https://ffnews.com/thought-leader/reaching-ultra-low-latency-in-trading-infrastructure/
https://ffnews.com/thought-leader/reaching-ultra-low-latency-in-trading-infrastructure/
https://doi.org/10.1109/COMST.2021.3060582
https://doi.org/10.1007/978-3-319-11599-3_14
http://dx.doi.org/10.1007/978-3-319-11599-3{_}14
https://doi.org/10.1109/NETWKS.2016.7751168

REFERENCES

[14] A. Atlas, J. M. Halpern, S. Hares, D. Ward, and T. Nadeau. An Architecture for the

Interface to the Routing System. RFC 7921. June 2016. doi: 10.17487/RFC7921. url:

https://www.rfc-editor.org/info/rfc7921 (page 29).

[15] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr. “Basic concepts and taxonomy

of dependable and secure computing”. In: IEEE Transactions on Dependable and Secure

Computing 1.1 (2004), pp. 11–33. doi: 10.1109/TDSC.2004.2 (page 36).

[16] F. Bannour, S. Souihi, and A. Mellouk. “Distributed SDN Control: Survey, Taxonomy,

and Challenges”. In: IEEE Communications Surveys & Tutorials 20.1 (2018), pp. 333–

354. doi: 10.1109/COMST.2017.2782482 (pages 124, 148, 151).

[17] BBC News. Colonial hack: How did cyber-attackers shut off pipeline? https://www.

bbc.co.uk/news/technology-57063636. Accessed: 2022-4-7. 2021 (page 108).

[18] BBC News. Hacker tries to poison water supply of Florida city. https://www.bbc.co.

uk/news/world-us-canada-55989843 . Accessed: 2022-4-7. 2021 (page 108).

[19] K. Benton, L. J. Camp, and C. Small. “OpenFlow Vulnerability Assessment”. In: Pro-

ceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software Defined

Networking. HotSDN ’13. Hong Kong, China: Association for Computing Machinery,

2013, 151–152. isbn: 9781450321785. doi: 10.1145/2491185.2491222. url: https:

//doi.org/10.1145/2491185.2491222 (page 24).

[20] P. Berde et al. “ONOS: Towards an Open, Distributed SDN OS”. In: Proceedings of

the Third Workshop on Hot Topics in Software Defined Networking. HotSDN ’14. New

York, NY, USA: ACM, 2014, pp. 1–6. isbn: 978-1-4503-2989-7. doi: 10.1145/2620728

.2620744. url: http://doi.acm.org/10.1145/2620728.2620744 (pages 33, 41, 66).

[21] D. J. Bernstein, T. Lange, and P. Schwabe. “The Security Impact of a New Crypto-

graphic Library”. In: Progress in Cryptology – LATINCRYPT 2012. Ed. by A. Hevia

and G. Neven. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 159–176. isbn:

978-3-642-33481-8 (page 65).

[22] A. Bessani, J. Sousa, and E. E. P. Alchieri. “State Machine Replication for the Masses

with BFT-SMART”. In: IEEE/IFIP International Conference on Dependable Systems

and Networks. 2014, pp. 355–362. doi: 10.1109/DSN.2014.43 (pages 55, 71, 152, 154,

156, 170, 232).

265

https://doi.org/10.17487/RFC7921
https://www.rfc-editor.org/info/rfc7921
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/COMST.2017.2782482
https://www.bbc.co.uk/news/technology-57063636
https://www.bbc.co.uk/news/technology-57063636
https://www.bbc.co.uk/news/world-us-canada-55989843
https://www.bbc.co.uk/news/world-us-canada-55989843
https://doi.org/10.1145/2491185.2491222
https://doi.org/10.1145/2491185.2491222
https://doi.org/10.1145/2491185.2491222
https://doi.org/10.1145/2620728.2620744
https://doi.org/10.1145/2620728.2620744
http://doi.acm.org/10.1145/2620728.2620744
https://doi.org/10.1109/DSN.2014.43

REFERENCES

[23] A. Bessani, M. Santos, J. a. Felix, N. Neves, and M. Correia. “On the Efficiency of

Durable State Machine Replication”. In: Proceedings of the 2013 USENIX Conference

on Annual Technical Conference. USENIX ATC’13. San Jose, CA: USENIX Associa-

tion, 2013, 169–180 (page 55).

[24] BFT-SMaRt. https://github.com/bft-smart (pages 156, 170).

[25] S. Bhattacharjee, K. L. Calvert, and E. W. Zegura. “An architecture for active network-

ing”. In: International Conference on High Performance Networking. Springer. 1997,

pp. 265–279 (page 18).

[26] E. Biham, S. Bitan, A. Carmel, A. Dankner, U. Malin, and A. Wool. “Rogue7: Rogue

Engineering-Station attacks on S7 Simatic PLCs”. In: Black Hat 2019. 2019 (page 111).

[27] L. Bilge and T. Dumitraş. “Before We Knew It: An Empirical Study of Zero-Day

Attacks in the Real World”. In: Proceedings of the 2012 ACM Conference on Computer

and Communications Security. CCS ’12. Raleigh, North Carolina, USA: Association

for Computing Machinery, 2012, 833–844. isbn: 9781450316514. doi: 10.1145/23821

96.2382284. url: https://doi.org/10.1145/2382196.2382284 (page 3).

[28] R. Boichat, P. Dutta, S. Frølund, and R. Guerraoui. “Deconstructing paxos”. In: ACM

SIGACT News 34.1 (2003), p. 47. issn: 01635700. doi: 10.1145/637437.637447. url:

http://portal.acm.org/citation.cfm?doid=637437.637447 (page 42).

[29] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger,

D. Talayco, A. Vahdat, G. Varghese, and D. Walker. “P4: Programming Protocol-

Independent Packet Processors”. In: SIGCOMM Comput. Commun. Rev. 44.3 (2014),

87–95. issn: 0146-4833. doi: 10.1145/2656877.2656890. url: https://doi.org/10

.1145/2656877.2656890 (page 18).

[30] F. Botelho, A. Bessani, F. M. Ramos, and P. Ferreira. “On the design of practical fault-

tolerant SDN controllers”. In: Proceedings - 2014 3rd European Workshop on Software-

Defined Networks, EWSDN 2014 (2014), pp. 73–78. doi: 10.1109/EWSDN.2014.25

(page 68).

[31] F. A. Botelho, F. M. V. Ramos, D. Kreutz, and A. N. Bessani. “On the feasibility

of a consistent and fault-tolerant data store for SDNs”. In: Proceedings - 2013 2nd

European Workshop on Software Defined Networks, EWSDN 2013 (2013), pp. 38–43.

doi: 10.1109/EWSDN.2013.13 (page 68).

266

https://doi.org/10.1145/2382196.2382284
https://doi.org/10.1145/2382196.2382284
https://doi.org/10.1145/2382196.2382284
https://doi.org/10.1145/637437.637447
http://portal.acm.org/citation.cfm?doid=637437.637447
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1109/EWSDN.2014.25
https://doi.org/10.1109/EWSDN.2013.13

REFERENCES

[32] F. Botelho, T. A. Ribeiro, P. Ferreira, F. M. V. Ramos, and A. Bessani. “Design and

Implementation of a Consistent Data Store for a Distributed SDN Control Plane”. In:

2016 12th European Dependable Computing Conference (EDCC). 2016, pp. 169–180.

doi: 10.1109/EDCC.2016.12 (page 152).

[33] S. Boukria, M. Guerroumi, and I. Romdhani. “BCFR: Blockchain-based Controller

Against False Flow Rule Injection in SDN”. In: Proceedings - IEEE Symposium on

Computers and Communications 2019-June (2019). issn: 15301346. doi: 10.1109/IS

CC47284.2019.8969780 (pages 59, 60).

[34] G. Bracha and S. Toueg. “Asynchronous consensus and broadcast protocols”. In: Jour-

nal of the ACM 32.4 (1985), pp. 824–840. issn: 00045411. doi: 10.1145/4221.214134.

url: http://portal.acm.org/citation.cfm?doid=4221.214134 (page 43).

[35] C. Braz, A. Seffah, and D. M’Raihi. “Designing a Trade-Off Between Usability and

Security: A Metrics Based-Model”. In: Human-Computer Interaction – INTERACT

2007. Ed. by C. Baranauskas, P. Palanque, J. Abascal, and S. D. J. Barbosa. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2007, pp. 114–126. isbn: 978-3-540-74800-7

(page 8).

[36] Cabinet Office. Public Summary of Sector Security and Resilience Plans 2017. 2017

(page 103).

[37] C. Cachin. “Yet Another Visit to Paxos”. In: 2010 (page 55).

[38] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to Reliable and Secure Dis-

tributed Programming. Springer Berlin Heidelberg, 2011. isbn: 978-3-642-15259-7 (page 41).

[39] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker. “Ethane:

Taking Control of the Enterprise”. In: SIGCOMM Comput. Commun. Rev. 37.4 (2007),

1–12. issn: 0146-4833. doi: 10.1145/1282427.1282382. url: https://doi.org/10.1

145/1282427.1282382 (pages 19, 57).

[40] M. Casado, T. Garfinkel, A. Akella, M. J. Freedman, D. Boneh, N. Mckeown, and

S. Shenker. “SANE: A Protection Architecture for Enterprise Networks”. In: Usenix

Security Symposium. 2006 (pages 19, 57).

[41] M. Castro and B. Liskov. “Practical Byzantine Fault Tolerance”. In: Operating Systems

Design and Implementation. OSDI. 1999, pp. 173–186. isbn: 1-880446-39-1. url: http:

//dl.acm.org/citation.cfm?id=296806.296824 (pages 7, 49, 51, 71, 123, 238).

267

https://doi.org/10.1109/EDCC.2016.12
https://doi.org/10.1109/ISCC47284.2019.8969780
https://doi.org/10.1109/ISCC47284.2019.8969780
https://doi.org/10.1145/4221.214134
http://portal.acm.org/citation.cfm?doid=4221.214134
https://doi.org/10.1145/1282427.1282382
https://doi.org/10.1145/1282427.1282382
https://doi.org/10.1145/1282427.1282382
http://dl.acm.org/citation.cfm?id=296806.296824
http://dl.acm.org/citation.cfm?id=296806.296824

REFERENCES

[42] M. Castro and B. Liskov. “Proactive Recovery in a Byzantine-Fault-Tolerant System”.

In: Proceedings of the 4th Conference on Symposium on Operating System Design &

Implementation - Volume 4. OSDI’00. San Diego, California: USENIX Association,

2000 (page 52).

[43] M. Castro, R. Rodrigues, and B. Liskov. “BASE: Using Abstraction to Improve Fault

Tolerance”. In: ACM Trans. Comput. Syst. 21.3 (2003), 236–269. issn: 0734-2071. doi: 1

0.1145/859716.859718. url: https://doi.org/10.1145/859716.859718 (page 52).

[44] V. Cerf and R. Kahn. “A Protocol for Packet Network Intercommunication”. In: IEEE

Transactions on Communications 22.5 (1974), pp. 637–648. doi: 10.1109/TCOM.1974

.1092259 (page 16).

[45] T. D. Chandra and S. Toueg. “Unreliable failure detectors for reliable distributed sys-

tems”. In: Journal of the ACM 43.2 (1996), pp. 225–267. issn: 00045411. doi: 10.1

145/226643.226647. arXiv: arXiv:1011.1669v3. url: http://portal.acm.org/

citation.cfm?doid=226643.226647 (page 43).

[46] B. Chandrasekaran, B. Tschaen, and T. Benson. “Isolating and tolerating SDN appli-

cation failures with LegoSDN”. In: Symposium on Software Defined Networking (SDN)

Research, SOSR 2016 (2016). doi: 10.1145/2890955.2890965. url: http://dx.doi.

org/10.1145/2890955.2890965 (page 62).

[47] S. Chaudhuri. “More Choices Allow More Faults: Set Consensus Problems in Totally

Asynchronous Systems”. In: Inf. Comput. 105.1 (1993), pp. 132–158. issn: 0890-5401.

doi: 10.1006/inco.1993.1043. url: http://dx.doi.org/10.1006/inco.1993.1043

(page 42).

[48] M. Cheminod, L. Durante, L. Seno, F. Valenza, A. Valenzano, and C. Zunino. “Leverag-

ing SDN to improve security in industrial networks”. In: IEEE International Workshop

on Factory Communication Systems - Proceedings, WFCS (2017). doi: 10.1109/WFCS

.2017.7991960 (page 107).

[49] S. Cheung, M. Ammar, and M. Ahamad. “The grid protocol: a high performance scheme

for maintaining replicated data”. In: IEEE Transactions on Knowledge and Data En-

gineering 4.6 (1992), pp. 582–592. doi: 10.1109/69.180609 (page 53).

