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Highlights 12 

• The NTL data were sharpened using RFATPK and multi-covariates. 13 
• The sharpened NTL showed lower RMSE against Luojia1-01 NTL data. 14 
• The downscaled NTL can be used for tracking human development at the city-scale. 15 

Abstract 16 

For mapping and monitoring socioeconomic activities in cities, night-time lights (NTL) satellite 17 
sensor images are used widely, measuring the light intensity during the night. However, the main 18 
challenge to mapping human activities in cities using such NTL satellite sensor images is their 19 
coarse spatial resolution. To address this drawback, spatial downscaling of satellite nocturnal 20 
images is a plausible solution. However, common approaches for spatial downscaling employ 21 
spatially stationary models that may not be optimal where the data are spatially heterogeneous. In 22 
this research, a geostatistical model termed Random Forest area-to-point regression Kriging 23 
(RFATPK) was employed to disaggregate coarse spatial scale VIIRS NTL images (450 m) to a 24 
fine spatial scale (100 m). The RF predicts at a coarse resolution from fine spatial resolution 25 
variables, such as a Population raster. ATPK then downscales the coarse residuals from the RF 26 
prediction. In numerical experiments, RFATPK was compared with three benchmark techniques, 27 
including the simple Allocation of pixel values from the coarse resolution NTL data, Machine 28 
Learning with Splines and Geographically Weighted Regression. The downscaled results were 29 
validated using fine resolution LuoJia 1-01 satellite sensor imagery. RFATPK produced more 30 
accurate disaggregated images than the three benchmark approaches, with mean root mean square 31 
errors (RMSE) for the year 2018 of 13.89 and 6.74 nWcm-2sr-1, for Mumbai and New Delhi, 32 
respectively. Also, the property of perfect coherence, measured by the Correlation Coefficient, 33 
was preserved consistently when applying RFATPK and was almost 1 for all years. The 34 
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applicability of the disaggregated NTL data to monitor socioeconomic activities at the within-city 35 
scale against the reference NTL was illustrated by utilizing them as a proxy for the Gross National 36 
Income (GNI) per capita and the Night Light Development Index. The GNI estimation from the 37 
downscaled NTL outperformed the coarse resolution NTL when examining their coefficients of 38 
determination, with R2 of 0.67 and 0.47 for the GNI estimation using the fine and coarse resolution 39 
NTL data, respectively. For the Night Light Development Index (NLDI), the results of the index 40 
were compared by measuring their correlation with the Human Development Index (HDI). The 41 
NLDI from the downscaled NTL outperformed the coarse resolution NTL when measuring the 42 
correlation with the HDI, with Pearson’s correlation coefficients of -0.48 and -0.35 for the NLDI 43 
using the fine and coarse resolution NTL data, respectively, for New Delhi. The outcomes indicate 44 
that RFATPK provides more accurate predictions than the three benchmark techniques and the 45 
downscaled NTL data are more suitable for fine scale socioeconomic applications, as demonstrated 46 
by the NLDI and GNI. This research, thus, shows that the RFATPK solution for NTL 47 
disaggregation can facilitate data enhancement for fine-scale sub-national applications in social 48 
sciences and can be generalized worldwide by including other cities as well as other applications. 49 

Keywords: satellite night-time lights, downscaling, random forest regression, area-to-point 50 
Kriging, spatial non-stationarity, socioeconomic applications 51 

1. Introduction 52 

Human development is a crucial factor to consider when assessing a nation's degree of 53 
development since it gives inhabitants equal chances and fair choices, extends their lives, and 54 
improves their living conditions, health care, and education (Wang et al., 2021). In September 55 
2016, the world committed to implementing the 2030 Agenda for Sustainable Development. The 56 
Sustainable Development Goals (SDGs), according to Reid et al. (2017), strike a balance between 57 
the economic, social, and environmental dimensions of sustainable development. Despite decades 58 
of tremendous progress in eradicating poverty and fostering wealth, a sizable segment of the 59 
world's poorest population still encounters difficulties to maintain an acceptable standard of living 60 
in emerging nations, particularly Asia, Africa, and Latin America and the Caribbean. It appears 61 
that regional and national differences have led to the unequal reduction of severe poverty in these 62 
areas (Georgeson et al., 2016; Omar and Inaba, 2020). To achieve the goals of SDGs, we need 63 
better ways to collect and interpret information about many aspects of human development in a 64 
timely, accurate and appropriate manner. 65 

The traditional approach to examining human growth and well-being is based mostly on survey 66 
data, which includes information on income, consumption, health, education, and housing. These 67 
surveys are usually carried out every three to five years, but collecting survey data is expensive 68 
and tedious process. Between surveys, detailed socioeconomic data are still needed (Watmough et 69 
al., 2013). Moreover, countries in war or extreme poverty may even lack these survey data for 70 
years (Zhao et al., 2019). In addition, fewer than two census surveys in many developing nations, 71 
such as African nations, were carried out in the decade leading up to 2000, limiting the construction 72 
of nationally representative human development metrics (Jean et al., 2016). Additionally, several 73 
nations, like India, have suspended measures like unemployment (Dasgupta, 2022). Another 74 
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limitation of these censuses is that population sizes between censuses are projected, frequently 75 
with linear yearly growth rates, despite the fact that censuses are expensive and may only be 76 
undertaken at sporadic intervals when resources are scarce. Despite the high levels of uncertainty 77 
in the estimates, they are utilized to evaluate, for example, the dangers to public health and need 78 
for health services. Additionally, censuses are unable to reflect accurately intra-annual changes in 79 
a nation's socioeconomic conditions since they are not designed to do so (Bharti and Tatem, 2018). 80 

