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Coding for the synchronous noiseless T-user real adder channel is 
considered by employing cyclic codes with symbols from an 
arbitrary finite integer ring. The code construction is based on the 
factorisation of Y - 1 over the unit ring of an appropriate 
extension of a finite integer ring. Any number of users in the 
system can be independently active and the maximum achievable 
sum rate is 1 (when all T users are active). 

Introduction: In his study of T active users out of N multiple- 
access communication systems, Mathys introduced a class of codes 
for the synchronous noiseless discrete-time real adder channel 
(with gains and offset) without feedback with N real or binary 
inputs [ I ] .  Mathys codes are uniquely decodable and have a sum 
rate that approaches 1 if the decoder is informed of which T or 
less users are active. The sum rate will be reduced to a value of at 
most 112 if the decoder has to identify the subset of active users. 
In a recent paper, da Rocha proposed the use of cyclic codes over 
GF(q) for the synchronous noiseless T-user adder channel (T- 
QAC) [2]. A very low complexity decoding procedure was pre- 
sented there and it was shown that the maximum achievable sum 
rate is 1. In this Letter, cyclic codes for the T-QAC with symbols 
from an arbitrary integer ring Z ,  will be discussed. 

Factorisation of x" - I over integer ring Z,: In this Section a sum- 
mary of the theory needed to factor x - 1 and subsequently to 
construct cyclic codes over the integer ring 2, is given, following 
Shankar [3]. Let M be an arbitrary integer, with prime factorisa- 
tion M = II,=,;P:, where the pi are distinct primes and the k, are 
non-negative integers. Let Z,  xi b] denote the ring of polynomials 
in the variable y over Z k, and let @,b) be a monic p;ary polyno- 
mial of degree r ,  i r r eduhe  over GF@,), i = 1, 2, ..., 1. Let Ri = 
GR@,'., r )  = Z ,  *, b] /@;(y) denote the Galois ring, i.e. the set of 
residue classes df polynomials in y over Z,,ki, modulo the polyno- 
mial @,(y). 

Suppose that A x )  = Z,=," a$ and let R A x ) )  = Z,," RN(a,)x', 
where R&J is the non-negative remainder when the integer a, is 
divided by the integer M .  For i = 1, 2, ..., I ,  let mi be the smallest 
integer such that 

R h , ( rn , )  = 1 and R k j ( r n i )  = 0 for j # i  1 5 j  5 1 
P, p> 

@(y) = R M ( r n l @ l ( Y )  + m z @ z ( y )  + . . , + r n l @ l ( Y ) )  

Then the polynomial 

is monk and irreducible over Z ,  and over Gfi , ) ,  i = 1, 2, ..., 1. 
Let Q(M,r) = Z ,  by@@). Now let R? and Q* denote the group 
of units of R, and Q(M,r), respectively, let K, denote GF@:) and 
finally let K,* denote the multiplicative group of GF(P:). Let n be a 
divisor of GCD(@,' - I), (pZr - I), . . ., @,' - I)) and let H,? denote 
the cyclic subgroup of order n of Q*, generated by f: It follows 
that Hxn contains all the roots of x" - 1 over Q*. The polynomial 
x - 1 can be factored over Q* as 

Z" - 1 = (z - f)(. - fZ) . . . (z - f") 
if and only if p = R v) has order n in K?, where (n, p ; )  = I ,  i = 
1, 2, ..., I. Summaris:ng, these are the main steps in the factorisa- 
tion of x" - 1 over Z ,  : 

(i) Choose @,l.y) to be a monic p,-ary polynomial of degree r, irre- 

ducible over G f i , ) .  Find m,, i = 1, 2, ..., 1 as indicated above; 
then 

*(Y) = RM(rnl@l(Y) + r n 2 * 2 ( Y ) + . . . + r n l Q l ( Y ) l  

is monic and irreducible over Z,. 

(ii) Let p, be an element of order n in R, formed as Z,, k,  b]/@,&), i 
= 1, 2, ..., 1; then f = R&,pI + m2p2 + _._ + mB,) generates the 
cyclic subgroup HLn of the unit group of Z ,  b]l@(y). 
(iii) The factors of x" - 1, irreducible over Z,, are defined by the 
cyclotomic cosets formed with the rootsf, 1 s i s 1, of x" ~ I. 

If (n, p,) # 1 then the factorisation of X - 1 over Z ,  is not guaran- 
teed to be unique; this, however, is not an obstacle to code con- 
struction, as shown below. 

