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Abstract

Ranking systems are everywhere. The thesis will often select sports as its motivating
applications, given their accessibility; however, schools and universities, harms of drugs,
quality of wines, are all ranked, and all with arguably far greater importance. As such,
the methodology is kept necessarily general throughout. In this thesis, a novel con-
ceptual framework for statistical ranking systems is proposed, which separates ranking
methodology into two distinct classes: absolute systems, and relative systems.

Part I of the thesis deals with absolute systems, with a large portion of the method-
ology centred on extreme value theory. The methodology is applied to elite swimming,
and a statistical ranking system is developed which ranks swimmers, based initially on
their personal best times, across different swimming events. A challenge when using
extreme value theory in practice is the small number of extreme data, which are by
definition rare. By introducing a continuous data-driven covariate, the swim-time can
be adjusted for the distance, gender category, or stroke, accordingly, and so allowing
all data across all 34 individual events to be pooled into a single model. This results
in more efficient inference, and therefore more precise estimates of physical quantities,
such as the fastest time possible to swim a particular event.

Further increasing inference efficiency, the model is then expanded to include data
comprising all the performances of each swimmer, rather than just personal bests. The
data therefore have a longitudinal structure, also known as panel data, containing re-

peated measurements from multiple independent subjects. This work serves as the first
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attempt at statistical modelling of the extremes of longitudinal data in general and the
unique forms of dependence that naturally arise due to the structure of the data. The
model can capture a range of extremal dependence structures (asymptotic dependence
and asymptotic independence), with this characteristic determined by the data. With
this longitudinal model, inference can be made about the careers of individual swim-
mers - such as the probability an individual will break the world record or swim the
fastest time next year.

In Part II, the thesis then addresses relative systems. Here, the focus is on incorpo-
rating intransitivity into statistical ranking systems. In transitive systems, an object A
ranked higher than B implies that A is expected to exhibit preference over B. This is
not true in intransitive systems, where pairwise relationships can differ from that which
is expected from the underlying rankings alone. In some intransitive systems, a single
underlying and unambiguous ranking may not even exist. The seminal Bradley-Terry
model is expanded on to allow for intransitivity, and then applied to baseball data
as a motivating example. It is found that baseball does indeed contain intransitive
elements, and those pairs of teams exhibiting the largest degree of intransitivity are
identified. Including intransitivity improves prediction performance for future pairwise
comparisons.

The thesis ultimately concludes by harmonising the two parts - acknowledging that
in reality, there is always some relative element to an absolute system. Forging the
armistice between these system types could enflame research into the areas connecting

them, which until now remains barren.
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Chapter 1

Introduction

1.1 Motivation

Pick your favourite sport. I'm sure you could stew over the world’s best competitor at
this current moment, or of all time, or who would claim victory if A played B. But is
it conceivable that a system could be developed which returns an objective answer to
these seemingly subjective puzzles? In developing such systems, it is crucial to capture
as much information as is possible from our dynamic world. Athletes’ injuries, weather
events, even economic factors all impact the outcome of these events and the implied
abilities of the athletes or teams. Ranking systems in sport use a wide range of strate-
gies in order to capture these signals, from graph theory to extreme value theory, so that
the “best” system of ranking sports teams or athletes is formulated. Ranking systems
in sport are not only interesting to the inquisitive fan, as particular motivation arises
from companies such as ATASS Sports, who develop innovative methods of ranking
and rating sports teams and athletes. After all, a fair and accurate system is at the
core of all sports organisational bodies and the multi-billion pound conglomerates they

represent.



CHAPTER 1. INTRODUCTION 2

But these systems are not exclusive to sports. Methodological advances in the field
of ranking systems have far-reaching consequences: ranking systems prioritise certain
web-pages, influence schools and hospitals, and even declare the most essential medical
treatments. Poor methodology here leads to far harsher repercussions than incorrectly

seeding a tennis tournament...

Progress league tables were introduced for schools in the UK as a fairer and more
meaningful way to compare the effectiveness of schools (Leckie and Goldstein, 2017).
The measure of school progress has changed several times: the initial “value-added”
measure was criticised because it failed to take differences in pupils’ socio-economic
backgrounds into effect (Office, 2003) and there was no attempt at uncertainty quan-
tification.

These issues were then rectified by the introduction of the “contextual-value-added”
measure. This included age, gender, ethnicity, socio-economic status, and other fac-
tors as covariates in a random-effects model. From this statistical model, uncertainty
quantification was then available. However, the contextual-value-added measure was
subsequently dropped as it was considered too difficult to understand, and was “a poor
predictor of success” (Department for Education, 2010).

This highlights an important point - the aim of a ranking system completely shapes
its design, and the methodology used to construct it. In our example, it is clear that the
aim of ranking schools is not agreed upon: is it to promote the mental, physical, and
spiritual well-being and development of all pupils? Or is it to correctly forecast pupils’
qualifications? The result is a system which should be accurate, a good predictor of fu-
ture events and have reliable uncertainty quantification yet fair and easy-to-understand.
Not an easy task.

Due to funding or sanctions that often accompany these rankings, schools tend to
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change their behaviour by, for example, “teaching for exams.” Initially, pupils’ qualifi-
cations may have contributed to evidence of their development; however, it now merely
indicates their ability to memorise facts. Hospital ranking systems are also incentive
inducing, yet the introduction of these rankings within the National Healthcare Service
(NHS) is negatively correlated with the quality of care (Propper et al., 2004). Incentive-
fuelled ranking systems can therefore cause a change in behaviour through interactions
between the rankings and the “players”, thus rendering the rankings inaccurate.

NHS ranking systems use a combination of metrics, such as: hospital standardised
mortality ratio, a measure of in-hospital deaths; Summary Hospital-level Mortality
Indicator, which measures deaths occurring in the 30 days after being discharged; deaths
after surgery; and deaths in low-risk conditions. The aim is to provide a better view of
overall performance than any single metric; however, the rankings can be sensitive to
the choice of aggregation. In fact, hospitals can move almost half of the league table
as a result of subtle differences in the aggregation (Jacobs et al., 2005).

It may appear logical, that one common primary aim of a ranking system is to
provide a single order of preference for a set of objects; yet, a single ordering of pref-
erence may not exist at all. Consider an object A, which is preferred to B, which is
preferred to an object C' and C' is in turn preferred to A. This cycle of preference is
an example of intransitivity, and in this scenario the interpretation of the rankings is
not as transparent. Intransitivity arises in artificial constructions, such as dice games
(De Schuymer et al., 2003), but also emerges throughout the natural world, for exam-
ple, in competition between bacteria (Reichenbach et al., 2007) and in mating choices
of lizards (Sinervo and Lively, 1996). It is still possible to form an overall ranking
where better ranked objects perform better on average, but there may be specific pairs
for which the worse ranked object is expected to express preference over the better
ranked object. Alternatively, if the objects are indistinguishable as being statistically

significantly different, then enforcing some illusory ranking only engenders a fictional
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ordering. The bulk of ranking methodology pays no attention to either of these possi-

bilities.

The appropriate ranking methodology depends on the system at hand. It may be
helpful to introduce two distinct categories: absolute systems, and relative systems.

An absolute system is context-free, that is, isolated events are meaningful. For
example, the 100m sprint event could be treated as an absolute system, because the
knowledge that a person runs it in, say, 9.6 seconds conveys information about this
person’s ability, irrespective of the context or the opponents. This judgement arises
due to some vague perception of the bio-mechanics at play and a loose idea of the
typical behaviour of the population.

The surface temperature of stars can also be deemed an absolute system. The astro-
physics which govern this system inform us that a star such as WR 102 with a surface
temperature of 210,000K (Sander et al., 2012) is, technically speaking, “bloody hot”,
without the need for direct comparison with any other star. Alternatively, “bloody hot”
can be quantified via knowledge of the typical surface temperature, or the distribution
of surface temperature across stars. Absolute systems are therefore understood through
the physical or statistical properties of the system. Theoretically, the same is true of
sprinting. It is possible that an omniscient understanding of bio-mechanics and physics
is sufficient to quantify a “fast” sprint time, though with our current level of knowledge,
a statistical framework feels more appropriate.

On the face of it, ranking objects in an absolute system, such as runners in a given
competition, may seem banal; simply compare their times. But this simple comparison
no longer holds when comparing between: different distances; people born of differ-
ing sexes, which can lead biological biases, for example, disparate levels of testosterone;
fairly adjusting for disabilities; hurdles vs. no-hurdles; let alone differences in equipment

such as Eliud Kipchoge’s staggering world record set with the controversial Alphafly
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shoes. The dynamic component of these systems thickens the plot. Due to improve-
ments in training methods and changes in technology, a fair comparison between run
times recorded many years apart is infeasible without some adjustment for the era of
the run (Stephenson and Tawn, 2013).

Even when comparing times under identical conditions, applying ranking methodol-
ogy is beneficial because comparisons between runs have a more tangible interpretation
as they can be described in terms of probabilities. For example, it is natural to compare
the relative quality of two run times ¢; and ¢y in an event by Pr{T < t;}/Pr{T < t5},
where T represents the random variable corresponding to a run time for an event, rather
than, say, the metric t; — t5. A by-product of a suitable ranking system is that other
features of interest can be estimated. The ultimate possible run time for any given event
can be estimated (Arderiu and de Fondeville, 2022), or the probability of observing a
star with some extreme surface temperature 7 > 210,000K . In Chapter 3, with the aid
of extreme value theory, a statistical framework to rank elite swimmers is presented.

A relative system, on the other hand, requires context for any sense of meaning.
Armed with the knowledge that a player wins a tennis match, no amount of aerody-
namics and general relativity can help infer the ability of this victor. This information
is irrelevant without the context - the opponent. Context in relative systems stems from
variation of adversaries. An absolute system could be viewed as a competition against
nature. Certain natural laws make running a marathon under two hours, observing a
star hotter than 210, 000K or an earthquake with magnitude larger than 9.5 unlikely.
In all these systems, the adversary - nature - is the same for all objects in the system.
Inversely, in relative systems the adversary can be different for each object. Omitting
the context of the adversary then is unfair at best, and at worst renders comparisons
illogical. Differing adversaries also motivate differing strategies, complicating matters
further. The competition is therefore different for each object, thus stipulating context.

The distinction between relative and absolute systems aids the modelling process,
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but of course, there is a blending of the two in reality. Knowledge of someone’s marathon
time alone conveys a lot about their ability, but even in marathons there is some level
of strategy. In the absence of context - their competitors - the time cannot tell the

whole story. This thesis explores ranking methodology for both classes of system.
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1.2 Outline of Thesis

Both relative and absolute systems are deliberated in this thesis, which consists of two
parts, labelled Part I and Part II. The former is dedicated to absolute systems, using ex-
treme value theory as a framework, and applied to elite swimming. The latter concerns
relative systems, specifically paired-comparison methodology applied to baseball.

Whilst a common output in both systems is a global ranking, the mathematical
modelling and application-specific considerations diverge significantly. The strategy
of objects can be critical when modelling relative systems, but in an absolute system
this is obsolete by definition. Accordingly, each part contains its own literature review
and background research, conclusions, and further work, and appendices. Concluding
remarks relevant to both parts and a shared bibliography are located at the end of the
thesis.

The outline of Part I is as follows. As described above, absolute systems benefit
from a statistical framework when quantifying the meaning of observations, and here
we utilise extreme value theory; a background is provided in Chapter 2.

Chapter 3 applies univariate extreme value theory to elite swimming. The work
knits together multiple systems by consolidating all elite swim events over distance,
stroke and gender into a single unified system, forming one unique ranking over all
swimmers. The International Swimming Federation (FINA) uses a very simple points
system with the aim to rank swimmers across all swimming events. The points acquired
is a function of the ratio of the recorded time and the current world record for that
event. But with some world records considered “better” than others, bias is introduced
between events, with some being much harder to attain points where the world record is
hard to beat. A model based on extreme value theory is introduced, where swim-times
are modelled through their rate of occurrence, and with the distribution of the best
times following a generalised Pareto distribution. Within this framework, the strength

of a particular swim is judged based on its position compared to the whole distribution
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of swim-times, rather than just the world record. This work embraces the dynamical
aspect of absolute systems, where identical events occurring at different points in time
have radically different interpretations. As training methods improve over the years,
as well as changes in technology, such as full body suits, the date of the swim must be
accounted for. The parameters of the generalised Pareto distribution, for each of the 34
individual long course events, will be shown to vary with covariates, leading to a novel
single unified description of swim quality over all events and time. This structure, which
allows information to be shared across all strokes, distances, and genders, improves the
predictive power as well as the model robustness compared to equivalent independent
models. A by-product of the model is that it is possible to estimate other features of
interest, such as the ultimate possible time, the distribution of new world records for
any event, and to correct swim-times for the effect of full body suits. The methods are
illustrated using a dataset of the fastest 500 personal-best swim-times for each event in
the period 2001-2018.

Chapter 4 extends this work into the multivariate domain in order to capture not
just personal-best data, but the whole history of each swimmer’s measurements. Using
more data allows for more precise forecasting and prediction of future world records and
the general state of the system. The methods developed are kept general, using multi-
variate extreme value theory for analysing observations in the tails of longitudinal data,
i.e., a data set consisting of a large number of short time series, which are typically ir-
regularly and non-simultaneously sampled, yet have some commonality in the structure
of each series and exhibit independence between time series. Although extreme value
theory has been developed for ever more rich data structures, the unique features of
longitudinal data have not been considered previously. Across time series the data are
assumed to follow a common generalised Pareto distribution, above a high threshold.
To account for temporal dependence of such data we require a model to describe (i) the

variation between the different time series properties, (ii) the changes in distribution
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over time, and (iii) the temporal dependence within each series. Our methodology has
the flexibility to capture a range of dependence structures within the extremes of such
data (asymptotic dependence and asymptotic independence), with this characteristic
determined by the data. Bayesian inference is used with MCMC techniques to help
address the need for inference of parameters that are unique to each of the time series.
The novel methodology is illustrated through the analysis of data from elite swimmers
in the men’s 100m breaststroke. Unlike previous analyses of personal-best data in this
event, inference about the careers of individual swimmers is available - such as the
probability an individual will break the world record or swim the fastest time next
year.

Chapter 5 summarises Part I and proposes extensions to the works in Chapters 3
and 4.

The outline of Part II follows thusly. In the relative systems domain, ranking
methodology is dominated by paired-comparison approaches. Chapter 6 reviews the
paired-comparison literature. Particular attention is paid to the Bradley-Terry model
and its subsequent adaptations.

Chapter 7 extends the Bradley-Terry model. The seminal Bradley-Terry model
imposes a deeply restricted form of transitivity, namely, that the probabilities of object
A beating B and B beating C designate the probability of A beating C, with these
probabilities determined by a skill parameter for each object. Such transitive models
do not account for different strategies of play between each pair of objects, which
gives rise to intransitivity. Various intransitive parametric models have been proposed
but they lack the flexibility to cover the different strategies across n objects, with the
O(n?) values of intransitivity modelled using O(n) parameters, whilst they are not
parsimonious when the intransitivity is simple. Their lack of adaptability is overcome
by allocating each pair of objects to one of a random number of K intransitivity levels,

each level representing a different strategy. This novel approach for the skill parameters
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involves having the n objects allocated to a random number of A < n distinct skill
levels, to improve efficiency and avoid false rankings. Although up to O(n?) unknown
parameters may have to be estimated for (A, K), it is anticipated that in many practical
contexts A + K < n. The Bradley-Terry class of model is revealed to be a special
case, when (A =n — 1, K = 0), of this broader class of semi-parametric model which
encompasses intransitivity - the Intransitive Clustered Bradley-Terry model. This new
model is shown to have an improved fit relative to the Bradley-Terry, and the existing
intransitivity models, in out-of-sample testing when applied to simulated and American
League baseball data.

Chapter 8 suggests an array of extensions for this broader class of model, in partic-
ular the optimal choice of constraint when applied to sports with complex tournament
structure.

Chapter 9 provides concluding statements from both parts, and suggests further
work which combines the methodology for absolute and relative systems into one uni-

fying framework.



Part 1

Absolute Systems

Only a Sith deals in absolutes.

— OBI-WAN KENOBI

11



Chapter 2

Extreme Value Theory

Max-stability and threshold-stability form the bedrock of univariate extreme value the-
ory, by providing unique limiting distributions of random variables. The two most
commonly used approaches for modelling univariate extreme values are the block max-
ima approach and the peaks-over-threshold approach. The former models the maxima
of the data using the generalised extreme value distribution, while the latter models ex-
ceedances above a threshold using the generalised Pareto distribution. A combination
of these approaches can also be formed, using point processes. For a thorough review

of statistical methods for univariate extremes, see Coles (2001).

2.1 Block maxima

Let X1,..., X, be aset of n independent and identically distributed random variables,
with each variable having the continuous distribution function F', and consider M, =
max{Xi,...,X,}, the maximum of a block of length n. From Fisher and Tippett

(1928), the Extremal Types Theorem follows:

Theorem 2.1.1 (Extremal Types Theorem). If there exist norming sequences {a, >

12
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0}, and {b,}52,, such that

an

M. —
Pr{n—bngx}—)G(az) as n — oo

for x € R and where the limiting distribution G is non-degenerate, then G must be the

distribution function of one of Fréchet, Gumbel, or negative Weibull random variables.

The three aforementioned distributions form the extreme value families of distribu-

tions, defined as follows:

0, x < b,
e Fréchet: G(z) = for a < 0;

exp [— ("’“"—’b)a] , x > b,

a

e Gumbel: G(z) =exp{—exp[- (£2)]}, zeR;

ep{-[- (5]}, w <o

1 x > b,

e Negative Weibull: G(z) = for a < 0,

for a > 0, b € R. If Theorem 2.1.1 holds, then F' is said to be in the maximum
domain of attraction (MDA) of GG, and its normalised maxima must therefore converge
in distribution to one of the three extremal families. Without norming M,, a degenerate
distribution is obtained. This is because a point mass is obtained at the end-point of
the distribution =g, since Pr{M,, < z} = F"(z), x € R, and F"(z) — 0 as n — oo for
all z < xp, whereas F"(z) = 1 Vo > xp. Moreover, using F"(z) is often impractical as
F'is unlikely to be known. Thus, the norming of M,, is paramount.

The extreme value families can in fact be shown to be special cases of a single family:

the generalised extreme value (GEV) distribution, with distribution function

G(x):exp{— [1+g<x;ﬁb)£w}, z €R, (2.1.1)

with y, = max(y,0), and where u, £ € R, o0 € R, are the location, shape and

scale parameters, respectively. Together, Theorem 2.1.1 and result (2.1.1) are powerful,
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as Theorem 2.1.1 holds as the limit distribution for a very broad class of continuous
distributions F', and then result (2.1.1) implies that whatever F is in this class, the
maxima must follow a single specific class of distribution, determined by only three
parameters.

The extreme value family is dictated by the shape parameter: for & > 0, we have
the Fréchet family; for & < 0, the negative Weibull family; and £ = 0 is interpreted
as the limit & — 0, leading to the Gumbel family. Consequently, the shape parameter
also determines the lower- and upper-end-points of G, z¢ and z%, respectively, with
rg=p—o/EifE>0and 2% = p—o/Eif € <0, and (2g,2%) = (—00, 00) otherwise.

A critical feature in the analysis of extremes is max-stability. A distribution satisfies
the max-stability property if and only if sample maxima of independent draws lead to
equivalence in distribution subject to a change in location and scale. More exactly, if
a distribution G is max-stable then there exist constants A, > 0 and B, such that
G"(A,x + B,) = G(z), Vn € N,z € R. The GEV distribution is max-stable, meaning
the maxima of GEV-distributed random variables also follows a GEV distribution.
Uniquely, the GEV family is the only family of distributions which satisfy this property.

Assuming that equation (2.1.1) holds exactly for large n, then

Pr{M, <z} =G (9” — b") = G(x),

Qn

with G representing a GEV distribution with a different location and scale parameter
to that of G. This result allows for modelling of maxima in practice, as data can
be blocked into sections of equal length n, with the maxima of each block considered
realisations of G. This approach is termed the block maxima approach, see Figure 2.1.1
(left). Here, only the maxima (in red) are used for inference of the GEV parameters.
Estimating the quantiles of the GEV distribution typically forms an important as-
pect of extreme value analysis since they describe the kinds of values which can rea-

sonably be expected to be exceeded over any given period. These quantiles can be
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Figure 2.1.1: Hlustration of the block maxima (left) and threshold exceedance (right)
approaches for the modelling of univariate extremes. The purple crosses denote those

data used for inference from the same simulated data.

estimated by inverting equation (2.1.1), whereby the solution to G(z,) = 1 — p gives

p-2{1-Flog-p) ¢}, foreo,
p — olog|—log(1 — p)], for £ = 0.

z, = (2.1.2)

The quantile z, can be interpreted as the value which is exceeded in a single block with
probability p. It is commonly termed that z, is the return level of the return period
1/p. For example, if each block represents a year of data, and p = 0.1, then z, is the
value we can expect to be exceeded once every 1/0.1 = 10 years.

Practically, the maximum likelihood estimates of (1, 0, &), (fi, 6, &) respectively can
be calculated (Coles, 2001), and are then used to calculate the MLE of the return
level Z, via equation (2.1.2) and the invariance property of MLE. The variance of this
estimate can be found via standard results of the asymptotic normality of maximum
likelihood estimators.

Of course, the extreme phenomena of interest may be small, such as when applied

to low-temperature physics (Fyodorov and Bouchaud, 2008). Here, since

max{Xy,..., X,,} = —min{—-X;,...,-X,}, (2.1.3)
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theory for modelling the lower tail of a distribution immediately follows from the theory
required to model the upper tail of a distribution. Thus, analysis of minima can be

studied under the same framework.

2.2 Threshold exceedances

A criticism of the block maxima approach is that only a single value per block is
used for inference. On the other hand, the peaks over threshold approach considers
all observations above a suitably high threshold as being extreme. This allows all
of the most extreme data to be analysed, unlike the block maxima approach, and
typically leads to more efficient inference, see Figure 2.1.1 (right). See Pickands (1975)
and Balkema and De Haan (1974) for a full justification of the threshold exceedance

approach. Let

Na(z) = 1(X; > agz+b,),

i=1
with 1(A) being an indicator of event A occurring, then N, (z) is the random variable
corresponding to the number of random variables Xi, ..., X, exceeding a threshold

anx + by, with a,, and b,, as in limit (2.1.1). So N, (z) has a Binomial distribution with
N, (x) ~ Binomial(n, 1 — F(a,x + b,)).

Under the same conditions behind the GEV limit from equation (2.1.1) where, for
X ~ F and F being in the maximum domain of attraction of a GEV distribution, i.e.,

F™(a,z + b,) — G(z) for suitable a,, > 0,b,, as n — oo, then for all x

nlog F(an,z + b,) — log G(x).
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Thus, using standard Taylor series approximation, for all x
n[l — F(a,z +b,)] = —logG(z) = [1 4+ &(x — u)/a];l/g, as n — 00. (2.2.1)

Using property (2.2.1), then the classic Poisson limit from a Binomial gives that as

N,(x) — N(x), then
N(z) ~ Poisson (A(z)), Ax) = [1+4 &z — p)/o]; . (2.2.2)

Furthermore, it follows that for x > u and X distributed as X;, that as n — oo

Pr{X > a,x + b,| X > a,u+b,} — log G(x)/log G(u) =: H,(x),

where H,(x) := 1 — H,(), and the distribution function H, is of the form

=

Oy

Hy(z)=1- {Hg(“"f“ﬂ; . (2.2.3)

Formally, H, is termed the generalised Pareto distribution (GPD), denoted as
GPD(6,, &) with threshold u, shape parameter ¢ and scale parameter &, € R, giving
the distribution of the excess X — u of exceedances of u, i.e., conditioned on X > wu.
The GPD limit distribution (2.2.3) gives an asymptotic model for the distribution of
exceedances above a threshold u, no matter the distribution . The GPD scale param-
eter 7, is linked to the GEV scale parameter via 6, = o + £(u — p). Importantly, the
GPD shape parameter ¢ is equivalent to the GEV shape parameter £, see Coles (2001)

for the interpretation of this. For & < 0, there exists a finite upper-end-point
et =u—6,/¢: Hy(z)=1, Vo > 2.

In contrast, for £ > 0, H,(z) < 1, Vz < oo, so 21 = oo in this case.
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Like max-stability, threshold-stability is another important property in the analysis
of extremes. A family of distributions has threshold-stability if, given the family is valid
for excesses over some threshold ug, then is also valid for excesses over all thresholds
u, such that 7 > u > wg, albeit with a change in scale. It turns out that the only
family of distribution with this property is the GPD. Therefore, if it is appropriate
to model (X — ug)|[{X > uo} as a GPD(G,,,£), then (X — u)[{X > u} can also be
modelled as a GPD, but with GPD(G.,, £) if z < z/. This new scale parameter is given
as 0y, = 0y, +&(u—1up), that is, the GPD scale parameter at higher thresholds is linearly

dependent on the higher threshold value. Moreover, note that if £ < 1

E[(X — u)[{X > u}] = 15“ _ Tu F 8 t0) (2.2.4)

S 1-¢

and thus the expectation is also linear in u for all u > ug. By reparametrising as

G5 =G, — Eu, (2.2.5)

then the modified scale parameter o; becomes independent of the threshold, which
can help with threshold selection and inference. Another useful reparametrisation is to
perform inference on the orthogonal parameters ¢ and v := 7,(1+¢) (Chavez-Demoulin
and Davison, 2005), which can improve efficiency, especially when performing MCMC
in a Bayesian framework.

The choice of threshold u is often user specified, based on bias-variance trade-off.
If u is too high, then less data are available for inference, thus inducing high vari-
ance and uncertainty around the parameter estimates. If u is selected too low, then
the approximation to the GPD limit becomes poor, creating bias in the parameters’
estimates.

The optimum choice of threshold has been the subject of much historical focus.

See Scarrott and MacDonald (2012) for a comprehensive overview. Davison and Smith
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(1990) suggest a graphical method, the mean residual life plot. From (2.2.4), the expec-
tation E [X — u|X > u], which can be estimated by the sample mean of the threshold
excesses, is a linear function of u, for u > ug, if the GPD is a valid model for X > uy.
Therefore, by plotting the sample mean excess of a threshold for a range of candidate
thresholds, the selected threshold is then the point above which linearity is observed
in the plot, although identifying this in practice is difficult due to sampling variation
which changes with threshold. Alternatively, by reparametrising as in (2.2.5) the max-
imum likelihood estimates 6* and é of 6* and &, respectively, should be constant (apart
from sampling variation) for a valid GPD. Using parameter stability plots - plotting a
range of values of u against corresponding estimates of ¢* and é - a suitable threshold
u is selected as the lowest value above which the maximum likelihood estimates remain
constant as a function of w.

Extreme value theory is primarily concerned with the tail behaviour, and specifically
in this model the upper-tail behaviour for X > u. However, an appropriate model for
the “bulk” of the distribution of X is also of interest. Typically, this is chosen to be the
empirical distribution F(z) (Coles, 2001), such that the resulting distribution function

is given as

F(x) if x <,
F(z) = -1/
1—Au[1+5%}+ if @ > u,

where A\, =1 — F(u).

In the absence of a parametric model for the domain below the threshold, the GPD
parameters, which govern the distribution above the threshold, are uninformed by those
data below the threshold. In this case, the data below the threshold can be assumed

censored from below at the level of the threshold. Then, the contribution to the log-
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likelihood of an observation z is

1— X, if x <,

1+ ¢2

—u
Ou

€<x|/\ua Ou, 5: =

—1/¢-1
] if x > u.

The threshold exceedance approach leads to a model for the extreme tail with two
components: a model for the number of exceedances above the threshold, which from
equation (2.2.2) is Poisson with mean A\ = [1 + &(z — ,u)/o]jrl/g; and a model for
threshold exceedances, H,(z) which is a GPD. Next, we explore a unification of these

two components.

2.3 Point process framework

As can be seen from the derivations above, both the rate of exceedances of a high
threshold (2.2.2) and the GPD parameters (2.2.3) are functions of the GEV parameters
(2.1.1). In fact, the block maxima and threshold exceedance approaches can be com-
bined using a point process limit (Pickands, 1971) which exploits this property. The

key result is formulated in Coles (2001):

Theorem 2.3.1 (Extremal Point Process Theorem). Let X, ..., X, be a sequence of
independent and identically distributed random variables and suppose that there exists

appropriate norming sequences {a, > 0}, and {b,}>, such that, for any x € R

Qn

Pr{Mn—_bn Sx} — G(x), n— oo,

as in limit (2.1.1) with G non-degenerate, and with lower- and upper-end-points x¢g =

sup{z € R : G(z) = 0}, and 2% := inf{z € R : G(x) = 1}, respectively, so g < x¢.
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Then the sequence of point processes

Pn:{( ! ,Xi_b”> ;z:1,...,n},
n+1 an,

converges on regions in the form (0,1) X [zg, 00) to a non-homogeneous Poisson process

P with integrated intensity measure . It follows that A of P on Ay, := [0,t] x [z, 2],

where 0 <t <1, x > x¢g is

m\H

(Am)_t{ug( 0“)L . (2.3.1)

The scaling in P, enforces that, as n — oo, the first component to be continuous on
[0, 1], and the maximum of the second component to be non-degenerate with limiting
distribution (2.1.1). Theorem 2.3.1 implies that the intensity function A for P is, for

€ [0,1] and 25 < z < 29,

A (A,) ) —e!

From standard Poisson process properties, the number of points of P falling within the
set S C [0, 1] x (xg, co) follows a Poisson distribution with mean A(S) = [, A(t, z) dz dt,
with A(¢,x) given by expression (2.3.2).

Statistical application of the point process model assumes that for large enough n,
the limit P, — P holds exactly. After absorbing norming constants into the limiting
intensity, it is assumed that P, with intensity (2.3.2), applies to the points {(i/(n +
1),X;);i =1,...,n} on the set Ay, = [0,1] x (u,00]. If x = {(t1,21),..., (tm,Tm)}
denote the m of these points that fall in A, ,, then the likelihood of the parameters
0 := (u,0,€) based on a realisation (z1, ..., x,) from the random variables (X7, ..., X,)

1S

L(Ple) ox oxp { - AAM}f{{{ug(“;“)]f}.
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Inference using this likelihood gives information about both the mean number of ex-
ceedances of the threshold v and the distribution of the threshold exceedances.

The link between the first two approaches - block maxima and threshold exceedances
- now becomes apparent. If N, (A) is the number of points in A, where A C A,
where N,(A) — N(A) ~ Poisson [A(A)], as n — oo, then the event N, (A,) = 0 for

A, =(0,1) x (z,00) is equivalent to {(M,, — b,)/a, < x}. As such,

Pr {M”a—;b" < :13} — Pr{N,(A,) = 0}

— Pr{N(4,) = 0}

=exp (—A(A1.))

_ exp{_ [E: (%”)]/g}

as n — 00, thus equivalence with limit distribution (2.1.1) is reached.
In a similar vein, an equivalence with threshold exceedances can be shown. As the

integrated intensity (2.3.1) can be written as
A ([07t] X [ZL‘, OO)) =M\ ([07 t]) X A, ([[E, OO)) )

where
T —p

A ([0,4]) = ¢ and A, ([z, 00)) = {1 be (T)] o

+
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then for any u > z¢ and = + u < 2©,

X; — b, X; — b, X, — by, X, — by,
Pr <z+u >up,=1-—Pr >r4u > u
A
—1-— x([x—i—u,oo))’ as n — 0o
Az ([u, 00))
ztu— -1
[l (e

[1+e()]

—1/¢
- [+
Ou]

=: Hu(x),

where H,(z) is the GPD derived in equation (2.2.3).

In estimating the GEV parameters, the point process approach uses all data larger
than w for inference rather than only block maxima (like the peaks over threshold
approach). Therefore, using point processes can result in more efficient inference than
that of the block maxima approach. Unlike the GPD, the parameters in the point
process parametrisation are invariant to the choice of threshold wu.

While still assuming independence, the assumption of the random variables being
identically distributed can be relaxed somewhat by, for example, including a covariate
structure. In the most general case, suppose the parameters (p(t),o(t),£(t)) vary with
the covariate time, denoted t. The non-homogeneous Poisson process then allows for
time-dependent rates of occurrences and excess distributions, see Smith (1989), with

intensity
1

where o(t) € Ry, Vt and so the integrated intensity is

A(Ay) = /0 1 [1 +E() <%’;)(t)>} :“) dr.



CHAPTER 2. EXTREME VALUE THEORY 24
2.4 Extreme value theory in sports

Within sports, Robinson and Tawn (1995) use extreme value theory (EVT) to model
athletics data, and Strand and Boes (1998) use EVT to determine the peak age and
deterioration of competitive 10K road race runners. Stephenson and Tawn (2013) fit a
GEV distribution to yearly maxima of athletics times across different distance and eras.
The location and scale parameters vary as a parametric function of the distance, and
an exponential trend allows for a smooth adjustment for era. Since the best run-times
are the smallest, the negated data are analysed, as in formulation (2.1.3); however,
the GEV distribution for maxima could also be used by modelling run-speeds, by tak-
ing the reciprocal of the data. This choice is not trivial. Non-linear transformations
of the measurement scale in extreme value modelling lead to disparate inference, as
Wadsworth et al. (2010) depict with a motivating example from North Sea wave data.
They analyse extreme wave height H and wave drag force F' - a vital variable for
offshore structural design - where F' o« H? (Tromans and Vanderschuren, 1995), and
found that separately studying these two variables generates inconsistent inference. In
spite of sharing the same underlying physical phenomena, the estimates for the shape
parameters had opposite signs, implying a finite upper limit for wave height, but a
non-zero probability of an arbitrarily large drag force. In the context of sports, this
could mean that the analysis of event-times concludes that the distribution of run-times
has a light tail, whilst analysis of run-speeds concludes there is no limit to the speed a
human can run, or vice versa. Thus, attending to data transformation is critical, and
getting it wrong can result in physically impossible conclusions. Despite this, Gomes
and Henriques-Rodrigues (2019) use peaks-over-threshold methodology to analyse the
best swim-speeds by transforming data of the best swim-times. This allows them to
analyse the right-hand tail of the distribution, but the effect of this transformation
on the inference is unknown. The effect of this transformation will be discussed in

Chapter 5.
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2.5 Multivariate extreme value theory

2.5.1 Copula-based modelling

Utilising copulae to characterise the dependence between univariate variables is a com-
mon approach Joe (1997); Nelsen (2007). Typically, the margins are modelled first,
with the dependence then modelled separately, which often leads to faster inference.
Through Sklar’s Theorem (Sklar, 1959), all the dependence can be ascertained through

the copular alone.

Theorem 2.5.1 (Sklar’s Theorem). For the random vector X = {X; :i € {1,...,d}}
having joint distribution F, and each component with continuous marginal distribution

X; ~ F; forie{l,...,d}, there exists a unique copula C such that
F(z) = C{Fi(z1), ..., Fy(zq)},

for all z; € dom(F;), Vi € {1,...,d}.

The copula C' is a multivariate distribution function on standard uniform margins,
i.e., C':[0,1]¢ — [0,1]. The copula can be used for any marginal distribution, by first
transforming the marginal distribution through the probability integral transform; for a
random variable X; with distribution function F;, then F;(X;) ~ Unif(0, 1), no-matter
the distribution of X;. So, the Copula can be used to model dependence structure
regardless of the marginal distribution (as long as the inverse F; ' exists) and crucially,
the dependence structure is invariant to the marginal transformation. Hence, marginal
modelling and dependence modelling can be approached separately. An oft used choice

of copula is the Gaussian copula, given as
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with ¢4(s;2) denoting the standard d-dimensional Gaussian density, with depedence

structure determined by the correlation matrix X.



Chapter 3

Ranking, and other Properties, of
Elite Swimmers using Extreme

Value Theory

3.1 Introduction

On the face of it, comparing the performances of two swimmers in a given competition
appears straightforward, simply compare their swim-times. But this simple comparison
no longer holds when we compare between different distances, strokes or genders, let
alone swimmers under different regulations for full body suits. In addition, due to the
improvement in training methods, as well as changes in technology, a fair comparison
between swim-times recorded many years apart is infeasible without some adjustment
for the era of the swim.

The International Swimming Federation (FINA) uses a very simple points system
to tackle this issue. The points acquired for a particular swim is a function of the ratio
of the swim-time and the current world record for that event, specifically the points p; ;

given to swimmer ¢ in event j is p; ; & (b;/t; ;) where b; is the current world record in

27



CHAPTER 3. RANKING BASED ON EXTREME VALUE THEORY 28

event j, and ¢; ; is the time of swimmer ¢ in event j. With some world records considered
better than others however, bias is introduced between events, with some being much
harder to attain points where the world record is hard to beat. Furthermore, the ranking
method has high sensitivity as it is determined only by the set of current world records,
so rankings can change substantially when a single record is broken. Importantly, FINA
rankings are used by many countries and organisations for selection for regional and
international competitions, so the ranking must be an accurate representation of the
swimmer’s true ability.

The aim, is to produce a global model that can fairly compare between strokes,
gender and distance, as well as considering the improvement over time of elite sporting
performance. This paper utilises extreme value theory to model the very best swim-
times as being observations from a generalised Pareto distribution (GPd) so that the
strength of a particular swim is judged on its position compared to the whole distribu-
tion of swim-times across all events, rather than just the world record for that event.
This ensures a more efficient comparison between events. Moreover, comparison be-
tween swim-times within the same event has a more tangible interpretation since it
can be described in terms of probabilities. For example, by considering swim-times
t; and ty in an event, then it is natural to compare the relative quality of these by
Pr(T > t;)/ Pr(T > t3), where T represents the random variable corresponding to a
swim-time for an event, rather than, say, the metric t; — t;. A by product of this
global model is that other features of interest can be estimated, for example the ulti-
mate possible swim-time for any given event. The distribution of the next world record
swim-time for each event can be estimated, and even the distribution of the waiting
time, and therefore the expected waiting time, until the next world record is broken
and the probability of that record being in a particular event. In addition, swim-times
can be corrected for the effect of full body suits, to allow for fair comparison between

those swimmers wearing suits and those not.
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The data to be studied comprise the top 500 swim-times, with at most one time per
swimmer per event, in all 34 individual long course (LC) swimming events, i.e., in a 50m
pool, from all major competitions between the start of 2001 and last quarter of 2018.
Any data not officially accepted by FINA are removed, for example observations that
were later rescinded due to the use of performance enhancing drugs. For the remainder
of this article, negative swim-times will be analysed, and simply referred to as swim-
times, so that if a swim-time is faster than another it has the larger negative swim-time
of the two. So, for the best swim-times we are interested in the biggest negative swim-
times. Therefore the paper focuses on methods for largest values, which is the typical
methodological approach to extreme values (Coles, 2001). Results for actual swim-
times are obtained by simply negating the results we obtain for negated swim-times.
Additionally, independence is assumed between all swim-times across different years,
strokes and distances, even if they are achieved by the same swimmer. Both of these
two points will be discussed further in Section 3.5.

The past use of extreme value theory for sports modelling is varied. In athletics,
work has been done to create a model which pools information between different dis-
tances and over time (Stephenson and Tawn, 2013). The threshold exceedance model
of Smith (1989) is used by Strand and Boes (1998) to model times of long distance run-
ners. Specifically, the typical change of time taken to run 10 kilometres with respect
to the age of the athlete is modelled via a Gumbel distribution, where times within
ages and across ages are assumed to be independent, and men’s and women’s times are
modelled separately. More generally, Riegel (1981) finds a linear relationship between
log world record time and log distance over many sports. Modelling men’s and women’s
data separately is a common theme in sports data.

In swimming, Gomes and Henriques-Rodrigues (2019) use extreme value theory to
model the distribution of swim-times across all LC events using independent fits for

each event. Adam and Tawn (2012) explore the progression of the top performances in
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swimming events over time by modelling the times of the gold medallist swimmers in
the Olympic Games. Dependence due to the same swimmer winning two events at an
Olympic Games is included via a bivariate extreme value distribution (Tawn, 1988). We
are unaware of any previous publication that models swim data globally across gender,
distance, stroke, and considers the improvements over time.

The article is set out as follows. Section 3.2 introduces extreme value theory, and
the point process representation of Smith (1989), see also Coles (2001), which forms the
basis of our model. Section 3.3 describes the full global model and the justification for
the shared fit. In Section 3.4 the features of interest discussed above will be estimated
based on the final fitted model, such as the ultimate possible swim-time for each event,
examples of the best swimmers of all time under this model, the distribution of new
world records, the expected time until the next world record is broken, the probability of
the next world record being in a given event, and the result of adjusting for regulations
of full body suits on current world records. Section 3.5 discusses the possible impacts of
any major assumptions made in the modelling process, as well as investigating further

improvements and applications to the proposed model.

3.2 Theory

3.2.1 Extremes of identically distributed variables

Univariate extreme value theory (EVT) provides the framework for our modelling strat-
egy. In its simplest form it applies to an independent identically distributed (IID) ran-
dom sample Xi,..., X, with each variable having a continuous distribution function
F'. The two main approaches in EVT are the block maxima method and the peaks over
threshold methods. The asymptotic theory behind these two methods is as follows. Let
M, = max{X3,..., X, } be the maximum of a block of length n. We seek the distri-

bution of M, for large n, and in particular appropriate choices of norming sequences
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a, > 0 and b,, are sought such that, as n — oo,

M, — b,
Pr{—gx} = Pr(Xy <apx+by,,..., X, <apz+0by)
Qp,
= F"(apx+by,)
- G(z)

where the limiting distribution G(z) is non-degenerate. The only possible non-degenerate
limiting distribution of equation (3.2.1) is the generalised extreme value distribution

function (GEVd). The exact form is given by

G(x) = exp (1 + & — /o)) (3.2.2)

where pu, £ € R, 0 € RT, are the location, shape and scale parameters respectively
and y, = max(y,0). Figure 3.2.1 (left) illustrates the density of the GEVd for different
values of &, while p = 0, 0 = 1. For £ < 0, there exists a finite value z¢ = p — o /¢ :
G(z) = 1, Vx > z¢. In contrast, for £ > 0, G(x) < 1, Vo < co. The GEVd result
is powerful as it holds as the limit distribution for a very broad class of continuous
distributions F' and implies that whatever F' is in this class, the maxima must follow a
single class of distributions, determined by only three parameters.

The block maxima method of Coles (2001) assumes that limit (3.2.1) holds exactly
for a large enough block size n, for example all observations in a month or a year. Given
a sample of length kn the approach is to split the series into k blocks with n values in
each block. Then the k values of the block maxima are used to estimate the parameters
(1, 0,€) of the model, assuming that each of these variables is IID and follows a GEVd.