Using new passively gathered data sources, such as information from satellite sensors, provides an 81 
alternate method of monitoring socioeconomic processes. Such data can help address the challenge 82 
of scaling up (i.e., increasing the temporal resolution of) traditional data collection efforts which 83 
are generally very limited in frequency due to financial cost (Jean et al., 2016). Early studies used 84 
satellite "night-lights" data to demonstrate that areas with more economic output tended to emit 85 
more artificial light (Head et al., 2017). Nocturnal images, such as the Day-Night Band (DNB), 86 
from the Visible Infrared Imaging Radiometer Suite (VIIRS) is a valuable source of satellite 87 
imagery. The VIIRS is onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite. 88 
The ability for researchers to track socioeconomic activity is made possible by the worldwide 89 
coverage and coarse spatial resolution of these data, which have pixels that are less than one square 90 
kilometer in size. Additionally, nighttime lighting is consistently assessed across nations with 91 
extremely diverse institutional capacity and is not prone to manipulation for political reasons 92 
(Zhang and Gibson, 2022). When compared to commercial fine-resolution images like EROS-B 93 
or JL1-3B, NTL products (like VIIRS DNB images) are available for free and have a considerably 94 
larger swath (Levin et al., 2014). The NPP-VIIRS NTL has a spatial resolution of 15 arc seconds 95 
(or approximately 500 m at the Equator), which has the potential to support several practical 96 
applications like mapping at the country level, detecting military conflicts and assessing poverty 97 
(Levin et al., 2020; Gibson et al., 2021). 98 

NTL has achieved extensive research and applications in socioeconomic fields. The so-called 99 
Night Light Development Index (NLDI), proposed by Elvidge et al. (2012) from nighttime satellite 100 
sensor images and population density, evaluates disparities in the local population's geographical 101 
distribution of night light. Using deep learning techniques, Bruederle and Hodler (2018) 102 
demonstrated that NTL data are a suitable proxy for wealth and human development in 29 African 103 
countries. Similar to the previous study, Yeh et al. (2020) estimated the wealthiness of 20,000 104 
African villages using a combination of NTL data and daylight satellite sensor optical data, and 105 
found that their technique could account for 70% of the variation in ground-measured village 106 
wealth. Gosh et al. (2013) provided examples of numerous ways to gauge one's level of wellbeing. 107 
Elvidge et al. (2011) used NTL satellite sensor imagery and population data to estimate the number 108 
of people worldwide who have (or do not have) access to electricity. This is done because a lack 109 
of electricity is a sign of poverty and is associated with conditions that are detrimental for health 110 
and wellbeing, including the inability to refrigerate food, have access to clean water, and have 111 
adequate sanitary facilities. NTL and artificial neural networks were utilized by Jasiński (2019) to 112 
gauge electricity usage at the Nomenclature of territorial units for statistics (NUTS) 2 level. 113 

Mapping and monitoring complex urban socioeconomic processes, particularly those that take 114 
place within cities, can be challenging with NTL images since they often have a coarse spatial 115 
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resolution (Levin et al., 2020; Ye et al., 2021). According to Elvidge et al. (2007), the coarsest 116 
acceptable spatial resolution of a satellite sensor image should exceed 100 m to research 117 
socioeconomic issues at the city scale. Moreover, it can be important to track human development 118 
over time to determine if it is improving or developing. For example, a finer spatial resolution is 119 
typically needed than the 450 m pixel size of VIIRS to accurately quantify development growth 120 
rates at the scale of individual cities. These problems significantly hinder NTL applications, 121 
especially at the city-scale. Enhancing the spatial resolutions of NTL satellite sensor imagery 122 
products is increasingly urgent because the majority of the world’s population, after 2007, is 123 
concentrated in urban areas (Marlier et al., 2016). 124 

In remote sensing, spatial downscaling can be categorized in two classes based on their output 125 
prediction, namely downscaling continua and sub-pixel mapping (SPM) (Wang et al., 2020). 126 
Whereas the first class predicts continua (e.g., in units of reflectance, brightness, etc.), the latter 127 
class, also known as super resolution mapping in the remote sensing literature, predicts categories 128 
(i.e., land cover class labels) (Wang et al., 2020). Downscaling continua can create categorical 129 
products by classification and is more often used. Generally, the methods for disaggregating 130 
continua can be classified into the following classes: general statistical, spatial statistical, machine 131 
learning, process-based, wavelet-based techniques, fractal techniques and hybrid methods (Park et 132 
al., 2019). Spatial statistical analysis has advanced the downscaling of raster images (i.e., satellite 133 
remote sensing images), notably in terms of spatial interpolation, by taking advantage of the spatial 134 
autocorrelation among geographical data. Area-to-point (ATP) interpolation, as opposed to generic 135 
spatial interpolation, can address the problem of changeable areal units, when the supports before, 136 
and during, downscaling are different (Kerry et al., 2012; Wang et al., 2016a). By making sure, 137 
for instance, that the total of the downscaled forecasts within each region equals the initial 138 
aggregated count, ATP Kriging (ATPK) assures the coherence of predictions (Kyriakidis and Yoo, 139 
2005). Yoo and Kyriakidis (2006) expanded on ATPK by taking the inequality limitations in 140 
spatial interpolation into account. ATP interpolation emphasizes utilizing the information offered 141 
by correlated variables since it can help in exploring the spatial variation of response variables at 142 
a higher spatial resolution. 143 

