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Abstract

Ranking systems are everywhere. The thesis will often select sports as its motivating

applications, given their accessibility; however, schools and universities, harms of drugs,

quality of wines, are all ranked, and all with arguably far greater importance. As such,

the methodology is kept necessarily general throughout. In this thesis, a novel con-

ceptual framework for statistical ranking systems is proposed, which separates ranking

methodology into two distinct classes: absolute systems, and relative systems.

Part I of the thesis deals with absolute systems, with a large portion of the method-

ology centred on extreme value theory. The methodology is applied to elite swimming,

and a statistical ranking system is developed which ranks swimmers, based initially on

their personal best times, across different swimming events. A challenge when using

extreme value theory in practice is the small number of extreme data, which are by

definition rare. By introducing a continuous data-driven covariate, the swim-time can

be adjusted for the distance, gender category, or stroke, accordingly, and so allowing

all data across all 34 individual events to be pooled into a single model. This results

in more efficient inference, and therefore more precise estimates of physical quantities,

such as the fastest time possible to swim a particular event.

Further increasing inference efficiency, the model is then expanded to include data

comprising all the performances of each swimmer, rather than just personal bests. The

data therefore have a longitudinal structure, also known as panel data, containing re-

peated measurements from multiple independent subjects. This work serves as the first
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attempt at statistical modelling of the extremes of longitudinal data in general and the

unique forms of dependence that naturally arise due to the structure of the data. The

model can capture a range of extremal dependence structures (asymptotic dependence

and asymptotic independence), with this characteristic determined by the data. With

this longitudinal model, inference can be made about the careers of individual swim-

mers - such as the probability an individual will break the world record or swim the

fastest time next year.

In Part II, the thesis then addresses relative systems. Here, the focus is on incorpo-

rating intransitivity into statistical ranking systems. In transitive systems, an object A

ranked higher than B implies that A is expected to exhibit preference over B. This is

not true in intransitive systems, where pairwise relationships can differ from that which

is expected from the underlying rankings alone. In some intransitive systems, a single

underlying and unambiguous ranking may not even exist. The seminal Bradley-Terry

model is expanded on to allow for intransitivity, and then applied to baseball data

as a motivating example. It is found that baseball does indeed contain intransitive

elements, and those pairs of teams exhibiting the largest degree of intransitivity are

identified. Including intransitivity improves prediction performance for future pairwise

comparisons.

The thesis ultimately concludes by harmonising the two parts - acknowledging that

in reality, there is always some relative element to an absolute system. Forging the

armistice between these system types could enflame research into the areas connecting

them, which until now remains barren.
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Chapter 1

Introduction

1.1 Motivation

Pick your favourite sport. I’m sure you could stew over the world’s best competitor at

this current moment, or of all time, or who would claim victory if A played B. But is

it conceivable that a system could be developed which returns an objective answer to

these seemingly subjective puzzles? In developing such systems, it is crucial to capture

as much information as is possible from our dynamic world. Athletes’ injuries, weather

events, even economic factors all impact the outcome of these events and the implied

abilities of the athletes or teams. Ranking systems in sport use a wide range of strate-

gies in order to capture these signals, from graph theory to extreme value theory, so that

the “best” system of ranking sports teams or athletes is formulated. Ranking systems

in sport are not only interesting to the inquisitive fan, as particular motivation arises

from companies such as ATASS Sports, who develop innovative methods of ranking

and rating sports teams and athletes. After all, a fair and accurate system is at the

core of all sports organisational bodies and the multi-billion pound conglomerates they

represent.

1
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But these systems are not exclusive to sports. Methodological advances in the field

of ranking systems have far-reaching consequences: ranking systems prioritise certain

web-pages, influence schools and hospitals, and even declare the most essential medical

treatments. Poor methodology here leads to far harsher repercussions than incorrectly

seeding a tennis tournament...

Progress league tables were introduced for schools in the UK as a fairer and more

meaningful way to compare the effectiveness of schools (Leckie and Goldstein, 2017).

The measure of school progress has changed several times: the initial “value-added”

measure was criticised because it failed to take differences in pupils’ socio-economic

backgrounds into effect (Office, 2003) and there was no attempt at uncertainty quan-

tification.

These issues were then rectified by the introduction of the “contextual-value-added”

measure. This included age, gender, ethnicity, socio-economic status, and other fac-

tors as covariates in a random-effects model. From this statistical model, uncertainty

quantification was then available. However, the contextual-value-added measure was

subsequently dropped as it was considered too difficult to understand, and was “a poor

predictor of success” (Department for Education, 2010).

This highlights an important point - the aim of a ranking system completely shapes

its design, and the methodology used to construct it. In our example, it is clear that the

aim of ranking schools is not agreed upon: is it to promote the mental, physical, and

spiritual well-being and development of all pupils? Or is it to correctly forecast pupils’

qualifications? The result is a system which should be accurate, a good predictor of fu-

ture events and have reliable uncertainty quantification yet fair and easy-to-understand.

Not an easy task.

Due to funding or sanctions that often accompany these rankings, schools tend to
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change their behaviour by, for example, “teaching for exams.” Initially, pupils’ qualifi-

cations may have contributed to evidence of their development; however, it now merely

indicates their ability to memorise facts. Hospital ranking systems are also incentive

inducing, yet the introduction of these rankings within the National Healthcare Service

(NHS) is negatively correlated with the quality of care (Propper et al., 2004). Incentive-

fuelled ranking systems can therefore cause a change in behaviour through interactions

between the rankings and the “players”, thus rendering the rankings inaccurate.

NHS ranking systems use a combination of metrics, such as: hospital standardised

mortality ratio, a measure of in-hospital deaths; Summary Hospital-level Mortality

Indicator, which measures deaths occurring in the 30 days after being discharged; deaths

after surgery; and deaths in low-risk conditions. The aim is to provide a better view of

overall performance than any single metric; however, the rankings can be sensitive to

the choice of aggregation. In fact, hospitals can move almost half of the league table

as a result of subtle differences in the aggregation (Jacobs et al., 2005).

It may appear logical, that one common primary aim of a ranking system is to

provide a single order of preference for a set of objects; yet, a single ordering of pref-

erence may not exist at all. Consider an object A, which is preferred to B, which is

preferred to an object C and C is in turn preferred to A. This cycle of preference is

an example of intransitivity, and in this scenario the interpretation of the rankings is

not as transparent. Intransitivity arises in artificial constructions, such as dice games

(De Schuymer et al., 2003), but also emerges throughout the natural world, for exam-

ple, in competition between bacteria (Reichenbach et al., 2007) and in mating choices

of lizards (Sinervo and Lively, 1996). It is still possible to form an overall ranking

where better ranked objects perform better on average, but there may be specific pairs

for which the worse ranked object is expected to express preference over the better

ranked object. Alternatively, if the objects are indistinguishable as being statistically

significantly different, then enforcing some illusory ranking only engenders a fictional
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ordering. The bulk of ranking methodology pays no attention to either of these possi-

bilities.

The appropriate ranking methodology depends on the system at hand. It may be

helpful to introduce two distinct categories: absolute systems, and relative systems.

An absolute system is context-free, that is, isolated events are meaningful. For

example, the 100m sprint event could be treated as an absolute system, because the

knowledge that a person runs it in, say, 9.6 seconds conveys information about this

person’s ability, irrespective of the context or the opponents. This judgement arises

due to some vague perception of the bio-mechanics at play and a loose idea of the

typical behaviour of the population.

The surface temperature of stars can also be deemed an absolute system. The astro-

physics which govern this system inform us that a star such as WR 102 with a surface

temperature of 210, 000K (Sander et al., 2012) is, technically speaking, “bloody hot”,

without the need for direct comparison with any other star. Alternatively, “bloody hot”

can be quantified via knowledge of the typical surface temperature, or the distribution

of surface temperature across stars. Absolute systems are therefore understood through

the physical or statistical properties of the system. Theoretically, the same is true of

sprinting. It is possible that an omniscient understanding of bio-mechanics and physics

is sufficient to quantify a “fast” sprint time, though with our current level of knowledge,

a statistical framework feels more appropriate.

On the face of it, ranking objects in an absolute system, such as runners in a given

competition, may seem banal; simply compare their times. But this simple comparison

no longer holds when comparing between: different distances; people born of differ-

ing sexes, which can lead biological biases, for example, disparate levels of testosterone;

fairly adjusting for disabilities; hurdles vs. no-hurdles; let alone differences in equipment

such as Eliud Kipchoge’s staggering world record set with the controversial Alphafly
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shoes. The dynamic component of these systems thickens the plot. Due to improve-

ments in training methods and changes in technology, a fair comparison between run

times recorded many years apart is infeasible without some adjustment for the era of

the run (Stephenson and Tawn, 2013).

Even when comparing times under identical conditions, applying ranking methodol-

ogy is beneficial because comparisons between runs have a more tangible interpretation

as they can be described in terms of probabilities. For example, it is natural to compare

the relative quality of two run times t1 and t2 in an event by Pr{T < t1}/Pr{T < t2},

where T represents the random variable corresponding to a run time for an event, rather

than, say, the metric t1 − t2. A by-product of a suitable ranking system is that other

features of interest can be estimated. The ultimate possible run time for any given event

can be estimated (Arderiu and de Fondeville, 2022), or the probability of observing a

star with some extreme surface temperature τ > 210, 000K. In Chapter 3, with the aid

of extreme value theory, a statistical framework to rank elite swimmers is presented.

A relative system, on the other hand, requires context for any sense of meaning.

Armed with the knowledge that a player wins a tennis match, no amount of aerody-

namics and general relativity can help infer the ability of this victor. This information

is irrelevant without the context - the opponent. Context in relative systems stems from

variation of adversaries. An absolute system could be viewed as a competition against

nature. Certain natural laws make running a marathon under two hours, observing a

star hotter than 210, 000K or an earthquake with magnitude larger than 9.5 unlikely.

In all these systems, the adversary - nature - is the same for all objects in the system.

Inversely, in relative systems the adversary can be different for each object. Omitting

the context of the adversary then is unfair at best, and at worst renders comparisons

illogical. Differing adversaries also motivate differing strategies, complicating matters

further. The competition is therefore different for each object, thus stipulating context.

The distinction between relative and absolute systems aids the modelling process,
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but of course, there is a blending of the two in reality. Knowledge of someone’s marathon

time alone conveys a lot about their ability, but even in marathons there is some level

of strategy. In the absence of context - their competitors - the time cannot tell the

whole story. This thesis explores ranking methodology for both classes of system.
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1.2 Outline of Thesis

Both relative and absolute systems are deliberated in this thesis, which consists of two

parts, labelled Part I and Part II. The former is dedicated to absolute systems, using ex-

treme value theory as a framework, and applied to elite swimming. The latter concerns

relative systems, specifically paired-comparison methodology applied to baseball.

Whilst a common output in both systems is a global ranking, the mathematical

modelling and application-specific considerations diverge significantly. The strategy

of objects can be critical when modelling relative systems, but in an absolute system

this is obsolete by definition. Accordingly, each part contains its own literature review

and background research, conclusions, and further work, and appendices. Concluding

remarks relevant to both parts and a shared bibliography are located at the end of the

thesis.

The outline of Part I is as follows. As described above, absolute systems benefit

from a statistical framework when quantifying the meaning of observations, and here

we utilise extreme value theory; a background is provided in Chapter 2.

Chapter 3 applies univariate extreme value theory to elite swimming. The work

knits together multiple systems by consolidating all elite swim events over distance,

stroke and gender into a single unified system, forming one unique ranking over all

swimmers. The International Swimming Federation (FINA) uses a very simple points

system with the aim to rank swimmers across all swimming events. The points acquired

is a function of the ratio of the recorded time and the current world record for that

event. But with some world records considered “better” than others, bias is introduced

between events, with some being much harder to attain points where the world record is

hard to beat. A model based on extreme value theory is introduced, where swim-times

are modelled through their rate of occurrence, and with the distribution of the best

times following a generalised Pareto distribution. Within this framework, the strength

of a particular swim is judged based on its position compared to the whole distribution
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of swim-times, rather than just the world record. This work embraces the dynamical

aspect of absolute systems, where identical events occurring at different points in time

have radically different interpretations. As training methods improve over the years,

as well as changes in technology, such as full body suits, the date of the swim must be

accounted for. The parameters of the generalised Pareto distribution, for each of the 34

individual long course events, will be shown to vary with covariates, leading to a novel

single unified description of swim quality over all events and time. This structure, which

allows information to be shared across all strokes, distances, and genders, improves the

predictive power as well as the model robustness compared to equivalent independent

models. A by-product of the model is that it is possible to estimate other features of

interest, such as the ultimate possible time, the distribution of new world records for

any event, and to correct swim-times for the effect of full body suits. The methods are

illustrated using a dataset of the fastest 500 personal-best swim-times for each event in

the period 2001-2018.

Chapter 4 extends this work into the multivariate domain in order to capture not

just personal-best data, but the whole history of each swimmer’s measurements. Using

more data allows for more precise forecasting and prediction of future world records and

the general state of the system. The methods developed are kept general, using multi-

variate extreme value theory for analysing observations in the tails of longitudinal data,

i.e., a data set consisting of a large number of short time series, which are typically ir-

regularly and non-simultaneously sampled, yet have some commonality in the structure

of each series and exhibit independence between time series. Although extreme value

theory has been developed for ever more rich data structures, the unique features of

longitudinal data have not been considered previously. Across time series the data are

assumed to follow a common generalised Pareto distribution, above a high threshold.

To account for temporal dependence of such data we require a model to describe (i) the

variation between the different time series properties, (ii) the changes in distribution
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over time, and (iii) the temporal dependence within each series. Our methodology has

the flexibility to capture a range of dependence structures within the extremes of such

data (asymptotic dependence and asymptotic independence), with this characteristic

determined by the data. Bayesian inference is used with MCMC techniques to help

address the need for inference of parameters that are unique to each of the time series.

The novel methodology is illustrated through the analysis of data from elite swimmers

in the men’s 100m breaststroke. Unlike previous analyses of personal-best data in this

event, inference about the careers of individual swimmers is available - such as the

probability an individual will break the world record or swim the fastest time next

year.

Chapter 5 summarises Part I and proposes extensions to the works in Chapters 3

and 4.

The outline of Part II follows thusly. In the relative systems domain, ranking

methodology is dominated by paired-comparison approaches. Chapter 6 reviews the

paired-comparison literature. Particular attention is paid to the Bradley-Terry model

and its subsequent adaptations.

Chapter 7 extends the Bradley-Terry model. The seminal Bradley-Terry model

imposes a deeply restricted form of transitivity, namely, that the probabilities of object

A beating B and B beating C designate the probability of A beating C, with these

probabilities determined by a skill parameter for each object. Such transitive models

do not account for different strategies of play between each pair of objects, which

gives rise to intransitivity. Various intransitive parametric models have been proposed

but they lack the flexibility to cover the different strategies across n objects, with the

O(n2) values of intransitivity modelled using O(n) parameters, whilst they are not

parsimonious when the intransitivity is simple. Their lack of adaptability is overcome

by allocating each pair of objects to one of a random number of K intransitivity levels,

each level representing a different strategy. This novel approach for the skill parameters
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involves having the n objects allocated to a random number of A < n distinct skill

levels, to improve efficiency and avoid false rankings. Although up to O(n2) unknown

parameters may have to be estimated for (A,K), it is anticipated that in many practical

contexts A + K < n. The Bradley-Terry class of model is revealed to be a special

case, when (A = n − 1, K = 0), of this broader class of semi-parametric model which

encompasses intransitivity - the Intransitive Clustered Bradley-Terry model. This new

model is shown to have an improved fit relative to the Bradley-Terry, and the existing

intransitivity models, in out-of-sample testing when applied to simulated and American

League baseball data.

Chapter 8 suggests an array of extensions for this broader class of model, in partic-

ular the optimal choice of constraint when applied to sports with complex tournament

structure.

Chapter 9 provides concluding statements from both parts, and suggests further

work which combines the methodology for absolute and relative systems into one uni-

fying framework.



Only a Sith deals in absolutes.

— Obi-Wan Kenobi

Part I

Absolute Systems

11



Chapter 2

Extreme Value Theory

Max-stability and threshold-stability form the bedrock of univariate extreme value the-

ory, by providing unique limiting distributions of random variables. The two most

commonly used approaches for modelling univariate extreme values are the block max-

ima approach and the peaks-over-threshold approach. The former models the maxima

of the data using the generalised extreme value distribution, while the latter models ex-

ceedances above a threshold using the generalised Pareto distribution. A combination

of these approaches can also be formed, using point processes. For a thorough review

of statistical methods for univariate extremes, see Coles (2001).

2.1 Block maxima

Let X1, . . . , Xn be a set of n independent and identically distributed random variables,

with each variable having the continuous distribution function F , and consider Mn =

max{X1, . . . , Xn}, the maximum of a block of length n. From Fisher and Tippett

(1928), the Extremal Types Theorem follows:

Theorem 2.1.1 (Extremal Types Theorem). If there exist norming sequences {an >

12
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0}∞n=1 and {bn}∞n=1, such that

Pr

{
Mn − bn
an

≤ x

}
→ G(x) as n→ ∞

for x ∈ R and where the limiting distribution G is non-degenerate, then G must be the

distribution function of one of Fréchet, Gumbel, or negative Weibull random variables.

The three aforementioned distributions form the extreme value families of distribu-

tions, defined as follows:

• Fréchet: G(x) =

0, x ≤ b,

exp
[
−
(
x−b
a

)α]
, x > b,

for α < 0;

• Gumbel: G(x) = exp
{
− exp

[
−
(
x−b
a

)]}
, x ∈ R;

• Negative Weibull: G(x) =

exp
{
−
[
−
(
x−b
a

)]α}
, x < b,

1, x ≥ b,
for α < 0,

for a > 0, b ∈ R. If Theorem 2.1.1 holds, then F is said to be in the maximum

domain of attraction (MDA) of G, and its normalised maxima must therefore converge

in distribution to one of the three extremal families. Without normingMn a degenerate

distribution is obtained. This is because a point mass is obtained at the end-point of

the distribution xF , since Pr{Mn < x} = F n(x), x ∈ R, and F n(x) → 0 as n → ∞ for

all x < xF , whereas F
n(x) = 1 ∀x > xF . Moreover, using F n(x) is often impractical as

F is unlikely to be known. Thus, the norming of Mn is paramount.

The extreme value families can in fact be shown to be special cases of a single family:

the generalised extreme value (GEV) distribution, with distribution function

G(x) = exp

{
−
[
1 + ξ

(
x− µ

σ

)]−1/ξ

+

}
, x ∈ R, (2.1.1)

with y+ = max(y, 0), and where µ, ξ ∈ R, σ ∈ R+, are the location, shape and

scale parameters, respectively. Together, Theorem 2.1.1 and result (2.1.1) are powerful,
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as Theorem 2.1.1 holds as the limit distribution for a very broad class of continuous

distributions F , and then result (2.1.1) implies that whatever F is in this class, the

maxima must follow a single specific class of distribution, determined by only three

parameters.

The extreme value family is dictated by the shape parameter: for ξ > 0, we have

the Fréchet family; for ξ < 0, the negative Weibull family; and ξ = 0 is interpreted

as the limit ξ → 0, leading to the Gumbel family. Consequently, the shape parameter

also determines the lower- and upper-end-points of G, xG and xG, respectively, with

xG = µ− σ/ξ if ξ > 0 and xG = µ− σ/ξ if ξ < 0, and (xG, x
G) = (−∞,∞) otherwise.

A critical feature in the analysis of extremes is max-stability. A distribution satisfies

the max-stability property if and only if sample maxima of independent draws lead to

equivalence in distribution subject to a change in location and scale. More exactly, if

a distribution G is max-stable then there exist constants An > 0 and Bn such that

Gn(Anx + Bn) = G(x), ∀n ∈ N, x ∈ R. The GEV distribution is max-stable, meaning

the maxima of GEV-distributed random variables also follows a GEV distribution.

Uniquely, the GEV family is the only family of distributions which satisfy this property.

Assuming that equation (2.1.1) holds exactly for large n, then

Pr{Mn ≤ x} = G

(
x− bn
an

)
= G̃(x),

with G̃ representing a GEV distribution with a different location and scale parameter

to that of G. This result allows for modelling of maxima in practice, as data can

be blocked into sections of equal length n, with the maxima of each block considered

realisations of G̃. This approach is termed the block maxima approach, see Figure 2.1.1

(left). Here, only the maxima (in red) are used for inference of the GEV parameters.

Estimating the quantiles of the GEV distribution typically forms an important as-

pect of extreme value analysis since they describe the kinds of values which can rea-

sonably be expected to be exceeded over any given period. These quantiles can be
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Figure 2.1.1: Illustration of the block maxima (left) and threshold exceedance (right)

approaches for the modelling of univariate extremes. The purple crosses denote those

data used for inference from the same simulated data.

estimated by inverting equation (2.1.1), whereby the solution to G(xp) = 1− p gives

xp =

µ− σ
ξ

{
1− [− log(1− p)]−ξ

}
, for ξ ̸= 0,

µ− σ log[− log(1− p)], for ξ = 0.
(2.1.2)

The quantile xp can be interpreted as the value which is exceeded in a single block with

probability p. It is commonly termed that xp is the return level of the return period

1/p. For example, if each block represents a year of data, and p = 0.1, then xp is the

value we can expect to be exceeded once every 1/0.1 = 10 years.

Practically, the maximum likelihood estimates of (µ, σ, ξ), (µ̂, σ̂, ξ̂) respectively can

be calculated (Coles, 2001), and are then used to calculate the MLE of the return

level x̂p via equation (2.1.2) and the invariance property of MLE. The variance of this

estimate can be found via standard results of the asymptotic normality of maximum

likelihood estimators.

Of course, the extreme phenomena of interest may be small, such as when applied

to low-temperature physics (Fyodorov and Bouchaud, 2008). Here, since

max{X1, . . . , Xn} = −min{−X1, . . . ,−Xn}, (2.1.3)
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theory for modelling the lower tail of a distribution immediately follows from the theory

required to model the upper tail of a distribution. Thus, analysis of minima can be

studied under the same framework.

2.2 Threshold exceedances

A criticism of the block maxima approach is that only a single value per block is

used for inference. On the other hand, the peaks over threshold approach considers

all observations above a suitably high threshold as being extreme. This allows all

of the most extreme data to be analysed, unlike the block maxima approach, and

typically leads to more efficient inference, see Figure 2.1.1 (right). See Pickands (1975)

and Balkema and De Haan (1974) for a full justification of the threshold exceedance

approach. Let

Nn(x) =
n∑

i=1

1 (Xi > anx+ bn) ,

with 1(A) being an indicator of event A occurring, then Nn(x) is the random variable

corresponding to the number of random variables X1, . . . , Xn exceeding a threshold

anx+ bn, with an and bn as in limit (2.1.1). So Nn(x) has a Binomial distribution with

Nn(x) ∼ Binomial(n, 1− F (anx+ bn)).

Under the same conditions behind the GEV limit from equation (2.1.1) where, for

X ∼ F and F being in the maximum domain of attraction of a GEV distribution, i.e.,

F n(anx+ bn) → G(x) for suitable an > 0, bn as n→ ∞, then for all x

n logF (anx+ bn) → logG(x).
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Thus, using standard Taylor series approximation, for all x

n[1− F (anx+ bn)] → − logG(x) = [1 + ξ(x− µ)/σ]
−1/ξ
+ , as n→ ∞. (2.2.1)

Using property (2.2.1), then the classic Poisson limit from a Binomial gives that as

Nn(x) → N(x), then

N(x) ∼ Poisson (λ(x)) , λ(x) = [1 + ξ(x− µ)/σ]
−1/ξ
+ . (2.2.2)

Furthermore, it follows that for x > u and X distributed as Xi, that as n→ ∞

Pr{X > anx+ bn|X > anu+ bn} → logG(x)/ logG(u) =: H̄u(x),

where H̄u(x) := 1−Hu(x), and the distribution function Hu is of the form

Hu(x) = 1−
[
1 + ξ

(
x− u

σ̃u

)]− 1
ξ

+

. (2.2.3)

Formally, Hu is termed the generalised Pareto distribution (GPD), denoted as

GPD(σ̃u, ξ) with threshold u, shape parameter ξ and scale parameter σ̃u ∈ R+, giving

the distribution of the excess X − u of exceedances of u, i.e., conditioned on X > u.

The GPD limit distribution (2.2.3) gives an asymptotic model for the distribution of

exceedances above a threshold u, no matter the distribution F . The GPD scale param-

eter σ̃u is linked to the GEV scale parameter via σ̃u = σ + ξ(u− µ). Importantly, the

GPD shape parameter ξ is equivalent to the GEV shape parameter ξ, see Coles (2001)

for the interpretation of this. For ξ < 0, there exists a finite upper-end-point

xH = u− σ̃u/ξ : Hu(x) = 1, ∀x > xH .

In contrast, for ξ ≥ 0, Hu(x) < 1, ∀x <∞, so xH = ∞ in this case.
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Like max-stability, threshold-stability is another important property in the analysis

of extremes. A family of distributions has threshold-stability if, given the family is valid

for excesses over some threshold u0, then is also valid for excesses over all thresholds

u, such that xH > u > u0, albeit with a change in scale. It turns out that the only

family of distribution with this property is the GPD. Therefore, if it is appropriate

to model (X − u0)|{X > u0} as a GPD(σ̃u0 , ξ), then (X − u)|{X > u} can also be

modelled as a GPD, but with GPD(σ̃u, ξ) if x < xH . This new scale parameter is given

as σ̃u = σ̃u0+ξ(u−u0), that is, the GPD scale parameter at higher thresholds is linearly

dependent on the higher threshold value. Moreover, note that if ξ < 1

E [(X − u)|{X > u}] = σ̃u
1− ξ

=
σ̃u0 + ξ(u− u0)

1− ξ
, ∀u > u0, (2.2.4)

and thus the expectation is also linear in u for all u > u0. By reparametrising as

σ̃∗
u := σ̃u − ξu, (2.2.5)

then the modified scale parameter σ̃∗
u becomes independent of the threshold, which

can help with threshold selection and inference. Another useful reparametrisation is to

perform inference on the orthogonal parameters ξ and ν := σ̃u(1+ξ) (Chavez-Demoulin

and Davison, 2005), which can improve efficiency, especially when performing MCMC

in a Bayesian framework.

The choice of threshold u is often user specified, based on bias-variance trade-off.

If u is too high, then less data are available for inference, thus inducing high vari-

ance and uncertainty around the parameter estimates. If u is selected too low, then

the approximation to the GPD limit becomes poor, creating bias in the parameters’

estimates.

The optimum choice of threshold has been the subject of much historical focus.

See Scarrott and MacDonald (2012) for a comprehensive overview. Davison and Smith



CHAPTER 2. EXTREME VALUE THEORY 19

(1990) suggest a graphical method, the mean residual life plot. From (2.2.4), the expec-

tation E [X − u|X > u], which can be estimated by the sample mean of the threshold

excesses, is a linear function of u, for u > u0, if the GPD is a valid model for X > u0.

Therefore, by plotting the sample mean excess of a threshold for a range of candidate

thresholds, the selected threshold is then the point above which linearity is observed

in the plot, although identifying this in practice is difficult due to sampling variation

which changes with threshold. Alternatively, by reparametrising as in (2.2.5) the max-

imum likelihood estimates ˆ̃σ∗ and ξ̂ of σ̃∗ and ξ, respectively, should be constant (apart

from sampling variation) for a valid GPD. Using parameter stability plots - plotting a

range of values of u against corresponding estimates of ˆ̃σ∗ and ξ̂ - a suitable threshold

u is selected as the lowest value above which the maximum likelihood estimates remain

constant as a function of u.

Extreme value theory is primarily concerned with the tail behaviour, and specifically

in this model the upper-tail behaviour for X > u. However, an appropriate model for

the “bulk” of the distribution of X is also of interest. Typically, this is chosen to be the

empirical distribution F̃ (x) (Coles, 2001), such that the resulting distribution function

is given as

F (x) :=


F̃ (x) if x ≤ u,

1− λu

[
1 + ξ x−u

σ̃u

]−1/ξ

+
if x > u,

where λu = 1− F̃ (u).

In the absence of a parametric model for the domain below the threshold, the GPD

parameters, which govern the distribution above the threshold, are uninformed by those

data below the threshold. In this case, the data below the threshold can be assumed

censored from below at the level of the threshold. Then, the contribution to the log-
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likelihood of an observation x is

ℓ(x|λu, σ̃u, ξ: =


1− λu if x ≤ u,

λu

σ̃u

[
1 + ξ x−u

σ̃u

]−1/ξ−1

+
if x > u.

The threshold exceedance approach leads to a model for the extreme tail with two

components: a model for the number of exceedances above the threshold, which from

equation (2.2.2) is Poisson with mean λ = [1 + ξ(x − µ)/σ]
−1/ξ
+ ; and a model for

threshold exceedances, Hu(x) which is a GPD. Next, we explore a unification of these

two components.

2.3 Point process framework

As can be seen from the derivations above, both the rate of exceedances of a high

threshold (2.2.2) and the GPD parameters (2.2.3) are functions of the GEV parameters

(2.1.1). In fact, the block maxima and threshold exceedance approaches can be com-

bined using a point process limit (Pickands, 1971) which exploits this property. The

key result is formulated in Coles (2001):

Theorem 2.3.1 (Extremal Point Process Theorem). Let X1, . . . , Xn be a sequence of

independent and identically distributed random variables and suppose that there exists

appropriate norming sequences {an > 0}∞n=1 and {bn}∞n=1 such that, for any x ∈ R

Pr

{
Mn − bn
an

≤ x

}
→ G(x), n→ ∞,

as in limit (2.1.1) with G non-degenerate, and with lower- and upper-end-points xG :=

sup{x ∈ R : G(x) = 0}, and xG := inf{x ∈ R : G(x) = 1}, respectively, so xG < xG.
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Then the sequence of point processes

Pn =

{(
i

n+ 1
,
Xi − bn
an

)
: i = 1, . . . , n

}
,

converges on regions in the form (0, 1)× [xG,∞) to a non-homogeneous Poisson process

P with integrated intensity measure Λ. It follows that Λ of P on At,x := [0, t]× [x, xG],

where 0 < t ≤ 1, x > xG is

Λ (At,x) = t

[
1 + ξ

(
x− µ

σ

)]− 1
ξ

+

. (2.3.1)

The scaling in Pn enforces that, as n→ ∞, the first component to be continuous on

[0, 1], and the maximum of the second component to be non-degenerate with limiting

distribution (2.1.1). Theorem 2.3.1 implies that the intensity function λ for P is, for

t ∈ [0, 1] and xG < x < xG,

λ(t, x) =
∂2Λ (At,x)

∂x ∂t
=

1

σ

[
1 + ξ

(
x− µ

σ

)]− 1
ξ
−1

+

. (2.3.2)

From standard Poisson process properties, the number of points of P falling within the

set S ⊆ [0, 1]×(xG,∞) follows a Poisson distribution with mean Λ(S) =
∫
S
λ(t, x) dx dt,

with λ(t, x) given by expression (2.3.2).

Statistical application of the point process model assumes that for large enough n,

the limit Pn → P holds exactly. After absorbing norming constants into the limiting

intensity, it is assumed that P , with intensity (2.3.2), applies to the points {(i/(n +

1), Xi); i = 1, . . . , n} on the set A1,u = [0, 1] × (u,∞]. If xxx = {(t1, x1), . . . , (tm, xm)}

denote the m of these points that fall in A1,u, then the likelihood of the parameters

θ := (µ, σ, ξ) based on a realisation (x1, . . . , xn) from the random variables (X1, . . . , Xn)

is

L(θ|xxx) ∝ exp {−Λ(A1,u)}
m∏
i=1

{[
1 + ξ

(
xi − µ

σ

)]− 1
ξ

+

}
.
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Inference using this likelihood gives information about both the mean number of ex-

ceedances of the threshold u and the distribution of the threshold exceedances.

The link between the first two approaches - block maxima and threshold exceedances

- now becomes apparent. If Nn(A) is the number of points in A, where A ⊂ At,x

where Nn(A) → N(A) ∼ Poisson [Λ(A)], as n → ∞, then the event Nn(Ax) = 0 for

Ax = (0, 1)× (x,∞) is equivalent to {(Mn − bn)/an ≤ x}. As such,

Pr

{
Mn − bn
an

≤ x

}
= Pr{Nn(Ax) = 0}

→ Pr{N(Ax) = 0}

= exp (−Λ (A1,x))

= exp

{
−
[
1 + ξ

(
x− µ

σ

)]−1/ξ

+

}
,

as n→ ∞, thus equivalence with limit distribution (2.1.1) is reached.

In a similar vein, an equivalence with threshold exceedances can be shown. As the

integrated intensity (2.3.1) can be written as

Λ ([0, t]× [x,∞)) = Λt ([0, t])× Λx ([x,∞)) ,

where

Λt ([0, t]) = t and Λx ([x,∞)) =

[
1 + ξ

(
x− µ

σ

)]−1/ξ

+

,



CHAPTER 2. EXTREME VALUE THEORY 23

then for any u > xG and x+ u < xG,

Pr

{
Xi − bn
an

≤ x+ u

∣∣∣∣ Xi − bn
an

> u

}
= 1− Pr

{
Xi − bn
an

> x+ u

∣∣∣∣ Xi − bn
an

> u

}
→ 1− Λx ([x+ u,∞))

Λx ([u,∞))
, as n→ ∞

= 1−
[
1 + ξ

(
x+u−µ

σ

)]−1/ξ

+[
1 + ξ

(
u−µ
σ

)]−1/ξ

+

= 1−
[
1 +

ξx

σ̃u

]−1/ξ

+

=: Hu(x),

where Hu(x) is the GPD derived in equation (2.2.3).

In estimating the GEV parameters, the point process approach uses all data larger

than u for inference rather than only block maxima (like the peaks over threshold

approach). Therefore, using point processes can result in more efficient inference than

that of the block maxima approach. Unlike the GPD, the parameters in the point

process parametrisation are invariant to the choice of threshold u.

While still assuming independence, the assumption of the random variables being

identically distributed can be relaxed somewhat by, for example, including a covariate

structure. In the most general case, suppose the parameters (µ(t), σ(t), ξ(t)) vary with

the covariate time, denoted t. The non-homogeneous Poisson process then allows for

time-dependent rates of occurrences and excess distributions, see Smith (1989), with

intensity

λ(t, x) =
1

σ(t)

[
1 + ξ(t)

(
x− µ(t)

σ(t)

)]− 1
ξ(t)

−1

+

,

where σ(t) ∈ R+, ∀t and so the integrated intensity is

Λ(A1,u) =

∫ 1

0

[
1 + ξ(t)

(
u− µ(t)

σ(t)

)]− 1
ξ(t)

+

dt.
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2.4 Extreme value theory in sports

Within sports, Robinson and Tawn (1995) use extreme value theory (EVT) to model

athletics data, and Strand and Boes (1998) use EVT to determine the peak age and

deterioration of competitive 10K road race runners. Stephenson and Tawn (2013) fit a

GEV distribution to yearly maxima of athletics times across different distance and eras.

The location and scale parameters vary as a parametric function of the distance, and

an exponential trend allows for a smooth adjustment for era. Since the best run-times

are the smallest, the negated data are analysed, as in formulation (2.1.3); however,

the GEV distribution for maxima could also be used by modelling run-speeds, by tak-

ing the reciprocal of the data. This choice is not trivial. Non-linear transformations

of the measurement scale in extreme value modelling lead to disparate inference, as

Wadsworth et al. (2010) depict with a motivating example from North Sea wave data.

They analyse extreme wave height H and wave drag force F - a vital variable for

offshore structural design - where F ∝ H2 (Tromans and Vanderschuren, 1995), and

found that separately studying these two variables generates inconsistent inference. In

spite of sharing the same underlying physical phenomena, the estimates for the shape

parameters had opposite signs, implying a finite upper limit for wave height, but a

non-zero probability of an arbitrarily large drag force. In the context of sports, this

could mean that the analysis of event-times concludes that the distribution of run-times

has a light tail, whilst analysis of run-speeds concludes there is no limit to the speed a

human can run, or vice versa. Thus, attending to data transformation is critical, and

getting it wrong can result in physically impossible conclusions. Despite this, Gomes

and Henriques-Rodrigues (2019) use peaks-over-threshold methodology to analyse the

best swim-speeds by transforming data of the best swim-times. This allows them to

analyse the right-hand tail of the distribution, but the effect of this transformation

on the inference is unknown. The effect of this transformation will be discussed in

Chapter 5.
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2.5 Multivariate extreme value theory

2.5.1 Copula-based modelling

Utilising copulae to characterise the dependence between univariate variables is a com-

mon approach Joe (1997); Nelsen (2007). Typically, the margins are modelled first,

with the dependence then modelled separately, which often leads to faster inference.

Through Sklar’s Theorem (Sklar, 1959), all the dependence can be ascertained through

the copular alone.

Theorem 2.5.1 (Sklar’s Theorem). For the random vector X = {Xi : i ∈ {1, . . . , d}}

having joint distribution F , and each component with continuous marginal distribution

Xi ∼ Fi for i ∈ {1, . . . , d}, there exists a unique copula C such that

F (x) = C{F1(x1), . . . , Fd(xd)},

for all xi ∈ dom(Fi), ∀i ∈ {1, . . . , d}.

The copula C is a multivariate distribution function on standard uniform margins,

i.e., C : [0, 1]d → [0, 1]. The copula can be used for any marginal distribution, by first

transforming the marginal distribution through the probability integral transform; for a

random variable Xi with distribution function Fi, then Fi(Xi) ∼ Unif(0, 1), no-matter

the distribution of Xi. So, the Copula can be used to model dependence structure

regardless of the marginal distribution (as long as the inverse F−1
i exists) and crucially,

the dependence structure is invariant to the marginal transformation. Hence, marginal

modelling and dependence modelling can be approached separately. An oft used choice

of copula is the Gaussian copula, given as

C(X) =

∫ Φ−1(x1)

−∞
· · ·
∫ Φ−1(xd)

−∞
ϕd(s; Σ) ds,
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with ϕd(s; Σ) denoting the standard d-dimensional Gaussian density, with depedence

structure determined by the correlation matrix Σ.



Chapter 3

Ranking, and other Properties, of

Elite Swimmers using Extreme

Value Theory

3.1 Introduction

On the face of it, comparing the performances of two swimmers in a given competition

appears straightforward, simply compare their swim-times. But this simple comparison

no longer holds when we compare between different distances, strokes or genders, let

alone swimmers under different regulations for full body suits. In addition, due to the

improvement in training methods, as well as changes in technology, a fair comparison

between swim-times recorded many years apart is infeasible without some adjustment

for the era of the swim.

The International Swimming Federation (FINA) uses a very simple points system

to tackle this issue. The points acquired for a particular swim is a function of the ratio

of the swim-time and the current world record for that event, specifically the points pi,j

given to swimmer i in event j is pi,j ∝ (bj/ti,j)
3 where bj is the current world record in

27
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event j, and ti,j is the time of swimmer i in event j. With some world records considered

better than others however, bias is introduced between events, with some being much

harder to attain points where the world record is hard to beat. Furthermore, the ranking

method has high sensitivity as it is determined only by the set of current world records,

so rankings can change substantially when a single record is broken. Importantly, FINA

rankings are used by many countries and organisations for selection for regional and

international competitions, so the ranking must be an accurate representation of the

swimmer’s true ability.

The aim, is to produce a global model that can fairly compare between strokes,

gender and distance, as well as considering the improvement over time of elite sporting

performance. This paper utilises extreme value theory to model the very best swim-

times as being observations from a generalised Pareto distribution (GPd) so that the

strength of a particular swim is judged on its position compared to the whole distribu-

tion of swim-times across all events, rather than just the world record for that event.

This ensures a more efficient comparison between events. Moreover, comparison be-

tween swim-times within the same event has a more tangible interpretation since it

can be described in terms of probabilities. For example, by considering swim-times

t1 and t2 in an event, then it is natural to compare the relative quality of these by

Pr(T > t1)/Pr(T > t2), where T represents the random variable corresponding to a

swim-time for an event, rather than, say, the metric t1 − t2. A by product of this

global model is that other features of interest can be estimated, for example the ulti-

mate possible swim-time for any given event. The distribution of the next world record

swim-time for each event can be estimated, and even the distribution of the waiting

time, and therefore the expected waiting time, until the next world record is broken

and the probability of that record being in a particular event. In addition, swim-times

can be corrected for the effect of full body suits, to allow for fair comparison between

those swimmers wearing suits and those not.
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The data to be studied comprise the top 500 swim-times, with at most one time per

swimmer per event, in all 34 individual long course (LC) swimming events, i.e., in a 50m

pool, from all major competitions between the start of 2001 and last quarter of 2018.

Any data not officially accepted by FINA are removed, for example observations that

were later rescinded due to the use of performance enhancing drugs. For the remainder

of this article, negative swim-times will be analysed, and simply referred to as swim-

times, so that if a swim-time is faster than another it has the larger negative swim-time

of the two. So, for the best swim-times we are interested in the biggest negative swim-

times. Therefore the paper focuses on methods for largest values, which is the typical

methodological approach to extreme values (Coles, 2001). Results for actual swim-

times are obtained by simply negating the results we obtain for negated swim-times.

Additionally, independence is assumed between all swim-times across different years,

strokes and distances, even if they are achieved by the same swimmer. Both of these

two points will be discussed further in Section 3.5.

The past use of extreme value theory for sports modelling is varied. In athletics,

work has been done to create a model which pools information between different dis-

tances and over time (Stephenson and Tawn, 2013). The threshold exceedance model

of Smith (1989) is used by Strand and Boes (1998) to model times of long distance run-

ners. Specifically, the typical change of time taken to run 10 kilometres with respect

to the age of the athlete is modelled via a Gumbel distribution, where times within

ages and across ages are assumed to be independent, and men’s and women’s times are

modelled separately. More generally, Riegel (1981) finds a linear relationship between

log world record time and log distance over many sports. Modelling men’s and women’s

data separately is a common theme in sports data.

In swimming, Gomes and Henriques-Rodrigues (2019) use extreme value theory to

model the distribution of swim-times across all LC events using independent fits for

each event. Adam and Tawn (2012) explore the progression of the top performances in
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swimming events over time by modelling the times of the gold medallist swimmers in

the Olympic Games. Dependence due to the same swimmer winning two events at an

Olympic Games is included via a bivariate extreme value distribution (Tawn, 1988). We

are unaware of any previous publication that models swim data globally across gender,

distance, stroke, and considers the improvements over time.

The article is set out as follows. Section 3.2 introduces extreme value theory, and

the point process representation of Smith (1989), see also Coles (2001), which forms the

basis of our model. Section 3.3 describes the full global model and the justification for

the shared fit. In Section 3.4 the features of interest discussed above will be estimated

based on the final fitted model, such as the ultimate possible swim-time for each event,

examples of the best swimmers of all time under this model, the distribution of new

world records, the expected time until the next world record is broken, the probability of

the next world record being in a given event, and the result of adjusting for regulations

of full body suits on current world records. Section 3.5 discusses the possible impacts of

any major assumptions made in the modelling process, as well as investigating further

improvements and applications to the proposed model.

3.2 Theory

3.2.1 Extremes of identically distributed variables

Univariate extreme value theory (EVT) provides the framework for our modelling strat-

egy. In its simplest form it applies to an independent identically distributed (IID) ran-

dom sample X1, . . . , Xn with each variable having a continuous distribution function

F . The two main approaches in EVT are the block maxima method and the peaks over

threshold methods. The asymptotic theory behind these two methods is as follows. Let

Mn = max{X1, . . . , Xn} be the maximum of a block of length n. We seek the distri-

bution of Mn for large n, and in particular appropriate choices of norming sequences
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an > 0 and bn are sought such that, as n→ ∞,

Pr

{
Mn − bn
an

≤ x

}
= Pr(X1 ≤ anx+ bn, . . . , Xn ≤ anx+ bn)

= F n(anx+ bn)

→ G(x)

where the limiting distributionG(x) is non-degenerate. The only possible non-degenerate

limiting distribution of equation (3.2.1) is the generalised extreme value distribution

function (GEVd). The exact form is given by

G(x) = exp
(
−[1 + ξ(x− µ)/σ]

−1/ξ
+

)
, (3.2.2)

where µ, ξ ∈ R, σ ∈ R+, are the location, shape and scale parameters respectively

and y+ = max(y, 0). Figure 3.2.1 (left) illustrates the density of the GEVd for different

values of ξ, while µ = 0, σ = 1. For ξ < 0, there exists a finite value xG = µ − σ/ξ :

G(x) = 1, ∀x > xG. In contrast, for ξ ≥ 0, G(x) < 1, ∀x < ∞. The GEVd result

is powerful as it holds as the limit distribution for a very broad class of continuous

distributions F and implies that whatever F is in this class, the maxima must follow a

single class of distributions, determined by only three parameters.

The block maxima method of Coles (2001) assumes that limit (3.2.1) holds exactly

for a large enough block size n, for example all observations in a month or a year. Given

a sample of length kn the approach is to split the series into k blocks with n values in

each block. Then the k values of the block maxima are used to estimate the parameters

(µ, σ, ξ) of the model, assuming that each of these variables is IID and follows a GEVd.

The peaks over threshold (POT) approach considers only the observations above a

suitably high threshold. This allows all of the most extreme data to be analysed, unlike
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Figure 3.2.1: Density functions for the GEVd (µ = 0, σ = 1, ξ) (left) and GPd (u =

0, σ̃u = 1, ξ) (right) for three different shape parameters: ξ = 0 (solid line), ξ = −0.3

(dotted line) and ξ = 0.3 (dashed line).

the block maxima approach, and typically leads to more efficient inference. Let

Nn(x) =
n∑

i=1

1 (Xi > anx+ bn) ,

with 1(A) be an indicator of event A occurring, then Nn(x) is the random variable

corresponding to the number of X1, . . . , Xn exceeding a threshold anx + bn, with an

and bn as in limit (3.2.1). So Nn(x) has a Binomial distribution with Nn(x) ∼ B(n, 1−

F (anx+bn)). Under the same conditions behind the GEVd limit from equation (3.2.1),

as n→ ∞,

n logF (anx+ bn) → logG(x),

and so, using standard Taylor series approximation, for all x

n[1− F (anx+ bn)] → − logG(x) = [1 + ξ(x− µ)/σ]
−1/ξ
+ . (3.2.3)

Using property (3.2.3), then the classic Poisson limit from a Binomial gives that as

n → ∞, Nn(x) → N(x), where N(x) is a Poisson random variable with mean

[1+ ξ(x− µ)/σ]
−1/ ξ
+ . Furthermore, it follows that for x > u and X distributed as Xi,

that
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Pr{X > anx+ bn|X > anu+ bn} → logG(x)/ logG(u) = H̄u(x), (3.2.4)

where H̄u(x) = 1−Hu(x), where the distribution function Hu is of the form

Hu(x) ≡ 1−
[
1 + ξ

(
x− u

σ̃u

)]− 1
ξ

+

, (3.2.5)

is the generalised Pareto distribution function (GPd) with threshold u, shape parameter

ξ and scale parameter σ̃u ∈ R+ is linked to the GEVd parameters via σ̃u = σ+ξ(u−µ).