268

https://doi.org/10.1145/859716.859718
https://doi.org/10.1145/859716.859718
https://doi.org/10.1145/859716.859718
https://doi.org/10.1109/TCOM.1974.1092259
https://doi.org/10.1109/TCOM.1974.1092259
https://doi.org/10.1145/226643.226647
https://doi.org/10.1145/226643.226647
https://arxiv.org/abs/arXiv:1011.1669v3
http://portal.acm.org/citation.cfm?doid=226643.226647
http://portal.acm.org/citation.cfm?doid=226643.226647
https://doi.org/10.1145/2890955.2890965
http://dx.doi.org/10.1145/2890955.2890965
http://dx.doi.org/10.1145/2890955.2890965
https://doi.org/10.1006/inco.1993.1043
http://dx.doi.org/10.1006/inco.1993.1043
https://doi.org/10.1109/WFCS.2017.7991960
https://doi.org/10.1109/WFCS.2017.7991960
https://doi.org/10.1109/69.180609

REFERENCES

[50] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. “Attested Append-Only

Memory: Making Adversaries Stick to Their Word”. In: Proceedings of Twenty-First

ACM SIGOPS Symposium on Operating Systems Principles. SOSP ’07. Stevenson,

Washington, USA: Association for Computing Machinery, 2007, 189–204. isbn: 9781595935915.

doi: 10.1145/1294261.1294280. url: https://doi.org/10.1145/1294261.1294280

(page 54).

[51] Cisco. Introduction to EIRGP. https://www.cisco.com/c/en/us/support/docs/ip/

enhanced-interior-gateway-routing-protocol-eigrp/13669-1.html. Accessed:

2022-2-4 (page 17).

[52] Cisco. Introduction to IRGP. https://www.cisco.com/c/en/us/support/docs/ip/

interior-gateway-routing-protocol-igrp/26825-5.html . Accessed: 2022-2-4

(page 16).

[53] J. Cohen. Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum

Associates, 1988 (pages 193, 253).

[54] M. Conti, F. De Gaspari, and L. V. Mancini. “A Novel Stealthy Attack to Gather SDN

Configuration-Information”. In: IEEE Transactions on Emerging Topics in Computing

8.2 (2020), pp. 328–340. issn: 21686750. doi: 10.1109/TETC.2018.2806977 (page 24).

[55] M. Correia, N. Neves, and P. Verissimo. “How to tolerate half less one Byzantine

nodes in practical distributed systems”. In: Proceedings of the 23rd IEEE International

Symposium on Reliable Distributed Systems, 2004. 2004, pp. 174–183. doi: 10.1109/R

ELDIS.2004.1353018 (page 54).

[56] V. T. Costa and H. M. K. Costa. “Vulnerability Study of FlowVisor-based Virtualized

Network Environments”. In: 2nd Workshop Network Virtualization Intelligence Future

Internet, Rio de Janeiro, Brazil 6994 (2013), p. 6994. url: http://www.gta.ufrj.

br/fits, (pages 58, 82).

[57] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira. “HQ Replication: A Hy-

brid Quorum Protocol for Byzantine Fault Tolerance”. In: Proceedings of the 7th Sym-

posium on Operating Systems Design and Implementation. OSDI ’06. Seattle, Wash-

ington: USENIX Association, 2006, 177–190. isbn: 1931971471 (page 54).

269

https://doi.org/10.1145/1294261.1294280
https://doi.org/10.1145/1294261.1294280
https://www.cisco.com/c/en/us/support/docs/ip/enhanced-interior-gateway-routing-protocol-eigrp/13669-1.html
https://www.cisco.com/c/en/us/support/docs/ip/enhanced-interior-gateway-routing-protocol-eigrp/13669-1.html
https://www.cisco.com/c/en/us/support/docs/ip/interior-gateway-routing-protocol-igrp/26825-5.html
https://www.cisco.com/c/en/us/support/docs/ip/interior-gateway-routing-protocol-igrp/26825-5.html
https://doi.org/10.1109/TETC.2018.2806977
https://doi.org/10.1109/RELDIS.2004.1353018
https://doi.org/10.1109/RELDIS.2004.1353018
http://www.gta.ufrj.br/fits,
http://www.gta.ufrj.br/fits,

REFERENCES

[58] F. Cristian. “Understanding Fault-Tolerant Distributed Systems”. In: Commun. ACM

34.2 (1991), 56–78. issn: 0001-0782. doi: 10 .1145 /102792 .102801. url: https :

//doi.org/10.1145/102792.102801 (page 39).

[59] H. Cui, G. O. Karame, F. Klaedtke, and R. Bifulco. “On the Fingerprinting of Software-

Defined Networks”. In: IEEE Transactions on Information Forensics and Security 11.10

(2016), pp. 2160–2173. issn: 15566013. doi: 10.1109/TIFS.2016.2573756 (page 24).

[60] M. C. Dacier, H. Konig, R. Cwalinski, F. Kargl, and S. DIetrich. “Security Challenges

and Opportunities of Software-Defined Networking”. In: IEEE Security and Privacy

15.2 (2017), pp. 96–100. issn: 15584046. doi: 10.1109/MSP.2017.46 (pages 3, 23).

[61] T. Das, V. Sridharan, and M. Gurusamy. “A Survey on Controller Placement in SDN”.

In: IEEE Communications Surveys Tutorials 22.1 (2020), pp. 472–503. doi: 10.1109

/COMST.2019.2935453 (page 34).

[62] R. De Prisco et al. “On k-set consensus problems in asynchronous systems”. In: IEEE

Transactions on Parallel and Distributed Systems (2001), pp. 7–21. issn: 10459219.

doi: 10.1109/71.899936 (page 43).

[63] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S.

Sivasubramanian, P. Vosshall, and W. Vogels. “Dynamo: Amazon’s Highly Available

Key-Value Store”. In: Proceedings of Twenty-First ACM SIGOPS Symposium on Op-

erating Systems Principles. SOSP ’07. Stevenson, Washington, USA: Association for

Computing Machinery, 2007, 205–220. isbn: 9781595935915. doi: 10.1145/1294261.1

294281. url: https://doi.org/10.1145/1294261.1294281 (page 152).

[64] S. Deng, X. Gao, Z. Lu, and X. Gao. “Packet injection attack and its defense in software-

defined networks”. In: IEEE Transactions on Information Forensics and Security 13.3

(2018), pp. 695–705. issn: 15566013. doi: 10.1109/TIFS.2017.2765506 (pages 24,

63).

[65] A. Derhab, M. Guerroumi, M. Belaoued, and O. Cheikhrouhou. “BMC-SDN: Blockchain-

Based Multicontroller Architecture for Secure Software-Defined Networks”. In:Wireless

Communications and Mobile Computing 2021 (2021). issn: 15308677. doi: 10.1155/2

021/9984666 (pages 59, 60).

270

https://doi.org/10.1145/102792.102801
https://doi.org/10.1145/102792.102801
https://doi.org/10.1145/102792.102801
https://doi.org/10.1109/TIFS.2016.2573756
https://doi.org/10.1109/MSP.2017.46
https://doi.org/10.1109/COMST.2019.2935453
https://doi.org/10.1109/COMST.2019.2935453
https://doi.org/10.1109/71.899936
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1145/1294261.1294281
https://doi.org/10.1109/TIFS.2017.2765506
https://doi.org/10.1155/2021/9984666
https://doi.org/10.1155/2021/9984666

REFERENCES

[66] A. Derhab, M. Guerroumi, A. Gumaei, L. Maglaras, M. A. Ferrag, M. Mukherjee, and

F. A. Khan. “Blockchain and Random Subspace Learning-Based IDS for SDN-Enabled

Industrial IoT Security”. In: Sensors 19.14 (2019). doi: 10.3390/s19143119. url:

https://www.mdpi.com/1424-8220/19/14/3119 (page 107).

[67] E. W. Dijkstra. “A Note on Two Problems in Connexion with Graphs”. In: Numer.

Math. 1.1 (1959), 269–271. issn: 0029-599X. doi: 10.1007/BF01386390. url: https:

//doi.org/10.1007/BF01386390 (pages 17, 107).

[68] D. Dolev, M. J. Fischer, R. Fowler, N. A. Lynch, and H. Raymond Strong. “An efficient

algorithm for byzantine agreement without authentication”. In: Information and Con-

trol 52.3 (1982), pp. 257–274. issn: 00199958. doi: 10.1016/S0019-9958(82)90776-8.

url: http://www.sciencedirect.com/science/article/pii/S0019995882907768

(page 43).

[69] P. Dong, X. Du, H. Zhang, and T. Xu. “A detection method for a novel DDoS attack

against SDN controllers by vast new low-traffic flows”. In: 2016 IEEE International

Conference on Communications, ICC 2016 (2016). doi: 10.1109/ICC.2016.7510992

(page 24).

[70] S. Dong, K. Abbas, and R. Jain. “A Survey on Distributed Denial of Service (DDoS)

Attacks in SDN and Cloud Computing Environments”. In: IEEE Access 7 (2019),

pp. 80813–80828. issn: 21693536. doi: 10.1109/ACCESS.2019.2922196 (page 24).

[71] J. M. Dover. A denial of service attack against the Open Floodlight SDN controller.

Tech. rep. Dover Networks LLC, 2017. url: https : / / silo . tips / download / a -

denial- of- service- attack- against- the- open- floodlight- sdn- controller

(page 24).

[72] J. M. Dover. A switch table vulnerability in the Open Floodlight SDN controller. Tech.

rep. Dover Networks LLC, 2017. url: https://silo.tips/download/a-switch-

table-vulnerability-in-the-open-floodlight-sdn-controller (page 24).

[73] Z. Drias, A. Serhrouchni, and O. Vogel. “Analysis of cyber security for industrial con-

trol systems”. In: 2015 International Conference on Cyber Security of Smart Cities,

Industrial Control System and Communications (SSIC). 2015, pp. 1–8. doi: 10.1109

/SSIC.2015.7245330 (page 104).

271

https://doi.org/10.3390/s19143119
https://www.mdpi.com/1424-8220/19/14/3119
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://doi.org/10.1016/S0019-9958(82)90776-8
http://www.sciencedirect.com/science/article/pii/S0019995882907768
https://doi.org/10.1109/ICC.2016.7510992
https://doi.org/10.1109/ACCESS.2019.2922196
https://silo.tips/download/a-denial-of-service-attack-against-the-open-floodlight-sdn-controller
https://silo.tips/download/a-denial-of-service-attack-against-the-open-floodlight-sdn-controller
https://silo.tips/download/a-switch-table-vulnerability-in-the-open-floodlight-sdn-controller
https://silo.tips/download/a-switch-table-vulnerability-in-the-open-floodlight-sdn-controller
https://doi.org/10.1109/SSIC.2015.7245330
https://doi.org/10.1109/SSIC.2015.7245330

REFERENCES

[74] L. Dridi and M. F. Zhani. “SDN-Guard: DoS Attacks Mitigation in SDN Networks”. In:

Proceedings - 2016 5th IEEE International Conference on Cloud Networking, CloudNet

2016 (2016), pp. 212–217. doi: 10.1109/CLOUDNET.2016.9 (page 24).

[75] K. Driscoll, B. Hall, M. Paulitsch, P. Zumsteg, and H. Sivencrona. “The real Byzantine

Generals”. In: The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576).

Vol. 2. 2004, pp. 6.D.4–61. doi: 10.1109/DASC.2004.1390734 (page 45).

[76] K. ElDefrawy and T. Kaczmarek. “Byzantine Fault Tolerant Software-Defined Network-

ing (SDN) Controllers”. In: Computer Software and Applications Conference (COMP-

SAC). 2016, pp. 208–213 (pages 8, 71, 75, 157, 170).

[77] R. Enns, M. Björklund, A. Bierman, and J. Schönwälder. Network Configuration Pro-

tocol (NETCONF). RFC 6241. June 2011. doi: 10.17487/RFC6241. url: https:

//www.rfc-editor.org/info/rfc6241 (page 29).

[78] D. Erickson. “The Beacon Openflow Controller”. In: Proceedings of the Second ACM

SIGCOMM Workshop on Hot Topics in Software Defined Networking. HotSDN ’13.

Hong Kong, China: Association for Computing Machinery, 2013, 13–18. isbn: 9781450321785.

doi: 10.1145/2491185.2491189. url: https://doi.org/10.1145/2491185.2491189

(page 33).

[79] H. Farhady, H. Lee, and A. Nakao. “Software-Defined Networking: A survey”. In: Com-

puter Networks 81 (2015), pp. 79–95. issn: 1389-1286. doi: https://doi.org/10.1

016/j.comnet.2015.02.014. url: https://www.sciencedirect.com/science/

article/pii/S1389128615000614 (page 20).