Wang et al., (2016b) further extended ATPK by introducing a regression term and they named the 144 
method area-to-point regression Kriging (ATPRK). ATPRK is a geostatistical technique used 145 
frequently for downscaling day-time satellite sensor images. For example, Wang et al. (2015) used 146 
ATPRK to downscale MODIS data and further employed it to downscale Landsat satellite sensor 147 
images and Worldview-2 images (Wang et al., 2016a). Using multispectral satellite sensor 148 
imagery, Zhang et al. (2021) developed object-based ATPRK to disaggregate IKONOS images. 149 
Wang et al. (2017) implemented a spatio-temporal fusion method by combining MODIS and 150 
Landsat data, downscaling 500 m MODIS data into 250 m as an initial step. Jin et al. (2018b) 151 
utilized Geographically Weighted Area-to-Point Regression Kriging (GWATPRK), a spatially 152 
non-stationary method, to create a 1 km Surface Soil Moisture product. Xu et al. (2020) 153 
downscaled ASTER thermal images using Random Forest ATPK. The majority of the above 154 
research, as stated in the examples, aimed to downscale day-time satellite sensor data. However, 155 
the remote sensing of nocturnal lighting has the potential to capture human socioeconomic 156 
activities and/or track human development compared to day-time satellite sensor data, which is 157 
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critical in modelling complex urban environments for certain applications (Elvidge et al., 2017) 158 
and downscaling is potentially useful in this context. Thus, there exists a gap in the literature. 159 
However, the spatial pattern of NTL is diverse. For example, the light intensity differs depending 160 
on the land use (Ye et al., 2021), and the spatial pattern of NTL intensity varies from geographic 161 
region-to-region, even within the same area (e.g., city). 162 
 163 
Earth-observed variables also may exhibit spatial heterogeneity in addition to spatial 164 
autocorrelation (Jin et al., 2018). For such spatially diverse variables, the global model used in 165 
ATPRK may be unable to adequately capture local characteristics in the multivariate data. In 166 
essence, the global ATPRK model assumes that the process under inquiry is constant across space. 167 
Where the data exhibit spatial heterogeneity a more flexible model is needed; one that permits 168 
spatial non-stationarity in some model parameters. 169 

Wang et al. (2016a) extended the ATPRK by incorporating and adaptive window for the regression 170 
part in order to account for the data's spatial heterogeneity. An ordinary linear regression model 171 
was fitted using a coarse target variable and covariates within a local window, that is, a global 172 
regression model within the constricted region. On the other hand, Random Forest regression (RF) 173 
is a well-known non-stationary regression technique that takes into account non-linear correlations 174 
between variables and has been frequently utilized for spatial analysis, either alone or in 175 
combination (Xu et al., 2020; Tang et al., 2021). Xu et al. (2020) proposed RF area-to-point 176 
regression Kriging (RFATPK) for downscaling ASTER land surface temperature data. Cheng et 177 
al., (2022) utilized a RF and ATPK to estimate monthly population distribution in China. However, 178 
only a few related studies exist focusing on downscaling satellite night-time lights images, mainly 179 
for impervious surface identification (Ye et al., 2021). To the authors' knowledge, there hasn't been 180 
any prior research that specifically addresses NTL continua for socioeconomic applications. 181 

To account for the issue of local heterogeneity and multivariate non-linearity, this research 182 
proposes the combination of RF and ATPK for disaggregating NTL using fine-spatial-resolution 183 
predictors (e.g., WorldPop products). The suggested RFATPK technique captures the spatially 184 
non-linear correlations between the dependent and auxiliary variables while preserving the benefits 185 
of ATPRK. The advantages of the proposed algorithm are: The advantages of the proposed 186 
algorithm are: (1) RF can process high-dimensional data. (2) Overfitted phenomena do not easily 187 
occur, because the final estimation is made through the average prediction of the decision trees. 188 
(3) For a large number of remote sensing images and/or observations, training a RF model is fast 189 
and efficient. (4) RF is immune to statistical assumptions compared to the original ATPRK. (5) 190 
Another advantage is its ability to capture complex and non-linear relationships between predictors 191 
and the response variable (Brokamp et al., 2017). By downscaling NTL satellite sensor images 192 
from the VIIRS sensor from 450 m to 100 m, two practical socioeconomic applications were 193 
executed to test this approach. The applications involved the Gross National Income (GNI) and 194 
Night Light Development Index (NLDI) for New Delhi and Mumbai, two megacities of the 195 
developing world. Disaggregated NTL data at this spatial resolution have the potential to be 196 
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utilized for monitoring such human development indicators at the city-scale. The research’s 197 
contributions are, thus, two-fold. 198 
 199 

1. The geostatistical approach, ATPRK, combined with a spatially non-stationary model, was 200 
applied to downscale NTL images for the first time. To show that RFATPK is superior 201 
than the three previous well-known downscaling methodologies, a benchmark comparison 202 
between the three approaches and RFATPK was performed. 203 

2. The spatial downscaled NTL data were further applied to estimate the GNI as well as to 204 
measure light inequality at the within-city scale by comparing them with equivalents using 205 
the coarse spatial resolution NTL. 206 
 207 