Limit distribution Hu gives an asymptotic model for the distribution of exceedances

above a threshold u, no matter what the distribution F . Figure 3.2.1 (right) illustrates

the density of the GPd for different values of ξ. For ξ < 0, there exists a finite value

xH = u− σ̃u/ξ : Hu(x) = 1, ∀x > xH . In contrast, for ξ ≥ 0, Hu(x) < 1, ∀x <∞.

The POT approach leads to a model for the extreme tail with two components:

a model for the number of exceedances of the threshold, which is Poisson with mean

λ = [1 + ξ(x − µ)/σ]
−1/ξ
+ , and a model for threshold exceedances, Hu(x) which is a

GPd. The choice of threshold u is user-specified, with the choice based on the usual

bias-variance trade-off, the subject of much historical focus (Scarrott and MacDonald,

2012).

As can be seen from the derivation above both the rate and GPd parameters are

functions of the GEVd parameters. In fact, the block maxima and POT approaches

can be combined using a point process limit which exploits this property. Consider, the

point process model of extremes, defined on a sequence

Pn =

{(
i

n+ 1
,
Xi − bn
an

)
: i = 1, . . . , n

}
,

where the scaling here enforces that, as n → ∞, the first component is continuous on
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[0, 1], and the maximum of the second component to be non-degenerate with limiting

distribution (3.2.2). In particular as n → ∞, Pn → P where P is a non-homogeneous

Poisson process on (0, 1] × (bl,∞), where bl = max{x ∈ R : G(x) = 0} where G is the

limit distribution (3.2.2) (Smith, 1989). It follows that the integrated intensity Λ of P

on At,x = [0, t]× [x,∞], where 0 < t ≤ 1, x > bl is

Λ (At,x) = t

[
1 + ξ

(
x− µ

σ

)]− 1
ξ

+

,

which implies that the intensity function λ for P is, for t ∈ (0, 1] and x > bl,

λ(t, x) =
∂2Λ (At,x)

∂x ∂t
=

1

σ

[
1 + ξ

(
x− µ

σ

)]− 1
ξ
−1

+

. (3.2.6)

From standard Poisson process properties we have that the number of points of P in any

set S ⊆ [0, 1]× (bl,∞) follows a Poisson distribution with mean Λ(S) =
∫
S
λ(t, x) dx dt,

with λ(t, x) given by expression (3.2.6).

Statistical application of the point process model assumes that for large enough n,

the limit Pn → P holds exactly. After absorbing norming constants into the limiting

intensity, it is assumed that P , with intensity (3.2.6), applies to the points {(i/(n +

1), Xi); i = 1, . . . , n} on the set A1,u = [0, 1] × (u,∞]. If xxx = {(t1, x1), . . . , (tm, xm)}

denote the m of these points that fall in A1,u, then the likelihood for the parameters

θ = (µ, σ, ξ) is

L(θ;xxx) = exp {−Λ(A1,u)}
m∏
i=1

λ(ti, xi). (3.2.7)

Inference using this likelihood gives information about both the mean number of ex-

ceedances of the threshold u and the distribution of the threshold exceedances (the

GPd). When a datum xi has been recorded to some precision s such that the true

value x′i is unknown but x′i ∈ [xi−s/2, xi+s/2), interval censoring is introduced, which
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can be factored into the likelihood via

L(θ;xxx) ∝ exp {−Λ(A1,u)}
m∏
i=1

∫ xi+s/2

xi−s/2

λ(ti, x) dx

= exp {−Λ(A1,u)}
m∏
i=1

{[
1 + ξ

(
xi − s/2− µ

σ

)]− 1
ξ

+

−
[
1 + ξ

(
xi + s/2− µ

σ

)]− 1
ξ

+

}
.

3.2.2 Extreme values of non-identically distributed variables

The derivations so far have assumed IID variables, however this need not be the case.

Whilst still assuming independence, the assumption of identically distributed data is

relaxed by including a covariate structure. In order to take the date of the swim into

consideration, time is introduced as a covariate such that, in the most general case, all

parameters of θ are allowed to vary with time, for example θ(t) = (µ(t), σ(t), ξ(t)). The

non-homogeneous Poisson process allows for time-dependent rates of occurrences and

excess distributions, see Smith (1989). Under this relaxation, equation (3.2.6) becomes

λ(t, x) =
1

σ(t)

[
1 + ξ(t)

(
x− µ(t)

σ(t)

)]− 1
ξ(t)

−1

+

, (3.2.8)

and so the integrated intensity is

Λ(A1,u) =

∫ 1

0

[
1 + ξ(t)

(
u− µ(t)

σ(t)

)]− 1
ξ(t)

+

dt. (3.2.9)

The full likelihood function, accounting for interval censoring, can then be expressed, as

in equation (3.2.7), but with Λ (A1,u) and λ(t, x) given in equations (3.2.9) and (3.2.8),
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such that

L(θ;xxx) = exp {−Λ(A1,u)}
m∏
i=1

∫ xi+s/2

xi−s/2

λ(ti, x) dx

= exp {−Λ(A1,u)}
m∏
i=1

{[
1 + ξ(ti)

(
xi − s/2− µ(ti)

σ(ti)

)]− 1
ξ(ti)

+

−

[
1 + ξ(ti)

(
xi + s/2− µ(ti)

σ(ti)

)]− 1
ξ(ti)

+

}
,(3.2.10)

where the parameters within θ(t) are found by maximising this likelihood. If {yi : i =

1, . . . , 18} is the set of start dates of years from 2001-2019, then the expected rate of

exceedances of u with year 2000 + i is given by

Λi(A1,u) =

∫ yi+1

yi

[
1 + ξ(t)

(
u− µ(t)

σ(t)

)]− 1
ξ(t)

+

dt.

If the change in the parameters is small over the course of each year, then the rate can

be approximated as

Λi(A1,u) ≈
[
1 + ξ(y∗i )

(
u− µ(y∗i )

σ(y∗i )

)]− 1
ξ(y∗

i
)

+

(yi+1 − yi), (3.2.11)

where y∗i = (yi + yi+1)/2. Likewise the excess distribution at a time t is given for x > u

by

Pr{Xt > x|Xt > u} =

[
1 + ξ(t)

(
x− u

σ̃u(t)

)]− 1
ξ(t)

+

,

where σ̃u(t) = σ(t) + ξ(t) [u− µ(t)].
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3.3 Model for swimming data

3.3.1 The Data

The data are from the FINA swimming website’s database, at http://www.fina.org/,

which contains around the top 500 recorded swim-times for all 34 individual LC swim-

ming events. The fastest swim time per swimmer per event is taken, irrespective of the

year in which it occurs. The data includes interval censored observations which come

from the rounding of recorded timings. Given that the data are rounded, in seconds

to 2 decimal places, the interval censoring likelihood (3.2.10) is formally needed with

s = 0.01. In practice using standard likelihood (3.2.7) instead would give similar results

in practice, with the exception of 50m events as the rounding is a more substantial part

of the variation in these data.

In order to develop a consistent approach across all events e ∈ E where E is the

set of all 34 individual LC swim events, the threshold for each event was set such that

there were an identical number of exceedances in each event. From plotting PP and QQ

plots for each event e independently over a range of thresholds u′e, the thresholds were

set such that there were 200 exceedances in each event, as this appropriately balances

the bias and variance for the majority of events. The choice of a single threshold

selection approach is discussed in Section 3.5, but is worth noting that this could lead

to uncertainty estimates that are underestimated. For each event e, the threshold used

for the model, ue, was set to ue = u′e − s/2, to account for the interval censoring.

Properties of the 200 best times for the 100m men’s butterfly swim-times are illus-

trated in Figure 3.3.1, with these being typical across all events. There is a general

increasing trend in the rate of occurrences over time. In addition to this trend there is a

noticeable step-increase in the frequency of observations in the top 200 swims between

the introduction, in 2008, and subsequent banning, from the start of 2010, of swim-suits

by FINA (Shipley, 2009). Swim-suits have been found to reduce drag by up to 35% in

http://www.fina.org/
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Figure 3.3.1: Data for the men’s 100m butterfly. The data (left) shows the raw data for

the swim-times and so the lower tail is the feature of interest. Here, the crosses indicate

swims recorded within then swim-suit period. Similarly, the observed annual rates of

exceeding the threshold (right) include dashed vertical lines (right) which indicate the

swim-suit time period.

independent testing (Moria et al., 2011), and a significant number of world records were

set during their use. Particularly in 2009, the introduction all polyurethane suits, such

as the ‘Arena X-Glide’, saw a significant improvement in performances (Foster et al.,

2012). Figure 3.3.1 shows that there appears to be differences in performances between

2008 and 2009 which illustrates an impact of changes of full-body suit technology.

There is an inconsistency in the selection of the competitions in the FINA database,

with only important competitions being represented in some of the earlier years, whereas

later years cover all high-level competitions. One consequence of this is that the rate per

year of exceeding the threshold ue will increase over time due to this feature, with the

effect being largest in the earliest years. So, changes in the threshold exceedance rate,

for each event, arise from a combination of improved swimming performance and the

database formulation. Therefore, care must be taken when interpreting this feature in

the analyses. There is also the potential for the distribution of swim times that exceed

the threshold to change over time due to this biased selection of competitions in the

database. Any such effect should be minimal on inferences given that most exceedances
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are from the later years, so the likelihood is naturally most influenced by data from

later years. The model we develop presumes there is no such bias to the distribution of

excesses, but this assumption is tested (see Figure 3.3.4 (right)) and shown to provide

a sufficiently good description of the early data.

3.3.2 Separate Event Model

The Poisson point process framework allows us to model the time varying rate of obser-

vations above threshold, as well as the distribution of these observations. To incorporate

the general increasing frequency of swim-times observed in Figure 3.3.1, time was in-

cluded as a covariate in the model. The swim-suit factor was included via an indicator

covariate, where the assumption is made that all observations during the swim-suit

epoch were by swimmers wearing a swim-suit, and initially it is assumed that the

swim-suit effect is constant throughout this epoch.

Following Davison and Smith (1990) and Coles (2001) the Poisson process param-

eters µ(e)(t), σ(e)(t) and ξ(e)(t) are initially assumed to vary smoothly with time t in

the model for each separate event. From fitting each event independently, it was then

concluded, via use of AIC, that a linear dependence on time is appropriate for the pa-

rameters µ(e)(t) and σ(e)(t) to describe the increase in rates of observations. Moreover,

ξ(e)(t) is assumed to be constant over time as is common in the literature across extreme

value applications to rainfall, sea-level, and athletics amongst others, e.g, Smith (1989),

Robinson and Tawn (1995), Strand and Boes (1998), which find that despite changes

in the distribution due to various covariates, the shape parameter is constant and is

therefore taken as some unknown fixed value ξ(e)(t) = ξ(e) for that event.

Although the patterns in the rate of observations is noticeable from plots alone, pat-

terns in the distribution of the observations exceeding the threshold are not so obvious.

To find an appropriate model for the distribution of exceedances above the thresholds,

several models for the GPd parameters were fitted and compared, which included, but
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were not limited to, linear trends over time and including indicators of swim-suit effects.

Interestingly, after model comparison it was concluded that for each event the distri-

bution of observations above the threshold is independent of covariates, indicating that

any improvements over time are due to an increase in quantity of exceedances above the

threshold, rather than any change in the nature of the exceedances themselves. These

findings in the data about the rate and the distribution of the best swims are reflected

in the following parametrisations.

For a given event e ∈ E, the Poisson process is parametrised as either,

ξ(e)(t) = ξ(e),

µ(e)(t) = µ
(e)
0 + β(e)t+ γ(e)1{t∈St},

σ(e)(t) = σ
(e)
0 + ξ(e)β(e)t+ ξ(e)γ(e)1{t∈St}, (3.3.1)

or,

ξ(e)(t) = ξ(e),

µ(e)(t) = µ
(e)
0 + β(e)t+ γ

(e)
1 1{t∈St1} + γ

(e)
2 1{t∈St2},

σ(e)(t) = σ
(e)
0 + ξ(e)β(e)t+ ξ(e)γ

(e)
1 1{t∈St1} + ξ(e)γ

(e)
2 1{t∈St2}, (3.3.2)

where θ(e)(t) represents θ for event e at time t, and µ
(e)
0 , ξ(e) ∈ R, σ(e)

0 ∈ R+ are the

location, shape, and scale parameters for the Poisson process, β(e) ∈ R controls the

linear trend in µ(e)(t) and σ(e)(t). In the case of assuming a single swim-suit effect,

γ(e) ∈ R controls the magnitude of this effect, 1 is the indicator function and St ∈

[2008, 2009] denotes the time period in which swim-suit were allowed, and in the case of

allowing for the differing effects of the two major suit-types, as noted in Section 3.3.1,

γ
(e)
1 ∈ R and γ

(e)
2 ∈ R control the effects of these two suit-types, with St1 ∈ [2008]

and St2 ∈ [2009] denoting the approximate time periods in which these suits were
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active. In particular t is linearly standardised to have zero mean and unit variance

over the observed data. Both parametrisations (3.3.1) and (3.3.2) ensure that the GPd

scale parameter for exceedances of the level ue at time t is covariate-independent. For

example, with parametrisation (3.3.1),

σ̃(e)
u (t) = σ(e)(t) + ξ(e)

[
ue − µ(e)(t)

]
= σ

(e)
0 + ξ(e)β(e)t + ξ(e)γ(e)1{t∈St} + ξ(e)(ue − [µ

(e)
0 + β(e)t+ γ(e)1{t∈St}])

= σ
(e)
0 + ξ(e)(ue − µ

(e)
0 )

:= σ̃(e)
u , (3.3.3)

and the same clearly holds for parametrisation (3.3.2) so that the two GPd parameters,

ξ(e) and σ̃
(e)
u , and thus the distribution above the threshold is identically distributed

over covariates, as required. It is common to use a log link in the scale parameter in

the non-homogeneous Poisson process to ensure positivity, however this would make

the covariate independence of σ̃
(e)
u , property (3.3.3), impossible. Instead, µ

(e)
0 , σ

(e)
0 and

ξ(e) are constrained such that σ̃
(e)
u in expression (3.3.3) is positive.

Figure 3.3.2 shows all the model parameter estimates from parametrisation (3.3.2),

obtained by fitting independently across events: three GEV parameters, µ0, σ0, ξ,

one trend parameter β, and two swim-suit parameters γ1 and γ2 for each of the 34

events, giving a total of 204 independent parameters. These parameters, after the

transformation described below, are plotted against uL,e = log(−ue), recalling that the

data are negative, with ue < 0, so uL,e is the log of the 200th best swim-time for event

e in the data. For each of the transformed parameters

σ
(e)
L = log(σ̃(e)

u ), µ
(e)
L = log

(
−µ(e)

0

)
, β

(e)
L = log

(
β(e)
)
, γ

(e)
L,1 =

√
γ
(e)
1 , γ

(e)
L,2 =

√
γ
(e)
2 ,

there is some linear or near-linear relationship with uL,e, and ξ(e) is approximately

constant. In the case of the location parameter µ
(e)
0 , this is a consequence of the
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Figure 3.3.2: Transformed parameter estimates against log threshold swim-time uL =

log(−u). A linear or near-linear relationship is apparent for most of the parame-

ters: for σL = log(σ̃u) (black circle), µL = log(−µ0) (purple square), βL = log(β)

(red triangle),γL,1 =
√
γ1 (light-green plus, +) and γL,2 =

√
γ2 (dark-green cross, ×).

The shape parameter ξ (blue star) is approximately constant. Note that µL has been

rescaled, by subtracting 5 uniformly, to be visible on the plot.

choice of threshold. More generally, power law relationships are commonly found in

sports (Sylvan Katz and Katz, 1999), and the connection between ue and σ̃
(e)
u , µ

(e)
0 , β(e)

was hypothesised based on the prevalence of log-log relationships in sports modelling

(Riegel, 1981). This relationship however, does not explain the dependence between

swim-time and swim-suit effects γ
(e)
1 and γ

(e)
2 well, which is a combined result of the

biomechanical and physical relationship between range of movement and flexibility,

drag, buoyancy and total energy expenditure amongst other factors. The reason for

this complex relationship is not explored in this article, but was chosen based on a

Box-Cox transformation in the single suit case of γ to γ∗, such that

γ∗ =

 (γδγ − 1)/δγ δγ ̸= 0,

log(γ) δγ = 0,

where γ∗ is assumed to come from a model which is linear in uL,e with a normal error

distribution with constant variance. The choice of δγ = 1/2 is consistent with the
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Box-Cox transformation, which gives an MLE and 95% confidence interval of δγ =

0.52 (0.37, 0.68), and also agreed with Box-Cox transformation applied to γ
(e)
1 and γ

(e)
2

in the two-suit case. Box-Cox transformations were also applied to the other parameters

to confirm the log-log hypothesis, for example δβ = 0.049 (−0.11, 0.19), indicating that

a log relationship is appropriate. These relationships motivate the across event model

of the next section.

3.3.3 Across Event Model

Parametric Model

Now that models (3.3.1) and (3.3.2) have been shown to be suitable for each event, it is

desired that information can be shared between events to reduce parameter uncertainty

and improve predictive performance. By doing this we ensure that the across event

model is more robust than models (3.3.1) and (3.3.2) with respect to anomalous data,

which could lead to over-fitting.

A natural first step here would be to consider distance as a covariate and a log-log

relationship. Distance does work well in athletics, as long as it is within the same

gender (Riegel, 1981). However, distance does not work well when pooling across both

genders, and across different strokes, since for example breaststroke is always slower

than freestyle for a given distance and gender, and so inherent bias will be introduced

due to the physical nature of the difference in strokes. Instead, the threshold swim-

time is used as a covariate, since naturally slower strokes, whose corresponding scale

parameters for example are likely to be larger, will also have a larger covariate, the

threshold swim-time. This allows for a given parameter to vary smoothly across events,

rather than to be discretised by the distance of the event. Thus, no adjustment is

needed to compare between different strokes and genders.

From Figure 3.3.2 it is initially hypothesised that the shape parameter ξ(e) can be

held constant across all events, and that the transformed parameters σ
(e)
L , µ

(e)
L , β

(e)
L ,
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γ
(e)
L1

and γ
(e)
L2

increase linearly with uL,e. A similar figure (not shown) exists for the

single-suit parametrisation, which suggests linearity for γ
(e)
L also. Thus, it is proposed

that the parameters are pooled across the 34 events via the following model:

ξ(e) = ξ,

µ
(e)
L = α1 + ϑ1uL,e,

σ
(e)
L = α2 + ϑ2uL,e,

β
(e)
L = α3 + ϑ3uL,e.

In the single-suit case,

γ
(e)
L = α4 + ϑ4uL,e, (3.3.8)

and in the two-suit case,

γ
(e)
L1

= α4 + ϑ4uL,e, γ
(e)
L2

= α4 + ε+ ϑ4uL,e, (3.3.9)

for some parameters ψψψ = {ξ, ε, {αi, ϑi ∈ R : i = 1, . . . , 4}}. Having two separate

gradients, ϑ4 and ϑ5 such that γ
(e)
L1

= α4 + ϑ4uL,e, and γ
(e)
L2

= α4 + ε + ϑ5uL,e, was

also considered, but it was found that a common gradient, such that ϑ5 = ϑ4, sufficed.

In fact, several other models were considered (not reported), for example including a

different intercept for men’s and women’s events in the linear model, or using separate

linear models for different distances, but these were found to produce no improvement.

The full likelihood of the across event parametric model then, assuming independence

between events, is therefore given as

L(ψψψ;xxx) =
∏
e∈E

{
exp

[
−Λ(e) (A1,u)

] 200∏
i=1

∫ x
(e)
i +s/2

x
(e)
i −s/2

λ(e)(t
(e)
i , x) dx

}
.
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Model Constraints AIC/RIC # ind. parameters

M1a independent fits, single-suit (3.3.1) 0 170

M1b independent fits, two-suits (3.3.2) −23.7 204

M2 M1a with constraint (3.3.4) −38.7 137

M3 M2 with constraint (3.3.5) −52.1 105

M4 M3 with constraint (3.3.6) −29.6 73

M5 M3 with constraint (3.3.10) −58.7 74.1

M6 M5 with constraint (3.3.7) −87.7 42.1

M7a M6 with constraint (3.3.8) −90.6 10.3

M7b M1b with constraints (3.3.4), (3.3.5), −121.5 11.2

(3.3.7), (3.3.9), (3.3.10)

Table 3.3.1: Model comparison showing the AIC or RIC for each model, normalised

by the independent fits model with a single suit, model M1a. The RIC, defined by

expression (3.3.11), is used when a spline is fitted to a parameter over events and

defines the number of effective degrees of freedom. A lower AIC or RIC indicates a

better model fit.

This pooled structure was incrementally implemented as shown in Table 3.3.1. The

first model fitted, M1a pools no parameters and considers only a single suit, such that

each event e has 5 independent parameters, (µ
(e)
0 , σ

(e)
u , ξ(e), β(e), γ(e)), resulting in a total

of 170 parameters. The AIC can be seen to improve from M1a to M1b by including

the separate effect of two suits, despite the significant increase in the number of free

parameters. From model M1a, the pooling structure begins to be implemented, and

there is an improvement to M2, where now constraint (3.3.4) is introduced such that
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all events share a common shape parameter. Again, the model fit improves from M2 to

M3 by employing constraint (3.3.5), however, when trying to enforce linearity between

σ
(e)
L and uL,e across e ∈ E via constraint (3.3.6), model M4, the fit was poorer. The

events which mainly contributed to this worsened fit were the men’s and women’s 200m

free and women’s 50m fly, but the fit was also generally worse across the vast majority

of events, which could be explained by some non-linearity observed in Figure 3.3.2.

The inadequacy of a linear relationship (3.3.6) between σL and uL suggests that

a fully parametric model to describe this relationship was slightly too restrictive, and

motivates the need for a more flexible but parsimonious model, for which we use semi-

parametric techniques. Model M5 was therefore introduced which relaxes the linear

constraint (3.3.6) on σL, and instead uses the spline based non-parametric approach

described in Section 3.3.3, which lets the smooth dependence of σL on uL to be captured

by allowing the data to govern the precise nature of this relationship, whilst keeping

the dependencies of µ and ξ on uL the same and keeping β and γ unconstrained, as in

model M4. From here, models M6 and M7a are then fitted by cumulatively employing

constraints (3.3.7) and (3.3.8) respectively, and finally M7b is fitted by the addition of

an extra suit parameter to M7a, see Table 3.3.1. The best fitting model, determined via

regularisation information criteria (RIC) (Shibata, 1989) which is defined by expression

(3.3.11), is M7b with only approximately 11 parameters. Critically, note the substantial

improvement from models M7a to M7b, showing a clear impact of changes in full body

suit technology over the period when these suits were allowed.

Confidence intervals were found via parametric bootstrapping, such that model

M7b was re-fitted to 250 simulated datasets, to estimate the sampling distribution of

parameter estimators. The number of observations from event e in simulated dataset

j, N
(e)
j is simulated directly via, N

(e)
j ∼ Poisson

(
Λ(e) (A1,u)

)
. For an event e and

replication j, N
(e)
j swim-times x

(e)
1 , . . . , x

(e)

N
(e)
j

and the time of these swims t
(e)
1 , . . . , t

(e)

N
(e)
j

were generated via a probability integral transform on equation (3.2.5) for the swim-
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times, and the distribution function (3.2.8) integrated over x for the times respectively.

Some of the resulting bootstrapped parameter estimates resulted in infeasible estimates,

for example inferring that the ultimate possible swim-time is worse than some swim-

times in the original data set, or that the expected next world record swim-time is worse

than the current world record, and so these data sets were discarded. The remaining

240 data sets quantify the natural variation in the data and thus provide the basis for

obtaining confidence intervals. All confidence intervals referred to subsequently in this

article are obtained via this method.

The estimated values for ϑ3 and ϑ4 under model M7b, the associated gradients for

the trend parameters and swim-suit parameters respectively, were ϑ̂3 = 0.940 (0.936, 0.942)

and ϑ̂4 = 0.460 (0.432, 0.470). The relative confidence interval widths are smaller

on ϑ3 than ϑ4, and this is likely due to the swim-suit parameter being dependent

on less data than the trend parameter, since only data in swim-suit years effect it.

In comparison, the gradient governing the linear relationship (3.3.5) is estimated at

ϑ̂1 = 1.0016 (1.0010, 1.0019). The tight confidence intervals here indicate the strong

relationship between uL and µL.

Semi-Parametric model

To achieve the appropriate flexibility to model the relationship observed in Figure

3.3.2 between σL and uL we use a d-degree spline function (De Boor, 1978), which

is a piecewise polynomial function that is constructed to be continuous and d times

continuously differentiable over a closed interval domain. It is a weighted linear sum

of q, d-degree basis splines, called B-splines, with the kth B-spline Bk(x) centred on a

knot at point xk. The spline function used for σL is denoted by

σL(uL) =

q∑
k=1

akBk(uL) (3.3.10)
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where ak is the kth element of the spline coefficient vector aaa = (a1, . . . , aq) which is

constant over all events such that, given a vector aaa, the value of σL for any given event

e is a function of uL only, see Appendix A for further details.

Although function (3.3.10) can model any non-linear relationship, we wish for this

relationship to be smooth and increasing. In order to enforce this smoothness, the

likelihood function is extended to a penalised likelihood which contains a roughness

penalty. The penalty is governed by ϕrpr = ϕraaa
TPaaa, where P ∈ Rq×q is the penalty

matrix, and ϕr > 0 determines the amount of penalisation. The choice of P determines

the nature of the penalty and is chosen based on the form of the data, or some prior

belief. In this case a 2nd order penalty on the finite differences of adjacent coefficients

(Eilers and Marx, 1996), and a degree d = 4 spline was chosen, see Appendix A. This

penalises σL having a large second derivative, and penalises fits for σL that depart

from linearity. Additionally, since it is believed apriori that the GPd scale parameter

is an increasing function of the threshold swim-time, a hard constraint ϕmpm ensures

monotonicity in the spline function, where pm is defined as follows: allow

{z1, . . . , zk} =

{
min
e∈E

uL,e

}
∪
{
xi :

dσL(xi)

dx
= 0, i = 2, . . . , k − 1

}
∪
{
max
e∈E

uL,e

}

to be a discrete set of size k containing all stationary points and end points of the spline

function, then

pm = −
k−1∑
i=1

(σL(zi+1)− σL(zi))1 {σL(zi+1)− σL(zi) < 0} .

With the GPd scale parameter σ̃u for a particular event e being defined by the spline

via

σ̃(e)
u = exp

[
q∑

k=1

akBk(uL,e)

]
,
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the full joint penalised likelihood across all events becomes

Lp(φφφ, ϕr, ϕm;xxx) =
∏
e∈E

{
exp

[
−Λ(e) (A1,u)

] 200∏
i=1

∫ x
(e)
i +s/2

x
(e)
i −s/2

λ(e)(ti, x) dx

}
exp [−(ϕrpr + ϕmpm)] ,

= L(φφφ;xxx) exp [−(ϕrpr + ϕmpm)] ,

where φφφ are the parameters of the model, and L is the unpenalised likelihood. The

penalised log-likelihood for model M is therefore given as

ℓp(M) = ℓ(M)− ϕrpr − ϕmpm,

where ℓ is the unpenalised log-likelihood, and ϕm > 0 is sufficiently large such that

monotonicity is a hard constraint. The value of ϕm is found by finding a ϕm such that

max (ℓp(M|ϕm)) = max (ℓp(M|ϕm + ϵ)) ,

for any ϵ > 0. Theoretically, this can be found by allowing ϕm → ∞, however it can

be difficult for optimisation routines to converge to this global maxima. Therefore, in

practise ϕm is increased iteratively by initially setting ϕm = 0 and finding the parameter

that give max (ℓp(M|ϕm = 0)). Then ϕm is increased iteratively, using the previous

solution as the initial starting parameters, until there is no change in M and therefore

also no change in ℓ(M). Instead of a constraint on the spline function itself to enforce

monotonicity, I-splines (Ramsay, 1988) could have been used as a basis instead of

B-splines, and then positivity constraints on the basis splines would have enforced

monotonicity. This construction may have resulted in more efficient computation, but

would yield essentially identical model fits and results.

The choice of ϕr is selected using 10-fold cross validation to maximise model predic-

tive performance at data points not used for fitting (Ewans and Jonathan, 2008). The

model is fitted based on a random stratified sample of 90% of the data, the training
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Figure 3.3.3: Fitted parameters for model M7b, as a function of uL: σL(uL) (black cir-

cles) is governed by the spline, whilst βL(uL) (red triangles), µL(uL)−5 (purple squares),

γL1(uL) light green pluses, +) and γL2(uL) (dark green crosses, ×) vary linearly with uL.

The shape parameter (blue stars) has a constant value of ξ̂ = −0.147 (−0.152,−0.143).

Note that µL has been rescaled, by subtracting 5 uniformly, to be visible on the plot.

data, which is then used calculate the log-likelihood based on the remaining 10% of

the data, the test data. The log-likelihood for each of the 10 non-overlapping sets of

test-data is summed to obtain a ‘predictive’ log-likelihood based on the prediction ac-

curacy of the model. This process is repeated 20 times at a range of different values of

ϕr, with the value of ϕr which corresponds to the best average predictive performance

being selected as the optimum penalty. It was found that the change in predictive

log-likelihood was robust to changes in ϕr, and it is thought that this is due to the hard

constraint on monotonicity already accounting for much of the variability in the spline

fits. For model M7b, an optimum penalty of ϕr = 15 was found. Given this, the full

model can be fitted and the parameters as a function of uL are shown in Figure 3.3.3.

Since models M5, M6, M7a and M7b are semi-parametric, AIC can no longer be

used as a model comparison tool since the number of degrees of freedom is not defined.

Instead, RIC is used, which uses the effective degrees of freedom g, as opposed to



CHAPTER 3. RANKING BASED ON EXTREME VALUE THEORY 51

degrees of freedom. Otherwise, RIC is defined identically to AIC, that is

RIC = −2ℓ(φφφ) + 2 tr
[
I(φφφ)J(φφφ, ϕr, ϕm)

−1
]
, (3.3.11)

such that g = tr [I(φφφ)J(φφφ, ϕr, ϕm)
−1] where I is the observed Fisher information criteria

of the unpenalised likelihood L, J is the negative Hessian matrix of the penalised log-

likelihood Lp, and tr(A) is the trace of the square matrix A.

Assessment of model M7b fit

The rate of exceedances and the distribution above threshold must both be considered

to determine the overall quality of the selected model fit. A pooled PP plot is used

to determine how well the model fits the distribution of swim-times above threshold.

The pooled PP plot, Figure 3.3.4 (left), allows the combined fit of all 34 events to be

analysed at once. The fit generally is very good, especially considering the reduction

from 204 to 11.2 parameters. The areas of weaker fit can mainly be attributed to

two events, the 200m men’s free, and the 50m men’s fly. These two events increase

the RIC by 10.4 and 9.7 respectively, both of which is significant evidence of lack of

fit, so caution should be exercised when drawing conclusions from these two events.

Somewhat surprisingly though, we find that removing these events from the analysis

makes no substantial difference to the diagnostic shown in Figure 3.3.4 (left). Figure

3.3.4 (right) shows another pooled PP plot, using the same model fit, but only using

data from the period [2001, 2003]. These data also appear to be fit very well, and this

implies that any potential bias introduced by the early period data selection problems,

highlighted in Section 3.3.1, is minimal.

A nice feature of this pooled model is that natural ordering across different strokes

is preserved even for events which carry a less good fit. For example, the parameters

for the 50m men’s fly will always indicate that it is a faster event than the 50m men’s

breaststroke, i.e., by predicting a faster ultimate possible swim-time or next world
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record swim-time.

Figure 3.3.5 shows the expected rate of observations exceeding ue per year, compared

to what was observed in the data, for the women’s 100m freestyle. Similar plots for

all 34 events were examined (not shown). It can be seen that the observed rate of

observations almost always falls between (and once only marginally outside) the 95%

confidence intervals, including during the swim-suit era and the early period of the

database when competition selection may have induced bias as identified in Section

3.3.1. The estimated expected number of observations is not systematically above or

below the observed number of observations. For a year in which the observed rate is

higher than expected, often in the next year this observed rate is below the expected

rate, which is due to the discrete nature of the plot.
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Figure 3.3.4: PP plot (plotted as observed minus expected probabilities) pooled over

all events, with 95% tolerance intervals, using both the whole data set (left) and only

data from [2001, 2003] (right).

3.4 Results from Model

3.4.1 Rankings

From fitting model M7b, the final rankings of the best ever swim-times can be con-

structed. The rankings are determined by the r-value of a swim-time x, that is, the
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Figure 3.3.5: The estimated expected (black circles) and observed (red crosses) number

of observations per year better than ue for women’s 100m freestyle, with 95% confidence

intervals for the estimated values given by the lower and upper horizontal lines. The

two swim-suit years, 2008 and 2009, have increased rates of exceedances relative to

neighbouring years.
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rate at which observations better than x occur in the given event. If X
(e)
t is the random

variable denoting a new observed negative swim-time in event e at a time t where this

swim-time is better than ue, then the expected rate R at which an observation X
(e)
t is

faster than swim-time x occurs is defined as follows:

R{X(e)
t > x+ s/2} = Pr{X(e)

t > x+ s/2|X(e)
t > ue}Λ(e)

y(t) (A1,u)

= H̄(e)
u (x+ s/2)Λ

(e)
y(t) (A1,u)

≈
[
1 + ξ

(
x+ s/2− ue

σ̃
(e)
u

)]− 1
ξ

+

[
1 + ξ

(
ue − µ(e)(y∗(t))

σ(e)(y∗(t))

)]− 1
ξ

+

,(3.4.1)

for all x+s/2 > ue, where the final approximation follows from equation (3.2.11), where

y(t) is the year in which X
(e)
t occurs and y∗(t) = y(t) + 1/2 is the mid point of years

y(t) and y(t) + 1. An estimate of R{X(e)
t > x + s/2} gives the r-value, and therefore

a measure of the ‘quality’ of the swim-time x. By adding s/2, the censoring is taken

into consideration, since the true observed swim-time X
(e)
t would need to be faster by

an amount greater than the precision of the data to be recorded as being faster.

Figure 3.4.1 shows the best 20 swimmers from the 2001 to end of 2018 period, based

on the r-value of their swim. Note that swimmers names can occur multiple times where

they have recorded swim-times in more than one event. The error bars show the 95%

confidence intervals from the parametric bootstrapping. It is also possible to quantify

how much better one swimmer is than another by analysing what proportion of time

the bootstrapped samples give one swimmer ranked ahead of another. For example,

Adam Peaty, ranked 12th, beats Katinka Hosszu, ranked 11th, on 48% of rankings

from the bootstrapped data sets. In contrast, Katie Ledecky’s 1500m free performance,

ranked 2nd, never beats top ranked Sarah Sjostrom’s 50m fly performance, giving strong

evidence for ranking Sarah Sjostrom better.

The lower confidence intervals for the ranks of both Zige Liu and Lin Zhang are much

wider in comparison to the others in the top 20, and one possible reason is that they
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were swam during the second swim-suit period, St2 (2009). As noted in Section 3.3.3,

the relative uncertainty for ϑ4, which controls the swim-suit effect, is comparatively

large, and this added uncertainty propagates through to the rankings. Essentially, the

confidence intervals are showing that, if the parameter associated with the 2009 swim-

suit is overvaluing the effect of this suit, then their true ranks could be much lower.

This same effect is not seen in Paul Biedermann’s rank, also swam in 2009, however this

was in the 200m men’s free which has previously been identified as an area of weaker

fit.

0 5 10 15 20 25 30 35

ranks

Sjostrom, Sarah (50 fly F, 2014)

Ledecky, Katie (1500 free F, 2018)

Meilutyte, Ruta (50 breast F, 2013)

Efimova, Yulia (50 breast F, 2013)

Ziegler, Kate (1500 free F, 2007)

Thorpe, Ian (800 free M, 2001)

Kammerling, Anna−Karin (50 fly F, 2002)

Lacourt, Camille (50 back M, 2010)

King, Lilly (50 breast F, 2017)

Zhang, Lin (800 free M, 2009)

Hosszu, Katinka (400 ind F, 2016)

Peaty, Adam (50 breast M, 2017)

Biedermann, Paul (200 free M, 2009)

Liu, Zige (200 fly F, 2009)

Hackett, Grant (800 free M, 2005)

Ledecky, Katie (800 free F, 2016)

Friis, Lotte (1500 free F, 2013)

Lochte, Ryan (200 ind M, 2011)

Ye, Shiwen (400 ind F, 2012)

Jones, Leisel (100 breast F, 2006)

Figure 3.4.1: The ranking of the top 20 swimmers from the data set, with 95 % CIs

from bootstrapped data sets. Better ranked swimmers are lower on the y-axis.

Interestingly, in some cases the time when the swim was performed can effect the
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order of the rank within the same event. Ruta Meilutyte, Yulia Efimova and Lilly King

hold ranks 3, 4, and 9 respectively, all from the 50m women’s breaststroke, however

the fastest time of the three is Lilly King’s with a time of 29.40 seconds in July 2017,

compared to times of 29.48 seconds and 29.52 seconds for Ruta Meilutyte and Yulia

Efimova respectively, which were both swam in July 2013, five years earlier, which

indicates that they achieved comparatively better results given their era.

It is worth noting that 7 of the top 20 estimated ranked swims occur in 50m races,

which is approximately 50% more than the number that would be expected if the

assumption that all events are equally competitive holds. In fact, this assumption is

unlikely to hold in practice, since the 50m backstroke, breaststroke and fly are non-

Olympic events, and as such the competitiveness of these events may be less than

the Olympic events, which increases the disparity between the observed and expected

number of 50m races in the top 20 ranks. Conversely, the top 20 rankings for the

independent fits model M1a and M1b (not shown), were found to be proportionately

represented by all distances. In models M1a and M1b fits the 50m events have larger

corresponding shape parameters than other events on average, and than the common

shape parameter for M7b, particularly the men’s fly and women’s and men’s free had

comparatively much larger shape parameters than other events. Therefore, it was

initially thought that high rankings of swimmers in the 50m events may be due to the

enforcing of a constant shape parameter across all events, and so perhaps a different

modelling strategy is required for the shorter events. However, it was found from

calculating profile likelihood based 95% confidence intervals that the shape parameters

were −0.067 (−0.221,−0.045), 0.000 (−0.173, 0.013) and −0.080 (−0.253,−0.090) for

the men’s fly and women’s and men’s free respectively, which all overlap with the shared

shape parameter of model M7b, ξ̂ = −0.147 (−0.152,−0.143). Thus, it appears that

the comparatively larger shape parameters for the 50m events is mostly due to natural

variation. A more formal test for a different shape parameter, common to all 50m
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events, would be to evaluate the RIC under a model with indicator covariates for the

shape parameters for these 50m events. This was not considered necessary given the

evidence from the profile likelihood intervals given above. Notably, the ordering of the

very top four ranks was the same under both M1b and M7b.

A national rankings table can also be made by only including a given nation in

the comparison, and could be used for that nation’s Olympics selection, for example.

This would also change the confidence intervals for the rankings as swimmer’s are only

compared to others from the same nation.

3.4.2 Ultimate times

Finding limits to human sports performance has interested academics for years, in ath-

letics for example Blest (1996). In swimming, Nevill et al. (2007) attempt to determine

the ultimate possible time by analysing world record swims from 1957 to 2007, and

Huub and Trultens (2005) approach this from a biomechanical perspective. In this

article, the ultimate time is determined from the GPd function.

It was found that the MLE for the shape parameter with 95% confidence intervals

was ξ̂ = −0.147 (−0.152,−0.143) which (since ξ̂ < 0) can be interpreted as there

being a finite bound on the best possible time a human can achieve in any given event.

In many applications getting such a narrow confidence intervals, and hence such clear

evidence ξ < 0, is difficult to achieve. Here this has been enabled by the pooling of data

from all 34 events, giving a sample from the model of 6800 observations to inform us of

the value of ξ. The ultimate possible time for an event can be estimated directly from

the parameter estimates since for event e there exists an end-point xH,e = ue − σ̃
(e)
u /ξ :

H
(e)
u (x) = 1, ∀ x > xH,e. Note that xH,e is covariate independent in the selected model,

which seems reasonable since we expect the gap between the ultimate possible time

and the world record to shrink as world records improve, but the ultimate time is still

unreachable and ‘set-in-stone’. For example, the MLE for the ultimate possible time
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for the men’s 100m breaststroke given by the model is 53.81 (53.60, 53.97) seconds.

In comparison, Adam Peaty’s fastest time in the dataset is 57.10 seconds from 2018.

This 3 second difference made Peaty’s Project 56 (https://www.bbc.co.uk/sport/

av/swimming/40650276), his challenge to swim a sub 57s 100m breaststroke, seem

more achievable than at first glance. In fact, Peaty has since succeeded in his Project

56, setting a new world record of 56.88 seconds in 2019.

For each event, Figure 3.4.2 shows these estimated ultimate times normalised by the

corresponding current world records as of the beginning of 2019, ordered by increasing

threshold swim-times. For the vast majority of events, the ultimate time is 93-95% of

the current world record. For the women’s 50m butterfly and women’s 1500m freestyle

however, the current world record is very close to the ultimate time. In fact, approxi-

mately a 3% improvement would see these ultimate times being reached. This finding

is not so surprising as these two world records correspond to the top two ranks, Sarah

Sjostrom and Katie Ledecky from Figure 3.4.1. In comparison, the world record swim-

time for the men’s 100m free, which does not make the top 20 ranks, would require

a 7% improvement to reach the ultimate time, suggesting this is the weakest of the

current world records.

3.4.3 Expected new world record time

Let X
∗(e)
t be the random variable denoting the swim-time of a new world record in event

e at time t, then the distribution of X
∗(e)
t follows immediately from equations (3.2.4)

and (3.2.5), i.e.,

Pr{X∗(e)
t > x} = Pr{X(e)

t > x|X(e)
t > re} = H̄(e)

re (x) =

[
1 + ξ

(
x− re

σ̃
(e)
re

)]− 1
ξ

+

, if x > re,

(3.4.2)

where σ̃
(e)
re = σ

(e)
0 + ξ(re −µ

(e)
0 ) and re is the world record for event e at the end of 2018

such that re := max(xxxe) where xxxe are all the observations in event e. Note that the

https://www.bbc.co.uk/sport/av/swimming/40650276
https://www.bbc.co.uk/sport/av/swimming/40650276
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right hand side of expression (3.4.2) has no time dependency, since under model M7b

the distribution of times, conditional on being above threshold ue, is time homogeneous

for any given event e, see property (3.3.3), therefore we drop the subscript t. From this

the expected swim-time of the next world record in event e is

E[X∗(e)] =

∫ xH,e

re

x
dH

(e)
re (x)

dx
dx = re +

σ̃
(e)
re

1− ξ
, if ξ < 1.

Figure 3.4.2 shows the estimated expected swim-time of the next world record relative to

the world record at the end of 2018, where events are ordered by increasing swim-time.

Censoring is ignored in this calculation, as it would have such a negligible effect. The

expected improvement varies only slightly between events, ranging from an expected

improvement of 0.5% for Katie Ledecky’s 1500m women’s free performance, to a 0.9%

for Cesar Cielo’s 100m men’s free performance. In events where the ultimate time is

close to the current record, the expected next world record is also closer to the current

record, and vice versa.

The small variation between expected improvement is at first surprising, since it

might be expected that ‘better’ records, such as those of Katie Ledecky and Sarah

Sjostrom, would be beaten by much smaller amounts. However, it is also likely that

these records will take longer to be broken and so the improvements in training methods

will be more significant by the time a new record is set, which may reduce the variation

in the percentage improvement.

The confidence intervals here describe the confidence in the mean of the correspond-

ing estimate, but it might also be interesting to determine the prediction interval, e.g.,

the 95% interval of possible swim-times that the next world record swim-time in event

e will be in. The predictive distribution of Pr{X∗(e) < x} can be found as follows: if

{Θ̂(i) : i = 1, . . . , n} are the n = 240 bootstrapped parameter estimates, where Θ̂(i)
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Figure 3.4.2: The estimated expected next world record swim-time (upper black) and

ultimate possible time (lower red) for each event the values are rescaled by world record

as at the end of 2018, with 95 % CI’s from bootstrapped data sets.
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corresponds to the MLE’s from simulated data set i, then for large n and x > re

Pr{X∗(e) < x} ≈ 1

n

n∑
i=1

Pr{X∗(e) < x|Θ̂(i)}

=
1

n

n∑
i=1

H(e)
re (x|Θ̂

(i))

= 1− 1

n

n∑
i=1

[
1 + ξ(i)

(
x− re

σ̃
(i,e)
re

)]− 1

ξ(i)

+

,

where ξ(i) and σ̃
(i,e)
re are the bootstrapped parameter estimates for ξ and σ̃

(e)
re corre-

sponding to simulated data set i. Similar predictive distributions can be found for the

other features of interest in Figures 3.4.3 and 3.4.4, as described in Sections 3.4.4 and

3.4.5.

3.4.4 Time until world record is next set for an event

The distribution of time taken until a new world record is set in a particular event e

is of interest. Let T (e) be a random variable describing the time at which a new world

record is next set in event e ∈ E. The probability FT (e)(t) = Pr{T (e) < t} that a world

record for event e is set before some time t can be found as follows. For current time

1, until a time t (t > 1) there will be N
(e)
t exceedances of the threshold ue in event e,

and for the current record to be first broken after t all of the N
(e)
t observations need to

be slower than the current record. Therefore, the following notation is introduced: let

X
(e)

1:N
(e)
t

= {X(e)
i , i = 1, . . . , N

(e)
t } where Xi

iid∼ H
(e)
u and H

(e)
u has GPd. Then N

(e)
t has a

Poisson distribution with mean

Λ(e)
(
A(1,t),u

)
=

∫ t

1

[
1 + ξ

(
ue − µ(e)(y)

σ(e)(y)

)]− 1
ξ

+

dy,
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and the probability that a world record for event e is set before t is

FT (e)(t) = 1− Pr{T (e) > t}

= 1−
∞∑

m=0

Pr{max(X
(e)

1:N
(e)
t

) < re|N (e)
t = m}Pr{N (e)

t = m}

= 1−
∞∑

m=0

[
H(e)

u (re)
]m [

Λ(e)
(
A(1,t),u

)]m
exp

[
−Λ(e)

(
A(1,t),u

)]
/m!

= 1− exp
[
−Λ(e)

(
A(1,t),u

)
H̄(e)

u (re)
]
, (3.4.3)

where the final equality follows from the power series expression for the exponential

function. The density function for T (e), fT (e) , follows from equation (3.4.3), as

fT (e)(t) =

[
1 + ξ

(
ue − µ(e)(t)

σ(e)(t)

)]− 1
ξ

+

H̄(e)
u (re) exp

[
−Λ(e)

(
A(1,t),u

)
H̄(e)

u (re)
]
.

Then the expected time until a world record is next set in event e is

E
[
T (e)

]
=

∫ ∞

1

tfT (e)(t) dt.

Figure 3.4.3 shows these MLE’s along with 95% confidence intervals for E
[
T (e)

]
. It can

be seen that almost all events are expected to have a new world record in the next 5

years. The longest estimated expected waiting times are again the times until Katie

Ledecky’s and Sarah Sjostrom’s world records are broken, in the women’s 1500m free

and women’s 50m fly respectively which correspond to the top two ranks of Figure

3.4.1, which both have expected waiting times of approximately 11 years.