[80] N. Feamster, J. Rexford, and E. Zegura. “The Road to SDN: An Intellectual History of

Programmable Networks”. In: SIGCOMM Comput. Commun. Rev. 44.2 (2014), 87–98.

issn: 0146-4833. doi: 10.1145/2602204.2602219. url: https://doi.org/10.1145/2

602204.2602219 (pages 18–20).

[81] D. Ferguson, A. Lindem, and J. Moy. OSPF for IPv6. RFC 5340. July 2008. doi:

10.17487/RFC5340. url: https://www.rfc-editor.org/info/rfc5340 (page 17).

[82] M. Fitzi and J. A. Garay. “Efficient player-optimal protocols for strong and differential

consensus”. In: Proceedings of the twenty-second annual symposium on Principles of

distributed computing. PODC ’03. New York, NY, USA: ACM, 2003, pp. 211–220.

272

https://doi.org/10.1109/CLOUDNET.2016.9
https://doi.org/10.1109/DASC.2004.1390734
https://doi.org/10.17487/RFC6241
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc6241
https://doi.org/10.1145/2491185.2491189
https://doi.org/10.1145/2491185.2491189
https://doi.org/https://doi.org/10.1016/j.comnet.2015.02.014
https://doi.org/https://doi.org/10.1016/j.comnet.2015.02.014
https://www.sciencedirect.com/science/article/pii/S1389128615000614
https://www.sciencedirect.com/science/article/pii/S1389128615000614
https://doi.org/10.1145/2602204.2602219
https://doi.org/10.1145/2602204.2602219
https://doi.org/10.1145/2602204.2602219
https://doi.org/10.17487/RFC5340
https://www.rfc-editor.org/info/rfc5340

REFERENCES

isbn: 1-58113-708-7. doi: 10.1145/872035.872066. url: http://doi.acm.org/10.1

145/872035.872066 (page 44).

[83] P. Fonseca, R. Bennesby, E. Mota, and A. Passito. “A replication component for resilient

OpenFlow-based networking”. In: Proceedings of the 2012 IEEE Network Operations

and Management Symposium, NOMS 2012 (2012), pp. 933–939. doi: 10.1109/NOMS

.2012.6212011 (page 68).

[84] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford, A. Story, and D.

Walker. “Frenetic: A network programming language”. In: ACM SIGPLAN Notices.

Vol. 46. 9. ACM PUB27 New York, NY, USA, 2011, pp. 279–291. isbn: 9781450308656.

doi: 10.1145/2034574.2034812. url: https://dl.acm.org/doi/abs/10.1145/2034

574.2034812 (page 22).

[85] S. Frey, Y. Elkhatib, A. Rashid, K. Follis, J. Vidler, N. Race, and C. Edwards. “It

Bends But Would It Break? Topological Analysis of BGP Infrastructures in Europe”.

In: 2016 IEEE European Symposium on Security and Privacy (EuroS P). 2016, pp. 423–

438. doi: 10.1109/EuroSP.2016.39 (page 18).

[86] H. Garcia-Molina and D. Barbara. “How to Assign Votes in a Distributed System”.

In: J. ACM 32.4 (1985), 841–860. issn: 0004-5411. doi: 10.1145/4221.4223. url:

https://doi.org/10.1145/4221.4223 (page 53).

[87] J. Gardiner, A. Eiffert, P. Garraghan, N. Race, S. Nagaraja, and A. Rashid. “Controller-

in-the-Middle: Attacks on Software Defined Networks in Industrial Control Systems”.

In: Proceedings of the 2th Workshop on CPS&IoT Security and Privacy. CPSIoTSec ’21.

Virtual Event, Republic of Korea: Association for Computing Machinery, 2021, 63–68.

isbn: 9781450384872. doi: 10.1145/3462633.3483979. url: https://doi.org/10.1

145/3462633.3483979 (pages 11, 58, 103, 238).

[88] J. Gardiner and S. Nagaraja. “On the Security of Machine Learning in Malware C&C

Detection: A Survey”. In: ACM Comput. Surv. 49.3 (2016). issn: 0360-0300. doi: 10.1

145/3003816. url: https://doi.org/10.1145/3003816 (page 61).

[89] GENI. Campus Openflow Topology. https://groups.geni.net/geni/wiki/OpenF

low/CampusTopology. Accessed: 2022-2-13 (page 20).

273

https://doi.org/10.1145/872035.872066
http://doi.acm.org/10.1145/872035.872066
http://doi.acm.org/10.1145/872035.872066
https://doi.org/10.1109/NOMS.2012.6212011
https://doi.org/10.1109/NOMS.2012.6212011
https://doi.org/10.1145/2034574.2034812
https://dl.acm.org/doi/abs/10.1145/2034574.2034812
https://dl.acm.org/doi/abs/10.1145/2034574.2034812
https://doi.org/10.1109/EuroSP.2016.39
https://doi.org/10.1145/4221.4223
https://doi.org/10.1145/4221.4223
https://doi.org/10.1145/3462633.3483979
https://doi.org/10.1145/3462633.3483979
https://doi.org/10.1145/3462633.3483979
https://doi.org/10.1145/3003816
https://doi.org/10.1145/3003816
https://doi.org/10.1145/3003816
https://groups.geni.net/geni/wiki/OpenFlow/CampusTopology
https://groups.geni.net/geni/wiki/OpenFlow/CampusTopology

REFERENCES

[90] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker.

“NOX: Towards an Operating System for Networks”. In: SIGCOMM Comput. Com-

mun. Rev. 38.3 (2008), pp. 105–110. issn: 0146-4833. doi: 10.1145/1384609.1384625.

url: http://doi.acm.org/10.1145/1384609.1384625 (page 33).

[91] P. Göransson, C. Black, and T. Culver. “Chapter 4 - How SDN Works”. In: Software

Defined Networks (Second Edition). Ed. by P. Göransson, C. Black, and T. Culver.

Second Edition. Boston: Morgan Kaufmann, 2017, pp. 61–88. isbn: 978-0-12-804555-8.

doi: https://doi.org/10.1016/B978-0-12-804555-8.00004-1. url: https://

www.sciencedirect.com/science/article/pii/B9780128045558000041 (page 27).

[92] A. Hahn. “Operational Technology and Information Technology in Industrial Control

Systems”. In: Cyber-security of SCADA and Other Industrial Control Systems. Ed. by

E. J. M. Colbert and A. Kott. Cham: Springer International Publishing, 2016, pp. 51–

68. isbn: 978-3-319-32125-7. doi: 10.1007/978- 3- 319- 32125- 7_4. url: https:

//doi.org/10.1007/978-3-319-32125-7_4 (page 109).

[93] L. Han, Z. Li, W. Liu, K. Dai, and W. Qu. “Minimum Control Latency of SDN Con-

troller Placement”. In: 2016 IEEE Trustcom/BigDataSE/ISPA. 2016, pp. 2175–2180.

doi: 10.1109/TrustCom.2016.0334 (page 35).

[94] B. Heller, R. Sherwood, and N. McKeown. “The Controller Placement Problem”.

In: Proceedings of the First Workshop on Hot Topics in Software Defined Networks.

HotSDN ’12. Helsinki, Finland: Association for Computing Machinery, 2012, 7–12.

isbn: 9781450314770. doi: 10.1145/2342441.2342444. url: https://doi.org/1

0.1145/2342441.2342444 (page 34).

[95] C. L. Hendrick. Routing Informaion Protocol. RFC 1058. June 1988. doi: 10.17487/R

FC1058. url: https://www.rfc-editor.org/info/rfc1058 (page 16).

[96] M. Herlihy. “A Quorum-Consensus Replication Method for Abstract Data Types”. In:

ACM Trans. Comput. Syst. 4.1 (1986), 32–53. issn: 0734-2071. doi: 10.1145/6306.6

308. url: https://doi.org/10.1145/6306.6308 (page 53).

[97] S. Hernan, S. Lambert, T. Ostwald, and A. Shostack. “Uncover Security Design Flaws

Using The STRIDE Approach”. In: MSDN Magazine (2006) (page 58).

274

https://doi.org/10.1145/1384609.1384625
http://doi.acm.org/10.1145/1384609.1384625
https://doi.org/https://doi.org/10.1016/B978-0-12-804555-8.00004-1
https://www.sciencedirect.com/science/article/pii/B9780128045558000041
https://www.sciencedirect.com/science/article/pii/B9780128045558000041
https://doi.org/10.1007/978-3-319-32125-7_4
https://doi.org/10.1007/978-3-319-32125-7_4
https://doi.org/10.1007/978-3-319-32125-7_4
https://doi.org/10.1109/TrustCom.2016.0334
https://doi.org/10.1145/2342441.2342444
https://doi.org/10.1145/2342441.2342444
https://doi.org/10.1145/2342441.2342444
https://doi.org/10.17487/RFC1058
https://doi.org/10.17487/RFC1058
https://www.rfc-editor.org/info/rfc1058
https://doi.org/10.1145/6306.6308
https://doi.org/10.1145/6306.6308
https://doi.org/10.1145/6306.6308

REFERENCES

[98] S. Hong, L. Xu, H. Wang, and G. Gu. “Poisoning Network Visibility in Software-Defined

Networks: New Attacks and Countermeasures”. In: Network and Distributed System

Security (NDSS) Symposium. NDSS ’15. San Diego, CA, USA: Internet Society, 2015.

isbn: 1-891562-38-X. doi: 10.14722/ndss.2015.23283. url: http://dx.doi.org/10

.14722/ndss.2015.23283 (pages 24, 58, 81).

[99] HP News. HP Launches Industry’s First SDN App Store, Unleashing New Wave of

Networking Innovations. https://www.hp.com/us-en/hp-news/press-release.

html?id=1798074#.YcG9RS-l2Rs. Accessed: 2021-12-21. Sept. 25, 2014 (page 23).

[100] Z. Hu, M. Wang, X. Yan, Y. Yin, and Z. Luo. “A comprehensive security architecture

for SDN”. In: 2015 18th International Conference on Intelligence in Next Generation

Networks, ICIN 2015 (2015), pp. 30–37. doi: 10.1109/ICIN.2015.7073803 (page 85).

[101] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. “ZooKeeper: Wait-Free Coordi-

nation for Internet-Scale Systems”. In: Proceedings of the 2010 USENIX Conference

on USENIX Annual Technical Conference. USENIXATC’10. Boston, MA: USENIX

Association, 2010, p. 11 (pages 66, 70).

[102] M. Hurfin and M. Raynal. “Simple and fast asynchronous consensus protocol based

on a weak failure detector”. In: Distributed Computing 12.4 (1999), pp. 209–223. issn:

01782770. doi: 10.1007/s004460050067. url: http://dx.doi.org/10.1007/s00446

0050067 (page 43).

[103] A. Hussein, I. H. Elhajj, A. Chehab, and A. Kayssi. “SDN security plane: An ar-

chitecture for resilient security services”. In: Proceedings - 2016 IEEE International

Conference on Cloud Engineering Workshops, IC2EW 2016 (2016), pp. 54–59. doi:

10.1109/IC2EW.2016.15 (page 24).

[104] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer,

J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. “B4: Experience with

a Globally-Deployed Software Defined Wan”. In: SIGCOMM Comput. Commun. Rev.

43.4 (Aug. 2013), 3–14. issn: 0146-4833. doi: 10.1145/2534169.2486019. url: https:

//doi.org/10.1145/2534169.2486019 (pages 2, 20).

[105] Y. Jiménez, C. Cervelló-Pastor, and A. J. Garćıa. “On the controller placement for

designing a distributed SDN control layer”. In: 2014 IFIP Networking Conference.

2014, pp. 1–9. doi: 10.1109/IFIPNetworking.2014.6857117 (page 34).

275

https://doi.org/10.14722/ndss.2015.23283
http://dx.doi.org/10.14722/ndss.2015.23283
http://dx.doi.org/10.14722/ndss.2015.23283
https://www.hp.com/us-en/hp-news/press-release.html?id=1798074#.YcG9RS-l2Rs
https://www.hp.com/us-en/hp-news/press-release.html?id=1798074#.YcG9RS-l2Rs
https://doi.org/10.1109/ICIN.2015.7073803
https://doi.org/10.1007/s004460050067
http://dx.doi.org/10.1007/s004460050067
http://dx.doi.org/10.1007/s004460050067
https://doi.org/10.1109/IC2EW.2016.15
https://doi.org/10.1145/2534169.2486019
https://doi.org/10.1145/2534169.2486019
https://doi.org/10.1145/2534169.2486019
https://doi.org/10.1109/IFIPNetworking.2014.6857117

REFERENCES

[106] H. Jo, J. Nam, and S. Shin. “NOSArmor: Building a Secure Network Operating Sys-

tem”. In: Security and Communication Networks 2018 (2018). issn: 19390122. doi:

10.1155/2018/9178425 (page 63).