The remainder of this research paper is organized as follows. The research areas and the data used 208 
are described in Section 2. The suggested downscaling technique is described in Section 3. We 209 
give the results in Section 4. We expand on the suggested downscaling approach in Section 5 210 
before presenting our conclusions in Part 6. 211 

2. Study areas and data 212 

2.1. Study areas 213 
New Delhi and Mumbai were chosen as the areas under investigation to manifest the utility of the 214 
technique (Figure 1). New Delhi is India's capital and a densely populated metropolis (~10,400 215 
people per km2) with a population of about 16 million people and it is a key international hub on 216 
the Asian sub-continent. The city has experienced rapid urbanization and industrialization, with 217 
93% of the population residing in urban areas compared to the national average of 31.16%. There 218 
are 675 slum clusters in New Delhi (Figure 1) (Bhanarkar et al., 2018; Malik et al., 2022). The 219 
Mumbai Metropolitan Region, including Mumbai and its surrounding suburban area, is known as 220 
India's economic engine as it accounts for over 6.16% of India's GDP, providing 10% of industrial 221 
jobs. More than 20 million people live in this territory today and this amount is predicted to 222 
increase by 10.36 million by the end of 2036. Mumbai, like New Delhi, has a large number of 223 
slums, with an estimated number of 67 (Nijman, 2010; Vinayak et al., 2021). 224 
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 225 

Figure 1: Location and maps of the two cities of New Delhi and Mumbai. 226 

2.2. Datasets  227 
Remote sensing nocturnal images, population count, Landsat's 8 thermal band and the global 228 
human settlement layer data were used. A summary of these follows below: 229 

1) Version 2.1 of the NPP-VIIRS DNB cloud-free yearly composite NTL product for 2013 to 230 
2020 for Mumbai and New Delhi, respectively, were acquired from the Earth Observation 231 
Group website (https://eogdata.mines.edu/products/vnl/) (accessed 10/01/2023). The pixel 232 
size of the NTL images was 450 m. 233 

2) Yearly population count data were derived from the WorldPop website 234 
(https://www.worldpop.org/) (accessed 10/01/2023) for the calculation of NLDI, the 235 
estimation of GNI and to assist the spatial downscaling. The NLDI and GNI were used to 236 
highlight the applicability and superiority of the downscaled NTL product compared to the 237 
original coarse resolution NTL. 238 

3) Landsat 8 data were used to obtain land surface temperature (LST). We selected Landsat 8 239 
OLI/TIRS yearly median cloud-free imagery for the same years as for NTL. The nominal 240 
resolution of the initial images was 100 m. 241 

4) The global human settlement (GHS) layer is a human settlement map product covering the 242 
entire world (Pesaresi and Politis, 2022). We used the GHS layers of 2015 and 2020 as 243 
well as the average global building height (AGBH) product of 2018 (accessed 10/01/2023).  244 

5) The results of the downscaling were validated using Loujia1-01 imagery. Loujia1-01 data 245 
has a pixel size of, approximately, 120 m and wider spectral range compared to the VIIRS 246 
NTL data (Liu et al., 2020). 247 

https://eogdata.mines.edu/products/vnl/
https://www.worldpop.org/
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3. Methodology 248 

The Methodology is organized as follows: (1) Firstly, a brief introduction of the ATPRK is given. 249 
(2) A detailed explanation of the proposed RFATPK and its parts (i.e., RF regression and ATPK) 250 
follows. Additionally, a description of the benchmark methods is given and lastly the two 251 
socioeconomic applications. Figure 2 summarizes the methodology as a series of successive steps 252 
designed to meet the research objectives. The first part includes selection of the Inputs (the target 253 
variable and the covariates), namely the NTL data, WorldPop product, the LST band from Landsat 254 
8 and the GHS and AGBH layers, respectively. Then, the data were regressed utilizing RF 255 
regression and the predictions were separated from the residuals. In the third part, the residuals 256 
from the RF model were downscaled using ATPK. Finally, the prediction was added to the 257 
downscaled residuals and the NTL raster layer at 100 m spatial resolution was produced. 258 

 259 

Figure 2: Flowchart of RFATPK. The first part includes the Inputs which are the target variable 260 
and the covariate. In the second part, the input data are regressed using RF regression. The third 261 
part involves ATPK-based downscaling of the residuals. Finally, the prediction is added to the 262 
downscaled residuals and the NTL raster layer at 100 m spatial resolution is produced. 263 

3.1 Downscaling 264 
ATPRK is a spatial downscaling method that applies a regression model to coarse spatial 265 
resolution data and subsequently applies ATPK to enhance the spatial resolution of the residuals 266 
(Wang et al., 2016a). The regression component alone is insufficient for disaggregation because it 267 
does not utilize fully the spectral characteristics in the observed low-resolution data. As an addition 268 
to the regression step, ATPK-based residual downscaling is utilized to account for the spectral 269 
characteristics of the coarse data. The ATPK component is a sharpening method that predicts 270 
values on a smaller pixel (i.e., support) than the original, coarse scale, data (Kyriakidis, 2004; 271 
Kyriakidis and Yoo, 2005; Atkinson, 2013). It varies from conventional Kriging in that it takes 272 
into account the observation's spatial support and it accounts for the size of support, spatial 273 
correlation and the point spread function (PSF) of the sensor, instead of treating each observation 274 
as a centroid. Moreover, a crucial advantage of ATPK is, the so-called, property of perfect 275 
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coherence (Kyriakidis, 2004; Kyriakidis and Yoo, 2005): that is, it can maintain accurately the 276 
spectral features of the nominal coarse data. 277 