The peaks over threshold (POT) approach considers only the observations above a

suitably high threshold. This allows all of the most extreme data to be analysed, unlike
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GP density function

GEV density function
00 01 02 03 04

0.0 02 04 06 08 1.0

Figure 3.2.1: Density functions for the GEVd (1 = 0,0 = 1,&) (left) and GPd (u =
0,6, = 1,&) (right) for three different shape parameters: £ = 0 (solid line), £ = —0.3
(dotted line) and ¢ = 0.3 (dashed line).

the block maxima approach, and typically leads to more efficient inference. Let
Na(z) = 1(X; > anz+b,)
i=1

with 1(A) be an indicator of event A occurring, then N, (z) is the random variable
corresponding to the number of Xy,..., X, exceeding a threshold a,z + b,, with a,
and b,, as in limit (3.2.1). So N, (x) has a Binomial distribution with N, (z) ~ B(n,1—
F(anz+by,)). Under the same conditions behind the GEVd limit from equation (3.2.1),
as n — 00,

nlog F(anz + b,) — log G(z),

and so, using standard Taylor series approximation, for all x
n[l — F(anz + by)] = —log G(z) = [1 + &(z — p) /o] 75 (3.2.3)

Using property (3.2.3), then the classic Poisson limit from a Binomial gives that as
n — o0, Np(x) — N(x), where N(z) is a Poisson random variable with mean
1+ &(z— u)/a]jrl/ €. Furthermore, it follows that for z > u and X distributed as X,

that
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Pr{X > a,z + b,|X > a,u +b,} — log G(x)/log G(u) = H,(z), (3.2.4)

where H,(z) =1 — H,(z), where the distribution function H, is of the form

A=

Oy

}Q@Qzl—[1+§($ju)L_, (3.2.5)

is the generalised Pareto distribution function (GPd) with threshold u, shape parameter
¢ and scale parameter &, € R™ is linked to the GEVd parameters via 6, = 0 +&(u— p).
Limit distribution H, gives an asymptotic model for the distribution of exceedances
above a threshold u, no matter what the distribution F. Figure 3.2.1 (right) illustrates
the density of the GPd for different values of £. For £ < 0, there exists a finite value
rg =u—06,/¢: Hy(x) =1, Vo > xy. In contrast, for £ > 0, H,(z) < 1, Vo < 0.

The POT approach leads to a model for the extreme tail with two components:
a model for the number of exceedances of the threshold, which is Poisson with mean
A=[14+&x— ,u)/a]:rl/g, and a model for threshold exceedances, H,(z) which is a
GPd. The choice of threshold u is user-specified, with the choice based on the usual
bias-variance trade-off, the subject of much historical focus (Scarrott and MacDonald,
2012).

As can be seen from the derivation above both the rate and GPd parameters are
functions of the GEVd parameters. In fact, the block maxima and POT approaches
can be combined using a point process limit which exploits this property. Consider, the

point process model of extremes, defined on a sequence

pn:{( Z ,Xi—b") :1n}
n+1 Qn,

where the scaling here enforces that, as n — oo, the first component is continuous on
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[0, 1], and the maximum of the second component to be non-degenerate with limiting
distribution (3.2.2). In particular as n — oo, P,, — P where P is a non-homogeneous
Poisson process on (0, 1] x (b, 00), where b, = max{z € R : G(x) = 0} where G is the
limit distribution (3.2.2) (Smith, 1989). It follows that the integrated intensity A of P

on A, = [0,t] X [x,00], where 0 <t <1, z > b is

=i ()

which implies that the intensity function A for P is, for ¢ € (0, 1] and = > by,

2 _ —¢-1
A(t,x):%zé[wg(xauﬂ . (3.2.6)
+

=

From standard Poisson process properties we have that the number of points of P in any
set S C [0, 1] x (b;, 00) follows a Poisson distribution with mean A(S) = [, A(t, z) dz dt,
with A(¢, ) given by expression (3.2.6).

Statistical application of the point process model assumes that for large enough n,
the limit P, — P holds exactly. After absorbing norming constants into the limiting
intensity, it is assumed that P, with intensity (3.2.6), applies to the points {(i/(n +
1),X;);i = 1,...,n} on the set Ay, = [0,1] X (u,00]. Ifx = {(t1,21),..., (tm,Tm)}
denote the m of these points that fall in A, ,, then the likelihood for the parameters

0= (p,0,8) is

m

L(6;x) = exp {—A(Ar,)} [ [ Ak, 2). (3.2.7)

i=1
Inference using this likelihood gives information about both the mean number of ex-
ceedances of the threshold w and the distribution of the threshold exceedances (the
GPd). When a datum z; has been recorded to some precision s such that the true

value 2 is unknown but 2 € [x; —s/2, x;+s/2), interval censoring is introduced, which
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can be factored into the likelihood via

Ti+s/2

L(0;x) x exp{— AAlu}H/ Ati, x) dx

—s/2
_ exp{_MAl,u)}E { [EX: (W)L& e (WHS}

3.2.2 Extreme values of non-identically distributed variables

The derivations so far have assumed IID variables, however this need not be the case.
Whilst still assuming independence, the assumption of identically distributed data is
relaxed by including a covariate structure. In order to take the date of the swim into
consideration, time is introduced as a covariate such that, in the most general case, all
parameters of 6 are allowed to vary with time, for example 0(t) = (u(t), o(t),£(t)). The
non-homogeneous Poisson process allows for time-dependent rates of occurrences and

excess distributions, see Smith (1989). Under this relaxation, equation (3.2.6) becomes

and so the integrated intensity is

1

A(AL) = /0 1 [1 L) (“ - (’;)“)ﬂ j“) dt. (3.2.9)

The full likelihood function, accounting for interval censoring, can then be expressed, as

in equation (3.2.7), but with A (A, ,,) and A(¢, z) given in equations (3.2.9) and (3.2.8),
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such that

Ti+s/2

L(B;z) = exp{~ AAlu}H/ At
= exp {—A(A) }H{{l—Ff (:ci—so{?t;u(ti))lsén_

[1 +E(t) (x +5/2 — M(ti))] :&” }(,3.2.10)

where the parameters within 6(¢) are found by maximising this likelihood. If {y; : i =
1,...,18} is the set of start dates of years from 2001-2019, then the expected rate of

exceedances of u with year 2000 + ¢ is given by
_1

o= [ oo (5]

7

If the change in the parameters is small over the course of each year, then the rate can

be approximated as

Ni(Ary) & [1 + &(y)) (u;(—/;f};:))] f(;) (Yi+1 — Yi), (3.2.11)

where yf = (y; + yi+1)/2. Likewise the excess distribution at a time ¢ is given for > u

by

S

Pr{X, > z|X, > u} = {1 () <%>Lw ,

where 7,(t) = o(t) + £(t) [u — p(t)].
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3.3 Model for swimming data

3.3.1 The Data

The data are from the FINA swimming website’s database, at http://www.fina.org/,
which contains around the top 500 recorded swim-times for all 34 individual LC swim-
ming events. The fastest swim time per swimmer per event is taken, irrespective of the
year in which it occurs. The data includes interval censored observations which come
from the rounding of recorded timings. Given that the data are rounded, in seconds
to 2 decimal places, the interval censoring likelihood (3.2.10) is formally needed with
s = 0.01. In practice using standard likelihood (3.2.7) instead would give similar results
in practice, with the exception of 50m events as the rounding is a more substantial part
of the variation in these data.

In order to develop a consistent approach across all events e € E where E is the
set of all 34 individual LC swim events, the threshold for each event was set such that
there were an identical number of exceedances in each event. From plotting PP and QQ
plots for each event e independently over a range of thresholds u/, the thresholds were
set such that there were 200 exceedances in each event, as this appropriately balances
the bias and variance for the majority of events. The choice of a single threshold
selection approach is discussed in Section 3.5, but is worth noting that this could lead
to uncertainty estimates that are underestimated. For each event e, the threshold used
for the model, u., was set to u, = u, — s/2, to account for the interval censoring.

Properties of the 200 best times for the 100m men’s butterfly swim-times are illus-
trated in Figure 3.3.1, with these being typical across all events. There is a general
increasing trend in the rate of occurrences over time. In addition to this trend there is a
noticeable step-increase in the frequency of observations in the top 200 swims between
the introduction, in 2008, and subsequent banning, from the start of 2010, of swim-suits

by FINA (Shipley, 2009). Swim-suits have been found to reduce drag by up to 35% in
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Figure 3.3.1: Data for the men’s 100m butterfly. The data (left) shows the raw data for
the swim-times and so the lower tail is the feature of interest. Here, the crosses indicate
swims recorded within then swim-suit period. Similarly, the observed annual rates of
exceeding the threshold (right) include dashed vertical lines (right) which indicate the

swim-suit time period.

independent testing (Moria et al., 2011), and a significant number of world records were
set during their use. Particularly in 2009, the introduction all polyurethane suits, such
as the ‘Arena X-Glide’, saw a significant improvement in performances (Foster et al.,
2012). Figure 3.3.1 shows that there appears to be differences in performances between
2008 and 2009 which illustrates an impact of changes of full-body suit technology.
There is an inconsistency in the selection of the competitions in the FINA database,
with only important competitions being represented in some of the earlier years, whereas
later years cover all high-level competitions. One consequence of this is that the rate per
year of exceeding the threshold u, will increase over time due to this feature, with the
effect being largest in the earliest years. So, changes in the threshold exceedance rate,
for each event, arise from a combination of improved swimming performance and the
database formulation. Therefore, care must be taken when interpreting this feature in
the analyses. There is also the potential for the distribution of swim times that exceed
the threshold to change over time due to this biased selection of competitions in the

database. Any such effect should be minimal on inferences given that most exceedances
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are from the later years, so the likelihood is naturally most influenced by data from
later years. The model we develop presumes there is no such bias to the distribution of
excesses, but this assumption is tested (see Figure 3.3.4 (right)) and shown to provide

a sufficiently good description of the early data.

3.3.2 Separate Event Model

The Poisson point process framework allows us to model the time varying rate of obser-
vations above threshold, as well as the distribution of these observations. To incorporate
the general increasing frequency of swim-times observed in Figure 3.3.1, time was in-
cluded as a covariate in the model. The swim-suit factor was included via an indicator
covariate, where the assumption is made that all observations during the swim-suit
epoch were by swimmers wearing a swim-suit, and initially it is assumed that the
swim-suit effect is constant throughout this epoch.

Following Davison and Smith (1990) and Coles (2001) the Poisson process param-
eters p(9(t), o (t) and £©)(t) are initially assumed to vary smoothly with time ¢ in
the model for each separate event. From fitting each event independently, it was then
concluded, via use of AIC, that a linear dependence on time is appropriate for the pa-
rameters (¢ (t) and o(®)(t) to describe the increase in rates of observations. Moreover,
€@ (t) is assumed to be constant over time as is common in the literature across extreme
value applications to rainfall, sea-level, and athletics amongst others, e.g, Smith (1989),
Robinson and Tawn (1995), Strand and Boes (1998), which find that despite changes
in the distribution due to various covariates, the shape parameter is constant and is
therefore taken as some unknown fixed value £()(t) = £(©) for that event.

Although the patterns in the rate of observations is noticeable from plots alone, pat-
terns in the distribution of the observations exceeding the threshold are not so obvious.
To find an appropriate model for the distribution of exceedances above the thresholds,

several models for the GPd parameters were fitted and compared, which included, but
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were not limited to, linear trends over time and including indicators of swim-suit effects.
Interestingly, after model comparison it was concluded that for each event the distri-
bution of observations above the threshold is independent of covariates, indicating that
any improvements over time are due to an increase in quantity of exceedances above the
threshold, rather than any change in the nature of the exceedances themselves. These
findings in the data about the rate and the distribution of the best swims are reflected
in the following parametrisations.

For a given event e € E, the Poisson process is parametrised as either,

() = pe” + Bt + 1 ey,

O (t) = o + £ + €Oy ey, (3.3.1)
or,

(1) = ¢,
H(e) <t> = Née) + B(e)t + 7§€)]]'{t65t1} + 7§€>]l{test2}a

0-(6) (t) — O'((]e) + g(E)B(G)t + 5(6)7§e)]l{t65t1} 4 5(6)7§€)ﬂ{t65’t2}, (332)

where 0()(t) represents 6 for event e at time ¢, and u(()e), €@ € R, J(()e) € RT are the
location, shape, and scale parameters for the Poisson process, 3¢ € R controls the
linear trend in p(®(¢) and o (¢). In the case of assuming a single swim-suit effect,
7 € R controls the magnitude of this effect, 1 is the indicator function and S, €
[2008, 2009] denotes the time period in which swim-suit were allowed, and in the case of
allowing for the differing effects of the two major suit-types, as noted in Section 3.3.1,
7 e R and 14? € R control the effects of these two suit-types, with S, € [2008]

and Sy, € [2009] denoting the approximate time periods in which these suits were
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active. In particular ¢ is linearly standardised to have zero mean and unit variance
over the observed data. Both parametrisations (3.3.1) and (3.3.2) ensure that the GPd
scale parameter for exceedances of the level u, at time ¢ is covariate-independent. For

example, with parametrisation (3.3.1),

HO() = o) + €9 [ue — 1)
=0 + €989t 4+ €970 gy + O (U, — [ul? + B9t + 7 ges,y])
= ot + €9 (ue — ui?)

=59, (3.3.3)

and the same clearly holds for parametrisation (3.3.2) so that the two GPd parameters,
£ and Erq(f), and thus the distribution above the threshold is identically distributed
over covariates, as required. It is common to use a log link in the scale parameter in
the non-homogeneous Poisson process to ensure positivity, however this would make

the covariate independence of &\, property (3.3.3), impossible. Instead, u(()e), 0((]6 and

¢(©) are constrained such that 5 in expression (3.3.3) is positive.

Figure 3.3.2 shows all the model parameter estimates from parametrisation (3.3.2),
obtained by fitting independently across events: three GEV parameters, pug, og, &,
one trend parameter §, and two swim-suit parameters v; and -, for each of the 34
events, giving a total of 204 independent parameters. These parameters, after the
transformation described below, are plotted against uy . = log(—u.), recalling that the

data are negative, with u. < 0, so ur . is the log of the 200th best swim-time for event

e in the data. For each of the transformed parameters

= 10?;(51(Le)>, /lgpe) = log (‘N(()e)> ) 5 log( 7L1 =Y ’71 5 L2 =YV 72 )

there is some linear or near-linear relationship with ., and £ is approximately

constant. In the case of the location parameter ,u[()e), this is a consequence of the
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Figure 3.3.2: Transformed parameter estimates against log threshold swim-time uy =
log(—u). A linear or near-linear relationship is apparent for most of the parame-
ters: for o = log(d,) (black circle), p;, = log(—puo) (purple square), S, = log(pB)
(red triangle),y.1 = /71 (light-green plus, +) and vz = /72 (dark-green cross, x).
The shape parameter £ (blue star) is approximately constant. Note that p; has been

rescaled, by subtracting 5 uniformly, to be visible on the plot.

choice of threshold. More generally, power law relationships are commonly found in
sports (Sylvan Katz and Katz, 1999), and the connection between u, and 5&6), u(()e), s
was hypothesised based on the prevalence of log-log relationships in sports modelling
(Riegel, 1981). This relationship however, does not explain the dependence between
swim-time and swim-suit effects ,}ée) and 756) well, which is a combined result of the
biomechanical and physical relationship between range of movement and flexibility,
drag, buoyancy and total energy expenditure amongst other factors. The reason for

this complex relationship is not explored in this article, but was chosen based on a

Box-Cox transformation in the single suit case of v to v*, such that

(767 - 1)/57 67 7& 07
log(7) 0y =0,

*

where v* is assumed to come from a model which is linear in uy, . with a normal error

distribution with constant variance. The choice of §, = 1/2 is consistent with the
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Box-Cox transformation, which gives an MLE and 95% confidence interval of d, =
0.52 (0.37,0.68), and also agreed with Box-Cox transformation applied to /¢ and 74
in the two-suit case. Box-Cox transformations were also applied to the other parameters
to confirm the log-log hypothesis, for example dg = 0.049 (—0.11,0.19), indicating that
a log relationship is appropriate. These relationships motivate the across event model

of the next section.

3.3.3 Across Event Model

Parametric Model

Now that models (3.3.1) and (3.3.2) have been shown to be suitable for each event, it is
desired that information can be shared between events to reduce parameter uncertainty
and improve predictive performance. By doing this we ensure that the across event
model is more robust than models (3.3.1) and (3.3.2) with respect to anomalous data,
which could lead to over-fitting.

A natural first step here would be to consider distance as a covariate and a log-log
relationship. Distance does work well in athletics, as long as it is within the same
gender (Riegel, 1981). However, distance does not work well when pooling across both
genders, and across different strokes, since for example breaststroke is always slower
than freestyle for a given distance and gender, and so inherent bias will be introduced
due to the physical nature of the difference in strokes. Instead, the threshold swim-
time is used as a covariate, since naturally slower strokes, whose corresponding scale
parameters for example are likely to be larger, will also have a larger covariate, the
threshold swim-time. This allows for a given parameter to vary smoothly across events,
rather than to be discretised by the distance of the event. Thus, no adjustment is
needed to compare between different strokes and genders.

From Figure 3.3.2 it is initially hypothesised that the shape parameter £(¢) can be

held constant across all events, and that the transformed parameters J(Le), ,us-f), ée),
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7](:61) and 7&) increase linearly with uy .. A similar figure (not shown) exists for the

single-suit parametrisation, which suggests linearity for ’yf) also. Thus, it is proposed

that the parameters are pooled across the 34 events via the following model:

€9 = ¢
#(Le) = o + UL,
O(LE) = g+ Voure,

526) = o3+ U3upe.

In the single-suit case,

7 = oy + Vaur, (3.3.8)
and in the two-suit case,
’-)/E/el) =y + 194/“[/,67 ’yéeg) =ay4te+ 794“[/,57 (339)

for some parameters ¥ = {{,¢, {a;,¥; € R: i =1,...,4}}. Having two separate

gradients, ¥, and 95 such that 7261)

= oy + Y4ur,, and 71(362) = ay + € + Js5ur,, was
also considered, but it was found that a common gradient, such that 15 = 94, sufficed.
In fact, several other models were considered (not reported), for example including a
different intercept for men’s and women’s events in the linear model, or using separate
linear models for different distances, but these were found to produce no improvement.

The full likelihood of the across event parametric model then, assuming independence

between events, is therefore given as
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Model  Constraints AIC/RIC  # ind. parameters
M,  independent fits, single-suit (3.3.1) 0 170

My independent fits, two-suits (3.3.2) —23.7 204

M, M, with constraint (3.3.4) —38.7 137

Ms M with constraint (3.3.5) —52.1 105

My M3 with constraint (3.3.6) —29.6 73

M M3 with constraint (3.3.10) —58.7 74.1

M M with constraint (3.3.7) —87.7 42.1

Mz, M with constraint (3.3.8) —90.6 10.3

My, My, with constraints (3.3.4), (3.3.5), —121.5 11.2
(3.3.7), (3.3.9), (3.3.10)

Table 3.3.1: Model comparison showing the AIC or RIC for each model, normalised
by the independent fits model with a single suit, model My,. The RIC, defined by
expression (3.3.11), is used when a spline is fitted to a parameter over events and
defines the number of effective degrees of freedom. A lower AIC or RIC indicates a

better model fit.

This pooled structure was incrementally implemented as shown in Table 3.3.1. The
first model fitted, M, pools no parameters and considers only a single suit, such that
each event e has 5 independent parameters, (,uée), ol? ¢ gl 7(®), resulting in a total
of 170 parameters. The AIC can be seen to improve from M, to My, by including
the separate effect of two suits, despite the significant increase in the number of free
parameters. From model M,,, the pooling structure begins to be implemented, and

there is an improvement to Ms, where now constraint (3.3.4) is introduced such that
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all events share a common shape parameter. Again, the model fit improves from M, to
M3 by employing constraint (3.3.5), however, when trying to enforce linearity between
a(Le) and up . across e € E via constraint (3.3.6), model My, the fit was poorer. The
events which mainly contributed to this worsened fit were the men’s and women’s 200m
free and women’s 50m fly, but the fit was also generally worse across the vast majority
of events, which could be explained by some non-linearity observed in Figure 3.3.2.

The inadequacy of a linear relationship (3.3.6) between oy and u; suggests that
a fully parametric model to describe this relationship was slightly too restrictive, and
motivates the need for a more flexible but parsimonious model, for which we use semi-
parametric techniques. Model My was therefore introduced which relaxes the linear
constraint (3.3.6) on oy, and instead uses the spline based non-parametric approach
described in Section 3.3.3, which lets the smooth dependence of o, on u to be captured
by allowing the data to govern the precise nature of this relationship, whilst keeping
the dependencies of p and € on uy the same and keeping § and v unconstrained, as in
model M. From here, models Mg and M7, are then fitted by cumulatively employing
constraints (3.3.7) and (3.3.8) respectively, and finally My, is fitted by the addition of
an extra suit parameter to My,, see Table 3.3.1. The best fitting model, determined via
regularisation information criteria (RIC) (Shibata, 1989) which is defined by expression
(3.3.11), is M, with only approximately 11 parameters. Critically, note the substantial
improvement from models M, to Mz, showing a clear impact of changes in full body
suit technology over the period when these suits were allowed.

Confidence intervals were found via parametric bootstrapping, such that model
M, was re-fitted to 250 simulated datasets, to estimate the sampling distribution of
parameter estimators. The number of observations from event e in simulated dataset
Js N9 is simulated directly via, N'® ~ Poisson (A(e) (Al,u)). For an event e and

J J
(0 40

replication j, N'* swim-times xge), . ,x(eze> and the time of these swims ¢;”,... ¢,
N N

J

were generated via a probability integral transform on equation (3.2.5) for the swim-
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times, and the distribution function (3.2.8) integrated over x for the times respectively.
Some of the resulting bootstrapped parameter estimates resulted in infeasible estimates,
for example inferring that the ultimate possible swim-time is worse than some swim-
times in the original data set, or that the expected next world record swim-time is worse
than the current world record, and so these data sets were discarded. The remaining
240 data sets quantify the natural variation in the data and thus provide the basis for
obtaining confidence intervals. All confidence intervals referred to subsequently in this
article are obtained via this method.

The estimated values for ¥3 and 194 under model M+, the associated gradients for
the trend parameters and swim-suit parameters respectively, were 193 = 0.940 (0.936,0.942)
and U, = 0.460 (0.432,0.470). The relative confidence interval widths are smaller
on 3 than 14, and this is likely due to the swim-suit parameter being dependent
on less data than the trend parameter, since only data in swim-suit years effect it.
In comparison, the gradient governing the linear relationship (3.3.5) is estimated at
J, = 1.0016 (1.0010,1.0019). The tight confidence intervals here indicate the strong

relationship between uy, and .

Semi-Parametric model

To achieve the appropriate flexibility to model the relationship observed in Figure
3.3.2 between o, and uy we use a d-degree spline function (De Boor, 1978), which
is a piecewise polynomial function that is constructed to be continuous and d times
continuously differentiable over a closed interval domain. It is a weighted linear sum
of ¢, d-degree basis splines, called B-splines, with the k" B-spline By(x) centred on a

knot at point xp. The spline function used for o, is denoted by

q

O'L(UL) = ZakBk(uL) (3310)
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where aj, is the k' element of the spline coefficient vector @ = (ay,...,a,) which is
constant over all events such that, given a vector a, the value of o, for any given event
e is a function of uy, only, see Appendix A for further details.

Although function (3.3.10) can model any non-linear relationship, we wish for this
relationship to be smooth and increasing. In order to enforce this smoothness, the
likelihood function is extended to a penalised likelihood which contains a roughness
penalty. The penalty is governed by ¢,p, = ¢,a’ Pa, where P € R%*? is the penalty
matrix, and ¢, > 0 determines the amount of penalisation. The choice of P determines
the nature of the penalty and is chosen based on the form of the data, or some prior
belief. In this case a 2nd order penalty on the finite differences of adjacent coefficients
(Eilers and Marx, 1996), and a degree d = 4 spline was chosen, see Appendix A. This
penalises o7 having a large second derivative, and penalises fits for oy that depart
from linearity. Additionally, since it is believed apriori that the GPd scale parameter
is an increasing function of the threshold swim-time, a hard constraint ¢,,p,, ensures

monotonicity in the spline function, where p,, is defined as follows: allow

dop(x; .
{z1,..., 21} = {minuLe}U{xi : M =0, z=2,...,kz—1} U{maque}
ecE dx ecE

to be a discrete set of size k containing all stationary points and end points of the spline

function, then

k—1

P ==Y (00(zim1) = 01(20)) L{or(2i1) — or(2) < 0}.

i=1
With the GPd scale parameter 6, for a particular event e being defined by the spline
via

a
59 = exp [Z akBk(uL,e)] ;

k=1
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the full joint penalised likelihood across all events becomes

200 () pg/2
Ly(@, 6r, 6mizx) = || {eXp [—A© (A1)] H/ A€ (t;, ) dx} exp [—(¢rpr + Ombim)] »

ecE

= L(p; ) exp [~ (¢rpr + mpm)]

where ¢ are the parameters of the model, and L is the unpenalised likelihood. The

penalised log-likelihood for model M is therefore given as

ép(M) = E(M> - gbrpr - gbmpma

where ¢ is the unpenalised log-likelihood, and ¢,, > 0 is sufficiently large such that

monotonicity is a hard constraint. The value of ¢,, is found by finding a ¢,, such that
max ({,(M|dn)) = max (£,(M|pn +€))

for any € > 0. Theoretically, this can be found by allowing ¢,, — oo, however it can
be difficult for optimisation routines to converge to this global maxima. Therefore, in
practise ¢,, is increased iteratively by initially setting ¢,, = 0 and finding the parameter
that give max (¢,(M|¢,, =0)). Then ¢, is increased iteratively, using the previous
solution as the initial starting parameters, until there is no change in M and therefore
also no change in ¢(M). Instead of a constraint on the spline function itself to enforce
monotonicity, I-splines (Ramsay, 1988) could have been used as a basis instead of
B-splines, and then positivity constraints on the basis splines would have enforced
monotonicity. This construction may have resulted in more efficient computation, but
would yield essentially identical model fits and results.

The choice of ¢, is selected using 10-fold cross validation to maximise model predic-
tive performance at data points not used for fitting (Ewans and Jonathan, 2008). The

model is fitted based on a random stratified sample of 90% of the data, the training
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parameter MLE for across model fit

Figure 3.3.3: Fitted parameters for model Mz, as a function of uy: o (ur) (black cir-
cles) is governed by the spline, whilst 5y (uy) (red triangles), pur(ur)—5 (purple squares),
v, (up) light green pluses, +) and 7., (ur) (dark green crosses, x) vary linearly with uy,.
The shape parameter (blue stars) has a constant value of £ = —0.147 (—0.152, —0.143).

Note that p; has been rescaled, by subtracting 5 uniformly, to be visible on the plot.

data, which is then used calculate the log-likelihood based on the remaining 10% of
the data, the test data. The log-likelihood for each of the 10 non-overlapping sets of
test-data is summed to obtain a ‘predictive’ log-likelihood based on the prediction ac-
curacy of the model. This process is repeated 20 times at a range of different values of
¢, with the value of ¢, which corresponds to the best average predictive performance
being selected as the optimum penalty. It was found that the change in predictive
log-likelihood was robust to changes in ¢,, and it is thought that this is due to the hard
constraint on monotonicity already accounting for much of the variability in the spline
fits. For model My, an optimum penalty of ¢, = 15 was found. Given this, the full
model can be fitted and the parameters as a function of uy are shown in Figure 3.3.3.
Since models M5, Mg, M7, and Mz, are semi-parametric, AIC can no longer be
used as a model comparison tool since the number of degrees of freedom is not defined.

Instead, RIC is used, which uses the effective degrees of freedom ¢, as opposed to
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degrees of freedom. Otherwise, RIC is defined identically to AIC, that is

RIC = —20(p) + 2 tr [I1(¢)J (@, &7, ) '] , (3.3.11)

such that g = tr [I(p)J (@, ¢y, ¢ )~ '] where I is the observed Fisher information criteria
of the unpenalised likelihood L, J is the negative Hessian matrix of the penalised log-

likelihood L, and tr(A) is the trace of the square matrix A.

Assessment of model M, fit

The rate of exceedances and the distribution above threshold must both be considered
to determine the overall quality of the selected model fit. A pooled PP plot is used
to determine how well the model fits the distribution of swim-times above threshold.
The pooled PP plot, Figure 3.3.4 (left), allows the combined fit of all 34 events to be
analysed at once. The fit generally is very good, especially considering the reduction
from 204 to 11.2 parameters. The areas of weaker fit can mainly be attributed to
two events, the 200m men’s free, and the 50m men’s fly. These two events increase
the RIC by 10.4 and 9.7 respectively, both of which is significant evidence of lack of
fit, so caution should be exercised when drawing conclusions from these two events.
Somewhat surprisingly though, we find that removing these events from the analysis
makes no substantial difference to the diagnostic shown in Figure 3.3.4 (left). Figure
3.3.4 (right) shows another pooled PP plot, using the same model fit, but only using
data from the period [2001,2003]. These data also appear to be fit very well, and this
implies that any potential bias introduced by the early period data selection problems,
highlighted in Section 3.3.1, is minimal.

A nice feature of this pooled model is that natural ordering across different strokes
is preserved even for events which carry a less good fit. For example, the parameters
for the 50m men’s fly will always indicate that it is a faster event than the 50m men’s

breaststroke, i.e., by predicting a faster ultimate possible swim-time or next world



CHAPTER 3. RANKING BASED ON EXTREME VALUE THEORY 52

record swim-time.

Figure 3.3.5 shows the expected rate of observations exceeding u, per year, compared
to what was observed in the data, for the women’s 100m freestyle. Similar plots for
all 34 events were examined (not shown). It can be seen that the observed rate of
observations almost always falls between (and once only marginally outside) the 95%
confidence intervals, including during the swim-suit era and the early period of the
database when competition selection may have induced bias as identified in Section
3.3.1. The estimated expected number of observations is not systematically above or
below the observed number of observations. For a year in which the observed rate is
higher than expected, often in the next year this observed rate is below the expected

rate, which is due to the discrete nature of the plot.
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Figure 3.3.4: PP plot (plotted as observed minus expected probabilities) pooled over
all events, with 95% tolerance intervals, using both the whole data set (left) and only

data from [2001, 2003] (right).

3.4 Results from Model

3.4.1 Rankings

From fitting model My, the final rankings of the best ever swim-times can be con-

structed. The rankings are determined by the r-value of a swim-time x, that is, the
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Figure 3.3.5: The estimated expected (black circles) and observed (red crosses) number
of observations per year better than u,. for women’s 100m freestyle, with 95% confidence
intervals for the estimated values given by the lower and upper horizontal lines. The
two swim-suit years, 2008 and 2009, have increased rates of exceedances relative to

neighbouring years.
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rate at which observations better than x occur in the given event. If Xt(e) is the random

variable denoting a new observed negative swim-time in event e at a time ¢ where this

swim-time is better than u., then the expected rate R at which an observation Xt(e) is

faster than swim-time z occurs is defined as follows:

R{X[ > 2 +5/2} = Pr{X[? > 2+ 5/2|X[7 > u I\ (A1)
= ’l(l, (z + 5/2) y(t) (A1)

[ e ()] o

for all x+s/2 > u,, where the final approximation follows from equation (3.2.11), where

o=

O.') J‘nh—‘
\_/

y(t) is the year in which Xt(e) occurs and y*(t) = y(t) + 1/2 is the mid point of years
y(t) and y(t) + 1. An estimate of R{X\? > z + s/2} gives the r-value, and therefore
a measure of the ‘quality’ of the swim-time x. By adding s/2, the censoring is taken

€)

into consideration, since the true observed swim-time Xt( would need to be faster by
an amount greater than the precision of the data to be recorded as being faster.

Figure 3.4.1 shows the best 20 swimmers from the 2001 to end of 2018 period, based
on the r-value of their swim. Note that swimmers names can occur multiple times where
they have recorded swim-times in more than one event. The error bars show the 95%
confidence intervals from the parametric bootstrapping. It is also possible to quantify
how much better one swimmer is than another by analysing what proportion of time
the bootstrapped samples give one swimmer ranked ahead of another. For example,
Adam Peaty, ranked 12th, beats Katinka Hosszu, ranked 11th, on 48% of rankings
from the bootstrapped data sets. In contrast, Katie Ledecky’s 1500m free performance,
ranked 2nd, never beats top ranked Sarah Sjostrom’s 50m fly performance, giving strong
evidence for ranking Sarah Sjostrom better.

The lower confidence intervals for the ranks of both Zige Liu and Lin Zhang are much

wider in comparison to the others in the top 20, and one possible reason is that they
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were swam during the second swim-suit period, Sy, (2009). As noted in Section 3.3.3,
the relative uncertainty for 14, which controls the swim-suit effect, is comparatively
large, and this added uncertainty propagates through to the rankings. Essentially, the
confidence intervals are showing that, if the parameter associated with the 2009 swim-
suit is overvaluing the effect of this suit, then their true ranks could be much lower.
This same effect is not seen in Paul Biedermann’s rank, also swam in 2009, however this

was in the 200m men’s free which has previously been identified as an area of weaker

fit.

Jones, Leisel (100 breast F, 2006) — I & !
Ye, Shiwen (400 ind F, 2012) — e !
Lochte, Ryan (200 ind M, 2011) — e !
Friis, Lotte (1500 free F, 2013) — —e
Ledecky, Katie (800 free F, 2016) — e !
Hackett, Grant (800 free M, 2005) — e
Liu, Zige (200 fly F, 2009) — [ . |
Biedermann, Paul (200 free M, 2009) — e !
Peaty, Adam (50 breast M, 2017) — FHO—mm—
Hosszu, Katinka (400 ind F, 2016) — o !
Zhang, Lin (800 free M, 2009) — f ® !
King, Lilly (50 breast F, 2017) — H@—m—
Lacourt, Camille (50 back M, 2010) — FH——
Kammerling, Anna—Karin (50 fly F, 2002) — FHo——
Thorpe, lan (800 free M, 2001) — FHO———
Ziegler, Kate (1500 free F, 2007) — FHo———
Efimova, Yulia (50 breast F, 2013) — *~——
Meilutyte, Ruta (50 breast F, 2013) — *~—
Ledecky, Katie (1500 free F, 2018) | @
Sjostrom, Sarah (50 fly F, 2014) —| ®

0 5 10 15 20 25 30 35

ranks

Figure 3.4.1: The ranking of the top 20 swimmers from the data set, with 95 % ClIs

from bootstrapped data sets. Better ranked swimmers are lower on the y-axis.

Interestingly, in some cases the time when the swim was performed can effect the
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order of the rank within the same event. Ruta Meilutyte, Yulia Efimova and Lilly King
hold ranks 3, 4, and 9 respectively, all from the 50m women’s breaststroke, however
the fastest time of the three is Lilly King’s with a time of 29.40 seconds in July 2017,
compared to times of 29.48 seconds and 29.52 seconds for Ruta Meilutyte and Yulia
Efimova respectively, which were both swam in July 2013, five years earlier, which
indicates that they achieved comparatively better results given their era.

It is worth noting that 7 of the top 20 estimated ranked swims occur in 50m races,
which is approximately 50% more than the number that would be expected if the
assumption that all events are equally competitive holds. In fact, this assumption is
unlikely to hold in practice, since the 50m backstroke, breaststroke and fly are non-
Olympic events, and as such the competitiveness of these events may be less than
the Olympic events, which increases the disparity between the observed and expected
number of 50m races in the top 20 ranks. Conversely, the top 20 rankings for the
independent fits model My, and My, (not shown), were found to be proportionately
represented by all distances. In models My, and My, fits the 50m events have larger
corresponding shape parameters than other events on average, and than the common
shape parameter for My, particularly the men’s fly and women’s and men’s free had
comparatively much larger shape parameters than other events. Therefore, it was
initially thought that high rankings of swimmers in the 50m events may be due to the
enforcing of a constant shape parameter across all events, and so perhaps a different
modelling strategy is required for the shorter events. However, it was found from
calculating profile likelihood based 95% confidence intervals that the shape parameters
were —0.067 (—0.221, —0.045), 0.000 (—0.173,0.013) and —0.080 (—0.253,—0.090) for
the men’s fly and women’s and men’s free respectively, which all overlap with the shared
shape parameter of model Mgy, é = —0.147 (—0.152, —0.143). Thus, it appears that
the comparatively larger shape parameters for the 50m events is mostly due to natural

variation. A more formal test for a different shape parameter, common to all 50m
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events, would be to evaluate the RIC under a model with indicator covariates for the
shape parameters for these 50m events. This was not considered necessary given the
evidence from the profile likelihood intervals given above. Notably, the ordering of the
very top four ranks was the same under both My, and Moy,,.

A national rankings table can also be made by only including a given nation in
the comparison, and could be used for that nation’s Olympics selection, for example.
This would also change the confidence intervals for the rankings as swimmer’s are only

compared to others from the same nation.

3.4.2 Ultimate times

Finding limits to human sports performance has interested academics for years, in ath-
letics for example Blest (1996). In swimming, Nevill et al. (2007) attempt to determine
the ultimate possible time by analysing world record swims from 1957 to 2007, and
Huub and Trultens (2005) approach this from a biomechanical perspective. In this
article, the ultimate time is determined from the GPd function.

It was found that the MLE for the shape parameter with 95% confidence intervals
was & = —0.147 (—0.152, —0.143) which (since £ < 0) can be interpreted as there
being a finite bound on the best possible time a human can achieve in any given event.
In many applications getting such a narrow confidence intervals, and hence such clear
evidence ¢ < 0, is difficult to achieve. Here this has been enabled by the pooling of data
from all 34 events, giving a sample from the model of 6800 observations to inform us of
the value of £&. The ultimate possible time for an event can be estimated directly from
the parameter estimates since for event e there exists an end-point zy,. = u. — 5\ RE
ae () =1, Vo > xy,.. Note that . is covariate independent in the selected model,
which seems reasonable since we expect the gap between the ultimate possible time
and the world record to shrink as world records improve, but the ultimate time is still

unreachable and ‘set-in-stone’. For example, the MLE for the ultimate possible time
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for the men’s 100m breaststroke given by the model is 53.81 (53.60,53.97) seconds.
In comparison, Adam Peaty’s fastest time in the dataset is 57.10 seconds from 2018.
This 3 second difference made Peaty’s Project 56 (https://www.bbc.co.uk/sport/
av/swimming/40650276), his challenge to swim a sub 57s 100m breaststroke, seem
more achievable than at first glance. In fact, Peaty has since succeeded in his Project
56, setting a new world record of 56.88 seconds in 2019.

For each event, Figure 3.4.2 shows these estimated ultimate times normalised by the
corresponding current world records as of the beginning of 2019, ordered by increasing
threshold swim-times. For the vast majority of events, the ultimate time is 93-95% of
the current world record. For the women’s 50m butterfly and women’s 1500m freestyle
however, the current world record is very close to the ultimate time. In fact, approxi-
mately a 3% improvement would see these ultimate times being reached. This finding
is not so surprising as these two world records correspond to the top two ranks, Sarah
Sjostrom and Katie Ledecky from Figure 3.4.1. In comparison, the world record swim-
time for the men’s 100m free, which does not make the top 20 ranks, would require
a 7% improvement to reach the ultimate time, suggesting this is the weakest of the

current world records.

3.4.3 Expected new world record time

Let X; ) be the random variable denoting the swim-time of a new world record in event

e at time ¢, then the distribution of X, © follows immediately from equations (3.2.4)

1
e

1+¢ x()re Jf o > re,
5‘7’5 +

(3.4.2)

and (3.2.5), i.e.,

Pr{X;" > 2} = Pr{X}” > 2|X > r.} = HO(2) =

where 67 = 0(()6) +&(re — ,u(()e)) and r. is the world record for event e at the end of 2018

such that r. := max(z.) where x. are all the observations in event e. Note that the
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right hand side of expression (3.4.2) has no time dependency, since under model Mo,
the distribution of times, conditional on being above threshold ., is time homogeneous
for any given event e, see property (3.3.3), therefore we drop the subscript t. From this
the expected swim-time of the next world record in event e is

TH,e dHT(F) ~£€)
E[X*(e)] — / x—de ($) dr = Te + —10 65, lff < 1.
Te x -

Figure 3.4.2 shows the estimated expected swim-time of the next world record relative to
the world record at the end of 2018, where events are ordered by increasing swim-time.
Censoring is ignored in this calculation, as it would have such a negligible effect. The
expected improvement varies only slightly between events, ranging from an expected
improvement of 0.5% for Katie Ledecky’s 1500m women'’s free performance, to a 0.9%
for Cesar Cielo’s 100m men’s free performance. In events where the ultimate time is
close to the current record, the expected next world record is also closer to the current
record, and vice versa.

The small variation between expected improvement is at first surprising, since it
might be expected that ‘better’ records, such as those of Katie Ledecky and Sarah
Sjostrom, would be beaten by much smaller amounts. However, it is also likely that
these records will take longer to be broken and so the improvements in training methods
will be more significant by the time a new record is set, which may reduce the variation
in the percentage improvement.

The confidence intervals here describe the confidence in the mean of the correspond-
ing estimate, but it might also be interesting to determine the prediction interval, e.g.,
the 95% interval of possible swim-times that the next world record swim-time in event
e will be in. The predictive distribution of Pr{X*() < x} can be found as follows: if

{é(") : 1 =1,...,n} are the n = 240 bootstrapped parameter estimates, where 6
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Figure 3.4.2: The estimated expected next world record swim-time (upper black) and
ultimate possible time (lower red) for each event the values are rescaled by world record

as at the end of 2018, with 95 % CI’s from bootstrapped data sets.
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corresponds to the MLE’s from simulated data set 4, then for large n and = > r,
1< Al
Pr{X*® < 21 == S " Pr{X*® < 2|6
X <o =3P < 4160)

:—Z m|@

1
) —r, £(4)
O-’r‘e +

are the bootstrapped parameter estimates for £ and 67(«? corre-

n

1
:1_52

i=1

where €@ and {9

sponding to simulated data set ¢. Similar predictive distributions can be found for the
other features of interest in Figures 3.4.3 and 3.4.4, as described in Sections 3.4.4 and
3.4.5.

3.4.4 Time until world record is next set for an event

The distribution of time taken until a new world record is set in a particular event e
is of interest. Let T(®) be a random variable describing the time at which a new world
record is next set in event e € E. The probability Fpe (t) = Pr{T(® <t} that a world
record for event e is set before some time ¢ can be found as follows. For current time
1, until a time ¢ (¢ > 1) there will be Nt(e) exceedances of the threshold u,. in event e,
and for the current record to be first broken after ¢ all of the Nt(e) observations need to

be slower than the current record. Therefore, the following notation is introduced: let

X(e)

1.N(e):{X~(e),i:1,... N }WhereX H and H(e has GPd. Then N( has a

Poisson distribution with mean

. e ¢
A©) (A(l,t),u) = /1 [1 +¢ (%@(y))] + W
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and the probability that a world record for event e is set before t is

Fre(t) =1—Pr{T® >t}

=1- Z Pr{max(Xl(e) ) < 1| N = m} Pr{N = m}

:N,l(e>
m=0 )
=1-) [HP0)]" [AY (Awga)]” exp [-A (Aqp.a)] /m!
m=0
=1—exp [-A“ (Aup.) HO(re)] (3.4.3)

where the final equality follows from the power series expression for the exponential

function. The density function for 7(¢), fr«), follows from equation (3.4.3), as

N

e — i _
fro(t) = [+ € (M) | © RO exp [ () 0]

Then the expected time until a world record is next set in event e is

E [T(e)] = /OO tfre(t)dt.
1

Figure 3.4.3 shows these MLE’s along with 95% confidence intervals for E [T(e)} . It can
be seen that almost all events are expected to have a new world record in the next 5
years. The longest estimated expected waiting times are again the times until Katie
Ledecky’s and Sarah Sjostrom’s world records are broken, in the women’s 1500m free
and women’s 50m fly respectively which correspond to the top two ranks of Figure

3.4.1, which both have expected waiting times of approximately 11 years.