[107] E. Jonsson and T. Olovsson. “On the Integration of Security and Dependability in

Computer Systems”. In: 1992 (pages 35, 37).

[108] R. Kandoi and M. Antikainen. “Denial-of-service attacks in OpenFlow SDN networks”.

In: Proceedings of the 2015 IFIP/IEEE International Symposium on Integrated Network

Management, IM 2015 (2015), pp. 1322–1326. doi: 10.1109/INM.2015.7140489

(page 24).

[109] N. Katta, H. Zhang, M. Freedman, and J. Rexford. “Ravana: Controller Fault-tolerance

in Software-defined Networking”. In: Proceedings of the 1st ACM SIGCOMM Sympo-

sium on Software Defined Networking Research. SOSR ’15. New York, NY, USA: ACM,

2015, 4:1–4:12. isbn: 978-1-4503-3451-8. doi: 10.1145/2774993.2774996. url: http:

//doi.acm.org/10.1145/2774993.2774996 (pages 68, 69).

[110] M. B. Kelley. The Stuxnet Attack On Iran’s Nuclear Plant Was ’Far More Dangerous’

Than Previously Thought. Ed. by B. Insider. https://www.businessinsider.com/

stuxnet-was-far-more-dangerous-than-previous-thought-2013-11?r=US&IR=T

. Accessed: 2021-07-18. 2013 (pages 4, 108).

[111] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey. “VeriFlow: Verifying Network-

Wide Invariants in Real Time”. In: Workshop on Hot Topics in Software Defined Net-

works. HotSDN ’12. Helsinki, Finland: Association for Computing Machinery, 2012,

49–54. isbn: 9781450314770. doi: 10.1145/2342441.2342452. url: https://doi.

org/10.1145/2342441.2342452 (pages 3, 59, 102).

[112] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. “VeriFlow: Verifying

Network-Wide Invariants in Real Time”. In: 10th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 13). Lombard, IL: USENIX Association,

Apr. 2013, pp. 15–27. isbn: 978-1-931971-00-3. url: https://www.usenix.org/

conference/nsdi13/technical-sessions/presentation/khurshid (pages 3, 59).

[113] L. Kleinrock. “Information Flow in Large Communication Nets, Ph.D. Thesis Pro-

posal”. PhD thesis. Cambridge, MA, USA: Massachusetts Institute of Technology, 1961.

url: http://www.cs.ucla.edu/~lk/LK/Bib/REPORT/PhD/ (page 15).

276

https://doi.org/10.1155/2018/9178425
https://doi.org/10.1109/INM.2015.7140489
https://doi.org/10.1145/2774993.2774996
http://doi.acm.org/10.1145/2774993.2774996
http://doi.acm.org/10.1145/2774993.2774996
https://www.businessinsider.com/stuxnet-was-far-more-dangerous-than-previous-thought-2013-11?r=US&IR=T
https://www.businessinsider.com/stuxnet-was-far-more-dangerous-than-previous-thought-2013-11?r=US&IR=T
https://www.businessinsider.com/stuxnet-was-far-more-dangerous-than-previous-thought-2013-11?r=US&IR=T
https://doi.org/10.1145/2342441.2342452
https://doi.org/10.1145/2342441.2342452
https://doi.org/10.1145/2342441.2342452
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid
http://www.cs.ucla.edu/~lk/LK/Bib/REPORT/PhD/

REFERENCES

[114] R. Klöti, V. Kotronis, and P. Smith. “OpenFlow: A security analysis”. In: Proceedings

- International Conference on Network Protocols, ICNP (2013). issn: 10921648. doi:

10.1109/ICNP.2013.6733671 (pages 24, 58).

[115] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ramanathan,

Y. Iwata, H. Inoue, T. Hama, and S. Shenker. “Onix: A Distributed Control Platform

for Large-Scale Production Networks”. In: Proceedings of the 9th USENIX Conference

on Operating Systems Design and Implementation. OSDI’10. Vancouver, BC, Canada:

USENIX Association, 2010, 351–364 (pages 20, 33, 152).

[116] I. Koren and C. M. Krishna. In: Fault-Tolerant Systems (Second Edition). Ed. by I.

Koren and C. M. Krishna. Second Edition. San Francisco (CA): Morgan Kaufmann,

2021. isbn: 978-0-12-818105-8. doi: https://doi.org/10.1016/B978-0-12-818105-

8.00011-5. url: https://www.sciencedirect.com/science/article/pii/B978012

8181058000115 (page 38).

[117] R. Kotla and M. Dahlin. “High throughput Byzantine fault tolerance”. In: International

Conference on Dependable Systems and Networks, 2004. 2004, pp. 575–584. doi: 10.1

109/DSN.2004.1311928 (page 52).

[118] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. “Zyzzyva: Speculative Byzan-

tine Fault Tolerance”. In: ACM Trans. Comput. Syst. 27.4 (2010). issn: 0734-2071.

doi: 10.1145/1658357.1658358. url: https://doi.org/10.1145/1658357.1658358

(page 52).

[119] D. Kreutz, F. M. Ramos, and P. Verissimo. “Towards Secure and Dependable Software-

Defined Networks”. In: Proceedings of the Second ACM SIGCOMM Workshop on Hot

Topics in Software Defined Networking. HotSDN ’13. Hong Kong, China: Association

for Computing Machinery, 2013, 55–60. isbn: 9781450321785. doi: 10.1145/2491185

.2491199. url: https://doi.org/10.1145/2491185.2491199 (pages 24, 65, 78, 80).

[120] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S.

Uhlig. “Software-defined networking: A comprehensive survey”. In: Proceedings of the

IEEE 103.1 (2015), pp. 14–76. issn: 15582256. doi: 10.1109/JPROC.2014.2371999.

arXiv: 1406.0440 (page 20).

277

https://doi.org/10.1109/ICNP.2013.6733671
https://doi.org/https://doi.org/10.1016/B978-0-12-818105-8.00011-5
https://doi.org/https://doi.org/10.1016/B978-0-12-818105-8.00011-5
https://www.sciencedirect.com/science/article/pii/B9780128181058000115
https://www.sciencedirect.com/science/article/pii/B9780128181058000115
https://doi.org/10.1109/DSN.2004.1311928
https://doi.org/10.1109/DSN.2004.1311928
https://doi.org/10.1145/1658357.1658358
https://doi.org/10.1145/1658357.1658358
https://doi.org/10.1145/2491185.2491199
https://doi.org/10.1145/2491185.2491199
https://doi.org/10.1145/2491185.2491199
https://doi.org/10.1109/JPROC.2014.2371999
https://arxiv.org/abs/1406.0440

REFERENCES

[121] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S.

Uhlig. “Software-defined networking: A comprehensive survey”. In: Proceedings of the

IEEE 103.1 (2015), pp. 14–76. issn: 15582256. doi: 10.1109/JPROC.2014.2371999.

arXiv: 1406.0440 (page 65).

[122] D. Kreutz, J. Yu, P. Esteves-Verissimo, C. Magalhaes, and F. M. Ramos. “The KISS

principle in software-defined networking: A framework for secure communications”. In:

IEEE Security and Privacy 16.5 (2018), pp. 60–70. issn: 15584046. doi: 10.1109/MSP

.2018.3761717 (page 65).

[123] D. Kreutz, J. Yu, F. M. V. Ramos, and P. Esteves-Verissimo. “ANCHOR: Logically

Centralized Security for Software-Defined Networks”. In: ACM Trans. Priv. Secur. 22.2

(2019). issn: 2471-2566. doi: 10.1145/3301305. url: https://doi.org/10.1145/33

01305 (page 8).

[124] M. Krotofil, K. Kursawe, and D. Gollmann. “Securing Industrial Control Systems”. In:

Security and Privacy Trends in the Industrial Internet of Things. Ed. by C. Alcaraz.

Cham: Springer International Publishing, 2019, pp. 3–27. isbn: 978-3-030-12330-7. doi:

10.1007/978-3-030-12330-7_1. url: https://doi.org/10.1007/978-3-030-1233

0-7_1 (page 104).

[125] L. Lamport. “Time, Clocks, and the Ordering of Events in a Distributed System”. In:

Commun. ACM 21.7 (1978), 558–565. issn: 0001-0782. doi: 10.1145/359545.359563.

url: https://doi.org/10.1145/359545.359563 (page 49).

[126] L. Lamport. “The part-time parliament”. In: ACM Transactions on Computer Systems

16.2 (1998), pp. 133–169. issn: 07342071. doi: 10.1145/279227.279229. url: http:

//portal.acm.org/citation.cfm?doid=279227.279229 (pages 41, 50, 68).

[127] L. Lamport. “Paxos Made Simple”. In: ACM SIGACT News 32.4 (2001), pp. 51–58.

issn: 01635700. doi: 10.1145/568425.568433. url: http://research.microsoft.

com/users/lamport/pubs/paxos-simple.pdf (page 42).

[128] L. Lamport. “Fast Paxos”. In: Distributed Computing 19.2 (2006), pp. 79–103. issn:

01782770. doi: 10.1007/s00446-006-0005-x. url: http://research.microsoft.

com/apps/pubs/default.aspx?id=64624 (page 42).

278

https://doi.org/10.1109/JPROC.2014.2371999
https://arxiv.org/abs/1406.0440
https://doi.org/10.1109/MSP.2018.3761717
https://doi.org/10.1109/MSP.2018.3761717
https://doi.org/10.1145/3301305
https://doi.org/10.1145/3301305
https://doi.org/10.1145/3301305
https://doi.org/10.1007/978-3-030-12330-7_1
https://doi.org/10.1007/978-3-030-12330-7_1
https://doi.org/10.1007/978-3-030-12330-7_1
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/279227.279229
http://portal.acm.org/citation.cfm?doid=279227.279229
http://portal.acm.org/citation.cfm?doid=279227.279229
https://doi.org/10.1145/568425.568433
http://research.microsoft.com/users/lamport/pubs/paxos-simple.pdf
http://research.microsoft.com/users/lamport/pubs/paxos-simple.pdf
https://doi.org/10.1007/s00446-006-0005-x
http://research.microsoft.com/apps/pubs/default.aspx?id=64624
http://research.microsoft.com/apps/pubs/default.aspx?id=64624

REFERENCES

[129] L. Lamport, R. Shostak, and M. Pease. “The Byzantine Generals Problem”. In: ACM

Transactions on Programming Languages and Systems 4.3 (1982), pp. 382–401. issn:

01640925. doi: 10.1145/357172.357176. arXiv: arXiv:1011.1669v3. url: http:

//portal.acm.org/citation.cfm?doid=357172.357176 (pages 42, 45, 48, 49).

[130] B. Lantz, B. Heller, and N. McKeown. “A Network in a Laptop: Rapid Prototyping

for Software-Defined Networks”. In: Jan. 2010, p. 19. doi: 10.1145/1868447.1868466

(pages 10, 71, 88, 180).

[131] J. C. Laprie. “Dependability: Basic Concepts and Terminology”. In: Dependability:

Basic Concepts and Terminology: In English, French, German, Italian and Japanese.

Ed. by J. C. Laprie. Vienna: Springer Vienna, 1992, pp. 3–245. isbn: 978-3-7091-9170-5.

doi: 10.1007/978-3-7091-9170-5_1. url: https://doi.org/10.1007/978-3-7091

-9170-5_1 (pages 35, 37).

[132] J.-C. Laprie. “Dependable Computing: Concepts, Limits, Challenges”. In: Proceedings

of the Twenty-Fifth International Conference on Fault-Tolerant Computing. FTCS’95.

Pasadena, California: IEEE Computer Society, 1995, 42–54. isbn: 0818671467 (pages 35,

36, 38).

[133] S. Lee et al. “The Smaller, the Shrewder: A Simple Malicious Application Can Kill

an Entire SDN Environment”. In: International Workshop on Security in Software

Defined Networks & Network Function Virtualization. SDN-NFV Security ’16.

ACM, 2016, pp. 23–28. isbn: 978-1-4503-4078-6. doi: 10.1145/2876019.2876024.

url: http://doi.acm.org/10.1145/2876019.2876024 (page 86).

[134] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C. Lynch, J. Postel,

L. G. Roberts, and S. Wolff. “A Brief History of the Internet”. In: SIGCOMM Comput.

Commun. Rev. 39.5 (2009), 22–31. issn: 0146-4833. doi: 10.1145/1629607.1629613.

url: https://doi.org/10.1145/1629607.1629613 (page 15).

[135] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann. “Logically Central-

ized? State Distribution Trade-offs in Software Defined Networks”. In: Proceedings of

the first workshop on Hot topics in software defined networks - HotSDN ’12 (2012).

doi: 10.1145/2342441 (page 65).