The regression model in ATPRK has two parts, the prediction and the residuals. The residuals can 278 
be extracted as follows: 279 

𝑒𝑒(𝑆𝑆𝑖𝑖) = 𝑧𝑧(𝑆𝑆𝑖𝑖) − [𝛽𝛽0 +  �𝛽𝛽𝑘𝑘

𝐾𝐾

𝑘𝑘=1

∗ ℎ𝑘𝑘(𝑆𝑆𝑖𝑖)] 
 

(1) 

where e(Si) are the coarse residuals, β0 and βκ are coefficients of the linear regression, z(Si) is the 280 
target random variables of coarse pixel Si and hk(Si) is the aggregated fine pixel within the coarse 281 
one. 282 

The coarse residuals are downscaled using ATPK. The residual of a fine-resolution pixel sj is 283 
estimated as a linear fusion of e(Sl) (l = 1, . . . , L) in L nearest coarse pixels, via ATPK: 284 

𝑒𝑒�𝑠𝑠𝑗𝑗� = �𝜆𝜆𝑗𝑗𝑗𝑗

𝐿𝐿

𝑗𝑗=1

𝑒𝑒(𝑆𝑆𝑗𝑗) 
 

(2) 

where λjl represents the weights for the prediction at fine scale that honor the sum-to-one constraint 285 
∑ 𝜆𝜆𝑗𝑗𝑗𝑗𝐿𝐿
𝑗𝑗=1 = 1. The weights can be calculated by lessening the error variance of the prediction. The 286 

analogous Kriging matrix is depicted in Equation 6: 287 

�
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1 1 0
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⋮
𝜆𝜆𝑗𝑗𝐿𝐿
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⎥
⎥
⎤
  

 
(3) 

where 𝛾𝛾𝑖𝑖𝑗𝑗𝑆𝑆𝑆𝑆 is the block-to-block (i.e., area-to-area) variogram among coarse pixels Si and Sj, 𝐶𝐶𝑗𝑗𝑗𝑗𝑆𝑆𝑆𝑆 is 288 
the point-to-point covariance between fine spatial resolution pixels sj and sj, 𝛾𝛾𝑗𝑗𝑗𝑗𝑆𝑆𝑆𝑆 is the ATP 289 
variogram between high resolution pixel sj and coarse resolution pixel Sl and the μj are Lagrange 290 
multipliers. The covariance can be produced from the variogram. 291 

The error variance δ of the ATPK prediction for the sj at fine-resolution can be calculated as 292 
follows: 293 

𝛿𝛿𝐴𝐴𝐴𝐴𝐴𝐴𝐾𝐾�𝑠𝑠𝑗𝑗� = 𝐶𝐶𝑗𝑗𝑗𝑗𝑆𝑆𝑆𝑆 −�𝜆𝜆𝑗𝑗𝑗𝑗

𝐿𝐿

𝑗𝑗−1

∗ 𝐶𝐶𝑗𝑗𝑗𝑗𝑆𝑆𝑆𝑆 − 𝜇𝜇𝑗𝑗 
 

(4) 

is 𝐶𝐶𝑗𝑗𝑗𝑗𝑆𝑆𝑆𝑆 the area-to-point covariance between coarse spatial resolution pixels Sl and fine spatial 294 
resolution pixels sj. 295 
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The generation of the point support variogram is considered the most crucial step in area-to-point 296 
Kriging method, for which Wang et al., (2016b) provides the necessary details, including an 297 
explanation of how to employ a deconvolution process. The target fine pixel and the original coarse 298 
pixel can be used as point and area supports, respectively, in the ATPRK prediction, which can be 299 
described as follows: 300 

𝑧𝑧�𝑠𝑠𝑗𝑗� = �̂�𝛽0 + ��̂�𝛽𝑘𝑘

𝐾𝐾

𝑘𝑘=1

∗ ℎ𝑘𝑘�𝑠𝑠𝑗𝑗� + �𝜆𝜆𝑗𝑗𝑗𝑗

𝐿𝐿

𝑗𝑗=1

∗ [𝑧𝑧(𝑆𝑆𝑗𝑗) − (�̂�𝛽0 + ��̂�𝛽𝑘𝑘

𝐾𝐾

𝑘𝑘=1

∗ ℎ𝑘𝑘(𝑆𝑆𝑗𝑗)] 
 

(5) 

3.2 Random Forest area-to-point Kriging 301 
In the presence of spatial variability in a region, the global regression approach in the original 302 
ATPRK implementation is unsuitable for characterizing this variability. A non-stationary model 303 
is more appropriate when the association between the target and variable and the covariates varies 304 
geographically (Jin et al., 2018a, 2018b). The global regression residuals, on the other hand, may 305 
not meet stationarity criteria (such as second-order stationarity), making Kriging interpolation hard 306 
to implement (Jin et al., 2018b). Moreover, to account for the spatial variability in the correlation 307 
between the variables, RF regression generates local coefficients (Jin et al., 2018b; Pereira et al., 308 
2018). 309 