3.4.5 Probability that a record is next set in a particular event

Now suppose that we wish the find the probability that the next event to have a world

record that is broken is in event e. Let T (−e) be the random variable denoting the time
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Figure 3.4.3: The estimated expected time (in years) until the world record is broken

with 95% CI’s from bootstrapped data sets.
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taken for a world record to be set in any other event apart from e, i.e.,

T (−e) := min
k∈E\{e}

{T (k)}.

Then the probability that the next world record that is set is in event e is given by

Pr{T (−e) > T (e)}

=

∫ ∞

1

Pr{T (−e) > T (e)|T (e) = t}Pr{T (e) = t} dt

=

∫ ∞

1

∏
k∈E\{e}

{
exp

[
−Λ(k)

(
A(1,t),u

)
H̄(k)

u (rk)
]}

[
1 + ξ

(
ue − µ(e)(t)

σ(e)(t)

)]− 1
ξ

+

H̄(e)
u (re) exp

[
−Λ(e)

(
A(1,t),u

)
H̄(e)

u (re)
]
dt

=

∫ ∞

1

{
exp

[
−
∑
k∈E

Λ(k)
(
A(1,t),u

)
H̄(k)

u (re)

]}[
1 + ξ

(
ue − µ(e)(t)

σ(e)(t)

)]− 1
ξ

+

H̄(e)
u (re) dt,

where the second equality follows because

Pr{T (−e) > T (e)|T (e) = t} =
∏

k∈E\{e}

{
exp

[
−(Λ(k)

(
A(1,t),u

)
H̄(k)

u (rk)
]}

due to the assumption of independence between swims in different events and the

result derived in equation (3.4.3) for a single event. Figure 3.4.4 shows these estimated

probabilities with the previously identified ‘better’ records having a lower probability

of being broken next. The most likely record to be broken is the men’s 100m free. The

estimates of these probabilities using model M1b was compared (not shown), and it has

less variance between events.

3.4.6 Adjusting Swim-Suit Influenced Times

In 2010 Brazil’s Cesar Cielo called for FINA to scrap any records set in the now-banned

swim-suits, due to those records being much more difficult to break. Rather than this
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Figure 3.4.4: Estimated probabilities that the next world record is set in a particular

event, with 95% CI’s from bootstrapped data sets.
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however, it is desirable to find a fair comparison between swim-times of those swimmers

wearing a swim-suit and those not, and even construct a framework such that swim-

times can be fairly compared with other future technological advancements.

Since the rank of a swim-time is based on the rate R at which better observations

occur, it is possible to adjust the swim-time for the use of a swim-suit. Let x > u be a

swim-time occurring at time q during the swim-suit period i.e, q ∈ St1 ∪ St2 , and z is

a swim-time occurring at the same time but as if it were not swam using a swim-suit.

Then the swim-time correction from a recorded swim-time x to an equivalent swim-time

without the swim-suit z is made by selecting z such that the rate of exceeding x, R,

and the corrected rate of exceeding z without a swim-suit, RC , are equal. That is, find

z as the solution to

R{X(e)
q > x} = RC{X(e)

q > z}, (3.4.4)

where R is defined in equation (3.4.1) and RC is defined by

RC{X(e)
q > z} = Pr{X(e)

q > z|X(e)
q > ue}Λ(e)

C,q (A1,u) ,

where

Λ
(e)
C,q (A1,u) =

[
1 + ξ

(
ue − µ

(e)
C (q)

σ
(e)
C (q)

)] 1
ξ

+

,

σ
(e)
C (q) = σ

(e)
0 + ξβq, and µ

(e)
C (q) = µ

(e)
0 + βq. Thus, the adjusted swim-time z is found

via the solution to equation (3.4.4), given as

z = ue +
σ̃
(e)
u

ξ

{
Λ

(e)
q (A1,u) H̄

(e)
u (x)

Λ
(e)
C,q (A1,u)

− 1

}
.

As an example, Cesar Cielo’s 6th rank swim-time of 20.91s in the 50m freestyle in 2009

gets adjusted to 21.18 once the swim-suit effect is removed. The reverse can be found,

that is the time a swimmer would have got, had they been wearing a swim-suit, e.g.,

Adam Peaty’s current 100m breaststroke world record time of 56.88s gets adjusted to
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56.25s with a swim-suit from 2008, and adjusted to 55.96 with a swim-suit from 2009,

indicating that a “Project 55” could be achieved with just the addition of a swim-suit.

By adjusting for technology in this way, it is possible to determine which current world

records would still stand, had swim-suits never played a part. Table 3.4.1 shows those

current world records set using swim-suits, and their estimated adjustments. Moreover,

Table 3.4.1 shows what the world record would be, and who the world record holder

would be, once the effect of swim-suits is removed. Out of the 10 world records which

have been set by swimmers wearing swim-suits, only 2 would still stand today, Zige Liu’s

200m fly world record, and Zhang Lin’s 800m free world record. It is worth noting that

the assumption that the most up-to-date technology available is always being used, is

occasionally violated, for example, Phelps’ 100m and 200m fly world records in 2009

were swam with the LZR Speedo suits from 2008. There can be additional complications

when taking technology into account, such as Phelps’ 400m individual medley world

record from 2008, in which only the leg suit was worn. These issues could be addressed

with the addition of explicit data about which technology was being used in a given

swim.

3.5 Discussion

Throughout this article, the swim-times are negated before being analysed so that we

can use existing methodology for larger values. Alternatively, by analysing swim-speed,

Gomes and Henriques-Rodrigues (2019) apply peaks-above-threshold methodology di-

rectly, since a smaller swim-time equates to a larger swim-speed. This raises the ques-

tion of which transformation is best, and what classes of transformation give similar

results. From limit (3.2.1), it can be seen that any linear transformations will be

absorbed into the norming constants an and bn so that inference is invariant for posi-

tive linear transformations. Conversely, Wadsworth et al. (2010) show that non-linear



CHAPTER 3. RANKING BASED ON EXTREME VALUE THEORY 68

Event WR swim WR AWR NSWR NSWR swim

50 free M Cielo (2009) 20.91 21.18 21.1121.1121.11 Proud (2018)

100 free M Cielo (2009) 46.91 47.99 47.0447.0447.04 McEvoy (2016)

100 fly M Phelps (2009) 49.82 50.83 49.8649.8649.86 Dressel (2017)

200 fly M Phelps (2009) 111.51 113.33 112.71112.71112.71 Milak (2018)

200 back M Peirsol (2009) 111.92 113.47 112.96112.96112.96 Lochte (2011)

200 free F Pellegrini (2009) 112.98 114.99 113.61113.61113.61 Schmitt (2012)

200 fly F Zige (2009) 121.81 123.38123.38123.38 124.06 Jiao (2012)

400 free M Biedermann (2009) 220.07 223.13 220.08220.08220.08 Thorpe (2002)

400 ind M Phelps (2008) 243.84 245.72 245.18245.18245.18 Lochte (2012)

800 free M Lin (2009) 452.12 455.31455.31455.31 458.57 Sun (2011)

Table 3.4.1: World records (WR) set with swim-suits, the adjusted times (AWR), and

the best corresponding non-swim-suit times (NSWR). “Would-be” world records and

world record holders, after adjusting for swim-suits, are marked in bold.
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transformations lead to different results. Wadsworth et al. (2010) consider the class of

Box-Cox transformations as part of the extreme value analysis with negating of the data

and inversion to swim-speed as special cases. Thus a possible route for future research

is to find the best Box-Cox parameter and to see if this changes in a systematic way

over distance, gender and stroke.

Only the best time is recorded from each swimmer in a given event which, for

cases where swimmers in the data set are still active, could lead to poor predictive

performance. For example, let X
(w,e)
t be the random variable denoting a swim-time by

the current world record holder in event e at time t, and X
(i,e)
t be the random variable

denoting a swim-time by another swimmer i in event e at time t, then the probability

of a world record-holder setting a new personal best, and therefore new world record,

is likely to be larger than the probability of any new swimmer setting a world record,

such that Pr{X(w,e)
τ > re} > Pr{X(i,e)

τ > re} for τ > t. This could be accounted for by

allowing more than one swim-time to be recorded per swimmer, however this gives rise

to dependency between swim-times in the same event, and would need to be adjusted

for.

Independence is assumed between swim-times for different strokes, genders and dis-

tances. This simplifying assumption may not be true when the same swimmer competes

across many distances or strokes, meaning that the uncertainty of our estimates would

be underestimated. Of the swim-times that exceed the thresholds ue, i.e., for e ∈ E, the

proportion of unique swimmers to total data points is around half, and so the effective

sample size of independent swimmers in the data set will be less than the number of

total data. In the case that there is perfect correlation between the same swimmer in

separate events, then the effective sample size will be equal to the number of unique

swimmers, approximately half the total data values, which means the variance could be

underestimated by at most a factor of 2. This could be corrected for by estimating some

inflation parameter 1 ≤ ϕ ≤ 2, such that the actual variance is equal to ϕvar(θ̂), where
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var(θ̂) is the variance obtained by assuming complete independence between observa-

tions, see Kent (1982). It may be necessary to use multivariate techniques in order to

capture some of the correlation between data points resulting from the same swimmer

in different competitions (Adam and Tawn, 2012).

There are extra sources of uncertainty not accounted for. Quantifying the uncer-

tainty due to the choice of threshold is not considered, since a single threshold selection

approach is used, as is common in the extreme value theory literature (Scarrott and

MacDonald, 2012). However this uncertainty could be quantified by using the cross-

validatory technique of Northrop et al. (2017). Also, since the analysis is performed in a

frequentist framework, only parameter uncertainty is considered, however when predict-

ing future events such as the time until a new world record is set in a particular event,

it is also valuable to consider the predictive uncertainty. This could be accounted for

by moving to a Bayesian framework, and carrying out parameter estimates via Markov

chain Monte Carlo with a prior on the spline roughness penalty.

The constant evolution of the para-swimming classification system is testament to

the challenge of creating fair competition in disability swimming. The number of clas-

sifications itself is open to debate, with too many classifications resulting in too few

swimmers in each classification and therefore a drop in competitiveness, and too few

classifications resulting in bias such that there is unfair differences between swimmer’s

physical limitations within the same class. Of course, this problem stems from the dis-

crete nature of the classification system, but a model of the type presented in this article

would allow for a continuous “classification variable” which pools across disability, to

allow fair competition over all disability types and comparison between disabilities. In

a similar way, this model could allow for more fair comparison with transgender swim-

mers. Regulations around transgender athletes in sports is a controversial topic, with

the regulations being changed again for the upcoming 2020 Olympic Games. This con-

troversy largely arises due to determining whether a transgender athlete should compete
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in the men’s or women’s event, and is determined on a case by case basis. However,

our type of covariate model can allow for a more fluid description of gender, since the

adjustment or categorisation is determined simply by the threshold time ue which can

easily be modelled as continuous across events or gender status. In addition, cases of

unusual testosterone levels can be dealt with in the same way. In junior swimming,

because of the discretisation of age groups, some swimmers can be almost a whole year

younger than others in the same competition, which creates an unfair disadvantage.

The same idea of a continuous scale for age groups would allow for fair comparison of

‘age-adjusted’ swim-times. Ultimately, it is possible to have a global model which fairly

compares swimmers of all genders and disabilities, and even junior swimmers, across

different events.



Chapter 4

A Framework for Statistical

Modelling of the Extremes of

Longitudinal Data, Applied to Elite

Swimming

4.1 Introduction

Traditional statistical techniques are designed to describe the behaviour of the “typical”

data and many analyses involve the identification and removal of observations from the

tails of the data to improve robustness. But what if the data of most interest are those

observations in the tails? When considering natural disasters such as flooding, stresses

or corrosion on a structure, financial crises, or sporting records, it is precisely these

extreme values that are most pertinent. Extreme value theory (EVT) is a branch of

statistics specifically designed to model such extreme or rare events, with the methods

having a strong probabilistic framework based on asymptotic justifications. This paper

presents novel methodology for the analysis of longitudinal data where the extreme

72
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values are of primary interest.

Early EVT methods describe the extremal behaviour of independent univariate

random variables, possibly in the presence of covariates, with the book of Coles (2001)

an accessible introduction. More recently, the extremal properties of ever more rich

data structures have been studied, with theory and associated methodology developed.

For univariate stationary processes the following features have been considered: long-

and short-range dependence (Ledford and Tawn, 2003), Markov structure (Winter and

Tawn, 2017), and hierarchical clustered data (Smith and Goodman, 2000; Bottolo et al.,

2003; Dupuis et al., 2023). For multivariate extreme value problems, structure has

been identified and exploited through the use of graphical structures (Engelke and

Hitz, 2020), sparsity (Engelke and Ivanovs, 2021), and models for conditional structure

through asymptotic independence (Heffernan and Tawn, 2004). Most recently, various

approaches have been developed for spatial, and spatial temporal extreme events, such

as r-Pareto processes (de Fondeville and Davison, 2022), spatial conditional asymp-

totically independent processes (Wadsworth and Tawn, 2022), the associated processes

in space and time (Simpson and Wadsworth, 2021), and for spatial mixture processes

(Richards et al., 2023). However, no current adaptations allow for EVT to model lon-

gitudinal data (Diggle et al., 2002), sometimes called panel data, which has been so

widely studied for the body of the data.

Longitudinal data comprises a number of subjects, with each subject recording a

time series of responses. Specifically, there are a set of subjects, I, with a subject

i having a set of measurements Ji, for all i ∈ I. The measurement Xi,j belonging

to subject i, occurs at a known time ti,j ∈ R, for all j ∈ Ji, i ∈ I. The typical

assumptions made about the collection {Xi,j : j ∈ Ji, for i ∈ I} are that the Xi,j are

independent over different i ∈ I, irrespective of j, but they are potentially dependent

across j ∈ Ji for any given i ∈ I. An important special case is when the Xi,j are

independent over different j ∈ Ji irrespective of i, a situation we refer to as subject-
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conditional independence. Usually maxi∈I | Ji |≪| I |, so there are a large number

of subjects relative to the number of measurements per subject, and the way that the

distribution of Xi,j varies with ti,j, i.e., due to a varying mean value, is similar across

subjects.

Even though the panel data analysis of Dupuis et al. (2023) suggests a considerable

overlap with this set up, the focus of their modelling and inference is very different

to ours, with their priority being marginal inference for different subjects whereas we

infer the within-subject measurement dependence and a population-based marginal

model. They consider a simplified setting where all Ji are equal to some common

J , i.e., all subjects have the same number of measurements and measurement times

are identical across all i ∈ I. The data are split over B blocks, {J b : b = 1, . . . , B}

forming a partition over J . Then, the joint behaviour of the subject block maxima

{maxj∈J b Xi,j : for i ∈ I, b = 1, . . . , B} are studied assuming these are independent

over blocks. The temporal dependence structure of the within-subject behaviour, which

is the focus of our analysis, is not considered.

For analysing the extremes of longitudinal data, the sample I comprises those sub-

jects with at least one extreme observation within the observed time-frame. An impor-

tant distinction is then made between this sample of subjects I, and the population of

subjects, which includes those subjects with extreme measurements that are exclusively

outside the observed time-frame. For the observed time-frame, subjects in the popula-

tion may have either no measurements at all, or have measurements that are exclusively

non-extreme. One reason for this distinction is when making predictions about future

extreme events far ahead of the observed time-frame. In applications where individual

subjects exhibit non-stationarity, future extreme events change from being measure-

ments on the observed subjects, to measurements on subjects that are not yet present

in the observed time-frame, but form part of the population of subjects. We will make

this distinction clear in Sections 4.3 and 4.5.
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The structure of longitudinal data combines aspects of time series and multivariate

data. The critical differences between longitudinal data and standard multivariate time

series are that (i) the length of the time series per subject is small, (ii) the number of

time series, i.e., subjects, is large and (iii) there is no restriction that the measurement

times across subjects are synchronised or are to be regularly spaced. Furthermore, the

longitudinal data format differs from multiple measurement types taken on the same

subject at the same time points as each other (e.g., in a health data set measurements

of blood sugar, blood glucose, and resting heart rate), because the measurements are

assumed to be independent across the observed time series.

Longitudinal data analyses arise most commonly in designed trials (e.g., in clinical

or corrosion contexts) whereby multiple subjects (e.g., patients or material coupon sam-

ples) have a single quantity (e.g., blood pressure or corrosion, respectively) measured

over time. There have been very limited examples of extreme value modelling of clinical

and corrosion data, with none capturing the full specification of the longitudinal data

structure. Clinical extreme value examples include Southworth and Heffernan (2012)

and Papastathopoulos and Tawn (2015) but neither of these look at repeated mea-

surements on the same subject. For corrosion there have been covariate models which

allow for the mean pit depth to increase with time, but they only have one observation

per coupon (Laycock and Scarf, 1993). Fougères et al. (2006) do consider multiple

observations per coupon but assume that observations from the same coupon are IID.

Perhaps the closest approach to our modelling of longitudinal extremes is Fougères

et al. (2009), who use a latent/random-effect positive stable mixture model to produce

a multivariate extreme value distribution to model dependence in repeated observa-

tions of pit depth across different coupons. Since they assume all Xi,j are condition-

ally independent and identically distributed given a random effect Ri for each subject,

the dependence across time per subject is exchangeable, i.e., all pairs (Xi,j, Xi,k), for

j ̸= k ∈ Ji, have the same dependence structure. This limited form of temporal depen-
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dence per subject is likely be too simplistic for generic longitudinal data, where pairs

(Xi,j, Xi,k) often have dependence weakening as the time between them, |ti,j − ti,k|,

increases. The use of the positive stable distribution to capture the variation between

subjects - through both the mean and variance of Xi,j|Ri, for all j ∈ Ji - leads to the

largest Ri values corresponding to the subjects with Xi,j values that are much larger

than for other subjects. This is highly restrictive both for the limitation on how the pop-

ulation is distributed, but also as it enforces a strong form of extremal dependence over

time, termed asymptotic dependence. Asymptotic dependence, defined in Section 4.2.2,

constrains that if a subject gives the largest value in the population at some time point,

then they are likely to do this at all time points. Our paper aims to be the first foray

into developing broadly usable EVT methods for longitudinal data, with the flexibly

to model both asymptotic dependent and asymptotic independent temporal extremal

dependence structures and to capture trends in the means of subjects’ responses over

time.

One area where extreme value analysis of longitudinal data is particularly impor-

tant is sports data, e.g., athletics and swimming. Here, athletes/swimmers (subjects) all

strive for the best times for completing their event, with their personal career progres-

sion having stages of improvement and decline as they age, and with them competing at

irregular times which can be different from each other. Furthermore, the overall perfor-

mances by the elite athletes/swimmers are improving over time, i.e., expected annual

world best times are reducing, so that records are being broken more often than would

be expected if the data were from with independent and identically distributed vari-

ables. Surprisingly, we have found no examples of such statistical analyses in this area,

despite its clear relevance, e.g., for studying the progression of records, and predictions

for who will set the best time next year. Therefore our longitudinal EVT methods will

be demonstrated by analysing a dataset of elite swimmers.

The application of EVT methods is not new for sports’ data. EVT is used by
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Robinson and Tawn (1995) to model athletics data and by Strand and Boes (1998) to

estimate the peak age of competitive 10K road race runners. Stephenson and Tawn

(2013) fit a generalised extreme value (GEV) distribution to yearly maxima of athletics

times across different distances and eras. There, the GEV location and scale parameters

are allowed to vary as a parametric function of the distance, and an exponential trend

allows for a smooth adjustment for era. Spearing et al. (2021) use EVT to model

the evolution of elite swimming over time, including the effect of different swim-suit

technologies, and combine data across different swimming strokes, gender categories

and distances through the use of a data-based covariate.

None of these models attempt to model dependence structure - either they assume

that performances from the same subject are independent of each other, or only in-

corporate each subject’s best performance into the data set. The consequence of both

of these data handling approaches for repeated observations per subject is incomplete

inference: the former uses a smaller data set than is available, leading to inefficient in-

ference; and the latter produces an underestimation of standard errors and confidence

interval widths when the independence assumptions are invalidated. However, the true

limitation of these simplifications runs deeper. The lack of any longitudinal structure

in these models means that no statistical inference can be conducted on any facet in-

volving individual competitors, e.g., Strand and Boes (1998) infers the peak age of the

typical runner, but cannot draw conclusions about any individual runner.

We illustrate our novel EVT methodology for longitudinal data in the context of

elite swimming, specifically in the mens’ 100m breaststroke (long course) event. A

swimmer is defined to be elite if they have ever produced a swim-time less that a

certain threshold u. The selection of this threshold u is a source of debate in general

(Scarrott and MacDonald, 2012), but is here taken as the 200th fastest personal-best

swim-time in this mens’ 100m breaststroke event, which is u = 61.125 seconds - see

Section 4.5 for a discussion on this point. In our approach (i) all the available recorded
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swims from each elite swimmer are modelled, irrespective of whether they are below or

above u, (ii) the swimmer who produced each swim-time is accounted for, as is their

age at which it was achieved, (iii) the dependence between swim-times from the same

swimmer is captured, with this dependence allowed to weaken as the inter-swim-time

increases.

Figure 4.1.1 depicts the competition-best swim-times from a subset of five of the

200 elite swimmers who epitomise the range of typical career trajectories and the dif-

ferent rates at which swimmers compete in competitions. Of these swimmers, Adam

Peaty holds the current world record and so, by definition, the fastest personal-best

(PB). Ilya Shymanovich has the second fastest PB in the data, Sakci Hueseyin 8th,

Sakimoto Hiromasa 101st, and Takahashi the 196th fastest PB, which is only just

faster than the threshold. There is a notable difference between the performance of the

top two swimmers. Peaty is consistently fast, producing the seven fastest times of the

competition-best dataset, and with all his performances faster than u. Conversely, Shy-

manovich is in a clear progression stage of his career, moving from being consistently

slower than u, to consistently faster. Furtherly contrasting, Takahashi only once swims

faster than u.

Even across these five swimmers we can see vastly differing career trajectories and

swimmer’s strategies for which, and how many, competitions in which they partici-

pate. Despite this, it is visible even in these data that for each swimmer, swim per-

formance achieved more closely together in time are generally more alike than those

a further apart. This naturally reflects training cycles and form which induce local

time-dependent variations in performance.

Now consider the marginal distribution of the extreme swimming values, i.e., the

values below u = 61.125. To motivate a possible model for these values we draw on EVT.

Specifically, for a continuous random variable X, EVT gives that the generalised Pareto

distribution (GPD) is the only non-degenerate limit distribution for scale-normalised
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Figure 4.1.1: Data for swim-times (in seconds) plotted against the calendar time when it

was achieved for the mens’ 100m breaststroke (long course) event. All competition best

performances are shown for five selected swimmers over time. The dashed line indicates

the extremal threshold u, dictated by the PB time of the 200th fastest swimmer.

difference of X from the threshold v as v tends to the lower endpoint of the distribution

of X (Pickands, 1975). In practice it is common to assume that the GPD is a sufficiently

good approximation to the data relative to the threshold (Davison and Smith, 1990).

In our case we take v = u, as Spearing et al. (2021) show that the personal-best

swim-times better than the 200th top personal-best time, for each swimming event, are

well modelled by a GPD. This finding encourages us to consider the GPD as a marginal

model for all swimmers’ available performances better than this same extreme threshold.

This choice is further supported by asymptotic theory for univariate stationary processes

that exhibit weak long-range dependence conditions, where the distribution of cluster

maxima, and arbitrary values of the process excesses of a threshold, are identical in

the limit as the threshold tends to the upper endpoint of the stationary distribution

(Leadbetter, 1991)

Thus, all observations faster than u can be assumed to have a known class of

marginal distribution, the GPD; however, we have no justifiable parametric model for

observations slower than u. In modelling and predicting the extremes of longitudinal

data, it is desirable that the extreme data be the most influential. Therefore, obser-
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vations slower than u are treated as censored at the level of the threshold. That is, if

Xi,j > u we only use this knowledge, and the time ti,j at which it was performed, but not

the precise value of Xi,j. As a consequence, all but one of Takahashi’s observations are

censored, whereas all of Peaty’s observations can be modelled with the GPD. Critically,

the values slower than the threshold are not lost as, firstly, they provide information

about the rate of performing better than the threshold. Secondly, they inform us of the

dependence structure for individual swimmers as, e.g., three successive swims slower

than u followed by three faster than u may suggest stronger dependence than the same

swimmer having 6 alternate swims faster and slower than u.

Conventional presentation of EVT theory pertains to the largest values - or equiva-

lently the upper tail - in a sample, yet the best swim-times are the smallest - or in the

lower tail. By applying our methodology to negative swim-times, standard EVT results

can be utilised. So, throughout we present theory and methods for the upper extremes

of longitudinal data. Section 4.2 presents the extensions of univariate EVT to cover the

time series aspect of each subject’s data. Section 4.3 contains the main contribution

of the paper - a novel approach to the modelling of the extremes of longitudinal data.

Section 4.4 presents the general Bayesian inference framework and Section 4.5 details

how this modelling and inference framework can be applied to the elite swimming data,

and provides examples of particular inferences and predictions that are available using

our methodology. A discussion and future work is in Section 4.6.

4.2 Motivating Theory

4.2.1 Univariate extremes

In its simplest form, univariate extreme value theory (EVT) applies to independent

and identically distributed (IID) random samples Y1, . . . , Yn, where each variable has

continuous distribution function F . The block maxima and peaks over threshold meth-
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ods are the two core approaches in univariate EVT (Coles, 2001). We are interested

in formulating a theoretically justified marginal extreme value model for temporally

dependent variables and describing the dependence structure induced by within- and

across-subject observations for longitudinal data. To keep the formulation sufficiently

simple we also consider the extremes of a stationary process, observed at regular time

intervals, X1, . . . , Xn which also has the marginal distribution function F but satisfies

conditions such that its long-range dependence is restricted to behave as effectively

independent, see Leadbetter et al. (2012) for their precise form and discussion of the

limit results (4.2.2) and (4.2.3). Under such conditions, the following results hold. If

MY,n := max{Y1, . . . , Yn} and there exist norming sequences an > 0 and bn, such that

Pr

{
MY,n − bn

an
≤ x

}
= F n(anx+ bn) → G(x), as n→ ∞, (4.2.1)

where that the limiting distribution G(x) is non-degenerate, then G(x) must be a

generalised extreme value (GEV) distribution, which has the form

G(x) = exp
(
−[1 + ξ(x− µ)/σ]

−1/ξ
+

)
, (4.2.2)

where µ, ξ ∈ R, σ ∈ R+, are the location, shape and scale parameters respectively and

with the notation y+ := max(y, 0). Then for MX,n := max{X1, . . . , Xn}, if (MX,n −

bn)/an has a non-degenerate limit distribution, as n→ ∞, it follows that

Pr

{
MX,n − bn

an
≤ x

}
→ [G(x)]θ, as n→ ∞, (4.2.3)

where 0 < θ ≤ 1 is the extremal index; a measure of extremal temporal dependence,

with 1/θ being the limiting mean number of exceedances of a high threshold by the

{Yt} process per cluster of exceedances. Ferro and Segers (2003) define a cluster and

discuss inference for θ.
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We are primarily interested in having an asymptotically motivated model for the

upper tail behaviour of {Xt} and {Yt}. These models are derived directly from the

limiting distribution of block maxima identified above. First, denote DG := {x ∈ R :

0 < G(x) < 1}. Then applying a Taylor series approximation to limit (4.2.1) gives,

n[1− F (anx+ bn)] → − logG(x) = [1 + ξ(x− µ)/σ]
−1/ξ
+

as n→ ∞, for all x > u with both x and u in DG. It follows that, for all Y ∼ F ,

Pr{Y > anx+ bn|Y > anu+ bn} → logG(x)/ logG(u) =: H̄u(x), (4.2.4)

with H̄u(x) := 1−Hu(x), and where the distribution function Hu is written as

Hu(x) = 1−
[
1 + ξ

(
x− u

σu

)]− 1
ξ

+

. (4.2.5)

where σu = σ+ξ(u−µ). The distribution function Hu is termed the generalised Pareto

distribution (GPD), denoted GPD(σu, ξ), with threshold u, shape parameter ξ ∈ R and

scale parameter σu ∈ R+. For ξ < 0, there exists a finite value xH = u−σu/ξ : Hu(x) =

1, ∀x > xH , whereas for ξ ≥ 0, Hu(x) < 1, ∀x < ∞. This GPD result is powerful as

it holds as the limit distribution for a very broad class of continuous distributions F

(Leadbetter et al., 2012).

Now consider the tail behaviour of the stationary process {Xt}. The same GPD(σu, ξ)

limit distribution holds for Pr{X > anx+ bn|X > anu+ bn} as n→ ∞. However, there

is an additional result due to Leadbetter (1991) which gives that for an arbitrary clus-

ter maxima XC of {Xt}, then Pr{XC > anx + bn|XC > anu + bn} as n → ∞, is

also GPD(σu, ξ). This has motivated the use of the generalized Pareto distribution as

a statistical model for cluster maxima (Davison and Smith, 1990), but critically for

our purposes showed the strong connection between the distribution of the maxima
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of identically distributed variables in a cluster and an arbitrarily selected threshold

exceedance. This is a feature we exploit in Section 4.3.1.

In practice the limit distribution (4.2.4) is assumed to hold exactly for some finite

n, or equivalently for some fixed threshold anu + bn, corresponding to a high quantile

of Y or X. A consequence of this assumption is that the limit distribution Hu gives an

asymptotic model for the distribution of exceedances above a threshold u, no matter

the form of marginal distribution F and implies that whatever F is within this class,

values above a suitably high threshold u must follow a single class of distributions,

determined by only two parameters.

To complete the description of the tail of the marginal distribution we define the

marginal probability of an threshold exceedance, λu := Pr(X > u), and select the

threshold u above which the GPD tail is assumed to hold. The choice of u is the

subject of much historical focus, primarily relating to bias-variance trade-off (Scarrott

and MacDonald, 2012; Danielsson et al., 2001; Northrop et al., 2017; Varty et al., 2021).

The methods typically are based on the threshold-stability of the GPD, namely that if

the GPD approximation (4.2.4) is valid for exceedances above some threshold u ∈ DG,

then it holds for excesses over all higher thresholds v, where v ∈ DG and v > u. So

if u is the lowest threshold for which approximation (4.2.4) is exact, then any lower

threshold will have excesses that do not follow the GPD, whereas thresholds larger

than u ignore relevant observations and lead to inefficient inference.

4.2.2 Extremal dependence: measures and modelling strate-

gies

Since there may be dependence between the measurement values of the time series for

a given subject, dependence needs to be accounted for in the extreme values. Here

we draw on knowledge of extremal dependence measures and the associated modelling

strategies generally before considering the specific features that are unique to longitu-
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dinal data.

In modelling dependence between the extremes of two variables the most published

approaches first involve deciding on the form of extremal dependence, and then looking

for an appropriate model formulation subject to that form (Coles et al., 1999). For

bivariate extremes, with continuous random variables (X1, X2) with marginal distribu-

tions F1 and F2, respectively, the two forms of extremal dependence in the upper tail

are determined by the coefficient of asymptotic dependence χ := limq↑1 χ(q) where, for

0 < q < 1,

χ(q) := Pr{F1(X1) > q | F2(X2) > q} = Pr{F1(X1) > q, F2(X2) > q}/(1− q), (4.2.6)

with asymptotic dependence given by 0 < χ ≤ 1 and asymptotic independence by

χ = 0. In essence, asymptotic dependence allows the very largest values of X1 and

X2 to occur together, unlike for asymptotic independence. This interpretation is made

precise by looking at the limiting distribution of normalised componentwise maxima

of independent and identically distributed vectors {(X1i, X2i) : i = 1, . . . , n}, such

that the marginal distributions are non-degenerate. Then, the two variables are termed

asymptotic dependent, or asymptotic independent, if that limiting distribution exhibits

dependence, or independence, respectively.

Although there exists only two extremal dependence scenarios in the bivariate case,

in multivariate extremes higher order dependence structures can lead to asymptotic

dependence for different subsets of the variables, so the number of different extremal

model structures grows exponentially with dimension (Simpson et al., 2020). Even in

the bivariate case, variables may exhibit extremal dependence in without asymptotic

dependence, with this dependence measured by the coefficient of asymptotic indepen-
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dence, χ̄ := limq↑1 χ̄(q) ∈ (−1, 1], where

χ̄(q) :=
2 log Pr{F2(X2) > q}

log Pr{F1(X1) > q, F2(X2) > q}
− 1, (4.2.7)

for 0 < q < 1, with independent variables giving χ̄ = 0, and 0 < χ̄ < 1 (χ̄ < 0) corre-

sponding to a positive (negative) extremal dependence form of asymptotic independence

respectively, and χ̄ = 1 arises when the variables are asymptotically dependent. Both

χ or χ̄ are invariant to the marginal distributions, so in terms of models for the joint

distribution it is helpful to consider different copulas. Heffernan (2000) presents (χ, χ̄)

for a range of copulae.

We now focus the discussion on copulae that are relevant to longitudinal data analy-

sis. Fougères et al. (2009) use the copula of the multivariate extreme value distribution

with logistic(α) dependence structure, which in the bivariate case has (χ, χ̄) = (2−2α, 1)

for 0 ≤ α < 1 and (χ, χ̄) = (0, 0) when α = 1. In terms of extremal dependence, this

copula model is restrictive as it cannot capture any positive dependence within the

asymptotic independence case. It also has limitations for modelling longitudinal data:

the copula is exchangeable, which is unrealistic for most time series data; and the

conditional distributions for this copula are non-trivial to simulate from. The latter

property complicates inference for future extreme events. Due to these features we

instead consider the d-dimensional Gaussian copula

C(xxx) =

∫ Φ−1(x1)

−∞
· · ·
∫ Φ−1(xd)

−∞
ϕd(sss; Σ) dsss,

for xxx = (x1, . . . , xd) ∈ [0, 1]d and sss ∈ Rd, with ϕd(sss; Σ) denoting the d-dimensional

Gaussian density, with standardized margins and dependence structure determined by

the d × d correlation matrix Σ. In the bivariate case this copula has the properties

(χ, χ̄) = (0, ρ) for correlation parameter−1 < ρ < 1, and (χ, χ̄) = (1, 1) for ρ = 1 (Coles

et al., 1999). Furthermore, as the multivariate copula is determined by its bivariate
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marginals, which are all asymptotically independent (except for the pathological case

when ρ = 1), it is not necessary to consider asymptotic dependence at any higher

order. The Gaussian copula allows for considerable flexibility and parsimony in terms

of the dependence structures that can be modelled and it benefits from having closed

form conditional distributions for describing and simulating the time series features of

longitudinal data. Given these properties, we will use the Gaussian copula structure as

a building block for modelling dependence of measurements of within-subject behaviour

in Section 4.3.2 but first, in Section 4.2.3, we show that we can approximate any level of

asymptotic dependence at finite levels using the asymptotically independent Gaussian

copulae for subjects within a longitudinal data context. Consequently our model has

all the good features of the copula used by Fougères et al. (2009) but none of the

disadvantages.

4.2.3 Sources of extremal dependence for longitudinal data

Measures of longitudinal data dependence

To illustrate the possible forms extremal dependence structures that can occur in longi-

tudinal data, consider a special case of the set up of Section 4.1 with n subjects indexed

by I, with a continuous time process for each subject i ∈ I is {Xi(t)} for all t which are

observed at a set of identical and equally spaced time points across subjects. We denote

Xi,j = Xi(ti,j) = Xi(tj) where tj is the jth time point. We also assume that the time

series for each subject are stationary and with marginal distribution Fi(·) = F (·;αi)

where F is a common continuous distribution function family with parameter αi ∈ R

which can vary over i ∈ I. We term αi the attribute of subject i, with the property

that F (x;αi) > F (x;αj) for all x ∈ R for all αi > αj. Increasing the attribute of a

subject makes the quantiles of its measurement distribution larger.

There are a range of different extremal features of the longitudinal data that can be

studied. Given the potential heterogeneity between subjects, the most basic application
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of the coefficient of asymptotic dependence for within-subject dependence at time-lag

τ for each subject i ∈ I is:

χi(τ) := lim
q↑1

Pr(F (Xi(τ);αi) > q | F (Xi(0);αi) > q),

or the equivalent asymptotic independence measure χ̄i(τ). However, this measure does

not provide a global description of the dependence across all subjects in I. To study

the extremal behaviour over subjects at each time point, consider Mt := maxi∈I Xi(t)

for different t. This leads to the lag τ dependence measure

χ(M)
τ := lim

q↑1
Pr(F (M)(Mτ ) > q | F (M)(M0) > q)

where F (M)(x) :=
∏

i∈I Fi(x) =
∏

i∈I F (x;αi), and also its equivalent asymptotic in-

dependence measure χ̄
(M)
τ . An alternative is to consider dependence between values in

the marginal tail for each time point. This corresponds to picking a random subject

from the population I at each time point, giving the lag-τ dependence measure

χ(R)
τ := lim

q↑1
Pr(F (R)(X(R)

τ ) > q | F (R)(X
(R)
0 ) > q)

where X
(R)
τ is a random selection from {Xi(τ) : i ∈ I}, so has marginal distribution

function F (R)(x) :=
∑n

i=1 F (x;αi)/n. Again the equivalent asymptotic independence

measure is χ̄
(R)
τ . When all subjects are identically distributed and have the same tempo-

ral dependence structure, then each of these extreme dependence measures at lag-τ are

identical to the measure of asymptotic dependence (asymptotic independence) (4.2.6)

and (4.2.7) respectively for the associated identically distributed variables. Thus each

measure has equal validity when assessing dependence for longitudinal data.
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Study of how attributes determine the form of extremal dependence

To help understand the information given by the extremal dependence measures for

longitudinal data of Section 4.2.3 we explore both χiτ and χ
(M)
τ for a particularly sim-

ple version of longitudinal data. Specifically, the variables consist of n independent

subjects, all of which have measurements at two time points - which are the same

across subjects - and each measurement is independent per subject except for sub-

ject n. Additionally all subjects assume the same attributes as each other except

for one. So, in the notation of Section 4.1, Ji = {1, 2} for all i ∈ I. The first

n− 1 subjects in I are identically distributed over both subjects and time points, with

Xi,j ∼ N(0, 1) for i = 1, . . . , n − 1 and j = 1, 2, while subject n has a different mean,

namely Xnj ∼ N(αn, 1) for j = 1, 2 and (Xn1, Xn2) are bivariate normal with correla-

tion 0 ≤ ρ < 1, which with standard margins has joint distribution function denoted

by Φ2(·, ·; ρ). Thus here F (x;αi) = Φ(x−αi), with attributes α1 = . . . = αn−1 = 0 and

αn.

We will consider two cases for αn (i) (2 log n)1/2/αn = o(1) as n → ∞ and (ii)

αn/(2 log n)
1/2 = o(1) as n → ∞, i.e., so the latter includes both αn → ∞ as n → ∞

and αn = 0 for all n. We will show that cases (i) and (ii) lead to results which

are consistent with asymptotic dependence and asymptotic independence, respectively

in this non-identically distributed setting. Given the longitudinal variables are not

necessarily identically distributed over subjects we explore both the standard definitions

of asymptotic dependence and some alternatives to aid transparency.

First consider case (i) where αn grows more rapidly with n with the subject specific

dependence measures at lag-1, i.e., (χi1, χ̄i1). We have (χi1, χ̄i1) = (0, 0) for subjects

i = 1, . . . , n− 1 due to the independence assumption and due to the bivariate Normal

distribution for subject n we have (χi1, χ̄i1) = (0, ρ). So there is asymptotic indepen-

dence across subjects, although subject n is not independent. For comparison, Fougères

et al. (2009) model this such that given their subjects attribute, i.e., the random effect,
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there is subject-specific independence over time for all subjects. So the basic Gaussian

formulation is more general from this perspective.

Now consider the dependence of (M1,M2), which is needed for the evaluation of

measures χ
(M)
1 and χ̄

(M)
1 of Section 4.2.3. As we want to consider limits n → ∞ for

the population n of subjects in the longitudinal data, we modify our notation to let

the maximum measurement over all subjects for time point j be denoted by Mn,j :=

max ({Xi,j : i ∈ I}), for j = 1, 2. We explore the dependence between (Mn1,Mn2) as

n → ∞. First, consider the two marginal probabilities Pr{Mnj − αn < x}, for some

x ∈ R and j ∈ {1, 2}. Then,

Pr{Mnj − αn < x} = [Φ(αn + x)]n−1Φ(x) → Φ(x) (4.2.8)

as n → ∞, i.e., a non-degenerate Gaussian limit. This result follows from the GEV to

GPD link in Section 4.2.1 since for αn growing as described above, n[1−Φ(αn+x)] → 0

for all x ∈ R since for y ∈ R, from univariate extreme value results for standard

Gaussian variables n[1 − Φ(any + bn)] → exp(−y) for an = (2 log n)−1/2 and bn =

(2 log n)1/2 + o(1) (Leadbetter et al., 2012). Now consider the joint probability, for

(x, y) ∈ R2, as n→ ∞, given by

Pr{Mn1 − αn < x,Mn2 − αn < y} = [Φ(αn + x)Φ(αn + y)]n−1Φ2(x, y; ρ) → Φ2(x, y; ρ),

(4.2.9)

where the non-degenerate limit arises using the same logic as for the marginal conver-

gence. The joint maxima are asymptotically dependent when ρ > 0, with the limit

not restricted to being a bivariate extreme value distribution as the variables are not

identically distributed.

Now consider case (ii) for the behaviour of αn. Then the equivalent results to

the above are that as n → ∞, Pr{(Mnj − bn)/an < x} → G(x), where G(x) =
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exp(− exp(−x)), and

Pr{(Mn1 − bn)/an < x, (Mn2 − bn)/an < y} → G(x)G(y).

These limits show both a change in the marginal limit distribution from Gaussian to

Gumbel and that there is now independence of limiting componentwise maxima.

These two asymptotic regimes for longitudinal data illustrate that the nature of

extremal dependence is different for this framework than for the results for distinct

stationary series. The limiting behaviour in these two scenarios illustrate that it is not

essential to have asymptotic dependence per subject to achieve asymptotic dependence

for longitudinal data; asymptotic dependence can be achieved by having subjects with a

heavy tailed attribute distribution; and that both asymptotic dependence and asymp-

totic independence can be achieved from a simple Gaussian copula. Critical to the

form of extremal dependence is the level of between-subject variation (via the attribute

variation) relative to the within-subject variation. Here in case (i) αn dominates the

maximum of the measurements over all other subjects but not in case (ii). In essence,

this occurs with the model of Fougères et al. (2009) with the latent positive stable law

determining an attribute and conditional independence over measurements given this

attribute.

To help better understand the nature of the asymptotic dependence case the supple-

mentary material covers another version of the measure χ
(M)
τ that allows both n and the

quantile to grow in combination. Specifically, we consider the conditional probability

Pr(Mn2 > xn |Mn1 > xn), where xn → ∞ and letting αn = xn− δ for some constant δ.
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4.3 Extremal Model for Longitudinal Data

4.3.1 Population Marginal Model

When developing a marginal model for the population of longitudinal random variables

{(Xi,j, ti,j) : j ∈ Ji, i ∈ I}, we make a critical decision of ignoring the subject-specific

nature of the data as is conventional in previous analysis of this sort of data. We refer

to this characteristic as subject-ignorant. Instead, the information regarding specific

subjects is captured through our dependence modelling in Section 4.3.2. The reasons

for this strategy are three-fold. Firstly, the number of observations per subject, e.g.,

| Ji | for subject i, is likely to be small in most applications and so a separate marginal

model (see Section 4.2.1) per subject for the data in the tails is an unrealistic target.

Secondly, modelling the tail of a population using a single GPD enables inference to be

made about the population as a whole, additionally to subject-specific inferences. For

example, in elite swimming, this allows inferences about how best performances over

different swimmers have evolved over time (Spearing et al., 2021). Thirdly, following the

convention of modelling the tail of a population using a single GPD enables application

specific structure identified from previous analyses, which ignore subject knowledge, to

be exploited.

Given the strategy described above, consider a generic pair (X, t), which to simplify

presentation is written as Xt. For a constant threshold u over time, with methods

for this threshold selection discussed in Section 4.2.1, there are three features of the

distribution of Xt we describe: the behaviour above the threshold u, the probability of

Xt exceeding u, and the distribution of Xt being below u. The latter is not typically

studied in extremes of a univariate variable, but keeping track of the behaviour below

the threshold is important here for dependence modelling of within-subject data in

Section 4.3.2.

Above the threshold u we assume that Pr{Xt < x|Xt > u} has a GPD(σu(t), ξ), as
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given by expression (4.2.5). Although Xt is potentially complex in its variation over

t, we only allow temporal variation in this distribution through the scale parameter.

Pragmatically, assuming the shape parameter to be homogeneous is a typical approach

in the modelling of extremes, since: there is limited evidence against this assumption

in almost all applications, it aids parameter identifiability, and even when it is ho-

mogeneous it is difficult to estimate well. The probability of exceeding the threshold

Pr{Xt > u} =: λu(t) is also allowed to vary with time. There is much literature on

modelling approaches for how (σu(t), λu(t)) vary with t, including parametric (Davison

and Smith, 1990), semi-parametric (Chavez-Demoulin and Davison, 2005) and fully

non-parametric such as with splines (Jonathan and Ewans, 2013), Gaussian process

(Casson and Coles, 1999) or machine learning approaches (Richards and Huser, 2022).

We use parametric modelling, with models for our application set out in Section 4.5.2.

The Xt, conditionally on being below u, are assumed to follow some unknown but

continuous density function ht : (−∞, u] → R+, with
∫ u

−∞ ht(s) ds = 1, where ht does

not depend on (λu, σu, ξ). Combining all these models gives the distribution function

FXt of Xt as

FXt(x) =

1− λu(t) [1 + ξ(x− u)/σu(t)]
− 1

ξ

+ , x > u,

[1− λu(t)]
∫ x

−∞ ht(s) ds, x ≤ u.
(4.3.1)

As with the vast majority of extreme value modelling we avoid imposing a structure

on the distribution of Xt < u, i.e., the density ht here. Even if a parametric model

for ht had no parameters in common with those in the GPD or λu models, there is a

risk of bias from mis-specifying ht in the longitudinal setting due to the dependence

between values Xi,j and Xij′ for j
′ ̸= j, where Xi,j < u < Xij′ . In such cases, errors

in modelling below the threshold can induce errors above the threshold to compensate.

When making inferences about the extremes values of the longitudinal data, any actual

value Xi,j below u is instead treated as censored, i.e., as a realisation of the event
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Xi,j < u.

4.3.2 Dependence Structure in a Latent Space

The focus now turns to modelling the dependence structure of random variables {(Xi,j, ti,j) :

j ∈ Ji, i ∈ I}, with the structure identified in Section 4.1. Specifically, we need to allow

for temporal dependence between within-subject variables and independence between

across-subject variables, so unlike in Section 4.3.1 knowledge of each subject’s contri-

bution to the data is accounted for. The formulation of these models builds on the

theoretical findings of Section 4.2.3, which showed that multivariate Gaussian distri-

butions for within-subject variations combined with an attribute distribution that has

the capacity for both heavier and shorter tails than the within-subject Gaussian dis-

tribution, provide sufficient flexibility to allow for both asymptotic dependence and

asymptotic independence, respectively.

The adopted modelling strategy bears likeness to that of copula modelling (Joe,

1997; Nelsen, 2007) or more specifically as in Wadsworth et al. (2017) and Huser and

Wadsworth (2019), i.e., focusing on the joint structure of variables, without concern

for its implications on the marginals at that stage. Subsequently, in Section 4.3.3,

the marginal distribution of this model is linked to the formulation in Section 4.3.1.