279

https://doi.org/10.1145/357172.357176
https://arxiv.org/abs/arXiv:1011.1669v3
http://portal.acm.org/citation.cfm?doid=357172.357176
http://portal.acm.org/citation.cfm?doid=357172.357176
https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1007/978-3-7091-9170-5_1
https://doi.org/10.1007/978-3-7091-9170-5_1
https://doi.org/10.1007/978-3-7091-9170-5_1
https://doi.org/10.1145/2876019.2876024
http://doi.acm.org/10.1145/2876019.2876024
https://doi.org/10.1145/1629607.1629613
https://doi.org/10.1145/1629607.1629613
https://doi.org/10.1145/2342441

REFERENCES

[136] H Li, P Li, S Guo, and A Nayak. “Byzantine-Resilient Secure Software-Defined Net-

works with Multiple Controllers in Cloud”. In: IEEE Transactions on Cloud Computing

2.4 (2014), pp. 436–447. issn: 2168-7161. doi: 10.1109/TCC.2014.2355227 (pages 8,

70, 75, 123, 147, 154).

[137] H. Li, P. Li, S. Guo, and S. Yu. “Byzantine-resilient secure software-defined networks

with multiple controllers”. In: 2014 IEEE International Conference on Communications

(ICC). 2014, pp. 695–700. doi: 10.1109/ICC.2014.6883400 (pages 8, 70, 75, 147, 154).

[138] J. C. R. Licklider. “Man-Computer Symbiosis”. In: IRE Transactions on Human Fac-

tors in Electronics HFE-1.1 (1960), pp. 4–11. doi: 10.1109/THFE2.1960.4503259

(page 15).

[139] S. Liu and B. Li. “On scaling software-Defined Networking in wide-area networks”. In:

Tsinghua Science and Technology 20.3 (2015), pp. 221–232. doi: 10.1109/TST.2015

.7128934 (page 20).

[140] B. Lokesh and N. Rajagopalan. “A Blockchain-based security model for SDNs”. In:

Proceedings of CONECCT 2020 - 6th IEEE International Conference on Electronics,

Computing and Communication Technologies (2020). doi: 10.1109/CONECCT50063.20

20.9198337 (pages 59, 60).

[141] K. Lougheed and Y. Rekhter. Border Gateway Protocol (BGP). RFC 1105. June 1989.

doi: 10 . 17487 / RFC1105. url: https : / / www . rfc - editor . org / info / rfc1105

(page 17).

[142] K. Mahajan, R. Poddar, M. Dhawan, and V. Mann. “JURY: Validating controller

actions in software-defined networks”. In: Proceedings - 46th Annual IEEE/IFIP In-

ternational Conference on Dependable Systems and Networks, DSN 2016. Institute of

Electrical and Electronics Engineers Inc., 2016, pp. 109–120. isbn: 9781467388917. doi:

10.1109/DSN.2016.19 (page 66).

[143] D. Malkhi and M. Reiter. “Byzantine Quorum Systems”. In: Distrib. Comput. 11.4

(1998), 203–213. issn: 0178-2770. doi: 10.1007/s004460050050. url: https://doi.

org/10.1007/s004460050050 (page 53).

280

https://doi.org/10.1109/TCC.2014.2355227
https://doi.org/10.1109/ICC.2014.6883400
https://doi.org/10.1109/THFE2.1960.4503259
https://doi.org/10.1109/TST.2015.7128934
https://doi.org/10.1109/TST.2015.7128934
https://doi.org/10.1109/CONECCT50063.2020.9198337
https://doi.org/10.1109/CONECCT50063.2020.9198337
https://doi.org/10.17487/RFC1105
https://www.rfc-editor.org/info/rfc1105
https://doi.org/10.1109/DSN.2016.19
https://doi.org/10.1007/s004460050050
https://doi.org/10.1007/s004460050050
https://doi.org/10.1007/s004460050050

REFERENCES

[144] H. Mann and D. Whitney. “On a Test of Whether one of Two Random Variables is

Stochastically Larger than the Other”. In: The Annals of Mathematical Statistics 18.1

(1947), pp. 50 –60. doi: 10.1214/aoms/1177730491. url: https://doi.org/10.121

4/aoms/1177730491 (page 192).

[145] J. P. Martin and L. Alvisi. “Fast Byzantine consensus”. In: IEEE Transactions on

Dependable and Secure Computing 3.3 (2006), pp. 202–215. issn: 15455971. doi: 10.1

109/TDSC.2006.35. url: http://dx.doi.org/10.1109/TDSC.2006.35 (page 42).

[146] R. Masoudi and A. Ghaffari. “Software defined networks: A survey”. In: Journal of

Network and Computer Applications 67 (2016), pp. 1–25. issn: 1084-8045. doi: https:

//doi.org/10.1016/j.jnca.2016.03.016. url: https://www.sciencedirect.com/

science/article/pii/S1084804516300297 (page 20).

[147] S. Matsumoto, S. Hitz, and A. Perrig. “Fleet: Defending SDNs from malicious admin-

istrators”. In: HotSDN 2014 - Proceedings of the ACM SIGCOMM 2014 Workshop

on Hot Topics in Software Defined Networking. New York, NY, USA: ACM, 2014,

pp. 103–108. isbn: 9781450329897. doi: 10 . 1145 / 2620728 . 2620750. url: http :

//dx.doi.org/10.1145/2620728.2620750. (pages 73, 81).

[148] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S.

Shenker, and J. Turner. “OpenFlow: Enabling Innovation in Campus Networks”. In:

SIGCOMM Comput. Commun. Rev. 38.2 (2008), 69–74. issn: 0146-4833. doi: 10.11

45/1355734.1355746. url: https://doi.org/10.1145/1355734.1355746 (pages 2,

19, 25).

[149] M. McQueen, T. McQueen, W. Boyer, and M. Chaffin. “Empirical Estimates and Ob-

servations of 0Day Vulnerabilities”. In: 2009 42nd Hawaii International Conference on

System Sciences. 2009, pp. 1–12. doi: 10.1109/HICSS.2009.186 (page 3).

[150] J. M. McQuillan, I. Richer, and E. C. Rosen. “The New Routing Algorithm for the

ARPANET”. In: IEEE Transactions on Communications 28.5 (1980), pp. 711–719.

doi: 10.1109/TCOM.1980.1094721 (page 17).

[151] J. M. McQuillan, I. Richer, E. C. Rosen, and D. Bert-sekas. “ARPANET Routing

Algorithm Improvements: 2nd Semiannual Technical Report”. In: BBN Report 3940

(1978) (page 17).

281

https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1214/aoms/1177730491
https://doi.org/10.1109/TDSC.2006.35
https://doi.org/10.1109/TDSC.2006.35
http://dx.doi.org/10.1109/TDSC.2006.35
https://doi.org/https://doi.org/10.1016/j.jnca.2016.03.016
https://doi.org/https://doi.org/10.1016/j.jnca.2016.03.016
https://www.sciencedirect.com/science/article/pii/S1084804516300297
https://www.sciencedirect.com/science/article/pii/S1084804516300297
https://doi.org/10.1145/2620728.2620750
http://dx.doi.org/10.1145/2620728.2620750.
http://dx.doi.org/10.1145/2620728.2620750.
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1109/HICSS.2009.186
https://doi.org/10.1109/TCOM.1980.1094721

REFERENCES

[152] J. Medved, R. Varga, A. Tkacik, and K. Gray. “OpenDaylight: Towards a Model-

Driven SDN Controller architecture”. In: Proceeding of IEEE International Symposium

on a World of Wireless, Mobile and Multimedia Networks 2014. 2014, pp. 1–6. doi:

10.1109/WoWMoM.2014.6918985 (page 33).

[153] J. van der Merwe, S. Rooney, L. Leslie, and S. Crosby. “The Tempest-a practical

framework for network programmability”. In: IEEE Network 12.3 (1998), pp. 20–28.

doi: 10.1109/65.690958 (page 19).

[154] R. M. Metcalfe and D. R. Boggs. “Ethernet: Distributed Packet Switching for Local

Computer Networks”. In: Commun. ACM 19.7 (1976), 395–404. issn: 0001-0782. doi: 1

0.1145/360248.360253. url: https://doi.org/10.1145/360248.360253 (page 16).

[155] N. Meulen. “DigiNotar: Dissecting the First Dutch Digital Disaster”. In: Journal of

Strategic Security 6 (June 2013), pp. 46–58. doi: 10.5038/1944-0472.6.2.4 (page 65).

[156] O. Michel and E. Keller. “SDN in wide-area networks: A survey”. In: 2017 Fourth

International Conference on Software Defined Systems (SDS). 2017, pp. 37–42. doi:

10.1109/SDS.2017.7939138 (page 20).

[157] D. L. Mills. Exterior Gateway Protocol formal specification. RFC 904. Apr. 1984. doi:

10.17487/RFC0904. url: https://www.rfc-editor.org/info/rfc904 (page 17).

[158] P. M. Mohan et al. “Primary-Backup Controller Mapping for Byzantine Fault Tolerance

in Software Defined Networks”. In: IEEE Global Communications Conference. 2017,

pp. 1–7 (pages 8, 72, 75, 76, 148, 154).

[159] P. M. Mohan, T. Truong-Huu, and M. Gurusamy. “Byzantine-Resilient Controller Map-

ping and Remapping in Software Defined Networks”. In: IEEE Transactions on Network

Science and Engineering 7.4 (2020), pp. 2714–2729. doi: 10.1109/TNSE.2020.2981521

(pages 72, 75, 76, 148, 154).

[160] I. Moise. “Efficient agreement protocols in asynchronous distributed systems”. In: IEEE

International Symposium on Parallel and Distributed Processing Workshops and Phd

Forum. 2011, pp. 2022–2025. isbn: 9780769543857. doi: 10.1109/IPDPS.2011.367

(page 42).

[161] J. Moy. OSPF specification. RFC 1131. Oct. 1989. doi: 10.17487/RFC1131. url:

https://www.rfc-editor.org/info/rfc1131 (page 17).

282

https://doi.org/10.1109/WoWMoM.2014.6918985
https://doi.org/10.1109/65.690958
https://doi.org/10.1145/360248.360253
https://doi.org/10.1145/360248.360253
https://doi.org/10.1145/360248.360253
https://doi.org/10.5038/1944-0472.6.2.4
https://doi.org/10.1109/SDS.2017.7939138
https://doi.org/10.17487/RFC0904
https://www.rfc-editor.org/info/rfc904
https://doi.org/10.1109/TNSE.2020.2981521
https://doi.org/10.1109/IPDPS.2011.367
https://doi.org/10.17487/RFC1131
https://www.rfc-editor.org/info/rfc1131

REFERENCES

[162] J. Moy. OSPF Version 2. RFC 2328. Apr. 1998. doi: 10.17487/RFC2328. url: https:

//www.rfc-editor.org/info/rfc2328 (page 17).

[163] L. F. Müller, R. R. Oliveira, M. C. Luizelli, L. P. Gaspary, and M. P. Barcellos. “Sur-

vivor: An enhanced controller placement strategy for improving SDN survivability”. In:

2014 IEEE Global Communications Conference. 2014, pp. 1909–1915. doi: 10.1109/G

LOCOM.2014.7037087 (page 35).

[164] M. Naor and A. Wool. “The load, capacity and availability of quorum systems”. In: Pro-

ceedings 35th Annual Symposium on Foundations of Computer Science. 1994, pp. 214–

225. doi: 10.1109/SFCS.1994.365692 (page 53).

[165] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia, M. Munafò, K.

Papagiannaki, and P. Steenkiste. “The Cost of the ”S” in HTTPS”. In: Proceedings of

the 10th ACM International on Conference on Emerging Networking Experiments and

Technologies. CoNEXT ’14. Sydney, Australia: Association for Computing Machinery,

2014, 133–140. isbn: 9781450332798. doi: 10.1145/2674005.2674991. url: https:

//doi.org/10.1145/2674005.2674991 (pages 8, 65).

[166] G. Neiger. “Distributed Consensus Revisited”. In: Inf. Process. Lett. 49.4 (1994), pp. 195–

201. issn: 0020-0190. doi: 10.1016/0020-0190(94)90011-6. url: http://dx.doi.

org/10.1016/0020-0190(94)90011-6 (page 44).

[167] L. H. Newman. The Infrastructure Mess Causing Countless Internet Outages. https:

//www.wired.com/story/bgp-route-leak-internet-outage/. Accessed: 2022-2-4

(page 18).

[168] T. H. Nguyen and M. Yoo. “Analysis of link discovery service attacks in SDN con-

troller”. In: International Conference on Information Networking (2017), pp. 259–261.

issn: 19767684. doi: 10.1109/ICOIN.2017.7899515 (pages 24, 81).