RFATPK is proposed in this research to increase downscaling accuracy by taking into account 310 
spatial non-stationarity. The trend and residuals are likewise included in RFATPK, with the trend 311 
being fitted utilizing the RF approach (Equation 2). To predict the spatial trend at fine scale, 312 
RFATPK first fits the RF regression model between the response variable and the covariates at the 313 
coarse spatial resolution. The regression residuals are then disaggregated at the desired pixel size 314 
using ATPK (Xu et al., 2020; Cheng et al., 2022). After the regression using RF, the model’s errors 315 
(i.e., residuals) are expected to be less heterogeneous and assure the requirements for 316 
semivariogram estimation (i.e., sufficiently large and homogeneous areas) (Jin et al., 2018b). In 317 
this research, a deconvolution procedure was utilized to implement the ATPK predictions and the 318 
spherical model was fitted to the experimental variograms (Goovaerts, 2008). This algorithm for 319 
enforcing ATPK requires inversion of a large matrix, which is computationally expensive. For the 320 
downscaling process the R software and the package atakrig were utilized (Hu and Huang, 2020). 321 

To generate the downscaled 100 m NTL, the RFATPK disaggregating approach of combining the 322 
RF (Breiman, 2001) and ATPK (Kyriakidis, 2004) methods was developed. The spatial non-323 
stationarity of the regression's residuals was taken into account by the RFATPK, as well as the 324 
nonlinear association between NTL and the covariates. 325 

Suppose 𝑍𝑍𝐶𝐶𝑗𝑗  (𝑥𝑥𝑖𝑖) are the pixel values (i.e., gray value) of pixel C located at 𝑥𝑥𝑖𝑖 (i = 1, . . ., M, where 326 
M is the number of pixels) in coarse image l (l = 1, . . ., B, where B represents the amount of 327 
images) and 𝑍𝑍𝐹𝐹(𝑥𝑥𝑗𝑗) is the value of pixel F centered at 𝑥𝑥𝑗𝑗(j = 1, . . ., MG2, where G is the zoom factor 328 
between the coarse and fine bands) in the stack layers. The letters F and C represent the fine and 329 
coarse pixels, respectively. The goal of sharpening is to predict response variables 𝑍𝑍𝐹𝐹𝑗𝑗 (𝑥𝑥) for all 330 
fine pixels in all B coarse images. RFATPK consists of two steps: RF regression and residual 331 
downscaling using ATPK. Assume �̂�𝑍𝐹𝐹1𝑗𝑗 (𝑥𝑥) and �̂�𝑍𝐹𝐹2𝑗𝑗 (𝑥𝑥) are predictions of the RF regression and 332 
ATPK parts, the RFATPK forecast is: 333 
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�̂�𝑍𝐹𝐹𝑗𝑗 (𝑥𝑥) = �̂�𝑍𝐹𝐹1𝑗𝑗 + �̂�𝑍𝐹𝐹2𝑗𝑗  (6) 
3.2.1 Random Forest Regression modelling for the trend prediction 334 
The RF is a non-parametric machine learning (ML) method for regression tasks (Breiman, 2001), 335 
which has been applied to fields such as, population mapping and properties relating to the soil 336 
(Cheng et al., 2022; Takoutsing & Heuvelink, 2022). Based on bagging method of the training 337 
data, the RF constructs an ensemble or forest of individual and non-correlated trees, saves the best 338 
randomly chosen variable combination for each node of each tree, and then uses an average of the 339 
individual trees' predictions to make the final prediction (Cheng et al., 2022). 340 

Since they offer more useful higher spatial resolution and richer textural information than the 341 
response low resolution variable, the covariate(s) in RFATPK (e.g., the Population raster) are 342 
utilized to detrend the 𝑍𝑍𝐹𝐹𝑗𝑗 (𝑥𝑥) and are crucial in sharpening. The regression stage aims to fully use 343 
the fine spatial resolution textural and geographic information in the given data by characterizing 344 
the correlation between each coarse response image and the fine predictors. 345 

A fine-scale predictor (e.g., Population raster) 𝑍𝑍𝐹𝐹 is initially aggregated to 𝑍𝑍𝐶𝐶  to match the pixel 346 
size of the coarse response image (Wang et al., 2016a). The relationship between 𝑍𝑍𝐶𝐶  and each 347 
coarse band l is then established by RF regression. 348 

The generic equation of the RFATPK involves two parts, the trend component and the residuals 349 
component, and can be written as: 350 

𝑍𝑍𝐶𝐶𝑗𝑗 (𝑥𝑥) = 𝑓𝑓(𝐵𝐵(𝑥𝑥𝑖𝑖|𝜃𝜃) + 𝑅𝑅(𝑥𝑥) (7) 
 351 
Where f is a RF model, 𝐵𝐵(𝑥𝑥𝑖𝑖) represents the predictors at location 𝑥𝑥𝑖𝑖, θ constitutes the model’s 352 
parameters and 𝑅𝑅(𝑥𝑥) are the residuals, or model error. The RF-based nonlinear regression model 353 
(θ) in Equation 7 can receive the fine resolution predictors directly, based on the scale-invariance 354 
assumption. The NTL spatial trend can then be produced at a downscaled 100 m spatial resolution. 355 
Due to the availability of the predictors at the fine spatial scale, the RF regression prediction at a 356 
location x at the fine spatial scale, that is, �̂�𝑍𝐹𝐹1𝑗𝑗 (𝑥𝑥0), is calculated as: 357 

�̂�𝑍𝐹𝐹1𝑗𝑗 (𝑥𝑥0) = 𝑓𝑓(𝐵𝐵(𝑥𝑥𝑖𝑖|𝜃𝜃) (8) 
 358 
It is crucial, when using RF, to fine-tune the model parameters (Takoutsing and Heuvelink, 2022). 359 