3.4.5 Probability that a record is next set in a particular event

Now suppose that we wish the find the probability that the next event to have a world

record that is broken is in event e. Let 7(-¢ be the random variable denoting the time
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Figure 3.4.3: The estimated expected time (in years) until the world record is broken

with 95% CI’s from bootstrapped data sets.
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taken for a world record to be set in any other event apart from e, i.e.,

79 .= min {T®}.
keE\{e}

Then the probability that the next world record that is set is in event e is given by

Pr{T9 > T}

= / Pr{TC% > 7O |T® = ¢} Pr{T© =t} dt

1

= [7 T o A (Aaa) A0
L ker\{e}

ECIPAN R _
e (M )], 0 e A () O] 0

keE

where the second equality follows because

Pr{7C) > 7O — 1) = ] {exp [~(A® (Aq.) AP ()]}
keE\{e}
due to the assumption of independence between swims in different events and the
result derived in equation (3.4.3) for a single event. Figure 3.4.4 shows these estimated
probabilities with the previously identified ‘better’ records having a lower probability
of being broken next. The most likely record to be broken is the men’s 100m free. The
estimates of these probabilities using model My, was compared (not shown), and it has

less variance between events.

3.4.6 Adjusting Swim-Suit Influenced Times

In 2010 Brazil’s Cesar Cielo called for FINA to scrap any records set in the now-banned

swim-suits, due to those records being much more difficult to break. Rather than this
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Figure 3.4.4: Estimated probabilities that the next world record is set in a particular

event, with 95% CI’s from bootstrapped data sets.
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however, it is desirable to find a fair comparison between swim-times of those swimmers
wearing a swim-suit and those not, and even construct a framework such that swim-
times can be fairly compared with other future technological advancements.

Since the rank of a swim-time is based on the rate R at which better observations
occur, it is possible to adjust the swim-time for the use of a swim-suit. Let > u be a
swim-time occurring at time ¢ during the swim-suit period i.e, ¢ € Sy, U S;,, and z is
a swim-time occurring at the same time but as if it were not swam using a swim-suit.
Then the swim-time correction from a recorded swim-time z to an equivalent swim-time
without the swim-suit z is made by selecting z such that the rate of exceeding z, R,
and the corrected rate of exceeding z without a swim-suit, R, are equal. That is, find

z as the solution to

R{X\? > 2} = Re{X\¥ > 2}, (3.4.4)

where R is defined in equation (3.4.1) and R¢ is defined by

ReAX( > 2} = Pr{X9 > 2| X9 > u.JAY) (A1),

@ €
1 4¢ (ue (el)ﬁc (Q))] ’
o' () n

a(cf)(q) = aée) + £6q, and [L(C,e)(q) = u((f) + Bq. Thus, the adjusted swim-time z is found

where

AS) (Ar,) =

via the solution to equation (3.4.4), given as

2= Ue +

o [ A (Ava) B () X
§ AE), (Arw)

As an example, Cesar Cielo’s 6th rank swim-time of 20.91s in the 50m freestyle in 2009
gets adjusted to 21.18 once the swim-suit effect is removed. The reverse can be found,
that is the time a swimmer would have got, had they been wearing a swim-suit, e.g.,

Adam Peaty’s current 100m breaststroke world record time of 56.88s gets adjusted to
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56.25s with a swim-suit from 2008, and adjusted to 55.96 with a swim-suit from 2009,
indicating that a “Project 55” could be achieved with just the addition of a swim-suit.
By adjusting for technology in this way, it is possible to determine which current world
records would still stand, had swim-suits never played a part. Table 3.4.1 shows those
current world records set using swim-suits, and their estimated adjustments. Moreover,
Table 3.4.1 shows what the world record would be, and who the world record holder
would be, once the effect of swim-suits is removed. Out of the 10 world records which
have been set by swimmers wearing swim-suits, only 2 would still stand today, Zige Liu’s
200m fly world record, and Zhang Lin’s 800m free world record. It is worth noting that
the assumption that the most up-to-date technology available is always being used, is
occasionally violated, for example, Phelps’ 100m and 200m fly world records in 2009
were swam with the LZR Speedo suits from 2008. There can be additional complications
when taking technology into account, such as Phelps’ 400m individual medley world
record from 2008, in which only the leg suit was worn. These issues could be addressed
with the addition of explicit data about which technology was being used in a given

Swim.

3.5 Discussion

Throughout this article, the swim-times are negated before being analysed so that we
can use existing methodology for larger values. Alternatively, by analysing swim-speed,
Gomes and Henriques-Rodrigues (2019) apply peaks-above-threshold methodology di-
rectly, since a smaller swim-time equates to a larger swim-speed. This raises the ques-
tion of which transformation is best, and what classes of transformation give similar
results. From limit (3.2.1), it can be seen that any linear transformations will be
absorbed into the norming constants a, and b, so that inference is invariant for posi-

tive linear transformations. Conversely, Wadsworth et al. (2010) show that non-linear
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Event WR swim WR AWR  NSWR NSWR swim
50 free M Cielo (2009) 2091 21.18 21.11 Proud (2018)
100 free M Cielo (2009) 46.91 47.99 47.04 McEvoy (2016)
100 fly M Phelps (2009) 49.82  50.83  49.86  Dressel (2017)
200 fly M Phelps (2009) 11151 113.33 11271  Milak (2018)
200 back M Peirsol (2009) 111.92 113.47 11296  Lochte (2011)
200 free F Pellegrini (2009) 112.98 11499 113.61  Schmitt (2012)
200 fly F Zige (2009) 121.81 123.38  124.06 Jiao (2012)
400 free M Biedermann (2009) 220.07 223.13  220.08  Thorpe (2002)
400 ind M Phelps (2008) 243.84 24572  245.18 Lochte (2012)

800 free M Lin (2009) 452.12 45531  458.57 Sun (2011)

Table 3.4.1: World records (WR) set with swim-suits, the adjusted times (AWR), and

the best corresponding non-swim-suit times (NSWR). “Would-be” world records and

world record holders, after adjusting for swim-suits, are marked in bold.
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transformations lead to different results. Wadsworth et al. (2010) consider the class of
Box-Cox transformations as part of the extreme value analysis with negating of the data
and inversion to swim-speed as special cases. Thus a possible route for future research
is to find the best Box-Cox parameter and to see if this changes in a systematic way
over distance, gender and stroke.

Only the best time is recorded from each swimmer in a given event which, for
cases where swimmers in the data set are still active, could lead to poor predictive
performance. For example, let Xt(w’e) be the random variable denoting a swim-time by
the current world record holder in event e at time ¢, and Xt(i’e) be the random variable
denoting a swim-time by another swimmer ¢ in event e at time ¢, then the probability
of a world record-holder setting a new personal best, and therefore new world record,
is likely to be larger than the probability of any new swimmer setting a world record,
such that Pr{X{"? > r.} > Pr{X{" > r.} for 7 > ¢. This could be accounted for by
allowing more than one swim-time to be recorded per swimmer, however this gives rise
to dependency between swim-times in the same event, and would need to be adjusted
for.

Independence is assumed between swim-times for different strokes, genders and dis-
tances. This simplifying assumption may not be true when the same swimmer competes
across many distances or strokes, meaning that the uncertainty of our estimates would
be underestimated. Of the swim-times that exceed the thresholds u., i.e., for e € E, the
proportion of unique swimmers to total data points is around half, and so the effective
sample size of independent swimmers in the data set will be less than the number of
total data. In the case that there is perfect correlation between the same swimmer in
separate events, then the effective sample size will be equal to the number of unique
swimmers, approximately half the total data values, which means the variance could be
underestimated by at most a factor of 2. This could be corrected for by estimating some

inflation parameter 1 < ¢ < 2, such that the actual variance is equal to gbvar(é), where
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Var(é) is the variance obtained by assuming complete independence between observa-
tions, see Kent (1982). It may be necessary to use multivariate techniques in order to
capture some of the correlation between data points resulting from the same swimmer
in different competitions (Adam and Tawn, 2012).

There are extra sources of uncertainty not accounted for. Quantifying the uncer-
tainty due to the choice of threshold is not considered, since a single threshold selection
approach is used, as is common in the extreme value theory literature (Scarrott and
MacDonald, 2012). However this uncertainty could be quantified by using the cross-
validatory technique of Northrop et al. (2017). Also, since the analysis is performed in a
frequentist framework, only parameter uncertainty is considered, however when predict-
ing future events such as the time until a new world record is set in a particular event,
it is also valuable to consider the predictive uncertainty. This could be accounted for
by moving to a Bayesian framework, and carrying out parameter estimates via Markov
chain Monte Carlo with a prior on the spline roughness penalty.

The constant evolution of the para-swimming classification system is testament to
the challenge of creating fair competition in disability swimming. The number of clas-
sifications itself is open to debate, with too many classifications resulting in too few
swimmers in each classification and therefore a drop in competitiveness, and too few
classifications resulting in bias such that there is unfair differences between swimmer’s
physical limitations within the same class. Of course, this problem stems from the dis-
crete nature of the classification system, but a model of the type presented in this article
would allow for a continuous “classification variable” which pools across disability, to
allow fair competition over all disability types and comparison between disabilities. In
a similar way, this model could allow for more fair comparison with transgender swim-
mers. Regulations around transgender athletes in sports is a controversial topic, with
the regulations being changed again for the upcoming 2020 Olympic Games. This con-

troversy largely arises due to determining whether a transgender athlete should compete
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in the men’s or women’s event, and is determined on a case by case basis. However,
our type of covariate model can allow for a more fluid description of gender, since the
adjustment or categorisation is determined simply by the threshold time u, which can
easily be modelled as continuous across events or gender status. In addition, cases of
unusual testosterone levels can be dealt with in the same way. In junior swimming,
because of the discretisation of age groups, some swimmers can be almost a whole year
younger than others in the same competition, which creates an unfair disadvantage.
The same idea of a continuous scale for age groups would allow for fair comparison of
‘age-adjusted’ swim-times. Ultimately, it is possible to have a global model which fairly
compares swimmers of all genders and disabilities, and even junior swimmers, across

different events.



Chapter 4

A Framework for Statistical
Modelling of the Extremes of
Longitudinal Data, Applied to Elite

Swimming

4.1 Introduction

Traditional statistical techniques are designed to describe the behaviour of the “typical”
data and many analyses involve the identification and removal of observations from the
tails of the data to improve robustness. But what if the data of most interest are those
observations in the tails? When considering natural disasters such as flooding, stresses
or corrosion on a structure, financial crises, or sporting records, it is precisely these
extreme values that are most pertinent. Extreme value theory (EVT) is a branch of
statistics specifically designed to model such extreme or rare events, with the methods
having a strong probabilistic framework based on asymptotic justifications. This paper

presents novel methodology for the analysis of longitudinal data where the extreme
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values are of primary interest.

Early EVT methods describe the extremal behaviour of independent univariate
random variables, possibly in the presence of covariates, with the book of Coles (2001)
an accessible introduction. More recently, the extremal properties of ever more rich
data structures have been studied, with theory and associated methodology developed.
For univariate stationary processes the following features have been considered: long-
and short-range dependence (Ledford and Tawn, 2003), Markov structure (Winter and
Tawn, 2017), and hierarchical clustered data (Smith and Goodman, 2000; Bottolo et al.,
2003; Dupuis et al., 2023). For multivariate extreme value problems, structure has
been identified and exploited through the use of graphical structures (Engelke and
Hitz, 2020), sparsity (Engelke and Ivanovs, 2021), and models for conditional structure
through asymptotic independence (Heffernan and Tawn, 2004). Most recently, various
approaches have been developed for spatial, and spatial temporal extreme events, such
as r-Pareto processes (de Fondeville and Davison, 2022), spatial conditional asymp-
totically independent processes (Wadsworth and Tawn, 2022), the associated processes
in space and time (Simpson and Wadsworth, 2021), and for spatial mixture processes
(Richards et al., 2023). However, no current adaptations allow for EVT to model lon-
gitudinal data (Diggle et al., 2002), sometimes called panel data, which has been so
widely studied for the body of the data.

Longitudinal data comprises a number of subjects, with each subject recording a
time series of responses. Specifically, there are a set of subjects, Z, with a subject
¢ having a set of measurements J;, for all # € Z. The measurement X;; belonging
to subject ¢, occurs at a known time ¢,; € R, for all j € J;, @« € Z. The typical
assumptions made about the collection {X;; : j € J;, for i € T} are that the X;; are
independent over different ¢ € Z, irrespective of j, but they are potentially dependent
across j € J; for any given ¢ € Z. An important special case is when the X, ; are

independent over different j € J; irrespective of i, a situation we refer to as subject-
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conditional independence. Usually max;cz | J; |<| Z |, so there are a large number
of subjects relative to the number of measurements per subject, and the way that the
distribution of X, ; varies with ¢; ;, i.e., due to a varying mean value, is similar across
subjects.

Even though the panel data analysis of Dupuis et al. (2023) suggests a considerable
overlap with this set up, the focus of their modelling and inference is very different
to ours, with their priority being marginal inference for different subjects whereas we
infer the within-subject measurement dependence and a population-based marginal
model. They consider a simplified setting where all 7; are equal to some common
J, i.e., all subjects have the same number of measurements and measurement times
are identical across all i € Z. The data are split over B blocks, {J°:b=1,...,B}
forming a partition over J. Then, the joint behaviour of the subject block maxima
{max;cs» X;; : fori € Z,b = 1,..., B} are studied assuming these are independent
over blocks. The temporal dependence structure of the within-subject behaviour, which
is the focus of our analysis, is not considered.

For analysing the extremes of longitudinal data, the sample Z comprises those sub-
jects with at least one extreme observation within the observed time-frame. An impor-
tant distinction is then made between this sample of subjects Z, and the population of
subjects, which includes those subjects with extreme measurements that are exclusively
outside the observed time-frame. For the observed time-frame, subjects in the popula-
tion may have either no measurements at all, or have measurements that are exclusively
non-extreme. One reason for this distinction is when making predictions about future
extreme events far ahead of the observed time-frame. In applications where individual
subjects exhibit non-stationarity, future extreme events change from being measure-
ments on the observed subjects, to measurements on subjects that are not yet present
in the observed time-frame, but form part of the population of subjects. We will make

this distinction clear in Sections 4.3 and 4.5.



CHAPTER 4. LONGITUDINAL EXTREMES 75

The structure of longitudinal data combines aspects of time series and multivariate
data. The critical differences between longitudinal data and standard multivariate time
series are that (i) the length of the time series per subject is small, (ii) the number of
time series, i.e., subjects, is large and (iii) there is no restriction that the measurement
times across subjects are synchronised or are to be regularly spaced. Furthermore, the
longitudinal data format differs from multiple measurement types taken on the same
subject at the same time points as each other (e.g., in a health data set measurements
of blood sugar, blood glucose, and resting heart rate), because the measurements are
assumed to be independent across the observed time series.

Longitudinal data analyses arise most commonly in designed trials (e.g., in clinical
or corrosion contexts) whereby multiple subjects (e.g., patients or material coupon sam-
ples) have a single quantity (e.g., blood pressure or corrosion, respectively) measured
over time. There have been very limited examples of extreme value modelling of clinical
and corrosion data, with none capturing the full specification of the longitudinal data
structure. Clinical extreme value examples include Southworth and Heffernan (2012)
and Papastathopoulos and Tawn (2015) but neither of these look at repeated mea-
surements on the same subject. For corrosion there have been covariate models which
allow for the mean pit depth to increase with time, but they only have one observation
per coupon (Laycock and Scarf, 1993). Fougeres et al. (2006) do consider multiple
observations per coupon but assume that observations from the same coupon are I1D.

Perhaps the closest approach to our modelling of longitudinal extremes is Fougeres
et al. (2009), who use a latent /random-effect positive stable mixture model to produce
a multivariate extreme value distribution to model dependence in repeated observa-
tions of pit depth across different coupons. Since they assume all X, ; are condition-
ally independent and identically distributed given a random effect R; for each subject,
the dependence across time per subject is exchangeable, i.e., all pairs (X, ;, X; ), for

Jj # k € J;, have the same dependence structure. This limited form of temporal depen-
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dence per subject is likely be too simplistic for generic longitudinal data, where pairs
(X, Xix) often have dependence weakening as the time between them, |t;; — t; 4,
increases. The use of the positive stable distribution to capture the variation between
subjects - through both the mean and variance of X; ;|R;, for all j € J; - leads to the
largest R; values corresponding to the subjects with X;; values that are much larger
than for other subjects. This is highly restrictive both for the limitation on how the pop-
ulation is distributed, but also as it enforces a strong form of extremal dependence over
time, termed asymptotic dependence. Asymptotic dependence, defined in Section 4.2.2,
constrains that if a subject gives the largest value in the population at some time point,
then they are likely to do this at all time points. Our paper aims to be the first foray
into developing broadly usable EVT methods for longitudinal data, with the flexibly
to model both asymptotic dependent and asymptotic independent temporal extremal
dependence structures and to capture trends in the means of subjects’ responses over
time.

One area where extreme value analysis of longitudinal data is particularly impor-
tant is sports data, e.g., athletics and swimming. Here, athletes/swimmers (subjects) all
strive for the best times for completing their event, with their personal career progres-
sion having stages of improvement and decline as they age, and with them competing at
irregular times which can be different from each other. Furthermore, the overall perfor-
mances by the elite athletes/swimmers are improving over time, i.e., expected annual
world best times are reducing, so that records are being broken more often than would
be expected if the data were from with independent and identically distributed vari-
ables. Surprisingly, we have found no examples of such statistical analyses in this area,
despite its clear relevance, e.g., for studying the progression of records, and predictions
for who will set the best time next year. Therefore our longitudinal EVT methods will
be demonstrated by analysing a dataset of elite swimmers.

The application of EVT methods is not new for sports’ data. EVT is used by
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Robinson and Tawn (1995) to model athletics data and by Strand and Boes (1998) to
estimate the peak age of competitive 10K road race runners. Stephenson and Tawn
(2013) fit a generalised extreme value (GEV) distribution to yearly maxima of athletics
times across different distances and eras. There, the GEV location and scale parameters
are allowed to vary as a parametric function of the distance, and an exponential trend
allows for a smooth adjustment for era. Spearing et al. (2021) use EVT to model
the evolution of elite swimming over time, including the effect of different swim-suit
technologies, and combine data across different swimming strokes, gender categories
and distances through the use of a data-based covariate.

None of these models attempt to model dependence structure - either they assume
that performances from the same subject are independent of each other, or only in-
corporate each subject’s best performance into the data set. The consequence of both
of these data handling approaches for repeated observations per subject is incomplete
inference: the former uses a smaller data set than is available, leading to inefficient in-
ference; and the latter produces an underestimation of standard errors and confidence
interval widths when the independence assumptions are invalidated. However, the true
limitation of these simplifications runs deeper. The lack of any longitudinal structure
in these models means that no statistical inference can be conducted on any facet in-
volving individual competitors, e.g., Strand and Boes (1998) infers the peak age of the
typical runner, but cannot draw conclusions about any individual runner.

We illustrate our novel EVT methodology for longitudinal data in the context of
elite swimming, specifically in the mens’ 100m breaststroke (long course) event. A
swimmer is defined to be elite if they have ever produced a swim-time less that a
certain threshold u. The selection of this threshold u is a source of debate in general
(Scarrott and MacDonald, 2012), but is here taken as the 200th fastest personal-best
swim-time in this mens’ 100m breaststroke event, which is © = 61.125 seconds - see

Section 4.5 for a discussion on this point. In our approach (i) all the available recorded



CHAPTER 4. LONGITUDINAL EXTREMES 78

swims from each elite swimmer are modelled, irrespective of whether they are below or
above wu, (ii) the swimmer who produced each swim-time is accounted for, as is their
age at which it was achieved, (iii) the dependence between swim-times from the same
swimmer is captured, with this dependence allowed to weaken as the inter-swim-time
increases.

Figure 4.1.1 depicts the competition-best swim-times from a subset of five of the
200 elite swimmers who epitomise the range of typical career trajectories and the dif-
ferent rates at which swimmers compete in competitions. Of these swimmers, Adam
Peaty holds the current world record and so, by definition, the fastest personal-best
(PB). Ilya Shymanovich has the second fastest PB in the data, Sakci Hueseyin 8th,
Sakimoto Hiromasa 101st, and Takahashi the 196th fastest PB, which is only just
faster than the threshold. There is a notable difference between the performance of the
top two swimmers. Peaty is consistently fast, producing the seven fastest times of the
competition-best dataset, and with all his performances faster than u. Conversely, Shy-
manovich is in a clear progression stage of his career, moving from being consistently
slower than u, to consistently faster. Furtherly contrasting, Takahashi only once swims
faster than u.

Even across these five swimmers we can see vastly differing career trajectories and
swimmer’s strategies for which, and how many, competitions in which they partici-
pate. Despite this, it is visible even in these data that for each swimmer, swim per-
formance achieved more closely together in time are generally more alike than those
a further apart. This naturally reflects training cycles and form which induce local
time-dependent variations in performance.

Now consider the marginal distribution of the extreme swimming values, i.e., the
values below u = 61.125. To motivate a possible model for these values we draw on EVT.
Specifically, for a continuous random variable X, EVT gives that the generalised Pareto

distribution (GPD) is the only non-degenerate limit distribution for scale-normalised
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Figure 4.1.1: Data for swim-times (in seconds) plotted against the calendar time when it
was achieved for the mens’ 100m breaststroke (long course) event. All competition best
performances are shown for five selected swimmers over time. The dashed line indicates

the extremal threshold u, dictated by the PB time of the 200th fastest swimmer.

difference of X from the threshold v as v tends to the lower endpoint of the distribution
of X (Pickands, 1975). In practice it is common to assume that the GPD is a sufficiently
good approximation to the data relative to the threshold (Davison and Smith, 1990).
In our case we take v = u, as Spearing et al. (2021) show that the personal-best
swim-times better than the 200th top personal-best time, for each swimming event, are
well modelled by a GPD. This finding encourages us to consider the GPD as a marginal
model for all swimmers’ available performances better than this same extreme threshold.
This choice is further supported by asymptotic theory for univariate stationary processes
that exhibit weak long-range dependence conditions, where the distribution of cluster
maxima, and arbitrary values of the process excesses of a threshold, are identical in
the limit as the threshold tends to the upper endpoint of the stationary distribution
(Leadbetter, 1991)

Thus, all observations faster than u can be assumed to have a known class of
marginal distribution, the GPD; however, we have no justifiable parametric model for
observations slower than u. In modelling and predicting the extremes of longitudinal

data, it is desirable that the extreme data be the most influential. Therefore, obser-
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vations slower than u are treated as censored at the level of the threshold. That is, if
X;; > u we only use this knowledge, and the time ¢; ; at which it was performed, but not
the precise value of X; ;. As a consequence, all but one of Takahashi’s observations are
censored, whereas all of Peaty’s observations can be modelled with the GPD. Critically,
the values slower than the threshold are not lost as, firstly, they provide information
about the rate of performing better than the threshold. Secondly, they inform us of the
dependence structure for individual swimmers as, e.g., three successive swims slower
than u followed by three faster than u may suggest stronger dependence than the same
swimmer having 6 alternate swims faster and slower than .

Conventional presentation of EVT theory pertains to the largest values - or equiva-
lently the upper tail - in a sample, yet the best swim-times are the smallest - or in the
lower tail. By applying our methodology to negative swim-times, standard EVT results
can be utilised. So, throughout we present theory and methods for the upper extremes
of longitudinal data. Section 4.2 presents the extensions of univariate EVT to cover the
time series aspect of each subject’s data. Section 4.3 contains the main contribution
of the paper - a novel approach to the modelling of the extremes of longitudinal data.
Section 4.4 presents the general Bayesian inference framework and Section 4.5 details
how this modelling and inference framework can be applied to the elite swimming data,
and provides examples of particular inferences and predictions that are available using

our methodology. A discussion and future work is in Section 4.6.

4.2 Motivating Theory

4.2.1 Univariate extremes

In its simplest form, univariate extreme value theory (EVT) applies to independent
and identically distributed (IID) random samples Y7, ...,Y,,, where each variable has

continuous distribution function F. The block maxima and peaks over threshold meth-
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ods are the two core approaches in univariate EVT (Coles, 2001). We are interested
in formulating a theoretically justified marginal extreme value model for temporally
dependent variables and describing the dependence structure induced by within- and
across-subject observations for longitudinal data. To keep the formulation sufficiently
simple we also consider the extremes of a stationary process, observed at regular time
intervals, Xi,..., X,, which also has the marginal distribution function F' but satisfies
conditions such that its long-range dependence is restricted to behave as effectively
independent, see Leadbetter et al. (2012) for their precise form and discussion of the

limit results (4.2.2) and (4.2.3). Under such conditions, the following results hold. If

My, := max{Y1,...,Y,} and there exist norming sequences a, > 0 and b,,, such that
My, — by,
Pr{y’— Sx} = F"(apz +b,) = G(z), as n — oo, (4.2.1)
Qn,

where that the limiting distribution G(x) is non-degenerate, then G(z) must be a

generalised extreme value (GEV) distribution, which has the form

G(x) = exp (=1 + & — /o)) (42.2)

where u, £ € R, 0 € R, are the location, shape and scale parameters respectively and
with the notation y; := max(y,0). Then for My, = max{Xy,..., X, }, if (Mx, —
b,)/a, has a non-degenerate limit distribution, as n — oo, it follows that

Pr {MXn—_bn < x} — [G(2)]?, as n — oo, (4.2.3)

Qn,

where 0 < 6 < 1 is the extremal index; a measure of extremal temporal dependence,
with 1/60 being the limiting mean number of exceedances of a high threshold by the
{Y;} process per cluster of exceedances. Ferro and Segers (2003) define a cluster and

discuss inference for 6.
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We are primarily interested in having an asymptotically motivated model for the
upper tail behaviour of {X;} and {Y;}. These models are derived directly from the
limiting distribution of block maxima identified above. First, denote Dg := {z € R :

0 < G(x) < 1}. Then applying a Taylor series approximation to limit (4.2.1) gives,
n[l — Flapz + by)] = —log G(z) = [1 + &(z — p) o] *
as n — oo, for all x > w with both x and u in Dg. It follows that, for all Y ~ F,
Pr{Y > a,x + b,|Y > a,u+b,} — logG(z)/log G(u) =: H,(x), (4.2.4)

with H,(x) := 1 — H,(x), and where the distribution function H, is written as

M=

Ho(z)=1— {1+§($_U>L . (4.2.5)

u

where 0, = 0 +&(u— ). The distribution function H, is termed the generalised Pareto
distribution (GPD), denoted GPD(ay, £), with threshold wu, shape parameter £ € R and
scale parameter 0, € R,. For £ < 0, there exists a finite value 2! = u—o0,/¢: H,(x) =
1, Vo > a1 whereas for £ > 0, H,(z) < 1, V2 < co. This GPD result is powerful as
it holds as the limit distribution for a very broad class of continuous distributions F
(Leadbetter et al., 2012).

Now consider the tail behaviour of the stationary process { X;}. The same GPD(a,, )
limit distribution holds for Pr{X > a,x +b,|X > a,u+0b,} as n — oco. However, there
is an additional result due to Leadbetter (1991) which gives that for an arbitrary clus-
ter maxima X¢o of {X;}, then Pr{X¢ > a,x + b,|Xc > ayu + b,} as n — oo, is
also GPD(oy,&). This has motivated the use of the generalized Pareto distribution as
a statistical model for cluster maxima (Davison and Smith, 1990), but critically for

our purposes showed the strong connection between the distribution of the maxima
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of identically distributed variables in a cluster and an arbitrarily selected threshold
exceedance. This is a feature we exploit in Section 4.3.1.

In practice the limit distribution (4.2.4) is assumed to hold exactly for some finite
n, or equivalently for some fixed threshold a,u + b,, corresponding to a high quantile
of Y or X. A consequence of this assumption is that the limit distribution H, gives an
asymptotic model for the distribution of exceedances above a threshold u, no matter
the form of marginal distribution F' and implies that whatever F' is within this class,
values above a suitably high threshold uw must follow a single class of distributions,
determined by only two parameters.

To complete the description of the tail of the marginal distribution we define the
marginal probability of an threshold exceedance, A\, := Pr(X > u), and select the
threshold u above which the GPD tail is assumed to hold. The choice of w is the
subject of much historical focus, primarily relating to bias-variance trade-off (Scarrott
and MacDonald, 2012; Danielsson et al., 2001; Northrop et al., 2017; Varty et al., 2021).
The methods typically are based on the threshold-stability of the GPD, namely that if
the GPD approximation (4.2.4) is valid for exceedances above some threshold u € Dg,
then it holds for excesses over all higher thresholds v, where v € Dg and v > u. So
if u is the lowest threshold for which approximation (4.2.4) is exact, then any lower
threshold will have excesses that do not follow the GPD, whereas thresholds larger

than wu ignore relevant observations and lead to inefficient inference.

4.2.2 Extremal dependence: measures and modelling strate-
gies

Since there may be dependence between the measurement values of the time series for
a given subject, dependence needs to be accounted for in the extreme values. Here
we draw on knowledge of extremal dependence measures and the associated modelling

strategies generally before considering the specific features that are unique to longitu-
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dinal data.

In modelling dependence between the extremes of two variables the most published
approaches first involve deciding on the form of extremal dependence, and then looking
for an appropriate model formulation subject to that form (Coles et al., 1999). For
bivariate extremes, with continuous random variables (X3, X3) with marginal distribu-
tions F7 and F5, respectively, the two forms of extremal dependence in the upper tail
are determined by the coefficient of asymptotic dependence x := limy x(¢) where, for

0<qg<l,

x(q) == Pr{F1(X1) > q | F2(X2) > q} = Pr{F1(X1) > ¢, F2(X3) > ¢}/(1 — q), (4.2.6)

with asymptotic dependence given by 0 < x < 1 and asymptotic independence by
x = 0. In essence, asymptotic dependence allows the very largest values of X; and
X5 to occur together, unlike for asymptotic independence. This interpretation is made
precise by looking at the limiting distribution of normalised componentwise maxima
of independent and identically distributed vectors {(Xy;, Xo;) : @ = 1,...,n}, such
that the marginal distributions are non-degenerate. Then, the two variables are termed
asymptotic dependent, or asymptotic independent, if that limiting distribution exhibits
dependence, or independence, respectively.

Although there exists only two extremal dependence scenarios in the bivariate case,
in multivariate extremes higher order dependence structures can lead to asymptotic
dependence for different subsets of the variables, so the number of different extremal
model structures grows exponentially with dimension (Simpson et al., 2020). Even in
the bivariate case, variables may exhibit extremal dependence in without asymptotic

dependence, with this dependence measured by the coefficient of asymptotic indepen-
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dence, x = limg x(q) € (—1, 1], where

2(0) 2log Pr{Fy(X3) > q}

T logPr{F1 (X)) > ¢, Fo(Xs) > g} (4.2.7)

for 0 < ¢ < 1, with independent variables giving Y = 0, and 0 < y < 1 (y < 0) corre-
sponding to a positive (negative) extremal dependence form of asymptotic independence
respectively, and y = 1 arises when the variables are asymptotically dependent. Both
X or Y are invariant to the marginal distributions, so in terms of models for the joint
distribution it is helpful to consider different copulas. Heffernan (2000) presents (x, )
for a range of copulae.

We now focus the discussion on copulae that are relevant to longitudinal data analy-
sis. Fougeres et al. (2009) use the copula of the multivariate extreme value distribution
with logistic(a)) dependence structure, which in the bivariate case has (y, x) = (2—2%,1)
for 0 < a <1 and (x,x) = (0,0) when o = 1. In terms of extremal dependence, this
copula model is restrictive as it cannot capture any positive dependence within the
asymptotic independence case. It also has limitations for modelling longitudinal data:
the copula is exchangeable, which is unrealistic for most time series data; and the
conditional distributions for this copula are non-trivial to simulate from. The latter
property complicates inference for future extreme events. Due to these features we

instead consider the d-dimensional Gaussian copula

Ot (21) Ot (zq)
C’(x):/ / ®a(s;2)ds,

[e.9] [e.9]

for £ = (z1,...,24) € [0,1]? and s € RY, with ¢4(s;¥) denoting the d-dimensional
Gaussian density, with standardized margins and dependence structure determined by
the d x d correlation matrix . In the bivariate case this copula has the properties
(x,X) = (0, p) for correlation parameter —1 < p < 1, and (x, x) = (1, 1) for p = 1 (Coles

et al., 1999). Furthermore, as the multivariate copula is determined by its bivariate
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marginals, which are all asymptotically independent (except for the pathological case
when p = 1), it is not necessary to consider asymptotic dependence at any higher
order. The Gaussian copula allows for considerable flexibility and parsimony in terms
of the dependence structures that can be modelled and it benefits from having closed
form conditional distributions for describing and simulating the time series features of
longitudinal data. Given these properties, we will use the Gaussian copula structure as
a building block for modelling dependence of measurements of within-subject behaviour
in Section 4.3.2 but first, in Section 4.2.3, we show that we can approximate any level of
asymptotic dependence at finite levels using the asymptotically independent Gaussian
copulae for subjects within a longitudinal data context. Consequently our model has
all the good features of the copula used by Fougeres et al. (2009) but none of the

disadvantages.

4.2.3 Sources of extremal dependence for longitudinal data
Measures of longitudinal data dependence

To illustrate the possible forms extremal dependence structures that can occur in longi-
tudinal data, consider a special case of the set up of Section 4.1 with n subjects indexed
by Z, with a continuous time process for each subject i € Z is {X;(¢)} for all ¢ which are
observed at a set of identical and equally spaced time points across subjects. We denote
Xi; = Xi(tij) = X;(t;) where t; is the jth time point. We also assume that the time
series for each subject are stationary and with marginal distribution F;(-) = F(-; ;)
where F' is a common continuous distribution function family with parameter o; € R
which can vary over i € Z. We term «; the attribute of subject ¢, with the property
that F(z; ;) > F(x;a4) for all z € R for all a; > «;. Increasing the attribute of a
subject makes the quantiles of its measurement distribution larger.

There are a range of different extremal features of the longitudinal data that can be

studied. Given the potential heterogeneity between subjects, the most basic application
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of the coefficient of asymptotic dependence for within-subject dependence at time-lag

T for each subject © € 7 is:

Xi(T) = 1;{{1PT(F(X1'(T);%) > q | F(Xi(0); i) > q),

or the equivalent asymptotic independence measure x;(7). However, this measure does
not provide a global description of the dependence across all subjects in Z. To study
the extremal behaviour over subjects at each time point, consider M, := max;cz X;(t)

for different ¢. This leads to the lag 7 dependence measure

XM = Tim Pr(PUD(M:) > g | FOD(Mo) > g)
q

where FM) () := [,z Fi(z) = [licr F(2; i), and also its equivalent asymptotic in-
dependence measure )ZSM). An alternative is to consider dependence between values in
the marginal tail for each time point. This corresponds to picking a random subject

from the population Z at each time point, giving the lag-7 dependence measure

X(TR) = ligl Pr(F(R) (XiR)) > q | F(R)(XSR)) > q)
q

where X is a random selection from {Xi(7) : i € T}, so has marginal distribution
function F¥(z) := Y7 | F(z;04)/n. Again the equivalent asymptotic independence

U When all sub jects are identically distributed and have the same tempo-

measure is Y
ral dependence structure, then each of these extreme dependence measures at lag-7 are
identical to the measure of asymptotic dependence (asymptotic independence) (4.2.6)

and (4.2.7) respectively for the associated identically distributed variables. Thus each

measure has equal validity when assessing dependence for longitudinal data.
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Study of how attributes determine the form of extremal dependence

To help understand the information given by the extremal dependence measures for
longitudinal data of Section 4.2.3 we explore both y;, and X(TM) for a particularly sim-
ple version of longitudinal data. Specifically, the variables consist of n independent
subjects, all of which have measurements at two time points - which are the same
across subjects - and each measurement is independent per subject except for sub-
ject m. Additionally all subjects assume the same attributes as each other except
for one. So, in the notation of Section 4.1, J; = {1,2} for all i € Z. The first
n — 1 subjects in Z are identically distributed over both subjects and time points, with
X;; ~N(0,1) fori=1,...,n — 1 and j = 1,2, while subject n has a different mean,
namely X,,; ~ N(a,,1) for j = 1,2 and (X1, X,,2) are bivariate normal with correla-
tion 0 < p < 1, which with standard margins has joint distribution function denoted
by ®5(-,-; p). Thus here F(z; ;) = ®(x — o), with attributes o = ... = a,,—; = 0 and
Q-

We will consider two cases for a, (i) (2logn)'/?/a, = o(1) as n — oo and (ii)
an/(2logn)/? = o(1) as n — oo, i.e., so the latter includes both a,, — 0o as n — oo
and o, = 0 for all n. We will show that cases (i) and (ii) lead to results which
are consistent with asymptotic dependence and asymptotic independence, respectively
in this non-identically distributed setting. Given the longitudinal variables are not
necessarily identically distributed over subjects we explore both the standard definitions
of asymptotic dependence and some alternatives to aid transparency.

First consider case (i) where «,, grows more rapidly with n with the subject specific
dependence measures at lag-1, i.e., (xi1, Xi1). We have (xi1, Xi1) = (0,0) for subjects
1 =1,...,n—1 due to the independence assumption and due to the bivariate Normal
distribution for subject n we have (x;1, xi1) = (0, p). So there is asymptotic indepen-
dence across subjects, although subject n is not independent. For comparison, Fougeres

et al. (2009) model this such that given their subjects attribute, i.e., the random effect,
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there is subject-specific independence over time for all subjects. So the basic Gaussian
formulation is more general from this perspective.

Now consider the dependence of (M, M), which is needed for the evaluation of
measures X§M) and )Z%M) of Section 4.2.3. As we want to consider limits n — oo for
the population n of subjects in the longitudinal data, we modify our notation to let
the maximum measurement over all subjects for time point j be denoted by M, ; :=
max ({X;;:i €Z}), for j = 1,2. We explore the dependence between (M, M,2) as

n — oo. First, consider the two marginal probabilities Pr{M,; — o,, < z}, for some

z € Rand j € {1,2}. Then,
Pr{M,; — a, < 2} = [®(a, + )] &(z) — ®(z) (4.2.8)

as n — 00, i.e., a non-degenerate Gaussian limit. This result follows from the GEV to
GPD link in Section 4.2.1 since for a,, growing as described above, n[1 — ®(a, +x)] — 0
for all x € R since for y € R, from univariate extreme value results for standard
Gaussian variables n[l — ®(a,y + b,)] — exp(—y) for a, = (2logn)~"/? and b, =
(2logn)'/2 + o(1) (Leadbetter et al., 2012). Now consider the joint probability, for

(z,y) € R?, as n — oo, given by

Pr{Mu — o, <z, My — o < y} = [®(ary, + 2)P(ar, + )" Doz, y; p) = Doz, y; p),

(4.2.9)

where the non-degenerate limit arises using the same logic as for the marginal conver-

gence. The joint maxima are asymptotically dependent when p > 0, with the limit

not restricted to being a bivariate extreme value distribution as the variables are not
identically distributed.

Now consider case (ii) for the behaviour of «,. Then the equivalent results to

the above are that as n — oo, Pr{(M,; — b,)/a, < z} — G(z), where G(z) =



CHAPTER 4. LONGITUDINAL EXTREMES 90

exp(—exp(—z)), and

Pr{(Mn1 — b,)/an < x,(Mps — by)/a, <y} — G(z)G(y).

These limits show both a change in the marginal limit distribution from Gaussian to
Gumbel and that there is now independence of limiting componentwise maxima.

These two asymptotic regimes for longitudinal data illustrate that the nature of
extremal dependence is different for this framework than for the results for distinct
stationary series. The limiting behaviour in these two scenarios illustrate that it is not
essential to have asymptotic dependence per subject to achieve asymptotic dependence
for longitudinal data; asymptotic dependence can be achieved by having subjects with a
heavy tailed attribute distribution; and that both asymptotic dependence and asymp-
totic independence can be achieved from a simple Gaussian copula. Critical to the
form of extremal dependence is the level of between-subject variation (via the attribute
variation) relative to the within-subject variation. Here in case (i) a, dominates the
maximum of the measurements over all other subjects but not in case (ii). In essence,
this occurs with the model of Fougeres et al. (2009) with the latent positive stable law
determining an attribute and conditional independence over measurements given this
attribute.

To help better understand the nature of the asymptotic dependence case the supple-
mentary material covers another version of the measure XSM) that allows both n and the
quantile to grow in combination. Specifically, we consider the conditional probability

Pr(M,s > z,, | My > z,,), where x, — oo and letting «,, = x,, — J for some constant d.
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4.3 Extremal Model for Longitudinal Data

4.3.1 Population Marginal Model

When developing a marginal model for the population of longitudinal random variables
{(Xij.tij) 7 € Ti,i € L}, we make a critical decision of ignoring the subject-specific
nature of the data as is conventional in previous analysis of this sort of data. We refer
to this characteristic as subject-ignorant. Instead, the information regarding specific
subjects is captured through our dependence modelling in Section 4.3.2. The reasons
for this strategy are three-fold. Firstly, the number of observations per subject, e.g.,
| J; | for subject i, is likely to be small in most applications and so a separate marginal
model (see Section 4.2.1) per subject for the data in the tails is an unrealistic target.
Secondly, modelling the tail of a population using a single GPD enables inference to be
made about the population as a whole, additionally to subject-specific inferences. For
example, in elite swimming, this allows inferences about how best performances over
different swimmers have evolved over time (Spearing et al., 2021). Thirdly, following the
convention of modelling the tail of a population using a single GPD enables application
specific structure identified from previous analyses, which ignore subject knowledge, to
be exploited.

Given the strategy described above, consider a generic pair (X, t), which to simplify
presentation is written as X;. For a constant threshold u over time, with methods
for this threshold selection discussed in Section 4.2.1, there are three features of the
distribution of X; we describe: the behaviour above the threshold w, the probability of
X; exceeding u, and the distribution of X; being below u. The latter is not typically
studied in extremes of a univariate variable, but keeping track of the behaviour below
the threshold is important here for dependence modelling of within-subject data in
Section 4.3.2.

Above the threshold u we assume that Pr{X; < z|X; > u} has a GPD(0,(t),¢), as
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given by expression (4.2.5). Although X, is potentially complex in its variation over
t, we only allow temporal variation in this distribution through the scale parameter.
Pragmatically, assuming the shape parameter to be homogeneous is a typical approach
in the modelling of extremes, since: there is limited evidence against this assumption
in almost all applications, it aids parameter identifiability, and even when it is ho-
mogeneous it is difficult to estimate well. The probability of exceeding the threshold
Pr{X; > u} =: A\, (t) is also allowed to vary with time. There is much literature on
modelling approaches for how (o, (t), A, (t)) vary with ¢, including parametric (Davison
and Smith, 1990), semi-parametric (Chavez-Demoulin and Davison, 2005) and fully
non-parametric such as with splines (Jonathan and Ewans, 2013), Gaussian process
(Casson and Coles, 1999) or machine learning approaches (Richards and Huser, 2022).
We use parametric modelling, with models for our application set out in Section 4.5.2.

The X;, conditionally on being below u, are assumed to follow some unknown but
continuous density function h; : (—oo,u] — Ry, with f_uoo hi(s)ds = 1, where h; does
not depend on (A, 0y,&). Combining all these models gives the distribution function

Fx, of X, as

t

e

L= AN +E(x—u)/o®)].5, x>u,
(1= Xu(8)] [7 hu(s)ds, r < u.