In particular, a model is adopted in terms of variables {(Zi,j, ti,j) : j ∈ Ji, i ∈ I},

where Zi,j = Tt(Xi,j) for a function Tt defined in Section 4.3.3, and we refer to this as

modelling in the latent space.

Consider a model in the latent space for the dependence arising between measure-

ments from the same subject, e.g., {(Zi,j, ti,j) : j ∈ Ji} for subject i, a characteristic

we term subject-conditional dependence. We follow standard Gaussian modelling as-

sumptions of longitudinal data analysis (Diggle et al., 2002), which are also coherent

with results in Section 4.2.3. The subject-specific model takes Zi,j, across j ∈ Ji,

as realisations of a Gaussian process Zi(t) over time t ∈ R observed at the times
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ttti := {ti,j; j ∈ Ii}. Specifically,

Zi(t) ∼ GP
(
µi(t), ν

2
iKκκκ(·, ·)

)
, for all t ∈ R, (4.3.2)

where the mean function µi(t) : R → R is a subject-specific time-dependent mean, νi >

0 is a homogeneous subject-specific standard deviation, and Kκκκ is a stationary kernel,

which is shared over subjects, and which dictates the subject-conditional correlation

between the process at any times t ∈ R and t′ ∈ R with hyper-parameters κκκ. The

term µi(t) allows for the statistical properties of individual subjects to evolve over

time separately from that of the population marginal model, as is the case for many

applications in longitudinal analysis. To avoid over-parametrisation over individuals it

is reasonable to assume that

µi(t;θθθi, γγγ) = αi + µ(t, τi;γγγ), for all t ∈ R, (4.3.3)

for a subject-ignorant function µ with parameters γγγ, subject-specific parameters θθθi :=

(αi, τi) and covariates (which are ignored in this formulation, but are used in Sec-

tion 4.5.2). To ensure that αi is identifiable, the maximum of the function µ, over t,

is set to zero, i.e., αi = maxt∈R µi(t;θθθi). Then αi is the subject attribute as in Sec-

tion 4.2.3. When µ ≡ 0 in model (4.3.2) the subject-specific dependence measures are

(χiτ , χ̄iτ ) = (0, Kκκκ(0, τ)), for all i ∈ I.

The form of the stationary kernel is application specific. A powered exponential is

used

Kκκκ(t, t
′) = exp(−κ0|t− t′|κ1),

with κκκ = (κ0, κ1) ∈ R+ × [0.5, 2] in Section 4.5, where smaller κ0 gives less subject-

conditional dependence (with the limit κ0 → ∞ giving subject-conditional indepen-

dence); and κ1 influences the local smoothness of the process, with larger κ1 giving a
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smoother process, with the limit κ1 → 2 corresponding to a process which is infinitely

differentiable, and when κ1 = 1 the process is Markov. There are many other well-

established stationary kernels, e.g., the Matérn family, see Diggle et al. (1998). Some

of these were trialled in exploratory analysis for the application in Section 4.5 but were

found to make no practical differences, which is a consequence of there being only a

few observations per subject and the absence of observations at short time lags.

Conditioning on the parameters of this latent model, the marginal distribution of

Z, an arbitrary observation from the longitudinal data set in latent space, is

GZ(z) =
1

n

∑
i∈I

ni∑
j=1

Φ

(
z − µi(ti,j)

νi

)
, (4.3.4)

where ni := |Ii| and n =
∑

i∈I ni. Thus the marginal distribution of Z is a mixture of

Gaussian variables over subjects and different observation times.

Finally, consider the marginal variation across subjects. As in Section 4.2.3 this

variation is captured exclusively through the distribution of the attributes {αi : i ∈ I}.

Over the whole population of subjects all αi are taken to be independent and identically

distributed with αi ∼ N(0, V 2
α ) for all i ∈ I, for a given fixed value of Vα > 0. This

model for the attributes is assumed to hold over the population as a whole, as well as

over set of observed subjects I, with the former covering all potential subjects outside

the time window of observations.

From Section 4.2.3, it is clear that the variation in the αi relative to the within

subject variability, i.e., νi for subject i, is what determines whether the longitudinal

data exhibit asymptotic dependence or asymptotic independence. So, the precise value

of Vα is irrelevant for differentiating between within-subject variation and population

variation, as this is controlled by νi/Vα. Hence Vα can be fixed to any chosen value, since

the {νi} are parameters to be estimated from the data, and so their values can adapt

proportionally to changes in Vα. Thus the data determine the form of longitudinal
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data extremal dependence, the degree of which we measure using the lag-τ coefficients

(χ
(M)
τ , χ̄

(M)
τ ) or (χ

(R)
τ , χ̄

(R)
τ ) of Section 4.2.3.

4.3.3 Transforming Margins between Observed and Latent Spaces

The probability integral transform (4.3.5) is used to transform between the observation

scale of X and the latent space of Z, defined in Sections 4.2.1 and 4.3.2 respectively.

Specifically, the variables Xi,j and Zi,j, both occurring at time ti,j are linked by

GZ(Zi,j) = FXti,j
(Xi,j), so Zi,j := Tt(Xi,j) = G−1

Z {FXti,j
(Xi,j)} (4.3.5)

where FXt and GZ are defined by expressions (4.3.1) and (4.3.4), respectively and Tt is

the transformation outlined in Section 4.3.2.

For those Xi,j points above the threshold on the original margins, the transform is

given as

Zi,j = G−1
Z

{
1− λu(ti,j) [1 + ξ(Xi,j − u)/σu(ti,j)]

− 1
ξ

+

}
,

whereas when these points are below the threshold,

Zi,j = G−1
Z

{
[1− λu(ti,j)]

∫ Xi,j

−∞
hti,j(s) ds

}
.

The complication here is that the density function ht is unknown and we do not want

to model it, hence the censoring approach outlined in Section 4.2.1. Instead, for this

range of Xi,j, the random variable Vi,j :=
∫ Xi,j

−∞ hti,j(s) ds is uniform(0,1) distributed. So

the auxiliary variable Vi,j ∼ Uniform(0, 1) is introduced into the transformation when

Xi,j < u, to give Zi,j = G−1
Z {[1− λu(ti,j)]Vi,j} . A consequence of the transformation is

that the threshold u in the observation space becomes time-varying in the latent space,

i.e., uZ(t) = G−1
Z {[1− λu(t)]}.

For making joint inferences across marginal and dependence structure parameters
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the likelihood functions in Section 4.4 require the Jacobian terms for these transforma-

tions. These terms require the marginal density in the latent space, i.e.,

gZ(z;θθθ,γγγ,ννν) =
1

n

∑
i∈I

ni∑
j=1

1

νi
ϕ

(
z − µi(ti,j; , θθθi, γγγ)

νi

)
,

where ννν := {νi : i ∈ I} and θθθ := {θθθi : i ∈ I}. For a realisation x of X (or v of V ) when

the observation is above (or below) u, respectively, the associated realised value z of

Z is obtained using the transformations above. The corresponding Jacobian terms, J+

and J− for above and below the threshold, respectively at time t are

J+(x; t, ξ,σσσ,βββ,θθθ,γγγ,ννν) =
λu(t;βββ)

σu(t;σσσ)gZ(z;θθθ,γγγ,ννν)
[1 + ξ(x− u)/σu(t;σσσ)]

− 1
ξ
−1

+ ,

J−(v; t,βββ,θθθ,γγγ,ννν) = [1− λu(t;βββ)]/gZ(z;θθθ,γγγ,ννν),

which follows from
∫
gZ(z; t) dz =

∫
fX(x; t) dx for all t, and where σσσ and βββ are the

parameters of the model for σu(t) and λu(t), respectively.

4.3.4 Predicting future extreme events in longitudinal data

A benefit of accounting for the longitudinal structure is that now inference and predic-

tions of extreme events regarding individual subjects is ascertainable, e.g., a new record

is achieved by a particular subject i ∈ I. To make such inferences, each subject’s mean

function over time is incorporated, as well as the temporal dependence around this.

Both of these aspects are described by the Gaussian process model of Section 4.3.2,

which gives analytical solutions to probabilities of future events through its closed form

conditional distributions. In the supplementary material, we provide an example pre-

diction, namely, the probability of a subject i ∈ I breaking the record for the maximum

measurement r in some future time period F , denoted by the event AF
i (r). The prob-

ability of AF
i (r) is derived under some assumptions for an idealised scenario, including
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having independent and identically-distributed variables.

Such simplifying assumptions are realistic for some applications and thus analytical

results are feasible. However, in applications where these assumptions can no longer

be assumed, evaluation of the probabilities of such complex future events are most

simply conducted through Monte Carlo methods, simulating over different realisations

of the longitudinal process for the fitted model. A particular complication arises in

applications with subject-specific mean functions - as we have in our elite swimming

application, Section 4.5 - which induce non-identically-distributed variables, for there

it must be recognised that in the longer-term the extreme events are more likely to be

due to subjects not yet observed in I.

In the short-term however, these future extreme events are most likely to be obtained

by the current subjects in I, followed by a transitional medium-term in which extremes

arise from a mixture of these populations of subjects. In the supplementary material,

we develop the outline of a simulation framework for such inferences, setting out some

possible choices that need to be made in relation to the currently unobserved subjects.

Going forward beyond the observed time-frame, this framework outlines three classes of

subjects: (i) those subjects in I, indexed by Ic with Ic ⊆ I, which are still producing at

least one measurement above u in the future time window; (ii) those subjects If , which

produced measurements exclusively below the threshold within the observed time-frame

and so {If ∩I} = ∅, but in the future produce a measurement above u; and (iii) those

subjects In with no recordings at all within the observed time-frame but which in the

future period produce at least one measurement above u. The supplementary material

details a strategy of simulating from each of these three groups.
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4.4 Inference

The likelihood is constructed in two steps. First, we assume that the parameters (ξ,σσσ,βββ)

and the vector of auxiliary variables for the marginal variables in the observed space are

known, so that only the parameters effecting the latent space need to be estimated. Sec-

ondly, we account for uncertainty in these marginal parameters and auxiliary variables.

For deriving the likelihood in the latent space for a given subject i with observations

(ZZZi, ttti) := {(Zi,j, ti,j) : j ∈ Ji}, we define the correlation matrix between all of sub-

ject i’s observations by the correlation matrix Σi
κκκ := Kκκκ(ttti, ttti), i.e., the (j, k)th entry

Σ
i,(j,k)
κκκ := Kκκκ(ti,j, ti,k) is the correlation between Zi,j and Zi,k. Recalling that obser-

vations for a subject are from a multivariate Gaussian distribution, and that across

different subjects are independent, the likelihood in the latent space for realisations

zzz := {zzzi : i ∈ I} at times ttt := {ttti : i ∈ I}, is given as

Lℓ (zzz; ttt, θθθ,γγγ,ννν,κκκ) ∝
∏
i∈I

ν−ni
i |Σi

κκκ|−1 exp

(
−1

2
z̃zzTi Σ

i
κκκ z̃zzi

)
(4.4.1)

with z̃zzi :=

{
zi,j − µi(ti,j;θθθi, γγγ)

νi
: j ∈ Ji

}
, ∀i ∈ I.

The parameters for the margins in the observational space are in practice unknown.

Therefore the full likelihood requires the Jacobian terms, from expression (4.3.6), which

control the transformations between the two spaces. Let the sets of observations which

are below and above the threshold be L− := {(i, j) : Xi,j ≤ u : j ∈ Ji, i ∈ I} and

L+ := {(i, j) : Xi,j > u : j ∈ Ji, i ∈ I} respectively. The full likelihood of parameters

ΘΘΘ := (ξ,σσσ,βββ,θθθ,γγγ,ννν,κκκ) and auxiliary variables is

L(xxx,vvv;ttt,ΘΘΘ) ∝ Lℓ (zzz; ttt, θθθ,γγγ,ννν,κκκ)× ∏
(i,j)∈L−

J−(vi,j; ti,j,βββ,θθθ,γγγ,ννν)

 ∏
(i,j)∈L+

J+(xi,j; ti,j, ξ,σσσ,βββ,θθθ,γγγ,ννν)

 ,
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where vvv := {vi,j : (i, j) ∈ L−} and zzz is a function of xxx and vvv, as identified in Section 4.3.3.

There are likely to be complications with using an entirely likelihood-based ap-

proach to inference for this model. Firstly, with two parameters per subject, limited

data per subject, and many subjects, an asymptotic-based inference justification and its

associated uncertainty evaluation is not supported. There are issues with dealing with

the auxiliary variables, with the need to integrate over these making likelihood evalu-

ation difficult. In many multivariate extreme value models with complex dependence

structure, inference is conducted via pseudo likelihoods and using bootstrap procedures

which avoid the need to model the dependence structure (Davison et al., 2012). Such

approaches are not suitable here because of the large influence of a small number of

large values on the parameter estimates, so biased inference is likely (Healy et al., 2023).

Furthermore, with longitudinal data there are problems of identifiability under boot-

strap sampling given that data from subjects with more limited data are more likely to

be omitted in replicate samples than for other subjects. Instead, we adopt a Bayesian

inference framework, which provides full uncertainty quantification of all parameters

and auxiliary variables simultaneously. The Bayesian framework also allows for easier

uncertainty quantification in the prediction of future events, see Section 4.5.

Let the parameters ΘΘΘ have prior distribution πΘΘΘ(ΘΘΘ), and let the prior πVi,j
(v) for all

(i, j) ∈ L− be uniform (0, 1) distributed and to be independent across these variables.

Then, the full posterior distribution can be written as

π (ΘΘΘ, vvv|xxx, ttt) ∝ πΘΘΘ (ΘΘΘ)L(xxx,vvv; ttt,ΘΘΘ). (4.4.2)

In Section 4.5.3 we present the prior πΘΘΘ for our analysis of elite swimming data.

Before detailing our Markov chain Monte Carlo (MCMC) methods for simulating

from the joint posterior, we identify a computational issue that influences our choice

of MCMC strategy. Specifically, in order to transform the data from the observed

space into the latent space, the inverse of the Gaussian mixture distribution (4.3.4)
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is required, but that has no analytical solution. Numerical solution of this inverse is

required for each likelihood evaluation, and for each data point for each subject. Exact

numerical solution on this scale is computationally infeasible. Instead, for likelihood

evaluation we use a grid search algorithm, searching over a finite regular grid ZG in the

latent space, for each data point xi,j, such that

zi,j =

 argminz∈ZG
(|GZ(z)− FX (xi,j, ti,j) |) , xi,j > u,

argminz∈ZG
(|GZ(z)− [1− λu(ti,j)]vi,j|) , xi,j ≤ u,

(4.4.3)

where both FX and GZ depend on the parameter values of each likelihood evaluation.

This grid search approach slows down inference significantly since it requires a factor

of |ZG| more evaluations relative to there being an exact solution to equation (4.3.5).

Moreover, the discrete nature of the grid search, with no gradient information, rules out

our use of a range of popular Bayesian inference algorithms, e.g., Hamiltonian Monte

Carlo (Duane et al., 1987) and the No U-Turn Sampler (Hoffman and Gelman, 2014).

Section 4.6 discusses this point further.

Given these constraints and the slow likelihood evaluation, a Metropolis-Hastings

(MH) algorithm is implemented that utilises the Python package PyMC (Salvatier

et al., 2016), which enables efficient inference through automated optimisation of the

algorithms’ tuning parameters. In the case of MH, this provides well-tuned proposal

distributions for optimal exploration of the joint posterior distribution. For a further

speed-up, we sample a large number (in our case 40) of shorter MCMC chains (2000

samples each, including 1000 ‘burn-in’ samples) in parallel using high-performance com-

puting, which then undergo standard diagnostics for checking of convergence (Gelman

and Rubin, 1992). By randomly drawing all realisations vvv from its prior distribution at

each step of the MCMC algorithm, and then considering only the marginal distribution

for ΘΘΘ, in essence pseudo-marginal MCMC (Andrieu and Roberts, 2009) is performed,

and the posterior π (ΘΘΘ|xxx, ttt) is recovered.
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In order to attain inference for future predictions, see Section 4.3.4, the full pre-

diction uncertainty is propagated through the model. Given the set of simulated time-

stamps ttt∗i of future observations by a subject i, which are randomly generated by the

process described in Section 4.3.4, the variables Zi(t) ∼ GP {µ(t;θθθi, γγγ), Kκκκ(·, ·)}, jointly

for t over the set ttt∗i , are sampled from the Gaussian process, with the parameter values

being a random sample s from the joint posterior π (ΘΘΘ, vvv|xxx, ttt). The sample is then

transformed back to its original margins. For those samples above the time-varying

threshold on the latent scale uZ , the GPD parameter values used in the transformation

are the same sample s from the posterior.

For an observation below the threshold - which is by definition not extreme - the

actual value on the original margins is unimportant for inference of extreme events.

Only the time of occurrence and the knowledge that they are below the threshold are

relevant, in order to characterise the dependence structure, and which we already have

from the simulation process. However, for visualisation purposes it is useful to have

some estimate of non-extreme values on the original scale, see Figure 4.5.4. In this case

the empirical CDF is used, though it is acknowledged that this does not include the

uncertainty in the distribution on the original margins.

4.5 Application

4.5.1 Data

The data analysed constitutes mens’ 100m breaststroke results in FINA competitions

in the period 2012-2019, obtained from the FINA website. A few strategic decisions

were made about which data to analyse. Firstly, only data of each swimmer’s best time

swam per competition was selected, i.e., one swim per competition. This removes much

of the tactical element, e.g., weaker swimmers may need to swim to full capacity during

the heats of competitions, whereas a top swimmer can typically afford to save their
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best performances for the finals. Using exclusively these competition maxima helps to

ensure that each observation is a good approximation of the swimmer’s best ability at

that time. It also has the benefit of avoiding the need to capture performance strategy

or to deal with issues of dependence at very short time lags.

Secondly, in extreme value analysis, the scale on which the data analysis is performed

can impact the results (Wadsworth et al., 2010). Following the discussion in Spearing

et al. (2021) minimum swim-times are modelled, but modelling the maximum swim-

speed (Gomes and Henriques-Rodrigues, 2019), i.e., the reciprocal of the times swam, is

also an option. For analysing minimum swim-times, results exist for the behaviour of the

lower tails of a distribution, however they are rarely applied (Robinson and Tawn, 1995)

and give identical results to our strategy. We therefore analyse negative swim-times,

and then negate any estimated quantiles in order to provide results for actual swim-

times that make use of the more commonly-used methodological frameworks for upper

tails. Finally, the threshold must be selected. The analysis of Spearing et al. (2021)

identified the 200th fastest personal best (PB) over the period 2001-18 as a suitable

(negative) extreme threshold u = −61.125 seconds, so this threshold is adopted here

despite now focusing on the larger data set of all competition maxima per swimmer.

Our model has two subject-specific parameters θθθi = (αi, τi) per swimmer. Unless

swimmer i has undertaken sufficient swims in the data set then the posterior for the

parameters for such swimmers will be weakly informed by the data, or even unidenti-

fiable from the data if swimmer i has only one recording. Here the standard Bayesian

approach, and perhaps the most obvious, is to carry out analysis regardless and ac-

knowledge that the marginal posterior distributions for such θθθi will be almost identical

to the associated prior distributions. However, the prior on αi is necessarily vague to

allow for variation over swimmers, see Section 4.5.3, so the posterior information about

these parameters adds little value to the overall inference. Moreover, it comes at a

large computational cost from the many uninformative parameters, which requires the
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MCMC to do approximately twice as many of the slow likelihood evaluations, see Sec-

tion 4.4. Our analysis is instead restricted to only those swimmers with a “sufficient”

number, i.e., more than m, of recordings in the data set. So, for the set of swimmers

Im that have recorded m or fewer swims, i.e., for all i ∈ I, with ni := |Ji| ≤ m, these

data are ignored. The analysis is therefore conducted on the swimmers I \ Im. A

potential consequence of restricting the data set is that the GPD may no longer be a

good fit to the tails of the data; however, we show in Section 4.5 that this does not

appear to be the case. Section 4.6 discusses alternative approaches that do use the data

for swimmers Im and which do not suffer from computational complications, but they

require additional modelling assumptions.

If m is chosen to be too small, some θθθi will have marginal posteriors with only

minor differences from their priors and at the computational cost of needing more

MCMC samples for convergence given the two additional variables per extra swimmer

included. With m too large, too much data are excluded so posteriors are less well

informed than necessary. The strategy for choosing m is to observe how the number of

swimmers that have swum less than or equal to m, i.e., km :=
∑

i∈I 1{ni ≤ m}, varies

with m. An abrupt increase was found when m = 7. Therefore, by selecting m = 7,

a relatively large proportion of those swimmers with only few observations (40%) are

discarded, whilst only losing 20% of the total observations. The final dataset used for

analysis contained 120 swimmers, with 1435 total observations. In an early analysis

the model was fitted using only the 10 most prolific swimmers, i.e., m = 18. Using

these data the posterior means of the GPD parameters were very similar to those in

the final analysis, reported in Section 4.5.4, indicating that there is very little bias, or

sensitivity, introduced through the choice of m.
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4.5.2 Modelling applied to swimming

From Spearing et al. (2021), the conditional distribution of extreme swim-times Pr{X <

x|X > u} for large u can be treated as identically distributed over time, and so we

take σu(t) =: σu ∈ R+, ∀t, i.e., σσσ = σu. The common temporal trend across the

population of elite breaststroke swimmers can then be captured through the probability

of exceeding the threshold λu, through a smooth monotonically increasing function for

λu. A logit-linear functional form for λu was found appropriate for the change in

λu over t. Specifically, for a swim-time in year t ∈ {2012, . . . , 2020} and parameters

βββ := (β0, β1) ∈ R2, we denote the model

λu(t;βββ) = exp(β0 + β1t)/[1 + exp(β0 + β1t)]. (4.5.1)

We next turn attention to the subject-specific trends. In elite swimming, the sub-

ject trend captures a swimmer’s career trajectory - the tendency for athletes to enter

elite sports as relatively inexperienced, improve until some individual peak ability, and

then decline before leaving the sport. Swimmers tend to improve rapidly towards their

peak mean performance αi, at an age of τi, as they mature physically, and then stop

competing within a few years of reaching this peak. Here we allow the time at which

peak mean performance is achieved to vary over swimmers to allow for their differences

in maturity. The lack of data in the decline of the career trajectory enables the parsi-

monious assumption of a symmetric career trajectory about the peak. From what can

be identified from the data, after transformation to the latent space, a quadratic mean

trend in age of swimmer, with curvature γ < 0, seems a reasonable approximation to

this mean performance progression. Hence, we introduce swimmers’ age as a covariate,

by first including the covariate bi ∈ R, swimmer i’s birth date, so that t− bi, for t > bi,

is the age at which swimmer i recorded the swim at time t. Thus, for a swim recorded
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at a time t by a swimmer i, the mean function is

µi(t; bi, θθθi, γ) = αi − γ(t− bi − τi)
2, for all t ∈ R,

for all i ∈ I, where θθθi =: (αi, τi) ∈ R × R+, and here γγγ = γ > 0. We do not attempt

to have a swimmer-specific parameter for γ given the limited number of swims per

swimmer. Furthermore, it was found that the variance across swims from a swimmer i,

ν2i could be assumed the same across swimmers, i.e., νi =: ν ∈ R+, ∀i ∈ I. It seems that

different latent mean values per swimmer is sufficient to capture the across-swimmer

effects.

4.5.3 Prior specification

The DAG in Figure 4.5.1 illustrates the full model specification for this swimming ap-

plication, and in particular, the formulation of πΘΘΘ, defined in Section 4.4. For simplicity

the priors are assumed to be mutually independent across all components of ΘΘΘ, i.e., the

full prior can be written as

πΘΘΘ (ΘΘΘ) = π (ξ) π(σu)π (βββ)

(∏
i∈I

π (αi) π (τi)

)
π (γ) π (ν) π (κκκ) . (4.5.2)

We now explain our choices of these marginal priors in the sequence shown in expres-

sion (4.5.2).

Considerable discussion on priors for GPD parameters goes back to Coles and Tawn

(1996). Selecting the shape parameter prior to be logit (ξ + 1) ∼ N (logit(0.8), 0.3)

approximately restricts the domain of the shape parameter to be −1 < ξ < 0. The

constraint −1 < ξ is reasonable as the likelihood is infinite otherwise when the upper

endpoint of the GPD is set to the sample maximum (Smith, 1985), and so if violated it

could lead to estimates of the GPD which imply that there is no possible improvement

on the best time already achieved. The constraint ξ < 0 implies that there exists some
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finite limit on the fastest possible performance, which is sensible. Furthermore, analysis

of elite swimmers’ PB data from 2001-2019 (Spearing et al., 2021) found strong evi-

dence of a common negative shape parameter over all swimming distances, strokes and

gender categories. For determining the prior distribution for the GPD scale parameter

we exploited knowledge from Spearing et al. (2021) that an estimated value of this

parameter using PB data for this event was close to 1. So taking σu ∼ Gamma(25, 25)

enforces positivity, has the required mean value, and a standard deviation of 0.2. Lastly

for the threshold exceedance rate parameters βββ, as given in expression (4.5.1), the priors

β0 ∼ N(0, 0.5), and β1 ∼ Gamma(0.1, 0.1) are imposed. The latter prior is selected to

reflect our knowledge of an improvement on the ability of swimmers (Spearing et al.,

2021), and combined with the former gives a wide range of likely exceedance rates of

approximately (0.1, 0.9).

Now consider the prior choices for the parameters that determine the distribution of

the process in the latent space. First consider the marginal parameters. As discussed

in Section 4.3.2, we take αi∼N(0, V 2
α ), where here we select Vα = 6, to allow for

considerable variation in the skill level of the elite swimmers. The priors on the peak

ages of the swimmers were taken to be τi ∼ N (25, 2.52) to reflect that a swimmer’s

typical might peak at roughly 25 years old and with a reasonable probability that it falls

somewhere in the region (17.5, 32.5) years of age. The prior for the rate of quadratic

decay from the peak performance in the latent space is given by γ ∼ Gamma(0.5, 0.5)

distribution. This is weakly informative with a small preference for γ to be arbitrarily

close to 0, so that a posterior suggesting γ > 0 cannot simply be an artefact of the

prior. As we expect a much greater difference between subjects than within a subject’s

performances, the variance of the prior for ν is taken to be much smaller than Vα, with a

prior ν ∼ Gamma(1, 1). Finally, consider the kernel parameters: κ0 ∼ Gamma(0.5, 0.5)

enforces κ0 > 0, where the hyper-parameters choice allows κ0 to be arbitrarily close to

0, i.e., the special case of subject-specific independence; and for κ1 ∈ (0.5, 2), the prior
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was selected be to logit(κ1 − 0.5)/1.5) ∼ N(logit(1), 2), so the prior mean of κ0 is the

Markov special case, and the larger standard deviation allows an exploration of the full

domain.

4.5.4 Results

Subject-specific Inference

We first focus on the within-subject features of the model that provides information

about individual swimmers as well as playing a key role in determining the dependence

structure across the longitudinal data of elite breaststroke swimmers. As identified in

Section 4.2.3, there are two features of the subject-specific behaviour which affect the

extremal dependence of these data: the subject-specific variation in the attributes, here

captured by the {αi : i ∈ I}; and the within-subject dependence, given by the Gaussian

process.

The marginal posterior distributions of the parameters θθθi are shown in Figure 4.5.2

for the top ten swimmers, as defined in Section 4.5.4, a ranking that strongly correlates

with the swimmers with the ten largest posterior mean αi values. With the exception

of the posterior for Adam Peaty’s αi, there is considerable overlap between the other

nine posteriors, with Peaty’s having both a larger mean and 50.5% of the variation of

the others. The larger mean value is not too surprising as Peaty holds the 7 fastest

times, and 11 of the top 20, for the competition-best data analysed, together with all

the top 20 times over all swims in this event. The posteriors for the τi for these top ten

swimmers are broadly more self-consistent across swimmers, with almost all posterior

mass for the peak performance age in the range (25, 35) years, though both Peaty and

Andrew Michael appear to have lower peak ages, with Peaty almost certainly having

peaked before the age of 30 (he is 29 at the time of writing).

What is possibly most intriguing about these posteriors is that the posterior of αi

for Nicolo Martinenhi has upper quantiles which exceed the same quantiles for Peaty’s
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αi, with his mean and median αi being notably smaller than Peaty’s values. There are

three possible compounding causes for this which we explored as follows. Firstly, it could

be that Martinenhi produced some high quality swims, but also has much variability

in these, which suggests he may be capable of getting much better swims; however,

this is unlikely since only two of Peaty’s swim-times are slower than Martinenhi’s PB.

Secondly, the greater posterior uncertainty of Martinenhi’s αi could be as he has much

less swims in the database relative to Peaty, but in fact Martinenhi has 14 better than

the threshold, which is comparable to Peaty’s 17. The third cause, and seemingly

the most likely, is that Martinenhi is relatively young - five years younger than Peaty

- being 20 years old when he produced his most recent time in the database. For

younger swimmers it is difficult to disentangle between peak age and attributed, which

is evidence by Martinenhi having the largest posterior correlation, of 0.89, between

his (αi, τi) of the top 10 swimmers, e.g., for Peaty this is 0.50. Martinenhi’s large

uncertainty in peak age is contributing greatly to the uncertainty in his attribute; his

peak is still to come - but we are uncertain in its level.

The posterior 95% highest posterior density interval (HPDI) for the subject-specific

quadratic trend curvature γ is (0.015, 0.029), showing that there is concrete evidence of a

rising and falling career trajectory, especially given the prior favours γ being arbitrarily

close to 0. The 95% HPDI for the ratio of within-subject to across subject variation, i.e.,

ν/Vα, is (0.17, 0.18), showing that the majority of the variation in the extremes of these

longitudinal data is explained by swimmer identification. Furthermore, with Peaty

having much the latest αi, Section 4.2.3 indicates there will be asymptotic dependence,

irrespective of the within-subject dependence ρ(τ) at lag τ . The posterior mean and

pointwise 95% (HPDI) are shown in Figure 4.5.2 (right) for the measure of subject-

specific asymptotic independence χ̄i,τ = ρ(τ), for lag τ ∈ [5, 365] days. This inference

indicates that at 50 days there is reasonable dependence per swimmer and even at 6

months lag there is non-negligible subject-conditional dependence. The other measures
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of extremal dependence are difficult to ascertain due to the underlying variables being

non-identically distributed as evidenced by the posterior for γ > 0.

Subject-ignorant Marginal Inference

Now consider the joint posterior inferences for the subject-ignorant marginal distribu-

tion parameters for the GPD and tail exceedance probabilities, i.e., {σu, ξ,βββ}, which

are derived from the joint posterior (4.4.2) for all the model parameters. The posterior

mean for ξ and its 95% HPDI are −0.22 (−0.25,−0.20), providing strong evidence for

a negative shape parameter. Similarly, for β1 these values are 0.13 (0.09, 0.16), showing

that the rate of achieving extreme elite performances in this event is increasing over

the time window from 2012-2019, with the posterior mean and 95% HPDI for λu(t)

being 0.34 (0.30, 0.38) for 2012 and 0.55 (0.51, 0.59) for 2019, showing that the value of

β1 corresponds to a substantial difference in the behaviour of the population over the

observed time period.

We now adapt this inference for informing us about extreme marginal events. As

described in Section 4.2, when ξ < 0 there is an estimated upper endpoint xH = u −

σu/ξ, which in the context of swimming is interpreted as the best possible performance

humanly possible, given the current technology, a quantity that has been widely studied

in sports (Huub and Trultens, 2005; Nevill et al., 2007). Figure 4.5.3 shows the posterior

distribution of xH , and the closeness of Peaty’s current world record to the ultimate

possible time. The posterior places the endpoint closer to the current record than

similar analysis of PB data (Spearing et al., 2021), with the earlier analysis pooling

information across events.

The expected value of the next world record swim-time is obtained by exploiting the

threshold-stability property of a GPD (Coles, 2001). Since the (negative) current world

record r = −56.88 > u, exceedances above r follow a GPD. Setting the threshold at r,

then exceedances of r, denoted Xr+ := {X : X > r}, follow a GPD(σr = σu+ξ(r−u), ξ)
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and the expected next world record time is E[Xr+ ] = r+ σr/(1− ξ). Figure 4.5.3 (left)

shows the posterior distribution of E[Xr+ ]. Although having some overlap with the

posterior of xH , the posterior of E[Xr+ ] is much nearer Peaty’s current record than xH .

The simplicity of the result for the expected record value arises as both ξ and σu are

constant over time and the expectation is not conditional on the current swimmers’

performances, with the latter considered in Section 4.5.4. Furthermore, this posterior

for E[Xr+ ] provides no information about when this record is likely to be achieved.

An indication of this time-scale is given in Figure 4.5.3 (right), where we present the

posterior for the rate λr(t) per future year t of swims by elite swimmers beating Peaty’s

record r. Here λr(t) = stλu(t)[1 + ξ(r − u)/σu]
−1/ξ, where st is number of total swims

per year by elite swimmers. The posterior mean and 95% HPDI are shown for λr(t)

over the window 2023− 30, assuming that the total number of swims per year remains

the same as in 2019.

Model Diagnostics

Diagnostics for the marginal GPD element of our model are well-established, so here

novel diagnostics that focus on the subject-specific characteristics of the data are pre-

sented. Rather than the latent scale as in Section 4.3.2, diagnostics are shown on

the observed scale, so observations can be compared with predictive distributions for

the associated swim-dates. Figure 4.5.4 shows the observations over time for six top

swimmers, identified in Figure 4.5.5. All these swimmers have performances that are

generally improving over time, and some have performances which are worse than the

threshold, i.e., slower than the threshold. As such slow swims are treated as censored

at the threshold, modelling these precise values is not of great importance, with the

prime focus concerning swim-times better than the threshold.

A sample of size 400 was generated from the posterior predictive sample for each

past date of a swim for each of these swimmers, i.e., ignoring in the simulation stage
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the actual observation values by not conditioning on them. These distributions are

shown on Figure 4.5.4 under-laying the corresponding observations. In a well-fitting

model, each observation should appear to represent a sample from these simulated

distributions. The model seems to have captured the improving career trajectory to

date. The posterior predictive distributions indicate that the model fits well, as most

observations are reasonably central to their associated distribution for all swims better

than the threshold, and even for the swims not as good as the threshold. Maybe to be

expected, Peaty’s three best swim-times, each world records when achieved, are into

the tails of their associated predictive distributions. For weaker swims, Martinenghi

and Shymanovich have performances which are unexpectedly slow relative to what our

model would anticipate.

Figure 4.5.4 also shows samples for these predictive distributions in the future, as

the points from 2020-32, obtained under a stochastic model for the number and dates

of future swims assuming that the swimmers continue to compete at current rates (see

the supplementary material for details). As most of these future samples improve, or

stay reasonably static, over time this illustrates that these swimmers are early in their

careers. In contrast, for Peaty there is a clear decay of performances from 2024. To

help see how these plots link to the earlier inferences, we also present on this figure the

posterior mean and 95% HPDI for each swimmer’s τi, which captures the period where

the predictive samples seem to plateau. Section 4.5.4 uses these future subject-specific

predictive samples to draw a range of inferences for future extreme events.

Subject-specific Predictions for Current Swimmers

Here we make predictive inference for future extreme events linked to specific swim-

mers, thus illustrating the novelty of inferences that are possible using our longitudinal

extreme value model. Section 4.3.4 identified three groups (Ic, If , In) of swimmers to

consider when predicting future extreme events, and the supplementary material sets
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out the Monte Carlo strategies for the evaluation of the corresponding posterior dis-

tributions. To avoid the extra assumptions that are required to study groups If and

In, only swimmers in Ic deemed actively competing at the start of the future period

are studied, which we take to be those swimmers in I who have recordings in the most

recent year of data. From our model and posterior predictive inference, standard ex-

treme value properties, such as the distribution of the annual maxima, are simple to

derive; however in sport, extreme events are mostly concerned with breaking records.

We therefore focus on results for events linked to beating the current world record and

setting PB times. Throughout, the future behaviour of swimmers is assumed consistent

with the past data, so illness or sudden retirement are not accounted for, e.g., we ignore

knowledge that Peaty has had some absences from the sport since 2021.

First consider the beating of the current world record. The joint posterior predictive

distribution samples, illustrated in Figure 4.5.4, provide samples of future longitudinal

data for the swimmers. The probability that the world record is beaten by a swimmer

in Ic in the next 12 years has a posterior predictive probability of 0.53. This doesn’t

mean the record will be broken with this probability, as we do not consider swimmers

in groups If or In. Figure 4.5.5 (left) splits this probability up to show the posterior

predictive probability for swimmer i beating the record, for the 10 most likely swimmers

in Ic. This gives a novel ranking method for swimmers within an event, as it focuses on

the future potential of swimmers (through taking their stage of career trajectory into

account) more than their past achievement (which is the exclusive focus of typical rank-

ing methods). Perhaps unsurprisingly, Figure 4.5.5 (left) shows that Peaty is ranked

the highest, i.e., the most likely to first beat his own world record of the swimmers

in Ic, with a predictive probability of 0.24. Martinenghi is ranked second, which is

expected given findings in Figure 4.5.2 (middle), with a predictive probability of 0.092.

To assess how soon these swimmers can first beat the current record, Figure 4.5.5

(middle) shows the predictive distribution of the year in which a swimmer will be the
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first of the current swimmers to beat the record. These posteriors are shown for the

top six ranked swimmers in Figure 4.5.5 (left). These results show that if Peaty does

break his record, it is most likely to happen within the next four years, primarily as

a consequence of his age exceeding his peak age. In contrast, Martinenghi is most

likely to beat the current record in 4-10 years. Figure 4.5.5 (right) shows the posterior

distribution of the future PB time for each swimmer. These distributions show that

there is a reasonable chance of each swimmer beating their current PB, though with

Peaty less likely to do this than the other five swimmers shown, who all have a high

posterior probability of beating their current PBs. This finding is not surprising, as

swimmers that are currently near their peak have a limited chance of beating their PBs,

and the younger swimmers have the largest chance of setting future new PBs as they

are still improving.

4.6 Discussion

This article proposes the first analysis for extreme values of data arising from a longitu-

dinal structure comprising multiple subjects, each with a time series of measurements.

Although much new asymptotic theory remains to be developed, as the number of sub-

jects and the lengths of their time series tend to infinity at potentially different rates,

our focus has been in terms of putting down the framework for statistical modelling

and associated inference. Furthermore, we have exhibited that this framework provides

a basis for novel analysis of elite swimming data, and have illustrated the additional

challenges that arise in practice, e.g.: non-stationarity over subjects, subjects with very

limited data, and the need to model subjects not in the data. Our analyses also show

how the models can be used for making important inference about future extreme events

involving the current subjects.

This generic framework for longitudinal data analysis involving extreme values con-
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tains a set of modelling decisions which are application specific. Core examples are the

choice of functional forms for (i) the subject-specific mean function µi for all i ∈ I, (ii)

the threshold exceedance rate function λu, and (iii) the GPD scale parameter function

σu. In our swimming application, fully parametric functional forms were established

from prior application-specific knowledge. For the period of data we analysed, λu was

modelled to be monotonically increasing, reflecting knowledge that the quality of swim-

mers has been improving generally in this period. However, if data prior to 2010 were

used, a monotonic form would not be appropriate due to the phasing out of performance-

enhancing full-body swim-suits, see Spearing et al. (2021) for estimates of how these

suits enhanced elite swimming across events. In the absence of such knowledge we could

use non-parametric approaches, e.g., as identified in Section 4.3.2.

As discussed in Section 4.5, for swimmers with very few observations, a tactical de-

cision must be made between including them all at a high computational inefficiency, or

discarding them from the analysis, at the cost of bias. Although we developed a prag-

matic compromise in the selecting of which swimmers to include, here we briefly outline

other possibilities. The most naive approach would be to incorporate all swimmers by

pooling together all data (measured swim-times and the corresponding age of swimmer

on the date of the swim) by the swimmers with less that m swims, so that they share a

common (αi, τi) pair. Although this would avoid much added computational complex-

ity by constraining the additional parameters and it would use all data for the GPD

inference, it risks bias as the swimmers being pooled together may be very different

in their skills (attributes). Alternatively, a more specific clustering approach could be

developed in which each of the subjects with less than m observations is pooled with

a subject with more than m observations, so that they share the same (αi, τi). This

approach could be more effective if a suitable cluster metric could be developed that

draws parallels with our clustering of intranstivities in Spearing et al. (2023).

The initial reasoning for parameter reduction was the computational intensity of the
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model fit, where the bottleneck comes from inverting the Gaussian mixture distribution

GZ . Improvements to the current grid search approach (4.4.3) used to approximate G−1
Z

will allow the model to be scaled to large data sets. One possibility is to approximate

the derivatives of G−1
Z with respect to each element of (z,θθθ,γγγ,ννν) to enable more efficient

gradient-based samplers (Duane et al., 1987). However, due to approximating such a

large number of gradients, there is still no guarantee that overall inference speed will

be improved.

An entirely novel aspect of our inference has been the subject-specific features such

as the marginal Gaussian distribution and the variation across subjects is modelled

through the different subject-specific attributes {αi : i ∈ I}. Although Gaussian

marginals are leveraged on the grounds of the parsimony of conditional and uncon-

ditional Gaussian processes, this choice is rather unimportant to the outcomes of the

inference. This is due to the weak common prior across attributes, resulting in a pos-

terior which is driven by the data. The resulting posterior for a new subject’s αi is a

Gaussian mixture model; where it is recognised that this reflects only subjects capable

of achieving measurements above a high threshold, and is not applicable to the popula-

tion as a whole. Despite this restriction to the extreme subjects, our swimming analysis

shows that the variation between attributes for swimmers is substantially larger than

natural variation of extreme times for any selected swimmer. Hence the analysis has

disentangled the variations of the longitudinal data to better inform future inference

for extremes and records both unconditionally and conditionally for the current field of

elite swimmers.
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Figure 4.5.1: DAG illustrating the model flow with associated priors. The observed

space (left) shows the parameters for the extreme margins: (ξ, σu), the GPD parameters;

(β0, β1), of the rate function λu for exceeding the threshold u; and the auxiliary variables

Vi,j : (i, j) ∈ L− corresponding to the censored observations below u. The parameters

of the latent space (right), (θθθ := {θθθi := (αi, τi) : i ∈ I}, γ, ν), determining the marginal

distribution of the Gaussian mixture, and the kernel parameters κκκ := (κ0, κ1) which

dictate the dependence structure. Both the observed space and latent space parameters

determine the Jacobian (4.3.6), whilst the only the latent space parameters determine

the latent-likelihood (4.4.1). The posterior distribution then contains the Jacobian, the

latent-likelihood, and the prior distributions (4.5.2).



CHAPTER 4. LONGITUDINAL EXTREMES 118

Figure 4.5.2: Posterior inferences for subject-specific features of the model. For the top

10 swimmers as defined in Section 4.5.4 (which correlates strongly with those swimmers

with the largest posterior mean values of αi over i ∈ I), the posterior distribution of

these swimmers’ attributes αi (left) and peak ages τi (middle) is shown. The line colours

in these plots identifies the different swimmers, with the color coding being explained

in Figure 4.5.5 (left). The right panel shows the mean posterior and 95% HPDI for

the subject-specific asymptotic independence measure χ̄i,τ against time lag τ in days

(right).
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Figure 4.5.3: Mens’ 100m breaststroke inference. The current record time in seconds

(left) (shown by a black vertical line) is held by Peaty at the time of this analysis. The

posterior distributions for expected next record swim-time (blue) and ultimate swim-

time for this event (orange). Future predictions (right) show the posterior mean (solid

line) and 95% HPDI (dashed lines) of the rate λr(t) of swims by elite swimmers of

beating Peaty’s current record in year t.
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Figure 4.5.4: Within-subject diagnostics for six top swimmers: observed swim-dates

and swim performance in seconds (shown as black dots); samples from the posterior

predictive distributions (coloured points) for these swimmers for the dates of their swims

in the past, and for simulated swim times in the future. The threshold u is shown by

the horizontal line and the posterior mean and 95% HPDIs for the peak age τi are

shown by vertical lines.
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Figure 4.5.5: Inference for individual swimmers: probability that each swimmer will be

the next swimmer in Ic to beat the current world record (left) for the 10 most likely;

the posterior distributions for each swimmer for the time at which they are the first

the swimmers in Ic to beat the current record (middle); and the posterior distributions

of the expected personal-best of all future times, with the vertical lines showing their

current PBs (right). The swimmers shown in middle and right panels are the six top

swimmers in the left panel. The colours on the middle and right plots identifies the

swimmers, with colors identified in the left panel.



Chapter 5

Conclusions and Further Work

5.1 Conclusions

The literature review in Chapter 2 fuses together the backbones of univariate extreme

value theory: the block maxima approach; the peaks-over-threshold approach; and

the extremal point process, which unifies the first two within a common framework.

But extreme value theory is a deeply researched area of statistics, of which Chapter 2

only scrapes the surface. Subsequent methodological developments expand into the

multivariate domain (Barnett, 1976; Heffernan and Tawn, 2004; Coles and Tawn, 1994),

spatial frameworks (Ribatet, 2013), and can even model both spatial and temporal

aspects (Simpson and Wadsworth, 2021), and in combination with machine learning

techniques (Farkas et al., 2021).

In Chapter 3, the point process methodology is used to model data of elite swimmers.

These data display a smooth increase in the rate of swim performances which exceed

the extremal threshold, reflecting improvements in sports science, such as nutrition

and training methodology. This exceedance rate also shows step changes, correlating

with the introduction of specific technologies such as full-body swim-suits. The data

also suggests that the conditional distribution of swim-times, given this threshold is
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exceeded, is not evolving over time. A novel parametrisation is then introduced which

allows for exactly this: an exceedance rate which is time-dependent, with a conditional

distribution above the threshold which is identically distributed over time.

The unified model pooled data over all 34 individual events, which helped reduce

parameter uncertainty. Previous attempts to pool data across events use distance as

a covariate, for example in athletics (Stephenson and Tawn, 2013), but this would

introduce bias in swimming, since swim-times in, say freestyle, are generally faster than

in, say, breaststroke, over the same distance. Using distance as a covariate also induces

bias if pooling across gender, as athletes in the men’s category tend to record faster

times than those in the women’s category in all but longer distance events (Bam et al.,

1997). This was resolved by using the threshold itself in each event as a covariate in the

pooled model, a technique which is novel in extreme value modelling in general, and

which can adjust the swim-time for the distance, gender category, or stroke, accordingly.

Section 5.2 discusses possibilities for further applications of this.

Chapter 4 developed a first attempt at combining the areas of extreme value theory

and longitudinal data analysis. Here, dependence structures that are specific to lon-

gitudinal analysis are explored, and the resulting forms of extremal dependence that

arise. Unlike the majority of multivariate extreme value analysis the model developed

in Chapter 4 has the flexibility to capture both asymptotic dependence and asymptotic

independence, with this being determined by the data.