Cyclic codes over Z ,  in T-QAC channel A blocklength n cyclic 
code over 2, is an ideal in the ring of polynomials with coeffi- 
cients in Z,, reduced modulo x" - 1, and is generated by a monic 
polynomial g(x)  which is a factor of x" - 1. Let gl(x) ,  g2(x), ... 
g k x )  be a set of T irreducible polynomials which are factors of x" 
- 1 over Z,, i.e. 

T 

zn - 1 = fl g,", (z) (11 
"=1 

where Z,=,rdeg[g$(x)] = n and the k,, 1 a i a Tare positive integers. 
Because h,(x) = (x" - I)/g,'.(x) has no factors in common with 
g:(x), the Euclidean algorithm can be used to find a polynomial 
pix) such that pix)hI(x) 3 1 mod g:(x), 1 s i I; T.  Consider the 
following sum r(x), where addition is defined over the additive 
group of Z ,  : 

T(Z) = Crnc(z)h*(z)Pdz)  1 5 t 5 2- (2) 
i=l 

Because p,(x)h,(x) is a multiple of g,'.(x) if j # i, and p,<x)hix) t 1 
mod gP(x), it follows that r(x) I m i x )  mod g,X.(x) for all i. If r'(x) 
also satisfies r'(x) - mix) mod gF(x) for all i, then r'(x) - ifx) must 
be divisible by g:'(x), 1 s i s t and as both r(x) and r'(x) are poly- 
nomials of degree less than n, it follows that r'(x) = r(x) mod x" - 
1. Hence the sum r(x) is uniquely determined by the arbitrary pol- 
ynomials ml(x), l s i s t, if deg[mE(x)] < deg[g:(x)] i.e. m,<x) = r(x) 
mod gP(x), 1 s i s t .  Based on the above analysis, a T-QAC sys- 
tem over integer ring 2, can be constructed. The encoding and 
decoding algorithms are as follows. 

Code construction: 

(i) Given an integer ring Z,, choose a code length n as described 
in the preceding section and factor X - 1 into irreducible polyno- 
mials over Z,, x" - 1 = IIE=lTg:l(x). 

(ii) Assign each user a cyclic code with the generator ht(x) = (x" ~ 

l)/g$(x). Compute the polynominals nomials &(x) which satisfy, 
pt(x)hE(x) I 1 mod g:'(x), 1 s i s T. 

Encoding algorithm: For a given message polynomial m,(x) 0, the 
transmitted codewords c l x )  of each user generated by computing 
cix) = hix)pC(x)m,(x) mod (x" - 1). Because each codeword c,(x) in 
the i th code has degk:(x)] message symbols and Z,=,'deg[gp(x)] s 
n it follows that the maximum achievable sum rate is 1 when all 
users ( t  = 7)  are active. To avoid the ambiguity between messages 
m l x )  = 0 and the case where user i is not active, the message set is 
restricted to those mix) f 0 in the encoding algorithm. 

Decoding algorithm: The received n-tuples are polynomials, 
denoted by r'(x), which result from the componentwise real addi- 
tion of the codewords of the active users. The first step in decod- 
ing is to reduce coefficients of r'(x) modulo M .  The result of this 
step is the polynomial r(x). Once the polynominal r(x) = &,' c,(x) 
is obtained the decoding algorithm is very simple and is given by 
the equation: $x) = r(x)  mod gP(x) 1 s i s T. 

Example: Construct a T-QAC system over Z,  with code length n = 
7. Employing the technique described above, the following factori- 
sation results: 
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x7 - 1 = &(x) 
*=l 

= (2 - 11(~3 + 2x2 + + 3)(.3 + 3 2  + 2x + 3) 
(3) 

Let gl(x) = x - 1, g2(x)  = x3  + 2x2 + x + 3 and g3(x) = x3 + 3x2 
+ 2x + 3. Using the Euclidean algorithm it turns out that h,(x)  = 
x6 + xs + x4 + x3 + x2 + x + 1, &(x) = 1; h,(x) = x4 + x2 + x + 3, 
&(x) = 1; h,(x) = x4 + 3x3 + 3x2 + 3 ,  P3(x) = x3 + 2 x 2  + 2. sup- 
pose m,(x)  = 3, m2(x) = 2x + 3, m3(x) = x ,  then the transmitted 
codewords are 

c1(x) = ml  (%)hl (ZIP1 (.) 
= 3x6 + 3x5 + 3x4 + 3x3 + 3x2 + 32 + 3 

4.) = mz(x)h2(z)Pz(z) 
= 2x5 + 3x4 + 2x3 + x2 + + 1 

c3(2) = m3(2)h3b)P3(5) 

= x6 + 2 4  + 3x + 1 
At the receiver, the received sum codeword is r’(x) = 4x6 + 5xs + 
7x4 + 5 2  + 4x2 + 7x + 5 which, after reduction modulo 4, 
becomes i fx )  = L,=,) cc(x) = x5 + 3x4 + x3 + 3x + 1. The messages 
can be easily restored as: &(x) = 3 = ifx) mod g l (x ) ,  &(x) = 2x + 
3 = r(x) mod gz(x) &(x) = x = r(x) mod g3(x). 