[169] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti. “A Sur-

vey of Software-Defined Networking: Past, Present, and Future of Programmable Net-

works”. In: IEEE Communications Surveys Tutorials 16.3 (2014), pp. 1617–1634. doi:

10.1109/SURV.2014.012214.00180 (page 20).

[170] Open Networking Foundation. ONF Overview. Available at www.opennetworking.

org/about/onfoverview (page 41).

283

https://doi.org/10.17487/RFC2328
https://www.rfc-editor.org/info/rfc2328
https://www.rfc-editor.org/info/rfc2328
https://doi.org/10.1109/GLOCOM.2014.7037087
https://doi.org/10.1109/GLOCOM.2014.7037087
https://doi.org/10.1109/SFCS.1994.365692
https://doi.org/10.1145/2674005.2674991
https://doi.org/10.1145/2674005.2674991
https://doi.org/10.1145/2674005.2674991
https://doi.org/10.1016/0020-0190(94)90011-6
http://dx.doi.org/10.1016/0020-0190(94)90011-6
http://dx.doi.org/10.1016/0020-0190(94)90011-6
https://www.wired.com/story/bgp-route-leak-internet-outage/
https://www.wired.com/story/bgp-route-leak-internet-outage/
https://doi.org/10.1109/ICOIN.2017.7899515
https://doi.org/10.1109/SURV.2014.012214.00180
www.opennetworking.org/about/onfoverview
www.opennetworking.org/about/onfoverview

REFERENCES

[171] Open Networking Foundation. The Openflow Switch Specification 1.1. Available at

https://www.opennetworking.org/. 2011 (pages 25, 40).

[172] Open Networking Foundation. The Openflow Switch Specification 1.2. Available at

https://www.opennetworking.org/wp- content/uploads/2014/10/openflow-

spec-v1.2.pdf. 2011 (page 40).

[173] Open Networking Foundation. Software-Defined Networking: The New Norm for Net-

works. Tech. rep. ONF, 2012. url: https://www.opennetworking.org/images/

stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf (page 20).

[174] Open Networking Foundation. The Openflow Switch Specification 1.3. Available at

https://opennetworking.org/wp-content/uploads/2014/10/openflow-spec-

v1.3.0.pdf. 2012 (pages 25–27).

[175] Open Networking Foundation. The Openflow Switch Specification 1.5.1. Available at

https://www.opennetworking.org/wp- content/uploads/2014/10/openflow-

switch-v1.5.1.pdf. 2015 (pages 25, 40).

[176] OpenVSwitch. http://openvswitch.org/ (page 33).

[177] D. Oran. OSI IS-IS Intra-domain Routing Protocol. RFC 1142. Feb. 1990. doi: 10.17

487/RFC1142. url: https://www.rfc-editor.org/info/rfc1142 (page 17).

[178] B. Palinckx. EternalBlue: A retrospective on one of the biggest Windows exploits ever.

https://www.loginradius.com/blog/engineering/eternal-blue-retrospective/

. Accessed: 2023-12-15. 2020 (page 3).

[179] M. Paliwal, D. Shrimankar, and O. Tembhurne. “Controllers in SDN: A Review Re-

port”. In: IEEE Access 6 (2018), pp. 36256–36270. doi: 10.1109/ACCESS.2018.2846

236 (page 32).

[180] D. Palmer. Ransomware gangs now have industrial targets in their sights. That raises

the stakes for everyone. Ed. by ZDNet. https://www.zdnet.com/article/ransomware-

gangs- now- have- industrial- targets- in- their- sights- that- raises- the-

stakes-for-everyone/ . Accessed: 2021-07-18. 2013 (page 108).

[181] M Pease, R Shostak, and L Lamport. “Reaching Agreement in the Presence of Faults”.

In: J. ACM 27.2 (1980), pp. 228–234. issn: 0004-5411. doi: 10.1145/322186.322188.

url: http://doi.acm.org/10.1145/322186.322188 (pages 42, 46).

284

https://www.opennetworking.org/
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.2.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
http://openvswitch.org/
https://doi.org/10.17487/RFC1142
https://doi.org/10.17487/RFC1142
https://www.rfc-editor.org/info/rfc1142
https://www.loginradius.com/blog/engineering/eternal-blue-retrospective/
https://www.loginradius.com/blog/engineering/eternal-blue-retrospective/
https://doi.org/10.1109/ACCESS.2018.2846236
https://doi.org/10.1109/ACCESS.2018.2846236
https://www.zdnet.com/article/ransomware-gangs-now-have-industrial-targets-in-their-sights-that-raises-the-stakes-for-everyone/
https://www.zdnet.com/article/ransomware-gangs-now-have-industrial-targets-in-their-sights-that-raises-the-stakes-for-everyone/
https://www.zdnet.com/article/ransomware-gangs-now-have-industrial-targets-in-their-sights-that-raises-the-stakes-for-everyone/
https://doi.org/10.1145/322186.322188
http://doi.acm.org/10.1145/322186.322188

REFERENCES

[182] B. Pfaff and B. Davie. The Open vSwitch Database Management Protocol. RFC 7047.

Dec. 2013. doi: 10.17487/RFC7047. url: https://www.rfc-editor.org/info/rfc7

047 (page 29).

[183] K. Phemius and M. Bouet. “OpenFlow: Why latency does matter”. In: 2013 IFIP/IEEE

International Symposium on Integrated Network Management (IM 2013). 2013, pp. 680–

683 (page 34).

[184] G. Pickett. “Abusign Software Defined Networks”. Blackhat Europe. 2014 (page 24).

[185] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu. “A Security

Enforcement Kernel for OpenFlow Networks”. In: Hot Topics in Software Defined Net-

works. HotSDN ’12. Helsinki, Finland: Association for Computing Machinery, 2012,

121–126. isbn: 9781450314770. doi: 10.1145/2342441.2342466 (pages 62, 82, 102).

[186] Pox SDN Controller. https://github.com/noxrepo/pox (page 33).

[187] Project Floodlight. Floodlight. http://www.projectfloodlight.org/floodlight/

(pages 10, 33, 66, 68, 111, 157).

[188] Project Floodlight. Floodlight Applications. https://floodlight.atlassian.net/

wiki/spaces/floodlightcontroller/pages/1343528/Applications (page 23).

[189] Project Floodlight. Loxigen. https://github.com/floodlight/loxigen (pages 158,

159).

[190] C. Qi, J. Wu, H. Hu, G. Cheng, W. Liu, J. Ai, and C. Yang. “An intensive security

architecture with multi-controller for SDN”. In: Proceedings - IEEE INFOCOM 2016-

September (2016), pp. 401–402. issn: 0743166X. doi: 10.1109/INFCOMW.2016.7562109

(pages 73, 75, 154).

[191] A. Rashid, J. Gardiner, B. Green, and B. Craggs. “Everything Is Awesome! Or Is

It? Cyber Security Risks in Critical Infrastructure”. In: Critical Information Infras-

tructures Security: 14th International Conference, CRITIS 2019, Linköping, Sweden,

September 23–25, 2019, Revised Selected Papers. Linköping, Sweden: Springer-Verlag,

2019, 3–17. isbn: 978-3-030-37669-7. doi: 10.1007/978- 3- 030- 37670- 3_1. url:

https://doi.org/10.1007/978-3-030-37670-3_1 (page 106).

[192] Real Games. FactoryIO. https://factoryio.com (page 109).

285

https://doi.org/10.17487/RFC7047
https://www.rfc-editor.org/info/rfc7047
https://www.rfc-editor.org/info/rfc7047
https://doi.org/10.1145/2342441.2342466
https://github.com/noxrepo/pox
http://www.projectfloodlight.org/floodlight/
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343528/Applications
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/pages/1343528/Applications
https://github.com/floodlight/loxigen
https://doi.org/10.1109/INFCOMW.2016.7562109
https://doi.org/10.1007/978-3-030-37670-3_1
https://doi.org/10.1007/978-3-030-37670-3_1
https://factoryio.com

REFERENCES

[193] M. H. Rehmani, A. Davy, B. Jennings, and C. Assi. “Software Defined Networks-Based

Smart Grid Communication: A Comprehensive Survey”. In: IEEE Communications

Surveys Tutorials 21.3 (2019), pp. 2637–2670. doi: 10.1109/COMST.2019.2908266

(page 107).

[194] C. Röpke and T. Holz. “SDN rootkits: Subverting network operating systems of software-

defined networks”. In: International Workshop on Recent Advances in Intrusion Detec-

tion (RAID). Vol. LNCS 9404. Springer, Cham, 2015, pp. 339–356. isbn: 9783319263618.

doi: 10.1007/978-3-319-26362-5_16 (pages 24, 81).

[195] C. Röpke and T. Holz. “Preventing Malicious SDN Applications From Hiding Adverse

Network Manipulations”. In: Workshop on Security in Softwarized Networks: Prospects

and Challenges. SecSoN ’18. Budapest, Hungary: Association for Computing Machin-

ery, 2018, 40–45. isbn: 9781450359122. doi: 10.1145/3229616.3229620. url: https:

//doi.org/10.1145/3229616.3229620 (page 102).

[196] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore. “OFLOPS: An Open

Framework for OpenFlow Switch Evaluation”. In: Passive and Active Measurement.

Ed. by N. Taft and F. Ricciato. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012,

pp. 85–95. isbn: 978-3-642-28537-0 (pages 63, 185).

[197] Ryu SDN Controller. https://ryu-sdn.org (page 33).

[198] V. Saini, Q. Duan, and V. Paruchuri. “Threat Modeling Using Attack Trees”. In: Jour-

nal of Computing Sciences in Colleges 23 (Apr. 2008) (page 58).

[199] E. Sakic, N. Deric̀, and W. Kellerer. “MORPH: An Adaptive Framework for Efficient

and Byzantine Fault-Tolerant SDN Control Plane”. In: IEEE Journal on Selected Areas

in Communications 36.10 (2018), pp. 2158–2174. doi: 10.1109/JSAC.2018.2869938

(pages 72, 75).

[200] E. Sakic, F. Sardis, J. W. Guck, and W. Kellerer. “Towards adaptive state consis-

tency in distributed SDN control plane”. In: 2017 IEEE International Conference on

Communications (ICC). 2017, pp. 1–7. doi: 10.1109/ICC.2017.7997164 (page 151).

[201] B. Salisbury. TCAMs and OpenFlow - What Every SDN Practitioner Must Know.

https://www.sdxcentral.com/articles/contributed/sdn-openflow-tcam-need-

to-know/2012/07/ . Accessed: 16-11-2021. 2012 (page 27).

286

https://doi.org/10.1109/COMST.2019.2908266
https://doi.org/10.1007/978-3-319-26362-5_16
https://doi.org/10.1145/3229616.3229620
https://doi.org/10.1145/3229616.3229620
https://doi.org/10.1145/3229616.3229620
https://ryu-sdn.org
https://doi.org/10.1109/JSAC.2018.2869938
https://doi.org/10.1109/ICC.2017.7997164
https://www.sdxcentral.com/articles/contributed/sdn-openflow-tcam-need-to-know/2012/07/
https://www.sdxcentral.com/articles/contributed/sdn-openflow-tcam-need-to-know/2012/07/

REFERENCES

[202] S. Samonas and D. Coss. “The CIA strikes back: Redefining confidentiality, integrity

and availability in security.” In: Journal of Information System Security 10.3 (2014)

(page 37).

[203] F. B. Schneider. “Implementing Fault-Tolerant Services Using the State Machine Ap-

proach: A Tutorial”. In: ACM Comput. Surv. 22.4 (1990), 299–319. issn: 0360-0300.

doi: 10.1145/98163.98167. url: https://doi.org/10.1145/98163.98167 (pages 49,

68).

[204] S. Scott-Hayward. “Design and deployment of secure, robust, and resilient SDN con-

trollers”. In: 1st IEEE Conference on Network Softwarization (NetSoft). Institute of

Electrical and Electronics Engineers (IEEE), 2015, pp. 1–5. doi: 10.1109/NETSOFT.2

015.7258233 (page 61).

[205] S. Scott-Hayward, C. Kane, and S. Sezer. “OperationCheckpoint: SDN application con-

trol”. In: International Conference on Network Protocols, ICNP. IEEE Computer So-

ciety, 2014, pp. 618–623. isbn: 9781479962044. doi: 10.1109/ICNP.2014.98 (pages 24,

64).

[206] S. Scott-Hayward, S. Natarajan, and S. Sezer. “A survey of security in software defined

networks”. In: IEEE Communications Surveys and Tutorials 18.1 (2016), pp. 623–654.

issn: 1553877X. doi: 10.1109/COMST.2015.2453114 (pages 3, 58, 78).