3.2.2 Random Forest regression parameter fine-tuning 360 
3.2.2.1. Default Random Forest regression model parameters at the coarse spatial scale 361 
First, we used R's caret package to conduct RF regression using all the covariates and the default 362 
model settings. 500 trees, a node size value of 5 and a third of the total number of covariates (mtry) 363 
were included in the default model parameters. The entire study region was considered in this step. 364 

3.2.2.2. Model calibration and fitting 365 
The study region was divided initially into two sets, the training and a test set. The splitting of the 366 
two sets was conducted based on a stratified random sampling. This is an efficient sampling 367 
method because it captures the variability of multiple inputs of auxiliary information in the feature 368 
space (Getis and Ord, 1992). At the 450 m, the training and test samples for Mumbai were 1617 369 
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and 450, respectively, while for New Delhi were 5852 and 450. For the 2025 m scale, the splitting 370 
sets for Mumbai were 79 and 20, while for New Delhi were 285 and 72 for the training and test 371 
set, respectively. The RF model was then calibrated using the training data and its performance 372 
was assessed using the test set. We applied the model to the entire region if the R2 difference 373 
between the training and test sets was minimal. Two user-defined arguments (the number of trees 374 
(ntree) and the number of variables chosen at each split (mtry)) were used to calibrate the RF 375 
model (Probst and Boulesteix, 2017). For the ntree parameter, we investigated a range starting at 376 
500 and increasing to 9000 with a step of 500. The default setting for mtry was the third the total 377 
number of covariates, rounded down. With the help of the R package ranger, we fitted a final RF 378 
model for each annual NTL image using all of the pixel data, the predictors and the chosen fine-379 
tuned arguments for the ntree and mtry. 380 

3.2.3. Spatial prediction at the fine spatial scale 381 
The average of all measurements embedded in one of the end nodes of the tree serves as the 382 
forecast of a single decision tree of RF for a new site x0. By branching through the tree depending 383 
on the covariate values at x0, the end node may be located. 384 

The RF prediction can be calculated by taking the mean of all tree forecasts. Because it is a 385 
weighted linear combination of the measurements, it can be represented as: 386 

�̂�𝑍𝐹𝐹1𝑗𝑗 (𝑥𝑥0) = �𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

∗ 𝑦𝑦𝑖𝑖   
 

(9) 

where �̂�𝑍𝐹𝐹1𝑗𝑗 (𝑥𝑥0) stands for the prediction, n, 𝑤𝑤𝑖𝑖 and 𝑦𝑦𝑖𝑖 are the number of measurements, the weights 387 
and the NTL measurements, respectively. Note that the weights are obtained from the variables at 388 
the observed and predicted location, even though this isn't stated explicitly in Equation 1. 389 
(Takoutsing and Heuvelink, 2022). 390 

3.3 Benchmark methods 391 
In this research, the proposed approach was compared to three benchmark methods, namely GWR, 392 
Machine Learning with Splines and the Allocation of raster values. The benchmark methods are 393 
described below. 394 

Prior to GWR, simple linear regression models were, thereafter, fitted to reveal the model’s R2 and 395 
AIC (Wang et al., 2015; Middya and Roy, 2021). The covariates that contributed to the linear model 396 
with the largest R2 were also used for GWR. The GWR model, can be represented as follows: 397 

𝑧𝑧�𝑠𝑠𝑗𝑗� = �̂�𝛽0�𝑠𝑠𝑗𝑗� + ��̂�𝛽𝑘𝑘

𝐾𝐾

𝑘𝑘=1

�𝑠𝑠𝑗𝑗� ∗ ℎ𝑘𝑘𝑆𝑆𝑗𝑗 
(10) 

where, �̂�𝛽0(·) and �̂�𝛽𝑘𝑘(·) represents the estimated GWR coefficients with spatial locations centered 398 
at fine pixel sj and coarse pixel Sj, respectively. 399 

For GWR's kernel a Gaussian function was selected and the width of the kernel was determent 400 
using an adaptive spatial kernel function (Chen, 2015). The Gaussian function describes the 401 
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relationship between the weight Wij and distance from center dij and is a continuous monotonically 402 
decreasing function. The Gaussian function is used widely: 403 
𝑊𝑊𝑖𝑖𝑗𝑗 = 𝑒𝑒𝑥𝑥𝑒𝑒 (−𝑑𝑑𝑖𝑖𝑗𝑗2 𝑏𝑏2⁄ ) (11) 

where b and 𝑑𝑑𝑖𝑖𝑗𝑗 are the kernel bandwidth and the distance between two locations i and j, 404 
respectively. According to Chen et al. (2015) the regression results are sensitive to parameter b 405 
which can, thus, be obtained by cross-validation. 406 

Machine Learning with Splines (ML with Splines), in order to predict the dependent variable, the 407 
algorithm tries many ensembles of six and giving one ensemble as an output, weights them 408 
differently and evaluates the fit. Six algorithms are included in this approach, namely: 1) boosted 409 
regression trees, 2) generalized additive model, 3) multivariate adaptive regression splines, 4) 410 
neural networks, 5) RF, 6) support vector machines. The algorithm interpolates noisy multivariate 411 
data through ensemble machine learning (EML). Additionally, using thin-plate-smoothing splines, 412 
the residuals of the final model are interpolated from the full training dataset. In the final ensemble 413 
model, this produces a continuous error surface that is used to eliminate the majority of the 414 
remaining errors (Bullock et al., 2020). 415 