Fy,(z) = (4.3.1)

As with the vast majority of extreme value modelling we avoid imposing a structure
on the distribution of X; < u, i.e., the density h; here. Even if a parametric model
for h; had no parameters in common with those in the GPD or A, models, there is a
risk of bias from mis-specifying h; in the longitudinal setting due to the dependence
between values X;; and X for j° # j, where X;; < u < X,j. In such cases, errors
in modelling below the threshold can induce errors above the threshold to compensate.

When making inferences about the extremes values of the longitudinal data, any actual

value X;; below u is instead treated as censored, i.e., as a realisation of the event
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Xi,j < u.

4.3.2 Dependence Structure in a Latent Space

The focus now turns to modelling the dependence structure of random variables {(X; ;, ¢ ;) :
j € Ji,i € T}, with the structure identified in Section 4.1. Specifically, we need to allow
for temporal dependence between within-subject variables and independence between
across-subject variables, so unlike in Section 4.3.1 knowledge of each subject’s contri-
bution to the data is accounted for. The formulation of these models builds on the
theoretical findings of Section 4.2.3, which showed that multivariate Gaussian distri-
butions for within-subject variations combined with an attribute distribution that has
the capacity for both heavier and shorter tails than the within-subject Gaussian dis-
tribution, provide sufficient flexibility to allow for both asymptotic dependence and
asymptotic independence, respectively.

The adopted modelling strategy bears likeness to that of copula modelling (Joe,
1997; Nelsen, 2007) or more specifically as in Wadsworth et al. (2017) and Huser and
Wadsworth (2019), i.e., focusing on the joint structure of variables, without concern
for its implications on the marginals at that stage. Subsequently, in Section 4.3.3,
the marginal distribution of this model is linked to the formulation in Section 4.3.1.
In particular, a model is adopted in terms of variables {(Z;;,t;;) : j € Ji,i € I},
where Z; ; = T;(X; ;) for a function 7; defined in Section 4.3.3, and we refer to this as
modelling in the latent space.

Consider a model in the latent space for the dependence arising between measure-
ments from the same subject, e.g., {(Z;;,t:;) : j € J;} for subject i, a characteristic
we term subject-conditional dependence. We follow standard Gaussian modelling as-
sumptions of longitudinal data analysis (Diggle et al., 2002), which are also coherent
with results in Section 4.2.3. The subject-specific model takes Z, ;, across j € J;,

as realisations of a Gaussian process Z;(t) over time ¢ € R observed at the times
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t, == {t.;;j € I;}. Specifically,

Zi(t) ~ GP (ui(t), VP Ku(-,-)) , for all t € R, (4.3.2)

where the mean function p;(t) : R — R is a subject-specific time-dependent mean, v; >
0 is a homogeneous subject-specific standard deviation, and K, is a stationary kernel,
which is shared over subjects, and which dictates the subject-conditional correlation
between the process at any times t € R and ' € R with hyper-parameters k. The
term p;(t) allows for the statistical properties of individual subjects to evolve over
time separately from that of the population marginal model, as is the case for many
applications in longitudinal analysis. To avoid over-parametrisation over individuals it

is reasonable to assume that

for a subject-ignorant function p with parameters 7y, subject-specific parameters 6; :=
(cv, ;) and covariates (which are ignored in this formulation, but are used in Sec-
tion 4.5.2). To ensure that «; is identifiable, the maximum of the function u, over ¢,
is set to zero, i.e., oy = maxycg p;(t;0;). Then «; is the subject attribute as in Sec-
tion 4.2.3. When g = 0 in model (4.3.2) the subject-specific dependence measures are
(Xirs Xir) = (0, Kx(0,7)), for all i € Z.

The form of the stationary kernel is application specific. A powered exponential is
used

K (t,t') = exp(—rolt — t'|™),

with & = (Ko, k1) € Ry x [0.5,2] in Section 4.5, where smaller kg gives less subject-
conditional dependence (with the limit kg — oo giving subject-conditional indepen-

dence); and k1 influences the local smoothness of the process, with larger k; giving a
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smoother process, with the limit k1 — 2 corresponding to a process which is infinitely
differentiable, and when x; = 1 the process is Markov. There are many other well-
established stationary kernels, e.g., the Matérn family, see Diggle et al. (1998). Some
of these were trialled in exploratory analysis for the application in Section 4.5 but were
found to make no practical differences, which is a consequence of there being only a
few observations per subject and the absence of observations at short time lags.
Conditioning on the parameters of this latent model, the marginal distribution of

7, an arbitrary observation from the longitudinal data set in latent space, is

Gy(z) = %Zi@ (%W) (4.3.4)

€T j=1

where n; := |Z;| and n = Y, _;n;. Thus the marginal distribution of Z is a mixture of
Gaussian variables over subjects and different observation times.

Finally, consider the marginal variation across subjects. As in Section 4.2.3 this
variation is captured exclusively through the distribution of the attributes {a; : i € Z}.
Over the whole population of subjects all «; are taken to be independent and identically
distributed with o; ~ N(0,V?2) for all i € Z, for a given fixed value of V, > 0. This
model for the attributes is assumed to hold over the population as a whole, as well as
over set of observed subjects Z, with the former covering all potential subjects outside
the time window of observations.

From Section 4.2.3, it is clear that the variation in the «; relative to the within
subject variability, i.e., v; for subject i, is what determines whether the longitudinal
data exhibit asymptotic dependence or asymptotic independence. So, the precise value
of V, is irrelevant for differentiating between within-subject variation and population
variation, as this is controlled by v;/V,. Hence V, can be fixed to any chosen value, since
the {v;} are parameters to be estimated from the data, and so their values can adapt

proportionally to changes in V,,. Thus the data determine the form of longitudinal
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data extremal dependence, the degree of which we measure using the lag-7 coefficients

M 80y or (U 19 of Section 4.2.3.

4.3.3 Transforming Margins between Observed and Latent Spaces
The probability integral transform (4.3.5) is used to transform between the observation
scale of X and the latent space of Z, defined in Sections 4.2.1 and 4.3.2 respectively.
Specifically, the variables X, ; and Z; ;, both occurring at time ¢; ; are linked by

Gz(Zig) = Fx,, ,(Xiy), so Zy; = T(Xiy) = G5 {Fx,,,(Xi;)} (4.3.5)

¥

where F, and Gz are defined by expressions (4.3.1) and (4.3.4), respectively and T} is
the transformation outlined in Section 4.3.2.
For those X; ; points above the threshold on the original margins, the transform is

given as

7= G {1 Al 1+ 0% = i1

whereas when these points are below the threshold,

Xij

2y =6 {1 - x|

—00

hu, ,(s) ds} .

The complication here is that the density function h; is unknown and we do not want
to model it, hence the censoring approach outlined in Section 4.2.1. Instead, for this
range of X ;, the random variable V; ; := f_XO‘O’ hy, ,(s) ds is uniform(0,1) distributed. So
the auxiliary variable V; ; ~ Uniform(0, 1) is introduced into the transformation when
X, ; <u,togive Z; ; = G, {[1 — M\u(ti;)] Vij} - A consequence of the transformation is
that the threshold u in the observation space becomes time-varying in the latent space,
ie., uz(t) = GZH{[1 - ()]}

For making joint inferences across marginal and dependence structure parameters
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the likelihood functions in Section 4.4 require the Jacobian terms for these transforma-

tions. These terms require the marginal density in the latent space, i.e.,

i€ j=1 °

where v :={v; : i € Z} and 0 := {6, : i € Z}. For a realisation z of X (or v of V') when
the observation is above (or below) u, respectively, the associated realised value z of
Z is obtained using the transformations above. The corresponding Jacobian terms, J

and J_ for above and below the threshold, respectively at time ¢ are

Jun

G o
Lt 6o B8 y) = o SUP -]

J_(v;t,B,0,v,v) = [1—=\t;B)]/92(2;0,7,v),

which follows from [ gz(z;t)dz = [ fx(x;t)dx for all ¢, and where o and B are the

parameters of the model for o,(t) and \,(t), respectively.

4.3.4 Predicting future extreme events in longitudinal data

A benefit of accounting for the longitudinal structure is that now inference and predic-
tions of extreme events regarding individual subjects is ascertainable, e.g., a new record
is achieved by a particular subject ¢ € Z. To make such inferences, each subject’s mean
function over time is incorporated, as well as the temporal dependence around this.
Both of these aspects are described by the Gaussian process model of Section 4.3.2,
which gives analytical solutions to probabilities of future events through its closed form
conditional distributions. In the supplementary material, we provide an example pre-
diction, namely, the probability of a subject ¢ € Z breaking the record for the maximum
measurement r in some future time period F', denoted by the event A (r). The prob-

ability of AF(r) is derived under some assumptions for an idealised scenario, including
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having independent and identically-distributed variables.

Such simplifying assumptions are realistic for some applications and thus analytical
results are feasible. However, in applications where these assumptions can no longer
be assumed, evaluation of the probabilities of such complex future events are most
simply conducted through Monte Carlo methods, simulating over different realisations
of the longitudinal process for the fitted model. A particular complication arises in
applications with subject-specific mean functions - as we have in our elite swimming
application, Section 4.5 - which induce non-identically-distributed variables, for there
it must be recognised that in the longer-term the extreme events are more likely to be
due to subjects not yet observed in Z.

In the short-term however, these future extreme events are most likely to be obtained
by the current subjects in Z, followed by a transitional medium-term in which extremes
arise from a mixture of these populations of subjects. In the supplementary material,
we develop the outline of a simulation framework for such inferences, setting out some
possible choices that need to be made in relation to the currently unobserved subjects.
Going forward beyond the observed time-frame, this framework outlines three classes of
subjects: (i) those subjects in Z, indexed by Z¢ with Z¢ C Z, which are still producing at
least one measurement above u in the future time window; (ii) those subjects Z/, which
produced measurements exclusively below the threshold within the observed time-frame
and so {Z/ NZ} = 0, but in the future produce a measurement above u; and (iii) those
subjects Z" with no recordings at all within the observed time-frame but which in the
future period produce at least one measurement above u. The supplementary material

details a strategy of simulating from each of these three groups.
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4.4 Inference

The likelihood is constructed in two steps. First, we assume that the parameters (¢, 0, 8)
and the vector of auxiliary variables for the marginal variables in the observed space are
known, so that only the parameters effecting the latent space need to be estimated. Sec-
ondly, we account for uncertainty in these marginal parameters and auxiliary variables.
For deriving the likelihood in the latent space for a given subject ¢ with observations
(Z;,t;) = {(Zi;,t;;) - 7 € Ji}, we define the correlation matrix between all of sub-
ject i’s observations by the correlation matrix Xt := Ki(t;,t;), i.e., the (j, k)" entry
Ef;(j’k) = Ky(ti;,tix) is the correlation between Z;; and Z;j. Recalling that obser-
vations for a subject are from a multivariate Gaussian distribution, and that across
different subjects are independent, the likelihood in the latent space for realisations

z:={z;:1 €T} at times t := {t; : i € T}, is given as

L (zt,0,7,v,K) x Hu{”"

1€T

) 1 )
i texp <—§2ZE; z) (4.4.1)

it 00
with %; := {ZW Hiltigi057) j} Viel.

Vi
The parameters for the margins in the observational space are in practice unknown.
Therefore the full likelihood requires the Jacobian terms, from expression (4.3.6), which
control the transformations between the two spaces. Let the sets of observations which
are below and above the threshold be £_ = {(i,7) : X;; < u:j € J;,i € I} and
Ly :=A{(i,j): X;; >u:j€T,iec L} respectively. The full likelihood of parameters

O = (¢,0,B,0,v,v,k) and auxiliary variables is

L(z,v;t,©) < Ly (2;t,0,7v,v,K) X

H J—(Ui7j;ti,j7ﬂ707ly7lj) H J"r(xi,j;ti,j?£707ﬂ707’77v) )

(i,)€L~ (i) €L
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wherewv := {v;; : (¢,7) € L_} and z is a function of  and v, as identified in Section 4.3.3.

There are likely to be complications with using an entirely likelihood-based ap-
proach to inference for this model. Firstly, with two parameters per subject, limited
data per subject, and many subjects, an asymptotic-based inference justification and its
associated uncertainty evaluation is not supported. There are issues with dealing with
the auxiliary variables, with the need to integrate over these making likelihood evalu-
ation difficult. In many multivariate extreme value models with complex dependence
structure, inference is conducted via pseudo likelihoods and using bootstrap procedures
which avoid the need to model the dependence structure (Davison et al., 2012). Such
approaches are not suitable here because of the large influence of a small number of
large values on the parameter estimates, so biased inference is likely (Healy et al., 2023).
Furthermore, with longitudinal data there are problems of identifiability under boot-
strap sampling given that data from subjects with more limited data are more likely to
be omitted in replicate samples than for other subjects. Instead, we adopt a Bayesian
inference framework, which provides full uncertainty quantification of all parameters
and auxiliary variables simultaneously. The Bayesian framework also allows for easier
uncertainty quantification in the prediction of future events, see Section 4.5.

Let the parameters © have prior distribution 7g(6), and let the prior 7y, ;(v) for all
(1,7) € L_ be uniform (0, 1) distributed and to be independent across these variables.

Then, the full posterior distribution can be written as

7 (8,v]z,t) 76 (8) L(z,v;t,0). (4.4.2)

In Section 4.5.3 we present the prior mg for our analysis of elite swimming data.
Before detailing our Markov chain Monte Carlo (MCMC) methods for simulating

from the joint posterior, we identify a computational issue that influences our choice

of MCMC strategy. Specifically, in order to transform the data from the observed

space into the latent space, the inverse of the Gaussian mixture distribution (4.3.4)
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is required, but that has no analytical solution. Numerical solution of this inverse is
required for each likelihood evaluation, and for each data point for each subject. Exact
numerical solution on this scale is computationally infeasible. Instead, for likelihood
evaluation we use a grid search algorithm, searching over a finite regular grid Z in the

latent space, for each data point x; ;, such that

argmin, Gz(2) = Fx (zij,tij)|), ;> u,
= EZG(| Z() X( J ])|) J (4.4‘3>

argmin, ¢z, (|Gz(2) — [1 = Aultig)lvigl) . iy <w,

where both F'x and Gz depend on the parameter values of each likelihood evaluation.
This grid search approach slows down inference significantly since it requires a factor
of |Z¢| more evaluations relative to there being an exact solution to equation (4.3.5).
Moreover, the discrete nature of the grid search, with no gradient information, rules out
our use of a range of popular Bayesian inference algorithms, e.g., Hamiltonian Monte
Carlo (Duane et al., 1987) and the No U-Turn Sampler (Hoffman and Gelman, 2014).
Section 4.6 discusses this point further.

Given these constraints and the slow likelihood evaluation, a Metropolis-Hastings
(MH) algorithm is implemented that utilises the Python package PyMC (Salvatier
et al., 2016), which enables efficient inference through automated optimisation of the
algorithms’ tuning parameters. In the case of MH, this provides well-tuned proposal
distributions for optimal exploration of the joint posterior distribution. For a further
speed-up, we sample a large number (in our case 40) of shorter MCMC chains (2000
samples each, including 1000 ‘burn-in’ samples) in parallel using high-performance com-
puting, which then undergo standard diagnostics for checking of convergence (Gelman
and Rubin, 1992). By randomly drawing all realisations v from its prior distribution at
each step of the MCMC algorithm, and then considering only the marginal distribution
for ©, in essence pseudo-marginal MCMC (Andrieu and Roberts, 2009) is performed,

and the posterior 7 (O|z,t) is recovered.
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In order to attain inference for future predictions, see Section 4.3.4, the full pre-
diction uncertainty is propagated through the model. Given the set of simulated time-
stamps t; of future observations by a subject ¢, which are randomly generated by the
process described in Section 4.3.4, the variables Z;(t) ~ GP {u(t;0:,7), Kx(-, )}, jointly
for t over the set t}, are sampled from the Gaussian process, with the parameter values
being a random sample s from the joint posterior 7 (0,v|x,t). The sample is then
transformed back to its original margins. For those samples above the time-varying
threshold on the latent scale uz, the GPD parameter values used in the transformation
are the same sample s from the posterior.

For an observation below the threshold - which is by definition not extreme - the
actual value on the original margins is unimportant for inference of extreme events.
Only the time of occurrence and the knowledge that they are below the threshold are
relevant, in order to characterise the dependence structure, and which we already have
from the simulation process. However, for visualisation purposes it is useful to have
some estimate of non-extreme values on the original scale, see Figure 4.5.4. In this case
the empirical CDF is used, though it is acknowledged that this does not include the

uncertainty in the distribution on the original margins.

4.5 Application

4.5.1 Data

The data analysed constitutes mens’ 100m breaststroke results in FINA competitions
in the period 2012-2019, obtained from the FINA website. A few strategic decisions
were made about which data to analyse. Firstly, only data of each swimmer’s best time
swam per competition was selected, i.e., one swim per competition. This removes much
of the tactical element, e.g., weaker swimmers may need to swim to full capacity during

the heats of competitions, whereas a top swimmer can typically afford to save their
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best performances for the finals. Using exclusively these competition maxima helps to
ensure that each observation is a good approximation of the swimmer’s best ability at
that time. It also has the benefit of avoiding the need to capture performance strategy
or to deal with issues of dependence at very short time lags.

Secondly, in extreme value analysis, the scale on which the data analysis is performed
can impact the results (Wadsworth et al., 2010). Following the discussion in Spearing
et al. (2021) minimum swim-times are modelled, but modelling the maximum swim-
speed (Gomes and Henriques-Rodrigues, 2019), i.e., the reciprocal of the times swam, is
also an option. For analysing minimum swim-times, results exist for the behaviour of the
lower tails of a distribution, however they are rarely applied (Robinson and Tawn, 1995)
and give identical results to our strategy. We therefore analyse negative swim-times,
and then negate any estimated quantiles in order to provide results for actual swim-
times that make use of the more commonly-used methodological frameworks for upper
tails. Finally, the threshold must be selected. The analysis of Spearing et al. (2021)
identified the 200th fastest personal best (PB) over the period 2001-18 as a suitable
(negative) extreme threshold u = —61.125 seconds, so this threshold is adopted here
despite now focusing on the larger data set of all competition maxima per swimmer.

Our model has two subject-specific parameters 8; = («;, 7;) per swimmer. Unless
swimmer ¢ has undertaken sufficient swims in the data set then the posterior for the
parameters for such swimmers will be weakly informed by the data, or even unidenti-
fiable from the data if swimmer ¢ has only one recording. Here the standard Bayesian
approach, and perhaps the most obvious, is to carry out analysis regardless and ac-
knowledge that the marginal posterior distributions for such 8; will be almost identical
to the associated prior distributions. However, the prior on «; is necessarily vague to
allow for variation over swimmers, see Section 4.5.3, so the posterior information about
these parameters adds little value to the overall inference. Moreover, it comes at a

large computational cost from the many uninformative parameters, which requires the
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MCMC to do approximately twice as many of the slow likelihood evaluations, see Sec-
tion 4.4. Our analysis is instead restricted to only those swimmers with a “sufficient”
number, i.e.; more than m, of recordings in the data set. So, for the set of swimmers
Z,, that have recorded m or fewer swims, i.e., for all : € Z, with n; := |J;| < m, these
data are ignored. The analysis is therefore conducted on the swimmers Z \ Z,,. A
potential consequence of restricting the data set is that the GPD may no longer be a
good fit to the tails of the data; however, we show in Section 4.5 that this does not
appear to be the case. Section 4.6 discusses alternative approaches that do use the data
for swimmers Z,, and which do not suffer from computational complications, but they
require additional modelling assumptions.

If m is chosen to be too small, some 6; will have marginal posteriors with only
minor differences from their priors and at the computational cost of needing more
MCMC samples for convergence given the two additional variables per extra swimmer
included. With m too large, too much data are excluded so posteriors are less well
informed than necessary. The strategy for choosing m is to observe how the number of
swimmers that have swum less than or equal to m, i.e., ky, := >, 7 1{n; < m}, varies
with m. An abrupt increase was found when m = 7. Therefore, by selecting m = 7,
a relatively large proportion of those swimmers with only few observations (40%) are
discarded, whilst only losing 20% of the total observations. The final dataset used for
analysis contained 120 swimmers, with 1435 total observations. In an early analysis
the model was fitted using only the 10 most prolific swimmers, i.e., m = 18. Using
these data the posterior means of the GPD parameters were very similar to those in
the final analysis, reported in Section 4.5.4, indicating that there is very little bias, or

sensitivity, introduced through the choice of m.
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4.5.2 Modelling applied to swimming

From Spearing et al. (2021), the conditional distribution of extreme swim-times Pr{X <
z|X > u} for large u can be treated as identically distributed over time, and so we
take o,(t) =: 0, € Ry, Vt, ie., ¢ = 0,. The common temporal trend across the
population of elite breaststroke swimmers can then be captured through the probability
of exceeding the threshold \,, through a smooth monotonically increasing function for
Au. A logit-linear functional form for A\, was found appropriate for the change in
Ay over t. Specifically, for a swim-time in year ¢t € {2012,...,2020} and parameters
B = (B, B1) € R?, we denote the model

Au(t; B) = exp(Bo + Pt /[1 + exp(Bo + fit)]. (4.5.1)

We next turn attention to the subject-specific trends. In elite swimming, the sub-
ject trend captures a swimmer’s career trajectory - the tendency for athletes to enter
elite sports as relatively inexperienced, improve until some individual peak ability, and
then decline before leaving the sport. Swimmers tend to improve rapidly towards their
peak mean performance «;, at an age of 7;, as they mature physically, and then stop
competing within a few years of reaching this peak. Here we allow the time at which
peak mean performance is achieved to vary over swimmers to allow for their differences
in maturity. The lack of data in the decline of the career trajectory enables the parsi-
monious assumption of a symmetric career trajectory about the peak. From what can
be identified from the data, after transformation to the latent space, a quadratic mean
trend in age of swimmer, with curvature v < 0, seems a reasonable approximation to
this mean performance progression. Hence, we introduce swimmers’ age as a covariate,
by first including the covariate b; € R, swimmer ¢’s birth date, so that t — b;, for ¢t > b;,

is the age at which swimmer ¢ recorded the swim at time ¢. Thus, for a swim recorded
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at a time ¢ by a swimmer ¢, the mean function is
ﬂl<t, bl,01,’y) = ; — ")/(t — bz — ’7'1')2, for all t € R,

for all i € Z, where 0; =: (o, 7;) € R x Ry, and here y = v > 0. We do not attempt
to have a swimmer-specific parameter for v given the limited number of swims per
swimmer. Furthermore, it was found that the variance across swims from a swimmer 7,
v? could be assumed the same across swimmers, i.e., v; =: v € R, Vi € Z. It seems that
different latent mean values per swimmer is sufficient to capture the across-swimmer

effects.

4.5.3 Prior specification

The DAG in Figure 4.5.1 illustrates the full model specification for this swimming ap-
plication, and in particular, the formulation of mg, defined in Section 4.4. For simplicity
the priors are assumed to be mutually independent across all components of ©, i.e., the

full prior can be written as

me (8) = 7 (&) m(ou)7 (B) (HW (ai)m (n)) ()7 (V)7 (k). (4.5.2)

1€T

We now explain our choices of these marginal priors in the sequence shown in expres-
sion (4.5.2).

Considerable discussion on priors for GPD parameters goes back to Coles and Tawn
(1996). Selecting the shape parameter prior to be logit (£ +1) ~ N (logit(0.8),0.3)
approximately restricts the domain of the shape parameter to be —1 < £ < 0. The
constraint —1 < £ is reasonable as the likelihood is infinite otherwise when the upper
endpoint of the GPD is set to the sample maximum (Smith, 1985), and so if violated it
could lead to estimates of the GPD which imply that there is no possible improvement

on the best time already achieved. The constraint £ < 0 implies that there exists some
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finite limit on the fastest possible performance, which is sensible. Furthermore, analysis
of elite swimmers’ PB data from 2001-2019 (Spearing et al., 2021) found strong evi-
dence of a common negative shape parameter over all swimming distances, strokes and
gender categories. For determining the prior distribution for the GPD scale parameter
we exploited knowledge from Spearing et al. (2021) that an estimated value of this
parameter using PB data for this event was close to 1. So taking o, ~ Gamma(25, 25)
enforces positivity, has the required mean value, and a standard deviation of 0.2. Lastly
for the threshold exceedance rate parameters 3, as given in expression (4.5.1), the priors
Bo ~ N(0,0.5), and B; ~ Gamma(0.1,0.1) are imposed. The latter prior is selected to
reflect our knowledge of an improvement on the ability of swimmers (Spearing et al.,
2021), and combined with the former gives a wide range of likely exceedance rates of
approximately (0.1,0.9).

Now consider the prior choices for the parameters that determine the distribution of
the process in the latent space. First consider the marginal parameters. As discussed
in Section 4.3.2, we take a;~N(0,V?), where here we select V,, = 6, to allow for
considerable variation in the skill level of the elite swimmers. The priors on the peak
ages of the swimmers were taken to be 7; ~ N (25,2.5%) to reflect that a swimmer’s
typical might peak at roughly 25 years old and with a reasonable probability that it falls
somewhere in the region (17.5,32.5) years of age. The prior for the rate of quadratic
decay from the peak performance in the latent space is given by v ~ Gamma(0.5,0.5)
distribution. This is weakly informative with a small preference for v to be arbitrarily
close to 0, so that a posterior suggesting v > 0 cannot simply be an artefact of the
prior. As we expect a much greater difference between subjects than within a subject’s
performances, the variance of the prior for v is taken to be much smaller than V,,, with a
prior v ~ Gamma(1, 1). Finally, consider the kernel parameters: o ~ Gamma(0.5,0.5)
enforces ko > 0, where the hyper-parameters choice allows k( to be arbitrarily close to

0, i.e., the special case of subject-specific independence; and for x; € (0.5,2), the prior
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was selected be to logit(k; — 0.5)/1.5) ~ N(logit(1),2), so the prior mean of kg is the
Markov special case, and the larger standard deviation allows an exploration of the full

domain.

4.5.4 Results

Subject-specific Inference

We first focus on the within-subject features of the model that provides information
about individual swimmers as well as playing a key role in determining the dependence
structure across the longitudinal data of elite breaststroke swimmers. As identified in
Section 4.2.3, there are two features of the subject-specific behaviour which affect the
extremal dependence of these data: the subject-specific variation in the attributes, here
captured by the {«; : ¢ € Z}; and the within-subject dependence, given by the Gaussian
process.

The marginal posterior distributions of the parameters 8; are shown in Figure 4.5.2
for the top ten swimmers, as defined in Section 4.5.4, a ranking that strongly correlates
with the swimmers with the ten largest posterior mean «a; values. With the exception
of the posterior for Adam Peaty’s «;, there is considerable overlap between the other
nine posteriors, with Peaty’s having both a larger mean and 50.5% of the variation of
the others. The larger mean value is not too surprising as Peaty holds the 7 fastest
times, and 11 of the top 20, for the competition-best data analysed, together with all
the top 20 times over all swims in this event. The posteriors for the 7; for these top ten
swimmers are broadly more self-consistent across swimmers, with almost all posterior
mass for the peak performance age in the range (25, 35) years, though both Peaty and
Andrew Michael appear to have lower peak ages, with Peaty almost certainly having
peaked before the age of 30 (he is 29 at the time of writing).

What is possibly most intriguing about these posteriors is that the posterior of «;

for Nicolo Martinenhi has upper quantiles which exceed the same quantiles for Peaty’s



CHAPTER 4. LONGITUDINAL EXTREMES 109

«;, with his mean and median «; being notably smaller than Peaty’s values. There are
three possible compounding causes for this which we explored as follows. Firstly, it could
be that Martinenhi produced some high quality swims, but also has much variability
in these, which suggests he may be capable of getting much better swims; however,
this is unlikely since only two of Peaty’s swim-times are slower than Martinenhi’s PB.
Secondly, the greater posterior uncertainty of Martinenhi’s a; could be as he has much
less swims in the database relative to Peaty, but in fact Martinenhi has 14 better than
the threshold, which is comparable to Peaty’s 17. The third cause, and seemingly
the most likely, is that Martinenhi is relatively young - five years younger than Peaty
- being 20 years old when he produced his most recent time in the database. For
younger swimmers it is difficult to disentangle between peak age and attributed, which
is evidence by Martinenhi having the largest posterior correlation, of 0.89, between
his (a4, 7;) of the top 10 swimmers, e.g., for Peaty this is 0.50. Martinenhi’s large
uncertainty in peak age is contributing greatly to the uncertainty in his attribute; his
peak is still to come - but we are uncertain in its level.

The posterior 95% highest posterior density interval (HPDI) for the subject-specific
quadratic trend curvature 7 is (0.015, 0.029), showing that there is concrete evidence of a
rising and falling career trajectory, especially given the prior favours v being arbitrarily
close to 0. The 95% HPDI for the ratio of within-subject to across subject variation, i.e.,
v/Va, is (0.17,0.18), showing that the majority of the variation in the extremes of these
longitudinal data is explained by swimmer identification. Furthermore, with Peaty
having much the latest «;, Section 4.2.3 indicates there will be asymptotic dependence,
irrespective of the within-subject dependence p(7) at lag 7. The posterior mean and
pointwise 95% (HPDI) are shown in Figure 4.5.2 (right) for the measure of subject-
specific asymptotic independence x; . = p(7), for lag 7 € [5,365] days. This inference
indicates that at 50 days there is reasonable dependence per swimmer and even at 6

months lag there is non-negligible subject-conditional dependence. The other measures
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of extremal dependence are difficult to ascertain due to the underlying variables being

non-identically distributed as evidenced by the posterior for v > 0.

Subject-ignorant Marginal Inference

Now consider the joint posterior inferences for the subject-ignorant marginal distribu-
tion parameters for the GPD and tail exceedance probabilities, i.e., {o,,§, B}, which
are derived from the joint posterior (4.4.2) for all the model parameters. The posterior
mean for ¢ and its 95% HPDI are —0.22 (—0.25, —0.20), providing strong evidence for
a negative shape parameter. Similarly, for 5; these values are 0.13 (0.09,0.16), showing
that the rate of achieving extreme elite performances in this event is increasing over
the time window from 2012-2019, with the posterior mean and 95% HPDI for A, (t)
being 0.34 (0.30,0.38) for 2012 and 0.55 (0.51, 0.59) for 2019, showing that the value of
(1 corresponds to a substantial difference in the behaviour of the population over the
observed time period.

We now adapt this inference for informing us about extreme marginal events. As
described in Section 4.2, when £ < 0 there is an estimated upper endpoint xg = u —
o./&, which in the context of swimming is interpreted as the best possible performance
humanly possible, given the current technology, a quantity that has been widely studied
in sports (Huub and Trultens, 2005; Nevill et al., 2007). Figure 4.5.3 shows the posterior
distribution of xy, and the closeness of Peaty’s current world record to the ultimate
possible time. The posterior places the endpoint closer to the current record than
similar analysis of PB data (Spearing et al., 2021), with the earlier analysis pooling
information across events.

The expected value of the next world record swim-time is obtained by exploiting the
threshold-stability property of a GPD (Coles, 2001). Since the (negative) current world
record r = —56.88 > u, exceedances above r follow a GPD. Setting the threshold at r,

then exceedances of r, denoted X,, := {X : X > r}, follow a GPD(0, = 0,+{(r—u),§)
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and the expected next world record time is E[X,,| =r+0,/(1 —&). Figure 4.5.3 (left)
shows the posterior distribution of E[X, ]. Although having some overlap with the
posterior of xy, the posterior of E[X,, ] is much nearer Peaty’s current record than z .
The simplicity of the result for the expected record value arises as both ¢ and o, are
constant over time and the expectation is not conditional on the current swimmers’
performances, with the latter considered in Section 4.5.4. Furthermore, this posterior
for E[X,,]| provides no information about when this record is likely to be achieved.
An indication of this time-scale is given in Figure 4.5.3 (right), where we present the
posterior for the rate \,.(t) per future year ¢ of swims by elite swimmers beating Peaty’s
record 7. Here \,.(t) = s;\(t)[1 + &(r — u) /o] "¢, where s; is number of total swims
per year by elite swimmers. The posterior mean and 95% HPDI are shown for A.(t)
over the window 2023 — 30, assuming that the total number of swims per year remains

the same as in 2019.

Model Diagnostics

Diagnostics for the marginal GPD element of our model are well-established, so here
novel diagnostics that focus on the subject-specific characteristics of the data are pre-
sented. Rather than the latent scale as in Section 4.3.2, diagnostics are shown on
the observed scale, so observations can be compared with predictive distributions for
the associated swim-dates. Figure 4.5.4 shows the observations over time for six top
swimmers, identified in Figure 4.5.5. All these swimmers have performances that are
generally improving over time, and some have performances which are worse than the
threshold, i.e., slower than the threshold. As such slow swims are treated as censored
at the threshold, modelling these precise values is not of great importance, with the
prime focus concerning swim-times better than the threshold.

A sample of size 400 was generated from the posterior predictive sample for each

past date of a swim for each of these swimmers, i.e., ignoring in the simulation stage
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the actual observation values by not conditioning on them. These distributions are
shown on Figure 4.5.4 under-laying the corresponding observations. In a well-fitting
model, each observation should appear to represent a sample from these simulated
distributions. The model seems to have captured the improving career trajectory to
date. The posterior predictive distributions indicate that the model fits well, as most
observations are reasonably central to their associated distribution for all swims better
than the threshold, and even for the swims not as good as the threshold. Maybe to be
expected, Peaty’s three best swim-times, each world records when achieved, are into
the tails of their associated predictive distributions. For weaker swims, Martinenghi
and Shymanovich have performances which are unexpectedly slow relative to what our
model would anticipate.

Figure 4.5.4 also shows samples for these predictive distributions in the future, as
the points from 2020-32, obtained under a stochastic model for the number and dates
of future swims assuming that the swimmers continue to compete at current rates (see
the supplementary material for details). As most of these future samples improve, or
stay reasonably static, over time this illustrates that these swimmers are early in their
careers. In contrast, for Peaty there is a clear decay of performances from 2024. To
help see how these plots link to the earlier inferences, we also present on this figure the
posterior mean and 95% HPDI for each swimmer’s 7;, which captures the period where
the predictive samples seem to plateau. Section 4.5.4 uses these future subject-specific

predictive samples to draw a range of inferences for future extreme events.

Subject-specific Predictions for Current Swimmers

Here we make predictive inference for future extreme events linked to specific swim-
mers, thus illustrating the novelty of inferences that are possible using our longitudinal
extreme value model. Section 4.3.4 identified three groups (Z¢,Z/,Z") of swimmers to

consider when predicting future extreme events, and the supplementary material sets
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out the Monte Carlo strategies for the evaluation of the corresponding posterior dis-
tributions. To avoid the extra assumptions that are required to study groups Z/ and
Z"™ only swimmers in Z¢ deemed actively competing at the start of the future period
are studied, which we take to be those swimmers in Z who have recordings in the most
recent year of data. From our model and posterior predictive inference, standard ex-
treme value properties, such as the distribution of the annual maxima, are simple to
derive; however in sport, extreme events are mostly concerned with breaking records.
We therefore focus on results for events linked to beating the current world record and
setting PB times. Throughout, the future behaviour of swimmers is assumed consistent
with the past data, so illness or sudden retirement are not accounted for, e.g., we ignore
knowledge that Peaty has had some absences from the sport since 2021.

First consider the beating of the current world record. The joint posterior predictive
distribution samples, illustrated in Figure 4.5.4, provide samples of future longitudinal
data for the swimmers. The probability that the world record is beaten by a swimmer
in Z¢ in the next 12 years has a posterior predictive probability of 0.53. This doesn’t
mean the record will be broken with this probability, as we do not consider swimmers
in groups Z/ or I". Figure 4.5.5 (left) splits this probability up to show the posterior
predictive probability for swimmer ¢ beating the record, for the 10 most likely swimmers
in Z¢. This gives a novel ranking method for swimmers within an event, as it focuses on
the future potential of swimmers (through taking their stage of career trajectory into
account) more than their past achievement (which is the exclusive focus of typical rank-
ing methods). Perhaps unsurprisingly, Figure 4.5.5 (left) shows that Peaty is ranked
the highest, i.e., the most likely to first beat his own world record of the swimmers
in Z¢, with a predictive probability of 0.24. Martinenghi is ranked second, which is
expected given findings in Figure 4.5.2 (middle), with a predictive probability of 0.092.

To assess how soon these swimmers can first beat the current record, Figure 4.5.5

(middle) shows the predictive distribution of the year in which a swimmer will be the
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first of the current swimmers to beat the record. These posteriors are shown for the
top six ranked swimmers in Figure 4.5.5 (left). These results show that if Peaty does
break his record, it is most likely to happen within the next four years, primarily as
a consequence of his age exceeding his peak age. In contrast, Martinenghi is most
likely to beat the current record in 4-10 years. Figure 4.5.5 (right) shows the posterior
distribution of the future PB time for each swimmer. These distributions show that
there is a reasonable chance of each swimmer beating their current PB, though with
Peaty less likely to do this than the other five swimmers shown, who all have a high
posterior probability of beating their current PBs. This finding is not surprising, as
swimmers that are currently near their peak have a limited chance of beating their PBs,
and the younger swimmers have the largest chance of setting future new PBs as they

are still improving.

4.6 Discussion

This article proposes the first analysis for extreme values of data arising from a longitu-
dinal structure comprising multiple subjects, each with a time series of measurements.
Although much new asymptotic theory remains to be developed, as the number of sub-
jects and the lengths of their time series tend to infinity at potentially different rates,
our focus has been in terms of putting down the framework for statistical modelling
and associated inference. Furthermore, we have exhibited that this framework provides
a basis for novel analysis of elite swimming data, and have illustrated the additional
challenges that arise in practice, e.g.: non-stationarity over subjects, subjects with very
limited data, and the need to model subjects not in the data. Our analyses also show
how the models can be used for making important inference about future extreme events
involving the current subjects.

This generic framework for longitudinal data analysis involving extreme values con-
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tains a set of modelling decisions which are application specific. Core examples are the
choice of functional forms for (i) the subject-specific mean function p; for all i € Z, (ii)
the threshold exceedance rate function A,, and (iii) the GPD scale parameter function
0y In our swimming application, fully parametric functional forms were established
from prior application-specific knowledge. For the period of data we analysed, A\, was
modelled to be monotonically increasing, reflecting knowledge that the quality of swim-
mers has been improving generally in this period. However, if data prior to 2010 were
used, a monotonic form would not be appropriate due to the phasing out of performance-
enhancing full-body swim-suits, see Spearing et al. (2021) for estimates of how these
suits enhanced elite swimming across events. In the absence of such knowledge we could
use non-parametric approaches, e.g., as identified in Section 4.3.2.

As discussed in Section 4.5, for swimmers with very few observations, a tactical de-
cision must be made between including them all at a high computational inefficiency, or
discarding them from the analysis, at the cost of bias. Although we developed a prag-
matic compromise in the selecting of which swimmers to include, here we briefly outline
other possibilities. The most naive approach would be to incorporate all swimmers by
pooling together all data (measured swim-times and the corresponding age of swimmer
on the date of the swim) by the swimmers with less that m swims, so that they share a
common (v, 7;) pair. Although this would avoid much added computational complex-
ity by constraining the additional parameters and it would use all data for the GPD
inference, it risks bias as the swimmers being pooled together may be very different
in their skills (attributes). Alternatively, a more specific clustering approach could be
developed in which each of the subjects with less than m observations is pooled with
a subject with more than m observations, so that they share the same («;,7;). This
approach could be more effective if a suitable cluster metric could be developed that
draws parallels with our clustering of intranstivities in Spearing et al. (2023).

The initial reasoning for parameter reduction was the computational intensity of the



CHAPTER 4. LONGITUDINAL EXTREMES 116

model fit, where the bottleneck comes from inverting the Gaussian mixture distribution
Gz. Improvements to the current grid search approach (4.4.3) used to approximate Ggl
will allow the model to be scaled to large data sets. One possibility is to approximate
the derivatives of Ggl with respect to each element of (z,0,7,v) to enable more efficient
gradient-based samplers (Duane et al., 1987). However, due to approximating such a
large number of gradients, there is still no guarantee that overall inference speed will
be improved.

An entirely novel aspect of our inference has been the subject-specific features such
as the marginal Gaussian distribution and the variation across subjects is modelled
through the different subject-specific attributes {o; : ¢ € Z}. Although Gaussian
marginals are leveraged on the grounds of the parsimony of conditional and uncon-
ditional Gaussian processes, this choice is rather unimportant to the outcomes of the
inference. This is due to the weak common prior across attributes, resulting in a pos-
terior which is driven by the data. The resulting posterior for a new subject’s «; is a
Gaussian mixture model; where it is recognised that this reflects only subjects capable
of achieving measurements above a high threshold, and is not applicable to the popula-
tion as a whole. Despite this restriction to the extreme subjects, our swimming analysis
shows that the variation between attributes for swimmers is substantially larger than
natural variation of extreme times for any selected swimmer. Hence the analysis has
disentangled the variations of the longitudinal data to better inform future inference
for extremes and records both unconditionally and conditionally for the current field of

elite swimmers.
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Figure 4.5.1: DAG illustrating the model flow with associated priors. The observed
space (left) shows the parameters for the extreme margins: (£, 0,,), the GPD parameters;
(Bo, 1), of the rate function A, for exceeding the threshold u; and the auxiliary variables
Vij i (i,7) € L_ corresponding to the censored observations below u. The parameters
of the latent space (right), (0 := {0; := (v, 7;) 1 i € T},7,v), determining the marginal
distribution of the Gaussian mixture, and the kernel parameters k := (kg, x1) which
dictate the dependence structure. Both the observed space and latent space parameters
determine the Jacobian (4.3.6), whilst the only the latent space parameters determine
the latent-likelihood (4.4.1). The posterior distribution then contains the Jacobian, the

latent-likelihood, and the prior distributions (4.5.2).
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Figure 4.5.2: Posterior inferences for subject-specific features of the model. For the top
10 swimmers as defined in Section 4.5.4 (which correlates strongly with those swimmers
with the largest posterior mean values of a; over ¢ € 7), the posterior distribution of
these swimmers’ attributes «; (left) and peak ages 7; (middle) is shown. The line colours
in these plots identifies the different swimmers, with the color coding being explained
in Figure 4.5.5 (left). The right panel shows the mean posterior and 95% HPDI for

the subject-specific asymptotic independence measure ;. against time lag 7 in days

(right).
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Figure 4.5.3: Mens’ 100m breaststroke inference. The current record time in seconds
(left) (shown by a black vertical line) is held by Peaty at the time of this analysis. The
posterior distributions for expected next record swim-time (blue) and ultimate swim-
time for this event (orange). Future predictions (right) show the posterior mean (solid
line) and 95% HPDI (dashed lines) of the rate A.(t) of swims by elite swimmers of

beating Peaty’s current record in year .
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Figure 4.5.4: Within-subject diagnostics for six top swimmers: observed swim-dates

and swim performance in seconds (shown as black dots); samples from the posterior

predictive distributions (coloured points) for these swimmers for the dates of their swims

in the past, and for simulated swim times in the future. The threshold u is shown by

the horizontal line and the posterior mean and 95% HPDIs for the peak age 7; are

shown by vertical lines.
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Figure 4.5.5: Inference for individual swimmers: probability that each swimmer will be
the next swimmer in Z¢ to beat the current world record (left) for the 10 most likely;
the posterior distributions for each swimmer for the time at which they are the first
the swimmers in Z¢ to beat the current record (middle); and the posterior distributions
of the expected personal-best of all future times, with the vertical lines showing their
current PBs (right). The swimmers shown in middle and right panels are the six top
swimmers in the left panel. The colours on the middle and right plots identifies the

swimmers, with colors identified in the left panel.