[207] S. Scott-Hayward, G. O’Callaghan, and S. Sezer. “SDN security: A survey”. In: SDN4FNS

2013 - 2013 Workshop on Software Defined Networks for Future Networks and Services

(2013). doi: 10.1109/SDN4FNS.2013.6702553 (pages 3, 57, 78).

[208] S. Scott-Hayward, G. O’Callaghan, and S. Sezer. “SDN security: A survey”. In: SDN4FNS

2013 - 2013 Workshop on Software Defined Networks for Future Networks and Ser-

vices. Institute of Electrical and Electronics Engineers (IEEE), 2013, pp. 1–7. isbn:

9781479927814. doi: 10.1109/SDN4FNS.2013.6702553 (page 79).

[209] SDX Central. https://www.sdxcentral.com/networking/sdn/definitions/cisco-

opflex/. Accessed: 2022-2-13 (page 29).

[210] S. Sezer, S. Scott-Hayward, P. Chouhan, B. Fraser, D. Lake, J. Finnegan, N. Viljoen,

M. Miller, and N. Rao. “Are we ready for SDN? Implementation challenges for software-

defined networks”. In: IEEE Communications Magazine 51.7 (2013), pp. 36–43. issn:

01636804. doi: 10.1109/MCOM.2013.6553676 (pages 3, 57, 78).

287

https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/98163.98167
https://doi.org/10.1109/NETSOFT.2015.7258233
https://doi.org/10.1109/NETSOFT.2015.7258233
https://doi.org/10.1109/ICNP.2014.98
https://doi.org/10.1109/COMST.2015.2453114
https://doi.org/10.1109/SDN4FNS.2013.6702553
https://doi.org/10.1109/SDN4FNS.2013.6702553
https://www.sdxcentral.com/networking/sdn/definitions/cisco-opflex/
https://www.sdxcentral.com/networking/sdn/definitions/cisco-opflex/
https://doi.org/10.1109/MCOM.2013.6553676

REFERENCES

[211] A. Shaghaghi, M. A. Kaafar, R. Buyya, and S. Jha. “Software-Defined Network (SDN)

Data Plane Security: Issues, Solutions and Future Directions”. In: Handbook of Com-

puter Networks and Cyber Security: Principles and Paradigms (2018), pp. 341–387.

doi: 10.1007/978-3-030-22277-2_14. arXiv: 1804.00262. url: https://arxiv.

org/abs/1804.00262v1 (page 58).

[212] A. Shamir. “How to Share a Secret”. In: Commun. ACM 22.11 (1979), 612–613. issn:

0001-0782. doi: 10.1145/359168.359176. url: https://doi.org/10.1145/359168

.359176 (page 74).

[213] S. S. Shapiro and M. Wilk. “An Analysis of Variance Test for Normality (Complete

Samples)”. In: Biometrika 52.3/4 (1965), pp. 591–611. issn: 00063444. url: http:

//www.jstor.org/stable/2333709 (visited on 08/06/2022) (page 192).

[214] R. Sherwood, M. Chan, A. Covington, G. Gibb, M. Flajslik, N. Handigol, T.-Y. Huang,

P. Kazemian, M. Kobayashi, J. Naous, S. Seetharaman, D. Underhill, T. Yabe, K.-K.

Yap, Y. Yiakoumis, H. Zeng, G. Appenzeller, R. Johari, N. McKeown, and G. Parulkar.

“Carving Research Slices out of Your Production Networks with OpenFlow”. In: SIG-

COMM Comput. Commun. Rev. 40.1 (2010), 129–130. issn: 0146-4833. doi: 10.1145

/1672308.1672333. url: https://doi.org/10.1145/1672308.1672333 (page 19).

[215] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. Mckeown, and G.

Parulkar. FlowVisor: A Network Virtualization Layer. Tech. rep. 2009, p. 15. arXiv: arX

iv:1011.1669v3. url: http://openflowswitch.org/downloads/technicalreports/

openflow-tr-2009-1-flowvisor.pdf http://www.openflow.org/downloads/..

./openflow- tr- 2009- 1- flowvisor.pdf%5Cnhttp://www.techrepublic.com/

whitepapers/flowvisor-a-network-virtualization-layer/2382721 (pages 19,

58, 82, 157).

[216] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran, J. Noh, and

B. B. Kang. “Rosemary: A robust, secure, and high-performance network operating

system”. In: Proceedings of the ACM Conference on Computer and Communications

Security (2014), pp. 78–89. issn: 15437221. doi: 10.1145/2660267.2660353 (pages 61,

84, 86, 87).

[217] E. G. d. Silva, L. A. D. Knob, J. A. Wickboldt, L. P. Gaspary, L. Z. Granville,

and A. E. Schaeffer-Filho. “Capitalizing on SDN-based SCADA systems: An anti-

288

https://doi.org/10.1007/978-3-030-22277-2_14
https://arxiv.org/abs/1804.00262
https://arxiv.org/abs/1804.00262v1
https://arxiv.org/abs/1804.00262v1
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
http://www.jstor.org/stable/2333709
http://www.jstor.org/stable/2333709
https://doi.org/10.1145/1672308.1672333
https://doi.org/10.1145/1672308.1672333
https://doi.org/10.1145/1672308.1672333
https://arxiv.org/abs/arXiv:1011.1669v3
https://arxiv.org/abs/arXiv:1011.1669v3
http://openflowswitch.org/downloads/technicalreports/openflow-tr-2009-1-flowvisor.pdf http://www.openflow.org/downloads/.../openflow-tr-2009-1-flowvisor.pdf%5Cnhttp://www.techrepublic.com/whitepapers/flowvisor-a-network-virtualization-layer/2382721
http://openflowswitch.org/downloads/technicalreports/openflow-tr-2009-1-flowvisor.pdf http://www.openflow.org/downloads/.../openflow-tr-2009-1-flowvisor.pdf%5Cnhttp://www.techrepublic.com/whitepapers/flowvisor-a-network-virtualization-layer/2382721
http://openflowswitch.org/downloads/technicalreports/openflow-tr-2009-1-flowvisor.pdf http://www.openflow.org/downloads/.../openflow-tr-2009-1-flowvisor.pdf%5Cnhttp://www.techrepublic.com/whitepapers/flowvisor-a-network-virtualization-layer/2382721
http://openflowswitch.org/downloads/technicalreports/openflow-tr-2009-1-flowvisor.pdf http://www.openflow.org/downloads/.../openflow-tr-2009-1-flowvisor.pdf%5Cnhttp://www.techrepublic.com/whitepapers/flowvisor-a-network-virtualization-layer/2382721
https://doi.org/10.1145/2660267.2660353

REFERENCES

eavesdropping case-study”. In: 2015 IFIP/IEEE International Symposium on Integrated

Network Management (IM) (2015), pp. 165–173 (page 107).

[218] E. G. d. Silva, A. Silva, J. Wickboldt, P. Smith, L. Granville, and A. Schaeffer-Filho.

“A One-Class NIDS for SDN-Based SCADA Systems”. In: June 2016, pp. 303–312

(page 107).

[219] M. Smith, M. Dvorkin, Y. Laribi, V. Pandey, P. Garg, and N. Weidenbacher. OpFlex

Control Protocol. Internet-Draft draft-smith-opflex-00. Work in Progress. Internet En-

gineering Task Force. 21 pp. url: https://datatracker.ietf.org/doc/html/draft-

smith-opflex-00 (page 29).

[220] J. Sousa and A. Bessani. “From Byzantine Consensus to BFT State Machine Replica-

tion: A Latency-Optimal Transformation”. In: 2012 Ninth European Dependable Com-

puting Conference. 2012, pp. 37–48. doi: 10.1109/EDCC.2012.32 (page 55).

[221] J. Stribling, Y. Sovran, I. Zhang, X. Pretzer, J. Li, M. F. Kaashoek, and R. Morris.

“Flexible, Wide-Area Storage for Distributed Systems with WheelFS”. In: Proceedings

of the 6th USENIX Symposium on Networked Systems Design and Implementation.

NSDI’09. Boston, Massachusetts: USENIX Association, 2009, 43–58 (page 66).

[222] G. Sullivan and R. Feinn. “Using Effect Size—or Why the P Value Is Not Enough”. In:

Journal of graduate medical education 4 (Sept. 2012), pp. 279–82. doi: 10.4300/JGME

-D-12-00156.1 (pages 193, 253).

[223] D. Tatang, F. Quinkert, J. Frank, C. Röpke, and T. Holz. “SDN-GUARD: Protecting

SDN controllers against SDN rootkits”. In: 2017 IEEE Conference on Network Function

Virtualization and Software Defined Networks, NFV-SDN 2017 2017-January (2017),

pp. 297–302. doi: 10.1109/NFV-SDN.2017.8169856 (page 64).

[224] D. Tennenhouse and D. J. Wetherall. “Towards an Active Network Architecture”. In:

Computer Communication Review 26 (1996), pp. 5–18 (page 18).

[225] D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall, and G. Minden. “A survey of

active network research”. In: IEEE Communications Magazine 35.1 (1997), pp. 80–86.

doi: 10.1109/35.568214 (page 18).

[226] P. Thambidurai and Y. keun Park. “Interactive consistency with multiple failure modes”.

In: Proceedings [1988] Seventh Symposium on Reliable Distributed Systems. 1988, pp. 93–

100. doi: 10.1109/RELDIS.1988.25784 (page 53).

289

https://datatracker.ietf.org/doc/html/draft-smith-opflex-00
https://datatracker.ietf.org/doc/html/draft-smith-opflex-00
https://doi.org/10.1109/EDCC.2012.32
https://doi.org/10.4300/JGME-D-12-00156.1
https://doi.org/10.4300/JGME-D-12-00156.1
https://doi.org/10.1109/NFV-SDN.2017.8169856
https://doi.org/10.1109/35.568214
https://doi.org/10.1109/RELDIS.1988.25784

REFERENCES

[227] R. J. Thomas and T. Chothia. “Learning from Vulnerabilities - Categorising, Under-

standing and Detecting Weaknesses in Industrial Control Systems”. In: Computer Se-

curity. Ed. by S. Katsikas, F. Cuppens, N. Cuppens, C. Lambrinoudakis, C. Kalloniatis,

J. Mylopoulos, A. Antón, S. Gritzalis, W. Meng, and S. Furnell. Cham: Springer Inter-

national Publishing, 2020, pp. 100–116. isbn: 978-3-030-64330-0 (page 105).

[228] R. J. Thomas, J. Gardiner, T. Chothia, E. Samanis, J. Perrett, and A. Rashid. “Catch

Me If You Can: An In-Depth Study of CVE Discovery Time and Inconsistencies for

Managing Risks in Critical Infrastructures”. In: Proceedings of the 2020 Joint Workshop

on CPS&IoT Security and Privacy. CPSIOTSEC’20. Virtual Event, USA: Association

for Computing Machinery, 2020, 49–60. isbn: 9781450380874. doi: 10.1145/3411498

.3419970. url: https://doi.org/10.1145/3411498.3419970 (page 105).

[229] A. Tootoonchian and Y. Ganjali. “HyperFlow: A Distributed Control Plane for Open-

Flow”. In: Internet Network Management Conference on Research on Enterprise Net-

working. USENIX, 2010, p. 3. url: http://dl.acm.org/citation.cfm?id=1863133

.1863136 (page 66).

[230] B. E. Ujcich, S. Jero, A. Edmundson, Q. Wang, R. Skowyra, J. Landry, A. Bates, W. H.

Sanders, C. Nita-Rotaru, and H. Okhravi. “Cross-App Poisoning in Software-Defined

Networking”. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security (2018), p. 16. doi: 10.1145/3243734. url: https://doi.

org/10.1145/3243734.3243759 (pages 24, 81).

[231] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Verissimo. “Efficient

Byzantine Fault-Tolerance”. In: IEEE Transactions on Computers 62.1 (2013), pp. 16–

30. doi: 10.1109/TC.2011.221 (page 54).

[232] A. S. Wazan, R. Laborde, F. Barrere, A. Benzekri, and D. W. Chadwick. “PKI Interop-

erability: Still an Issue? A Solution in the X.509 Realm”. In: Information Assurance and

Security Education and Training. Ed. by R. C. Dodge and L. Futcher. Berlin, Heidel-

berg: Springer Berlin Heidelberg, 2013, pp. 68–82. isbn: 978-3-642-39377-8 (page 65).

[233] J. Weekes. “Towards smarter SDN switches: revisiting the balance of intelligence in

SDN networks”. English. PhD thesis. Lancaster University, Sept. 2019. doi: 10.17635

/lancaster/thesis/727 (page 29).