Summary: Cyclic codes over the integer ring Z ,  for the T-QAC 
have been discussed in this Letter. It should be noted that the 
above analysis and encoding/decoding algorithms are valid if x“ - 
1 has repeated irreducible factors. This means that the present 
results generalise the code construction given in [2]. Although the 
maximum number of users will be reduced if there are some 
repeated irreducible factors in x - 1, the maximum achievable 
sum remains the same. 
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Surface magnetic field measurement 
technique for nondestructive testing of 
metals 

D. Mirshekar-Syahkal and S.H.H. Sadeghi 

Indexina lerms: Maenefic field measurement. Nondestructive tesfinr 

The Letter explains the principles of a new electromagnetic 
technique, the surface magnetic field measurement technique 
(SMFM), for the detection and sizing of surface-breakiug cracks 
in metals. The signals associated with circular-arc cracks are 
examined and techniques for inverting crack signals to crack 
dimensions, are outlined. 

Infroduction: Various methods including ultrasonic, magnetic par- 
ticle, AC and DC potential drop, magnetic flux leakage and eddy 
current methods, have been used to detect surface breaking cracks 
in metals and metal structures. Each method, of course, has its 
own potentials and weaknesses in a specific application. 

Recently, we have developed a new electromagnetic technique, 
the surface magnetic field measurement technique (SMFM), for 
the detection and sizing of surface-breaking cracks in metals [I]. 
Although the technique uses some of the principles of the eddy 
current method, it has superior features as it does not rely on the 
impedance measurement and it is free from probe calibration and 
calibration standards. The SMFM technique is based on the meas- 
urement of the tangential component of the AC magnetic field at 
the metal surface. The field is produced by an inducer located 
above the metal surface which can consist of several U-shaped 
wires or can be a rectangular coil, carrying a high frequency AC 
current. In the measurement of the field, a properly orientated 
reflection type eddy-current probe is used. 

This Letter outlines the principles of the SMFM technique, 
examines signals associated with circular-arc cracks and discusses 
the methods which have been developed in order to invert crack 
signals to crack dimensions. 

convertor 

multi -turn 

(U-shaped wire 
i nd 

(U-shaped wire 

ita1 coil 

Fig. 1 SMFM detection system using one of the fwo sensors shown and 
an inducer consisting of fwo U-shaped wires 

The sensor is attached to the inducer at a distance 0 , .  In a scan, the 
sensor is close to the metal surface. 

Crack defection: In Fig. 1, a schematic diagram of the SMFM sys- 
tem using two U-shaped wires as the inducer is shown. The 
inducer is excited by a high frequency current source, producing a 
thin skin eddy current in the work piece. The choice of operating 
frequency depends on the metal under test and on the minimum 
crack depth to be resolved. Because we were mostly concerned 
with the inspection of mild steel structures, an operating frequency 
of 1.6kHz was found to be suficient for reliable detection and siz- 
ing of cracks of depths greater than Imm. At this frequency the 
skin depth is -0.3mm. However, higher frequencies were also used 
recently to resolve shallow cracks of the order of 200 w. The 
excitation current of 0.5A was found to be adequate for obtaining 
a very good signal to noise ratio for cracks deeper than 1 mm. 

A surface crack perturbs the distribution of the eddy current 
induced in the work piece and the effect is reflected in the mag- 
netic field at the metal surface. Perturbations in the tangential 
component of the field can be sensed by a magnetic sensor which, 
as shown in Fig. 1, can be a magnetic tape-head eddy current 
probe or a multitum horizontal coil of small dimensions. 
Although in an inspection task the inducer can be kept in a fKed 
position and the sensor is moved to interrogate the surface field, 
this arrangement is not convenient and, in practice, the inducer 
and the sensor are attached and move together (Fig. 1). The sen- 
sor can be attached to the inducer at different positions and can 
have different orientations. The detector system connected to the 
sensor is a lock-in amplifier interfaced to a computer. 

210 ELECTRONICS LE7TERS 3rd February 1994 Vol. 30 No. 3 

- 

Authorized licensed use limited to: Lancaster University Library. Downloaded on December 5, 2008 at 04:59 from IEEE Xplore.  Restrictions apply.