Chapter 5

Conclusions and Further Work

5.1 Conclusions

The literature review in Chapter 2 fuses together the backbones of univariate extreme
value theory: the block maxima approach; the peaks-over-threshold approach; and
the extremal point process, which unifies the first two within a common framework.
But extreme value theory is a deeply researched area of statistics, of which Chapter 2
only scrapes the surface. Subsequent methodological developments expand into the
multivariate domain (Barnett, 1976; Heffernan and Tawn, 2004; Coles and Tawn, 1994),
spatial frameworks (Ribatet, 2013), and can even model both spatial and temporal
aspects (Simpson and Wadsworth, 2021), and in combination with machine learning
techniques (Farkas et al., 2021).

In Chapter 3, the point process methodology is used to model data of elite swimmers.
These data display a smooth increase in the rate of swim performances which exceed
the extremal threshold, reflecting improvements in sports science, such as nutrition
and training methodology. This exceedance rate also shows step changes, correlating
with the introduction of specific technologies such as full-body swim-suits. The data

also suggests that the conditional distribution of swim-times, given this threshold is
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exceeded, is not evolving over time. A novel parametrisation is then introduced which
allows for exactly this: an exceedance rate which is time-dependent, with a conditional
distribution above the threshold which is identically distributed over time.

The unified model pooled data over all 34 individual events, which helped reduce
parameter uncertainty. Previous attempts to pool data across events use distance as
a covariate, for example in athletics (Stephenson and Tawn, 2013), but this would
introduce bias in swimming, since swim-times in, say freestyle, are generally faster than
in, say, breaststroke, over the same distance. Using distance as a covariate also induces
bias if pooling across gender, as athletes in the men’s category tend to record faster
times than those in the women’s category in all but longer distance events (Bam et al.,
1997). This was resolved by using the threshold itself in each event as a covariate in the
pooled model, a technique which is novel in extreme value modelling in general, and
which can adjust the swim-time for the distance, gender category, or stroke, accordingly.
Section 5.2 discusses possibilities for further applications of this.

Chapter 4 developed a first attempt at combining the areas of extreme value theory
and longitudinal data analysis. Here, dependence structures that are specific to lon-
gitudinal analysis are explored, and the resulting forms of extremal dependence that
arise. Unlike the majority of multivariate extreme value analysis the model developed
in Chapter 4 has the flexibility to capture both asymptotic dependence and asymptotic

independence, with this being determined by the data.

5.2 Further Work

Both Chapters 3 and 4 negate the swim-time data in order to use the more com-
monly utilised methodology for the upper-tail of a distribution. Alternatively, Gomes
and Henriques-Rodrigues (2019) invert the swim-time and apply peaks-above-threshold

methodology directly to swim-speed, since a smaller swim-time equates to a larger swim-
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speed. However, Wadsworth et al. (2010) show that such non-linear transformations
lead to differing conclusions, and so conclusions drawn from swim-time analysis are
likely incompatible with those drawn from swim-speed analysis, with no intuitive way
of discerning which conclusions are most reliable. Analysing a Box-Cox transformation
of the data, and estimating this transformation parameter jointly as part of the mod-
elling procedure, would remove the guess-work from the choice of data scale. Moreover,
it allows for the uncertainty in the scale of the data to be accounted for and to be
quantifiable. It could also be interesting to see if the Box—Cox parameter changes in a
systematic way over distance or stroke.

The use of the extremal threshold as a covariate in Chapter 3 is a novel approach
in modelling of extreme values, and helps pool data across dimensions with no obvious
physical links (in the swimming examples, across strokes and gender categories.) In
fact, the only constraint is that the data can be assumed independent across the pooled
dimension, as is done in Chapter 3 between swim-times for different strokes, gender
categories and distances. This simplifying assumption may not be true when the same
swimmer competes across different distances, for example, meaning that the uncertainty
of the estimates would be underestimated. Multivariate techniques could be employed
in order to capture some of the correlation between data points resulting from the same
swimmer in different competitions (Adam and Tawn, 2012). Outside of swimming, this
approach could even be used to pool across different sports, for example, elite marathon
running and pole-vault.

The constant evolution of the para-swimming classification system is testament to
the challenge of creating fair competition in disability sports, with athletes currently
grouped into discrete categories based on their disability type, and which inevitably
leads to some athletes having an unfair advantage or disadvantage within their cate-
gory. The number of classifications itself is open to debate, with too many classifications

resulting in too few swimmers in each classification and therefore a drop in compet-
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itiveness, and too few classifications resulting in large differences between swimmers’
disability types within the same group. Of course, this problem stems from the over-
simplification and discretisation of a variable, in this case disability, which in reality
exists on a continuous spectrum. However, a pooled model of the type presented in
Chapter 3 would allow for a continuous ‘classification variable’ which pools across dis-
ability, to allow fairer competition over all disability types and comparison between
disabilities. In junior swimming, because of the discretisation of age groups, some
swimmers can be almost a whole year younger than others in the same competition,
which creates an unfair disadvantage. The same idea of a continuous scale for age
groups would allow for fair comparison of ‘age-adjusted’ swim times.

The inclusion of transgender (and in particular MtF') athletes has led to controversy,
with the regulations being changed again for the most recent Olympic Games. A large
part of the change in regulation comes from a gradual shift away from irrelevant and
outright transphobic policies, such as the “The Stockholm Consensus” (Committee
et al., 2003), which requires transgender athletes to have completed “anatomic changes
consistent with their professed gender” (Genel, 2017). Despite these changes there is
still little indication of an overall increase in the acceptance of gender variance within
sport (Sykes, 2006). Due to the sex assigned at birth, allowing such athletes to compete
in the women’s category has the potential for an unfair advantage, e.g., this sometimes
leads to higher levels of testosterone; however, denying access to sport only increases
the isolation and social stigmatisation often experienced by the transgender community
(Cromwell, 1999). Rather than these current binary over-simplifications however, our
covariate could allow for sports to reflect the underlying continuous and fluid definition
of gender. In the same vein, cases of unusual testosterone levels can easily be dealt
with. Ultimately, it is possible to have a global model which fairly compares swimmers
across gender and of different disabilities, and even junior swimmers, across different

events.
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Of course, the overall goal in adjusting for disability, age or gender is to promote
perceived equitable competition, but we know these are but three variables of many
that impact fairness in sport. For example, having to overcome discrimination due to
‘race’ can negatively impact the likelihood of succeeding in a given sport (Hylton, 2008).
In this way, to fully level the playing field in sports requires a continuous description

of the complexity and variety in social inequality more broadly.
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Appendix A

Spline Construction

Let Bl(z) be the value of the k' d degree B-spline basis function at a point z, where
k ={1,...,q}, ¢ € Z", and x; denotes the k'™ knot, such that B{(x) is strictly
positive within the region x; < x < xj.4. The exact form of the splines can be formed
recursively from 0 degree basis splines. Note that 0 degree splines are trivial to form,

described as step-functions over the region of each knot such that

1, zp, <z <z)1
0 Y — —+1
By(z) =
0, otherwise.

Then, using the formula (De Boor, 1978) for d > 1

i Tp—1 — Tk—(d+1) F Ty — Tk—d

higher degree B-splines are formed. Figure A.0.1 shows splines of degrees d = 1,2, 3.
It can be seen that as the degree of the basis function increases, the function becomes

smoother and has a larger range. The spline function Y (x) is then constructed as
q

V(@)=Y aBi)

k=1
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basis spline value
0.0 02 04 06 08 1.0

Figure A.0.1: Basis spline functions B{(x) with degree d: degree 1 (black solid), 2 (red
dashed), 3 (green dotted), and 4 (blue dot-dashed), and knots are spaced at integer

values.

where ay, is the k'" B-spline coefficient, and @ = {a; : i = 1,...,q} is the coefficient
vector. Generally, ¢ is chosen to be large, such that the fitted curve shows more variation
than can be justified by the data. To reduce this variation, a penalty on the finite
differences of adjacent coefficients of Eilers and Marx (1996) is used. The penalty is
governed by ¢a’ Pa, where P € R?7*? is the penalty matrix, and ¢ > 0 determines the
amount of penalisation. The choice of P is based on some prior belief of the shape of

the data. The penalty matrix used was a second order, such that
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which penalises a large second derivative, thus penalising fits that depart from linear-

ity.



Appendix B

Supplementary Material for

Chapter 4

This document accompanies Chapter 4. Section B.1 includes further investigations
into the nature of the extremal dependence of the scenarios derived in Section 4.2.3.
Section B.2 shows analytical results for probabilities of future extreme events in longi-
tudinal data using the model of Section 4.5.2, under some simplifying assumptions. In
reality, many applications will require to full flexibility of our novel model, as seen in
Section 4.5, and in this case Monte Carlo simulation provides computational solutions.

A strategy for this is set out in Section B.3.

B.1 Further limit results for studying extremal de-
pendence of longitudinal data

Building on the results from Section 4.2.3, here we explore further the nature of extremal
dependence in longitudinal data. To help better understand the asymptotic dependence
case we consider a version of measure X(TM) which allows both n and the quantile to

grow in combination. Specifically, consider the conditional probability Pr(M,s > z, |
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M, > x,), where z,, — oo and letting «,, = x,, — 0 for some constant §. The marginal

probability is then

Pr(My, > z,) =1 — Pr(Mp < ) = 1 — [®(2,)]" " @ (2, — pi).

Now consider the joint probability

Pr(M,, > xp, Mo > x,) =1 — Pr(M,; < x,) — Pr(M,; < x,) + Pr(M,; < z,, Mo < z,)

=1-2 [@(xn)]nfl O(x, —ay) + [@(xn)]nfl Dy () — Oy Ty — Qi ).

Then, in case (i), consider setting «, as above with x,,, this gives the limit

1 — 20(8) + Bo(5, 5 p)

Pr(M,s > x, | M1 > z,
t(Mpo > xp | My > x,) — = 30)

The above limit is non-zero for all finite 6 and when p = 0 this limit is 1 — ®(6),
which is positive for all 6 < co. So, when p = 0, despite the independence of within-
subject observations, the longitudinal structure induces asymptotic dependence. This
is different from the findings for p = 0 in limit (4.2.9), showing the limits that give
identical findings about the form of extremal dependence for identically distributed
variables can give contrary results for longitudinal data. For case (ii) we have that
Pr(Mys > z, | Myp1 > x,) — 0, i.e. asymptotic independence.

Underlying all these limiting results is the fact that subject n will be the compo-
nentwise maximum with probability 1 in case (i) and 0 in case (ii) for how «,, grows.

This is shown through the following limit, which for case (i) explores the probability
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that the same subject gives a large measurement value at each time point, i.e.,

Pl"(an = MnlaXnQ = Mn2 | Mnl > an)
- Pr{max Xlla st X( n1 ) < than > anvmaX(XHa s 7X(n71)2) < Xn2 ’ My > an}

/ / Pr{max Xlla--'aX(n—l)l) < Oén—f—l’,maX(Xlg,...,X(n_l)g) <oy +Yy
y—oo J =0

| an =7, Xn2 - y}¢2 ([E Y; P) CL’L' dy/ PI’( nl > an)

— /OO_ /i[@(an +2)®(an + )] V2 (2, y: p) da dy/ Pr(Ma > ay)

—>2/ G2 (z,y;p) drdy =1
Y

=—o00 Jx=0

as n — oo, as the powered terms tend to 1, as in limit (4.2.8), and that limit with
z = 0 explains the denominator tending to 1/2, and the double integral is 1/2 due to
symmetry of the standard bivariate normal density about x = 0. Similarly, for case (ii)

this limit is 0.

B.2 Evaluation of probabilities of future extreme
events for longitudinal data

A benefit of accounting for the longitudinal structure is that now inference and predic-
tions of extreme events regarding individual subjects is ascertainable, e.g., the prob-
ability that a new record is achieved by a particular subject ¢ € Z. To make such
inferences, each subject’s mean function over time is incorporated, as well as the tem-
poral dependence around this. Both of these aspects are described by the Gaussian
process model of Section 4.3.2, which gives analytical solutions to probabilities of fu-
ture events through its closed form conditional distributions. Let J be the set of
future measurements for subject i, with the future schedule of measurement points

defined as {t;; : j € JF,i € II'}, where all such ¢; ; > t, for a current time ¢,y
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In practice the evaluation of the probabilities of such complex events are most simply
conducted through Monte Carlo methods, simulating over different realisations of the
longitudinal process for the fitted model, with evaluation achieved empirically over a
large sample of replicates. We present results and various assumptions of this type in
Section B.3, but here we derive the analytical expression for one such event under an
idealised set-up to illustrate the complexity even in this simplified scenario.

Consider the event A (r), corresponding to the subject i € Z breaking the record
for the maximum measurement in some future time period identified by F' and holding
that record at the end of period, given that the current maximum measurement is 7.
Consider the case where (i) all parameters of the model in the latent space are known;
(ii) no subjects outside Z produce measurements in time period F’; (iii) the observed
subjects have a constant mean function over time, i.e., p;(t) = a; in expression (4.3.3);
and (iv) that there is subject-conditional independence for each subject. A benefit of
assumption (iv) is that it removes the need to consider the history of each subject’s
measurements including which subject holds the current record.

To derive P(AF) it is most easy to work in the latent space, recognising that the
current record transforms to the value 75 := G,' [F7 (r,t,)] in the latent space. First
define M/ := max ({Z;; : j € J'}), the maximum measurement for subject ¢ in the
future time period, then this distribution has the survivor function of P(M} > 2) = 1—
[®(2; a, )] ], given assumptions (iii) and (iv). Also let MF, = max ({Zkj: 5 € TE ke T\ {i}})
be the maximum of all other subjects’ measurements in this future period. Then P(A;)

is given as

P(A;) =P{MF > max[rz, M¥))} = P{M}" > r; > M%]} + P{M] > M*, > r,}

keT\{i} rz
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where

25 Mg, V
fur (2) = H ®(z; i, vp) ! Z ’jﬂw
1 heZ\{i} keT\{i} ®(z; par, v)

B.3 Adapting predictions for new subjects

For making inferences about the future behaviour of extreme values for longitudinal data
there are a number of substantial challenges linked to the subject-specific characteristics
of the data structure. Analytical results such as result (B.2.1) are available in simple
cases, but with the mean functions inducing non-identically-distributed variables, it
must be recognised that, in the longer-term, the extreme events are more likely to
be due to subjects not yet observed in Z. In the short-term however, these future
extreme events are most likely to be obtained by the current subjects in Z, followed by
a transitional medium-term in which extremes arise from a mixture of these populations
of subjects. Here we develop the outline of a framework for such inferences, setting out
some possible choices that need to be made in relation to the currently unobserved
subjects. The model parameters here are treated as known, and Section 4.4 presents
how to account for that additional uncertainty.

For the observed data there are n subjects, indexed Z, each with at least one mea-
surement above the threshold u. Going forward beyond the observed time-frame, there
are then three types of subject to consider: (i) those subjects in Z, indexed by Z¢
with Z¢ C Z, which are still producing at least one measurement above u in the future
time window; (ii) those subjects Z/, which produced measurements exclusively below
the threshold within the observed time-frame and so {Z/ NZ} = (), but in the future
produce a measurement above wu; and (iii) those subjects Z™ with no recordings at all
within the observed time-frame but which in the future period produce at least one
measurement above u. To help remember the terminology the superscripts here de-

note c¢ for current subjects with a future threshold exceedance, f for subjects in the
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population which are active in the observed time-frame and which record their first
exceedance of u in the future time period, and n for an entirely new subject which
records an exceedance of u in the future time period.

For each subject in each of the groups Z¢, Z7 and Z" measurement series are sim-
ulated over a time window of (fmax, tmax + 1') Where .y is the maximum time in the
observed database and T is the length of the future period of interest. As membership
of these three groups depends on a subject achieving a measurement larger than u in
the future time-period, the number in each group is random. In practice it is easiest
to first generate a time series for each individual that could be in the three groups and
then a random number of these will meet the criteria to be in the respective groups.
For groups Z¢ and Z/ the maximum number of potential subjects there could be is
known from the observed numbers in the database, but in practice, computational time
is saved by omitting previously measured subjects which have no measurements in the
latter part of the observation window. That is, tyax — tin, being sufficiently large sug-
gests that subject i has stopped generating measurements that have potential to be
extreme. In contrast, for Z" assumptions must be made about the arrival rate of new
potential subjects. We propose that the rate of first measurements per subject in the
database per unit time-period, denoted by rg.q, is used to estimate this rate. Then,
the number of potential new subjects for the future is generated by a Poisson(7r44)
random variable.

For each of the potential subjects in the three groups, the number and the times of
the future measurements in (¢yax, tmax + 1) and simulated realisations of the associated
measurement X; ; are generated according to the models in Sections 4.3.1 and 4.3.2 for
these times-points, conditional on any information already present about these subjects.
The subject is then identified as being from a group if their maximum measurement
exceeds u. These steps are discussed below, identifying the features that change across

the three groups.
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For each potential subject in any of the three groups, measurement time points
are generated independently over subjects from a homogeneous Poisson process with
rate w; per unit time for subject 7. That is, a subject ¢ has N; future observations,
with N; ~ Poisson(Tw;), with these measurement time-points uniformly distributed on
(tmax, tmax + T'). The times for the future measurements for subject i are denoted by
£ = {t; tmax <t]; <tmax +T,i=1,...n7} where nj is the realisation of N;. For
a potential subject i € {Z°U Z'}, an estimate of w; is based on the empirical rate of
measurements up to ty.. for the subject in the database. For each potential subject
1 € I", w; is estimated from the observed population of subjects Z. Specifically, a
subject j is randomly drawn from Z with associated rate w;, and then we take w; ~
logN ((log(w;) — ¥*/2,9?). This choice ensures that the expected value of w; is an
existing rate w;, and where the choice of ¢ can be selected based on how representative
the subjects in Z are believed to be relative to the entire population. So, 1 can be
taken larger if an under-representation of Z is anticipated.

Next, the measurement values for each potential subject are simulated in the latent
space, given the simulated future measurement times. For each potential subject 7, mea-

surements are simulated from the Gaussian process Z;(t) ~ GP {u(t;0;,7), Kg(-, )}, at

*
: *
7,M;

time-points ¢; = (¢;,,...,%;,+). These simulated processes are generated conditionally
on the previous data when appropriate for the group, see below. For future realisations
in the upper tail of the latent variable space we can transform back to the observed
space using transformation (4.3.5). Only those potential subjects with their maximum
measurement in the time interval (¢pyax, tmax +7') exceeding u are included as a subject
in their respective group. For deriving future scenarios we are only interested in those
simulated measurements above w in original space.

We have different existing knowledge at time t,,., for each subject depending on

which of the three groups they are from, in the form of past measurement values,

covariates, and information about #;. For a potential subject ¢ € Z¢ the posterior
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distribution of @; and the subject’s covariates that determine how p; varies with ¢ are
available. That potential subject’s Gaussian process is the simulated given the past
values of (Z;(ti1),...,Zi(tin,)). Although some of these past Z;(t) values are non-
extreme in the original space, i.e., the associated X;; < u, our inference methods of
Section 4.4 provide estimates for all of these values from which to condition on for each
of the generated posterior samples for the model parameters.

Now consider a potential subject i € Z7. Although past observational data are
available for them, as of time t,., these data are not included in inference, and so
no estimates of subject-specific parameters 6, are available. Likewise for any potential
subject in group Z". For both cases #; can be drawn from the joint posterior from a
randomly selected subject in Z. In both cases the Gaussian process is simulated forward
from t,.. independent of any past measurement data information, so for potential
subjects in Z/ the past data is ignored. To be able to use the Gaussian process, the
relevant covariates for the potential subject are required. For a potential subject i € Z7
their actual covariates are used, whereas for ¢ € Z™ the covariates at drawn randomly

from a subject in the database (not just from subjects in 7).
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Relative Systems

There’s always a bigger fish

— QUI-GON JINN
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Chapter 6

Ranking Via Paired Comparison

Favourite desserts, difficulty of yoga positions, harms of drugs (Nutt et al., 2010), “the
most livable neighborhoods in New York” (Silver, 2010) - anything can be ranked.
But in general, for relative systems it is easier to express a preference between a pair
of objects than to rank the whole set. Optometrists, for example, often use paired
comparison techniques (“better or worse?”) in order to find the best prescriptions for
prescription glasses (Olkin et al., 2015). Relative systems exist outside of the pairwise
comparison domain, such as three-way chess, where three players compete simultane-
ously on the same board. But in general the literature on relative systems is dominated
by paired comparison methodology, which uses knowledge of pairwise preferences to
infer a global rank.

The rankings are then informative of the outcomes of future comparisons. For exam-
ple, Boulier and Stekler (1999) use rankings from the Association of Tennis Professionals
(ATP) and US collegiate basketball for predicting future outcomes via a generalised lin-

ear model, such that the probability of person/team a beating another b is given via

Adap
Pab = / ¢(t) dtu

o0

the probit model

where ¢ is the standard Gaussian probability density function (PDF), A € R is an
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estimateable parameter, and 0, € Z := R, — R, is the difference in ranks where
R., Ry € Z are the ranks of a and b respectively. Note that the better object has a lower
rank (with the best object having rank one), and so \ is typically negative. Here the
raw difference in the ranks in each pairwise match-up are used; however, the difference
in rankings is in general not linear in terms of ability: the difference in ability between
objects ranked one and two tends to be larger than the ability difference of objects
ranked 1001 and 1002 (Lebovic and Sigelman, 2001). Consequently, the probability
of preference between two objects is not a linear function of the difference of their
ranks, as is assumed in the above model. Therefore, Klaassen and Magnus (2003) use
transformed ranks to predict outcomes in ATP tennis matches, so that if a player a has
the official ATP ranking R,, then the transformed rank is given as R, := 8 —log, (R,) .
Then, the probability a beats b, p.p, is modelled again using a generalised linear model.

Specifically, they use logistic regression, modelling

exp [\ (R — 1) |
1 exp [A(Ro— foy) |

Pab =

Already, then, there’s a whiff that the rankings are obscuring a more fundamental
description of object preference. It is generally more accurate to ascribe to each object
(or in the aforementioned example, player) some true rating, which may be latent.
The rankings are then simply the upshot of ordering these more meaningful ratings.
By only using the rankings, we lose all information about the separation between the
objects. Accurate forecasting and meaningful inference, therefore, tend to use the
objects’ ratings rather than their ranks. A large part of the paired comparison literature
centres on uncovering these ratings.

But there is more to a system than the objects and their ratings - the probability
of an outcome can be affected by the state of the system itself. In wine-tasting, for

example, preference between two wines may be inverted due to a change in state: we
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could imagine a chilled white wine to be preferred to a red on a mid-summer’s day, even
if the red’s rating is objectively higher. In sports, the state of the system is regularly
altered via the home-advantage effect, which is commonly found over a range of sports
(Schwartz and Barsky, 1977). Equally, a change in weather or choice of referee changes
the system’s state - or any exogenous factor which is external to the objects’ ratings
(Glickman and Stern, 2017).

The order in which objects are compared can also influence the outcomes of paired
comparison. For example, the order that wines are presented to a wine-taster confounds
the order of preference (Scheffé, 1952). Similarly, in sports, tournament structure in-
fluences the rankings. This is further complicated because the objects’ strengths, or
ratings, may not be stationary. Therefore tournament structure can cause both a change
in state, i.e., it can be an exogenous factor, and a change in ratings for a given com-
parison, i.e., an endogenous factor. The time, and therefore order, of comparison is
crucial, and some dynamic ranking systems aim to capture this. From the bountiful

paired comparison approaches, the most well-known are highlighted below.

6.1 Statistical approaches

Amongst the most established methods are the Bradley-Terry (Bradley and Terry, 1952)
type models. These are statistical paired comparison models which infer a rating u; for
each object ¢ amongst a set of objects Z based on the outcomes of paired comparisons
between the objects. The basis of these models is that the probability p;; of ¢ € 7
beating another object j # ¢ € 7 is a monotonically increasing function of the difference
of the objects’ ratings, such that p;; = f(u; — ), where f : R — [0,1], f(2') >

f(z) Vo' > x. If f is chosen to be the logistic function i.e.,

f(z) , T €R,

1+ exp(—x)
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then this is the Bradley-Terry model. When f is the Gaussian CDF (probit) then
this gives the Thurston-Mosteller model (Thurstone, 1927; Mosteller, 1951a,b). For
the parameters p:= {p; : i € Z} to be identifiable a constraint is required, typically
on either a single parameter, for example setting p; = 0 for some k € Z, or on the
sum, for example ) ., p; = 0. Mathematically, the constraint is required because
any constant ¢ € R could be added to all the values p} = p; + ¢, Vi € Z, resulting
in identical inference, since only the difference between the parameters is informative.
Intuitively, the constraint is required because we are modelling a relative system, that
is, the system requires context, and each object rating is meaningless in isolation.
Home advantage is widely recognised as an important feature in pairwise compari-
son, and particularly when applied to sport (Cattelan et al., 2013). In Bradley-Terry

type models, this is naturally achieved by changing p;; to a probability

P = i+ — ) Vi#j €L, (6.1.1)

if ¢ is the home object, where v € R determines the effect of being at home, which
here is common over all pairs of objects. If v > 0 (7 < 0) then the probability of a
home preference is increased (decreased) relative to the objects’ ratings. This effect
can be extended to vary over objects by replacing v by ; in expression (6.1.1), giving
a set of home advantage parameters {~; : i € Z}. To ensure these parameters are all
identifiable, some v, = 0, & € Z can be fixed, though no additional constraints are
needed if there is a common . Alternatively, placing a lasso penalty (Tibshirani, 1996)
on the home advantage parameters {7; : i € Z} will ensure that only a subset of distinct
home-advantage parameters are considered. Masarotto and Varin (2012) cast a lasso
penalty on the ratings themselves. The penalty constrains the ratings such that objects
with statistically insignificant differences in rating are rated identically, which avoids
over-interpretation of misinformed rankings. This can also be achieved via directly

clustering the objects’ ratings into distinct levels. See Chapter 7 for a novel approach
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to clustering in pairwise comparison.

Figure 6.1.1: Illustration of four possible tournament structures, created using the same

total number of comparisons.

Both clustering and penalising via lasso alter the parameter identifiability and there-
fore the required constraints. Identifiability is also affected by the order of comparison,
or tournament structure. It’s helpful to consider the graphical view of a paired compar-
ison system here, with objects as nodes and their comparisons as edges. Figure 6.1.1
depicts four graphs resulting from different tournament structures, but with the total
number of comparisons equal within the system. Assuming that all objects are identical,
then if all objects are compared to all others an equal number of times - a tournament
structure known as round robin, Figure 6.1.1 (far left) - this creates maximal connec-
tion between all pairs of teams. As such, the total uncertainty across all the objects’
parameter estimates - the system uncertainty - is minimised. If there is imbalance but
the graph is still fully connected as in Figure 6.1.1 (middle left), then information is
transferred less efficiently between the objects and the system uncertainty increases. In
Figure 6.1.1 (middle right) the connectivity is further reduced, with object A’s rating
only determined via the single comparison it has with object B, making object A’s rat-
ing difficult to estimate. Finally, in Figure 6.1.1 (far right), the graph is disconnected,
and none of the objects’ ratings are identifiable without further constraints, despite
the same total number of comparisons. Precisely, if a tree cannot be formed on the

graph using the available pairwise connections, then more constraints are required in



CHAPTER 6. RANKING VIA PAIRED COMPARISON 144

order for any objects’ ratings to be identifiable. This is proven in Chapter 7, which
explores the combined effect of both clustering and tournament structure on parameter
identifiability in paired comparison.

Some systems allow for a comparison between two objects to result in “no-preference”,
known in sports as a draw, or tie. Extensions of the Bradley-Terry model have been
proposed for handling no-preference. Two distinct extensions are Cattelan et al. (2013)
and Hankin (2020). The former uses ordinal logistic regression, treating preference for
either object and no-preference, as outcomes of an ordered multinomial random vari-
able, which can then be analysed via an ordered link model. In contrast, the latter
treats the problem as a competition between the two objects and a third theoretical
object (called “draw monster”), such that when preference is expressed for the draw
monster, the outcome of the match corresponds to no-preference between the two actual

objects. The strength of the draw monster therefore reflects the proclivity to draw.

6.2 Exploring Intransitivity

The models considered thus far use a single parameter to describe each object’s rating.
The direct implication of this is the imposition of transitivity. Transitivity is defined
over a set of three of objects, and constrains that, if A is preferred to B, and B is
preferred to C, then A must be preferred to C. Further, a set of objects Z with
cardinality |Z| > 3 exhibit transitivity if all triplet-subsets 7 C T, |i| = 3, exhibit
transitivity. A system exhibits intransitivity if at least one triplet-subset of its set of
objects violates the transitivity constraint. The most famous example of an intransitive
system is the game Rock-Paper-Scissors: a paired comparison system in which Paper
is preferred to Rock, which is preferred to Scissors, which is in turn preferred to Paper.
Consider the “deterministic” version, where a player r always picks Rock, a player

p always picks Paper, and a player s always picks Scissors. There is clearly no set of
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three ratings available to objects Rock, Paper and Scissors which reflects this behaviour
in this formulation. Modelling such a system therefore requires a deviation from the
classical one-object-one-rating structure.

The Rock-Paper-Scissors game depicts the violation of deterministic transitivity
within a relative system. Through our statistical lens however, we are more interested
in stochastic transitivity. For a set of 3 objects 7, j, k, where ¢ > j denotes that 7 is
preferred to j for alli # j € {i, j, k}, there are three definitions of stochastic transitivity:

weak stochastic intransitivity whereby

Pr{i > j} > 0.5, Pr{j = k} > 0.5 = Pr{i = k} > 0.5,

i.e., we can deduce preferences only; strong stochastic transitivity, whereby

Pr{i > j} > 0.5, Pr{j = k} > 0.5 = Pr{i = k} > max{Pr{i = j},Pr{j = k}},
(6.2.1)
i.e., we can also deduce something about the probability; and linear stochastic transi-

tivity, whereby

dF
Pr{i > j} = F(u; — p ), F:R —[0,1], d;x) >0, Vz,

where 1, € R is the rating of object a, Ya € {i,, k}. If F(z) = [1 + exp(—z)]" then
this is the Bradley-Terry model, so logit (Pr{i > j}) = p; — p;, Vi # j € Z. Of these
three definitions, linear stochastic transitivity is the strictest, and implies that given
any three objects i # j # k € Z, and two probabilities Pr{i > j}, Pr{i > k}, the
probability Pr{j > k} is completely determined by the other two probabilities. This
will be proven in Chapter 7. From hereon in, stochastic transitivity will simply be
termed transitivity.

If intransitivity is the violation of transitivity, then intransitivity is not well defined,
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since it is not clear which of the three aforementioned forms is violated. Moreover,
intransitivity can form part of an arbitrarily large cycle. For example, the n > 3 objects
{z; i € {1,...,n}} may have preference probabilities Pr{z; > z;;1} > 0.5, Vi €
{1,...,n — 1} and Pr{z, > 21} > 0.5, resulting in an intransitive cycle of length
n. In this scenario It is not clear which of the n objects is causing the intransitivity.
Whether a cycle of length 3 has more or less intransitivity than a cycle of length n
is also ambiguous without some means of quantifying the intransitivity of a system.
Of course, in the stochastic scenario a worse ranked object could express preference
over a better ranked object from any number of independent comparisons purely due
to chance, i.e., an “upset”, and distinguishing between an upset and intransitivity can
be challenging. In fact, intransitivity is commonly assumed as being due to inference
variation or as arising due to errors in the dataset (Skinner and Freeman, 2009; Kéri,
2011), such as underlying incompleteness of preferences, and it is therefore treated
as a nuisance which should be removed in these contexts. However, in the case of
Rock-Paper-Scissors this is clearly not the case - the intransitivity is built into the
inherent structure of the competition. Indeed, it has been shown experimentally that
intransitivity can be a real feature of a system which cannot be accounted for by errors
or natural variation (Tversky, 1969; Montgomery, 1977; Lindman and Lyons, 1978).
In recommender systems, some view intransitivity as arising due to the aggregation
process from different judges’ underlying preferences, but that each judge’s underlying
preferences are still transitive (Rendle et al., 2009; Pan and Chen, 2013). Other work
recognizes that intransitivity may be systematic even in a one judge system, which is
where Chapter 7 sits, and some model intransitivity as arising from both sources (Chen
et al., 2017).

Systematic intransitivity even under a one judge system is observable not just in
artificial constructions, such as dice games (De Schuymer et al., 2003) or quantum games

in physics (Makowski and Piotrowski, 2006), but also occurs naturally, for example, in
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competition between bacteria (Reichenbach et al., 2007) or mating choices of lizards
(Sinervo and Lively, 1996). Pahikkala et al. (2010) contains many more examples, and
argues that violation of weak stochastic transitivity can occur in any situation where
the best strategy in a given comparison depends on the strategy of the opponent.
Given this, it would not be surprising to find cases of intransitivity in sports. In fact,
by drawing parallels with social choice theory, Smead (2019) provides a philosophical
argument as to why intransitivity is not only unsurprising, but is particularly likely to
occur in sports.

Poisson models handle some amount of intransitivity without directly modelling
it. They differ from the approaches presented thus far, in that they model preference
indirectly by, for example, modelling a score-line. This can be more efficient since it
utilises more information. Maher (1982) model score-lines in football (soccer). For a
given pair of teams (i,7), Vi # j € Z in a league comprising the set of teams Z, the
goals scored by each team in a comparison between them is assumed Poisson distributed.

Letting X;; and Xj; be the goals scored by team 7 and j respectively, then
X; ~ Poisson(a; ;) L Xj; ~ Poisson(a;;),

where a > 0 and [ > 0 are interpreted as the attacking and defensive abilities of a
team k € Z. A home-advantage is included by modelling

Xz‘(;) ~ Poisson(yw;3;), X;? ~ Poisson(a;f3;),

where the superscript denotes the home team, and v € R dictates the advantage (or
disadvantage) of playing at home. Various extensions exists: modelling correlation
between XZ-(;) and X ](2) and weighting the importance of data based on its recency (Dixon
and Coles, 1997); and by framing the model in a Bayesian context with ratings that

update after each comparison (Rue and Salvesen, 2000). Other examples of modelling
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score-line include McHale and Morton (2011), who model the number of games in a
tennis match to exploit the knowledge that losing 0-6, 0-6 is worse than losing 6-0, 6-7,
6-7. Note that in this example the losing player actually scores more total points, and
given this datum alone the losing player would actually be ranked as better.

The Poisson models’ use of attacking and defensive parameters for each object equips
it with the support for some intransitivity. Although more degrees of freedom often
provide greater flexibility, it is not simply the quantity of parameters that determines
this support. Chapter 7 shows that it is possible to develop a model which violates even
weak intransitivity using fewer parameters than one-object-one-parameter models, e.g.,
Bradley-Terry. It turns out that Poisson models have the flexibility to violate strong
transitivity, but not weak intransitivity. Carroll and De Soete (1991) argue that in order
to be realistic, a paired-comparison model should violate strong stochastic transitivity,
but not necessarily weak intransitivity. But both approaches necessarily fail to model
Rock-Paper-Scissors. Support for the violation of weak stochastic transitivity, and
therefore intransitive triplets (or cycles), is less common. Early examples include the
work of Tsai and Bockenholt (2006), which uses a random effects model to capture
intransitivity, and that of Pahikkala et al. (2010), which tackles the problem from a
machine learning standpoint using kernel methods to estimate the intransitive relations.

Chapter 7 presents a novel framework which encapsulates all three forms of intran-
sitivity; allowing the flexibility of the model to be determined by the data. When mod-
elling truly transitive objects, the model becomes the special case of the Bradley-Terry
model, exhibiting linear transitivity. When there is evidence that the data violates
strong transitivity, the model can capture this parsimoniously, potentially using less
degrees of freedom than the Poisson models. When the data violate weak transitiv-
ity the model adapts again, allowing for modelling the “simple” deterministic game of

Rock-Paper-Scissors.
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6.3 Heuristic ranking methods

Being statistical approaches, the ranking methods depicted above quantify uncertainty
around their parameters, be that objects’ ratings or attacking and defensive abilities.
Though lacking this functionality, heuristic methods for ranking offer speed. This allows
for assumptions found in their statistical counterparts to be relaxed, such as stationarity.
Heuristics can therefore be dynamic whilst remaining computationally affordable.

In a connected relative system, see Figure 6.1.1 (far left, middle left and middle
right), all pairwise relationships between objects Z are liable to change after any single
comparison between a pair (i,7) : i # j € Z, though the relationship between (i, j) is
generally impacted the most.

The Elo rating system (Elo, 1978) is a dynamic heuristic introduced by the physicist
and chess player Arpad Elo for ranking chess. It is dynamic in the sense that the
objects’ ratings update with each comparison, and is a heuristic in the sense that in
a given comparison, only the two compared objects have their ratings updated rather
than the full set, thus only approximating the full system change. This enhances its
computational efficiency, and allows for the Elo rating system to be used even for
systems containing any arbitrarily large number of objects. The premise of the Elo
system is that the change in ratings of two objects engaged in pairwise comparison
should depend on the expectation of the outcome. Let X;; ~ Binomial(p;;) be the
random variable corresponding to a comparison between objects ¢ € 7 and j # 1 € Z,
with X;; being 1 if object ¢ is preferred, and Xj;; being 0 if object j is preferred, and
where p;; is the probability of i expressing preference over j. Then, the Elo rating p;

of object i is updated to a rating p) after a comparison with object j via
pi = pi + K (zy; — E[Xy]), Vi#j €T,

where z;; € {0,1} is a realisation from X;;, and K € R, is known as the K-factor
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and reflects the dynamic aspect of the system, by controlling the weighting of recent
events on the overall ratings. The K-factor can be thought of as a measure of the
‘forgetfulness’ of the system. If K is too large, then the ratings become too volatile and
sensitive to recent events, increasing the variance in the ratings. Take K too small, and
the objects’ ratings are too heavily weighted on early events which may no-longer be a
true reflection of the object’s rating, thus inducing bias.

The Elo system is in fact a special case of the Glicko system (Glickman, 1999),
a Bayesian construction which allows for uncertainty in the object abilities, although
it still only updates the ratings of the compared pair in a given comparison. The
uncertainty in an object’s ability increases the longer the object remains dormant. The
Glicko2 system (Glickman, 2001) extends this by introducing a volatility measure, which
indicates the expected variation in an object’s performances given its rating.

Both methods commonly use a logistic link function between the object ratings and

the win probability as in Bradley-Terry, so that

1
" Tt exp ((py — )/

pij = E[Xjj]

where A > 0 is a parameter that determines the spread of the ratings, which does not
effect the order, or rank, of the objects. Alternatively, a Gaussian link function can be

used, as in the Thurstone-Mosteller model, such that



Chapter 7

Modelling Intransitivity in Pairwise

Comparisons with Application to

Baseball Data

7.1 Introduction

The seminal Bradley-Terry model (Bradley and Terry, 1952) is commonly used to rank
objects from paired comparison data. Given a set Z of n objects with each object 1 € Z
having skill r; € R, then the Bradley-Terry model gives, for i # j € Z,

p(.BT) =Pr{i > j}:= {1+ exp[—(r; — Tj)}}ila (7.1.1)

v

where a > b denotes preference for object a over b, and r; = 0 to avoid identifiability
issues. A ranking of the objects is given by sorting estimates of r := {r; € R : i € Z}.
This model is transitive, i.e., py,jT) is given by png) and pﬁ,]j’T), foralli #j #k €T,
see Section 7.3.

Now consider the game of Rock-Paper-Scissors, a zero-sum game in which Rock

beats Scissors, Scissors beats Paper, and Paper beats Rock, and specifically consider
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the deterministic scenario where players (r,p,s) always pick (Rock, Paper, Scissors)
respectively. In this scenario, all win probabilities in a game are either 0 or 1 depending
on the opponent, and each player wins their next game with probability 1/2 if their next
opponent is to be selected at random. Whatever way the skill of a player is defined,
the symmetry of this game set-up unquestionably leads to the conclusion that the three
players have equal skill levels.

Conclusions drawn from a Bradley-Terry model fitted to data from this simple
game are surprisingly poor. Given a round-robin tournament, where each player plays
all other players an equal number of times, the model will correctly estimate that all
players are equally ranked in terms of skills; however, it would also estimate all pairwise
win probabilities to be 1/2; which couldn’t be more wrong. Even worse, is that any
illusory ranking can result when the tournament is not round-robin, e.g., if the most
common pairing of players is (r,s) and the other two pairings occur equally often then
the Bradley-Terry model will rank player r as top. The key reason for the failure of
the Bradley-Terry model is its transitive nature, a trait shared by almost all commonly
used ranking systems.

Here we develop a novel pairwise comparison model, and an associated ranking
system, which accounts for intransitivity. Thus, it describes how specific pairwise prob-
abilities differ from probabilities given by overall skill levels alone, i.e., how probabilities
differ from those given by the Bradley-Terry model. The Rock-Paper-Scissors game also
illustrates that ranking can involve ties, where subsets of players can have equal skill
levels, and that tournament structure can effect the subsequent inference. We also
address some aspects associated with these issues.

The concept and associated modelling of intransitivity is not new. Makowski and
Piotrowski (2006) present many examples of competitions exhibiting intransitivity and
argue that it can occur whenever the best strategy in a given comparison depends on

the strategy of the opponent, and Smead (2019) provides a philosophical argument



CHAPTER 7. MODELLING INTRANSITIVITY 153

as to why intransitivity is particularly likely to occur in sports. Given this, it is not
surprising to find cases of intransitivity in e-sports (Makhijani and Ugander, 2019; Chen
and Joachims, 2016; Duan et al., 2017). Other applications include social choice, real
sensory analysis, and election data-sets.

With n competitors there are n(n — 1)/2 interactions, or intransitivities, so even
in round-robin competitions, with m rounds, there are too many terms to estimate
efficiently using empirical methods, unless m/n is large. Causeur and Husson (2005)
proposed an O(n?) parameter extension of the Bradley-Terry model to address intran-
sitivity. Subsequently O(nd) parametric models have been studied for some fixed d € N
(d < n), see all the models in Section 7.2, but they lack the flexibility to cover the
potentially O(n?) different intransitivities across n players, leading to bias; whilst they
are not parsimonious when the intransitivity is simple, leading to inefficiency.

Although the concept of intransitivity is quite clear, there is no established measure
of the amount of intransitivity in a dataset. In this work, we propose a definition
of intransitivity through a distance metric between the assumed probability of paired
comparisons under a Bradley-Terry model, and the empirical or model-based probability
estimate, such that for any given dataset the magnitude of the intransitivity present is
unambiguous. A flexible model then, is one which is capable of exploring the space of
all possible combinations of intransitivity, as defined by this measure. Any parametric
model is restricted to a subset of this space by definition, with this restriction being
most obviously revealed when assessing predictive performance.