5.2 Further Work

Both Chapters 3 and 4 negate the swim-time data in order to use the more com-

monly utilised methodology for the upper-tail of a distribution. Alternatively, Gomes

and Henriques-Rodrigues (2019) invert the swim-time and apply peaks-above-threshold

methodology directly to swim-speed, since a smaller swim-time equates to a larger swim-
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speed. However, Wadsworth et al. (2010) show that such non-linear transformations

lead to differing conclusions, and so conclusions drawn from swim-time analysis are

likely incompatible with those drawn from swim-speed analysis, with no intuitive way

of discerning which conclusions are most reliable. Analysing a Box-Cox transformation

of the data, and estimating this transformation parameter jointly as part of the mod-

elling procedure, would remove the guess-work from the choice of data scale. Moreover,

it allows for the uncertainty in the scale of the data to be accounted for and to be

quantifiable. It could also be interesting to see if the Box–Cox parameter changes in a

systematic way over distance or stroke.

The use of the extremal threshold as a covariate in Chapter 3 is a novel approach

in modelling of extreme values, and helps pool data across dimensions with no obvious

physical links (in the swimming examples, across strokes and gender categories.) In

fact, the only constraint is that the data can be assumed independent across the pooled

dimension, as is done in Chapter 3 between swim-times for different strokes, gender

categories and distances. This simplifying assumption may not be true when the same

swimmer competes across different distances, for example, meaning that the uncertainty

of the estimates would be underestimated. Multivariate techniques could be employed

in order to capture some of the correlation between data points resulting from the same

swimmer in different competitions (Adam and Tawn, 2012). Outside of swimming, this

approach could even be used to pool across different sports, for example, elite marathon

running and pole-vault.

The constant evolution of the para-swimming classification system is testament to

the challenge of creating fair competition in disability sports, with athletes currently

grouped into discrete categories based on their disability type, and which inevitably

leads to some athletes having an unfair advantage or disadvantage within their cate-

gory. The number of classifications itself is open to debate, with too many classifications

resulting in too few swimmers in each classification and therefore a drop in compet-
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itiveness, and too few classifications resulting in large differences between swimmers’

disability types within the same group. Of course, this problem stems from the over-

simplification and discretisation of a variable, in this case disability, which in reality

exists on a continuous spectrum. However, a pooled model of the type presented in

Chapter 3 would allow for a continuous ‘classification variable’ which pools across dis-

ability, to allow fairer competition over all disability types and comparison between

disabilities. In junior swimming, because of the discretisation of age groups, some

swimmers can be almost a whole year younger than others in the same competition,

which creates an unfair disadvantage. The same idea of a continuous scale for age

groups would allow for fair comparison of ‘age-adjusted’ swim times.

The inclusion of transgender (and in particular MtF) athletes has led to controversy,

with the regulations being changed again for the most recent Olympic Games. A large

part of the change in regulation comes from a gradual shift away from irrelevant and

outright transphobic policies, such as the “The Stockholm Consensus” (Committee

et al., 2003), which requires transgender athletes to have completed “anatomic changes

consistent with their professed gender” (Genel, 2017). Despite these changes there is

still little indication of an overall increase in the acceptance of gender variance within

sport (Sykes, 2006). Due to the sex assigned at birth, allowing such athletes to compete

in the women’s category has the potential for an unfair advantage, e.g., this sometimes

leads to higher levels of testosterone; however, denying access to sport only increases

the isolation and social stigmatisation often experienced by the transgender community

(Cromwell, 1999). Rather than these current binary over-simplifications however, our

covariate could allow for sports to reflect the underlying continuous and fluid definition

of gender. In the same vein, cases of unusual testosterone levels can easily be dealt

with. Ultimately, it is possible to have a global model which fairly compares swimmers

across gender and of different disabilities, and even junior swimmers, across different

events.
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Of course, the overall goal in adjusting for disability, age or gender is to promote

perceived equitable competition, but we know these are but three variables of many

that impact fairness in sport. For example, having to overcome discrimination due to

‘race’ can negatively impact the likelihood of succeeding in a given sport (Hylton, 2008).

In this way, to fully level the playing field in sports requires a continuous description

of the complexity and variety in social inequality more broadly.
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Appendix A

Spline Construction

Let Bd
k(x) be the value of the kth d degree B-spline basis function at a point x, where

k = {1, . . . , q}, q ∈ Z+, and xk denotes the kth knot, such that Bd
k(x) is strictly

positive within the region xk < x < xk+d. The exact form of the splines can be formed

recursively from 0 degree basis splines. Note that 0 degree splines are trivial to form,

described as step-functions over the region of each knot such that

B0
k(x) =

1, xk ≤ x < xk+1,

0, otherwise.

Then, using the formula (De Boor, 1978) for d ≥ 1

Bd+1
k (x) =

x− xk−(d+1)

xk−1 − xk−(d+1)

Bd
k(x) +

xk − x

xk − xk−d

Bd
k+1(x),

higher degree B-splines are formed. Figure A.0.1 shows splines of degrees d = 1, 2, 3.

It can be seen that as the degree of the basis function increases, the function becomes

smoother and has a larger range. The spline function Y (x) is then constructed as

Y (x) =

q∑
k=1

akB
d
k(x)
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Figure A.0.1: Basis spline functions Bd
k(x) with degree d: degree 1 (black solid), 2 (red

dashed), 3 (green dotted), and 4 (blue dot-dashed), and knots are spaced at integer

values.

where ak is the kth B-spline coefficient, and aaa = {ai : i = 1, . . . , q} is the coefficient

vector. Generally, q is chosen to be large, such that the fitted curve shows more variation

than can be justified by the data. To reduce this variation, a penalty on the finite

differences of adjacent coefficients of Eilers and Marx (1996) is used. The penalty is

governed by ϕaaa′Paaa, where P ∈ Rq×q is the penalty matrix, and ϕ > 0 determines the

amount of penalisation. The choice of P is based on some prior belief of the shape of

the data. The penalty matrix used was a second order, such that
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P =



1 −2 1 0 0 . . . 0 0 0

−2 5 −4 1 0 . . . 0 0 0

1 −4 6 −4 1 . . . 0 0 0

0 1 −4 6 −4 . . . 0 0 0

...
...

...
...

...
. . .

...
...

...

0 0 0 1 −4 . . . −4 1 0

0 0 0 0 1 . . . 6 −4 1

0 0 0 0 0 . . . −4 5 −2

0 0 0 0 0 . . . 1 −2 1



,

which penalises a large second derivative, thus penalising fits that depart from linear-

ity.



Appendix B

Supplementary Material for

Chapter 4

This document accompanies Chapter 4. Section B.1 includes further investigations

into the nature of the extremal dependence of the scenarios derived in Section 4.2.3.

Section B.2 shows analytical results for probabilities of future extreme events in longi-

tudinal data using the model of Section 4.5.2, under some simplifying assumptions. In

reality, many applications will require to full flexibility of our novel model, as seen in

Section 4.5, and in this case Monte Carlo simulation provides computational solutions.

A strategy for this is set out in Section B.3.

B.1 Further limit results for studying extremal de-

pendence of longitudinal data

Building on the results from Section 4.2.3, here we explore further the nature of extremal

dependence in longitudinal data. To help better understand the asymptotic dependence

case we consider a version of measure χ
(M)
τ which allows both n and the quantile to

grow in combination. Specifically, consider the conditional probability Pr(Mn2 > xn |
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Mn1 > xn), where xn → ∞ and letting αn = xn − δ for some constant δ. The marginal

probability is then

Pr(Mn1 > xn) = 1− Pr(Mn1 < xn) = 1− [Φ(xn)]
n−1Φ(xn − µn).

Now consider the joint probability

Pr(Mn1 > xn,Mn2 > xn) = 1− Pr(Mn1 < xn)− Pr(Mn1 < xn) + Pr(Mn1 < xn,Mn2 < xn)

= 1− 2 [Φ(xn)]
n−1Φ(xn − αn) + [Φ(xn)]

n−1Φ2(xn − αn, xn − αn; ρ).

Then, in case (i), consider setting αn as above with xn, this gives the limit

Pr(Mn2 > xn |Mn1 > xn) →
1− 2Φ(δ) + Φ2(δ, δ; ρ)

1− Φ(δ)
.

The above limit is non-zero for all finite δ and when ρ = 0 this limit is 1 − Φ(δ),

which is positive for all δ < ∞. So, when ρ = 0, despite the independence of within-

subject observations, the longitudinal structure induces asymptotic dependence. This

is different from the findings for ρ = 0 in limit (4.2.9), showing the limits that give

identical findings about the form of extremal dependence for identically distributed

variables can give contrary results for longitudinal data. For case (ii) we have that

Pr(Mn2 > xn |Mn1 > xn) → 0, i.e. asymptotic independence.

Underlying all these limiting results is the fact that subject n will be the compo-

nentwise maximum with probability 1 in case (i) and 0 in case (ii) for how αn grows.

This is shown through the following limit, which for case (i) explores the probability
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that the same subject gives a large measurement value at each time point, i.e.,

Pr(Xn1 =Mn1, Xn2 =Mn2 |Mn1 > αn)

= Pr{max(X11, . . . , X(n−1)1) < Xn1, Xn1 > αn,max(X12, . . . , X(n−1)2) < Xn2 |Mn1 > αn}

=

∫ ∞

y−∞

∫ ∞

x=0

Pr{max(X11, . . . , X(n−1)1) < αn + x,max(X12, . . . , X(n−1)2) < αn + y

| Xn1 = x,Xn2 = y}ϕ2 (x, y; ρ) dx dy/Pr(Mn1 > αn)

=

∫ ∞

y=−∞

∫ ∞

x=0

[Φ(αn + x)Φ(αn + y)](n−1)ϕ2 (x, y; ρ) dx dy/Pr(Mn1 > αn)

→ 2

∫ ∞

y=−∞

∫ ∞

x=0

ϕ2 (x, y; ρ) dx dy = 1

as n → ∞, as the powered terms tend to 1, as in limit (4.2.8), and that limit with

x = 0 explains the denominator tending to 1/2, and the double integral is 1/2 due to

symmetry of the standard bivariate normal density about x = 0. Similarly, for case (ii)

this limit is 0.

B.2 Evaluation of probabilities of future extreme

events for longitudinal data

A benefit of accounting for the longitudinal structure is that now inference and predic-

tions of extreme events regarding individual subjects is ascertainable, e.g., the prob-

ability that a new record is achieved by a particular subject i ∈ I. To make such

inferences, each subject’s mean function over time is incorporated, as well as the tem-

poral dependence around this. Both of these aspects are described by the Gaussian

process model of Section 4.3.2, which gives analytical solutions to probabilities of fu-

ture events through its closed form conditional distributions. Let J F
i be the set of

future measurements for subject i, with the future schedule of measurement points

defined as {ti,j : j ∈ J F
i , i ∈ IF}, where all such ti,j > tmax for a current time tmax.
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In practice the evaluation of the probabilities of such complex events are most simply

conducted through Monte Carlo methods, simulating over different realisations of the

longitudinal process for the fitted model, with evaluation achieved empirically over a

large sample of replicates. We present results and various assumptions of this type in

Section B.3, but here we derive the analytical expression for one such event under an

idealised set-up to illustrate the complexity even in this simplified scenario.

Consider the event AF
i (r), corresponding to the subject i ∈ I breaking the record

for the maximum measurement in some future time period identified by F and holding

that record at the end of period, given that the current maximum measurement is r.

Consider the case where (i) all parameters of the model in the latent space are known;

(ii) no subjects outside I produce measurements in time period F ; (iii) the observed

subjects have a constant mean function over time, i.e., µi(t) = αi in expression (4.3.3);

and (iv) that there is subject-conditional independence for each subject. A benefit of

assumption (iv) is that it removes the need to consider the history of each subject’s

measurements including which subject holds the current record.

To derive P (AF
i ) it is most easy to work in the latent space, recognising that the

current record transforms to the value rZ := G−1
Z [FZ (r, tr)] in the latent space. First

define MF
i := max

(
{Zi,j : j ∈ J F

i }
)
, the maximum measurement for subject i in the

future time period, then this distribution has the survivor function of P (MF
i > z) = 1−

[Φ(z;αi, νi)]
|J F

i |, given assumptions (iii) and (iv). Also letMF
−i = max

(
{Zkj : j ∈ J F

k , k ∈ I \ {i}}
)

be the maximum of all other subjects’ measurements in this future period. Then P (Ai)

is given as

P (Ai) =P{MF
i > max[rZ ,M

F
−i]} = P{MF

i > rZ > MF
−i]}+ P{MF

i > MF
−i > rZ}

=P (MF
i > rZ)

 ∏
k∈I\{i}

Φ(rZ ;µk, νk)
|Jk|

+

∫ ∞

rZ

P (MF
i > z)fMF

−i
(z) dz,(B.2.1)
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where

fMF
−i
(z) =

 ∏
h∈I\{i}

Φ(z;µh, νh)
|Jh|

 ∑
k∈I\{i}

|Jk|
ϕ(z;µk, νk)

Φ(z;µk, νk)
.

B.3 Adapting predictions for new subjects

For making inferences about the future behaviour of extreme values for longitudinal data

there are a number of substantial challenges linked to the subject-specific characteristics

of the data structure. Analytical results such as result (B.2.1) are available in simple

cases, but with the mean functions inducing non-identically-distributed variables, it

must be recognised that, in the longer-term, the extreme events are more likely to

be due to subjects not yet observed in I. In the short-term however, these future

extreme events are most likely to be obtained by the current subjects in I, followed by

a transitional medium-term in which extremes arise from a mixture of these populations

of subjects. Here we develop the outline of a framework for such inferences, setting out

some possible choices that need to be made in relation to the currently unobserved

subjects. The model parameters here are treated as known, and Section 4.4 presents

how to account for that additional uncertainty.

For the observed data there are n subjects, indexed I, each with at least one mea-

surement above the threshold u. Going forward beyond the observed time-frame, there

are then three types of subject to consider: (i) those subjects in I, indexed by Ic

with Ic ⊆ I, which are still producing at least one measurement above u in the future

time window; (ii) those subjects If , which produced measurements exclusively below

the threshold within the observed time-frame and so {If ∩ I} = ∅, but in the future

produce a measurement above u; and (iii) those subjects In with no recordings at all

within the observed time-frame but which in the future period produce at least one

measurement above u. To help remember the terminology the superscripts here de-

note c for current subjects with a future threshold exceedance, f for subjects in the



Part I. Appendices 135

population which are active in the observed time-frame and which record their first

exceedance of u in the future time period, and n for an entirely new subject which

records an exceedance of u in the future time period.

For each subject in each of the groups Ic, If and In measurement series are sim-

ulated over a time window of (tmax, tmax + T ) where tmax is the maximum time in the

observed database and T is the length of the future period of interest. As membership

of these three groups depends on a subject achieving a measurement larger than u in

the future time-period, the number in each group is random. In practice it is easiest

to first generate a time series for each individual that could be in the three groups and

then a random number of these will meet the criteria to be in the respective groups.

For groups Ic and If the maximum number of potential subjects there could be is

known from the observed numbers in the database, but in practice, computational time

is saved by omitting previously measured subjects which have no measurements in the

latter part of the observation window. That is, tmax − ti,ni
being sufficiently large sug-

gests that subject i has stopped generating measurements that have potential to be

extreme. In contrast, for In assumptions must be made about the arrival rate of new

potential subjects. We propose that the rate of first measurements per subject in the

database per unit time-period, denoted by rdata, is used to estimate this rate. Then,

the number of potential new subjects for the future is generated by a Poisson(Trdata)

random variable.

For each of the potential subjects in the three groups, the number and the times of

the future measurements in (tmax, tmax+T ) and simulated realisations of the associated

measurement Xi,j are generated according to the models in Sections 4.3.1 and 4.3.2 for

these times-points, conditional on any information already present about these subjects.

The subject is then identified as being from a group if their maximum measurement

exceeds u. These steps are discussed below, identifying the features that change across

the three groups.
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For each potential subject in any of the three groups, measurement time points

are generated independently over subjects from a homogeneous Poisson process with

rate ωi per unit time for subject i. That is, a subject i has Ni future observations,

with Ni ∼ Poisson(Tωi), with these measurement time-points uniformly distributed on

(tmax, tmax + T ). The times for the future measurements for subject i are denoted by

ttt∗i,j := {t∗i,j : tmax < t∗i,j < tmax + T, i = 1, . . . n∗
i } where n∗

i is the realisation of Ni. For

a potential subject i ∈ {Ic ∪ If}, an estimate of ωi is based on the empirical rate of

measurements up to tmax for the subject in the database. For each potential subject

i ∈ In, ωi is estimated from the observed population of subjects I. Specifically, a

subject j is randomly drawn from I with associated rate ωj, and then we take ωi ∼

logN((log(ωj) − ψ2/2, ψ2). This choice ensures that the expected value of ωi is an

existing rate ωj, and where the choice of ψ can be selected based on how representative

the subjects in I are believed to be relative to the entire population. So, ψ can be

taken larger if an under-representation of I is anticipated.

Next, the measurement values for each potential subject are simulated in the latent

space, given the simulated future measurement times. For each potential subject i, mea-

surements are simulated from the Gaussian process Zi(t) ∼ GP {µ(t;θθθi, γγγ), Kκκκ(·, ·)}, at

time-points ttt∗i = (t∗i,1, . . . , t
∗
i,n∗

i
). These simulated processes are generated conditionally

on the previous data when appropriate for the group, see below. For future realisations

in the upper tail of the latent variable space we can transform back to the observed

space using transformation (4.3.5). Only those potential subjects with their maximum

measurement in the time interval (tmax, tmax +T ) exceeding u are included as a subject

in their respective group. For deriving future scenarios we are only interested in those

simulated measurements above u in original space.

We have different existing knowledge at time tmax for each subject depending on

which of the three groups they are from, in the form of past measurement values,

covariates, and information about θθθi. For a potential subject i ∈ Ic, the posterior
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distribution of θθθi and the subject’s covariates that determine how µi varies with t are

available. That potential subject’s Gaussian process is the simulated given the past

values of (Zi(ti,1), . . . , Zi(ti,ni
)). Although some of these past Zi(t) values are non-

extreme in the original space, i.e., the associated Xi,j < u, our inference methods of

Section 4.4 provide estimates for all of these values from which to condition on for each

of the generated posterior samples for the model parameters.

Now consider a potential subject i ∈ If . Although past observational data are

available for them, as of time tmax these data are not included in inference, and so

no estimates of subject-specific parameters θθθi are available. Likewise for any potential

subject in group In. For both cases θθθi can be drawn from the joint posterior from a

randomly selected subject in I. In both cases the Gaussian process is simulated forward

from tmax independent of any past measurement data information, so for potential

subjects in If the past data is ignored. To be able to use the Gaussian process, the

relevant covariates for the potential subject are required. For a potential subject i ∈ If

their actual covariates are used, whereas for i ∈ In the covariates at drawn randomly

from a subject in the database (not just from subjects in I).



There’s always a bigger fish

— Qui-Gon Jinn

Part II

Relative Systems
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Chapter 6

Ranking Via Paired Comparison

Favourite desserts, difficulty of yoga positions, harms of drugs (Nutt et al., 2010), “the

most livable neighborhoods in New York” (Silver, 2010) - anything can be ranked.

But in general, for relative systems it is easier to express a preference between a pair

of objects than to rank the whole set. Optometrists, for example, often use paired

comparison techniques (“better or worse?”) in order to find the best prescriptions for

prescription glasses (Olkin et al., 2015). Relative systems exist outside of the pairwise

comparison domain, such as three-way chess, where three players compete simultane-

ously on the same board. But in general the literature on relative systems is dominated

by paired comparison methodology, which uses knowledge of pairwise preferences to

infer a global rank.

The rankings are then informative of the outcomes of future comparisons. For exam-

ple, Boulier and Stekler (1999) use rankings from the Association of Tennis Professionals

(ATP) and US collegiate basketball for predicting future outcomes via a generalised lin-

ear model, such that the probability of person/team a beating another b is given via

the probit model

pab =

∫ λδab

−∞
ϕ(t) dt,

where ϕ is the standard Gaussian probability density function (PDF), λ ∈ R is an
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estimateable parameter, and δab ∈ Z := Ra − Rb is the difference in ranks where

Ra, Rb ∈ Z+ are the ranks of a and b respectively. Note that the better object has a lower

rank (with the best object having rank one), and so λ is typically negative. Here the

raw difference in the ranks in each pairwise match-up are used; however, the difference

in rankings is in general not linear in terms of ability: the difference in ability between

objects ranked one and two tends to be larger than the ability difference of objects

ranked 1001 and 1002 (Lebovic and Sigelman, 2001). Consequently, the probability

of preference between two objects is not a linear function of the difference of their

ranks, as is assumed in the above model. Therefore, Klaassen and Magnus (2003) use

transformed ranks to predict outcomes in ATP tennis matches, so that if a player a has

the official ATP ranking Ra, then the transformed rank is given as R̃a := 8− log2 (Ra) .

Then, the probability a beats b, pab, is modelled again using a generalised linear model.

Specifically, they use logistic regression, modelling

pab =
exp

[
λ
(
R̃a − R̃b

)]
1 + exp

[
λ
(
R̃a − R̃b

)] .
Already, then, there’s a whiff that the rankings are obscuring a more fundamental

description of object preference. It is generally more accurate to ascribe to each object

(or in the aforementioned example, player) some true rating, which may be latent.

The rankings are then simply the upshot of ordering these more meaningful ratings.

By only using the rankings, we lose all information about the separation between the

objects. Accurate forecasting and meaningful inference, therefore, tend to use the

objects’ ratings rather than their ranks. A large part of the paired comparison literature

centres on uncovering these ratings.

But there is more to a system than the objects and their ratings - the probability

of an outcome can be affected by the state of the system itself. In wine-tasting, for

example, preference between two wines may be inverted due to a change in state: we
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could imagine a chilled white wine to be preferred to a red on a mid-summer’s day, even

if the red’s rating is objectively higher. In sports, the state of the system is regularly

altered via the home-advantage effect, which is commonly found over a range of sports

(Schwartz and Barsky, 1977). Equally, a change in weather or choice of referee changes

the system’s state - or any exogenous factor which is external to the objects’ ratings

(Glickman and Stern, 2017).

The order in which objects are compared can also influence the outcomes of paired

comparison. For example, the order that wines are presented to a wine-taster confounds

the order of preference (Scheffé, 1952). Similarly, in sports, tournament structure in-

fluences the rankings. This is further complicated because the objects’ strengths, or

ratings, may not be stationary. Therefore tournament structure can cause both a change

in state, i.e., it can be an exogenous factor, and a change in ratings for a given com-

parison, i.e., an endogenous factor. The time, and therefore order, of comparison is

crucial, and some dynamic ranking systems aim to capture this. From the bountiful

paired comparison approaches, the most well-known are highlighted below.

6.1 Statistical approaches

Amongst the most established methods are the Bradley-Terry (Bradley and Terry, 1952)

type models. These are statistical paired comparison models which infer a rating µi for

each object i amongst a set of objects I based on the outcomes of paired comparisons

between the objects. The basis of these models is that the probability pij of i ∈ I

beating another object j ̸= i ∈ I is a monotonically increasing function of the difference

of the objects’ ratings, such that pij = f(µi − µj), where f : R → [0, 1], f(x′) >

f(x) ∀x′ > x. If f is chosen to be the logistic function i.e.,

f(x) =
1

1 + exp(−x)
, x ∈ R,
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then this is the Bradley-Terry model. When f is the Gaussian CDF (probit) then

this gives the Thurston-Mosteller model (Thurstone, 1927; Mosteller, 1951a,b). For

the parameters µ := {µi : i ∈ I} to be identifiable a constraint is required, typically

on either a single parameter, for example setting µk = 0 for some k ∈ I, or on the

sum, for example
∑

i∈I µi = 0. Mathematically, the constraint is required because

any constant c ∈ R could be added to all the values µ∗
i = µi + c, ∀i ∈ I, resulting

in identical inference, since only the difference between the parameters is informative.

Intuitively, the constraint is required because we are modelling a relative system, that

is, the system requires context, and each object rating is meaningless in isolation.

Home advantage is widely recognised as an important feature in pairwise compari-

son, and particularly when applied to sport (Cattelan et al., 2013). In Bradley-Terry

type models, this is naturally achieved by changing pij to a probability

p
(i)
ij = f(µi + γ − µj) ∀i ̸= j ∈ I, (6.1.1)

if i is the home object, where γ ∈ R determines the effect of being at home, which

here is common over all pairs of objects. If γ > 0 (γ < 0) then the probability of a

home preference is increased (decreased) relative to the objects’ ratings. This effect

can be extended to vary over objects by replacing γ by γi in expression (6.1.1), giving

a set of home advantage parameters {γi : i ∈ I}. To ensure these parameters are all

identifiable, some γk = 0, k ∈ I can be fixed, though no additional constraints are

needed if there is a common γ. Alternatively, placing a lasso penalty (Tibshirani, 1996)

on the home advantage parameters {γi : i ∈ I} will ensure that only a subset of distinct

home-advantage parameters are considered. Masarotto and Varin (2012) cast a lasso

penalty on the ratings themselves. The penalty constrains the ratings such that objects

with statistically insignificant differences in rating are rated identically, which avoids

over-interpretation of misinformed rankings. This can also be achieved via directly

clustering the objects’ ratings into distinct levels. See Chapter 7 for a novel approach
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to clustering in pairwise comparison.

Figure 6.1.1: Illustration of four possible tournament structures, created using the same

total number of comparisons.

Both clustering and penalising via lasso alter the parameter identifiability and there-

fore the required constraints. Identifiability is also affected by the order of comparison,

or tournament structure. It’s helpful to consider the graphical view of a paired compar-

ison system here, with objects as nodes and their comparisons as edges. Figure 6.1.1

depicts four graphs resulting from different tournament structures, but with the total

number of comparisons equal within the system. Assuming that all objects are identical,

then if all objects are compared to all others an equal number of times - a tournament

structure known as round robin, Figure 6.1.1 (far left) - this creates maximal connec-

tion between all pairs of teams. As such, the total uncertainty across all the objects’

parameter estimates - the system uncertainty - is minimised. If there is imbalance but

the graph is still fully connected as in Figure 6.1.1 (middle left), then information is

transferred less efficiently between the objects and the system uncertainty increases. In

Figure 6.1.1 (middle right) the connectivity is further reduced, with object A’s rating

only determined via the single comparison it has with object B, making object A’s rat-

ing difficult to estimate. Finally, in Figure 6.1.1 (far right), the graph is disconnected,

and none of the objects’ ratings are identifiable without further constraints, despite

the same total number of comparisons. Precisely, if a tree cannot be formed on the

graph using the available pairwise connections, then more constraints are required in
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order for any objects’ ratings to be identifiable. This is proven in Chapter 7, which

explores the combined effect of both clustering and tournament structure on parameter

identifiability in paired comparison.

Some systems allow for a comparison between two objects to result in “no-preference”,

known in sports as a draw, or tie. Extensions of the Bradley-Terry model have been

proposed for handling no-preference. Two distinct extensions are Cattelan et al. (2013)

and Hankin (2020). The former uses ordinal logistic regression, treating preference for

either object and no-preference, as outcomes of an ordered multinomial random vari-

able, which can then be analysed via an ordered link model. In contrast, the latter

treats the problem as a competition between the two objects and a third theoretical

object (called “draw monster”), such that when preference is expressed for the draw

monster, the outcome of the match corresponds to no-preference between the two actual

objects. The strength of the draw monster therefore reflects the proclivity to draw.

6.2 Exploring Intransitivity

The models considered thus far use a single parameter to describe each object’s rating.

The direct implication of this is the imposition of transitivity. Transitivity is defined

over a set of three of objects, and constrains that, if A is preferred to B, and B is

preferred to C, then A must be preferred to C. Further, a set of objects I with

cardinality |I| ≥ 3 exhibit transitivity if all triplet-subsets Ĩ ⊆ I, |Ĩ| = 3, exhibit

transitivity. A system exhibits intransitivity if at least one triplet-subset of its set of

objects violates the transitivity constraint. The most famous example of an intransitive

system is the game Rock-Paper-Scissors: a paired comparison system in which Paper

is preferred to Rock, which is preferred to Scissors, which is in turn preferred to Paper.

Consider the “deterministic” version, where a player r always picks Rock, a player

p always picks Paper, and a player s always picks Scissors. There is clearly no set of
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three ratings available to objects Rock, Paper and Scissors which reflects this behaviour

in this formulation. Modelling such a system therefore requires a deviation from the

classical one-object-one-rating structure.

The Rock-Paper-Scissors game depicts the violation of deterministic transitivity

within a relative system. Through our statistical lens however, we are more interested

in stochastic transitivity. For a set of 3 objects i, j, k, where i ≻ j denotes that i is

preferred to j for all i ̸= j ∈ {i, j, k}, there are three definitions of stochastic transitivity:

weak stochastic intransitivity whereby

Pr{i ≻ j} > 0.5, Pr{j ≻ k} > 0.5 ⇒ Pr{i ≻ k} > 0.5,

i.e., we can deduce preferences only; strong stochastic transitivity, whereby

Pr{i ≻ j} > 0.5, Pr{j ≻ k} > 0.5 ⇒ Pr{i ≻ k} ≥ max{Pr{i ≻ j},Pr{j ≻ k}},

(6.2.1)

i.e., we can also deduce something about the probability; and linear stochastic transi-

tivity, whereby

Pr{i ≻ j} = F (µi − µj), F : R → [0, 1],
dF (x)

dx
> 0, ∀x,

where µa ∈ R is the rating of object a, ∀a ∈ {i, j, k}. If F (x) = [1 + exp(−x)]−1 then

this is the Bradley-Terry model, so logit (Pr{i ≻ j}) = µi − µj, ∀i ̸= j ∈ I. Of these

three definitions, linear stochastic transitivity is the strictest, and implies that given

any three objects i ̸= j ̸= k ∈ I, and two probabilities Pr{i ≻ j}, Pr{i ≻ k}, the

probability Pr{j ≻ k} is completely determined by the other two probabilities. This

will be proven in Chapter 7. From hereon in, stochastic transitivity will simply be

termed transitivity.

If intransitivity is the violation of transitivity, then intransitivity is not well defined,
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since it is not clear which of the three aforementioned forms is violated. Moreover,

intransitivity can form part of an arbitrarily large cycle. For example, the n > 3 objects

{xi : i ∈ {1, . . . , n}} may have preference probabilities Pr{xi ≻ xi+1} > 0.5, ∀i ∈

{1, . . . , n − 1} and Pr{xn ≻ x1} > 0.5, resulting in an intransitive cycle of length

n. In this scenario It is not clear which of the n objects is causing the intransitivity.

Whether a cycle of length 3 has more or less intransitivity than a cycle of length n

is also ambiguous without some means of quantifying the intransitivity of a system.

Of course, in the stochastic scenario a worse ranked object could express preference

over a better ranked object from any number of independent comparisons purely due

to chance, i.e., an “upset”, and distinguishing between an upset and intransitivity can

be challenging. In fact, intransitivity is commonly assumed as being due to inference

variation or as arising due to errors in the dataset (Skinner and Freeman, 2009; Kéri,

2011), such as underlying incompleteness of preferences, and it is therefore treated

as a nuisance which should be removed in these contexts. However, in the case of

Rock-Paper-Scissors this is clearly not the case - the intransitivity is built into the

inherent structure of the competition. Indeed, it has been shown experimentally that

intransitivity can be a real feature of a system which cannot be accounted for by errors

or natural variation (Tversky, 1969; Montgomery, 1977; Lindman and Lyons, 1978).

In recommender systems, some view intransitivity as arising due to the aggregation

process from different judges’ underlying preferences, but that each judge’s underlying

preferences are still transitive (Rendle et al., 2009; Pan and Chen, 2013). Other work

recognizes that intransitivity may be systematic even in a one judge system, which is

where Chapter 7 sits, and some model intransitivity as arising from both sources (Chen

et al., 2017).

Systematic intransitivity even under a one judge system is observable not just in

artificial constructions, such as dice games (De Schuymer et al., 2003) or quantum games

in physics (Makowski and Piotrowski, 2006), but also occurs naturally, for example, in
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competition between bacteria (Reichenbach et al., 2007) or mating choices of lizards

(Sinervo and Lively, 1996). Pahikkala et al. (2010) contains many more examples, and

argues that violation of weak stochastic transitivity can occur in any situation where

the best strategy in a given comparison depends on the strategy of the opponent.

Given this, it would not be surprising to find cases of intransitivity in sports. In fact,

by drawing parallels with social choice theory, Smead (2019) provides a philosophical

argument as to why intransitivity is not only unsurprising, but is particularly likely to

occur in sports.

Poisson models handle some amount of intransitivity without directly modelling

it. They differ from the approaches presented thus far, in that they model preference

indirectly by, for example, modelling a score-line. This can be more efficient since it

utilises more information. Maher (1982) model score-lines in football (soccer). For a

given pair of teams (i, j), ∀i ̸= j ∈ I in a league comprising the set of teams I, the

goals scored by each team in a comparison between them is assumed Poisson distributed.

Letting Xij and Xji be the goals scored by team i and j respectively, then

Xij ∼ Poisson(αiβj) ⊥⊥ Xji ∼ Poisson(αjβi),

where αk > 0 and βk > 0 are interpreted as the attacking and defensive abilities of a

team k ∈ I. A home-advantage is included by modelling

X
(i)
ij ∼ Poisson(γαiβj), X

(i)
ji ∼ Poisson(αjβi),

where the superscript denotes the home team, and γ ∈ R dictates the advantage (or

disadvantage) of playing at home. Various extensions exists: modelling correlation

betweenX
(i)
ij andX

(i)
ji and weighting the importance of data based on its recency (Dixon

and Coles, 1997); and by framing the model in a Bayesian context with ratings that

update after each comparison (Rue and Salvesen, 2000). Other examples of modelling
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score-line include McHale and Morton (2011), who model the number of games in a

tennis match to exploit the knowledge that losing 0-6, 0-6 is worse than losing 6-0, 6-7,

6-7. Note that in this example the losing player actually scores more total points, and

given this datum alone the losing player would actually be ranked as better.

The Poisson models’ use of attacking and defensive parameters for each object equips

it with the support for some intransitivity. Although more degrees of freedom often

provide greater flexibility, it is not simply the quantity of parameters that determines

this support. Chapter 7 shows that it is possible to develop a model which violates even

weak intransitivity using fewer parameters than one-object-one-parameter models, e.g.,

Bradley-Terry. It turns out that Poisson models have the flexibility to violate strong

transitivity, but not weak intransitivity. Carroll and De Soete (1991) argue that in order

to be realistic, a paired-comparison model should violate strong stochastic transitivity,

but not necessarily weak intransitivity. But both approaches necessarily fail to model

Rock-Paper-Scissors. Support for the violation of weak stochastic transitivity, and

therefore intransitive triplets (or cycles), is less common. Early examples include the

work of Tsai and Böckenholt (2006), which uses a random effects model to capture

intransitivity, and that of Pahikkala et al. (2010), which tackles the problem from a

machine learning standpoint using kernel methods to estimate the intransitive relations.

Chapter 7 presents a novel framework which encapsulates all three forms of intran-

sitivity; allowing the flexibility of the model to be determined by the data. When mod-

elling truly transitive objects, the model becomes the special case of the Bradley-Terry

model, exhibiting linear transitivity. When there is evidence that the data violates

strong transitivity, the model can capture this parsimoniously, potentially using less

degrees of freedom than the Poisson models. When the data violate weak transitiv-

ity the model adapts again, allowing for modelling the “simple” deterministic game of

Rock-Paper-Scissors.
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6.3 Heuristic ranking methods

Being statistical approaches, the ranking methods depicted above quantify uncertainty

around their parameters, be that objects’ ratings or attacking and defensive abilities.

Though lacking this functionality, heuristic methods for ranking offer speed. This allows

for assumptions found in their statistical counterparts to be relaxed, such as stationarity.

Heuristics can therefore be dynamic whilst remaining computationally affordable.

In a connected relative system, see Figure 6.1.1 (far left, middle left and middle

right), all pairwise relationships between objects I are liable to change after any single

comparison between a pair (i, j) : i ̸= j ∈ I, though the relationship between (i, j) is

generally impacted the most.

The Elo rating system (Elo, 1978) is a dynamic heuristic introduced by the physicist

and chess player Arpad Elo for ranking chess. It is dynamic in the sense that the

objects’ ratings update with each comparison, and is a heuristic in the sense that in

a given comparison, only the two compared objects have their ratings updated rather

than the full set, thus only approximating the full system change. This enhances its

computational efficiency, and allows for the Elo rating system to be used even for

systems containing any arbitrarily large number of objects. The premise of the Elo

system is that the change in ratings of two objects engaged in pairwise comparison

should depend on the expectation of the outcome. Let Xij ∼ Binomial(pij) be the

random variable corresponding to a comparison between objects i ∈ I and j ̸= i ∈ I,

with Xij being 1 if object i is preferred, and Xij being 0 if object j is preferred, and

where pij is the probability of i expressing preference over j. Then, the Elo rating µi

of object i is updated to a rating µ′
i after a comparison with object j via

µ′
i = µi +K(xij − E[Xij]), ∀i ̸= j ∈ I,

where xij ∈ {0, 1} is a realisation from Xij, and K ∈ R+ is known as the K-factor
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and reflects the dynamic aspect of the system, by controlling the weighting of recent

events on the overall ratings. The K-factor can be thought of as a measure of the

‘forgetfulness’ of the system. If K is too large, then the ratings become too volatile and

sensitive to recent events, increasing the variance in the ratings. Take K too small, and

the objects’ ratings are too heavily weighted on early events which may no-longer be a

true reflection of the object’s rating, thus inducing bias.

The Elo system is in fact a special case of the Glicko system (Glickman, 1999),

a Bayesian construction which allows for uncertainty in the object abilities, although

it still only updates the ratings of the compared pair in a given comparison. The

uncertainty in an object’s ability increases the longer the object remains dormant. The

Glicko2 system (Glickman, 2001) extends this by introducing a volatility measure, which

indicates the expected variation in an object’s performances given its rating.

Both methods commonly use a logistic link function between the object ratings and

the win probability as in Bradley-Terry, so that

pij = E[Xij] =
1

1 + exp [(µj − µi)/λ]
,

where λ > 0 is a parameter that determines the spread of the ratings, which does not

effect the order, or rank, of the objects. Alternatively, a Gaussian link function can be

used, as in the Thurstone-Mosteller model, such that

pij = Φ

(
(µi − µj)

λ

)
.



Chapter 7

Modelling Intransitivity in Pairwise

Comparisons with Application to

Baseball Data

7.1 Introduction

The seminal Bradley-Terry model (Bradley and Terry, 1952) is commonly used to rank

objects from paired comparison data. Given a set I of n objects with each object i ∈ I

having skill ri ∈ R, then the Bradley-Terry model gives, for i ̸= j ∈ I,

p
(BT)
ij = Pr{i ≻ j} := {1 + exp[−(ri − rj)]}−1, (7.1.1)

where a ≻ b denotes preference for object a over b, and r1 = 0 to avoid identifiability

issues. A ranking of the objects is given by sorting estimates of r := {ri ∈ R : i ∈ I}.

This model is transitive, i.e., p
(BT)
jk is given by p

(BT)
ij and p

(BT)
ik , for all i ̸= j ̸= k ∈ I,

see Section 7.3.

Now consider the game of Rock-Paper-Scissors, a zero-sum game in which Rock

beats Scissors, Scissors beats Paper, and Paper beats Rock, and specifically consider

151
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the deterministic scenario where players (r,p,s) always pick (Rock, Paper, Scissors)

respectively. In this scenario, all win probabilities in a game are either 0 or 1 depending

on the opponent, and each player wins their next game with probability 1/2 if their next

opponent is to be selected at random. Whatever way the skill of a player is defined,

the symmetry of this game set-up unquestionably leads to the conclusion that the three

players have equal skill levels.

Conclusions drawn from a Bradley-Terry model fitted to data from this simple

game are surprisingly poor. Given a round-robin tournament, where each player plays

all other players an equal number of times, the model will correctly estimate that all

players are equally ranked in terms of skills; however, it would also estimate all pairwise

win probabilities to be 1/2, which couldn’t be more wrong. Even worse, is that any

illusory ranking can result when the tournament is not round-robin, e.g., if the most

common pairing of players is (r,s) and the other two pairings occur equally often then

the Bradley-Terry model will rank player r as top. The key reason for the failure of

the Bradley-Terry model is its transitive nature, a trait shared by almost all commonly

used ranking systems.

Here we develop a novel pairwise comparison model, and an associated ranking

system, which accounts for intransitivity. Thus, it describes how specific pairwise prob-

abilities differ from probabilities given by overall skill levels alone, i.e., how probabilities

differ from those given by the Bradley-Terry model. The Rock-Paper-Scissors game also

illustrates that ranking can involve ties, where subsets of players can have equal skill

levels, and that tournament structure can effect the subsequent inference. We also

address some aspects associated with these issues.

The concept and associated modelling of intransitivity is not new. Makowski and

Piotrowski (2006) present many examples of competitions exhibiting intransitivity and

argue that it can occur whenever the best strategy in a given comparison depends on

the strategy of the opponent, and Smead (2019) provides a philosophical argument
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as to why intransitivity is particularly likely to occur in sports. Given this, it is not

surprising to find cases of intransitivity in e-sports (Makhijani and Ugander, 2019; Chen

and Joachims, 2016; Duan et al., 2017). Other applications include social choice, real

sensory analysis, and election data-sets.

With n competitors there are n(n − 1)/2 interactions, or intransitivities, so even

in round-robin competitions, with m rounds, there are too many terms to estimate

efficiently using empirical methods, unless m/n is large. Causeur and Husson (2005)

proposed an O(n2) parameter extension of the Bradley-Terry model to address intran-

sitivity. Subsequently O(nd) parametric models have been studied for some fixed d ∈ N

(d ≪ n), see all the models in Section 7.2, but they lack the flexibility to cover the

potentially O(n2) different intransitivities across n players, leading to bias; whilst they

are not parsimonious when the intransitivity is simple, leading to inefficiency.

Although the concept of intransitivity is quite clear, there is no established measure

of the amount of intransitivity in a dataset. In this work, we propose a definition

of intransitivity through a distance metric between the assumed probability of paired

comparisons under a Bradley-Terry model, and the empirical or model-based probability

estimate, such that for any given dataset the magnitude of the intransitivity present is

unambiguous. A flexible model then, is one which is capable of exploring the space of

all possible combinations of intransitivity, as defined by this measure. Any parametric

model is restricted to a subset of this space by definition, with this restriction being

most obviously revealed when assessing predictive performance.

We then develop a novel semi-parametric extension of the Bradley-Terry model,

allocating the n(n − 1)/2 pairs of objects to a random number K, with 0 ≤ K ≤

n(n− 1)/2, of distinct intransitivity levels, each level representing a different strategy.

We term this model the Intransitive Clustered Bradley-Terry (ICBT) model. Relative

to the aforementioned parametric models, this ICBT model provides greater flexibility

to enable the incorporation of varying structures, and degrees of, intransitivity. As
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many of these strategies will have similar effects, we anticipate that K should be small,

yet the random property of K provides the potential for it to be large when required.

This flexibility ensures that our model is parsimonious, whatever the complexity of the

data. For our Rock-Paper-Scissors illustration K = 1.

Moreover, our novel approach for the objects’ skills is to allocate the n objects into

a random number of A+1 ≤ n distinct skill levels, to improve efficiency and avoid false

rankings. This constraint recognises that from paired comparison data there will be ob-

jects that are indistinguishable as having statistically significantly different skill levels,

e.g., for our Rock-Paper-Scissors illustration A = 0. So clustering skills avoids over-

interpretation of misinformed rankings, a feature Masarotto and Varin (2012) address

by clustering skills via a lasso procedure.

The basis of our model is the belief that in practice there are likely to small subsets

of skill and intransitivity levels, namely A ≤ n − 1 and K ≪ n(n − 1)/2 respectively.

As we have little prior knowledge about the skills of the objects or the intransitivities

of the pairs of objects, we allow the clustering of objects into different skill levels,

and of the pairs of objects into separate intransitivity levels, to be determined entirely

through a Bayesian hierarchical model. We take each of (A,K), the allocations of

objects to skill levels, and the allocations of the pairs of objects to intransitivity levels

as unknown, with inference being conducted via a reversible jump Markov chain Monte

Carlo (RJMCMC) algorithm. This formulation does offer computational challenges;

however, we anticipate that typically the posterior will give a high probability that

A + K < n and that many of the cluster allocations also will be strongly identified.

Our inference framework offers the opportunity to select a highly simplified model, with

the values of A,K and allocations fixed at values given by posterior means/modes if

these are found to align with known structure about the paired comparison. In the

absence of such knowledge our results allow for the full uncertainty of these features to

be accounted for.
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In certain circumstances our model has the potential to identify and correct for

imbalanced tournament structure on overall rankings since teams are not penalised if

they (unfairly) compete most frequently against those whom they perform systemati-

cally worse to relative to what is expected based on respective skills alone.

We use American League Baseball data to illustrate the performance of our methods

in comparison to existing models for a range of reasons. Firstly, each game results in a

win or a loss for a team. Secondly, it is known to be a highly strategic game, see Section

7.5, so we anticipate that the level of intransitivity will be high. Finally, although the

tournament structure is not round robin, each team plays each other team often, and so

the existence of intransitivity should become apparent in inference. Indeed this is found

in Section 7.5, where our model is shown to have an improved fit over the Bradley-Terry

model and existing parametric intransitivity models in out of sample testing for each

of the nine seasons we study.

The layout is as follows. Section 7.2 introduces other approaches to modelling in-

transitivity. Section 7.3 then introduces our novel measure of intransitivity, the ICBT

model, and the ranking formulation. Section 7.4 contains details of the inference, includ-

ing prior specification, our full Bayesian hierarchical modelling strategy, an overview of

the RJMCMC algorithm and its novel features, and an overview of a simulation study.

Section 7.5 compares this model with the Bradley-Terry model and other competitor

models, using American League baseball data. Section 7.6 is a discussion. Full details

of the RJMCMC algorithm, simulation study, and extended analysis of the baseball

application are in the supplementary material.

7.2 Literature on Intransitive Modelling

The blade-chest model of Chen and Joachims (2016), extends the Bradley-Terry model

into d-dimensions by incorporating so-called blade and chest vectors bi, ci ∈ Rd for each
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object i ∈ I. There are two versions: the -dist and -inner variants, given respectively

by

logit
(
p
(BCD)
ij

)
:= ||bj−ci||22−||bi−cj||22+ri−rj, and logit

(
p
(BCI)
ij

)
:= bTi ·cj−bTj ·ci+ri−rj.

The blade and chest parameters of all the objects can be viewed as features on a

d-dimensional latent space. Then, if an object i’s blade is close to object j’s chest,

and simultaneously object i’s chest is far from object j’s blade, then object i has an

additional advantage over object j. If d = 2 this model can represent a deterministic

Rock-Paper-Scissors game, by placing the blade of Rock at the chest of Scissors, the

blade of Scissors at the chest of Paper, and the blade of Paper at the chest of Rock.

By increasing d, ever more complex relationships can be captured between the pairs of

objects. Given n objects and bi, ci ∈ Rd for each object i, the model contains 2d(n− 1)

identifiable parameters. The r parameters can be absorbed into the blade and chest

parameters; however, the above parametrisation makes it clear that the Bradley-Terry

model is a special case of the blade-chest model, when bi = bj = ci = cj, ∀i, j ∈ I.