290

https://doi.org/10.1145/3411498.3419970
https://doi.org/10.1145/3411498.3419970
https://doi.org/10.1145/3411498.3419970
http://dl.acm.org/citation.cfm?id=1863133.1863136
http://dl.acm.org/citation.cfm?id=1863133.1863136
https://doi.org/10.1145/3243734
https://doi.org/10.1145/3243734.3243759
https://doi.org/10.1145/3243734.3243759
https://doi.org/10.1109/TC.2011.221
https://doi.org/10.17635/lancaster/thesis/727
https://doi.org/10.17635/lancaster/thesis/727

REFERENCES

[234] J. Weekes and S. Nagaraja. “Controlling Your Neighbour’s Bandwidth for Fun and for

Profit”. In: Security Protocols XXV. Ed. by F. Stajano, J. Anderson, B. Christianson,

and V. Matyáš. Cham: Springer International Publishing, 2017, pp. 214–223. isbn:

978-3-319-71075-4 (pages 24, 29).

[235] X. Wen, Y. Chen, C. Hu, C. Shi, and Y. Wang. “Towards a secure controller platform for

OpenFlow applications”. In: HotSDN 2013 - Proceedings of the 2013 ACM SIGCOMM

Workshop on Hot Topics in Software Defined Networking. 2013, pp. 171–172. isbn:

9781450320566. doi: 10.1145/2491185.2491212 (pages 24, 64).

[236] X. Wen, B. Yang, Y. Chen, C. Hu, Y. Wang, B. Liu, and X. Chen. “SDNShield: Recon-

ciliating configurable application permissions for SDN App markets”. In: Proceedings

- 46th Annual IEEE/IFIP International Conference on Dependable Systems and Net-

works, DSN 2016 (2016), pp. 121–132. doi: 10.1109/DSN.2016.20 (page 64).

[237] T. J. Williams. “The Purdue Enterprise Reference Architecture”. In: Comput. Ind.

24.2–3 (Sept. 1994), 141–158. issn: 0166-3615. doi: 10.1016/0166-3615(94)90017-5.

url: https://doi.org/10.1016/0166-3615(94)90017-5 (pages 104, 105).

[238] L. Yang, T. A. Anderson, R. Gopal, and R. Dantu. Forwarding and Control Element

Separation (ForCES) Framework. RFC 3746. Apr. 2004. doi: 10.17487/RFC3746. url:

https://www.rfc-editor.org/info/rfc3746 (page 19).

[239] S. Yang, L. Cui, Z. Chen, and W. Xiao. “An Efficient Approach to Robust SDN Con-

troller Placement for Security”. In: IEEE Transactions on Network and Service Man-

agement 17.3 (2020), pp. 1669–1682. doi: 10.1109/TNSM.2020.2994837 (page 35).

[240] Z. Yang, Y. Cui, B. Li, Y. Liu, and Y. Xu. “Software-Defined Wide Area Network

(SD-WAN): Architecture, Advances and Opportunities”. In: 2019 28th International

Conference on Computer Communication and Networks (ICCCN). 2019, pp. 1–9. doi:

10.1109/ICCCN.2019.8847124 (page 20).

[241] K.-P. Yee. “Aligning Security and Usability”. In: IEEE Security and Privacy 2.5 (2004),

48–55. issn: 1540-7993. doi: 10.1109/MSP.2004.64. url: https://doi.org/10.1109

/MSP.2004.64 (page 8).

291

https://doi.org/10.1145/2491185.2491212
https://doi.org/10.1109/DSN.2016.20
https://doi.org/10.1016/0166-3615(94)90017-5
https://doi.org/10.1016/0166-3615(94)90017-5
https://doi.org/10.17487/RFC3746
https://www.rfc-editor.org/info/rfc3746
https://doi.org/10.1109/TNSM.2020.2994837
https://doi.org/10.1109/ICCCN.2019.8847124
https://doi.org/10.1109/MSP.2004.64
https://doi.org/10.1109/MSP.2004.64
https://doi.org/10.1109/MSP.2004.64

REFERENCES

[242] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. “Separating Agree-

ment from Execution for Byzantine Fault Tolerant Services”. In: Proceedings of the

Nineteenth ACM Symposium on Operating Systems Principles. SOSP ’03. Bolton Land-

ing, NY, USA: Association for Computing Machinery, 2003, 253–267. isbn: 1581137575.

doi: 10.1145/945445.945470. url: https://doi.org/10.1145/945445.945470

(page 52).

[243] C. Yoon and S. Lee. “Attacking SDN infrastructure: Are we ready for the next gen

networking”. Blackhat 2016. 2016 (page 24).

[244] P. Zhang, H. Wang, C. Hu, and C. Lin. “On denial of service attacks in software defined

networks”. In: IEEE Network 30.6 (2016), pp. 28–33. issn: 08908044. doi: 10.1109/M

NET.2016.1600109NM (page 24).

[245] H. Zhou, C. Wu, C. Yang, P. Wang, Q. Yang, Z. Lu, and Q. Cheng. “SDN-RDCD: A

real-time and reliable method for detecting compromised SDN Devices”. In: IEEE/ACM

Transactions on Networking 26.5 (2018), pp. 2048–2061. issn: 10636692. doi: 10.110

9/TNET.2018.2859483 (pages 67, 139).

[246] Q. Zhu, C. Rieger, and T. Başar. “A hierarchical security architecture for cyber-physical

systems”. In: 2011 4th International Symposium on Resilient Control Systems. 2011,

pp. 15–20. doi: 10.1109/ISRCS.2011.6016081 (pages 104, 105).

292

https://doi.org/10.1145/945445.945470
https://doi.org/10.1145/945445.945470
https://doi.org/10.1109/MNET.2016.1600109NM
https://doi.org/10.1109/MNET.2016.1600109NM
https://doi.org/10.1109/TNET.2018.2859483
https://doi.org/10.1109/TNET.2018.2859483
https://doi.org/10.1109/ISRCS.2011.6016081

	List of Figures
	List of Tables
	List of Acronyms
	1 Introduction
	1.1 Background
	1.1.1 The Rise of SDN
	1.1.2 The Problem With SDN
	1.1.3 Dealing With The Problems

	1.2 Motivation
	1.3 Aims
	1.4 Contributions
	1.4.1 Exploration of Attack Capabilities From a Compromised SDN Controller
	1.4.2 Design of a Consensus-Based Distributed Controller Architecture to Prevent Malicious Insiders

	1.5 Thesis Structure

	2 Background
	2.1 Introduction
	2.2 A History of Networking
	2.2.1 The Evolution of the Network
	2.2.2 Network Routing

	2.3 Programmable Networks
	2.4 Software Defined Networking
	2.4.1 SDN Controller Architecture
	2.4.2 SDN Deployment Architectures
	2.4.3 Applications
	2.4.4 Security of SDN

	2.5 The OpenFlow Protocol
	2.5.1 OpenFlow Packets
	2.5.2 OpenFlow Handshake
	2.5.3 Flow Tables
	2.5.4 Other SDN Protocols

	2.6 SDN Operation
	2.6.1 Reactive
	2.6.2 Proactive
	2.6.3 Hybrid

	2.7 SDN Controllers
	2.7.1 Controller Placement

	2.8 Dependability and Faults
	2.8.1 Dependability
	2.8.2 Faults

	2.9 SDN Fault Tolerance
	2.9.1 Native OpenFlow Support
	2.9.2 ONOS

	2.10 Consensus
	2.11 Byzantine Fault Tolerance
	2.11.1 Byzantine Faults
	2.11.2 Byzantine Fault Tolerant Algorithms

	2.12 Conclusion

	3 Literature Review and Related Work
	3.1 Introduction
	3.2 Security of SDN
	3.3 Detecting Compromised SDN Controllers
	3.3.1 Limitations

	3.4 Mitigating Attacks in SDN
	3.4.1 Securing the Controller
	3.4.2 Preventing Controller Poisoning
	3.4.3 Protection Against Malicious Applications
	3.4.4 Securing the Control-Data Plane (Southbound) Interface

	3.5 Multiple Controller SDN control
	3.6 Primary-Backup Fault tolerant SDN control
	3.7 Byzantine Fault Tolerant SDN Control
	3.7.1 Consensus amongst administrators

	3.8 Discussion
	3.9 Conclusion

	4 Insider Attacks in Software Defined Networks
	4.1 Introduction
	4.2 Attacker Model
	4.2.1 Attacker
	4.2.2 Attack Vector
	4.2.3 Attacker Goals

	4.3 Attacks
	4.3.1 Denial of Service Attacks
	4.3.2 Eavesdropping attacks
	4.3.3 Data Tampering Attacks
	4.3.4 Service Degradation
	4.3.5 Other Attacks

	4.4 Attack Demonstration
	4.4.1 Setup
	4.4.2 Results
	4.4.3 Discussion

	4.5 Real World Impact — Industrial Control Systems
	4.5.1 Industrial Control Systems
	4.5.2 Attacker
	4.5.3 Setup
	4.5.4 Attacks
	4.5.5 Discussion

	4.6 Conclusion

	5 Designing An Efficient Consensus Approach for SDN Control
	5.1 Introduction
	5.2 System Overview
	5.2.1 Requirements
	5.2.2 Notation

	5.3 Quorums
	5.3.1 Quorum Size

	5.4 SDBFT protocol
	5.4.1 Assumptions
	5.4.2 Normal Operation
	5.4.3 Failure Operation

	5.5 Signatures
	5.5.1 Controller Verification
	5.5.2 Limitations

	5.6 Controller Assignment
	5.6.1 Requirements
	5.6.2 Simple Algorithm
	5.6.3 Simple Algorithm Performance
	5.6.4 Existing Approaches

	5.7 Controller Consistency
	5.7.1 Publisher-Subscriber Protocol
	5.7.2 Existing Approaches

	5.8 Limitations of Approach
	5.8.1 Proactive Control
	5.8.2 Controller Diversity

	5.9 Conclusion

	6 Implementing the SDBFT Protocol
	6.1 Introduction
	6.2 SDBFT Implementation Overview
	6.3 Proxy Implementation
	6.3.1 Configuration
	6.3.2 Communication
	6.3.3 Message Acknowledgements
	6.3.4 Signatures
	6.3.5 OpenFlow Message Handling

	6.4 Controller modification
	6.4.1 Message serialising/deserialising
	6.4.2 Xid setting
	6.4.3 Acknowledgement handling
	6.4.4 Synchronisation

	6.5 Implementation of Comparative System
	6.5.1 Configuration
	6.5.2 Protocol
	6.5.3 Proxies

	6.6 Conclusion

	7 Experimental Setup
	7.1 Testbeds
	7.1.1 OpenVSwitch (OVS) Virtual Environment
	7.1.2 Mininet
	7.1.3 Physical Switch

	7.2 Simple TCP Proxy
	7.3 Measurement Tools
	7.3.1 Ping
	7.3.2 Cbench

	7.4 Floodlight Configuration
	7.4.1 Applications

	7.5 Conclusion

	8 Evaluating The SDBFT Controller Architecture
	8.1 Introduction
	8.1.1 Method of Analysis

	8.2 Baselines
	8.2.1 Setup
	8.2.2 Results
	8.2.3 Discussion

	8.3 Multi hop path test
	8.3.1 Setup
	8.3.2 Results
	8.3.3 Discussion

	8.4 Failure operation
	8.4.1 Setup
	8.4.2 Results
	8.4.3 Discussion

	8.5 High Throughput Benchmark
	8.5.1 Setup
	8.5.2 Results
	8.5.3 Discussion

	8.6 Testing on physical switch
	8.6.1 Setup
	8.6.2 Results
	8.6.3 Discussion

	8.7 Deployment of Physical Proxy
	8.7.1 Setup
	8.7.2 Results
	8.7.3 Discussion

	8.8 Network Traffic Load
	8.8.1 Setup
	8.8.2 Results
	8.8.3 Discussion

	8.9 Conclusion

	9 Conclusion
	9.1 Thesis Contributions
	9.1.1 Exploration of Attack Capabilities From a Compromised SDN Controller
	9.1.2 Design of a Consensus-Based Distributed Controller Architecture to Prevent Malicious Insiders
	9.1.3 Research Impact
	9.1.4 Summary

	9.2 Future Work
	9.2.1 Proactive Control
	9.2.2 Controller Verification
	9.2.3 Anonymous Information Sharing
	9.2.4 Native Implementation of SDBFT

	9.3 Reproducibility
	9.4 Concluding Remarks

	Appendix A Implementation
	A.1 SDBFT Proxy Configuration

	Appendix B Evaluation Setup
	B.1 OVS Test Launch Script
	B.2 Mininet Python Configuration Example
	B.3 Bash Launch Script

	Appendix C Evaluation
	C.1 Baseline Results
	C.2 Multi-hop Path Test Results

	References