We then develop a novel semi-parametric extension of the Bradley-Terry model,
allocating the n(n — 1)/2 pairs of objects to a random number K, with 0 < K <
n(n —1)/2, of distinct intransitivity levels, each level representing a different strategy.
We term this model the Intransitive Clustered Bradley-Terry (ICBT) model. Relative
to the aforementioned parametric models, this ICBT model provides greater flexibility

to enable the incorporation of varying structures, and degrees of, intransitivity. As
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many of these strategies will have similar effects, we anticipate that K should be small,
yet the random property of K provides the potential for it to be large when required.
This flexibility ensures that our model is parsimonious, whatever the complexity of the
data. For our Rock-Paper-Scissors illustration K = 1.

Moreover, our novel approach for the objects’ skills is to allocate the n objects into
a random number of A+ 1 < n distinct skill levels, to improve efficiency and avoid false
rankings. This constraint recognises that from paired comparison data there will be ob-
jects that are indistinguishable as having statistically significantly different skill levels,
e.g., for our Rock-Paper-Scissors illustration A = 0. So clustering skills avoids over-
interpretation of misinformed rankings, a feature Masarotto and Varin (2012) address
by clustering skills via a lasso procedure.

The basis of our model is the belief that in practice there are likely to small subsets
of skill and intransitivity levels, namely A < n — 1 and K < n(n — 1)/2 respectively.
As we have little prior knowledge about the skills of the objects or the intransitivities
of the pairs of objects, we allow the clustering of objects into different skill levels,
and of the pairs of objects into separate intransitivity levels, to be determined entirely
through a Bayesian hierarchical model. We take each of (A, K), the allocations of
objects to skill levels, and the allocations of the pairs of objects to intransitivity levels
as unknown, with inference being conducted via a reversible jump Markov chain Monte
Carlo (RIMCMC) algorithm. This formulation does offer computational challenges;
however, we anticipate that typically the posterior will give a high probability that
A+ K < n and that many of the cluster allocations also will be strongly identified.
Our inference framework offers the opportunity to select a highly simplified model, with
the values of A, K and allocations fixed at values given by posterior means/modes if
these are found to align with known structure about the paired comparison. In the
absence of such knowledge our results allow for the full uncertainty of these features to

be accounted for.
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In certain circumstances our model has the potential to identify and correct for
imbalanced tournament structure on overall rankings since teams are not penalised if
they (unfairly) compete most frequently against those whom they perform systemati-
cally worse to relative to what is expected based on respective skills alone.

We use American League Baseball data to illustrate the performance of our methods
in comparison to existing models for a range of reasons. Firstly, each game results in a
win or a loss for a team. Secondly, it is known to be a highly strategic game, see Section
7.5, so we anticipate that the level of intransitivity will be high. Finally, although the
tournament structure is not round robin, each team plays each other team often, and so
the existence of intransitivity should become apparent in inference. Indeed this is found
in Section 7.5, where our model is shown to have an improved fit over the Bradley-Terry
model and existing parametric intransitivity models in out of sample testing for each
of the nine seasons we study.

The layout is as follows. Section 7.2 introduces other approaches to modelling in-
transitivity. Section 7.3 then introduces our novel measure of intransitivity, the ICBT
model, and the ranking formulation. Section 7.4 contains details of the inference, includ-
ing prior specification, our full Bayesian hierarchical modelling strategy, an overview of
the RIMCMC algorithm and its novel features, and an overview of a simulation study.
Section 7.5 compares this model with the Bradley-Terry model and other competitor
models, using American League baseball data. Section 7.6 is a discussion. Full details
of the RIMCMC algorithm, simulation study, and extended analysis of the baseball

application are in the supplementary material.

7.2 Literature on Intransitive Modelling

The blade-chest model of Chen and Joachims (2016), extends the Bradley-Terry model

into d-dimensions by incorporating so-called blade and chest vectors b;, c; € R for each
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object © € Z. There are two versions: the -dist and -inner variants, given respectively
by

togit (pi"“”) i= |lbj—cil B—IIbi—cs| +ri—r;, and logit (") := B¢ ~b-citri—ry.
The blade and chest parameters of all the objects can be viewed as features on a
d-dimensional latent space. Then, if an object i’s blade is close to object j’s chest,
and simultaneously object i’s chest is far from object j’s blade, then object i has an
additional advantage over object j. If d = 2 this model can represent a deterministic
Rock-Paper-Scissors game, by placing the blade of Rock at the chest of Scissors, the
blade of Scissors at the chest of Paper, and the blade of Paper at the chest of Rock.
By increasing d, ever more complex relationships can be captured between the pairs of
objects. Given n objects and b;, ¢; € R? for each object i, the model contains 2d(n — 1)
identifiable parameters. The r parameters can be absorbed into the blade and chest
parameters; however, the above parametrisation makes it clear that the Bradley-Terry
model is a special case of the blade-chest model, when b; = b; = ¢; = ¢;, Vi,j € I.

Duan et al. (2017) introduce a generalised model for intransitivity, with

logit (pﬁ?) = 11 Spty + g5 Do — g Ty,
with p; € R, where d is even, being a d-dimensional strength vector, for an object
i €T, and ¥,T € R are so-called transitive matrices. The first matrix ¥ represents
the interactions between objects, and I' controls how an individual object’s strength
components form the object’s overall strength. The number of identifiable parameters is
d(3d/2+n—1), since there are two d x d matrices (X, "), of which ¥ is skew-symmetric,
and n d-dimensional vectors. They show that their model is a generalisation of the
blade-chest and Bradley-Terry models. Specifically, the blade-chest-inner model arises

when p; = (b, ¢;), p1; = (bj,¢;), and ||pi||3 = ||, that is, the objects all have equal
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skill, and ¥ is a block diagonal matrix with two (d/2) x (d/2) matrices of zeros on
the diagonal and matrices /42 and —1I;/, on the off-diagonals where I,,, is the m x m
identity matrix, then pf Xp; = b] - ¢; — bT - ¢;. The degrees of freedom are restricted by
regularization, using an Ls norm for the object strength vectors and Frobenius norm
for both transitivity matrices. The tuning parameters are selected via cross-validation.

Makhijani and Ugander (2019) introduced a majority vote model with object i
having a vector of d skill attributes, (i1, .., tiq), where d is odd. Then, given a
suitable choice of mapping function f, e.g., logistic or Gaussian, define qf-j = fpis—10)s
Vi e {1,...,d} to be the probability of i beating j based only on their /th attribute.
Then, majority vote model says that the probability of ¢ being preferred to j overall, is
the probability that it wins across the majority of attributes. For d = 1 the model is

linearly transitive, but not when d = 3, as

Pr{i = j} = aya505 + (1 — ay)aiay; + 4 (L — a)as; + aa5(1 — 43y)-

7.3 Modelling

7.3.1 Measure of Intransitivity

From the model definition (7.1.1), the Bradley-Terry model assumes linear transitivity.

This assumption constrains the pairwise probabilities of the model such that, given

pgn) and pE]ET) from (7.1.1) for any i # j # k € Z, the probability pE,?T) is completely

determined. It is straightforward to show that the form of pSfT) is given as

(BT) (BT)

(BT) Dij Pjk .
P~ = BT) (BT BT BT)) ’ Vi # ik,
1+ 2p ) — (p§j o )>
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noting it is independent of the choice of bridge object j. Therefore, there can be no
interaction that is specific to the pair {i, k}, that is not already captured between all
other pairs.

Including intransitivity, however, allows for some pairwise probabilities to depart
from those assumed by the Bradley-Terry model. This can be formalised by supposing
that for all © # k € Z the true probability of preference i > k is given as some function
f:{[0,1],R} — [0, 1] of the Bradley-Terry probability and the intransitivity, 6;, of the

pair {i, k}, then we can write

pin =1 (D", 0u) Vi £k €T, (7.3.1)

where we identify the form of f in Section 7.3.2. We define the intransitivity to be
the displacement of the true probabilities from the Bradley-Terry probabilities on the

log-odds scale, so that

pir/ (1 = i) ) .
Oir := log ( , Vi kel (7.3.2)
P =P

is the amount of intransitivity between the pair of objects {i,k}. A value of 6;, = 0
indicates that the comparison is transitive, i.e., the pairwise probabilities could be
modelled by the Bradley-Terry model. As a consequence we require f(x,0) =z, = €
[0,1]. The choice of log-odds ratio in equation (7.3.2) reflects the non-linearity of
probabilities. For example, if € = 0.099, then a small linear shift in probability from 0.5
to 0.5 + € has little impact on the odds, which remain at approximately 1:2. However,
a linear shift in probability from 0.9 to 0.9 4 € has a huge impact on the odds, which

move from 1:10 to 1:1000. Moreover, our definition (7.3.2) for the intransitivity 6y also
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imposes rotational symmetry for pairs of objects, that is

Pri/ (1 — Drs) ) (1 — pir)/Pir .
Or; = log ( = log = —Op, Vi£keT,
pi /=) (1=pi ") /Pl " .
3.3

so we need to find {6, Vi > k € Z} only, in order to completely define {6, Vi # k €
7}

7.3.2 Model formulation

To find the function f in equation (7.3.1), equation (7.3.2) can be simply rearranged

which gives
BT
_ pgk ) exp(0ir,)
pzk eXp(e’Lk) +1- pzk

Vi£kel, (7.3.4)
and so for any pair {7, k}, equation (7.3.4) can be re-written as

1
1+ eXp[— (91]C +7r; — Tk)]

Dik = , Vi# kel (7.3.5)
Here the effect of 0, is clear, positive (negative) 0y, increases (decreases) the probability
of team 7 beating team k relative to their skills alone, i.e., relative to the Bradley-Terry
model.

Thus far, the model contains the flexibility to describe P := {py. € [0,1],Vi # k € T}
completely. Here P contains n(n — 1)/2 degrees of freedom, because pr; = 1 — pi;
however, the model contains n(n—1)/2+4n parameters: n(n—1)/2 values of intransitivity
between pairs, and n skill parameters from r, and thus the model parameters are
not identifiable. One way of ensuring identifiability in the standard Bradley-Terry
model is to fix one object’s skill level, and here it is chosen that r; = 0. As well as
this constraint on the objects’ skill parameters, the intransitivity parameters require
constraints for parameter identifiability. The minimal set of required constraints is

identified in Proposition 1, see the Appendix for the proof.
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Proposition 1. Consider a round-robin tournament with pairs of objects (i,7) being
compared, with i,7 € T, with i # j where |Z| = n. Suppose that the probabilities of i
beating j are p;; where these probabilities are given by expression (7.3.5), with ry =0
and intransitivity values 0;;. If a set of n — 1 pairs of objects, indexed by J,,—1, have
their intransitivity values set to arbitrary specified values, then all the rest of the {r;}
and {0;;} parameters in expression (7.3.5) are identifiable if J,—1 forms a connected
graph over Z. Furthermore, if less than n — 1 pairs’ intransitivity values are specified

or if Jn._1 is not a connected graph over I then identifiability is not achievable.

We choose the n — 1 constraints to be 6;; = 0, V(i,j) : ¢ = 1,5 € T\ {1}, that
is, all pairs involving object 1 have intransitivity set to 0. Proposition 1 gives that
if any further constraints are imposed on the intransitivity values the flexibility of
model (7.3.5) will be compromised.

With the above constraints, the minimal conditions for parameter identifiability
are satisfied, but the model is still likely to overfit with so many parameters. To
rectify this we restrict the total number of degrees of freedom, by restricting both the
number of intransitivity values to only K < n(n — 1)/2 unique values and restricting
the number of unknown skill values to be A < n, where A+ K < n(n — 1)/2 and
ideally A+ K < n(n — 1)/2. In this fashion our ICBT model embraces intransitivity
in a parsimonious way.

Firstly, consider the A+ 1 unique skill values, which ensures parsimony in the model
by clustering the objects’ skills r into distinct values which are sufficiently statistically
significantly different. Since r; = 0 is fixed, there are only A unknown skill levels,
¢ € R™A. By defining the labels of the set of skill levels tobe A := {—A_,....0,..., A}
with A, being the number of skill levels which are greater than 0 and A_ the number
of skill levels less than 0 such that A + A, +1 = A+ 1 = |A| < n, we impose the
equivalent condition in our model by fixing the skill level with label {0} to be ¢y = 0,

and fixing object 1 to always be allocated to this cluster. The possible skill values an
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object can take are therefore defined as

{¢0:O7¢::{¢GER7VGE"4\{O}}:¢—A— <'”<¢0<.“<¢A+}7

where ¢ are the unknown skill levels, and the ordering helps with label switching prob-
lems in the inference. The skill cluster allocation of object i, denoted yg;y € {0, 1A+
is a binary vector which takes the value 1 at position s € A and 0 everywhere else, if
object i € Z belongs to cluster s. The set Y := {yg; : ¢ € T\ {1}} then contains all the
objects’ skill cluster allocations except object {1} which has fixed cluster allocation.
Therefore, by defining Sg;y (Y) := argmax,ypy, Vi € Z\ {1}, then the objects’ skills
can be written as

_ e
r; = s, 1 €L\ = fr(0,Y,i), VieT. (7.3.6)

0, 1=1

Now consider the K unique values of intransitivity to describe the different inter-
object strategies. Of the n(n — 1)/2 pairs of objects, many will adopt similar strategies
depending on their opponents. These similar strategies are translated by the model
as having similar departures from transitivity, and are thus clustered together. For
example, suppose some group of objects V : j ¢ V competed against object j in the
same way. Then it would be reasonable to assume that 0;; is the same for all 7 € V.
This creates clusters of pairs of objects, such that the pairs are clustered according to
them having identical intransitivity.

In order to measure the departure from a Bradley-Terry model, a linearly transitive
cluster is imposed, which contains the set of pairs Jr C {{i,k} : i # k € Z}, which have
an intransitivity level g = 0. Thus, the Bradley-Terry modelling assumption (7.1.1)
holds for these pairs, such that p;, = pSfT), for all {i,k} € Jr. Given the existence

of this cluster, there must be strong evidence from the data to produce an additional



CHAPTER 7. MODELLING INTRANSITIVITY 162

cluster with an intransitivity level close to 0. This choice does not impose transitivity of
pairs as the linearly transitive cluster Jr may be empty, except for all pairs with object
1 which are classified as transitive due to our imposition of constraints for identifiability

from Proposition 1. Let the distinct set of intransivity levels be

O :={0p=0,0={0, e R, VE €K} :0<0; <--- <Ok},

where K = {1,..., K} and the levels of intransitivity are ordered from smallest to
largest. The levels of intransitivity, 6, contain the set of positive values of intransitivity
which, due to symmetry and the completely transitive cluster with intransitivity value
0y, then define the full 2K + 1 possible values of intransitivity between any pair of
objects.

We define the intransitivity cluster allocation of a given pair {i,k} to be another
binary matrix zg k), which takes the value 1 at position s € {—K,..., K} and 0 ev-
erywhere else, if the pair {7, k} belongs to cluster s. The clusters are therefore labelled
from —K to K, where a cluster labelled k € {1,... K} has cluster level 6, a cluster
labelled k € {—K, ..., —1} has cluster level —0_, and a cluster with label 0 has cluster
level 6y = 0. The set Z := {zxy, Vi > k € T\ {1}} then defines all the cluster
allocations for all the free pairs i # k € Z \ {1}, because of the rotational symmetry.
For example, if the K'th index of zf;x) has value 2y x = 1, then this indicates that
the pair {i,k} belongs to the cluster with label K, whose cluster level is the largest
level of intransitivity 0, and this enforces that the pair {k,:} belongs to cluster —K
and has the smallest level of intransitivity —fg. If the cluster allocation of the pair

(i,k} € T\ {1} is

argmax 2y k),s it ¢ >k,
S{z,k}(Z) =

—argmax,zg,s if 1 <Kk,
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then the level of intransitivity for a pair {i, k}, 0 can be redefined as

Ou := fo (0, Z,{i, k}) (7.3.7)

es{i,k}(z)l{s{ivk}(z) = 0} - Q_S{i,k}(z)]l{s{i:k}(z) < 0}7 {i7 k} € I\ {1}

0, otherwise

where 1 is the indicator function, and remembering that 6, = 0.
The full model can be written either in terms of equation (7.3.5), noting that the
parameters will be clustered, or can be written in terms of the levels and the cluster

allocations,

DPik = (1 + GXp{— [f@ (Qa Z7 {Zv k}) + fr (¢,Y,Z) - fr (gbaYVa k)]}>_1

So the ICBT model is defined by ¢ = {¢ = {¢p, : a € A\ {0}}, 6 ={0x: k € K}}.
Due to the intransitivity levels being fixed to 0 for all pairs of objects involving
object 1, an adjustment is required to get a more interpretable value of intransitivity

between the pairs. We define the adjusted intransitivity to be
H:j := logit (p;;) — logit (pz(fT)> =0 +r;—1;— (TZ(BT) - TJ(-BT)> , (7.3.8)

that is, the difference between the logits of the pairwise probability between our ICBT
model and the Bradley-Terry model. Note that the rotational symmetry of {6;;} (7.3.3)
g

also imposes rotational symmetry on {6;;}, that is, 0;; = 05, Vi # j € L.

To help see the value of this reparametrisation, consider then the earlier example
of a deterministic game of Rock-Paper-Scissors. Take Rock as the constrained object,
then Rock has fixed skill level ., = 0, and that pairs involving Rock have intransitivity
0, that is 0,, = 0, = 0, where the p and s subscripts denote Paper and Scissors. To

maintain that Rock always beats Scissors p,s = 1, then from the constraints, we get
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an excellent approximation from the ICBT model when r, = —M for some large M,
with the approximation improving as M — oo. Likewise r, = M, and 0,, = —3M.
With this model there is only one skill level M, and one non-zero intransitivity level
—3M. This parametrisation somewhat hides the symmetry of the intransitivity over
pairs. However, with definition (7.3.8), then 0, = 0% = 07 = M, resulting in an
intuitive and easy interpretation of the intransitivity, reflecting the symmetry of the

game, no-matter the choice of the fixed parameters.

7.3.3 Model Ranking

In the Bradley-Terry model, the skill parameters can simply be ordered to give a rank
since a greater skill always results in higher win probabilities against all other objects.
In our ICBT model this is not the case, because both the intransitivity parameters of
each pair and the skill parameters of the objects impact the win probability between
any pair. However, below we present two intuitive methods for determining overall
ability, and therefore ranking.

Firstly, if p;; = Pr{i > j} is the probability of an object ¢ beating object j according

to our model, then we can rank the objects by ordering

1 :
p. = {pi. =T Z Pij it € I}7 (7.3.9)

JEL: j#£i

that is, p;. is the average probability of object ¢ beating any other object j # i € 7.
Secondly, if we consider the intransitivity between an object ¢ and an opposing
object j # i as some “boost” which contributes to the overall ability (which could be

negative), then the overall ability a; of object i could be defined by

1
i =TT — 0;;, wh 0i; =0, Vie L, 3.1
a 7’+nz ;, where 0, Vi € (7.3.10)

jeT
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that is, the object skill plus its average intransitivity level. Definition (7.3.10) is equiv-
alent to the Bradley-Terry definition of ‘ability’. Defining logit (p(BT)> =0,VieZ, a

1

Bradley-Terry gives

1 1
. ([ (BT)\ _
- g logit (pij > =ri— E T, (7.3.11)

JET jeT
where the sum on the right hand side does not depend on %, so the skill of object 7 is

entirely determined by r;. Similarly, in our model

%Zlogl‘c (ng) :n+%zew — %er = Qa; — %Z’I‘j, (7312)

jeT jeT jET jET

then given definition (7.3.10), both (7.3.11) and (7.3.12) have the same form but with
a; replacing r;. Then a ranking can be formed by ordering the set of abilities a :=
{a; : i € T}. We argue that the first method, using the probabilities p. to rank the
objects, is more meaningful since it is directly associated with the pairwise probabilities,
the modelling of which is our ultimate aim. The application to baseball data of both

methods is discussed in the supplementary material.

7.4 Inference

7.4.1 Likelihood

The data, = := {x. : ¢ € C}, are binary, and ¢ > j denotes that i is preferred to j. Then
x. = 1if i, > j., and x. = 0 otherwise, where i, j. € Z are the objects being compared

in comparison c. Then, the log likelihood for the ICBT model is
£($|¢7 Y, Av 07 Z, K) = Z [xc log (picjc) + (1 - {L'C) log (1 - picjc)] ) (741)
ceC

where p;_;. is given by the ICBT model for all ¢ € C and is calculated from the set of

parameters (¢,Y, A, 0, Z, K). All pairs’ intransitivities {0 : i # j € Z} can be found
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from the intransitivity levels § and the cluster allocations Z, using equation (7.3.7), so
it is only necessary to do inference on these parameters, rather than the full 2K + 1
separate clusters. Therefore from here onwards the term intransitivity levels refers only
to those K values which have positive intransitivity. Similarly, any individual object’s
skill ; Vi € Z can be found from knowing the ability levels ¢ and the cluster allocations
Y, using equation (7.3.6). We formulate a Bayesian hierarchical model, which treats
both K and A as unknown parameters, thus accounting for uncertainty in the number

of clusters. The posterior is therefore written as

m(6,Y,A,0,Z, K|z) o< L (2|0, Y, A, 0,2, K) 7 (8,Y, A, 0, Z, K)

where L(-) = exp[l(+)] is the likelihood and 7 (¢,Y, A, 0, Z, K) is the prior.

7.4.2 Prior Specification

Formulating the prior, we make the assumption that Z 1 0| K that is, the intransitivity
level allocations and intransitivity levels are independent from one another given the
number of intransitivity levels K. Likewise, it is assumed that Y L ¢|A. Furthermore,
we assume that the clustering of the objects’ skills and the clustering of the pairs’
intransitivities are independent systems, that is, A 1L K, ¢ 1 0, and Y 1L Z. This
means that the prior specification for the two features we are clustering, skills and
intransitivities, can be approached separately.

Consider first the prior specification for the clustering of the intransitivity values of
the pairs. Remember that labels z; j3, Vi > j € T\ {1} have domain {—K, ..., K}, that
is, 2y {—K,..., K} = {0,1}, Vi > j € T\ {1}, and also that z(; 13, Vi € T\ {1} (and

by symmetry z( ;1,Vj € Z\{1} too) are fixed in the transitive level {0} for identifiability
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purposes, see Section 7.3.2. Let the prior on the cluster allocation be
2qijy|wk ~ multinomial (1, wg ), Vi > j € T\ {1},
where wg is on {— K, ..., K} such that
K
wi ={wks €[0,1] s € {-K,... . K}, Y wg,=1
=K

The distribution of Z| (wg, K) is assumed independent over all pairs i > j € Z\ {1},

ie.,

f(Zlwk, K) =

K
bl K
K .8
Hk:—K |bl€|' s=—K

where b, = {(i,j) : i > j € T\ {1} : zpn = 1} VE € {=K,... K} is the set
of allocated pairs of objects belonging to cluster k. We set wg|K ~ Dirichlet (y) to
come from 2K + 1 dimensional Dirichlet prior distribution, and 75 € RiK“ is the
hyper-parameters vector. We use an uninformative prior, setting 75 = vx1logx 1 where
1ok 1 is a vector of ones of length 2K +1 and v € R,. In this case, the wx parameter

can be marginalised out, by

:<Zk=—K|bk|)-r<<2K+1>vK> VRS CRe T NN
N (7 ST S )|

where integration on wg is taken over the 2K + 1 simplex. This is referred to as a
Dirichlet-multinomial allocation prior. The prior for K is a Poisson(Ag) distribution
with probability mass function denoted go (k|A k) so that E [K|\k] = Ak, with Ax > 0.
Note that K = 0 is feasible, as this corresponds to the Bradley-Terry model since

0|(K = 0) = () and so only the transitive cluster exists, that is Ox|(K = 0) = 6, and
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{i,j} € Jr, Vi # j € Z, so all pairs belong to the transitive cluster Jr. Formally
K < n(n—1)/2—n but as this is large relative to our prior beliefs on K, for simplicity
we ignore this constraint in the inference.

As the 0 elements are ordered in increasing order and are positive, the prior on
the 6 parameters is taken to be the joint distribution of K order statistics drawn from

independent gamma random variables, such that

ho (0| K) = K!ﬁho (Oila, B), with 0 < 0y < --- <O, K >1, (7.4.3)
i=1
and where hg (z]a, §) is the Gamma(c, ) density with shape and scale «, 5 > 0 re-
spectively.
Consider the prior for the skill levels clustering. The set of skill cluster allocations
has distribution Y = {y;|wa, A ~ multinomial(1,wa),Vi € {2,...,n}}, where wy has
domain on {—A_,..., A;}. The distribution of yg;|(wa, A) is assumed independent

over all objects ¢ € Z \ {1} such that

f(Y‘wA> A) = H f(y{i}|wA7 A)a

i€T\{1}

where

At
wa={was€[0,1]:se{-A_,..., A}, Z was = 1}
——A_

Again, wy|(A,v4) ~ Dirichlet (74) is modelled to come from an A + 1 dimensional
Dirichlet prior distribution, with 44 = vy4lay; where v4 € R,. Marginalising out
as in derivation (7.4.2), another Dirichlet-multinomial allocation prior is obtained by
integrating w, over the A + 1 dimensional simplex. The prior density for the skill

allocations is therefore given as

n! ['(Ava) Hfi_A, ['(va + [cal)

[T, el TOA T(Ayatn)

J(Y|va, A) = (7.4.4)



CHAPTER 7. MODELLING INTRANSITIVITY 169

because Zf:*_A_ |ca| = n, where ¢, := {i, Vi € T\ {1} : y(i,o = 1} is the set of objects
belonging to skill cluster a € A.
The prior for the number of unknown skill levels A is taken to be a truncated Poisson

distribution with parameter (A4), A4 > 0 with probability mass function

EESAS
_ A A — _
ga(alra) = o (E i!) a=0,1,....,n—1.

=0

Similarly to 6, the prior choice for ¢ is taken to be the joint distribution of order
statistics of independent and identically distributed A + 1 Gaussian random variables

such that

m(@lA) = (A+ 1)1 [ 7(¢a) for pa_ <+ <o <...0a,,
ac A\{0}
where ¢, ~ N (0,1%) Va € A\ {0}, and with v4 € R,. The (A + 1)! term arises as ¢
can occur anywhere in the sequence of ¢.
In summary, the prior 7 (¢,Y, A, 0, Z, K) is equal to

A+ T 70| £V Fas Adga (AA0) K [Hhowa,@) F(ZPe. K) g0 (KA

a€A;_o}

where, A\, A, Vi, VA, Va, and «, B are the hyper-parameters.

7.4.3 Reversible jump Markov chain Monte Carlo sampler

Inference is made via a reversible jump Markov chain Monte Carlo sampler (Green,
1995), which provides samples from the posterior distribution 7 (¢, Y, A, 0, Z, K|z), that

is, the intransitivity and skill levels, the allocations to the these levels, and the number



CHAPTER 7. MODELLING INTRANSITIVITY 170

of levels. Since the number of skill and intransitivity levels (A, K) are assumed to be
unknown, the uncertainty in these parameters must be accounted for, thus motivating
the use of a reversible jump sampler. In a sense, the reversible jump sampler mixes
over models as well as parameters, and thus fully accounts for this uncertainty in the
final inference.

The ICBT model is structured to try to favour the Bradley-Terry model as a special
case, and this is reflected in our sampler, by explicitly incorporating the completely
transitive cluster #y as an ever present cluster, even if no pairs are allocated to this
cluster at a given iteration of the sampler. To ensure the skill and intransitivity levels
both remain ordered, the updates to these levels occur in a transformed space such that
no update can lead to a change in order.

The reversible jump algorithm used is a split-merge sampler (Green and Richard-
son, 2001), which is adapted from the work of Ludkin (2020). The sampler comprises
three separate moves: a standard Markov chain Monte Carlo Metropolis-Hastings move,
which samples parameters ¢, 6, and reallocates clusters Y, Z; splitting or merging clus-
ters; and adding or deleting empty clusters. For full details of the construction of the
algorithm and its implementation using base R (R Core Team, 2020), see the supple-

mentary material.

7.4.4 Model assessment

The inferences produced by any model are only meaningful if the model itself is accurate.
This accuracy is measured here by how well the model fits out of sample. If C is the set
of total observed pairwise comparisons, then let C,; be the set of comparisons on which
the model is fitted and C; be the set of comparisons on which the model performance
is analysed, such that Cs UC; = C and C; N C, = (. We use log-loss (z*) of the test

dataset z* to measure model performance, which we take to be the average negative
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log-likelihood per observation in x*, i.e.,

1

(") = “ia

> lwelog(pig.) + (1 — o) log(1 — i) (7.4.5)

ceCy

where p;; is the point estimate of p;; based on the training dataset of comparisons Cj
and x* := {x. : ¢ € C;} is the set of test data, where the notation is as used in the

expression for the likelihood (7.4.1).

7.4.5 Simulation study

The model was tested using simulated datasets where the number of objects, the num-
ber of round-robin tournaments, and the amount of intransitivity varied between the
datasets. The sensitivity of our model to these parameters was then tested by com-
paring out of sample prediction accuracy with a standard Bradley-Terry model. This
provided insights into the amount of data, and the amount of intransitivity, required
for our more complex model to outperform the Bradley-Terry model. A full analysis is

provided in the supplementary material.

7.5 Baseball Data

7.5.1 Data

Baseball was chosen to illustrate the methodology due to the high frequency of games,
with accessible data for the American League Baseball obtained from www.retrosheet.
org. The data are from the 2010-2018 seasons, with the 2010-2012 seasons involving
14 teams, and the 2013-2018 seasons involving 15 teams due to the Houston Astros
moving from the National League to the American League. We analyse each season’s
data separately here, and jointly over years in the supplementary material.

The tournament structure is not as simple as the round robin tournament we con-


www.retrosheet.org
www.retrosheet.org

CHAPTER 7. MODELLING INTRANSITIVITY 172

sidered in the simulation study. The American League is split into three divisions based
on location: East, Central and West, with five teams in each (since 2013). Within the
same division, pairs of teams play each other approximately 20 times, and pairs of
teams from different divisions play each other around 5-7 times, as well as any Playoffs
and World Series matchups, totalling around 140-160 matches per team every season,
depending on the season and the team. Baseball is known to be a highly strategic
game, with issues such as player selection, handedness of the of batters, strength and
speed of players, and tactics such as “small ball” vs “long ball” all considered of great
importance. So we anticipate that the level of intransitivity will be high.

The vast majority (at least 99.5%) of all matches are played at the home of one of
the two teams competing in the game, with the rest played at neutral venues. Playing
at home is well known to have the potential to increase the probability of the home
team winning the match across a range of sports (Dixon and Coles, 1997). Although
prediction and model interpretation could be improved by incorporating this effect, we
decided not to address home advantage here. Our reason was that none of the existing
intransitivity models have such a feature, as they were developed for applications devoid
of home advantage, such as e-sports, so a comparison of the different models would only
be fair if we did not include this property. However, in Section 7.6 we formulate the
home advantage adaptation given its potential interest.

If pairs of teams do not play equally home and away, then ignoring home advantage
could lead to misinterpretation of the estimated ICBT model parameters, e.g., if team
¢ mostly played team k with team 7 at home, the home advantage would feed into ;.
We do not believe this is problematic due to the near perfect balance of home to away
matches per team, and the maximum home percentage within pairs of teams is 70% for

2010-11 and only 57% subsequently.
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7.5.2 Inference

The baseball data are analysed using the ICBT model, and its results are compared
with those of the Bradley-Terry model and with the existing models of Section 7.2
except for the model of Duan et al. (2017) due to the subjective choices required for
some parameters.

The ICBT model incorporates uncertainty in the choice of model itself, that is,
the number of clusters and therefore how many parameters. Our prior distributions
for number of intransitivity levels K and skill levels A are shown in Figure 7.5.1. We
used a Poisson(Ax = 2) prior for K, with the hyper-parameter to give a 95% prior
chance that K € [0,5], as it was thought that there would only be a few different
pairwise strategies. Similarly, the prior for A was taken to be Poisson(As4 = 7) as this
hyper-parameter choice gave a 95% prior chance that A € [2,13]. The justification for
our choice of the other hyper-parameters (vx,va, a, §,74) and a sensitivity analysis to
hyper-parameter choice is reported in the supplementary material.

Now consider the posterior distributions for K and A based on the 2018 season data,
also shown in Figure 7.5.1. Despite the prior only providing vague information across
values of K < 5, the data clearly favours having a single intransitivity level, meaning
three possible clusters for each pair: a positive level, the completely transitive level,
and the mirrored negative level. Further, although the prior gave a 14% probability to
the Bradley-Terry model (K = 0), the posterior probability for that model is estimated
to be zero, showing strong evidence of intransitivity in the dataset. For the distinct
skill levels the change from prior to posterior is relatively small, with a mean (and
95% credible interval) of 7.94 (4,12), with the number of distinct skills levels favouring
A €[6,9].

The posterior estimated values of the teams’ skills, and the variance of these values
in particular, provides a helpful summary of how competitive the tournament is in a

season, with the smaller the variance the more closely contested the tournament. For
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our model the skills’ variance ranged from 0.027 (2012 season) to 0.32 (2018 season)
and for the standard Bradley-Terry model, 0.031 (2015 season) to 0.23 (2018 season) -
both models suggesting that 2018 was the least competitive season. In the 2013 season
the variance of skill levels according to Bradley-Terry is almost 3 times that of our
model. However, the 2013 season was found to contain a particularly large amount of
intransitivity, indicating that the large range of skills in the Bradley-Terry model could
be the result of compensating for an inability to express the intransitivity. This has
perhaps resulted in the Bradley-Terry model concluding that the 2013 season was less

competitive than it was in reality.
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Figure 7.5.1: Posterior distributions of the K intransitivity levels (left) and the A skill
levels (right) for the 2018 season: with the associated prior distributions in a lighter

colour.

Now consider the pairwise interactions between teams. These interactions could

be inferred from either the intransitivity of the posterior mean éjj, Vi # 7, or by

the posterior mean of the intransitivity parameter éij, Vi # j. The supplementary
material contains a comparison for both and concludes that é;kj is more meaningful and
interpretable here, so we focus on that. For the 2018 season, Figure 7.5.2 (left) shows
0*

i)

3 * *
1.6., 9’L] — _0‘]2,

for each pair of teams ¢ > j € Z: recall that intransitivity has rotational symmetry,

Vi # j. The teams are sorted by their rank according to p., given by
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definition (7.3.9), see Figure 7.5.2 (right). Reading from the teams on the y-axis to
z-axis there is a large positive value of intransitivity from Baltimore (BAL) to Tampa
Bay (TBA) of 0.78 with 95% credible interval (0.36,1.22), indicating that Baltimore
played better against Tampa Bay than expected, given their overall abilities. This is
consistent with the data, with Baltimore winning 11 out of 19 matches between the two
teams, despite being ranked lower.

The analysis of these intransitivities between pairs, and that of the skills of each
team, can be combined to produce an overall ranking of the teams. As discussed in
Section 7.3.3, with further details in the supplementary material, p. provides a suitable
ranking of the teams. For the 2018 season Figure 7.5.2 (right) shows the ranks according
to p. compared to the Bradley-Terry ranks. Both have been linearly scaled to help
with a visual comparison, such that the best and worst teams have abilities 1 and 0
respectively. The two sets of estimated rankings using p. are clearly correlated; however,
there is some difference in the ordering of the ranks, indicating that intransitivity may
have been masking the true ranks of some teams. For example, consider Tampa Bay,
ranked 6th by the Bradley-Terry model. Tampa Bay’s good record against Kansas City
(KCA) has a much lower weighting than their poor record against Baltimore in the
Bradley-Terry model due to the differing frequency of these match-ups, and therefore
impacts the overall rank of Tampa Bay. The ICBT model however, recognises that good
or bad records against particular teams could be due to the presence of intransitivity,
and therefore penalises Tampa Bay less overall, ranking them 5th, thus illustrating our
point in Section 7.1 that the ICBT model makes adjustments for tournament imbalance.
Similar plots and inferences are drawn from the other seasons (2010-2017) but with

different team rankings in each year.
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Figure 7.5.2: Analysis of 2018 season: the posterior mean of the intransitivity parame-
ter, é;‘j across all pairs of teams i > j € Z (left); ranking according to definition (7.3.9)

(black) and Bradley-Terry model (red) for all teams ¢ € Z (right).

7.5.3 Model Performance

To test the model performance, 70% of games from each season are randomly selected
to be training data, on which the model is fitted, with the remaining 30% used as test
data, on which the log-loss score is calculated. This random selection is appropriate
as none of the models compared take time-dependency into consideration, a feature
discussed in the supplementary material. The variation due to this random sampling
in the training-test split is accounted for by taking 100 separate random training-test
splits for each season. For each replicate of training data the model is fitted separately
to each season’s data. Relative log-loss is then calculated by subtracting the log-loss of
a baseline coin tossing model.

Table 7.5.1 shows these negative relative log-loss scores for all years of baseball
data, along with 95% confidence intervals, with this measure evaluated for the ICBT,
Bradley-Terry, blade-chest and majority vote models. Since a larger value of nega-
tive relative log-loss indicates better model performance, a positive value indicates an
improvement on the coin tossing model. So all four models improve on simply using

coin tossing, showing that there is information to be exploited for inference and pre-

BAL -8+
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diction. The Bradley-Terry, blade chest and majority vote models all have somewhat
similar performance to each other across the years, with the most improved fit being
in 2018. In contrast our model is the best performing out of the four models in terms
of out-of-sample prediction on all years of data. When assessed as the cumulative
improvement over years, relative to coin tossing, the ICBT model is 2.8 times better
than the Bradley-Terry model, showing that we have substantially improved predictive
performance. The difference in log-loss scores relative to the Bradley-Terry model is
largest for the 2013 season, which in Section 7.5.2 has been identified as the season with

the largest intransitivity.

year ICBT BT blade-chest  majority vote
2010  44(38, 46)  17(15, 18) 17(2, 27) 20(13, 25)
2011  46(33,49) 15(13,17)  17(-1, 26) 20(13, 26)
2012 49(44, 53)  14(11, 16) 24(8, 33) 22(14, 31)
2013 64(36, 69)  23(21, 25)  33(13, 42) 31(22, 39)
2014 39(29, 45) 9(7, 11) 10(-12, 21) 13(6, 19)
2015 34(12, 45) 5(2,7) 9(-14, 17) 9(1, 16)
2016 42(32,55)  10(8, 12) 18(2, 30) 18(10, 28)
2017 36(10, 50)  13(11, 15)  13(-4, 22) 16(9, 22)
2018  73(65, 79)  46(44, 47)  48(19, 56) 51(43, 57)

Table 7.5.1: Negative relative log-loss x10® (compared to a coin-tossing model) for
each year of baseball data for the ICBT, Bradley-Terry, blade-chest and majority vote
models. 95% confidence intervals, in parentheses, come from random training-test splits

of the data.
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7.6 Conclusions and Discussion

We have proposed a new model and inference structure for paired comparison data.
We frame this in the context of sport competitions, baseball in particular, with teams
competing against each other, though the potential applications of the model are much
broader. Our proposed model, the Intransitive Clustered Bradley-Terry (ICBT) model,
extends the standard Bradley Terry model, which is widely considered as the baseline
model for such data. The extension allows for intransitivity so that the difference in
skill levels between two objects being compared is not the only factor affecting the
probabilities of the outcomes. There are a number of models which already allow for
intransitivity, but each of these are quite restricted in the parametric form of intransi-
tivity relative to our semi-parametric approach, which recognises that certain patterns
of interaction between pairs of objects can be common over multiple pairs. Our model
also allows for objects’ skills to be clustered, a feature that is novel to paired com-
parisons, with this inducing parsimony and avoiding obtaining distinct rankings for
some items when there is no evidence from the data that they are not equally good.
We have shown evidence from American League baseball that our model provides a
distinct improvement on existing models.

The ICBT model has complete flexibility, in the sense that cluster allocation to
skill and intransitivity levels is not predetermined. In order that the data identify the
appropriate structure of clustering, and for the inference to account for the uncertainty
in this choice, the model is fitted via RIMCMC.

Based on the clusters with the highest posterior probabilities, we anticipate that
experts in the particular sport may be able to identify some patterns of clustering that
are interpretable, e.g., associated with different styles of play. In such cases, these
clustering features could be hard wired into the model as the only options, resulting
in more efficient inference. A referee made the helpful suggestion that if accounting

for clustering uncertainty was not an issue then the inference could be simplified by
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estimating the ICBT model with group lasso penalties to induce clusters. We feel that
our model works sufficiently well for the current applications but agree that it presents
an exciting springboard for the consideration of various extensions to the model and
its inference. We finish by illustrating a few such possible extensions.

In Section 7.5 we did not attempt to account for home advantage, which is widely
recognised as an important feature in sport, e.g., Cattelan et al. (2013) incorporate it in
a Bradley-Terry model, though to the best of our knowledge it has not been accounted
for in the existing intransitivity models. The most natural way to achieve this is to
change p;, given by expression (7.3.5) to a probability pg,? of the home team ¢ beating
the away team k, with

(i) _ 1
P T exp[= (O + 7 + 11— 1))

candp =1-pPVi£ keI,  (16.1)

where 7 € R determines the effect of playing at home, which here is common over
all pairs of teams. If v > 0 (v < 0) then the probability of a home win is increased
(decreased) relative to the other factors of skill and intransitivity. This effect can be
extended to vary over teams by replacing v by 7; in expression (7.6.1). To ensure these
v; parameters are all identifiable, we fix 74 = 0, though no additional constraints are
needed if there is a common ~, but that is all that is required under the conditions of
Proposition 1 on the other parameters, as we are able to exploit data that distinguishes
which team is at home.

This article only considered win-loss scenarios. Extensions of the Bradley-Terry
have been proposed for handling draws. Two distinct methods for handling draws are
given by Cattelan et al. (2013) and Hankin (2020). The former use ordinal logistic
regression, treating win, loss, draw as outcomes of an ordered multinomial random
variable, which can then be analysed via an ordered link model. In contrast, the latter
treats the problem as a competition between the two teams and a third theoretical

team, such that when the theoretical team wins the outcome of the match corresponds
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to a draw between the two actual teams. The ICBT model can be adapted similarly,
with the use of the clustering strategy extended to pooling teams to account for their
similar cautiousness, leading to them drawing more often than would be expected.
We have assumed that all teams play each other. If this is not the case we cannot
improve on the prior inference for the 6, parameters for pairs (i, k) that do not play each
other. This is not a restriction for Bradley-Terry or the existing intransitivity models,
where the associated p;; are determined by the observed pairs. This raises issues about
identifiability of the ICBT model parameters. Our approach, through Proposition 1,
is no longer sufficient leaving the open problem of which parameters to fix in order to

give the most efficient inference.



Chapter 8

Conclusions and Further Work

8.1 Chapter Summary and Conclusions

Chapter 6 was a whistle-stop tour of the most commonly utilised ranking methods, and
included: one-object-one-rating methods, with the seminal Bradley-Terry model being
the prime example; indirect approaches like the Poisson models; and heuristics like the
well-known Elo system. A full exploration would also include Markov models, such as
PageRank (Brin and Page, 1998), and the closely linked Massey (Massey, 1997) and
Colley (Colley, 2002) methods.

The paired comparison literature is extraordinarily broad, and each of the above
methods have had numerous extensions proposed. Often motivated by sports, many of
these extensions are application specific, encompassing, for example, injuries, transfers
or referee bias. But this thesis is not concerned with the application specific angle,
rather, it strives for a ubiquitous framework for statistical ranking methods. Accord-
ingly, the literature review in Chapter 6 was kept general, presenting the core methods.
More depth was permitted to discussing the often-unknowingly-surmised transitive as-
sumption, and the seminal works are presented in this vein, highlighting the three

common forms of stochastic transitivity. The Bradley-Terry type models are shown to
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obey linear transitivity. The Poisson models flout both linear and strong stochastic
transitivity, adhering only to weak stochastic transitivity, while few models contain the
flexibility to defy weak stochastic transitivity.