Duan et al. (2017) introduce a generalised model for intransitivity, with

logit
(
p
(G)
ij

)
= µT

i Σµj + µT
i Γµi − µT

j Γµj,

with µi ∈ Rd, where d is even, being a d-dimensional strength vector, for an object

i ∈ I, and Σ,Γ ∈ Rd×d are so-called transitive matrices. The first matrix Σ represents

the interactions between objects, and Γ controls how an individual object’s strength

components form the object’s overall strength. The number of identifiable parameters is

d(3d/2+n−1), since there are two d×d matrices (Σ,Γ), of which Σ is skew-symmetric,

and n d-dimensional vectors. They show that their model is a generalisation of the

blade-chest and Bradley-Terry models. Specifically, the blade-chest-inner model arises

when µi = (bi, ci), µj = (bj, cj), and ||µi||22 = ||µj||22, that is, the objects all have equal
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skill, and Σ is a block diagonal matrix with two (d/2) × (d/2) matrices of zeros on

the diagonal and matrices Id/2 and −Id/2 on the off-diagonals where Im is the m ×m

identity matrix, then µT
i Σµj = bTi · cj − bTj · ci. The degrees of freedom are restricted by

regularization, using an L2 norm for the object strength vectors and Frobenius norm

for both transitivity matrices. The tuning parameters are selected via cross-validation.

Makhijani and Ugander (2019) introduced a majority vote model with object i

having a vector of d skill attributes, (µi,1, . . . , µi,d), where d is odd. Then, given a

suitable choice of mapping function f , e.g., logistic or Gaussian, define qlij = f(µi,l−µj,l),

∀l ∈ {1, . . . , d} to be the probability of i beating j based only on their lth attribute.

Then, majority vote model says that the probability of i being preferred to j overall, is

the probability that it wins across the majority of attributes. For d = 1 the model is

linearly transitive, but not when d = 3, as

Pr{i ≻ j} = q1ijq
2
ijq

3
ij + (1− q1ij)q

2
ijq

3
ij + q1ij(1− q2ij)q

3
ij + q1ijq

2
ij(1− q3ij).

7.3 Modelling

7.3.1 Measure of Intransitivity

From the model definition (7.1.1), the Bradley-Terry model assumes linear transitivity.

This assumption constrains the pairwise probabilities of the model such that, given

p
(BT)
ij and p

(BT)
jk from (7.1.1) for any i ̸= j ̸= k ∈ I, the probability p

(BT)
ik is completely

determined. It is straightforward to show that the form of p
(BT)
ik is given as

p
(BT)
ik =

p
(BT)
ij p

(BT)
jk

1 + 2p
(BT)
ij p

(BT)
jk −

(
p
(BT)
ij + p

(BT)
jk

) , ∀j ̸= i, k,
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noting it is independent of the choice of bridge object j. Therefore, there can be no

interaction that is specific to the pair {i, k}, that is not already captured between all

other pairs.

Including intransitivity, however, allows for some pairwise probabilities to depart

from those assumed by the Bradley-Terry model. This can be formalised by supposing

that for all i ̸= k ∈ I the true probability of preference i ≻ k is given as some function

f : {[0, 1],R} → [0, 1] of the Bradley-Terry probability and the intransitivity, θik, of the

pair {i, k}, then we can write

pik := f
(
p
(BT)
ik , θik

)
, ∀i ̸= k ∈ I, (7.3.1)

where we identify the form of f in Section 7.3.2. We define the intransitivity to be

the displacement of the true probabilities from the Bradley-Terry probabilities on the

log-odds scale, so that

θik := log

(
pik/(1− pik)

p
(BT )
ik /(1− p

(BT )
ik )

)
, ∀i ̸= k ∈ I, (7.3.2)

is the amount of intransitivity between the pair of objects {i, k}. A value of θik = 0

indicates that the comparison is transitive, i.e., the pairwise probabilities could be

modelled by the Bradley-Terry model. As a consequence we require f(x, 0) = x, x ∈

[0, 1]. The choice of log-odds ratio in equation (7.3.2) reflects the non-linearity of

probabilities. For example, if ϵ = 0.099, then a small linear shift in probability from 0.5

to 0.5 + ϵ has little impact on the odds, which remain at approximately 1:2. However,

a linear shift in probability from 0.9 to 0.9 + ϵ has a huge impact on the odds, which

move from 1:10 to 1:1000. Moreover, our definition (7.3.2) for the intransitivity θik also
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imposes rotational symmetry for pairs of objects, that is

θki = log

(
pki/(1− pki)

p
(BT )
ki /(1− p

(BT )
ki )

)
= log

(
(1− pik)/pik

(1− p
(BT )
ik )/p

(BT )
ik

)
= −θik, ∀i ̸= k ∈ I,

(7.3.3)

so we need to find {θik, ∀i > k ∈ I} only, in order to completely define {θik, ∀i ̸= k ∈

I}.

7.3.2 Model formulation

To find the function f in equation (7.3.1), equation (7.3.2) can be simply rearranged

which gives

pik =
p
(BT )
ik exp(θik)

p
(BT )
ik exp(θik) + 1− p

(BT )
ik

, ∀i ̸= k ∈ I, (7.3.4)

and so for any pair {i, k}, equation (7.3.4) can be re-written as

pik =
1

1 + exp[− (θik + ri − rk)]
, ∀i ̸= k ∈ I. (7.3.5)

Here the effect of θik is clear, positive (negative) θik, increases (decreases) the probability

of team i beating team k relative to their skills alone, i.e., relative to the Bradley-Terry

model.

Thus far, the model contains the flexibility to describe P := {pik ∈ [0, 1],∀i ̸= k ∈ I}

completely. Here P contains n(n − 1)/2 degrees of freedom, because pki = 1 − pik;

however, the model contains n(n−1)/2+n parameters: n(n−1)/2 values of intransitivity

between pairs, and n skill parameters from r, and thus the model parameters are

not identifiable. One way of ensuring identifiability in the standard Bradley-Terry

model is to fix one object’s skill level, and here it is chosen that r1 = 0. As well as

this constraint on the objects’ skill parameters, the intransitivity parameters require

constraints for parameter identifiability. The minimal set of required constraints is

identified in Proposition 1, see the Appendix for the proof.
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Proposition 1. Consider a round-robin tournament with pairs of objects (i, j) being

compared, with i, j ∈ I, with i ̸= j where |I| = n. Suppose that the probabilities of i

beating j are pij where these probabilities are given by expression (7.3.5), with r1 = 0

and intransitivity values θij. If a set of n − 1 pairs of objects, indexed by Jn−1, have

their intransitivity values set to arbitrary specified values, then all the rest of the {ri}

and {θij} parameters in expression (7.3.5) are identifiable if Jn−1 forms a connected

graph over I. Furthermore, if less than n − 1 pairs’ intransitivity values are specified

or if Jn−1 is not a connected graph over I then identifiability is not achievable.

We choose the n − 1 constraints to be θij = 0, ∀(i, j) : i = 1, j ∈ I \ {1}, that

is, all pairs involving object 1 have intransitivity set to 0. Proposition 1 gives that

if any further constraints are imposed on the intransitivity values the flexibility of

model (7.3.5) will be compromised.

With the above constraints, the minimal conditions for parameter identifiability

are satisfied, but the model is still likely to overfit with so many parameters. To

rectify this we restrict the total number of degrees of freedom, by restricting both the

number of intransitivity values to only K ≤ n(n − 1)/2 unique values and restricting

the number of unknown skill values to be A < n, where A + K ≤ n(n − 1)/2 and

ideally A +K ≪ n(n − 1)/2. In this fashion our ICBT model embraces intransitivity

in a parsimonious way.

Firstly, consider the A+1 unique skill values, which ensures parsimony in the model

by clustering the objects’ skills r into distinct values which are sufficiently statistically

significantly different. Since r1 = 0 is fixed, there are only A unknown skill levels,

ϕ ∈ RA. By defining the labels of the set of skill levels to be A := {−A−, . . . , 0, . . . , A+}

with A+ being the number of skill levels which are greater than 0 and A− the number

of skill levels less than 0 such that A− + A+ + 1 = A + 1 = |A| ≤ n, we impose the

equivalent condition in our model by fixing the skill level with label {0} to be ϕ0 = 0,

and fixing object 1 to always be allocated to this cluster. The possible skill values an
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object can take are therefore defined as

{ϕ0 = 0, ϕ := {ϕa ∈ R,∀a ∈ A \ {0}} : ϕ−A− < · · · < ϕ0 < · · · < ϕA+},

where ϕ are the unknown skill levels, and the ordering helps with label switching prob-

lems in the inference. The skill cluster allocation of object i, denoted y{i} ∈ {0, 1}A+1,

is a binary vector which takes the value 1 at position s ∈ A and 0 everywhere else, if

object i ∈ I belongs to cluster s. The set Y := {y{i} : i ∈ I \ {1}} then contains all the

objects’ skill cluster allocations except object {1} which has fixed cluster allocation.

Therefore, by defining S{i} (Y ) := argmaxsy{i},s, ∀i ∈ I \ {1}, then the objects’ skills

can be written as

ri =

ϕS{i}(Y ), i ∈ I \ {1}

0, i = 1
:= fr (ϕ, Y, i) , ∀i ∈ I. (7.3.6)

Now consider the K unique values of intransitivity to describe the different inter-

object strategies. Of the n(n− 1)/2 pairs of objects, many will adopt similar strategies

depending on their opponents. These similar strategies are translated by the model

as having similar departures from transitivity, and are thus clustered together. For

example, suppose some group of objects V : j /∈ V competed against object j in the

same way. Then it would be reasonable to assume that θij is the same for all i ∈ V .

This creates clusters of pairs of objects, such that the pairs are clustered according to

them having identical intransitivity.

In order to measure the departure from a Bradley-Terry model, a linearly transitive

cluster is imposed, which contains the set of pairs JT ⊆ {{i, k} : i ̸= k ∈ I}, which have

an intransitivity level θ0 = 0. Thus, the Bradley-Terry modelling assumption (7.1.1)

holds for these pairs, such that pik = p
(BT)
ik , for all {i, k} ∈ JT . Given the existence

of this cluster, there must be strong evidence from the data to produce an additional
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cluster with an intransitivity level close to 0. This choice does not impose transitivity of

pairs as the linearly transitive cluster JT may be empty, except for all pairs with object

1 which are classified as transitive due to our imposition of constraints for identifiability

from Proposition 1. Let the distinct set of intransivity levels be

θK := {θ0 = 0, θ = {θk ∈ R+, ∀k ∈ K} : 0 < θ1 < · · · < θK},

where K = {1, . . . , K} and the levels of intransitivity are ordered from smallest to

largest. The levels of intransitivity, θ, contain the set of positive values of intransitivity

which, due to symmetry and the completely transitive cluster with intransitivity value

θ0, then define the full 2K + 1 possible values of intransitivity between any pair of

objects.

We define the intransitivity cluster allocation of a given pair {i, k} to be another

binary matrix z{i,k}, which takes the value 1 at position s ∈ {−K, . . . ,K} and 0 ev-

erywhere else, if the pair {i, k} belongs to cluster s. The clusters are therefore labelled

from −K to K, where a cluster labelled k ∈ {1, . . . K} has cluster level θk, a cluster

labelled k ∈ {−K, . . . ,−1} has cluster level −θ−k, and a cluster with label 0 has cluster

level θ0 = 0. The set Z := {z{i,k}, ∀i > k ∈ I \ {1}} then defines all the cluster

allocations for all the free pairs i ̸= k ∈ I \ {1}, because of the rotational symmetry.

For example, if the Kth index of z{i,k} has value z{i,k},K = 1, then this indicates that

the pair {i, k} belongs to the cluster with label K, whose cluster level is the largest

level of intransitivity θK , and this enforces that the pair {k, i} belongs to cluster −K

and has the smallest level of intransitivity −θK . If the cluster allocation of the pair

{i, k} ∈ I \ {1} is

S{i,k}(Z) :=

 argmaxsz{i,k},s if i > k,

−argmaxsz{k,i},s if i < k,
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then the level of intransitivity for a pair {i, k}, θik can be redefined as

θik := fθ (θ, Z, {i, k}) (7.3.7)

=

θS{i,k}(Z)1{S{i,k}(Z) ≥ 0} − θ−S{i,k}(Z)1{S{i,k}(Z) < 0}, {i, k} ∈ I \ {1}

0, otherwise

where 1 is the indicator function, and remembering that θ0 = 0.

The full model can be written either in terms of equation (7.3.5), noting that the

parameters will be clustered, or can be written in terms of the levels and the cluster

allocations,

pik = (1 + exp {− [fθ (θ, Z, {i, k}) + fr (ϕ, Y, i)− fr (ϕ, Y, k)]})−1.

So the ICBT model is defined by ψ = {ϕ = {ϕa : a ∈ A \ {0}}, θ = {θk : k ∈ K}}.

Due to the intransitivity levels being fixed to 0 for all pairs of objects involving

object 1, an adjustment is required to get a more interpretable value of intransitivity

between the pairs. We define the adjusted intransitivity to be

θ∗ij := logit (pij)− logit
(
p
(BT )
ij

)
= θij + ri − rj −

(
r
(BT )
i − r

(BT )
j

)
, (7.3.8)

that is, the difference between the logits of the pairwise probability between our ICBT

model and the Bradley-Terry model. Note that the rotational symmetry of {θij} (7.3.3)

also imposes rotational symmetry on {θ∗ij}, that is, θ∗ij = θ∗ji,∀i ̸= j ∈ I.

To help see the value of this reparametrisation, consider then the earlier example

of a deterministic game of Rock-Paper-Scissors. Take Rock as the constrained object,

then Rock has fixed skill level rr = 0, and that pairs involving Rock have intransitivity

0, that is θrp = θrs = 0, where the p and s subscripts denote Paper and Scissors. To

maintain that Rock always beats Scissors prs = 1, then from the constraints, we get
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an excellent approximation from the ICBT model when rs = −M for some large M ,

with the approximation improving as M → ∞. Likewise rp = M , and θps = −3M .

With this model there is only one skill level M , and one non-zero intransitivity level

−3M . This parametrisation somewhat hides the symmetry of the intransitivity over

pairs. However, with definition (7.3.8), then θ∗rs = θ∗sp = θ∗pr = M , resulting in an

intuitive and easy interpretation of the intransitivity, reflecting the symmetry of the

game, no-matter the choice of the fixed parameters.

7.3.3 Model Ranking

In the Bradley-Terry model, the skill parameters can simply be ordered to give a rank

since a greater skill always results in higher win probabilities against all other objects.

In our ICBT model this is not the case, because both the intransitivity parameters of

each pair and the skill parameters of the objects impact the win probability between

any pair. However, below we present two intuitive methods for determining overall

ability, and therefore ranking.

Firstly, if pij = Pr{i ≻ j} is the probability of an object i beating object j according

to our model, then we can rank the objects by ordering

p. :=

{
pi. :=

1

n− 1

∑
j∈I: j ̸=i

pij : i ∈ I

}
, (7.3.9)

that is, pi. is the average probability of object i beating any other object j ̸= i ∈ I.

Secondly, if we consider the intransitivity between an object i and an opposing

object j ̸= i as some “boost” which contributes to the overall ability (which could be

negative), then the overall ability ai of object i could be defined by

ai := ri +
1

n

∑
j∈I

θij, where θii = 0, ∀i ∈ I, (7.3.10)
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that is, the object skill plus its average intransitivity level. Definition (7.3.10) is equiv-

alent to the Bradley-Terry definition of ‘ability’. Defining logit
(
p
(BT )
ii

)
= 0, ∀i ∈ I, a

Bradley-Terry gives

1

n

∑
j∈I

logit
(
p
(BT )
ij

)
= ri −

1

n

∑
j∈I

rj, (7.3.11)

where the sum on the right hand side does not depend on i, so the skill of object i is

entirely determined by ri. Similarly, in our model

1

n

∑
j∈I

logit (pij) = ri +
1

n

∑
j∈I

θij −
1

n

∑
j∈I

rj = ai −
1

n

∑
j∈I

rj, (7.3.12)

then given definition (7.3.10), both (7.3.11) and (7.3.12) have the same form but with

ai replacing ri. Then a ranking can be formed by ordering the set of abilities a :=

{ai : i ∈ I}. We argue that the first method, using the probabilities p. to rank the

objects, is more meaningful since it is directly associated with the pairwise probabilities,

the modelling of which is our ultimate aim. The application to baseball data of both

methods is discussed in the supplementary material.

7.4 Inference

7.4.1 Likelihood

The data, x := {xc : c ∈ C}, are binary, and i ≻ j denotes that i is preferred to j. Then

xc = 1 if ic ≻ jc, and xc = 0 otherwise, where ic, jc ∈ I are the objects being compared

in comparison c. Then, the log likelihood for the ICBT model is

ℓ(x|ϕ, Y,A, θ, Z,K) =
∑
c∈C

[xc log (picjc) + (1− xc) log (1− picjc)] , (7.4.1)

where picjc is given by the ICBT model for all c ∈ C and is calculated from the set of

parameters (ϕ, Y,A, θ, Z,K). All pairs’ intransitivities {θik : i ̸= j ∈ I} can be found
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from the intransitivity levels θ and the cluster allocations Z, using equation (7.3.7), so

it is only necessary to do inference on these parameters, rather than the full 2K + 1

separate clusters. Therefore from here onwards the term intransitivity levels refers only

to those K values which have positive intransitivity. Similarly, any individual object’s

skill ri ∀i ∈ I can be found from knowing the ability levels ϕ and the cluster allocations

Y , using equation (7.3.6). We formulate a Bayesian hierarchical model, which treats

both K and A as unknown parameters, thus accounting for uncertainty in the number

of clusters. The posterior is therefore written as

π (ϕ, Y,A, θ, Z,K|x) ∝ L (x|ϕ, Y,A, θ, Z,K) π (ϕ, Y,A, θ, Z,K)

where L(·) = exp[ℓ(·)] is the likelihood and π (ϕ, Y,A, θ, Z,K) is the prior.

7.4.2 Prior Specification

Formulating the prior, we make the assumption that Z ⊥⊥ θ|K that is, the intransitivity

level allocations and intransitivity levels are independent from one another given the

number of intransitivity levels K. Likewise, it is assumed that Y ⊥⊥ ϕ|A. Furthermore,

we assume that the clustering of the objects’ skills and the clustering of the pairs’

intransitivities are independent systems, that is, A ⊥⊥ K, ϕ ⊥⊥ θ, and Y ⊥⊥ Z. This

means that the prior specification for the two features we are clustering, skills and

intransitivities, can be approached separately.

Consider first the prior specification for the clustering of the intransitivity values of

the pairs. Remember that labels z{i,j},∀i > j ∈ I\{1} have domain {−K, . . . ,K}, that

is, z{i,j} : {−K, . . . ,K} → {0, 1}, ∀i > j ∈ I \ {1}, and also that z{i,1},∀i ∈ I\{1} (and

by symmetry z{1,j},∀j ∈ I\{1} too) are fixed in the transitive level {0} for identifiability
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purposes, see Section 7.3.2. Let the prior on the cluster allocation be

z{i,j}|ωK ∼ multinomial (1, ωK) , ∀i > j ∈ I \ {1},

where ωK is on {−K, . . . ,K} such that

ωK = {ωK,s ∈ [0, 1] : s ∈ {−K, . . . ,K},
K∑

s=−K

ωK,s = 1}.

The distribution of Z| (ωK , K) is assumed independent over all pairs i > j ∈ I \{1},

i.e.,

f (Z|ωK , K) =

(∑K
k=−K |bk|

)
!∏K

k=−K |bk|!

K∏
s=−K

ω
|bs|
K,s,

where bk = {(i, j) : i > j ∈ I \ {1} : z{i,j},k = 1} ∀k ∈ {−K, . . . ,K} is the set

of allocated pairs of objects belonging to cluster k. We set ωK |K ∼ Dirichlet (γ̄K) to

come from 2K + 1 dimensional Dirichlet prior distribution, and γ̄K ∈ R2K+1
+ is the

hyper-parameters vector. We use an uninformative prior, setting γ̄K = γK12K+1 where

12K+1 is a vector of ones of length 2K+1 and γK ∈ R+. In this case, the ωK parameter

can be marginalised out, by

f(Z|γK , K) =

∫
ωK

f(Z|ωK , K)f(ωK |γK , K) dωK

=

(∑K
k=−K |bk|

)
!∏K

k=−K |bk|!
Γ((2K + 1)γK)

Γ(γK)2K+1

∏K
k=−K Γ (γK + |bk|)

Γ
(
(2K + 1)γK +

∑K
k=−K |bk|

)(7.4.2)
where integration on ωK is taken over the 2K + 1 simplex. This is referred to as a

Dirichlet-multinomial allocation prior. The prior for K is a Poisson(λK) distribution

with probability mass function denoted g0 (k|λK) so that E [K|λK ] = λK , with λK > 0.

Note that K = 0 is feasible, as this corresponds to the Bradley-Terry model since

θ|(K = 0) = ∅ and so only the transitive cluster exists, that is θK|(K = 0) = θ0, and
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{i, j} ∈ JT , ∀i ̸= j ∈ I, so all pairs belong to the transitive cluster JT . Formally

K < n(n− 1)/2−n but as this is large relative to our prior beliefs on K, for simplicity

we ignore this constraint in the inference.

As the θ elements are ordered in increasing order and are positive, the prior on

the θ parameters is taken to be the joint distribution of K order statistics drawn from

independent gamma random variables, such that

h0 (θ|K) = K!
K∏
i=1

h0 (θi|α, β) , with 0 < θ1 < · · · < θK , K ≥ 1, (7.4.3)

and where h0 (x|α, β) is the Gamma(α, β) density with shape and scale α, β > 0 re-

spectively.

Consider the prior for the skill levels clustering. The set of skill cluster allocations

has distribution Y = {y{i}|ωA, A ∼ multinomial(1, ωA),∀i ∈ {2, . . . , n}}, where ωA has

domain on {−A−, . . . , A+}. The distribution of y{i}|(ωA, A) is assumed independent

over all objects i ∈ I \ {1} such that

f(Y |ωA, A) =
∏

i∈I\{1}

f(y{i}|ωA, A),

where

ωA = {ωA,s ∈ [0, 1] : s ∈ {−A−, . . . , A+},
A+∑

s=−A−

ωA,s = 1}.

Again, ωA|(A, γA) ∼ Dirichlet (γ̄A) is modelled to come from an A + 1 dimensional

Dirichlet prior distribution, with γ̄A = γA1A+1 where γA ∈ R+. Marginalising out

as in derivation (7.4.2), another Dirichlet-multinomial allocation prior is obtained by

integrating ωA over the A + 1 dimensional simplex. The prior density for the skill

allocations is therefore given as

f(Y |γA, A) =
n!∏A+

a=−A−
|ca|!

Γ(AγA)

Γ(γA)A

∏A+

a=−A−
Γ(γA + |ca|)

Γ(AγA + n)
, (7.4.4)
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because
∑A+

a=−A−
|ca| = n, where ca := {i, ∀i ∈ I \ {1} : y{i},a = 1} is the set of objects

belonging to skill cluster a ∈ A.

The prior for the number of unknown skill levels A is taken to be a truncated Poisson

distribution with parameter (λA), λA > 0 with probability mass function

gA (a|λA) =
λaA
a!

(
n−1∑
i=0

λiA
i!

)−1

a = 0, 1, . . . , n− 1.

Similarly to θ, the prior choice for ϕ is taken to be the joint distribution of order

statistics of independent and identically distributed A + 1 Gaussian random variables

such that

π(ϕ|A) = (A+ 1)!
∏

a∈A\{0}

π(ϕa) for ϕA− < · · · < ϕ0 < . . . ϕA+ ,

where ϕa ∼ N (0, ν2A) ∀a ∈ A \ {0}, and with νA ∈ R+. The (A+ 1)! term arises as ϕ0

can occur anywhere in the sequence of ϕ.

In summary, the prior π (ϕ, Y,A, θ, Z,K) is equal to

(A+ 1)!

 ∏
a∈A{−0}

π (ϕa)

 f(Y |γA, A)gA (A|λA)K!

[
K∏
i=1

h0 (θi|α, β)

]
f(Z|γK , K) g0 (K|λK) ,

where, λK , λA, γK , γA, νA, and α, β are the hyper-parameters.

7.4.3 Reversible jump Markov chain Monte Carlo sampler

Inference is made via a reversible jump Markov chain Monte Carlo sampler (Green,

1995), which provides samples from the posterior distribution π (ϕ, Y,A, θ, Z,K|x), that

is, the intransitivity and skill levels, the allocations to the these levels, and the number



CHAPTER 7. MODELLING INTRANSITIVITY 170

of levels. Since the number of skill and intransitivity levels (A,K) are assumed to be

unknown, the uncertainty in these parameters must be accounted for, thus motivating

the use of a reversible jump sampler. In a sense, the reversible jump sampler mixes

over models as well as parameters, and thus fully accounts for this uncertainty in the

final inference.

The ICBT model is structured to try to favour the Bradley-Terry model as a special

case, and this is reflected in our sampler, by explicitly incorporating the completely

transitive cluster θ0 as an ever present cluster, even if no pairs are allocated to this

cluster at a given iteration of the sampler. To ensure the skill and intransitivity levels

both remain ordered, the updates to these levels occur in a transformed space such that

no update can lead to a change in order.

The reversible jump algorithm used is a split-merge sampler (Green and Richard-

son, 2001), which is adapted from the work of Ludkin (2020). The sampler comprises

three separate moves: a standard Markov chain Monte Carlo Metropolis-Hastings move,

which samples parameters ϕ, θ, and reallocates clusters Y, Z; splitting or merging clus-

ters; and adding or deleting empty clusters. For full details of the construction of the

algorithm and its implementation using base R (R Core Team, 2020), see the supple-

mentary material.

7.4.4 Model assessment

The inferences produced by any model are only meaningful if the model itself is accurate.

This accuracy is measured here by how well the model fits out of sample. If C is the set

of total observed pairwise comparisons, then let Cs be the set of comparisons on which

the model is fitted and Ct be the set of comparisons on which the model performance

is analysed, such that Cs ∪ Ct = C and Cs ∩ Ct = ∅. We use log-loss l(x∗) of the test

dataset x∗ to measure model performance, which we take to be the average negative
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log-likelihood per observation in x∗, i.e.,

l(x∗) = − 1

|Ct|
∑
c∈Ct

[xc log(p̂icjc) + (1− xc) log(1− p̂icjc)] , (7.4.5)

where p̂ij is the point estimate of pij based on the training dataset of comparisons Cs

and x∗ := {xc : c ∈ Ct} is the set of test data, where the notation is as used in the

expression for the likelihood (7.4.1).

7.4.5 Simulation study

The model was tested using simulated datasets where the number of objects, the num-

ber of round-robin tournaments, and the amount of intransitivity varied between the

datasets. The sensitivity of our model to these parameters was then tested by com-

paring out of sample prediction accuracy with a standard Bradley-Terry model. This

provided insights into the amount of data, and the amount of intransitivity, required

for our more complex model to outperform the Bradley-Terry model. A full analysis is

provided in the supplementary material.

7.5 Baseball Data

7.5.1 Data

Baseball was chosen to illustrate the methodology due to the high frequency of games,

with accessible data for the American League Baseball obtained from www.retrosheet.

org. The data are from the 2010-2018 seasons, with the 2010-2012 seasons involving

14 teams, and the 2013-2018 seasons involving 15 teams due to the Houston Astros

moving from the National League to the American League. We analyse each season’s

data separately here, and jointly over years in the supplementary material.

The tournament structure is not as simple as the round robin tournament we con-

www.retrosheet.org
www.retrosheet.org
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sidered in the simulation study. The American League is split into three divisions based

on location: East, Central and West, with five teams in each (since 2013). Within the

same division, pairs of teams play each other approximately 20 times, and pairs of

teams from different divisions play each other around 5-7 times, as well as any Playoffs

and World Series matchups, totalling around 140-160 matches per team every season,

depending on the season and the team. Baseball is known to be a highly strategic

game, with issues such as player selection, handedness of the of batters, strength and

speed of players, and tactics such as “small ball” vs “long ball” all considered of great

importance. So we anticipate that the level of intransitivity will be high.

The vast majority (at least 99.5%) of all matches are played at the home of one of

the two teams competing in the game, with the rest played at neutral venues. Playing

at home is well known to have the potential to increase the probability of the home

team winning the match across a range of sports (Dixon and Coles, 1997). Although

prediction and model interpretation could be improved by incorporating this effect, we

decided not to address home advantage here. Our reason was that none of the existing

intransitivity models have such a feature, as they were developed for applications devoid

of home advantage, such as e-sports, so a comparison of the different models would only

be fair if we did not include this property. However, in Section 7.6 we formulate the

home advantage adaptation given its potential interest.

If pairs of teams do not play equally home and away, then ignoring home advantage

could lead to misinterpretation of the estimated ICBT model parameters, e.g., if team

i mostly played team k with team i at home, the home advantage would feed into θik.

We do not believe this is problematic due to the near perfect balance of home to away

matches per team, and the maximum home percentage within pairs of teams is 70% for

2010-11 and only 57% subsequently.
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7.5.2 Inference

The baseball data are analysed using the ICBT model, and its results are compared

with those of the Bradley-Terry model and with the existing models of Section 7.2

except for the model of Duan et al. (2017) due to the subjective choices required for

some parameters.

The ICBT model incorporates uncertainty in the choice of model itself, that is,

the number of clusters and therefore how many parameters. Our prior distributions

for number of intransitivity levels K and skill levels A are shown in Figure 7.5.1. We

used a Poisson(λK = 2) prior for K, with the hyper-parameter to give a 95% prior

chance that K ∈ [0, 5], as it was thought that there would only be a few different

pairwise strategies. Similarly, the prior for A was taken to be Poisson(λA = 7) as this

hyper-parameter choice gave a 95% prior chance that A ∈ [2, 13]. The justification for

our choice of the other hyper-parameters (γK , γA, α, β, νA) and a sensitivity analysis to

hyper-parameter choice is reported in the supplementary material.

Now consider the posterior distributions for K and A based on the 2018 season data,

also shown in Figure 7.5.1. Despite the prior only providing vague information across

values of K ≤ 5, the data clearly favours having a single intransitivity level, meaning

three possible clusters for each pair: a positive level, the completely transitive level,

and the mirrored negative level. Further, although the prior gave a 14% probability to

the Bradley-Terry model (K = 0), the posterior probability for that model is estimated

to be zero, showing strong evidence of intransitivity in the dataset. For the distinct

skill levels the change from prior to posterior is relatively small, with a mean (and

95% credible interval) of 7.94 (4, 12), with the number of distinct skills levels favouring

A ∈ [6, 9].

The posterior estimated values of the teams’ skills, and the variance of these values

in particular, provides a helpful summary of how competitive the tournament is in a

season, with the smaller the variance the more closely contested the tournament. For
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our model the skills’ variance ranged from 0.027 (2012 season) to 0.32 (2018 season)

and for the standard Bradley-Terry model, 0.031 (2015 season) to 0.23 (2018 season) -

both models suggesting that 2018 was the least competitive season. In the 2013 season

the variance of skill levels according to Bradley-Terry is almost 3 times that of our

model. However, the 2013 season was found to contain a particularly large amount of

intransitivity, indicating that the large range of skills in the Bradley-Terry model could

be the result of compensating for an inability to express the intransitivity. This has

perhaps resulted in the Bradley-Terry model concluding that the 2013 season was less

competitive than it was in reality.
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Figure 7.5.1: Posterior distributions of the K intransitivity levels (left) and the A skill

levels (right) for the 2018 season: with the associated prior distributions in a lighter

colour.

Now consider the pairwise interactions between teams. These interactions could

be inferred from either the intransitivity of the posterior mean θ̂∗ij, ∀i ̸= j, or by

the posterior mean of the intransitivity parameter θ̂ij, ∀i ̸= j. The supplementary

material contains a comparison for both and concludes that θ̂∗ij is more meaningful and

interpretable here, so we focus on that. For the 2018 season, Figure 7.5.2 (left) shows

θ̂∗ij, for each pair of teams i > j ∈ I: recall that intransitivity has rotational symmetry,

i.e., θ∗ij = −θ∗ji, ∀i ̸= j. The teams are sorted by their rank according to p., given by
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definition (7.3.9), see Figure 7.5.2 (right). Reading from the teams on the y-axis to

x-axis there is a large positive value of intransitivity from Baltimore (BAL) to Tampa

Bay (TBA) of 0.78 with 95% credible interval (0.36, 1.22), indicating that Baltimore

played better against Tampa Bay than expected, given their overall abilities. This is

consistent with the data, with Baltimore winning 11 out of 19 matches between the two

teams, despite being ranked lower.

The analysis of these intransitivities between pairs, and that of the skills of each

team, can be combined to produce an overall ranking of the teams. As discussed in

Section 7.3.3, with further details in the supplementary material, p. provides a suitable

ranking of the teams. For the 2018 season Figure 7.5.2 (right) shows the ranks according

to p. compared to the Bradley-Terry ranks. Both have been linearly scaled to help

with a visual comparison, such that the best and worst teams have abilities 1 and 0

respectively. The two sets of estimated rankings using p. are clearly correlated; however,

there is some difference in the ordering of the ranks, indicating that intransitivity may

have been masking the true ranks of some teams. For example, consider Tampa Bay,

ranked 6th by the Bradley-Terry model. Tampa Bay’s good record against Kansas City

(KCA) has a much lower weighting than their poor record against Baltimore in the

Bradley-Terry model due to the differing frequency of these match-ups, and therefore

impacts the overall rank of Tampa Bay. The ICBT model however, recognises that good

or bad records against particular teams could be due to the presence of intransitivity,

and therefore penalises Tampa Bay less overall, ranking them 5th, thus illustrating our

point in Section 7.1 that the ICBT model makes adjustments for tournament imbalance.

Similar plots and inferences are drawn from the other seasons (2010-2017) but with

different team rankings in each year.
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Figure 7.5.2: Analysis of 2018 season: the posterior mean of the intransitivity parame-

ter, θ̂∗ij across all pairs of teams i > j ∈ I (left); ranking according to definition (7.3.9)

(black) and Bradley-Terry model (red) for all teams i ∈ I (right).

7.5.3 Model Performance

To test the model performance, 70% of games from each season are randomly selected

to be training data, on which the model is fitted, with the remaining 30% used as test

data, on which the log-loss score is calculated. This random selection is appropriate

as none of the models compared take time-dependency into consideration, a feature

discussed in the supplementary material. The variation due to this random sampling

in the training-test split is accounted for by taking 100 separate random training-test

splits for each season. For each replicate of training data the model is fitted separately

to each season’s data. Relative log-loss is then calculated by subtracting the log-loss of

a baseline coin tossing model.

Table 7.5.1 shows these negative relative log-loss scores for all years of baseball

data, along with 95% confidence intervals, with this measure evaluated for the ICBT,

Bradley-Terry, blade-chest and majority vote models. Since a larger value of nega-

tive relative log-loss indicates better model performance, a positive value indicates an

improvement on the coin tossing model. So all four models improve on simply using

coin tossing, showing that there is information to be exploited for inference and pre-
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diction. The Bradley-Terry, blade chest and majority vote models all have somewhat

similar performance to each other across the years, with the most improved fit being

in 2018. In contrast our model is the best performing out of the four models in terms

of out-of-sample prediction on all years of data. When assessed as the cumulative

improvement over years, relative to coin tossing, the ICBT model is 2.8 times better

than the Bradley-Terry model, showing that we have substantially improved predictive

performance. The difference in log-loss scores relative to the Bradley-Terry model is

largest for the 2013 season, which in Section 7.5.2 has been identified as the season with

the largest intransitivity.

year ICBT BT blade-chest majority vote

2010 44(38, 46) 17(15, 18) 17(2, 27) 20(13, 25)

2011 46(33, 49) 15(13, 17) 17(-1, 26) 20(13, 26)

2012 49(44, 53) 14(11, 16) 24(8, 33) 22(14, 31)

2013 64(36, 69) 23(21, 25) 33(13, 42) 31(22, 39)

2014 39(29, 45) 9(7, 11) 10(-12, 21) 13(6, 19)

2015 34(12, 45) 5(2, 7) 9(-14, 17) 9(1, 16)

2016 42(32, 55) 10(8, 12) 18(2, 30) 18(10, 28)

2017 36(10, 50) 13(11, 15) 13(-4, 22) 16(9, 22)

2018 73(65, 79) 46(44, 47) 48(19, 56) 51(43, 57)

Table 7.5.1: Negative relative log-loss ×103 (compared to a coin-tossing model) for

each year of baseball data for the ICBT, Bradley-Terry, blade-chest and majority vote

models. 95% confidence intervals, in parentheses, come from random training-test splits

of the data.
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7.6 Conclusions and Discussion

We have proposed a new model and inference structure for paired comparison data.

We frame this in the context of sport competitions, baseball in particular, with teams

competing against each other, though the potential applications of the model are much

broader. Our proposed model, the Intransitive Clustered Bradley-Terry (ICBT) model,

extends the standard Bradley Terry model, which is widely considered as the baseline

model for such data. The extension allows for intransitivity so that the difference in

skill levels between two objects being compared is not the only factor affecting the

probabilities of the outcomes. There are a number of models which already allow for

intransitivity, but each of these are quite restricted in the parametric form of intransi-

tivity relative to our semi-parametric approach, which recognises that certain patterns

of interaction between pairs of objects can be common over multiple pairs. Our model

also allows for objects’ skills to be clustered, a feature that is novel to paired com-

parisons, with this inducing parsimony and avoiding obtaining distinct rankings for

some items when there is no evidence from the data that they are not equally good.

We have shown evidence from American League baseball that our model provides a

distinct improvement on existing models.

The ICBT model has complete flexibility, in the sense that cluster allocation to

skill and intransitivity levels is not predetermined. In order that the data identify the

appropriate structure of clustering, and for the inference to account for the uncertainty

in this choice, the model is fitted via RJMCMC.

Based on the clusters with the highest posterior probabilities, we anticipate that

experts in the particular sport may be able to identify some patterns of clustering that

are interpretable, e.g., associated with different styles of play. In such cases, these

clustering features could be hard wired into the model as the only options, resulting

in more efficient inference. A referee made the helpful suggestion that if accounting

for clustering uncertainty was not an issue then the inference could be simplified by
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estimating the ICBT model with group lasso penalties to induce clusters. We feel that

our model works sufficiently well for the current applications but agree that it presents

an exciting springboard for the consideration of various extensions to the model and

its inference. We finish by illustrating a few such possible extensions.

In Section 7.5 we did not attempt to account for home advantage, which is widely

recognised as an important feature in sport, e.g., Cattelan et al. (2013) incorporate it in

a Bradley-Terry model, though to the best of our knowledge it has not been accounted

for in the existing intransitivity models. The most natural way to achieve this is to

change pik given by expression (7.3.5) to a probability p
(i)
ik of the home team i beating

the away team k, with

p
(i)
ik =

1

1 + exp[− (θik + γ + ri − rk)]
, and p

(i)
ki = 1− p

(i)
ik ∀i ̸= k ∈ I, (7.6.1)

where γ ∈ R determines the effect of playing at home, which here is common over

all pairs of teams. If γ > 0 (γ < 0) then the probability of a home win is increased

(decreased) relative to the other factors of skill and intransitivity. This effect can be

extended to vary over teams by replacing γ by γi in expression (7.6.1). To ensure these

γi parameters are all identifiable, we fix γ1 = 0, though no additional constraints are

needed if there is a common γ, but that is all that is required under the conditions of

Proposition 1 on the other parameters, as we are able to exploit data that distinguishes

which team is at home.

This article only considered win-loss scenarios. Extensions of the Bradley-Terry

have been proposed for handling draws. Two distinct methods for handling draws are

given by Cattelan et al. (2013) and Hankin (2020). The former use ordinal logistic

regression, treating win, loss, draw as outcomes of an ordered multinomial random

variable, which can then be analysed via an ordered link model. In contrast, the latter

treats the problem as a competition between the two teams and a third theoretical

team, such that when the theoretical team wins the outcome of the match corresponds
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to a draw between the two actual teams. The ICBT model can be adapted similarly,

with the use of the clustering strategy extended to pooling teams to account for their

similar cautiousness, leading to them drawing more often than would be expected.

We have assumed that all teams play each other. If this is not the case we cannot

improve on the prior inference for the θik parameters for pairs (i, k) that do not play each

other. This is not a restriction for Bradley-Terry or the existing intransitivity models,

where the associated pik are determined by the observed pairs. This raises issues about

identifiability of the ICBT model parameters. Our approach, through Proposition 1,

is no longer sufficient leaving the open problem of which parameters to fix in order to

give the most efficient inference.



Chapter 8

Conclusions and Further Work

8.1 Chapter Summary and Conclusions

Chapter 6 was a whistle-stop tour of the most commonly utilised ranking methods, and

included: one-object-one-rating methods, with the seminal Bradley-Terry model being

the prime example; indirect approaches like the Poisson models; and heuristics like the

well-known Elo system. A full exploration would also include Markov models, such as

PageRank (Brin and Page, 1998), and the closely linked Massey (Massey, 1997) and

Colley (Colley, 2002) methods.

The paired comparison literature is extraordinarily broad, and each of the above

methods have had numerous extensions proposed. Often motivated by sports, many of

these extensions are application specific, encompassing, for example, injuries, transfers

or referee bias. But this thesis is not concerned with the application specific angle,

rather, it strives for a ubiquitous framework for statistical ranking methods. Accord-

ingly, the literature review in Chapter 6 was kept general, presenting the core methods.

More depth was permitted to discussing the often-unknowingly-surmised transitive as-

sumption, and the seminal works are presented in this vein, highlighting the three

common forms of stochastic transitivity. The Bradley-Terry type models are shown to

181
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obey linear transitivity. The Poisson models flout both linear and strong stochastic

transitivity, adhering only to weak stochastic transitivity, while few models contain the

flexibility to defy weak stochastic transitivity.

Chapter 7 lays out the blueprint for modelling intransitivity-rife data via a gener-

alisation of the Bradley-Terry model, the Intransitive Clustered Bradley-Terry (ICBT)

model. The ICBT model unifies all three forms of transitivity within a single class of

semi-parametric model, from adhering to the strictest form to violating the weakest,

and with this flexibility governed by the data. From this blueprint, similar extensions

are trivial for other one-object-one-rating systems. The same initiative could be trans-

lated for the Poisson models, providing them too with the opportunity to violate weak

transitivity.

Next, some thoughts on further work are presented, both for the ICBT model, and

more general adaptations for the Bradley-Terry model.

8.2 Further Work

8.2.1 ICBT model improvements

For the application at hand, it may be known that some forms of transitivity must

be upheld. In these cases the ICBT model could be constrained to these forms, but

remain flexible within this domain. For example, it may be known a priori that a system

comprising objects I should adhere to strong stochastic intransitivity. In this case, the

ICBT model can be fitted to data from this system, subject to prior distributions on

the ratings and intransitivity parameters µ := {µi ∈ R : i ∈ I} and θ := {θij ∈ R :

i ̸= j ∈ I}, respectively, which are selected to enforce the strong stochastic transitivity

constraint (6.2.1) for all (i ̸= j ̸= k) ∈ I, i.e.,

pik −max{pij, pjk} > 0|pij, pjk > 0.5, ∀(i ̸= j ̸= k) ∈ I
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with pij = f(µi, µj, θij) as defined in Chapter 7. This would result in an ICBT model

which is able to explore a range of intransitivities but subject to satisfying strong

stochastic transitivity. This extension hinges on finding joint prior distributions for all

of µ, θ which satisfy this constraint.

Chapter 7 touches upon connectivity, or tournament structure, and its impact on

the parameter uncertainty. Within a symmetry structure, i.e., round-robin, parame-

ter uncertainty must be invariant to the choice of constraint, given the constraints are

sufficient. But in the absence of symmetry it is not clear which constraints minimise

the total parameter uncertainty. The constraint on the intransitivity parameters are

selected as θ1j = 0,∀j ∈ I \ {1}, i.e., all comparisons involving object one have intran-

sitivity 0. So long as the choice of parameters forms a tree on the graph, any choice

of constraint is valid; however, the uncertainty in the free parameters is not necessarily

the same.

This motivates the need to determine the optimal choice of intransitivity constraints

θc := {(i, j) : θij = 0, i > j ∈ I} for a given tournament structure, such that uncertainty

in the system is minimised. Uncertainty can be quantified via the variance in the

estimates {µ̂i : i ∈ I}, {θij : (i, j) : i ̸= j ∈ I2} of the parameters µ and θ, respectively.

Alternatively, since the pairwise preference probabilities are arguably more interpretable

than the parameters themselves, the uncertainty can be quantified more directly via

the variance in estimates p̂ij = f(µ̂i, µ̂j, θ̂ij) of the preference probabilities pij, for all

pairs (i, j) : i ̸= j ∈ I2. Denoting nij to be the number of comparisons between objects

(i, j), then the variance in p̂ij is known to be approximated by

Var (p̂ij) =
p̂ij(1− p̂ij)

nij

,

from the binomial assumption. The contribution to the total variance, or uncertainty,

of each pair (i, j) comprises the contributions from the variances of the parameters,
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Var (µ̂i), Var (µ̂j), and Var
(
θ̂ij

)
. As the θij parameter depends only on comparisons

between the pair (i, j), then the expected value of Var
(
θ̂ij

)
is inversely proportional

to the number of comparisons nij. Regard the graphical interpretation of the system,

Figure 6.1.1, with I the set of nodes, and comparisons between objects representing

the edges where the weight of an edge between two nodes (i, j) is equal to the number

of comparisons nij for all (i, j) : i ̸= j ∈ I. Then, for a fixed tournament structure, it

is here hypothesised that the choice of constraints θc which minimise the total system

uncertainty system corresponds to the minimum spanning tree of the graph. Intuitively,

only pairs which are compared more frequently, and therefore who’s relationships are

better informed by the data, have free intransitivity parameters.

8.2.2 Bradley-Terry Reparametrisation

Some systems naturally contain more stochasticity than others. Consider your chances

of getting a higher return on the stock market than an expert stockbroker, versus

beating a chess grand master. The ratio of skill to sheer luck varies greatly from one

system to the next.

For a system comprising the set of objects I, the Bradley-Terry model uses ratings

µ := {µi ∈ R : i ∈ I} to model the pairwise-preference probabilities, and it reflects the

stochasticity in the system by the spread of the ratings µ. For a highly stochastic

system, such as a system of stockbrokers, the ratings will be close together, so that even

objects with large differences in rankings have preference probabilities that are close

to 0.5. Conversely, in near deterministic systems, the ratings will have a large spread,

meaning preference probabilities are close to 0 or 1, even for similarly ranked pairs of

objects. The spread of the ratings is rarely considered, but offers a useful insight into

an important property of the system at hand, which the following reparametrisation

attempts to formalise.

The Bradley-Terry model often constrains either
∑

i∈I µi = 0, or µ1 = 0 for pa-
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rameter identifiability. Here the former is selected, and further, it is proposed to also

constrain
∑

i∈I µ
2
i = 1, i.e., fixing

µn = −
n−1∑
i=1

µi, µ2
n−1 = 1−

∑
i∈I\{n−1}

µ2
i ,

so that the ratings µ are then standardised with mean zero and variance one. Then,

the Bradley-Terry model is reparametrised as

pij =

{
1 + exp

(
−
[
µi − µj

β

])}−1

, β ∈ R+, i ̸= j ∈ I, (8.2.1)

where β is termed the stochasticity parameter. As β → ∞, then pij → 0.5, and so the

system noise completely dominates any possible difference in the ratings. When β → 0,

then pij → 1{µi > µj}, where 1 is the indicator function, meaning that the system

is completely deterministic, with the better rated object always being preferred. This

reparametrisation could help mixing when using MCMC for inference in the Bayesian

setting. The traditional parametrisation of the Bradley-Terry model requires each pa-

rameter update to reflect changes in both pairwise preference and system stochasticity,

whereas model (8.2.1) orthogonalises the stochasticity, allowing for potentially more

efficiency in estimating the µ parameters.