Chapter 7 lays out the blueprint for modelling intransitivity-rife data via a gener-
alisation of the Bradley-Terry model, the Intransitive Clustered Bradley-Terry (ICBT)
model. The ICBT model unifies all three forms of transitivity within a single class of
semi-parametric model, from adhering to the strictest form to violating the weakest,
and with this flexibility governed by the data. From this blueprint, similar extensions
are trivial for other one-object-one-rating systems. The same initiative could be trans-
lated for the Poisson models, providing them too with the opportunity to violate weak
transitivity.

Next, some thoughts on further work are presented, both for the ICBT model, and

more general adaptations for the Bradley-Terry model.

8.2 Further Work

8.2.1 ICBT model improvements

For the application at hand, it may be known that some forms of transitivity must
be upheld. In these cases the ICBT model could be constrained to these forms, but
remain flexible within this domain. For example, it may be known a priori that a system
comprising objects Z should adhere to strong stochastic intransitivity. In this case, the
ICBT model can be fitted to data from this system, subject to prior distributions on
the ratings and intransitivity parameters p = {y; € R : 4 € Z} and 6 := {6;; € R :
i # j € I}, respectively, which are selected to enforce the strong stochastic transitivity

constraint (6.2.1) for all (i # j # k) € Z, i.e.,

Pik — max{p;j, pjr} > O0lpij, pjx > 0.5, V(i #j#k) el
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with p;; = f(u, 114, 0;5) as defined in Chapter 7. This would result in an ICBT model
which is able to explore a range of intransitivities but subject to satisfying strong
stochastic transitivity. This extension hinges on finding joint prior distributions for all
of w, 8 which satisfy this constraint.

Chapter 7 touches upon connectivity, or tournament structure, and its impact on
the parameter uncertainty. Within a symmetry structure, i.e., round-robin, parame-
ter uncertainty must be invariant to the choice of constraint, given the constraints are
sufficient. But in the absence of symmetry it is not clear which constraints minimise
the total parameter uncertainty. The constraint on the intransitivity parameters are
selected as 01; = 0,Vj € Z\ {1}, i.e., all comparisons involving object one have intran-
sitivity 0. So long as the choice of parameters forms a tree on the graph, any choice
of constraint is valid; however, the uncertainty in the free parameters is not necessarily
the same.

This motivates the need to determine the optimal choice of intransitivity constraints
0. :={(i,75) : 6;; =0,i > j € T} for a given tournament structure, such that uncertainty
in the system is minimised. Uncertainty can be quantified via the variance in the
estimates {fi; : 1 € Z}, {0;; : (i,7) : i # j € I*} of the parameters p and 6, respectively.
Alternatively, since the pairwise preference probabilities are arguably more interpretable
than the parameters themselves, the uncertainty can be quantified more directly via
the variance in estimates p;; = f(f, [, é,]) of the preference probabilities p;;, for all
pairs (i,7) : i # j € Z?. Denoting n;; to be the number of comparisons between objects
(i,7), then the variance in p;; is known to be approximated by

Var (py) = L= P),
Nij
from the binomial assumption. The contribution to the total variance, or uncertainty,

of each pair (i,7) comprises the contributions from the variances of the parameters,



CHAPTER 8. CONCLUSIONS AND FURTHER WORK 184

Var (f;), Var (f1;), and Var (éw) . As the 6;; parameter depends only on comparisons
between the pair (7, ), then the expected value of Var <é1]> is inversely proportional
to the number of comparisons n;;. Regard the graphical interpretation of the system,
Figure 6.1.1, with Z the set of nodes, and comparisons between objects representing
the edges where the weight of an edge between two nodes (i, j) is equal to the number
of comparisons n;; for all (7,j) : @ # j € Z. Then, for a fixed tournament structure, it
is here hypothesised that the choice of constraints 6. which minimise the total system
uncertainty system corresponds to the minimum spanning tree of the graph. Intuitively,
only pairs which are compared more frequently, and therefore who’s relationships are

better informed by the data, have free intransitivity parameters.

8.2.2 Bradley-Terry Reparametrisation

Some systems naturally contain more stochasticity than others. Consider your chances
of getting a higher return on the stock market than an expert stockbroker, versus
beating a chess grand master. The ratio of skill to sheer luck varies greatly from one
system to the next.

For a system comprising the set of objects Z, the Bradley-Terry model uses ratings
p:={p; € R:i €I} tomodel the pairwise-preference probabilities, and it reflects the
stochasticity in the system by the spread of the ratings . For a highly stochastic
system, such as a system of stockbrokers, the ratings will be close together, so that even
objects with large differences in rankings have preference probabilities that are close
to 0.5. Conversely, in near deterministic systems, the ratings will have a large spread,
meaning preference probabilities are close to 0 or 1, even for similarly ranked pairs of
objects. The spread of the ratings is rarely considered, but offers a useful insight into
an important property of the system at hand, which the following reparametrisation
attempts to formalise.

The Bradley-Terry model often constrains either ), ; pu; = 0, or p1 = 0 for pa-
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rameter identifiability. Here the former is selected, and further, it is proposed to also

constrain Y, , p7 = 1, i.e., fixing

n—1
o ==Y i pa=1— > i,
=1

1€Z\{n—1}

so that the ratings p are then standardised with mean zero and variance one. Then,

the Bradley-Terry model is reparametrised as

—1
po={1rew (= |B24])} sernizier (32,1

where 3 is termed the stochasticity parameter. As 8 — oo, then p;; — 0.5, and so the
system noise completely dominates any possible difference in the ratings. When g — 0,
then p;; — L{y; > p,;}, where 1 is the indicator function, meaning that the system
is completely deterministic, with the better rated object always being preferred. This
reparametrisation could help mixing when using MCMC for inference in the Bayesian
setting. The traditional parametrisation of the Bradley-Terry model requires each pa-
rameter update to reflect changes in both pairwise preference and system stochasticity,
whereas model (8.2.1) orthogonalises the stochasticity, allowing for potentially more

efficiency in estimating the pu parameters.

8.2.3 Volatility

What this reparametrisation reveals, is that the source of the stochasticity is assumed
to be only due to the system, i.e., it is exogenous, and that it is common for all objects.
It assumes the objects to be perfectly consistent, and that each comparison reflects the
true fixed ability of each object.

But for many applications, in each paired comparison, the objects have some per-

formance which is some noisy realisation of a latent ability. This variation around the
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Exogenous

stochasticity

Endogenous
stochasticity
(volatility)

Figure 8.2.1: A toy example of the sources of stochasticity in different sports. The
team element of ice hockey and netball introduces volatility, as the team changes from
one game to the next, whereas boxers may exhibit more consistent performances. The
low-scoring nature of ice hockey introduces exogenous stochasticity, as one freak goal
can have a large impact. Similarly, one lucky punch can end a boxing match. Chess has

no team aspect and is highly skill based, making it the least stochastic system overall.

latent ability introduces endogenous stochasticity, which is termed volatility, and which
contributes to the total stochasticity of the system. Importantly, the volatility can be
different for each object.

Figure 8.2.1 considers the total system stochasticity of four popular sports. Fitting
reparametrisation (8.2.1) to data from these four systems may result in similar stochas-
ticity parameters [, for both boxing and netball; however, this neglects the source of
the stochasticity. In the toy example, boxing has high exogenous and low endogenous
stochasticity, whereas netball has low exogenous and high endogenous stochasticity.

Volatility can be dealt with formally by defining the performance of any object 1 € 7
in any given comparison ¢ € C;, where C; is the set of comparisons involving object 1,

to be a random quantity given as r; . := p; + Z; ., where Z; . is some zero-mean random
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variable with variance €2 € R, and assuming
Zi,c A Zj,c, Ve € {Cl N C]’}, i #] S I, Zi,c AL Zi,c’; Ve 7& C/ S Cz,Z el

That is, the noise term is independent over all objects and from one comparison to
the next. For an object 1, ¢; is then the wvolatility of object . For the above example,
fitting this model to results of boxing matches between a set of boxers Z might give
estimates of {¢; ~ 0:4 € Z}, but large 5, whereas, if using data from a set of netball
teams, the model may estimate 5 to be small, but the estimates of {¢; : i € Z} to be
large. Despite this, the model still allows for the estimates of pairwise probabilities to
be similar between the two datasets.

Consider a particular comparison ¢ € {C; N C;} involving objects ¢ and j, and for
ease of notation, the subscript ¢ here is dropped without loss of generality, so that the
noise terms of objects ¢ and j in comparison c¢ are denoted Z;. = Z; and Z;. = Zj,
respectively. Then the expectation of the probability that ¢ is preferred to j in this

comparison is given as

E [pijl s 15, €55 €5, 5] =

/ / <{1 + exp ( ['ui T _BWj * Zj)}) }_1 fZi(Zi)ij(Zj)> dz; dz;j,

for all ¢ # j € Z, given suitable assumptions for the form of the random variables Z; .,

such as

Zie ~N(0,€), Ve e Ci,i € T.

An interesting avenue for further work is to compare various relative systems in terms
of their properties of endogenous and exogenous stochasticity, by comparing the fitted
values of 5 and {¢;}iez between systems. It could also be interesting to explore the

properties of E [p;;|pi, pj, €, €5, 8]. Clearly, with increasing volatilities ¢;, €;, then for a
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fixed S,

E [pz»jmi,,uj,ei, Ej,ﬁ] — 05, as €;, €; — OQ.

The rate of this convergence is less obvious.

8.2.4 Statistical Learning

Section 8.2.1 considered how to minimise uncertainty in the ICBT model, given the
graph structure as dictated from the data, as a function of the choice of parameter
constraint. Now considering the standard Bradley-Terry model with fixed constraints
as in parametrisation (8.2.1) we can consider the same problem from the opposite
angle. Namely, given objects Z, how can the system uncertainty be minimised as a
function of the graph structure? Minimising uncertainty has multiple interpretations,
i.e., minimising the uncertainty in the ranking, or minimising the total uncertainty in
the parameters. This depends on the choice of loss function. Two viable examples are
provided.

Define the set of random variables X (C,,) € {0,1}™ to represent the possible out-
comes of a set of m > |Z| — 1 paired comparisons C,, € (i,7) : i # j € (Z x Z)™ from
the set of objects Z. If x(C,,) € {0,1}"™ are then the realisations from X (C,,), which
has probability mass function governed by the Bradley-Terry model given pu, then let
G1,x(c,,) define the random graph representing all possible graphs from this model, and
G7.x(c) 18 @ Tealisation of this system. Furthermore, C,, is constrained to form a tree
on any graph Gz ,c,,), thus satisfying the minimal identifiability constraints for the
Bradley-Terry model.

Then, define R;|z(Cp,) € {1,...,|Z|} to be the estimated rank of object 7 given the

observed graph Gz ,(c,,), which is given by ordering the estimates of the ratings

fila(Cp) := {1;]x(Cr) - J € I},
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which are given from, for example, maximum likelihood estimates. Assuming some true

latent ranking R; € {1,...,|Z|}, Vi € Z of the objects, then

is the probability that the estimated rank }A%Z|m(Cm) of object 7 is equal to its true rank

given the observed comparisons. One choice of valid loss function is

R(w(Cn)) = = log (Pr{(fil(Cn)) = Ri}).

€L

and then the optimal set of comparisons C;;, can be selected as
C,, = argmin, Ex [R(X(Cy))].

That is, the comparisons are selected so that in expectation the sums of the log proba-
bility that all objects are correctly ranked is maximised. The joint probability that all
objects are correctly ranked could also be maximised.

For real applications, the true rank is likely unknown. In this case, the loss function
could be constructed via the notion of entropy. Define the entropy of an object i, and

of the whole system, respectively, to be

IZ1

Si(a(Cn)) = Y log (Pr{(Ril(Co)) = 1), S(a(C)) = 3 S:(w(Co).

1€T

Then, the optimal set of comparisons is selected as

Con

;= argming Ex [S (X(Cy))] -

Hence, the expected system entropy after observing the set of comparisons C;;, is min-

imised.
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In the absence of observed comparisons between objects or prior information about
the objects’ abilities, it seems intuitive that a symmetric comparison structure (round
robin) would minimise this expected ranking uncertainty under both definitions from
arguments of symmetry. But what about when observations from prior comparisons
z(Cp,), m > 0 are available? For some m’ > max (|Z| — 1 —m, 1) further comparisons

C,v, the optimal choice C;, is defined as
Criz(Cpn) = argmin, Ex [S(X(Cor), z(Cin))]

where

Il

S [X(Co), 2(C)] = 32 D og (Pr{ [ Ril X (Cor). 2(C)) | = K} ).

1€Z k=1

i.e., C,y is the optimal choice of m’ comparisons which maximally reduces the system
entropy in expectation, given the observations z(C,,).

It is clear that the choice of objects to compare will be dependent on the current
estimates of u, since objects with more similar rating estimates are more likely to be
incorrectly ranked, therefore having a larger entropy gradient.

Glickman and Jensen (2005) approach this problem through Bayesian optimal de-
sign, defining the optimal pair to compare next, from the n(n — 1)/2 possible compar-
isons, as that which maximises the gain in Kullback—Leibler information from the prior
to the posterior distribution in expectation. Although Glickman and Jensen (2005)
solves the problem for m = 1, this quickly becomes infeasible when m is large, due
to the explosion of possible combinations to consider. The optimal choice of the set
of next comparisons may also depend on the size of the horizon m, since a larger m
allows for more exploration, that is, learning of the parameters u, before exploitation
of this information. This exploration-exploitation trade-off is a common theme in the

multi-armed bandit literature, with Thompson sampling (Thompson, 1933) and the de-
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terministic upper-confidence-bound algorithm (Auer et al., 2002) being two heuristic
solutions. A foray into the realm of bandit literature could present Bradley-Terry-type

ranking models with an array of untapped research.
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Appendix C

Supplementary Material for

Chapter 7

C.1 Introduction

This document accompanies Chapter 7. Section C.2 briefly outlines the main novelties
in our inference method, Sections C.3, C.4 and C.5 contain full details of the imple-
mentation of the inference, specifically of the split-merge steps, the add-delete steps
and the standard MCMC steps in the algorithm, respectively. Section C.6 describes
the steps taken to help convergence of the algorithm. Section C.9 details the simula-
tion experiments, and Section C.10.1 contains less central findings from the analysis
of baseball data in Section 7.5 of the main article. Note that in this supplementary
document, all vectors are denoted in bold for ease of reading, and correspond to the

equivalent unbolded notation in the main article.

C.2 Algorithm: areas of key interest

Inference is made via a reversible jump Markov chain Monte Carlo sampler (Green,

1995), which provides samples from the posterior distribution 7 (4,Y,A,0,Z, K|z),
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that is, the intransitivity and skill levels, the allocations to the these levels, and the
number of levels.

Since the number of skill and intransitivity levels (A, K) are assumed to be unknown,
the uncertainty in these parameters must be accounted for, thus motivating the use of
a reversible jump sampler. In a sense, the reversible jump sampler mixes over models
as well as parameters, and thus fully accounts for this uncertainty in the final inference.

The ICBT model is structured to try to favour the Bradley-Terry model as a special
case, and this is reflected in our sampler, by explicitly incorporating the completely
transitive cluster #y as an ever present cluster, even if no pairs are allocated to this
cluster at a given iteration of the sampler. To ensure the skill and intransitivity levels
both remain ordered, the updates to these levels occur in a transformed space such that
no update can lead to a change in order.

The reversible jump algorithm used is a split-merge sampler (Green and Richard-
son, 2001), which is adapted from the work of Ludkin (2020). The sampler comprises
three separate moves: a standard Markov chain Monte Carlo Metropolis-Hastings move,
which samples parameters ¢, 8, and reallocates clusters Y, Z; splitting or merging clus-
ters; and adding or deleting empty clusters.

Let (¢°,Y*®, A% 0°, Z°, K*®) be the current values of the parameters at step s in the

sampler, and for any move a proposal (¢', Y’ A", ¢, Z' K’) is made. To be concrete,

¢ ={¢, ac{-A, . . . AL}}
Y =fy, i€ T\ {1}
0°={6; - ke{l,... K°}}

zZ° ::{z%’j} ci> g7 eT\A{1}},

for all steps s € {1,...,S} in the sampler where S € N, and where Yin is defined here
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formally as

(Ve € (0.1} 10 €A Yocavtyn =1}, vie T\ {1},

Yy =
{y:{ql},a S {07 ].} Tae A . y?lho = 17yf1}7a = O . a 7£ 0} s le = {1}7

that is, yfi},a = 1 if object i € Z is allocated to skill cluster a € A at step s, and
is equal to 0 otherwise; and the skill of object {1} is fixed to always be in cluster 0,
Le, yino = 1, for all s € {1,...,5},. Remembering the identifiability constraints
for the intransitivities outlined in the main text, see Proposition 1, the intransitivity

allocations are formally defined as

5 . K s —
Z{i,k},a E {O, 1} L a e {_K’...,K}’ Zasz Z{i,k},a — 1,
Vi>keT\{l}

zs‘ N =
{i.3}
Zfi,l}ﬂ € {07 1} tac {_K7 SR K}7 zfi71}70 = 1, Zfi,l},a =0:a # 0,
VieZ\{l1},ifk=1
\
that is szkLa = 1 if the pair {7, k} is in the cluster labelled s, and 2iky,s = 0 otherwise.

As discussed in Section 7.4.2; the clustering of our two features - the skills of the
objects and the intransitivity of the pairs of objects - are treated as independent systems.
Therefore we approach them separately: all of Sections C.3.1, C.4.1 and C.5.1 outline
the intransitivity components of the algorithm, and Sections C.3.2, C.4.2 and C.5.2
outline their skill component counterparts.

There are two key characteristics in our Intransitive Clustered Bradley-Terry (ICBT)
model which require adaptations to be made to the standard split-merge sampler.
Firstly, the vector of parameters 8 and ¢ must be ordered in order to maintain identi-
fiability. Secondly, symmetry is imposed on the intransitivity parameters 6, such that
0. = —0i; Vi # k € Z. Additionally, to ensure efficient converge of the algorithm,
a targeted initialisation routine was introduced as a precursor to the main RJMCMC

algorithm. Novel aspects of these three elements are discussed below.
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Ordering

To preserve the order of the parameters ¢ and 6, a suitable matching function y, see
(C.3.1), appropriately bounds each parameter. The matching function then serves as a
transformation to the real numbers, for example, for some 6, € 6 with 0,1 < 0, < 05,1,
then y : [0x_1,0k11] — R. In this transformed space, parameter updates can be made
without concern for the bounds, before being transformed back to their bounded space
via the inverse of the matching function, y=' : R — [0x_1,0,41]. In the case of the
standard MCMC updates for 6, a random walk is used on the transformed space.

For the reversible jump moves, for example, a split of an intransitivity level, an auz-
iliary variable u ~ o3, for ¢ > 0, where x? has unit-degree Chi-squared distribution, is
introduced, which is then added and subtracted to the transformed intransitivity level
to give two new proposed levels on the transformed scale. After retransforming back
to the original scale via inversion of the matching function, lower and upper proposed
intransitivity levels are proposed from the split move with order preserved.

Note that the transitive cluster can be split, where the bounds for the matching
function (C.3.1) are given as 0y € [0_1,61]; however, in this case one of the proposed
intransitivity levels must be 0, to maintain the generalisation to a Bradley-Terry model.
That is, if the £ = 0 cluster, the transitive cluster, is proposed to be split, then the
lower proposed intransitivity level must be 6, = 0, but the upper proposed level ¢,
follows the same rules as for the general case, equation (C.3.5).

Once the new levels have been proposed, allocations to these levels are then con-
sidered. Let by := {{i,5}, Vi > j € T\ {1} : zp;;3% = 1} denote the set of pairs
i > j € I\ {1} of objects which belong to the cluster-to-be-split, which for now we
assume is not the transitive cluster. At this point target information could be included
by using the approach of Zanella (2020); however, we found no significant efficiency
gains. Therefore for simplicity the cluster allocations to the two proposed split levels

are selected uniformly at random. The probability of the cluster allocation, given that
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cluster k£ # 0 has been split, is given as

/ b |! —(Ibk)) o' —(b—kl)
Q<Z) = ( 7 ; 2 g / / 2 -
[ ! [B 41! 0L [ b7 gy !

where the factorial terms appear since all possible combinations of allocations must be

considered, and remembering that cluster —k will also be split into clusters —k’ and
—k'—1 with intransitivity levels 6 ,, = —6, and 0’ ,, _, = —0,,; due to the symmetry
of the intransitivity levels. The proposed number of clusters is of course K’ = K + 1.
To split a skill level, the same form of matching function (C.3.1) can be used to
maintain ordering. The skill level ¢g = 0 can be split, although in this case one of the
proposed skill levels must also be 0, and object 1 must stay in this level. The proposed

number of skill levels is A’ = A + 1.

Symmetry

As eluded to above, our intransitivity levels require symmetry to be maintained, see
equation (7.3.3), and so updating intransitivity level 6, also impacts 6_,. Our adap-
tation of the split-merge algorithm handles this by reflecting all updates to the in-
transitivity values. For example, updating parameter 6 to 6 also updates parameter
0_r = —0 to 0", = —0;. Likewise, any reallocation of a pair (i, j) from, say, cluster k
to cluster k', also reallocates pair (j,4) from cluster —k to cluster —&’. Considering the
reversible jump moves, splitting an intransitivity level k into k" and (k+ 1)’ also results
in splitting cluster —k into —&’ and —(k + 1)".

This symmetry also impacts the add and delete moves. Empty clusters can occur
after a split, if all object pairs in the split cluster move to one of the new proposed
clusters. Additionally, within the Gibbs reallocation move it is possible for all object
pairs in a given cluster to move to other clusters. An empty cluster could exist for a
long time before being merged, and even then the proposed merge may not be accepted.

To deal with this more efficiently, delete cluster moves are included, and therefore add
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cluster moves are included in order to satisfy detailed balance. If an intransitivity
cluster &’ is added, then the symmetry imposed on the intransitivity system means a
cluster —k’ must also be added. The impact of this symmetry on the intransitivity
delete move however is more subtle. The set of empty intransitivity clusters must be
defined as K, := {k € {1,...,K} : b, = b_;, = (0}, such that a level k., € K, is only
considered empty, and therefore available for deletion, if both clusters k., and k_. are
empty, that is by, = b;,__ = (). This is a necessary consideration because Z' was defined
to contain only allocations for the ‘upper triangle’, that is Z” := {2z}, ;, : i > j € Z\{1}}.
Therefore it is possible that there are no pairs {i,j} Vi > j € Z\ {1} in cluster, say
k > 0; however, there may exist a pair 3{h,m} € —a: h >m € T\ {1} in cluster —k,
and thus by symmetry {m,h} € a. Note also that cluster 0 is not included in K., as

there must always be exactly one transitive cluster.

Initialisation

Convergence of the algorithm is not guaranteed in finite time. In the baseball example
of Chapter 7 10000 samples were drawn from algorithm, with an additional 2000 burn-
in samples. Four such chains were deployed with different random starting parameters,
and convergence of the chains assessed here via visual assessment. There exists a variety
of standard metrics, such as Gelman-Rubin statistics (Gelman and Rubin, 1992) which
aim to formalise this process.

To ensure the best possible chance of convergence of the RIMCMC algorithm, good
initial parameter estimates are useful. A standard Bradley-Terry model is first fitted
to the data, which gives the skills r(57) .= {TZ(BT) i € T}, and the associated pairwise
win probabilities {pEfT) 21>k €Z\{1}}. Then, from the data, if wy, is the number of
comparisons in which object 7 is favoured to object k, out of a possible n;, comparisons,

then a set of naive pairwise probabilities can be formed by using these, and regularised

with a prior. If {pgz) = wi/ng 1 >k € T\ {1}}, which can be considered as w;; ~
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Blnomlal(nzk,pzk ), then by using a beta prior p ~ Beta (a,, 8,), with oy, = 5, = 2, the

initial naive posterior probabilities are set to

. (n) wik+ap .
= | ) i >keI\{1l},.
{sz (mﬁaﬁﬁp) i \ }}

This choice of hyper-parameters provides a weakly informative prior with expectation
1/2. The regularisation provided by this prior prevents values of ﬁgz) becoming too
close to, or exactly, 0 or 1, which result in unrealistic and therefore poor starting values
for the intransitivity. This is no concern in the main RJIMCMC algorithm because the
prior helps to regularise this. From these two sets of probabilities, the initial estimates

for the intransitivity are found as

(n)
{@kzlog( f’;;);i pl';ST)))) :i>keI\{1}}.

pzk 1_pzk

These values of intransitivity are clustered into their initial levels 8 using k-means
clustering. This is done across a range of number of levels K to produce several separate
initial models. The BIC is then calculated for each model, and the best is returned.
Conditional on this model, the skills 7B7) are also clustered again by using several
k-means algorithms across a range of A, and the best model according to the BIC is
selected as the initial estimates for the ICBT model. In general, these initial estimates
are very good and correspond to a likelihood which is in the top 50" percentile of the
likelihoods provided by samples of the RIMCMC algorithm after convergence.

Next, from these initial starting parameters an MCMC algorithm is implemented,
with only updates on the skill levels ¢ and the intransitivity levels @, with the other
parameters (Z,Y, K, A) fixed. After convergence of this algorithm, a second MCMC
algorithm then allows additionally the allocations Y and Z to update, where the initial
parameter values correspond to the highest posterior of the previous algorithm. Finally,

only after convergence of these two MCMC algorithms, is the full split-merge RIMCMC
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algorithm implemented, where samples are taken from all of (0,¢,Z,Y, K, A).

C.3 Split-Merge components

C.3.1 Split-Merge components : intransitivity
Intransitivity split move

To split an intransitivity cluster, first a cluster must be chosen to split, and this is chosen
at random. A potentially more efficient proposal could be made by proposing to split a
cluster, say, proportional to cluster size or as a function of its vicinity to neighbouring
clusters. For simplicity, in this article all clusters in split and merge moves are randomly
selected with equal probability.

Let the cluster to be split be denoted as k € {0,..., K}, with intransitivity level
07 € O and the proposed new clusters be k' and k' + 1 with intransitivity levels

wr 0wy = 0, respectively, so that the proposed intransitivity levels are given as
0 =1{65,....0;_1,0,,01,1,00,1,-..,0%}. This notation is chosen because the order-
ing of the clusters must be maintained, for example 0;_, < 0, < ), , < 6;_,, to avoid
label switching issues in the inference. Note that with this notation, the transitive
cluster can be split, however in this case, one of the proposed intransitivity levels must
be 0, to maintain the generalisation to a Bradley-Terry model. The proposed number
of clusters is of course K’ = K* + 1.

Next, the new cluster parameters are proposed. To preserve ordering, consider the
transformation of 3, k # 0 such that the allowed range of ) changes from (67_,,0; )
to (—00,00). Then, a new intransitivity level is proposed on this scale, and then
transformed back to the its original range (67_,,0;,,). If & = K°, then the range

(0%s_1,0%s,1) is currently undefined because 6%, is undefined. Therefore we define

S . NS S S _ S S
Ks+1 - 0 s +( Ks — Ks—l) - 29 s T VKs—1
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which acts an upper bound for the proposed new intransitivity levels %, 0%, . Thus
%/, cannot increase by more than 6%, — 0%._;, which is also the maximum ¢}, can
decrease by without violating the ordering constraint. If £k = 0, i.e., the completely
transitive cluster has a split proposed, then the lower proposed level must be 6, = 0,
but the level 8}, follows the same rules as for a general k # 0, described below, therefore
upper and lower bounds are defined for all values in 6°.

The transformation onto the range (—oo, c0) is achieved using a matching function

y(03105_1, 0r11), defined as

. . QS_ s s
Vol6f 1, 03) = logit (o) k€ (L K € (). (C3)
k+1 k—1

where logit(a) := log (a/1 —a), a € [0,1]. Then, the auziliary variable u ~ ox3, for
o > 0, is added (and subtracted) to the transformed intransitivity level to give the

proposed upper (and lower) transformed intransitivity levels, respectively, such that

Y(Op 110k 1, 0541) = y(OR16F 1, Okya) + (C.3.2)

y(%’W!ﬁ—h 92-1-1) = y<92|92_17 9}2+1) —u. (C.3.3)

After a retransformation back to the original scale, this gives values of the lower and

upper proposed intransitivity levels 6;, and 0y, ,, with 0,1 < 0}, < 8}, < Ory1, as

07 _1+07,1 eXp(—u)(92_92_1)/(924-1_92) ik # o

;€/ _ 1+exp(—u)(92—92_1)/(924_1_02) (034)
0 if £/ =0
e 40 exp(u) (6 —03) ) (05, — 6
= b1+ 0k exp() (03— 0; 1) / (O ’“) (C.3.5)

1 + exp(u) (9}2 - 92—1) / (QZH - 92)

Equations (C.3.4) and (C.3.5) are the main contributions to ensure that ordering and
labelling is preserved in RIMCMC type algorithms.

The next state of the sampler (¢*+1, Y51 AsTL gs+l Zs+1 5Tl is then accepted
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to be (¢°,Y*, A% 0", Z', K') with some probability A, and otherwise

(¢s+1,Ys+1,AS+1,05+1,08+1,ZS+1,K8+1) — (¢S’YS’A8’057ZS7KS).

The form of the acceptance probability A, is computed as:

@Y A2 K V) (K0 200K+ 1,28) 1

P (@5, Y5, A5, 05,25 Ko|x) q(K®+1,2',0|K°,Z5,6%) q(u)” """
(9% Y, A% 0 Z' K® + 1|z) q(merge| K° + 1) qip (K, k' +1) 1 1 .
C o (¢0,Y" A0 0,20 Kolr)  q(split] K*) o) qu(u)q(Z)" """

which is the ratio of the posterior densities, the ratio of the proposal densities, and
the ratio of the densities of the auxiliary variables and the Jacobian Jg,;;, see Ap-
pendices C.7.1 and C.7.3 for details. If K* = 0, then the probability of proposing a
merge, see Section C.3.1, is g(merge| K* = 0) = 0 and the probability of proposing a
split q(split| K* = 0) = 1. Otherwise, g(merge| K* # 0) = q(split| K* # 0) = 1/2, and

therefore the ratio of is simply

q(merge| K* + 1) 1

q(split|l Ks) 1+ 1{K*=0}

The probability of selecting cluster k to split is gx(k) = %, Vk e {l1,...,K*}. The

probability of selecting clusters k', k' + 1, VK" € {1,..., K’ — 1} to be merged back

again is also qp(K, k' +1) = ﬁ = %, so these terms will cancel. The density of
the auxiliary variables is the density of u, ¢,(u)™!, which is given as x? (u/c), where
X3(z) is the density of a chi-squared distribution with 1 degree of freedom.

The probability of the allocations is ¢ (Z’), and this is dependent on the cluster being
split and the current state of the model, for which there are three different situations

to consider:
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The general case: (k # 0)

Since the transitive level 6§, = 0 adds additional complications, we first depict the
acceptance probability for the general case that & # 0. Denote the set of pairs
i > j € I\ {1} of objects which belong to the cluster-to-be-split, i.e., k& # 0, as
by, ={{i,j}, Vi > j € T\ {1} : 2 ;, , = 1}. Then, the probability of the cluster alloca-

tion, given that cluster k£ # 0 has been split,

1AL —(bs)) 6% ! —(p= )
q(Z/) — (— 2 k 2 "k
[ ! [Bs 41! O |1 1B !

since the new cluster allocations are selected at random and all possible combinations

of allocation must be considered, and remembering that cluster —k will also be split
into clusters —&" and —k’ — 1 with intransitivity levels ¢’ ,, = —6, and 0" ,, | = =0}, ;.
See Appendix C.7.1 for details of the Jacobian Jy,;;. Combining these components, the

acceptance probability of splitting a cluster £ # 0 can be computed as

Agpir|(k #£0) = A b3 |1 (b2, |1 2~ (BI+BED ! J
split O — split ”
p PN B ! 1B |1 B T IB ! p

Tl

where
w(¢°,Y*® A 0 Z' K* + 1|x) 1 o
m(¢%, Y5, A%,0%,Z%, Ke|x) 1+ 1{K*=0}x1(u/o)

Asplit =

Splitting from the transitive cluster: (k =0, K* > 1)

We now consider the special case that we propose to split the transitive cluster
(k = 0), when there are other intransitive clusters (K*® > 1). The acceptance probability
for this proposal differs slightly, because 6y = 0 is fixed. If a split is proposed on level 0
with intransitivity level 6§, then the proposed clusters are 0’ and 1’ with intransitivity
levels 6;,,0},; however, the completely transitive level must remain so, in order that the
model remains an exact generalisation of the Bradley-Terry model, that is 6, = 6, = 0.

The level 1’ has intransitivity level 6], > 0 governed by equation (C.3.5), remembering
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that 6%, = —67. Additionally, a separate Jacobian J. is required, see Appendix
C.7.3. The cluster allocation also differs. Instead of allocating pairs in k£ to either
k', K" + 1 and pairs in —k to either —&’, —k" + 1, the pairs in 0 are allocated to one of

0’,—1’,1". The probability of the cluster allocation is therefore

|b5|! s
7 = LA
©(Z) Qmmwwww =

since the allocation is at random. This gives an acceptance probability of

A k=0K 1 A Ll A J.

- — S > — - — ;
splzt| ( ) - ) split (’bs_l" ’bgyl ‘bf“) (3) split,05
if k=0, K> 1.

Splitting from the Bradley-Terry case: (K° =0)

Consider the special case that only the transitive level exists and therefore the model
in this state is identical to the Bradley-Terry. The transformation via the matching
function, equation (C.3.1), is not possible in this case since the bounds 6. ; (and
0° (ks1) = —0k=11) are not defined when K* = 0. However, ordering is not an issue in

this case, and so the levels are simply proposed as
0’0/:80, 8/1/290+U:u,

which gives a Jacobian of 1, and the pairs in 0 are again allocated to one of 0/, 1", —1'.

Therefore the acceptance probability, for K* = 0, is given as

o Byl N\
Ansd 0" =0 = o (i) (5)




Part II. Appendices 205

Intransitivity merge move

So as to not confuse notation, we will consider the merge in terms of a reversed
split move. Therefore let (¢°,Y* A°.0',Z' K') = (5T, Y Astl g5+l Zs+1 [s+1)
be the current values of the parameters at step s, and we aim to propose parameters
(9°,Y*® A% 6° Z° K*). Two clusters are sampled to merge, however, since these must
be consecutive clusters, in order to preserve order, we can simply sample with equal
probability from the set k£’ ~ {0,..., K’ — 1} and then merge clusters £’ and £’ 4 1 into
a new cluster k. The proposed number of clusters must be K* = K’ — 1. Next, the
cluster membership Z* is updated which is simple because all pairs of objects from both
clusters k' or k' + 1 get assigned to the new cluster k. To find a suitable cluster mean
., the inverse of the split move is used, so inversely to the split move, the matching

function

. xr — ;g/i
y(x]0_1, 05 ,5) = logit (—9, — 0,1 ) , 2 € (O 1,0449),
k2~ Yk

is used. Then the proposed merged transformed cluster mean is given from equations

(C.3.2) and (C.3.3), as

[y(%/ 101, e;curz) + y(g;c'ﬂw;c'*lv ‘9;«+2>}

y(elsc’e;cula 9;«+2) = B )

which results in a proposed merged cluster mean of

(02'4-2 — 92'—1)
—-1/2°
14 () (featin)] /
/ / / /
s 20 Ve 2011

Then, the next state is accepted to be (¢°,Y5, A% 0° Z° K*) = (¢°,Y*, A*,0',Z' K'),

s _ pf
P =01t

with probability A4, Whose precise form again depends on the situation.
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The general case: (k' # 0)

In the most general case, that k' # 0, then this gives an acceptance probability of

( ;plit) - )

bs1 bs 1 9—(bI+1b3)
Amer e K 0) = Amer e bk
g9 |( 7é ) g9 (b;g/'b;y_,_l'b/_k/'b/ |

—(k'+1)’

where

A _ m(¢°,Y?, A%6°,Z° K' — 1|z)
e (@0, Y, A5, 0, 7' K |x)

(14 1{K = 1})@,

and where v = y(0},.110,_1, 0 15) — y(07104_1, 0}) is the the value required for the
inverse split move to get back to intransitivity levels 6}, and 0;,,,, and J, is the

Jacobian for the inverse split move.

Merging to the transitive cluster: (k' =0, K’ > 2)

If ¥/ = 0, and therefore clusters 0/, 1" are being merged to cluster 0 with intransitivity
level 0] = 0 = 0, then, similarly to the equivalent split move, the allocation probability
changes because pairs from (', —1’, 1" are proposed to move into 0. The Jacobian also

changes to J o, see Appendix C.7.3, and the acceptance probability is given as

" b3
Amer el (klzovK/ > 2) :Amere ’bO‘ 1 0 ( / l’to)il'
g - b | [ Bs) \3 o

Merging to the Bradley-Terry case: (K' =1)
Similarly to the equivalent split move, if K’ = 1, then the proposed merge move would
be to a Bradley-Terry model (or generalisation there-of). In this case no transformation

is required, and thus no Jacobian term, and so

, 3! 1
A K'=1)=A By
ol 8 =) = e () (5)

where in this case v’ =0, ;.
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C.3.2 Split-Merge components : skill
Skill split move

The split and merge components are now considered for the objects skill levels. The
reversible jump moves here are similar to those of the intransitivity levels, but a few
changes are needed to accommodate for the fact that levels can have either positive or
negative values, and that symmetry in the skill levels is not enforced as it is for the
intransitivity levels. A cluster a € A° is selected at random to be split, with a skill
level ¢ € ¢°, and the proposed new clusters are labelled «’,a’ 4+ 1, and have skill levels
¢r, ¢l € R. Note that the skill level ¢y = 0 can be split, although in this case one
of the proposed skill levels must also be 0, and object 1 must stay in this level. The
proposed number of skill levels is of course A’ = A® + 1. Next, the new skill level
parameters are proposed.

From the current allocations Y*, the proposed allocations Y’ are found by randomly
reallocating those objects in cluster a to either cluster a’ or a’+1 with equal probability.
The acceptance probability Ay, is then computed as:

w(¢ Y A+ 1,60°,2°, K°|z) q(A°,Y",¢°|A°+ 1Y, ¢) 1 .
AT (g0,Y5, A%,05, 2 Ko[z)  q(AT + 1Y, ¢/ A% Y4, ¢°) qu, (wa) T

(¢ Y, A+ 1,6°,Z°, K°|z) q(merge|A® 4 1) qo(a’,a’ + 1 1 | I
(¢, Y* A%,0% Z5 K*|x) q(split| A®) ¢a(a) Gu,(ua) q(Y") split?

A

which is the ratio of the posterior densities, the ratio of the proposal densities, and the
ratio of the densities of the auxiliary variables, which is in this case just g, ,(ua)™' =
X1 (ua/oa), and Jg,, is the Jacobian. The probability of proposing a particular level

to be split is simply
1 1

Qa(a>:|A5|:AS+1VCLEA.

For the inverse merge move, see Section C.3.2, the probability of proposing clusters a’
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and a’ + 1 to merge is simply

1
qu(d';a' +1) = Y Va' € A"\ {4},

therefore q,(a’,a’ +1)/q.(a) = 1.
Let ¢; := {i, Vi € Z\ {1} : y§;,, = 1} denote the set of objects which belong to
the cluster-to-be-split, i.e., a. Then, the probability of the cluster allocation, given that

cluster a has been split, is

AL ez
qY') = 2
le5 ! [eiq !

since the new cluster allocations are selected at random.
Again there are three variants for both the splitting and merging of skill levels that

must be considered:

The general case: (a # 0)
To preserve ordering, the same transformation is made as in Section C.3.1, and so
the set of levels must be extended as before, but now in both positive and negative

directions, such that

¢,S43+1 = ¢,S41 + (Qfaxi — ¢f4§rf1)

¢i1i—1 = Cbixi - |¢5Ai+1 - ¢f4i .

Using the same logit transformation to preserve order, new skill levels are proposed via

the equations

_ am1t Dot exp(—ua) ((/52 - 271) / (¢Z+1 - @bZ)
1+ exp(—ua) (85 — ¢5-1) / (#5401 — 03)

a1 T @1 exp(ua) (Qf)i - 271) / (¢Z+1 - ¢2)
L+exp(ua) (63— ¢ia) /(S0 —02)

/
¢a’+1 =
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where the auziliary variable uy ~ oax?3, for o4 > 0.
Combining these components, the acceptance probability of splitting skill cluster a

can be computed as

AZplit| (CL 7£ O) = AZplit ;plit’

where
r _ 7T(¢/7Y/7A8+ 17087287K8|x) 1 A |CZ" 27|c2| -
P (¢, Y5, A,05,Z5 Kolz) 14+ 1{As = 0} x(ua/oa) \ e e ]! '

Splitting from the zero skill: (a =0, A° > 0)
Consider the special case that the 0 level is split, but other skill levels are present.
One of the split levels must remain at 0, specifically, ¢ = ¢ = 0. The other proposed

skill level is

¢/(2X—1)' = X¢;’+1 + (1 - X)ﬁbfzu

where X ~ Bernoulli(0.5), such that the non-zero proposed skill level can be either
above or below the 0 level, and it has label (2X — 1), that is, either 1" or —1’. The
Jacobian Jg o is calculated as in Appendix C.7.3, and the acceptance probability is
given as

Ayl (@ = 0,A4° > 0) = 207, T

split* split,0

the only difference to the general case being in the Jacobian term, and the factor of 2

which comes from the Bernoulli variable.

Splitting from the single skill model: (A® = 0)
In the unlikely case that only a single skill level is present in the model, the new skill

level is simply proposed as

¢/(2X_1)/ - XUA - (1 - X)UA,
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since no transformation is needed due to no ordering issues. In this case the acceptance
probability is given as

Ayl (A7 = 0) = 27

splits

where the Jacobian term is 1.
The next state of the sampler (¢*+1, Y51 AsTL gs+1 Zs+1 [sH1) is then accepted

to be (¢',Y' A", 60°,Z°, K*) with probability A7 ..., and with probability 1 — A .. it

split? spli

remains as (@°T1 Y5t AsTL g+l ZsHl Kstl) — (¢° Y A°.0° Z°, K*).

Skill merge move

Like the intransitivity merge move, the merge move is considered as a reverse split move,
i.e., the current state is (¢/,Y’, A", 0°, Z*, K®) = (¢*T!, Y Astl @5t Zs+1 KsF1) and
we aim to propose parameters (¢°,Y*, A°,0°, Z*, K*). Two levelsa’,a’ +1 € A"\ {4}
are sampled to merge with probability

1
e d/ 1) = Va' € A\ (4L},

and are inverse split move is proposed with probability

1
As+1

Gala) = Va e A\ {A%},

so again q,(a)/qa(a’,a’ + 1) = 1. The three variants for the merging of skill levels are

then as follows:

The general case: (a/,d' +1#0)
In the general case that the sampler proposed to merge two non-zero levels, a’, a’+1 #
0, then

AT N(dd +1#0)=A" T

merge mergel ¥ split
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where

Lo (9%, Y5, A —1,0°,Z° K*|z) (14 1{4" = 1}) D(uy/oa) el a3l
Toom(¢ Y ALG 2 Koz o4 leullled !

a

and u/y ~ gax? is the the value required for the inverse split move to get back to skill

levels ¢, and ¢, .

Merging to the zero skill: (min(|a’|, |’ + 1|) =0, A" > 2)
If either ' or a’ + 1 are 0 (and therefore have skill levels either ¢/, = 0 or ¢, ,, = 0),
then the merged skill level must be ¢, = ¢o = 0, and v, is the value required to invert

the merge, such that

|y(¢;’+1|¢/ 11 ¢;/+2)| ifa =0

uy = ’
|y<¢:1’|¢/’717 ;/Jrg)l if o/ +1=0

where y(-) is defined in equation (C.3.1). This gives an acceptance probability of

Apergel min(a’], o' + 1)) = 0,4 > 2] = AT, /2T

merge split, 09

so the Jacobian Jg,, , see Appendix C.7.4, differs from the general case, and also the

factor of 1/2, which comes from the Bernoulli variable in the inverse split move.

Merging to the single skill model: (A’ =1)

If A" =1, then the merged skill level must be 0, and «/, is simply the absolute value
of whichever level is not 0, that is u/; = max(|¢}|,|¢.,,,|). In this case the acceptance
probability is given as

AT (A =1)=A", /2.

merge merge

Then, the next state is accepted to be (¢°,Y*, A%, 0°, Z° K*) = (¢',Y', A", 0°, Z°, K*),

with probability A’

merge’
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C.4 Add-Delete components

C.4.1 Add-Delete components : intransitivity
Empty clusters

It is possible that 3 a € A : Sy (Y) Na = {0}, Vi € Z, that is, there exists empty
clusters. Empty clusters can occur after a split, if all object pairs in the split cluster
move to one of the new proposed clusters. Additionally, within the Gibbs reallocation
move, see Section C.5, it is possible for all object pairs in a given cluster to be reallocated
to other clusters. An empty cluster could exist for a long time before being merged, and
even then the proposed merge may not be accepted. To deal with this more efficiently,
a delete cluster move is included. To satisfy detailed balance, an add cluster move must
also be included. Define the set of empty clusters K2 to be I} = {a € {1,...,K*} :
b, = b_, = 0}, such that a cluster k. is only considered empty if both k. = () and
k_. = (. This is a necessary consideration because Z’ was defined to contain only
allocations for the ‘upper triangle’, that is Z’ := {2/, ;; : i > j € T\ {1}}. Therefore it
is possible that there are no pairs {7, j} Vi > j € Z\ {1} in cluster, say a > 0; however,
there may exist a pair 3{h,m} € —a : h > m € Z \ {1} in cluster —a, and thus by
symmetry {m,h} € a. Thus, to delete a cluster a, both clusters a and —a must be
empty, that is, we require b, = b_, = (), hence the definition of K2. Note also that
cluster 0 is not being considered in KZ, as there must always be exactly one transitive

cluster.

Intransitivity add move

When a cluster is added, the proposed cluster mean 6*|«, 5 ~ hg is drawn from the prior
distribution, see equation (7.4.3), which is gamma distributed, and it is inserted such
that correct ordering of intransitivity levels is maintained. Thus, if 6* is, say the kth

largest value in the vector (8, 0*), then the proposed cluster allocation changes such that
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by="bj, b, =b>, VI <k, b, =b, b, =b, VI >kandb =b_, =0, which defines
Z'. The proposed intransitivity levels become 8" = {67,...,0;_,,0*,0;,...,07 ,}.

The cluster allocation is then reordered by increasing the index of cluster allocations
which belong to intransitivity levels which are larger than the added cluster. The
probability of proposing to add a cluster is an increasing function of an algorithm
parameter pgx > 0, and the probability of proposing to delete a cluster, see Section
C.4.1, is an increasing function of the current number of empty clusters, Nj := [,

which excludes the completely transitive set Jr. Therefore, the probability of proposing

to add and delete an intransitivity level is constructed as,

. PK . Ny
q(add |Nj) = ———, q(delete |Ny) = ———,
(0dd IN§) = P, qldelete [NG) = e
respectively.
Since an add or delete move in no way effects the likelihood, only the prior density

changes, and the acceptance probability of adding is given as

(¢, Y5 A0, Z' K°+1) 1 (N5+1)/(pK—|—N5+1)
m(¢5, Y5 A, 605,25, K5)  (K* + 1)ho(0%|c, ) px/(px + Nj)

f(Zyk, K° 1) go(K° 4+ 1A) (NG + 1) (px + Ny)

2k, K% go(KPIN) pr(pr + Nj+1)

Aadd =

with prior f(Z|vk, K®) defined in equation (7.4.2) and vx > 0

Intransitivity delete move

During a delete empty cluster move, an empty cluster k. € K? is selected at random.
Given the sampler is in state s with Nj € N empty clusters, i.e., there is at least 1

empty cluster, the acceptance probability of deleting an empty cluster, k. with cluster
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mean 0*, where Z' is the proposed allocation after the cluster is removed, is given as

f(Z' vk, K° = 1) go(K® = 11\)  px(px + Ny)

Aeee_ :
T [ (2 K0 go(KCN) Nilpie + Ny — 1)

Again, intransitivity levels are re-indexed appropriately. Choosing px = 1 means that
when one empty cluster exists, there is an equal chance of proposing to add or delete
an empty cluster. For 0 < pg < 1, as long as there exists at least one cluster, there is
always a greater chance of proposing to delete an empty cluster than to add an empty

cluster.

C.4.2 Add-Delete components : skills

Similarly to the add intransitivity move, for the add skill cluster move a new skill level
is drawn from the prior, that is ¢*|va ~ N (0,1%), with v4 > 0 and indexed such that
the proposed vector of skill levels is ordered. The allocations are altered such that all
objects maintain the same skills.

Define the set of empty skill clusters A2 to be A := {a € Ay : ¢, = 0}, noting
that cluster 0 is not being considered. During a delete empty cluster move, an empty
cluster, say a. € A?, is selected at random to be deleted. The cluster allocations are
then reordered such that, if the deleted level is positive, the index of cluster allocations
which belong to skill levels which are larger than the removed cluster are decreased by
one, and if the deleted level is negative, the index of cluster allocations which belong
to skill levels which are smaller than the removed cluster are increased by one. That
is, ¢, = ¢f — 1 if | > max(a.,0), ¢, = ¢; + 1 if | < min(a.,0) and ¢; = ¢ otherwise.
Similarly to the intransitivity add and delete moves, the probability of proposing a skill
cluster is an increasing function of an algorithm parameter p4 > 0, and the probability
of proposing to delete a cluster is increasing function of the current number of empty

clusters, Ny = |A%|. The probability of proposing to add or delete an empty skill
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cluster is, respectively,

q(add A |Nj,) = p—A, q(delete A |Nj,) = %
pa+ Ng, pa+ Nj,

Given the sampler is in state s with Nj, € N empty clusters, the acceptance probability

of adding is given as

A T a AT 1) go(A” 1] (N +1)(2a + Ny

with f(Y|vya, A®) given as in equation (7.4.4) and 4 > 0. Likewise, given the sampler
is in state s with Nj € N, empty clusters, the acceptance probability of deleting an
empty cluster, a with cluster mean ¢*, where Y’ is the proposed allocation after the

cluster is removed, is given as

A (Y4, A5 = 1) go(A* — 1{Aa)  palpa + Np,)
delete A — .
! F(¥a, A%)  go(A5IAa)  Nj (pa+Nj, —1)

C.5 Standard MCMC updates

C.5.1 Standard MCMC updates : intransitivity

Intransitivity levels update

Moves which do not propose any change to K* or A® can follow standard MCMC up-
dates. The moves follow a Metropolis-Hastings-within-Gibbs procedure, where the skill
levels @, intransitivity levels 8, and cluster allocations (Y, Z) are updated sequentially.

The intransitivity levels are updated sequentially from smallest to largest, using
the matching function (C.3.1) to ensure ordering is preserved. First, the proposed
transformed intransitivity level y(0]|65,05) is proposed via a symmetric random walk

with standard deviation 7 > 0, such that y(6} |65, 05) ~ N (y(65]65, 05), 7%), and accepted
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with probability AWM where

levels®

A0 m(@°, Y, A% 0, Z°, K°|x)  L(x|p®,Y*, A®,0',Z°, K*) ho (0 |c, B)
levels = (@5, Y5, A5,05, Z5 Ks|x)  L(x|g,Ys, As,05,Z5, K5) hg (03]c, B)

and if accepted then 657! = 7. The other intransitivity levels are then drawn similarly,

but using the latest updated values of the intransitivity levels, such that

YOI6RT, 60i0) ~ N (9(0R10:70, O 7°),

(k)

levels’ where

and 0, is accepted as the new parameter value 0,‘2“ with probability A

A _ (@Y A0 20 o) L(|¢t, Y0, A6, 20 K°) ho (0], B)
levels (@9, Y5, A%,05, Z°, Ko|z)  L(x|¢®, Y, A%,05, Z%, K*) ho (05|, B)’

S .__ s+1 s+1 ps s /o s+1 s+1 pr ps s
where 83 == {071, 0351 05 . 03} and 0] = {01, 03T 00 05,1 05}

Pair reallocation

Then the intransitivity cluster allocation Z is updated. This can be achieved by either
a naive approach, or using the conditional posterior approach. For the naive approach,

a new allocation is drawn from the prior f(Z|yk, K), using a two-step process. First, a

new wf. is drawn from the prior w’.|K*® ~ Dirichlet (yx1axt1). Then, the allocations

are drawn from
Z' = {2}; plwks ~ multinomial (1,w.), Vi > j € T\ {1}},

with 24, . L 2, o [whe for all {i,j} # {h,m} € (Z\ {1})? and so by mixing over
w'e. we are sampling from f(Z]|yk, K). This will be fast, but may mix over iterations
poorly since the proposal could be far away from the maximum posterior and so the
acceptance rate could be very low.

Instead, the data can be used to inform the next proposal using the conditional
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posterior. Consider the pair {7,j} : i > 7 € Z\ {1} at step s. The conditional posterior

P{i ;1 (y) that the pair {i,j} is in cluster y € {—K*,..., K*} is computed as

p?z,]}(iU) X L(x{i,j}|¢says7 Asaeswé{i,j}(y)? Ks)f(Zj:z,j}(nyYI(a Ks)a V?J € {_Ksa BRI 7KS}7
(C.5.1)

for all i > j € T\ {1}, where 2y, j;(y) indicates that the pair {7, 7} is in cluster y, i.e.,
Zuply) ={z, te {-K*...,K*} : 2z, = 1,2 = 0 otherwise},

and xy; j; comprises only data of comparisons between ¢ and j, and the full allocations

used in the prior f(Zim}(y)hK, K*#) are given as

Z?Z,j}(y) = {5{27J}(y)7 {z?a,b]nva >be I\ {17Z7j}}}7

which is just the usual set of allocations, except for the pair {i, 7}, which is assigned to
cluster y. Only the data x(; ;; need be considered in the likelihood in equation (C.5.1)
instead of the all the data, because the cluster allocation of all pairs is assumed to be
independent, so only §;; will change, see definition (7.3.7), which in turn means that
only the pairwise probabilities p;; and p;; will change, see equation (7.3.5).

Since K* is finite, for all s € {1,...,5}, the probability ¢f; ;,(y) at iteration s that

the pair {7, 7} belongs to a cluster y is found by simply normalising, to give

p?i,j} (y)

i Wy e {—K°,. .. K°).
Zf:—KS Pl (0)

q;;,j}(y) =

Then, for the pair {i, j}, the proposed allocation is drawn from a multinomial distribu-

tion with probability gf; ;, := {q{; ;;(v) : y € {=K",..., K*}}, so that

2, jy ~ multinomial (1,4, ;) - (C.5.2)
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Note that it is is possible for zf{i’j} =2z, ;-

So far we have explained the proposal for a given pair {i,j}. In order to real-
locate all pairs, this proposal is made sequentially for all ¢ > j € Z \ {1} as fol-
lows. All free pairs are initially placed into a holding set H = {{a,b} : a > b €
Z\ {1}}. Also define an allocated set £ which is initially empty. From the holding
set ‘H, a pair {i,j} € H is selected at random to have a new allocation proposed
zf{l e which is drawn from equation (C.5.2). This is then accepted with probability
Afﬁﬁi =1, Wi,j}:i>7€Z\ {1}, see appendix C.8. Therefore z?j]l} = 2}, ; Wwith
probability 1 for all @ > 7 € Z. Then, the pair {7, j} are placed in the allocated set,
such that now H = {{a,b} : a > b€ (Z\ {1})*>\ {i,7}}, and the allocated set becomes
L = {{i,j}}. Pairs from the holding set continue to be reallocated until the holding

set is empty, and all pairs have been reassigned.

C.5.2 Standard MCMC updates : skills
Skill levels update

Next the skill levels are updated sequentially from smallest to largest, and the new
values are again proposed on the transformed scale, all of which ensures that order
is preserved. Specifically, for any a € A;_gy, then the new transformed parameter is
proposed via a symmetric random walk with standard deviation 74 > 0, such that
y(QLlootl, din) ~ N (y(¢i95t1, ¢5.1),73). The proposed parameter is accepted with
probability

@ _ (@Y, A%6°,2° Kolx)  L(z|g, Y, A%, 0°, Z°, K*) 7 (¢h|va)
levels — m(¢°, Y5, A5,05, Z, K°|z) N L(z|¢®,Ys, A5.05, Z5, Ko) 7w (¢5|va)

where 7 is the prior distribution of the skill levels ¢, namely, normal with standard

deviation v4 > 0. If accepted then ¢St = ¢/
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Object reallocation

The skill cluster allocation is updated in the same way as the intransitivity cluster
allocation, using the conditional posterior. By considering the object i € Z\ {1} at step
s, the conditional posterior py;,(w) that the object i is in cluster w € {—A%,... A%}

1S

p?i}(w) X L(m{i}|¢s7y~'{i}<w)v AS7087 ZS’ Ks)f(yii}(w)hz‘h As)v

Vye{-A%,... A%}, ieT\ {1}

where

Yy (w) = {gu (w), {iy, Vi € T\ {1,i}}},

and g, (w) indicates that object i is in cluster w, i.e.,
Yy (w) =y, t € {=A%, ..., AL} 1 yu = 1,4, = 0 otherwise}.

Here, x; are only the data involving comparisons with object ¢, which is possible
because all skill cluster allocations and skill clusters are assumed to be independent
and so the likelihood of comparisons not involving object ¢ will not be effected.

The probability qfl.}(w) at iteration s that the object ¢ belongs to a cluster w is

again found by normalising, to give

. (w)
g (w) == —5s ; ,Ywe {—A%, .. ALY Vie T\ {1}

Then the object i’s the proposed allocation is drawn from a multinomial distribution

with probability gy, := {qj;, (w) : w € {=AZ,..., A} }}, so that

y'{i} ~ multinomial (17‘1?1‘}) , Vie I\ {1} (C.5.3)
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Note that it is is possible for yf{i} = Y- Again, the full proposal for all objects is made
sequentially for all ¢ € Z\ {1} as follows. All objects, expect for the fixed object 1, are
initially placed into a holding set Ha = {i : i € T\ {1}}. Also define an allocated set
L4 = 0. From the holding set H 4, an object i € H 4 is selected at random to have a new
allocation proposed y’{i}, which is drawn from equation (C.5.3). This is then accepted
with probability Azl}oc 4 =1, Wi} :i € T\ {1}, see appendix C.8. The object 7 is then
placed in the allocated set, such that now Hs = {i: i€ Z\ {1,i}}, and the allocated
set becomes L4 = {i}. Objects from the holding set continue to be reallocated until

the holding set is empty.

C.6 Initialisation

Based on the initialisation routine described in Section C.2, the full algorithm is pre-

sented as follows.

Algorithm 1 ICBT model: Reversible Jump algorithm.
Inputs: paired comparison data, prior parameters (Mg, Aavr, 74, @, 3).

Find maximum likelihood estimates for the Bradley-Terry skills {r; : ¢ € Z}, and the
associated pairwise probabilities {pEfT) i £ kel
Find naive estimates for pairwise win probabilities {pgz) = wip/Nix 11 £ k €L}

Find initial estimates for intransitivity

(n) (n)
pi /(L —py.”) ) .
Qik:10g< iF kel
{ P /(1 =Pl

Cluster into intransitivity levels and skill levels using k-means clustering.

Pick model with the best BIC as initial model, which gives initial parameter estimates

~

(¢initia17 Yinitiala Ainitiab Zinitiala oinitiala Kinitial) .

~ A

0 yvO A0 g0 70 10 7 0
Set (¢ aY 7A ,6 7Z aK ) - (¢initialayinitia17 AinitiabZinitialaoinitiah Kinitial)
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fors=1,...,5, do

Update 6

Update ¢

Store sample (¢°,Y*, A°.0° Z° K?)
end for

Set (¢°,Y?, A% 6° Z° KY) = argmax m(¢°,Y*, A%, 0%, Z% K*|x).

for s=1,...,5;, do
Update 6
Update Z
Update ¢
Update Y
end for
Store sample (¢°,Y* A* 0% Z* K*)
Set (¢°,Y?, A% ° Z° KY) = argmax m(¢°,Y*, A% 0%, Z¢ K*|x)

for s=1,...,5, do
Update 6
Update ¢
Let K¢ = K571 A% = A51
end for
if K* =1 then
propose to split an intransitivity cluster
else
with probability 1/2 propose to split or merge an intransitivity cluster
end if
if there are no empty intransitivity clusters then

propose adding empty intransitivity cluster
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else

N,

P pr propose deleting empty intransitivity cluster

with probability

with probability mf;m( propose adding intransitivity empty cluster
end if
if A* =1 then
propose to split a skill level with probability 1/2
else
propose to split or merge a skill level
end if
if there are no empty skill clusters then
propose adding empty skill cluster

else

Ny

Ny+pa Propose deleting empty skill cluster

with probability

with probability prpr propose adding empty skill cluster

end if

Update Z

Update Y

Store sample (¢°,Y* A,0° Z° K*)

Set (¢°,Y?, A% 6° Z° KY) = argmax m(¢°,Y*, A 0%, Z¢ K*|x)

C.7 Jacobian terms

C.7.1 Jacobian for intransitivity split move: k£ # 0

The Jacobian for the intransitivity split move Jgp;;, for the general case where k # 0 is

given as
90, ., 00,
00 00
Js L k k
plit .
90, , 96,

ou ou
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Let a = 0_1, B = Ok41. From equations (C.3.4) and (C.3.5), we have

a+ fexp(—u) (0 — ) /(B —6)
1+ exp(—u) (O —a) /(B — 6k)
| _at el (B—a) /(3 6)
T T exp(u) (0 —a) [ (B—0k)

02/./ ==

Therefore, using the quotient rule twice,

o, _ [1+exp(n) (§5) | Besp(n e — [+ Besa(w) (452) | ety

96, [1 + exp(—u) (Z’“ (,j:ﬂ 2
B Bexp(—u) 5 [ - %} (C.7.1)
[1 + exp(—u) <Zk_gf:>r |
and similarly
Whyy _ o) G [1 - %] (C.7.2)
W e (252)]
o0, [1 + exp(—u) (9 - )} Bexp(—u)(~1)%52 — [a+ﬁexp( ) (Z’“ eaﬂ exp(—u)(~1)§5
" et (5]
| Pewpwis; -] (C.7.3)
[1 + exp(—u) (%k__gj)} B
0y, _ Bew(u)Gg -8 (C.7.4)

M e (352)]

Equations (C.7.1), (C.7.2), (C.7.3), (C.7.4) therefore give a Jacobian of

2
9 Oé) 6%
252w—6k [1 — E]

2 3 49
L deoshu) () + (1+ 2eosh(2u) (352 )+ acosh(u) (352) "+ (45)

Jsph't -
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and Joerge = 1/ Jpiit-

C.7.2 Jacobian for skill split move: a # 0

For the corresponding split of a skill cluster, assuming it is not the 0 cluster, i.e., a # 0,
let @ = 1, B = pgr1. Then similarly to Appendix C.7.1, the Jacobian for the general

split move for the skill levels is given as,

2
242 elbea) [1 _ g}

A 6_¢a)3 /3
Jsplit = 5 5
1+ 4 cosh(ua) (g"_—;ﬁ:) + (4 + 2cosh(2uy)) (?‘l_—;ﬁ) + 4 cosh(uy) (2‘1;3) + (za_;;:
where Jﬁerge = 1/J£)lit.

C.7.3 Jacobian for intransitivity split move: £ =0

In the case that the transitive level has a split proposed, i.e., k = 0, then

;,u./ == ek - 00 - O,
and so
00, 00,
P— pr— 1.
ou 0, 00,

Therefore, with o and [ defined as in Appendix C.7.1, the Jacobian is given as

Jsplit|(k = 0) = ‘%’(k = O)’
_ Bexp(u) (ggg(?)z [1 - %]
[1 + exp(u) <9ﬂ°:93‘>] i
20 exp(u)

"~ (1t exp(u)?

where the last equality follows since a = —f.
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C.7.4 Jacobian for skill split move: a =0

The Jacobian here is derived very similarly to Appendix C.7.3, except that, since the
levels can be negative and are not reflected around 0, it is not necessarily true that
a = —f. Moreover, if a split occurs on cluster a with ¢, = 0, then either ¢/, = 0

or ¢,,, = 0, with equal probability, as explained in the algorithm. In the case that

¢, =0, then
G = ¢a = ¢o =0,
and
E !

Therefore the Jacobian is given as

Spiit| (@ = 0) = | ——==

However, if ¢/, ; = 0, then ¢}, ,, = ¢, = ¢o = 0, which leads to the same result.

C.8 Allocation acceptance probability

The probability of accepting the proposed allocation for a pair {i, 7}, is

fgy _ L@agy|e%, Y0, A% 0%, 24y, K°) (2, K°) 4:(2° 13, )
M Lyt Y, A 00,27, 5y KO (20 e, K°) -(Z'lgs )

where

Z' = {2z, {20y ch e HY {27} 1L e L},
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is the set comprising the proposed allocation, the allocations from pairs in the holding
set, and the new allocations of any pairs in the allocated set, and

(20 P (v = amsmax [ ] )

AV ’
9-(Z'la}; ;) Pl (?/ = argmax [zii,j}D

which is precisely the conditional posterior, and thus the acceptance probability reduces
to AU = 1, V{i,j} i >k € Z. Similar logic can be followed for the skill allocations,

alloc

showing that Aiﬁoc a=1 Y} i e\ {1}

C.9 Simulation studies

To evaluate the model, some simple simulation studies were conducted and outputs
compared to a standard Bradley-Terry model. Data are simulated from our model, on
which both our model and a standard Bradley-Terry model are fitted. Four scenarios
are considered: one in which there is zero intransitivity and therefore could be modelled
equally well by the Bradley-Terry model; and scenarios with one, two and three levels
of intransitivity, i.e., K € {0,...,3}. No matter the number of intransitivity levels
used to simulate the data, when fitting the model the prior mean of the number of
intransitivity levels was fixed at A\x = 2 since in practice the true number of levels
would not be known. In all cases a simple m-round robin tournament structure is
simulated in which each object is compared to every other object m times. The four
scenarios are tested for round robins of m € {4,8,12,16, 20,40}, and in all cases had
n = 20 objects, with the same n/2 skill levels simulated from independent normal
variables with mean 0, such that the range of the levels were similar to that found in
real data, see Section 7.5.2. Table C.9.1 shows the four scenarios with the value of
the intransitivity levels. The values of the intransitivity levels were selected such that

intransitivity in the simulated data would be noticeable, but not unrealistically large.
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Moreover, these values of intransitivity were similar to values found in data of American
League baseball, see Section 7.5.2. To give some intuition into these values, consider a
paired comparison between two objects 4, j, where p;;| (6;; = 0) = 0.6 when there is no
intransitivity. Then our model gives p;;| (6;; = 0.4) = 0.69 and p;;| (6;; = 1.2) = 0.85.
Similarly, if p;;| (6;; = 0) = 0.9, then p;;| (6;; = 1.2) = 0.97 and p;;| (6;; = —1.2) = 0.73.

Scenario 1 | Scenario 2 | Scenario 3 Scenario 4
K 0 1 2 3
0 NA 0.7 (0.5,0.9) (0.4,0.8,1.2)

Table C.9.1: Scenarios for the simulation experiments. All four scenarios were tested

on round robins of m € {4,8,12,16,20,40}.

Figure C.9.1 shows the posterior distribution of K for each of the four scenarios,
with the different colours showing increasing round robins in m, from left to right. In
scenario 1, Figure C.9.1 (top left), for m = 4 (black) the model indicates there is some
probability that there are more than 0 clusters, but for m = 8 (red) and upwards,
the model correctly finds no intransitivity levels. Figure C.9.1 (bottom left) indicates
that the model has more difficulty finding the correct number of levels in scenario 2,
although generally as the amount of data increases, the posterior distribution agrees
more with the truth. In scenario 3 the model does well in identifying the true number
of clusters, Figure C.9.1 (top right), and in scenario 4, Figure C.9.1 (bottom right), as
the number of round robins becomes large (m = 40), the model again has no trouble
identifying there being truly K = 3 intransitivity levels.

The discrepancy between the posterior for K and the truth in scenario 2 could be
due to the prior on the number of intransitivity levels having mean A\ = 2, instead
of at the truth (K = 1 in this scenario). This possibility was explored via sensitivity

analysis, by deliberate misspecification of the prior K|\ in the inference, for a range of
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Ak € {1,...,5}. In the most extreme misspecification, data  were simulated with K =
2 (and m = 20), but with the model then fitted with A = 5. In this case, the posterior
probability of the true number of intransitivity levels was w(K = 2|\ = 5,2) = 0.79,
indicating the model is robust to prior misspecification of the number of intransitivity
levels. Moreover, the effect of prior misspecification on out of sample prediction was
found to be minimal. The difference in the proportion of correctly predicted out of
sample data between the model with the correctly specified prior and most misspecified
prior was 5.4 x 1073, with the worst fitting model still predicting 1.8 x 10~ better
than a standard Bradley-Terry model. The difference in log-loss, see equation (7.4.5),
was 3.8 x 107*. In all cases, whatever the choice of Ag, the model always performed
significantly better than a standard Bradley-Terry model.

Similar histograms were plotted (not shown) for the posterior probability of the
number of skill levels for each scenario. In scenario 1 (K = 0) the posterior density
of the number of skill levels agrees very closely with the truth even in the small data
case (m = 4), whereas for the other scenarios it takes from m = 8 upwards for the
posterior probability to start to agree with the truth. In general, for small m the
posterior mean of the number of skill clusters is smaller than the truth, that is, the
prior described in Section 7.4.2 leads to simplicity in these cases. As m increases, the
posterior mean then increases and tends towards the truth. This suggests the model
is fitting appropriately complex models given the data available and is therefore not
over-fitting as a Bradley-Terry model may do. The posterior variance of A decreases as
m increases.

Our assessment of the quality of fit is based on out of sample prediction accuracy -
for each of the four scenarios an additional 1000 round robin tournament was simulated
to be used as a test dataset, on which out of sample accuracy was assessed. Figure C.9.2
(left) shows log-loss and percentage of correct predictions (right), for the out of sample

test dataset. For the transitive case (black) there is very little difference between the
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Figure C.9.1: Posterior probability of the number of intransitive levels for the four
simulated scenarios: scenario 1 (top left), scenario 2 (bottom left), scenario 3 (top right)
and scenario 4 (bottom right). For each scenario, the colours represent the increasing
number of round robins from left to right: m = 4 (black), m = 8 (red), m = 12 (green),

m = 16 (blue), m = 20 (cyan), and m = 40 (magenta).
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Bradley-Terry fit and our model in both criteria, although perhaps our model performs
slightly better when fitted to data from the m = 4 round robin case. This could be
due to our model clustering the objects’ skill levels and thus having less parameters
(given our model also chooses K = 0 with a high probability in this scenario), and so
the Bradley-Terry model may be over-fitting in this small data case. Particularly for
scenario 2, our model is clearly over-fitting when the dataset is small, and a simpler
Bradley-Terry model would perform better. However, as the amount of data increases,
our model begins to perform better at around m = 16 round robins in terms of log loss,
and by m = 12 in terms of percentage of correct predictions. A similar pattern occurs
with scenario 4 in terms of log-loss, but here the improvement over the Bradley-Terry
becomes very large as the number of round robins increases due to a larger presence
of intransitivity. In this scenario our model always predicts a higher percentage of
correct results, regardless of the number of round robins the models were fitted on.
This discrepancy between log-loss and percentage of correct predictions in the small
data case (m = 4), may indicate that when our model makes an incorrect prediction,
the probabilities are far from the truth. This could be due to allocations of some pairs
into incorrect intransitivity levels with limited data. For scenario 3 our model always

has a better log-loss.

C.10 Baseball extra analysis

C.10.1 Hyper-parameter Selection

For running the sampler on all seasons of the baseball data, the same hyper-parameters
were selected. The hyper-parameters are considered to belong to two categories: firstly,
those that dictate the parameter values (the levels and cluster allocation), and secondly,
those which dictate the model choice, i.e., the number of skill and intransitivity levels.

Considering the first category, the concentration parameters for the (symmetric) Dirich-
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Figure C.9.2: Out of sample prediction performance assessed through: log-loss (left),
percentage of correct predictions (right). Assessments are shown for all four scenario
of Table C.9.1: K = 0 (black), K = 1 (red), K = 2 (green), and K = 3 (blue),
for Bradley-Terry (crosses with dotted lines), and Intransitive Clustered Bradley-Terry

(dots with solid lines) models.

let priors, which informs the concentration of the clustering allocation, were both set to
v4 = vk = 1. This parameter choice allows for the data to be able to dictate whether
the cluster allocations are dispersed equally across levels or highly concentrated in a
small number of levels. The hyper-parameter which feeds into the prior on the team
skill levels, v4 = 1 was selected due to the likely maximum win probability. In the
small data scenario, the parameter v4 = 1 is likely to restrict the win probability in the
transitive case to remain between == (0.05,0.95), so we felt this choice of prior did not
restrict the team skill ratings. The hyper-parameters a = 1.5, § = 2 for the gamma
prior on the intransitivity levels was selected such that the mean is o/f = 0.75. This
was selected to reflect a reasonable shift in pairwise probability. For example, if two

teams’ ¢, j skill levels differ such that r; — r; = 1, then an intransitivity of ;; = 0.75

(BT) _ .73

increases the win probability from the transitive (Bradley-Terry) scenario Pij
to p;; = 0.85. We felt this would be a noticeable and yet still realistic change in win
probability due to some strategic advantage.

The second class of hyper-parameters - those that effect the number of levels (or

model selection) - were initially selected based on intuition as A\x = 2 and Ay = n/2 = T7;
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however, since the choice here is not so obvious, sensitivity analysis was also conducted.
The hyper-parameter Ak, the prior mean for the number of intransitivity levels, was
chosen to be A\ = 2, as it was thought that the different strategies of the pairs of
baseball teams could perhaps be summarized by (on average) 2 different levels of extra
advantage (disadvantage) (on top of Bradley-Terry) and with 95% chance in the range
[0,5]. This is achieved with a Poisson(2) distribution. The hyper-parameter \x = 2
was selected as it was thought that the different strategies of the pairs of baseball
teams could be perhaps be summarized by two different levels of extra advantage (or
disadvantage). The hyper-parameter A4, which dictates the prior mean of the number
of skill levels A was set to Ay = n/2 = 7 as we expected that the n = 14 teams could
possibly be summarized by half the number of skill levels, as this Poisson(7) distribution
has 95% interval [2,13]. To test the sensitivity of these hyper-parameters, we analyse
a season (2016) of the baseball data for values A = (2,4,10) and A4 = (3,7,10), see
Figure C.10.1. Figure C.10.1a shows that even a value of A\x = 10 doesn’t pull the
posterior too far from the other choices - the posterior probability of observing K =1
is reduced, but the probability of observing K = 2 is similar to the two other options,
even though K = 2 it is very far from the prior mean. This is likely because with the
choice of Poisson distribution, the increased mean also increases variance, and so the
prior is less informative. Figure C.10.1b shows that the number of skill clusters seems
to be robust to the choice of A4, since the posterior distribution of A between models
with Ay = 7 and A4 = 10 is very small. For A4 = 3, the posterior distribution does
appear to be quite different, however a value of A\, = 3 is unlikely to be selected in

practice.

C.10.2 2018 season

A main feature of our model is the capturing of pairwise interactions between teams.

For the 2018 season, Figure C.10.2 (left) shows the posterior mean of the intransitivity
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Figure C.10.1: hyperparameter sensitivity

parameter for each pair of teams 0, Vi > J, as intransitivity has rotational symmetry,

ij>
ie., 0;; = —0j;, Vi # j. The teams are sorted by their rank according to p,, defined as in
equation (7.3.9). Note that in Figure C.10.2 (left) the Los Angeles Angels (ANA) have
an intransitivity level of 0 against all opponents; however, these levels were fixed at 0 for
identifiability purposes rather than being a real interpretable feature of the team such as
“ANA always play exactly as expected given their overall ability”. A more interpretable
representation is the intransitivity of the posterior mean {éjj : 1 # j} given by definition
(7.3.8), rather than the posterior mean of the intransitivity parameter. The reason for
this being interpretable is due to
0;; = logit(p;;) — logit (png))>

being defined as a function of pairwise probabilities. In the Bradley-Terry model,
although a constraint on the parameters must be introduced in order to maintain iden-
tifiability, the resulting pairwise probabilities are invariant to this choice of constraint.

The same is true of our model, that the pairwise probabilities are invariant to the choice
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of constraints on the parameters. Therefore, by defining ¢} as a function of pairwise
probabilities, we can be sure that it too is invariant to the choice of identifiability con-
straints. Of course, the pairwise probabilities themselves are functions of underlying

parameters since
0;; = logit (pi;) — logit (png)) =0 +r—1r;— (rl(BT) - rj(BT)> , Vi#j el

however, we need not worry about this because we know that ¢}, can be written as
a function of pairwise probabilities, and therefore whatever combination of underlying
parameters are involved in the expression must not depend on the choice of constraint.
Clearly the two measures {,; : i # j} and {é;‘] i # j} correlate, but we believe the

*

measure 07; to be more interpretable. Considering Figure C.10.2 (right), pairs involving

J
ANA still have intransitivity values closer to 0 than other pairs, albeit not exactly 0
since the values are not fixed as is the case in Figure C.10.2 (left). By redoing the
analysis but fixing the intransitivity of all pairs involving a different team, namely
Tampa Bay (TBA), we find that pairs involving ANA still have intransitivity values
closer to 0 than other pairs. Moreover, neither the rankings nor model performance,
see Section 7.5.3, differed significantly, indicating that the choice of fixed parameters
does not impact the model.

The analysis of these intransitivities between pairs, and that of the skills of each
team, can be combined to produce an overall ranking of the teams. For the 2018 season
Figure C.10.3 (left) shows the ranking according to p.. To help with a visual comparison,
both ranking methods in Figure C.10.3 have been linearly scaled such that the best and
worst teams have abilities 1 and 0 respectively. The ratings between p_and the Bradley-
Terry ratings are clearly correlated, however, there is some difference in the ordering of
the ranks, indicating that intransitivity may have been masking the true ranks of some

teams. For example, consider TBA, ranked 6th by the Bradley-Terry model. TBA’s

good record against Kansas City (KCA) has a much lower weighting than their poor
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record against BAL in the Bradley-Terry model due to the differing frequency of these
match-ups, and therefore impacts the overall rank of TBA. Our Intransitive Clustered
Bradley-Terry model however, recognises that good or bad records against particular
teams could simply be due to the presence of intransitivity, and therefore penalises
TBA less overall, ranking them 5th. This demonstrates that the model also accounts
for tournament structure, such that teams are not penalised so heavily if they (unfairly)
compete most frequently against those whom they perform systematically worse than
expected based on skill alone. There is high correlation between the overall team
abilities according to p. and the Bradley-Terry abilities, indicating that, although the
Intransitive Clustered Bradley-Terry model is capturing more complex relationships
between pairs, the overall rankings are not too dissimilar. Moreover, it manages to
capture this information whilst using less parameters - on average 9.03 (5,13) with
95% credible interval shown in parentheses, as opposed to the n — 1 = 14 parameters
required by the Bradley-Terry model. Figure C.10.3 (right) shows overall team abilities
according to a, see equation (7.3.10), which produces rankings which are more different

to those of the Bradley-Terry.

HOU
NYA
OAK
BOS
TBA
SEA
ANA
CLE
MIN
TOR
TEX
DET
CHA
KCA
BAL
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Figure C.10.2: Intransitivity between pairs of teams for the 2018 season: Posterior mean

~

of the intransitivity, 6;; := E[6,;|z], Vi > j (left), and Intransitivity of the posterior

mean, éjj, Vi > j € T (right).



Part II. Appendices 236

RSN

0.8
| |
I.—O—
e
g
e
ey
®

T o

@ S g

2 2 'i}i{ 3 STty

3_3 7 L4 - i{o

<EO_7 }} 5 L

- T T T T T CS_I I I T T T T T T T T I T T+

DIXNCICCWZEXEF <<
Oz<odWz1sSoWWITOL X%ﬁg:mwﬁgﬂém<§<—£
TZ0mhFHwn<O FHFOQXxO 8»—mz%.98|—§o<c§<’om

Figure C.10.3: Posterior mean of the overall abilities for the 15 American League base-
ball teams from the 2018 season with 95% credible intervals (black), according to p.
(left) and a (right), and the corresponding scaled Bradley-Terry abilities (red). In each
plot, teams are sorted in order of decreasing ability (by p. or @ respectively). Uncertain-

ties in the Bradley-Terry model (not shown) can be calculated via profile likelihood.

Of course drawing meaningful inference from the rankings is dependent on the rank-
ings being accurate. To analyse this, we check the ranking accuracy, that is, the propor-
tion of times that the better ranked team beats the worse ranked team. Maximising the
ranking accuracy is not our ultimate aim, and could be done very simply by analysing
all possible permutations of teams within the rankings. Note that this measure disre-
gards all information about the probabilities, and must therefore be used with caution,
but nevertheless provides a good sanity check for a ranking system. Across all seasons,
ranking according to p., gave a higher ranking accuracy than the ranking accuracy
according to a, with the 2018 season giving ranking accuracies of 0.64 and 0.60 respec-
tively. Similar plots and inferences are drawn from the other seasons (2010-2017) but

with different team rankings in each year.
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C.10.3 Pooled data

In addition to a season-by-season analysis, characteristics of the teams, or pairs of
teams, which carry from one season to the next can be identified, by pooling data
across seasons. Since in 2013 the Houston Astros moved from the National League to
the American League, data are pooled from 2013-2018 American League.

Firstly, consider the intransitivity between pairs observed from the pooled data.
Figure C.10.4 (left) shows the posterior pairwise intransitivity between pairs, but now
for the pooled data from 2013-2018. The values are much closer to 0 in comparison
to the 2018 data alone, see Figure C.10.2, or any other single year of data, indicating
that there are significant differences in the strategies between pairs of teams from year
to year, which when aggregated brings the intransitivity towards 0. By comparing
Figures C.10.2 and C.10.4, we see that over seasons Texas (TEX) remains strong against
Houston (HOU), and Houston remains weak against Cleveland (CLE).

An overall ranking can also be produced for the pooled data, which portrays the best
and worst teams etc. over the 2013-2018 era. Figure C.10.5 indicates these rankings
according to p.. The model indicates that there is virtually no statistically significant
difference between the teams based on these pooled data, even though significant dif-
ferences are present for any individual season of data. This high variability in team
ability was already suspected due to the previously identified significant changes in the
intransitivities of the pairs from one year to the next. Considering intransitivity to be a
marker of the combination of two teams’ strategies, then we might expect a significant
changes in strategy to accompany significant changes in overall abilities.

The statistically insignificant differences in overall rankings from these pooled data
could be due in part to the aggregation of highly variable team abilities across the
years. This is because time-dependency is not considered in our model, and so any
significant differences in team ability that exists at a given point in time are blurred by

even stronger trends in the teams’ abilities over those 6 seasons. Thus when aggregated,
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any significant differences in team ability at a given point in time are lost. Essentially,
season-to-season form is being blurred by even stronger trends in the teams’ abilities
over those 6 seasons. To confirm this finding, the rankings are compared between a
given year and pooled data excluding that year, for example, between the ranks from
the 2015 season and the ranks based on pooled data of 2013, 2014, 2016, 2017, and 2018
seasons, using Spearman’s rank hypothesis tests. The results from the Spearman’s rank
hypothesis tests indicate that every season produced a ranking which was statistically
significantly different to the rankings produced from the pooled data excluding that

year.
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Figure C.10.4: Intransitivity between pairs of teams from pooled data of 2013-2018

seasons: posterior mean of the intransitivity, 6;;, Vi > j € Z (left), and intransitivity

of the posterior mean, éfj, Vi > j € T (right).

In American League Baseball then, any team has the potential to improve or de-
cline significantly over the years, a result unlikely to be found in many other sports,
for example football (soccer), and which arguably makes American League Baseball
a more competitive sport overall. This feature of the sport is likely due to Major
League Baseball’s “competitive balance tax”, which levels teams’ spending. For ex-
ample, the largest spending of any team (https://www.spotrac.com/mlb/payroll) in
American League Baseball this year was only a factor of 5 larger than the smallest.

Contrastingly, in English Premier League football, this factor is over 200 times. It is
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no surprise then that in football a small handful of teams seem to be consistently top

ranked.
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Figure C.10.5: Overall abilities, defined by p, from data pooled across seasons 2013-

2018 (black). Corresponding Bradley-Terry rankings are shown in red.



Chapter 9

Concluding Remarks for Parts 1

and 11

By expressing absolute systems and relative systems as two sides of the same coin, this
thesis has unified two previously unconnected areas of statistical ranking methodology.
The building of this conceptual bridge through the system-wide view now allows for the
construction of its mathematical underpinnings, which have so far remained detached
throughout. With a motivating example based on elite swimming, the first steps in
unifying the underlying mathematics are eluded to.

In Chapter 4 only the competition minima was used for analysis, despite having
data from all swimmers’ event results. This filtering ensured that the remaining data
were a good reflection of the swimmers’ true abilities and were locally time identically
distributed. But there is another interpretation of the necessity for this filtering, one
which stems from the concept of systems.

With a view to conserve energy, the optimum performance in the heats can be
considered as the slowest swim which still allows for advancement to the next stage
of the competition. For slower swimmers, this may still translate as maximal effort,

but the very best swimmers may deliberately and significantly under-perform. All that

240
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is required, is to swim faster than their opponents. So, especially in the heats, it is
clear that the time recorded is dependent on the context - the opponents - and so this
cannot be a purely absolute system. So, the reason for filtering by competition minima -
thereby discarding all but one data point per swimmer per competition - is because the
method cannot handle the relativity that bleeds into this assumedly absolute system. To
use all the available data would therefore require some unification of the mathematics
presented in Part I and Part II: assuming that a swimmer’s best times require only
extreme value methodology, whilst acknowledging that the times recorded in the heats
may need adjusting to reflect the strength of opposition. And so the ubiquity is revealed:
rather than a binary categorisation of system - absolute or relative - perhaps a fluid
description of the relativity of the system is more appropriate. This relativity would
describe the importance of contert in understanding a given system.

It is hoped that this ubiquitous system view of statistical ranking methodology helps

in the future to bridge the gap between presently unconnected areas of statistics.
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