8.2.3 Volatility

What this reparametrisation reveals, is that the source of the stochasticity is assumed

to be only due to the system, i.e., it is exogenous, and that it is common for all objects.

It assumes the objects to be perfectly consistent, and that each comparison reflects the

true fixed ability of each object.

But for many applications, in each paired comparison, the objects have some per-

formance which is some noisy realisation of a latent ability. This variation around the
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Figure 8.2.1: A toy example of the sources of stochasticity in different sports. The

team element of ice hockey and netball introduces volatility, as the team changes from

one game to the next, whereas boxers may exhibit more consistent performances. The

low-scoring nature of ice hockey introduces exogenous stochasticity, as one freak goal

can have a large impact. Similarly, one lucky punch can end a boxing match. Chess has

no team aspect and is highly skill based, making it the least stochastic system overall.

latent ability introduces endogenous stochasticity, which is termed volatility, and which

contributes to the total stochasticity of the system. Importantly, the volatility can be

different for each object.

Figure 8.2.1 considers the total system stochasticity of four popular sports. Fitting

reparametrisation (8.2.1) to data from these four systems may result in similar stochas-

ticity parameters β, for both boxing and netball; however, this neglects the source of

the stochasticity. In the toy example, boxing has high exogenous and low endogenous

stochasticity, whereas netball has low exogenous and high endogenous stochasticity.

Volatility can be dealt with formally by defining the performance of any object i ∈ I

in any given comparison c ∈ Ci, where Ci is the set of comparisons involving object i,

to be a random quantity given as ri,c := µi+Zi,c, where Zi,c is some zero-mean random
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variable with variance ϵ2i ∈ R+, and assuming

Zi,c ⊥⊥ Zj,c, ∀c ∈ {Ci ∩ Cj}, i ̸= j ∈ I, Zi,c ⊥⊥ Zi,c′ , ∀c ̸= c′ ∈ Ci, i ∈ I.

That is, the noise term is independent over all objects and from one comparison to

the next. For an object i, ϵi is then the volatility of object i. For the above example,

fitting this model to results of boxing matches between a set of boxers I might give

estimates of {ϵi ≈ 0 : i ∈ I}, but large β, whereas, if using data from a set of netball

teams, the model may estimate β to be small, but the estimates of {ϵi : i ∈ I} to be

large. Despite this, the model still allows for the estimates of pairwise probabilities to

be similar between the two datasets.

Consider a particular comparison c ∈ {Ci ∩ Cj} involving objects i and j, and for

ease of notation, the subscript c here is dropped without loss of generality, so that the

noise terms of objects i and j in comparison c are denoted Zi,c = Zi and Zj,c = Zj,

respectively. Then the expectation of the probability that i is preferred to j in this

comparison is given as

E [pij|µi, µj, ϵi, ϵj, β] =∫
zi

∫
zj

({
1 + exp

(
−
[
µi + zi − (µj + zj)

β

])}−1

fZi
(zi)fZj

(zj)

)
dzi dzj,

for all i ̸= j ∈ I, given suitable assumptions for the form of the random variables Zi,c,

such as

Zi,c ∼ N (0, ϵ2i ), ∀c ∈ Ci, i ∈ I.

An interesting avenue for further work is to compare various relative systems in terms

of their properties of endogenous and exogenous stochasticity, by comparing the fitted

values of β and {ϵi}i∈I between systems. It could also be interesting to explore the

properties of E [pij|µi, µj, ϵi, ϵj, β]. Clearly, with increasing volatilities ϵi, ϵj, then for a
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fixed β,

E [pij|µi, µj, ϵi, ϵj, β] → 0.5, as ϵi, ϵj → ∞.

The rate of this convergence is less obvious.

8.2.4 Statistical Learning

Section 8.2.1 considered how to minimise uncertainty in the ICBT model, given the

graph structure as dictated from the data, as a function of the choice of parameter

constraint. Now considering the standard Bradley-Terry model with fixed constraints

as in parametrisation (8.2.1) we can consider the same problem from the opposite

angle. Namely, given objects I, how can the system uncertainty be minimised as a

function of the graph structure? Minimising uncertainty has multiple interpretations,

i.e., minimising the uncertainty in the ranking, or minimising the total uncertainty in

the parameters. This depends on the choice of loss function. Two viable examples are

provided.

Define the set of random variables X(Cm) ∈ {0, 1}m to represent the possible out-

comes of a set of m ≥ |I| − 1 paired comparisons Cm ∈ (i, j) : i ̸= j ∈ (I × I)m from

the set of objects I. If x(Cm) ∈ {0, 1}m are then the realisations from X(Cm), which

has probability mass function governed by the Bradley-Terry model given µ, then let

GI,X(Cm) define the random graph representing all possible graphs from this model, and

GI,x(Cm) is a realisation of this system. Furthermore, Cm is constrained to form a tree

on any graph GI,x(Cm), thus satisfying the minimal identifiability constraints for the

Bradley-Terry model.

Then, define R̂i|x(Cm) ∈ {1, . . . , |I|} to be the estimated rank of object i given the

observed graph GI,x(Cm), which is given by ordering the estimates of the ratings

µ̂|x(Cm) := {µ̂j|x(Cm) : j ∈ I},
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which are given from, for example, maximum likelihood estimates. Assuming some true

latent ranking Ri ∈ {1, . . . , |I|}, ∀i ∈ I of the objects, then

Pr
{(
R̂i|x(Cm)

)
= Ri

}

is the probability that the estimated rank R̂i|x(Cm) of object i is equal to its true rank

given the observed comparisons. One choice of valid loss function is

R(x(Cm)) := −
∑
i∈I

log
(
Pr{(R̂i|x(Cm)) = Ri}

)
,

and then the optimal set of comparisons C∗
m can be selected as

C∗
m = argminCmEX [R(X(Cm))] .

That is, the comparisons are selected so that in expectation the sums of the log proba-

bility that all objects are correctly ranked is maximised. The joint probability that all

objects are correctly ranked could also be maximised.

For real applications, the true rank is likely unknown. In this case, the loss function

could be constructed via the notion of entropy. Define the entropy of an object i, and

of the whole system, respectively, to be

Si(x(Cm)) :=
|I|∑
k=1

log
(
Pr{(R̂i|x(Cm)) = k}

)
, S(x(Cm)) =

∑
i∈I

Si(x(Cm)).

Then, the optimal set of comparisons is selected as

C∗
m := argminCmEX [S (X(Cm))] .

Hence, the expected system entropy after observing the set of comparisons C∗
m is min-

imised.
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In the absence of observed comparisons between objects or prior information about

the objects’ abilities, it seems intuitive that a symmetric comparison structure (round

robin) would minimise this expected ranking uncertainty under both definitions from

arguments of symmetry. But what about when observations from prior comparisons

x(Cm), m > 0 are available? For some m′ ≥ max (|I| − 1−m, 1) further comparisons

Cm′ , the optimal choice C∗
m′ is defined as

C∗
m′ |x(Cm) = argminCm′EX [S(X(Cm′), x(Cm))] ,

where

S [X(Cm′), x(Cm)] =
∑
i∈I

|I|∑
k=1

log
(
Pr
{[
R̂i|X(Cm′), x(Cm))

]
= k

})
,

i.e., Cm′ is the optimal choice of m′ comparisons which maximally reduces the system

entropy in expectation, given the observations x(Cm).

It is clear that the choice of objects to compare will be dependent on the current

estimates of µ, since objects with more similar rating estimates are more likely to be

incorrectly ranked, therefore having a larger entropy gradient.

Glickman and Jensen (2005) approach this problem through Bayesian optimal de-

sign, defining the optimal pair to compare next, from the n(n− 1)/2 possible compar-

isons, as that which maximises the gain in Kullback–Leibler information from the prior

to the posterior distribution in expectation. Although Glickman and Jensen (2005)

solves the problem for m = 1, this quickly becomes infeasible when m is large, due

to the explosion of possible combinations to consider. The optimal choice of the set

of next comparisons may also depend on the size of the horizon m, since a larger m

allows for more exploration, that is, learning of the parameters µ, before exploitation

of this information. This exploration-exploitation trade-off is a common theme in the

multi-armed bandit literature, with Thompson sampling (Thompson, 1933) and the de-
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terministic upper-confidence-bound algorithm (Auer et al., 2002) being two heuristic

solutions. A foray into the realm of bandit literature could present Bradley-Terry-type

ranking models with an array of untapped research.
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Appendix C

Supplementary Material for

Chapter 7

C.1 Introduction

This document accompanies Chapter 7. Section C.2 briefly outlines the main novelties

in our inference method, Sections C.3, C.4 and C.5 contain full details of the imple-

mentation of the inference, specifically of the split-merge steps, the add-delete steps

and the standard MCMC steps in the algorithm, respectively. Section C.6 describes

the steps taken to help convergence of the algorithm. Section C.9 details the simula-

tion experiments, and Section C.10.1 contains less central findings from the analysis

of baseball data in Section 7.5 of the main article. Note that in this supplementary

document, all vectors are denoted in bold for ease of reading, and correspond to the

equivalent unbolded notation in the main article.

C.2 Algorithm: areas of key interest

Inference is made via a reversible jump Markov chain Monte Carlo sampler (Green,

1995), which provides samples from the posterior distribution π (ϕϕϕ,YYY ,A,θθθ,ZZZ,K|xxx),

193
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that is, the intransitivity and skill levels, the allocations to the these levels, and the

number of levels.

Since the number of skill and intransitivity levels (A,K) are assumed to be unknown,

the uncertainty in these parameters must be accounted for, thus motivating the use of

a reversible jump sampler. In a sense, the reversible jump sampler mixes over models

as well as parameters, and thus fully accounts for this uncertainty in the final inference.

The ICBT model is structured to try to favour the Bradley-Terry model as a special

case, and this is reflected in our sampler, by explicitly incorporating the completely

transitive cluster θ0 as an ever present cluster, even if no pairs are allocated to this

cluster at a given iteration of the sampler. To ensure the skill and intransitivity levels

both remain ordered, the updates to these levels occur in a transformed space such that

no update can lead to a change in order.

The reversible jump algorithm used is a split-merge sampler (Green and Richard-

son, 2001), which is adapted from the work of Ludkin (2020). The sampler comprises

three separate moves: a standard Markov chain Monte Carlo Metropolis-Hastings move,

which samples parameters ϕϕϕ, θθθ, and reallocates clusters YYY ,ZZZ; splitting or merging clus-

ters; and adding or deleting empty clusters.

Let (ϕϕϕs,YYY s, As, θθθs,ZZZs, Ks) be the current values of the parameters at step s in the

sampler, and for any move a proposal (ϕϕϕ′,YYY ′, A′, θθθ′,ZZZ ′, K ′) is made. To be concrete,

ϕϕϕs :={ϕs
a : a ∈ {−As

−, . . . , A
s
+}}

YYY s :={yyys{i} : i ∈ I \ {1}}

θθθs :={θsk : k ∈ {1, . . . , Ks}}

ZZZs :={zzzs{i,j} : i > j ∈ I \ {1}},

for all steps s ∈ {1, . . . , S} in the sampler where S ∈ N, and where yyys{i} is defined here
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formally as

yyy{i} :=


{
ys{i},a ∈ {0, 1} : a ∈ A,

∑
a∈A y

s
{i},a = 1

}
, ∀i ∈ I \ {1},{

ys{1},a ∈ {0, 1} : a ∈ A : ys{1},0 = 1, ys{1},a = 0 : a ̸= 0
}
, if i = {1},

that is, ys{i},a = 1 if object i ∈ I is allocated to skill cluster a ∈ A at step s, and

is equal to 0 otherwise; and the skill of object {1} is fixed to always be in cluster 0,

i.e., ys{1},0 = 1, for all s ∈ {1, . . . , S},. Remembering the identifiability constraints

for the intransitivities outlined in the main text, see Proposition 1, the intransitivity

allocations are formally defined as

zzzs{i,j} :=



z
s
{i,k},a ∈ {0, 1} : a ∈ {−K, . . . ,K},

∑K
a=−K z

s
{i,k},a = 1,

∀i > k ∈ I \ {1}

 ,z
s
{i,1},a ∈ {0, 1} : a ∈ {−K, . . . ,K}, zs{i,1},0 = 1, zs{i,1},a = 0 : a ̸= 0,

∀i ∈ I \ {1}, if k = 1

 ,

that is zs{i,k},a = 1 if the pair {i, k} is in the cluster labelled s, and z{i,k},s = 0 otherwise.

As discussed in Section 7.4.2, the clustering of our two features - the skills of the

objects and the intransitivity of the pairs of objects - are treated as independent systems.

Therefore we approach them separately: all of Sections C.3.1, C.4.1 and C.5.1 outline

the intransitivity components of the algorithm, and Sections C.3.2, C.4.2 and C.5.2

outline their skill component counterparts.

There are two key characteristics in our Intransitive Clustered Bradley-Terry (ICBT)

model which require adaptations to be made to the standard split-merge sampler.

Firstly, the vector of parameters θθθ and ϕϕϕ must be ordered in order to maintain identi-

fiability. Secondly, symmetry is imposed on the intransitivity parameters θθθ, such that

θik = −θki ∀i ̸= k ∈ I. Additionally, to ensure efficient converge of the algorithm,

a targeted initialisation routine was introduced as a precursor to the main RJMCMC

algorithm. Novel aspects of these three elements are discussed below.
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Ordering

To preserve the order of the parameters ϕϕϕ and θθθ, a suitable matching function y, see

(C.3.1), appropriately bounds each parameter. The matching function then serves as a

transformation to the real numbers, for example, for some θk ∈ θθθ with θk−1 < θk < θk+1,

then y : [θk−1, θk+1] → R. In this transformed space, parameter updates can be made

without concern for the bounds, before being transformed back to their bounded space

via the inverse of the matching function, y−1 : R → [θk−1, θk+1]. In the case of the

standard MCMC updates for θk, a random walk is used on the transformed space.

For the reversible jump moves, for example, a split of an intransitivity level, an aux-

iliary variable u ∼ σχ2
1, for σ > 0, where χ2

1 has unit-degree Chi-squared distribution, is

introduced, which is then added and subtracted to the transformed intransitivity level

to give two new proposed levels on the transformed scale. After retransforming back

to the original scale via inversion of the matching function, lower and upper proposed

intransitivity levels are proposed from the split move with order preserved.

Note that the transitive cluster can be split, where the bounds for the matching

function (C.3.1) are given as θ0 ∈ [θ−1, θ1]; however, in this case one of the proposed

intransitivity levels must be 0, to maintain the generalisation to a Bradley-Terry model.

That is, if the k = 0 cluster, the transitive cluster, is proposed to be split, then the

lower proposed intransitivity level must be θ′0′ = 0, but the upper proposed level θ′1′

follows the same rules as for the general case, equation (C.3.5).

Once the new levels have been proposed, allocations to these levels are then con-

sidered. Let bbbk := {{i, j}, ∀i > j ∈ I \ {1} : z{i,j},k = 1} denote the set of pairs

i > j ∈ I \ {1} of objects which belong to the cluster-to-be-split, which for now we

assume is not the transitive cluster. At this point target information could be included

by using the approach of Zanella (2020); however, we found no significant efficiency

gains. Therefore for simplicity the cluster allocations to the two proposed split levels

are selected uniformly at random. The probability of the cluster allocation, given that
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cluster k ̸= 0 has been split, is given as

q(ZZZ ′) =

(
|bbbk|!

|bbb′k′|! |bbb′k′+1|!

)
2−(|bbbk|)

(
|bbb−k|!

|bbb′−k′ |! |bbb′−(k′+1)|!

)
2−(|bbb−k|)

where the factorial terms appear since all possible combinations of allocations must be

considered, and remembering that cluster −k will also be split into clusters −k′ and

−k′− 1 with intransitivity levels θ′−k′ = −θ′k′ and θ′−k′−1 = −θ′k′+1 due to the symmetry

of the intransitivity levels. The proposed number of clusters is of course K ′ = K + 1.

To split a skill level, the same form of matching function (C.3.1) can be used to

maintain ordering. The skill level ϕ0 = 0 can be split, although in this case one of the

proposed skill levels must also be 0, and object 1 must stay in this level. The proposed

number of skill levels is A′ = A+ 1.

Symmetry

As eluded to above, our intransitivity levels require symmetry to be maintained, see

equation (7.3.3), and so updating intransitivity level θk also impacts θ−k. Our adap-

tation of the split-merge algorithm handles this by reflecting all updates to the in-

transitivity values. For example, updating parameter θk to θ′k also updates parameter

θ−k = −θk to θ′−k = −θ′k. Likewise, any reallocation of a pair (i, j) from, say, cluster k

to cluster k′, also reallocates pair (j, i) from cluster −k to cluster −k′. Considering the

reversible jump moves, splitting an intransitivity level k into k′ and (k+1)′ also results

in splitting cluster −k into −k′ and −(k + 1)′.

This symmetry also impacts the add and delete moves. Empty clusters can occur

after a split, if all object pairs in the split cluster move to one of the new proposed

clusters. Additionally, within the Gibbs reallocation move it is possible for all object

pairs in a given cluster to move to other clusters. An empty cluster could exist for a

long time before being merged, and even then the proposed merge may not be accepted.

To deal with this more efficiently, delete cluster moves are included, and therefore add
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cluster moves are included in order to satisfy detailed balance. If an intransitivity

cluster k′ is added, then the symmetry imposed on the intransitivity system means a

cluster −k′ must also be added. The impact of this symmetry on the intransitivity

delete move however is more subtle. The set of empty intransitivity clusters must be

defined as Ke := {k ∈ {1, . . . , K} : bbbk = bbb−k = ∅}, such that a level ke ∈ Ke is only

considered empty, and therefore available for deletion, if both clusters ke and k−e are

empty, that is bbbke = bbbk−e = ∅. This is a necessary consideration because ZZZ ′ was defined

to contain only allocations for the ‘upper triangle’, that isZZZ ′ := {zzz′{i,j} : i > j ∈ I\{1}}.

Therefore it is possible that there are no pairs {i, j} ∀i > j ∈ I \ {1} in cluster, say

k > 0; however, there may exist a pair ∃{h,m} ∈ −a : h > m ∈ I \ {1} in cluster −k,

and thus by symmetry {m,h} ∈ a. Note also that cluster 0 is not included in Ke, as

there must always be exactly one transitive cluster.

Initialisation

Convergence of the algorithm is not guaranteed in finite time. In the baseball example

of Chapter 7 10000 samples were drawn from algorithm, with an additional 2000 burn-

in samples. Four such chains were deployed with different random starting parameters,

and convergence of the chains assessed here via visual assessment. There exists a variety

of standard metrics, such as Gelman-Rubin statistics (Gelman and Rubin, 1992) which

aim to formalise this process.

To ensure the best possible chance of convergence of the RJMCMC algorithm, good

initial parameter estimates are useful. A standard Bradley-Terry model is first fitted

to the data, which gives the skills rrr(BT ) := {r(BT )
i : i ∈ I}, and the associated pairwise

win probabilities {p(BT )
ik : i > k ∈ I \ {1}}. Then, from the data, if wik is the number of

comparisons in which object i is favoured to object k, out of a possible nik comparisons,

then a set of näıve pairwise probabilities can be formed by using these, and regularised

with a prior. If {p(n)ik := wik/nik : i > k ∈ I \ {1}}, which can be considered as wik ∼
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Binomial(nik, p
(n)
ik ), then by using a beta prior p̄ ∼ Beta (αp, βp), with αp = βp = 2, the

initial näıve posterior probabilities are set to

{
p̂
(n)
ik =

(
wik + αp

nik + αp + βp

)
: i > k ∈ I \ {1}

}
.

This choice of hyper-parameters provides a weakly informative prior with expectation

1/2. The regularisation provided by this prior prevents values of p̂
(n)
ik becoming too

close to, or exactly, 0 or 1, which result in unrealistic and therefore poor starting values

for the intransitivity. This is no concern in the main RJMCMC algorithm because the

prior helps to regularise this. From these two sets of probabilities, the initial estimates

for the intransitivity are found as

{
θik = log

(
p̂
(n)
ik /(1− p̂

(n)
ik )

p
(BT )
ik /(1− p

(BT )
ik )

)
: i > k ∈ I \ {1}

}
.

These values of intransitivity are clustered into their initial levels θθθ using k-means

clustering. This is done across a range of number of levelsK to produce several separate

initial models. The BIC is then calculated for each model, and the best is returned.

Conditional on this model, the skills rrr(BT ) are also clustered again by using several

k-means algorithms across a range of A, and the best model according to the BIC is

selected as the initial estimates for the ICBT model. In general, these initial estimates

are very good and correspond to a likelihood which is in the top 50th percentile of the

likelihoods provided by samples of the RJMCMC algorithm after convergence.

Next, from these initial starting parameters an MCMC algorithm is implemented,

with only updates on the skill levels ϕϕϕ and the intransitivity levels θθθ, with the other

parameters (ZZZ,YYY ,K,A) fixed. After convergence of this algorithm, a second MCMC

algorithm then allows additionally the allocations YYY and ZZZ to update, where the initial

parameter values correspond to the highest posterior of the previous algorithm. Finally,

only after convergence of these two MCMC algorithms, is the full split-merge RJMCMC
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algorithm implemented, where samples are taken from all of (θθθ,ϕϕϕ,ZZZ,YYY ,K,A).

C.3 Split-Merge components

C.3.1 Split-Merge components : intransitivity

Intransitivity split move

To split an intransitivity cluster, first a cluster must be chosen to split, and this is chosen

at random. A potentially more efficient proposal could be made by proposing to split a

cluster, say, proportional to cluster size or as a function of its vicinity to neighbouring

clusters. For simplicity, in this article all clusters in split and merge moves are randomly

selected with equal probability.

Let the cluster to be split be denoted as k ∈ {0, . . . , K}, with intransitivity level

θsk ∈ θθθK and the proposed new clusters be k′ and k′ + 1 with intransitivity levels

θ′k′ , θ
′
k′+1 ≥ 0, respectively, so that the proposed intransitivity levels are given as

θθθ′ = {θs0, . . . , θsk−1, θ
′
k′ , θ

′
k′+1, θ

s
k+1, . . . , θ

s
K}. This notation is chosen because the order-

ing of the clusters must be maintained, for example θsk−1 < θ′k′ < θ′k′+1 < θsk+1, to avoid

label switching issues in the inference. Note that with this notation, the transitive

cluster can be split, however in this case, one of the proposed intransitivity levels must

be 0, to maintain the generalisation to a Bradley-Terry model. The proposed number

of clusters is of course K ′ = Ks + 1.

Next, the new cluster parameters are proposed. To preserve ordering, consider the

transformation of θsk, k ̸= 0 such that the allowed range of θ′k changes from (θsk−1, θ
s
k+1)

to (−∞,∞). Then, a new intransitivity level is proposed on this scale, and then

transformed back to the its original range (θsk−1, θ
s
k+1). If k = Ks, then the range

(θsKs−1, θ
s
Ks+1) is currently undefined because θsKs+1 is undefined. Therefore we define

θsKs+1 := θsKs + (θsKs − θsKs−1) = 2θsKs − θsKs−1,
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which acts an upper bound for the proposed new intransitivity levels θ′K′ , θ′K′+1. Thus

θ′K′+1 cannot increase by more than θsKs − θsKs−1, which is also the maximum θ′K′ can

decrease by without violating the ordering constraint. If k = 0, i.e., the completely

transitive cluster has a split proposed, then the lower proposed level must be θ′0′ = 0,

but the level θ′1′ follows the same rules as for a general k ̸= 0, described below, therefore

upper and lower bounds are defined for all values in θθθs.

The transformation onto the range (−∞,∞) is achieved using a matching function

y(θsk|θsk−1, θ
s
k+1), defined as

y(x|θsk−1, θ
s
k+1) := logit

(
x− θsk−1

θsk+1 − θsk−1

)
, k ∈ {1, . . . , K}, x ∈ (θsk−1, θ

s
k+1), (C.3.1)

where logit(a) := log (a/1− a) , a ∈ [0, 1]. Then, the auxiliary variable u ∼ σχ2
1, for

σ > 0, is added (and subtracted) to the transformed intransitivity level to give the

proposed upper (and lower) transformed intransitivity levels, respectively, such that

y(θ′k′+1|θsk−1, θ
s
k+1) = y(θsk|θsk−1, θ

s
k+1) + u (C.3.2)

y(θ′k′|θsk−1, θ
s
k+1) = y(θsk|θsk−1, θ

s
k+1)− u. (C.3.3)

After a retransformation back to the original scale, this gives values of the lower and

upper proposed intransitivity levels θ′k′ and θ
′
k′+1, with θk−1 < θ′k′ < θ′k′+1 < θk+1, as

θ′k′ =


θsk−1+θsk+1 exp(−u)(θsk−θsk−1)/(θsk+1−θsk)

1+exp(−u)(θsk−θsk−1)/(θsk+1−θsk)
if k′ ̸= 0′

0 if k′ = 0′
(C.3.4)

θ′k′+1 =
θsk−1 + θsk+1 exp(u)

(
θsk − θsk−1

)
/
(
θsk+1 − θsk

)
1 + exp(u)

(
θsk − θsk−1

)
/
(
θsk+1 − θsk

) . (C.3.5)

Equations (C.3.4) and (C.3.5) are the main contributions to ensure that ordering and

labelling is preserved in RJMCMC type algorithms.

The next state of the sampler (ϕϕϕs+1,YYY s+1, As+1, θθθs+1,ZZZs+1, Ks+1) is then accepted
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to be (ϕϕϕs,YYY s, As, θθθ′,ZZZ ′, K ′) with some probability Asplit, and otherwise

(ϕϕϕs+1,YYY s+1, As+1, θθθs+1, θθθs+1,ZZZs+1, Ks+1) = (ϕϕϕs,YYY s, As, θθθs,ZZZs, Ks).

The form of the acceptance probability Asplit is computed as:

Asplit =
π (ϕϕϕs,YYY s, As, θθθ′,ZZZ ′, Ks + 1|xxx)
π (ϕϕϕs,YYY s, As, θθθs,ZZZs, Ks|xxx)

q(Ks,ZZZs, θθθs|Ks + 1,ZZZ ′, θθθ′)

q(Ks + 1,ZZZ ′, θθθ′|Ks,ZZZs, θθθs)

1

qu(u)
Jsplit

=
π (ϕϕϕs,YYY s, As, θθθ′,ZZZ ′, Ks + 1|xxx)
π (ϕϕϕs,YYY s, As, θθθs,ZZZs, Ks|xxx)

q(merge|Ks + 1)

q(split|Ks)

qk(k
′, k′ + 1)

qk(k)

1

qu(u)

1

q(ZZZ ′)
Jsplit,

which is the ratio of the posterior densities, the ratio of the proposal densities, and

the ratio of the densities of the auxiliary variables and the Jacobian Jsplit, see Ap-

pendices C.7.1 and C.7.3 for details. If Ks = 0, then the probability of proposing a

merge, see Section C.3.1, is q(merge|Ks = 0) = 0 and the probability of proposing a

split q(split|Ks = 0) = 1. Otherwise, q(merge|Ks ̸= 0) = q(split|Ks ̸= 0) = 1/2, and

therefore the ratio of is simply

q(merge|Ks + 1)

q(split|Ks)
=

1

1 + 1{Ks = 0}
.

The probability of selecting cluster k to split is qk(k) =
1
Ks , ∀k ∈ {1, . . . , Ks}. The

probability of selecting clusters k′, k′ + 1, ∀k′ ∈ {1, . . . , K ′ − 1} to be merged back

again is also qk(k
′, k′ + 1) = 1

K′−1
= 1

Ks , so these terms will cancel. The density of

the auxiliary variables is the density of u, qu(u)
−1, which is given as χ2

1 (u/σ) , where

χ2
1(x) is the density of a chi-squared distribution with 1 degree of freedom.

The probability of the allocations is q (ZZZ ′), and this is dependent on the cluster being

split and the current state of the model, for which there are three different situations

to consider:
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The general case: (k ̸= 0)

Since the transitive level θ0 = 0 adds additional complications, we first depict the

acceptance probability for the general case that k ̸= 0. Denote the set of pairs

i > j ∈ I \ {1} of objects which belong to the cluster-to-be-split, i.e., k ̸= 0, as

bbbsk = {{i, j}, ∀i > j ∈ I \ {1} : zs{i,j},k = 1}. Then, the probability of the cluster alloca-

tion, given that cluster k ̸= 0 has been split,

q(ZZZ ′) =

(
|bbbsk|!

|bbb′k′|! |bbb′k′+1|!

)
2−(|bbbsk|)

(
|bbbs−k|!

|bbb′−k′ |! |bbb′−(k′+1)|!

)
2−(|bbbs−k|)

since the new cluster allocations are selected at random and all possible combinations

of allocation must be considered, and remembering that cluster −k will also be split

into clusters −k′ and −k′−1 with intransitivity levels θ′−k′ = −θ′k′ and θ′−k′−1 = −θ′k′+1.

See Appendix C.7.1 for details of the Jacobian Jsplit. Combining these components, the

acceptance probability of splitting a cluster k ̸= 0 can be computed as

Asplit |(k ̸= 0) = Λsplit

(
|bbbsk|! |bbbs−k|! 2−(|bbbsk|+|bbbsk|)

|bbb′k′ |! |bbb′k′+1|! |bbb′−k′ |! |bbb′−(k′+1)|!

)−1

Jsplit,

where

Λsplit =
π (ϕϕϕs,YYY s, As, θθθ′,ZZZ ′, Ks + 1|xxx)
π (ϕϕϕs,YYY s, As, θθθs,ZZZs, Ks|xxx)

1

1 + 1{Ks = 0}
σ

χ1(u/σ)
.

Splitting from the transitive cluster: (k = 0, Ks ≥ 1)

We now consider the special case that we propose to split the transitive cluster

(k = 0), when there are other intransitive clusters (Ks ≥ 1). The acceptance probability

for this proposal differs slightly, because θ0 = 0 is fixed. If a split is proposed on level 0

with intransitivity level θs0, then the proposed clusters are 0′ and 1′ with intransitivity

levels θ′0′ , θ
′
1′ ; however, the completely transitive level must remain so, in order that the

model remains an exact generalisation of the Bradley-Terry model, that is θ′0′ = θ0 = 0.

The level 1′ has intransitivity level θ′1′ > 0 governed by equation (C.3.5), remembering
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that θs−1 = −θs1. Additionally, a separate Jacobian Jsplit,0 is required, see Appendix

C.7.3. The cluster allocation also differs. Instead of allocating pairs in k to either

k′, k′ + 1 and pairs in −k to either −k′,−k′ + 1, the pairs in 0 are allocated to one of

0′,−1′, 1′. The probability of the cluster allocation is therefore

q0(ZZZ
′) =

(
|bbbs0|!

|bbbs−1|! |bbbs0|! |bbbs1|!

)
3−|bbbs0|,

since the allocation is at random. This gives an acceptance probability of

Asplit| (k = 0, Ks ≥ 1) = Λsplit

(
|bbbs0|!

|bbbs−1|! |bbbs0|! |bbbs1|!

)−1(
1

3

)−|bbbs0|

Jsplit,0,

if k = 0, Ks ≥ 1.

Splitting from the Bradley-Terry case: (Ks = 0)

Consider the special case that only the transitive level exists and therefore the model

in this state is identical to the Bradley-Terry. The transformation via the matching

function, equation (C.3.1), is not possible in this case since the bounds θsKs+1 (and

θs−(Ks+1) = −θsKs+1) are not defined when Ks = 0. However, ordering is not an issue in

this case, and so the levels are simply proposed as

θ′0′ = θ0, θ′1′ = θ0 + u = u,

which gives a Jacobian of 1, and the pairs in 0 are again allocated to one of 0′, 1′,−1′.

Therefore the acceptance probability, for Ks = 0, is given as

Asplit| (Ks = 0) = Λsplit

(
|bbbs0|!

|bbbs−1|! |bbbs0|! |bbbs1|!

)−1(
1

3

)−|bbbs0|

.
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Intransitivity merge move

So as to not confuse notation, we will consider the merge in terms of a reversed

split move. Therefore let (ϕϕϕs,YYY s, As, θθθ′,ZZZ ′, K ′) = (ϕϕϕs+1,YYY s+1, As+1, θθθs+1,ZZZs+1, Ks+1)

be the current values of the parameters at step s, and we aim to propose parameters

(ϕϕϕs,YYY s, As, θθθs,ZZZs, Ks). Two clusters are sampled to merge, however, since these must

be consecutive clusters, in order to preserve order, we can simply sample with equal

probability from the set k′ ∼ {0, . . . , K ′− 1} and then merge clusters k′ and k′+1 into

a new cluster k. The proposed number of clusters must be Ks = K ′ − 1. Next, the

cluster membership ZZZs is updated which is simple because all pairs of objects from both

clusters k′ or k′ + 1 get assigned to the new cluster k. To find a suitable cluster mean

θsk, the inverse of the split move is used, so inversely to the split move, the matching

function

y(x|θ′k′−1, θ
′
k′+2) = logit

(
x− θ′k′−1

θ′k′+2 − θ′k′−1

)
, x ∈ (θ′k′−1, θ

′
k′+2),

is used. Then the proposed merged transformed cluster mean is given from equations

(C.3.2) and (C.3.3), as

y(θsk|θ′k′−1, θ
′
k′+2) =

[
y(θ′k′ |θ′k′−1, θ

′
k′+2) + y(θ′k′+1|θ′k′−1, θ

′
k′+2)

]
2

,

which results in a proposed merged cluster mean of

θsk = θ′k′−1 +

(
θ′k′+2 − θ′k′−1

)
1 +

[(
θ′
k′−θ′

k′−1

θ′
k′+2

−θ′
k′

)(
θ′
k′+1

−θ′
k′−1

θ′
k′+2

−θ′
k′+1

)]−1/2
.

Then, the next state is accepted to be (ϕϕϕs,YYY s, As, θθθs,ZZZs, Ks) = (ϕϕϕs,YYY s, As, θθθ′,ZZZ ′, K ′),

with probability Amerge, whose precise form again depends on the situation.
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The general case: (k′ ̸= 0)

In the most general case, that k′ ̸= 0, then this gives an acceptance probability of

Amerge| (k′ ̸= 0) = Λmerge

(
bbbsk! bbb

s
−k! 2

−(|bbbsk|+|bbbsk|)

bbb′k′ ! bbb
′
k′+1! bbb

′
−k′ ! bbb

′
−(k′+1)!

)(
J ′
split

)−1
,

where

Λmerge =
π (ϕϕϕs,YYY s, As, θθθs,ZZZs, K ′ − 1|xxx)
π (ϕϕϕs,YYY s, As, θθθ′,ZZZ ′, K ′|xxx)

(1 + 1{K ′ = 1}) χ1(u
′/σ)

σ
,

and where u′ = y(θ′k′+1|θ′k′−1, θ
′
k′+2)− y(θsk|θ′k′−1, θ

′
k′+2) is the the value required for the

inverse split move to get back to intransitivity levels θ′k′ and θ′k′+1, and J ′
split is the

Jacobian for the inverse split move.

Merging to the transitive cluster: (k′ = 0, K ′ ≥ 2)

If k′ = 0, and therefore clusters 0′, 1′ are being merged to cluster 0 with intransitivity

level θsk = θs0 = 0, then, similarly to the equivalent split move, the allocation probability

changes because pairs from 0′,−1′, 1′ are proposed to move into 0. The Jacobian also

changes to J ′
split,0, see Appendix C.7.3, and the acceptance probability is given as

Amerge| (k′ = 0, K ′ ≥ 2) = Λmerge

(
|bbbs0|!

|bbbs−1|! |bbbs0|! |bbbs1|!

)(
1

3

)|bbbs0| (
J ′
split,0

)−1
.

Merging to the Bradley-Terry case: (K ′ = 1)

Similarly to the equivalent split move, ifK ′ = 1, then the proposed merge move would

be to a Bradley-Terry model (or generalisation there-of). In this case no transformation

is required, and thus no Jacobian term, and so

Amerge|(K ′ = 1) = Λmerge

(
|bbbs0|!

|bbbs−1|! |bbbs0|! |bbbs1|!

)(
1

3

)|bbbs0|

,

where in this case u′ = θ′k′+1.
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C.3.2 Split-Merge components : skill

Skill split move

The split and merge components are now considered for the objects skill levels. The

reversible jump moves here are similar to those of the intransitivity levels, but a few

changes are needed to accommodate for the fact that levels can have either positive or

negative values, and that symmetry in the skill levels is not enforced as it is for the

intransitivity levels. A cluster a ∈ As is selected at random to be split, with a skill

level ϕs
a ∈ ϕϕϕs, and the proposed new clusters are labelled a′, a′ +1, and have skill levels

ϕ′
a′ , ϕ

′
a′+1 ∈ R. Note that the skill level ϕ0 = 0 can be split, although in this case one

of the proposed skill levels must also be 0, and object 1 must stay in this level. The

proposed number of skill levels is of course A′ = As + 1. Next, the new skill level

parameters are proposed.

From the current allocations YYY s, the proposed allocations YYY ′ are found by randomly

reallocating those objects in cluster a to either cluster a′ or a′+1 with equal probability.

The acceptance probability AsplitA is then computed as:

AsplitA =
π (ϕϕϕ′,YYY ′, As + 1, θθθs,ZZZs, Ks|xxx)
π (ϕϕϕs,YYY s, As, θθθs,ZZZs, Ks|xxx)

q(As,YYY s,ϕϕϕs|As + 1,YYY ′,ϕϕϕ′)

q(As + 1,YYY ′,ϕϕϕ′|As,YYY s,ϕϕϕs)

1

quA
(uA)

Jr
split

=
π (ϕϕϕ′,YYY ′, As + 1, θθθs,ZZZs, Ks|xxx)
π (ϕϕϕs,YYY s, As, θθθs,ZZZs, Ks|xxx)

q(merge|As + 1)

q(split|As)

qa(a
′, a′ + 1)

qa(a)

1

quA
(uA)

1

q(YYY ′)
Jr
split,

which is the ratio of the posterior densities, the ratio of the proposal densities, and the

ratio of the densities of the auxiliary variables, which is in this case just quA
(uA)

−1 =

χ1 (uA/σA), and J
r
split is the Jacobian. The probability of proposing a particular level

to be split is simply

qa(a) =
1

|As|
=

1

As + 1
∀a ∈ As.

For the inverse merge move, see Section C.3.2, the probability of proposing clusters a′
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and a′ + 1 to merge is simply

qa(a
′, a′ + 1) =

1

A′ ∀a
′ ∈ A′ \ {A′

+},

therefore qa(a
′, a′ + 1)/qa(a) = 1.

Let cccsa := {i, ∀i ∈ I \ {1} : yyys{i},a = 1} denote the set of objects which belong to

the cluster-to-be-split, i.e., a. Then, the probability of the cluster allocation, given that

cluster a has been split, is

q(YYY ′) =
|cccsa|!

|cccsa′ |! |cccsa′+1|!
2−|cccsa|

since the new cluster allocations are selected at random.

Again there are three variants for both the splitting and merging of skill levels that

must be considered:

The general case: (a ̸= 0)

To preserve ordering, the same transformation is made as in Section C.3.1, and so

the set of levels must be extended as before, but now in both positive and negative

directions, such that

ϕs
As

++1 := ϕs
As

+
+ (ϕs

As
+
− ϕs

As
+−1)

ϕs
As

−−1 := ϕs
As

−
− |ϕs

As
−+1 − ϕs

As
−
|.

Using the same logit transformation to preserve order, new skill levels are proposed via

the equations

ϕ′
a′ =

ϕs
a−1 + ϕs

a+1 exp(−uA)
(
ϕs
a − ϕs

a−1

)
/
(
ϕs
a+1 − ϕs

a

)
1 + exp(−uA)

(
ϕs
a − ϕs

a−1

)
/
(
ϕs
a+1 − ϕs

a

)
ϕ′
a′+1 =

ϕs
a−1 + ϕs

a+1 exp(uA)
(
ϕs
a − ϕs

a−1

)
/
(
ϕs
a+1 − ϕs

a

)
1 + exp(uA)

(
ϕs
a − ϕs

a−1

)
/
(
ϕs
a+1 − ϕs

a

) .
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where the auxiliary variable uA ∼ σAχ
2
1, for σA > 0.

Combining these components, the acceptance probability of splitting skill cluster a

can be computed as

Ar
split| (a ̸= 0) = Λr

splitJ
r
split,

where

Λr
split =

π (ϕϕϕ′,YYY ′, As + 1, θθθs,ZZZs, Ks|xxx)
π (ϕϕϕs,YYY s, As, θθθs,ZZZs, Ks|xxx)

1

1 + 1{As = 0}
σA

χ(uA/σA)

(
|cccsa|!

|cccsa′ |! |cccsa′+1|!
2−|cccsa|

)−1

.

Splitting from the zero skill: (a = 0, As ≥ 0)

Consider the special case that the 0 level is split, but other skill levels are present.

One of the split levels must remain at 0, specifically, ϕ′
0′ = ϕs

0 = 0. The other proposed

skill level is

ϕ′
(2X−1)′ = Xϕ′

a′+1 + (1−X)ϕ′
a′ ,

where X ∼ Bernoulli(0.5), such that the non-zero proposed skill level can be either

above or below the 0 level, and it has label (2X − 1)′, that is, either 1′ or −1′. The

Jacobian Jr
split,0 is calculated as in Appendix C.7.3, and the acceptance probability is

given as

Ar
split| (a = 0, As ≥ 0) = 2Λr

splitJ
r
split,0,

the only difference to the general case being in the Jacobian term, and the factor of 2

which comes from the Bernoulli variable.

Splitting from the single skill model: (As = 0)

In the unlikely case that only a single skill level is present in the model, the new skill

level is simply proposed as

ϕ′
(2X−1)′ = XuA − (1−X)uA,
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since no transformation is needed due to no ordering issues. In this case the acceptance

probability is given as

Ar
split| (As = 0) = 2Λr

split,

where the Jacobian term is 1.

The next state of the sampler (ϕϕϕs+1,YYY s+1, As+1, θθθs+1,ZZZs+1, Ks+1) is then accepted

to be (ϕϕϕ′,YYY ′, A′, θθθs,ZZZs, Ks) with probability Ar
split, and with probability 1 − Ar

split it

remains as (ϕϕϕs+1,YYY s+1, As+1, θθθs+1,ZZZs+1, Ks+1) = (ϕϕϕs,YYY s, As, θθθs,ZZZs, Ks).

Skill merge move

Like the intransitivity merge move, the merge move is considered as a reverse split move,

i.e., the current state is (ϕϕϕ′,YYY ′, A′, θθθs,ZZZs, Ks) = (ϕϕϕs+1,YYY s+1, As+1, θθθs+1,ZZZs+1, Ks+1), and

we aim to propose parameters (ϕϕϕs,YYY s, As, θθθs,ZZZs, Ks). Two levels a′, a′ + 1 ∈ A′ \ {A′
+}

are sampled to merge with probability

qa(a
′, a′ + 1) =

1

A′ ∀a
′ ∈ A′ \ {A′

+},

and are inverse split move is proposed with probability

qa(a) =
1

As + 1
∀a ∈ As \ {As

+},

so again qa(a)/qa(a
′, a′ + 1) = 1. The three variants for the merging of skill levels are

then as follows:

The general case: (a′, a′ + 1 ̸= 0)

In the general case that the sampler proposed to merge two non-zero levels, a′, a′+1 ̸=

0, then

Ar
merge|(a′, a′ + 1 ̸= 0) = Λr

merge/J
′r
split,
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where

Λr
merge =

π (ϕϕϕs,YYY s, A′ − 1, θθθs,ZZZs, Ks|xxx)
π (ϕϕϕ′,YYY ′, A′, θθθs,ZZZs, Ks|xxx)

(1 + 1{A′ = 1}) Φ(u
′
A/σA)

σA

|cccsa|!
|cccsa′ |! |cccsa′+1|!

2−|cccsa|,

and u′A ∼ σAχ
2
1 is the the value required for the inverse split move to get back to skill

levels ϕ′
a′ and ϕ

′
a′+1.

Merging to the zero skill: (min(|a′|, |a′ + 1|) = 0, A′ ≥ 2)

If either a′ or a′ +1 are 0 (and therefore have skill levels either ϕ′
a′ = 0 or ϕ′

a′+1 = 0),

then the merged skill level must be ϕa = ϕ0 = 0, and u′A is the value required to invert

the merge, such that

u′A =

|y(ϕ′
a′+1|ϕ′

a′−1, ϕ
′
a′+2)| if a′ = 0

|y(ϕ′
a′ |ϕ′

a′−1, ϕ
′
a′+2)| if a′ + 1 = 0

,

where y(·) is defined in equation (C.3.1). This gives an acceptance probability of

Ar
merge| [min(|a′|, |a′ + 1|) = 0, A′ ≥ 2] = Λr

merge/2J
′r
split,0,

so the Jacobian Jr
split,0, see Appendix C.7.4, differs from the general case, and also the

factor of 1/2, which comes from the Bernoulli variable in the inverse split move.

Merging to the single skill model: (A′ = 1)

If A′ = 1, then the merged skill level must be 0, and u′A is simply the absolute value

of whichever level is not 0, that is u′A = max(|ϕ′
a′ |, |ϕ′

a′+1|). In this case the acceptance

probability is given as

Ar
merge|(A′ = 1) = Λr

merge/2.

Then, the next state is accepted to be (ϕϕϕs,YYY s, As, θθθs,ZZZs, Ks) = (ϕϕϕ′,YYY ′, A′, θθθs,ZZZs, Ks),

with probability Ar
merge.
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C.4 Add-Delete components

C.4.1 Add-Delete components : intransitivity

Empty clusters

It is possible that ∃ a ∈ A : S{i} (YYY ) ∩ a = {∅}, ∀i ∈ I, that is, there exists empty

clusters. Empty clusters can occur after a split, if all object pairs in the split cluster

move to one of the new proposed clusters. Additionally, within the Gibbs reallocation

move, see Section C.5, it is possible for all object pairs in a given cluster to be reallocated

to other clusters. An empty cluster could exist for a long time before being merged, and

even then the proposed merge may not be accepted. To deal with this more efficiently,

a delete cluster move is included. To satisfy detailed balance, an add cluster move must

also be included. Define the set of empty clusters Ks
e to be Ks

e := {a ∈ {1, . . . , Ks} :

bbba = bbb−a = ∅}, such that a cluster ke is only considered empty if both ke = ∅ and

k−e = ∅. This is a necessary consideration because ZZZ ′ was defined to contain only

allocations for the ‘upper triangle’, that is ZZZ ′ := {zzz′{i,j} : i > j ∈ I \ {1}}. Therefore it

is possible that there are no pairs {i, j} ∀i > j ∈ I \ {1} in cluster, say a > 0; however,

there may exist a pair ∃{h,m} ∈ −a : h > m ∈ I \ {1} in cluster −a, and thus by

symmetry {m,h} ∈ a. Thus, to delete a cluster a, both clusters a and −a must be

empty, that is, we require bbba = bbb−a = ∅, hence the definition of Ks
e. Note also that

cluster 0 is not being considered in Ks
e, as there must always be exactly one transitive

cluster.

Intransitivity add move

When a cluster is added, the proposed cluster mean θ∗|α, β ∼ h0 is drawn from the prior

distribution, see equation (7.4.3), which is gamma distributed, and it is inserted such

that correct ordering of intransitivity levels is maintained. Thus, if θ∗ is, say the kth

largest value in the vector (θθθ, θ∗), then the proposed cluster allocation changes such that
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bbb′l = bbbsl , bbb
′
−l = bbbs−l ∀l < k, bbb′l+1 = bbbsl , bbb

′
−(l+1) = bbbs−l ∀l ≥ k and bbb′k = bbb′−k = ∅, which defines

ZZZ ′. The proposed intransitivity levels become θθθ′ = {θs1, . . . , θsk−1, θ
∗, θsk, . . . , θ

s
k+1}.

The cluster allocation is then reordered by increasing the index of cluster allocations

which belong to intransitivity levels which are larger than the added cluster. The

probability of proposing to add a cluster is an increasing function of an algorithm

parameter ρK > 0, and the probability of proposing to delete a cluster, see Section

C.4.1, is an increasing function of the current number of empty clusters, N s
∅ := |Ks

e|,

which excludes the completely transitive set JT . Therefore, the probability of proposing

to add and delete an intransitivity level is constructed as,

q(add |N s
∅ ) =

ρK
ρK +N s

∅
, q(delete |N s

∅ ) =
N s

∅
ρK +N s

∅
,

respectively.

Since an add or delete move in no way effects the likelihood, only the prior density

changes, and the acceptance probability of adding is given as

Aadd =
π(ϕϕϕs,YYY s, A,θθθ′,ZZZ ′, Ks + 1)

π(ϕϕϕs,YYY s, A,θθθs,ZZZs, Ks)

1

(Ks + 1)h0(θ∗|α, β)
(N s

∅ + 1)/(ρK +N s
∅ + 1)

ρK/(ρK +N s
∅ )

=
f(ZZZ ′|γK , Ks + 1)

f(ZZZ|γK , Ks)

g0(K
s + 1|λ)

g0(Ks|λ)
(N s

∅ + 1)(ρK +N s
∅ )

ρK(ρK +N s
∅ + 1)

,

with prior f(ZZZ|γK , Ks) defined in equation (7.4.2) and γK > 0

Intransitivity delete move

During a delete empty cluster move, an empty cluster ke ∈ Ks
e is selected at random.

Given the sampler is in state s with N s
∅ ∈ N+ empty clusters, i.e., there is at least 1

empty cluster, the acceptance probability of deleting an empty cluster, ke with cluster
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mean θ∗, where ZZZ ′ is the proposed allocation after the cluster is removed, is given as

Adelete =
f(ZZZ ′|γK , Ks − 1)

f(ZZZs|γK , Ks)

g0(K
s − 1|λ)

g0(Ks|λ)
ρK(ρK +N s

∅ )

N s
∅ (ρK +N s

∅ − 1)
.

Again, intransitivity levels are re-indexed appropriately. Choosing ρK = 1 means that

when one empty cluster exists, there is an equal chance of proposing to add or delete

an empty cluster. For 0 < ρK < 1, as long as there exists at least one cluster, there is

always a greater chance of proposing to delete an empty cluster than to add an empty

cluster.

C.4.2 Add-Delete components : skills

Similarly to the add intransitivity move, for the add skill cluster move a new skill level

is drawn from the prior, that is ϕ∗|νA ∼ N (0, ν2A), with νA > 0 and indexed such that

the proposed vector of skill levels is ordered. The allocations are altered such that all

objects maintain the same skills.

Define the set of empty skill clusters As
e to be As

e := {a ∈ A−0 : ccca = ∅}, noting

that cluster 0 is not being considered. During a delete empty cluster move, an empty

cluster, say ae ∈ As
e, is selected at random to be deleted. The cluster allocations are

then reordered such that, if the deleted level is positive, the index of cluster allocations

which belong to skill levels which are larger than the removed cluster are decreased by

one, and if the deleted level is negative, the index of cluster allocations which belong

to skill levels which are smaller than the removed cluster are increased by one. That

is, ccc′l = cccsl − 1 if l > max(ae, 0), ccc
′
l = cccsl + 1 if l < min(ae, 0) and ccc′l = cccsl otherwise.

Similarly to the intransitivity add and delete moves, the probability of proposing a skill

cluster is an increasing function of an algorithm parameter ρA > 0, and the probability

of proposing to delete a cluster is increasing function of the current number of empty

clusters, N s
∅A := |As

e|. The probability of proposing to add or delete an empty skill
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cluster is, respectively,

q(add A |N s
∅A) =

ρA
ρA +N s

∅A
, q(delete A |N s

∅A) =
N s

∅A
ρA +N s

∅A
.

Given the sampler is in state s with N s
∅A ∈ N empty clusters, the acceptance probability

of adding is given as

Aadd A =
f(YYY ′|γA, As + 1)

f(YYY |γA, As)

g0(A
s + 1|λA)

g0(As|λA)
(N∅sA + 1)(ρA +N∅sA)

ρA(ρA +N∅sA + 1)
,

with f(YYY |γA, As) given as in equation (7.4.4) and γA > 0. Likewise, given the sampler

is in state s with N s
∅A ∈ N+ empty clusters, the acceptance probability of deleting an

empty cluster, a with cluster mean ϕ∗, where YYY ′ is the proposed allocation after the

cluster is removed, is given as

Adelete A =
f(YYY ′|γA, As − 1)

f(YYY |γA, As)

g0(A
s − 1|λA)

g0(As|λA)
ρA(ρA +N s

∅A)

N s
∅A(ρA +N s

∅A − 1)
.

C.5 Standard MCMC updates

C.5.1 Standard MCMC updates : intransitivity

Intransitivity levels update

Moves which do not propose any change to Ks or As can follow standard MCMC up-

dates. The moves follow a Metropolis-Hastings-within-Gibbs procedure, where the skill

levels ϕϕϕ, intransitivity levels θθθ, and cluster allocations (YYY ,ZZZ) are updated sequentially.

The intransitivity levels are updated sequentially from smallest to largest, using

the matching function (C.3.1) to ensure ordering is preserved. First, the proposed

transformed intransitivity level y(θ′1|θs0, θs2) is proposed via a symmetric random walk

with standard deviation τ > 0, such that y(θ′1|θs0, θs2) ∼ N (y(θs1|θs0, θs2), τ 2), and accepted
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with probability A
(1)
levels, where

A
(1)
levels =

π(ϕϕϕs,YYY s, As, θθθ′,ZZZs, Ks|xxx)
π(ϕϕϕs,YYY s, As, θθθs,ZZZs, Ks|xxx)

=
L(xxx|ϕϕϕs,YYY s, As, θθθ′,ZZZs, Ks)

L(xxx|ϕϕϕs,YYY s, As, θθθs,ZZZs, Ks)

h0 (θ
′
1|α, β)

h0 (θs1|α, β)
.

and if accepted then θs+1
1 = θ′1. The other intransitivity levels are then drawn similarly,

but using the latest updated values of the intransitivity levels, such that

y(θ′k|θs+1
k−1, θ

s
k+1) ∼ N

(
y(θsk|θs+1

k−1, θ
s
k+1), τ

2
)
,

and θ′k is accepted as the new parameter value θs+1
k with probability A

(k)
levels, where

A
(k)
levels =

π(ϕϕϕs,YYY s, As, θθθ′k,ZZZ
s, Ks|xxx)

π(ϕϕϕs,YYY s, As, θθθsk,ZZZ
s, Ks|xxx)

=
L(xxx|ϕϕϕs,YYY s, As, θθθ′k,ZZZ

s, Ks)

L(xxx|ϕϕϕs,YYY s, As, θθθsk,ZZZ
s, Ks)

h0 (θ
′
k|α, β)

h0 (θsk|α, β)
,

where θθθsk := {θs+1
1 , . . . , θs+1

k−1, θ
s
k, . . . , θ

s
Ks} and θθθ′k := {θs+1

1 , . . . , θs+1
k−1, θ

′
k, θ

s
k+1, . . . , θ

s
Ks}.

Pair reallocation

Then the intransitivity cluster allocation ZZZ is updated. This can be achieved by either

a näıve approach, or using the conditional posterior approach. For the näıve approach,

a new allocation is drawn from the prior f(ZZZ|γK , K), using a two-step process. First, a

new ωωω′
Ks is drawn from the prior ωωω′

Ks|Ks ∼ Dirichlet (γK1112K+1). Then, the allocations

are drawn from

ZZZ ′ = {zzz′{i,j}|ωωω′
Ks ∼ multinomial (1,ωωω′

Ks) , ∀i > j ∈ I \ {1}},

with zzz′{i,j} ⊥⊥ zzz′{h,m}|ωωω′
Ks for all {i, j} ≠ {h,m} ∈ (I \ {1})2, and so by mixing over

ωωω′
Ks we are sampling from f(ZZZ|γK , K). This will be fast, but may mix over iterations

poorly since the proposal could be far away from the maximum posterior and so the

acceptance rate could be very low.

Instead, the data can be used to inform the next proposal using the conditional
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posterior. Consider the pair {i, j} : i > j ∈ I \ {1} at step s. The conditional posterior

ps{i,j}(y) that the pair {i, j} is in cluster y ∈ {−Ks, . . . , Ks} is computed as

ps{i,j}(y) ∝ L(xxx{i,j}|ϕϕϕs,YYY s, As, θθθs, z̃zz{i,j}(y), K
s)f(Z̃ZZ

s

{i,j}(y)|γK , Ks), ∀y ∈ {−Ks, . . . , Ks},

(C.5.1)

for all i > j ∈ I \ {1}, where z̃zz{i,j}(y) indicates that the pair {i, j} is in cluster y, i.e.,

z̃zz{i,j}(y) := {zt, t ∈ {−Ks, . . . , Ks} : zy = 1, zt = 0 otherwise},

and xxx{i,j} comprises only data of comparisons between i and j, and the full allocations

used in the prior f(Z̃ZZ
s

{i,j}(y)|γK , Ks) are given as

Z̃ZZ
s

{i,j}(y) = {z̃zz{i,j}(y), {zzzs{a,b}, ∀a > b ∈ I \ {1, i, j}}},

which is just the usual set of allocations, except for the pair {i, j}, which is assigned to

cluster y. Only the data xxx{i,j} need be considered in the likelihood in equation (C.5.1)

instead of the all the data, because the cluster allocation of all pairs is assumed to be

independent, so only θij will change, see definition (7.3.7), which in turn means that

only the pairwise probabilities pij and pji will change, see equation (7.3.5).

Since Ks is finite, for all s ∈ {1, . . . , S}, the probability qs{i,j}(y) at iteration s that

the pair {i, j} belongs to a cluster y is found by simply normalising, to give

qs{i,j}(y) :=
ps{i,j}(y)∑Ks

c=−Ks ps{i,j}(c)
, ∀y ∈ {−Ks, . . . , Ks}.

Then, for the pair {i, j}, the proposed allocation is drawn from a multinomial distribu-

tion with probability qqqs{i,j} := {qs{i,j}(y) : y ∈ {−Ks, . . . , Ks}}, so that

zzz′{i,j} ∼ multinomial
(
1, qqqs{i,j}

)
. (C.5.2)
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Note that it is is possible for zzz′{i,j} = zzzs{i,j}.

So far we have explained the proposal for a given pair {i, j}. In order to real-

locate all pairs, this proposal is made sequentially for all i > j ∈ I \ {1} as fol-

lows. All free pairs are initially placed into a holding set H = {{a, b} : a > b ∈

I \ {1}}. Also define an allocated set L which is initially empty. From the holding

set H, a pair {i, j} ∈ H is selected at random to have a new allocation proposed

zzz′{i,j}, which is drawn from equation (C.5.2). This is then accepted with probability

A
{i,j}
alloc = 1, ∀{i, j} : i > j ∈ I \ {1}, see appendix C.8. Therefore zzzs+1

{i,j} = zzz′{i,j} with

probability 1 for all i > j ∈ I. Then, the pair {i, j} are placed in the allocated set,

such that now H = {{a, b} : a > b ∈ (I \ {1})2 \ {i, j}}, and the allocated set becomes

L = {{i, j}}. Pairs from the holding set continue to be reallocated until the holding

set is empty, and all pairs have been reassigned.

C.5.2 Standard MCMC updates : skills

Skill levels update

Next the skill levels are updated sequentially from smallest to largest, and the new

values are again proposed on the transformed scale, all of which ensures that order

is preserved. Specifically, for any a ∈ A{−0}, then the new transformed parameter is

proposed via a symmetric random walk with standard deviation τA > 0, such that

y(ϕ′
a|ϕs+1

a−1, ϕ
s
a+1) ∼ N

(
y(ϕs

a|ϕs+1
a−1, ϕ

s
a+1), τ

2
A

)
. The proposed parameter is accepted with

probability

A
(a)
levels =

π(ϕϕϕ′,YYY s, As, θθθs,ZZZs, Ks|xxx)
π(ϕϕϕs,YYY s, As, θθθs,ZZZs, Ks|xxx)

=
L(xxx|ϕϕϕ′,YYY s, As, θθθs,ZZZs, Ks)

L(xxx|ϕϕϕs,YYY s, As, θθθs,ZZZs, Ks)

π (ϕ′
a|νA)

π (ϕs
a|νA)

.

where π is the prior distribution of the skill levels ϕϕϕ, namely, normal with standard

deviation νA > 0. If accepted then ϕs+1
a = ϕ′

a.
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Object reallocation

The skill cluster allocation is updated in the same way as the intransitivity cluster

allocation, using the conditional posterior. By considering the object i ∈ I \{1} at step

s, the conditional posterior ps{i}(w) that the object i is in cluster w ∈ {−As
−, . . . , A

s
+}

is

ps{i}(w) ∝ L(xxx{i}|ϕϕϕs, ỸYY {i}(w), A
s, θθθs,ZZZs, Ks)f(ỸYY

s

{i}(w)|γA, As),

∀y ∈ {−As
−, . . . , A

s
+}, i ∈ I \ {1}

where

ỸYY
s

{i}(w) := {ỹyy{i}(w), {yyys{i},∀i ∈ I \ {1, i}}},

and ỹyy{i}(w) indicates that object i is in cluster w, i.e.,

ỹyy{i}(w) := {yt, t ∈ {−As
−, . . . , A

s
+} : yw = 1, yt = 0 otherwise}.

Here, xxx{i} are only the data involving comparisons with object i, which is possible

because all skill cluster allocations and skill clusters are assumed to be independent

and so the likelihood of comparisons not involving object i will not be effected.

The probability qs{i}(w) at iteration s that the object i belongs to a cluster w is

again found by normalising, to give

qs{i}(w) :=
ps{i}(w)∑As
+

c=−As
−
ps{i}(c)

, ∀w ∈ {−As
−, . . . , A

s
+}, ∀i ∈ I \ {1}.

Then the object i’s the proposed allocation is drawn from a multinomial distribution

with probability qqqs{i} := {qs{i}(w) : w ∈ {−As
−, . . . , A

s
+}}, so that

yyy′{i} ∼ multinomial
(
1, qqqs{i}

)
, ∀i ∈ I \ {1}. (C.5.3)
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Note that it is is possible for yyy′{i} = yyys{i}. Again, the full proposal for all objects is made

sequentially for all i ∈ I \ {1} as follows. All objects, expect for the fixed object 1, are

initially placed into a holding set HA = {i : i ∈ I \ {1}}. Also define an allocated set

LA = ∅. From the holding set HA, an object i ∈ HA is selected at random to have a new

allocation proposed yyy′{i}, which is drawn from equation (C.5.3). This is then accepted

with probability A
{i}
alloc A = 1, ∀{i} : i ∈ I \ {1}, see appendix C.8. The object i is then

placed in the allocated set, such that now HA = {i : i ∈ I \ {1, i}}, and the allocated

set becomes LA = {i}. Objects from the holding set continue to be reallocated until

the holding set is empty.

C.6 Initialisation

Based on the initialisation routine described in Section C.2, the full algorithm is pre-

sented as follows.

Algorithm 1 ICBT model: Reversible Jump algorithm.

Inputs: paired comparison data, prior parameters (λK , λAγK , γA, α, β).

Find maximum likelihood estimates for the Bradley-Terry skills {ri : i ∈ I}, and the

associated pairwise probabilities {p(BT )
ik : i ̸= k ∈ I}.

Find naive estimates for pairwise win probabilities {p(n)ik = wik/nik : i ̸= k ∈ I}.

Find initial estimates for intransitivity

{
θik = log

(
p
(n)
ik /(1− p

(n)
ik )

p
(BT )
ik /(1− p

(BT )
ik )

)
: i ̸= k ∈ I

}
.

Cluster into intransitivity levels and skill levels using k-means clustering.

Pick model with the best BIC as initial model, which gives initial parameter estimates

(ϕ̂ϕϕinitial, ŶYY initial, Ainitial, ẐZZ initial, θ̂θθinitial, Kinitial).

Set (ϕϕϕ0,YYY 0, A0, θθθ0,ZZZ0, K0) = (ϕ̂ϕϕinitial, ŶYY initial, Ainitial, ẐZZ initial, θ̂θθinitial, Kinitial)
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for s = 1, . . . , S1, do

Update θθθ

Update ϕϕϕ

Store sample (ϕϕϕs,YYY s, As, θθθs,ZZZs, Ks)

end for

Set (ϕϕϕ0,YYY 0, A0, θθθ0,ZZZ0, K0) = argmaxsπ(ϕϕϕ
s,YYY s, As, θθθs,ZZZs, Ks|xxx).

for s = 1, . . . , S2, do

Update θθθ

Update ZZZ

Update ϕϕϕ

Update YYY

end for

Store sample (ϕϕϕs,YYY s, As, θθθs,ZZZs, Ks)

Set (ϕϕϕ0,YYY 0, A0, θθθ0,ZZZ0, K0) = argmaxsπ(ϕϕϕ
s,YYY s, As, θθθs,ZZZs, Ks|xxx)

for s = 1, . . . , S, do

Update θθθ

Update ϕϕϕ

Let Ks = Ks−1, As = As−1

end for

if Ks = 1 then

propose to split an intransitivity cluster

else

with probability 1/2 propose to split or merge an intransitivity cluster

end if

if there are no empty intransitivity clusters then

propose adding empty intransitivity cluster
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else

with probability N∅
N∅+ρK

propose deleting empty intransitivity cluster

with probability ρK
N∅+ρK

propose adding intransitivity empty cluster

end if

if As = 1 then

propose to split a skill level with probability 1/2

else

propose to split or merge a skill level

end if

if there are no empty skill clusters then

propose adding empty skill cluster

else

with probability N∅
N∅+ρA

propose deleting empty skill cluster

with probability ρA
N∅+ρA

propose adding empty skill cluster

end if

Update ZZZ

Update YYY

Store sample (ϕϕϕs,YYY s, A,θθθs,ZZZs, Ks)

Set (ϕϕϕ0,YYY 0, A0, θθθ0,ZZZ0, K0) = argmaxsπ(ϕϕϕ
s,YYY s, As, θθθs,ZZZs, Ks|xxx)

C.7 Jacobian terms

C.7.1 Jacobian for intransitivity split move: k ̸= 0

The Jacobian for the intransitivity split move Jsplit, for the general case where k ̸= 0 is

given as

Jsplit =

∣∣∣∣∣∣∣
∂θ′

k′+1

∂θk

∂θ′
k′

∂θk

∂θ′
k′+1

∂u

∂θ′
k′

∂u

∣∣∣∣∣∣∣ .
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Let α = θk−1, β = θk+1. From equations (C.3.4) and (C.3.5), we have

θ′k′ =
α + β exp(−u) (θk − α) / (β − θk)

1 + exp(−u) (θk − α) / (β − θk)

θ′k′+1 =
α + β exp(u) (θk − α) / (β − θk)

1 + exp(u) (θk − α) / (β − θk)
.

Therefore, using the quotient rule twice,

∂θ′k′

∂θk
=

[
1 + exp(−u)

(
θk−α
β−θk

)]
β exp(−u) β−α

(β−θk)2
−
[
α + β exp(−u)

(
θk−α
β−θk

)]
exp(−u) β−α

(β−θk)2[
1 + exp(−u)

(
θk−α
β−θk

)]2
=
β exp(−u) β−α

(β−θk)2

[
1− α

β

]
[
1 + exp(−u)

(
θk−α
β−θk

)]2 , (C.7.1)

and similarly

∂θ′k′+1

∂θk
=
β exp(u) β−α

(β−θk)2

[
1− α

β

]
[
1 + exp(u)

(
θk−α
β−θk

)]2 , (C.7.2)

∂θ′k′

∂u
=

[
1 + exp(−u)

(
θk−α
β−θk

)]
β exp(−u)(−1) θk−α

β−θk
−
[
α + β exp(−u)

(
θk−α
β−θk

)]
exp(−u)(−1) θk−α

β−θk[
1 + exp(−u)

(
θk−α
β−θk

)]2
= −

β exp(−u) θk−α
β−θk

[
1− α

β

]
[
1 + exp(−u)

(
θk−α
β−θk

)]2 , (C.7.3)

∂θ′k′+1

∂u
=
β exp(u) θk−α

β−θk

[
1− α

β

]
[
1 + exp(u)

(
θk−α
β−θk

)]2 . (C.7.4)

Equations (C.7.1), (C.7.2), (C.7.3), (C.7.4) therefore give a Jacobian of

Jsplit =
2β2 (β−α)(θk−α)

(β−θk)3

[
1− α

β

]2
1 + 4 cosh(u)

(
θk−α
β−θk

)
+ (4 + 2 cosh(2u))

(
θk−α
β−θk

)2
+ 4 cosh(u)

(
θk−α
β−θk

)3
+
(

θk−α
β−θk

)4 ,
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and Jmerge = 1/Jsplit.

C.7.2 Jacobian for skill split move: a ̸= 0

For the corresponding split of a skill cluster, assuming it is not the 0 cluster, i.e., a ̸= 0,

let α = ϕa−1, β = ϕa+1. Then similarly to Appendix C.7.1, the Jacobian for the general

split move for the skill levels is given as,

JA
split =

2β2 (β−α)(ϕa−α)
(β−ϕa)3

[
1− α

β

]2
1 + 4 cosh(uA)

(
ϕa−α
β−ϕa

)
+ (4 + 2 cosh(2uA))

(
ϕa−α
β−ϕa

)2
+ 4 cosh(uA)

(
ϕa−α
β−ϕa

)3
+
(

ϕa−α
β−ϕa

)4 ,
where JA

merge = 1/JA
split.

C.7.3 Jacobian for intransitivity split move: k = 0

In the case that the transitive level has a split proposed, i.e., k = 0, then

θ′k′ = θk = θ0 = 0,

and so

∂θ′k′

∂u
= 0,

∂θ′k′

∂θk
= 1.

Therefore, with α and β defined as in Appendix C.7.1, the Jacobian is given as

Jsplit|(k = 0) =

∣∣∣∣∂θ′k′+1

∂u
|(k = 0)

∣∣∣∣
=
β exp(u) θ0−α

(β−θ0)2

[
1− α

β

]
[
1 + exp(u)

(
θ0−α
β−θ0

)]2
=

2β exp(u)

(1 + exp(u))2
,

where the last equality follows since α = −β.
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C.7.4 Jacobian for skill split move: a = 0

The Jacobian here is derived very similarly to Appendix C.7.3, except that, since the

levels can be negative and are not reflected around 0, it is not necessarily true that

α = −β. Moreover, if a split occurs on cluster a with ϕa = 0, then either ϕ′
a′ = 0

or ϕ′
a′+1 = 0, with equal probability, as explained in the algorithm. In the case that

ϕ′
a′ = 0, then

ϕ′
a′ = ϕa = ϕ0 = 0,

and

∂ϕ′
a′

∂u
= 0,

∂ϕ′
a′

∂ϕa

= 1.

Therefore the Jacobian is given as

Jsplit|(a = 0) =

∣∣∣∣∂ϕ′
a′+1

∂u

∣∣∣∣
=

exp(u)−α
β

[
1− α

β

]
[
1 + exp(u)

(
−α
β

)]2
However, if ϕ′

a′+1 = 0, then ϕ′
a′+1 = ϕa = ϕ0 = 0, which leads to the same result.

C.8 Allocation acceptance probability

The probability of accepting the proposed allocation for a pair {i, j}, is

A
{i,j}
alloc =

L(xxx{i,j}|ϕϕϕs,YYY s, As, θθθs, zzz′{i,j}, K
s)f(ZZZ ′|γK , Ks)

L(xxx{i,j}|ϕϕϕs,YYY s, As, θθθs, zzzs{i,j}, K
s)f(ZZZs|γK , Ks)

qz(ZZZ
s|qqqs{i,j})

qz(ZZZ ′|qqqs{i,j})
,

where

ZZZ ′ = {zzz′{i,j}, {zzzs{h} : h ∈ H}, {zzzs+1
{l} : l ∈ L}},



Part II. Appendices 226

is the set comprising the proposed allocation, the allocations from pairs in the holding

set, and the new allocations of any pairs in the allocated set, and

qz(ZZZ
s|qqq′{i,j})

qz(ZZZ ′|qqqs{i,j})
=
ps{i,j}

(
y = argmax

[
zzz′{i,j}

])
ps{i,j}

(
y = argmax

[
zzzs{i,j}

]) ,
which is precisely the conditional posterior, and thus the acceptance probability reduces

to A
{i,j}
alloc = 1, ∀{i, j} : i > k ∈ I. Similar logic can be followed for the skill allocations,

showing that A
{i}
alloc A = 1, ∀{i} : i ∈ I \ {1}.

C.9 Simulation studies

To evaluate the model, some simple simulation studies were conducted and outputs

compared to a standard Bradley-Terry model. Data are simulated from our model, on

which both our model and a standard Bradley-Terry model are fitted. Four scenarios

are considered: one in which there is zero intransitivity and therefore could be modelled

equally well by the Bradley-Terry model; and scenarios with one, two and three levels

of intransitivity, i.e., K ∈ {0, . . . , 3}. No matter the number of intransitivity levels

used to simulate the data, when fitting the model the prior mean of the number of

intransitivity levels was fixed at λK = 2 since in practice the true number of levels

would not be known. In all cases a simple m-round robin tournament structure is

simulated in which each object is compared to every other object m times. The four

scenarios are tested for round robins of m ∈ {4, 8, 12, 16, 20, 40}, and in all cases had

n = 20 objects, with the same n/2 skill levels simulated from independent normal

variables with mean 0, such that the range of the levels were similar to that found in

real data, see Section 7.5.2. Table C.9.1 shows the four scenarios with the value of

the intransitivity levels. The values of the intransitivity levels were selected such that

intransitivity in the simulated data would be noticeable, but not unrealistically large.
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Moreover, these values of intransitivity were similar to values found in data of American

League baseball, see Section 7.5.2. To give some intuition into these values, consider a

paired comparison between two objects i, j, where pij| (θij = 0) = 0.6 when there is no

intransitivity. Then our model gives pij| (θij = 0.4) = 0.69 and pij| (θij = 1.2) = 0.85.

Similarly, if pij| (θij = 0) = 0.9, then pij| (θij = 1.2) = 0.97 and pij| (θij = −1.2) = 0.73.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

K 0 1 2 3

θθθ NA 0.7 (0.5, 0.9) (0.4, 0.8, 1.2)

Table C.9.1: Scenarios for the simulation experiments. All four scenarios were tested

on round robins of m ∈ {4, 8, 12, 16, 20, 40}.

Figure C.9.1 shows the posterior distribution of K for each of the four scenarios,

with the different colours showing increasing round robins in m, from left to right. In

scenario 1, Figure C.9.1 (top left), for m = 4 (black) the model indicates there is some

probability that there are more than 0 clusters, but for m = 8 (red) and upwards,

the model correctly finds no intransitivity levels. Figure C.9.1 (bottom left) indicates

that the model has more difficulty finding the correct number of levels in scenario 2,

although generally as the amount of data increases, the posterior distribution agrees

more with the truth. In scenario 3 the model does well in identifying the true number

of clusters, Figure C.9.1 (top right), and in scenario 4, Figure C.9.1 (bottom right), as

the number of round robins becomes large (m = 40), the model again has no trouble

identifying there being truly K = 3 intransitivity levels.

The discrepancy between the posterior for K and the truth in scenario 2 could be

due to the prior on the number of intransitivity levels having mean λK = 2, instead

of at the truth (K = 1 in this scenario). This possibility was explored via sensitivity

analysis, by deliberate misspecification of the prior K|λK in the inference, for a range of
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λK ∈ {1, . . . , 5}. In the most extreme misspecification, data xxx were simulated with K =

2 (and m = 20), but with the model then fitted with λK = 5. In this case, the posterior

probability of the true number of intransitivity levels was π(K = 2|λK = 5,xxx) = 0.79,

indicating the model is robust to prior misspecification of the number of intransitivity

levels. Moreover, the effect of prior misspecification on out of sample prediction was

found to be minimal. The difference in the proportion of correctly predicted out of

sample data between the model with the correctly specified prior and most misspecified

prior was 5.4 × 10−3, with the worst fitting model still predicting 1.8 × 10−3 better

than a standard Bradley-Terry model. The difference in log-loss, see equation (7.4.5),

was 3.8 × 10−4. In all cases, whatever the choice of λK , the model always performed

significantly better than a standard Bradley-Terry model.

Similar histograms were plotted (not shown) for the posterior probability of the

number of skill levels for each scenario. In scenario 1 (K = 0) the posterior density

of the number of skill levels agrees very closely with the truth even in the small data

case (m = 4), whereas for the other scenarios it takes from m = 8 upwards for the

posterior probability to start to agree with the truth. In general, for small m the

posterior mean of the number of skill clusters is smaller than the truth, that is, the

prior described in Section 7.4.2 leads to simplicity in these cases. As m increases, the

posterior mean then increases and tends towards the truth. This suggests the model

is fitting appropriately complex models given the data available and is therefore not

over-fitting as a Bradley-Terry model may do. The posterior variance of A decreases as

m increases.

Our assessment of the quality of fit is based on out of sample prediction accuracy -

for each of the four scenarios an additional 1000 round robin tournament was simulated

to be used as a test dataset, on which out of sample accuracy was assessed. Figure C.9.2

(left) shows log-loss and percentage of correct predictions (right), for the out of sample

test dataset. For the transitive case (black) there is very little difference between the
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Figure C.9.1: Posterior probability of the number of intransitive levels for the four

simulated scenarios: scenario 1 (top left), scenario 2 (bottom left), scenario 3 (top right)

and scenario 4 (bottom right). For each scenario, the colours represent the increasing

number of round robins from left to right: m = 4 (black), m = 8 (red), m = 12 (green),

m = 16 (blue), m = 20 (cyan), and m = 40 (magenta).
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Bradley-Terry fit and our model in both criteria, although perhaps our model performs

slightly better when fitted to data from the m = 4 round robin case. This could be

due to our model clustering the objects’ skill levels and thus having less parameters

(given our model also chooses K = 0 with a high probability in this scenario), and so

the Bradley-Terry model may be over-fitting in this small data case. Particularly for

scenario 2, our model is clearly over-fitting when the dataset is small, and a simpler

Bradley-Terry model would perform better. However, as the amount of data increases,

our model begins to perform better at around m = 16 round robins in terms of log loss,

and by m = 12 in terms of percentage of correct predictions. A similar pattern occurs

with scenario 4 in terms of log-loss, but here the improvement over the Bradley-Terry

becomes very large as the number of round robins increases due to a larger presence

of intransitivity. In this scenario our model always predicts a higher percentage of

correct results, regardless of the number of round robins the models were fitted on.

This discrepancy between log-loss and percentage of correct predictions in the small

data case (m = 4), may indicate that when our model makes an incorrect prediction,

the probabilities are far from the truth. This could be due to allocations of some pairs

into incorrect intransitivity levels with limited data. For scenario 3 our model always

has a better log-loss.

C.10 Baseball extra analysis

C.10.1 Hyper-parameter Selection

For running the sampler on all seasons of the baseball data, the same hyper-parameters

were selected. The hyper-parameters are considered to belong to two categories: firstly,

those that dictate the parameter values (the levels and cluster allocation), and secondly,

those which dictate the model choice, i.e., the number of skill and intransitivity levels.

Considering the first category, the concentration parameters for the (symmetric) Dirich-
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Figure C.9.2: Out of sample prediction performance assessed through: log-loss (left),

percentage of correct predictions (right). Assessments are shown for all four scenario

of Table C.9.1: K = 0 (black), K = 1 (red), K = 2 (green), and K = 3 (blue),

for Bradley-Terry (crosses with dotted lines), and Intransitive Clustered Bradley-Terry

(dots with solid lines) models.

let priors, which informs the concentration of the clustering allocation, were both set to

γA = γK = 1. This parameter choice allows for the data to be able to dictate whether

the cluster allocations are dispersed equally across levels or highly concentrated in a

small number of levels. The hyper-parameter which feeds into the prior on the team

skill levels, νA = 1 was selected due to the likely maximum win probability. In the

small data scenario, the parameter νA = 1 is likely to restrict the win probability in the

transitive case to remain between ≈ (0.05, 0.95), so we felt this choice of prior did not

restrict the team skill ratings. The hyper-parameters α = 1.5, β = 2 for the gamma

prior on the intransitivity levels was selected such that the mean is α/β = 0.75. This

was selected to reflect a reasonable shift in pairwise probability. For example, if two

teams’ i, j skill levels differ such that ri − rj = 1, then an intransitivity of θij = 0.75

increases the win probability from the transitive (Bradley-Terry) scenario p
(BT )
ij = 0.73

to pij = 0.85. We felt this would be a noticeable and yet still realistic change in win

probability due to some strategic advantage.

The second class of hyper-parameters - those that effect the number of levels (or

model selection) - were initially selected based on intuition as λK = 2 and λA = n/2 = 7;
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however, since the choice here is not so obvious, sensitivity analysis was also conducted.

The hyper-parameter λK , the prior mean for the number of intransitivity levels, was

chosen to be λK = 2, as it was thought that the different strategies of the pairs of

baseball teams could perhaps be summarized by (on average) 2 different levels of extra

advantage (disadvantage) (on top of Bradley-Terry) and with 95% chance in the range

[0, 5]. This is achieved with a Poisson(2) distribution. The hyper-parameter λK = 2

was selected as it was thought that the different strategies of the pairs of baseball

teams could be perhaps be summarized by two different levels of extra advantage (or

disadvantage). The hyper-parameter λA, which dictates the prior mean of the number

of skill levels A was set to λA = n/2 = 7 as we expected that the n = 14 teams could

possibly be summarized by half the number of skill levels, as this Poisson(7) distribution

has 95% interval [2, 13]. To test the sensitivity of these hyper-parameters, we analyse

a season (2016) of the baseball data for values λK = (2, 4, 10) and λA = (3, 7, 10), see

Figure C.10.1. Figure C.10.1a shows that even a value of λK = 10 doesn’t pull the

posterior too far from the other choices - the posterior probability of observing K = 1

is reduced, but the probability of observing K = 2 is similar to the two other options,

even though K = 2 it is very far from the prior mean. This is likely because with the

choice of Poisson distribution, the increased mean also increases variance, and so the

prior is less informative. Figure C.10.1b shows that the number of skill clusters seems

to be robust to the choice of λA, since the posterior distribution of A between models

with λA = 7 and λA = 10 is very small. For λA = 3, the posterior distribution does

appear to be quite different, however a value of λA = 3 is unlikely to be selected in

practice.

C.10.2 2018 season

A main feature of our model is the capturing of pairwise interactions between teams.

For the 2018 season, Figure C.10.2 (left) shows the posterior mean of the intransitivity
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Figure C.10.1: hyperparameter sensitivity

parameter for each pair of teams θ̂ij, ∀i > j, as intransitivity has rotational symmetry,

i.e., θij = −θji, ∀i ̸= j. The teams are sorted by their rank according to p.p.p., defined as in

equation (7.3.9). Note that in Figure C.10.2 (left) the Los Angeles Angels (ANA) have

an intransitivity level of 0 against all opponents; however, these levels were fixed at 0 for

identifiability purposes rather than being a real interpretable feature of the team such as

“ANA always play exactly as expected given their overall ability”. A more interpretable

representation is the intransitivity of the posterior mean {θ̂∗ij : i ̸= j} given by definition

(7.3.8), rather than the posterior mean of the intransitivity parameter. The reason for

this being interpretable is due to

θ∗ij := logit(pij)− logit
(
p
(BT ))
ij

)

being defined as a function of pairwise probabilities. In the Bradley-Terry model,

although a constraint on the parameters must be introduced in order to maintain iden-

tifiability, the resulting pairwise probabilities are invariant to this choice of constraint.

The same is true of our model, that the pairwise probabilities are invariant to the choice
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of constraints on the parameters. Therefore, by defining θ∗ij as a function of pairwise

probabilities, we can be sure that it too is invariant to the choice of identifiability con-

straints. Of course, the pairwise probabilities themselves are functions of underlying

parameters since

θ∗ij = logit (pij)− logit
(
p
(BT )
ij

)
= θij + ri − rj −

(
r
(BT )
i − r

(BT )
j

)
, ∀i ̸= j ∈ I,

however, we need not worry about this because we know that θ∗ij can be written as

a function of pairwise probabilities, and therefore whatever combination of underlying

parameters are involved in the expression must not depend on the choice of constraint.

Clearly the two measures {θ̂ij : i ̸= j} and {θ̂∗ij : i ̸= j} correlate, but we believe the

measure θ̂∗ij to be more interpretable. Considering Figure C.10.2 (right), pairs involving

ANA still have intransitivity values closer to 0 than other pairs, albeit not exactly 0

since the values are not fixed as is the case in Figure C.10.2 (left). By redoing the

analysis but fixing the intransitivity of all pairs involving a different team, namely

Tampa Bay (TBA), we find that pairs involving ANA still have intransitivity values

closer to 0 than other pairs. Moreover, neither the rankings nor model performance,

see Section 7.5.3, differed significantly, indicating that the choice of fixed parameters

does not impact the model.

The analysis of these intransitivities between pairs, and that of the skills of each

team, can be combined to produce an overall ranking of the teams. For the 2018 season

Figure C.10.3 (left) shows the ranking according to ppp.. To help with a visual comparison,

both ranking methods in Figure C.10.3 have been linearly scaled such that the best and

worst teams have abilities 1 and 0 respectively. The ratings between ppp. and the Bradley-

Terry ratings are clearly correlated, however, there is some difference in the ordering of

the ranks, indicating that intransitivity may have been masking the true ranks of some

teams. For example, consider TBA, ranked 6th by the Bradley-Terry model. TBA’s

good record against Kansas City (KCA) has a much lower weighting than their poor
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record against BAL in the Bradley-Terry model due to the differing frequency of these

match-ups, and therefore impacts the overall rank of TBA. Our Intransitive Clustered

Bradley-Terry model however, recognises that good or bad records against particular

teams could simply be due to the presence of intransitivity, and therefore penalises

TBA less overall, ranking them 5th. This demonstrates that the model also accounts

for tournament structure, such that teams are not penalised so heavily if they (unfairly)

compete most frequently against those whom they perform systematically worse than

expected based on skill alone. There is high correlation between the overall team

abilities according to ppp. and the Bradley-Terry abilities, indicating that, although the

Intransitive Clustered Bradley-Terry model is capturing more complex relationships

between pairs, the overall rankings are not too dissimilar. Moreover, it manages to

capture this information whilst using less parameters - on average 9.03 (5, 13) with

95% credible interval shown in parentheses, as opposed to the n − 1 = 14 parameters

required by the Bradley-Terry model. Figure C.10.3 (right) shows overall team abilities

according to aaa, see equation (7.3.10), which produces rankings which are more different

to those of the Bradley-Terry.

Figure C.10.2: Intransitivity between pairs of teams for the 2018 season: Posterior mean

of the intransitivity, θ̂ij := E [θij|xxx] , ∀i > j (left), and Intransitivity of the posterior

mean, θ̂∗ij, ∀i > j ∈ I (right).
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Figure C.10.3: Posterior mean of the overall abilities for the 15 American League base-

ball teams from the 2018 season with 95% credible intervals (black), according to ppp.

(left) and aaa (right), and the corresponding scaled Bradley-Terry abilities (red). In each

plot, teams are sorted in order of decreasing ability (by ppp. or aaa respectively). Uncertain-

ties in the Bradley-Terry model (not shown) can be calculated via profile likelihood.

Of course drawing meaningful inference from the rankings is dependent on the rank-

ings being accurate. To analyse this, we check the ranking accuracy, that is, the propor-

tion of times that the better ranked team beats the worse ranked team. Maximising the

ranking accuracy is not our ultimate aim, and could be done very simply by analysing

all possible permutations of teams within the rankings. Note that this measure disre-

gards all information about the probabilities, and must therefore be used with caution,

but nevertheless provides a good sanity check for a ranking system. Across all seasons,

ranking according to ppp., gave a higher ranking accuracy than the ranking accuracy

according to aaa, with the 2018 season giving ranking accuracies of 0.64 and 0.60 respec-

tively. Similar plots and inferences are drawn from the other seasons (2010-2017) but

with different team rankings in each year.
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C.10.3 Pooled data

In addition to a season-by-season analysis, characteristics of the teams, or pairs of

teams, which carry from one season to the next can be identified, by pooling data

across seasons. Since in 2013 the Houston Astros moved from the National League to

the American League, data are pooled from 2013-2018 American League.

Firstly, consider the intransitivity between pairs observed from the pooled data.

Figure C.10.4 (left) shows the posterior pairwise intransitivity between pairs, but now

for the pooled data from 2013-2018. The values are much closer to 0 in comparison

to the 2018 data alone, see Figure C.10.2, or any other single year of data, indicating

that there are significant differences in the strategies between pairs of teams from year

to year, which when aggregated brings the intransitivity towards 0. By comparing

Figures C.10.2 and C.10.4, we see that over seasons Texas (TEX) remains strong against

Houston (HOU), and Houston remains weak against Cleveland (CLE).

An overall ranking can also be produced for the pooled data, which portrays the best

and worst teams etc. over the 2013-2018 era. Figure C.10.5 indicates these rankings

according to ppp.. The model indicates that there is virtually no statistically significant

difference between the teams based on these pooled data, even though significant dif-

ferences are present for any individual season of data. This high variability in team

ability was already suspected due to the previously identified significant changes in the

intransitivities of the pairs from one year to the next. Considering intransitivity to be a

marker of the combination of two teams’ strategies, then we might expect a significant

changes in strategy to accompany significant changes in overall abilities.

The statistically insignificant differences in overall rankings from these pooled data

could be due in part to the aggregation of highly variable team abilities across the

years. This is because time-dependency is not considered in our model, and so any

significant differences in team ability that exists at a given point in time are blurred by

even stronger trends in the teams’ abilities over those 6 seasons. Thus when aggregated,
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any significant differences in team ability at a given point in time are lost. Essentially,

season-to-season form is being blurred by even stronger trends in the teams’ abilities

over those 6 seasons. To confirm this finding, the rankings are compared between a

given year and pooled data excluding that year, for example, between the ranks from

the 2015 season and the ranks based on pooled data of 2013, 2014, 2016, 2017, and 2018

seasons, using Spearman’s rank hypothesis tests. The results from the Spearman’s rank

hypothesis tests indicate that every season produced a ranking which was statistically

significantly different to the rankings produced from the pooled data excluding that

year.

Figure C.10.4: Intransitivity between pairs of teams from pooled data of 2013-2018

seasons: posterior mean of the intransitivity, θ̂ij, ∀i > j ∈ I (left), and intransitivity

of the posterior mean, θ̂∗ij, ∀i > j ∈ I (right).

In American League Baseball then, any team has the potential to improve or de-

cline significantly over the years, a result unlikely to be found in many other sports,

for example football (soccer), and which arguably makes American League Baseball

a more competitive sport overall. This feature of the sport is likely due to Major

League Baseball’s “competitive balance tax”, which levels teams’ spending. For ex-

ample, the largest spending of any team (https://www.spotrac.com/mlb/payroll) in

American League Baseball this year was only a factor of 5 larger than the smallest.

Contrastingly, in English Premier League football, this factor is over 200 times. It is
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no surprise then that in football a small handful of teams seem to be consistently top

ranked.

Figure C.10.5: Overall abilities, defined by ppp., from data pooled across seasons 2013-

2018 (black). Corresponding Bradley-Terry rankings are shown in red.



Chapter 9

Concluding Remarks for Parts I

and II

By expressing absolute systems and relative systems as two sides of the same coin, this

thesis has unified two previously unconnected areas of statistical ranking methodology.

The building of this conceptual bridge through the system-wide view now allows for the

construction of its mathematical underpinnings, which have so far remained detached

throughout. With a motivating example based on elite swimming, the first steps in

unifying the underlying mathematics are eluded to.

In Chapter 4 only the competition minima was used for analysis, despite having

data from all swimmers’ event results. This filtering ensured that the remaining data

were a good reflection of the swimmers’ true abilities and were locally time identically

distributed. But there is another interpretation of the necessity for this filtering, one

which stems from the concept of systems.

With a view to conserve energy, the optimum performance in the heats can be

considered as the slowest swim which still allows for advancement to the next stage

of the competition. For slower swimmers, this may still translate as maximal effort,

but the very best swimmers may deliberately and significantly under-perform. All that

240
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is required, is to swim faster than their opponents. So, especially in the heats, it is

clear that the time recorded is dependent on the context - the opponents - and so this

cannot be a purely absolute system. So, the reason for filtering by competition minima -

thereby discarding all but one data point per swimmer per competition - is because the

method cannot handle the relativity that bleeds into this assumedly absolute system. To

use all the available data would therefore require some unification of the mathematics

presented in Part I and Part II: assuming that a swimmer’s best times require only

extreme value methodology, whilst acknowledging that the times recorded in the heats

may need adjusting to reflect the strength of opposition. And so the ubiquity is revealed:

rather than a binary categorisation of system - absolute or relative - perhaps a fluid

description of the relativity of the system is more appropriate. This relativity would

describe the importance of context in understanding a given system.

It is hoped that this ubiquitous system view of statistical ranking methodology helps

in the future to bridge the gap between presently unconnected areas of statistics.
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Scheffé, H. (1952). An analysis of variance for paired comparisons. Journal of the

American Statistical Association, 47(259):381–400.



BIBLIOGRAPHY 254

Schwartz, B. and Barsky, S. F. (1977). The home advantage. Social forces, 55(3):641–

661.

Shibata, R. (1989). Statistical aspects of model selection. In From Data to Model, pages

215–240. Springer, Berlin, Heidelberg.

Shipley, A. (2009). FINA opts to ban all high-tech swimsuits. Reach for the Wall. com,

24.

Silver, N. (2010). The most livable neighborhoods in new york. New York, pages 32–43.

Simpson, E. S. and Wadsworth, J. L. (2021). Conditional modelling of spatio-temporal

extremes for Red Sea surface temperatures. Spatial Statistics, 41:100482.

Simpson, E. S., Wadsworth, J. L., and Tawn, J. A. (2020). Determining the dependence

structure of multivariate extremes. Biometrika, 107(3):513–532.

Sinervo, B. and Lively, C. M. (1996). The rock–paper–scissors game and the evolution

of alternative male strategies. Nature, 380(6571):240–243.

Skinner, G. K. and Freeman, G. (2009). Soccer matches as experiments: how often

does the ‘best’team win? Journal of Applied Statistics, 36(10):1087–1095.
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