With the allocation-based method, a new fine spatial resolution raster (i.e., 100 m pixel size) is 416 
created with null cell values, but with the same spatial reference system as the coarse resolution 417 
raster and then the two rasters are properly overlaid. Then, the pixels of the newly created empty 418 
raster are given a value corresponding to the pixel value of the overlaid coarse spatial resolution 419 
raster. This approach, thus, represents the “do nothing” or “null” baseline and all other methods of 420 
allocation should improve on this baseline if they add any useful information. 421 
3.4 Two socioeconomic criteria 422 
The use of NTL as a proxy to various socioeconomic indexes is a major application. Therefore, 423 
the application of downscaled imagery to proxy the Gross National Income per capita and the 424 
Night Light Development Index (NLDI) is meaningful to illustrate the necessity of downscaling. 425 

Payments go toward a country's Gross National Income (GNI), which is comprised of the GDP 426 
plus net revenues from employee compensation and foreign property income. The money that 427 
foreign migrants send to their home nations is known as remittances (Ghosh et al., 2009). To 428 
measure the association between the GNI and the NTL at the city scale, we sum all the lit pixels 429 
of the NTL, where “lit pixel” means a radiance value equal to or greater than 1 nWcm-2sr-1. Then 430 
we computed two linear regression models, one using the coarse resolution NTL as explanatory 431 
variable and one linear model using the disaggregated NTL and compared their R2 values (Gibson 432 
and Boe-Gibson, 2021). The dependent variable in both cases was the GNI and it was measured 433 
in 1000 US dollars. 434 

The NLDI varies from 0 to 1, representing perfect equality and inequality, respectively. The two 435 
geo-referenced gridded layer inputs to the NLDI were the population count raster and the NTL 436 
image. 437 

The brightness (NTL’s pixel value) and population count were associated in tables created using 438 
crosstabulation. In order to compute the NLDI, the two rasters were stacked and the joint 439 
distribution of brightness and population count in cell was calculated. To measure equality in the 440 



14 
 

geographic distribution of lights, the Gini index was computed based on the statistical distribution 441 
(i.e., the table containing the pixel values of NTL and Population, sorted by the NTL) according 442 
to the formula: 443 

𝑅𝑅 = 1 −  
2∑ 𝑄𝑄𝑖𝑖𝑛𝑛−1

𝑖𝑖=1

𝑛𝑛 − 1
, 0 ≤ 𝑅𝑅 ≤ 1 

(12) 

where R and n represents the NLDI and the number of raster images, respectively, 𝑄𝑄𝑖𝑖 =444 
 ∑ 𝑥𝑥𝑗𝑗𝑖𝑖

𝑗𝑗=1 ∑ 𝑥𝑥𝑗𝑗𝑛𝑛
𝑗𝑗=1�  is the number of lights corresponding to the raster with the proportion Pi of 445 

population count in which xj is the value of light intensity class. Moreover, 𝑃𝑃𝑖𝑖 =  ∑ 𝑥𝑥𝑗𝑗 𝑛𝑛⁄𝑖𝑖
𝑗𝑗=1 . 446 

4. Results 447 

The experiments were conducted in the two mega-cities each month between 2013 and 2020. To 448 
evaluate the results of downscaling, due to a lack of validation data at 100 m for each year, we 449 
upscaled the NTL observations to 2025 m spatial resolution and used the original NTL data at 450 450 
m spatial resolution as the reference (Ge et al., 2019). In the downscaling stage, the coarse 2025 451 
m NTL data were disaggregated to the initial finer spatial scale (450 m) and were validated using 452 
the raw nocturnal data. 453 

Lastly, the sharpening was conducted to the 450 m data to predict NTL at the 100 m. For the year 454 
2018 the downscaled results were compared against LuoJia1-01 as an extra validation step. 455 
Additionally, because the variogram can reflect the benefits of downscaling prediction, it can be 456 
used as an assessment metric when there are no reference data available at the fine spatial 457 
resolution. Thus, here, the downscaling predictions at 100 m spatial resolution were also evaluated 458 
using the variogram (Wang et al., 2020). 459 
4.1. Comparison with other downscaling methods 460 
4.1.1. Downscaling prediction (2025 m to 450 m)  461 

To demonstrate the superiority of the proposed approach, the predicted NTL images were 462 
compared against the predictions of three benchmark methods and the results were illustrated in 463 
Figure 4 and Figure 5 for Mumbai and New Delhi, respectively. It can be shown that RFATPK 464 
and GWR-based downscaling achieved good agreement with the original NTL product when 465 
comparing the spatial patterns of the downscaling results with the Reference image. Although local 466 
detailed variance may be seen, the RFATPK prediction shows it more clearly. In comparison, the 467 
blocky artifacts are highly noticeable and Machine Learning with Splines and Allocation-based 468 
downscaling failed to maintain the patterns in NTL. For the instance of Machine Learning using 469 
Splines, over-fitting issues can be used to explain this outcome. Since the raw NTL coarse 470 
reference data are known perfectly in the experiment, preservation of the original patterns is the 471 
desired target. 472 
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 473 

Figure 3: Downscaling results of NTL at 450 m for Mumbai, 2018. From left to right, the Reference 474 
NTL, Allocation-based downscaled NTL, Machine Learning with Splines-based downscaled NTL, 475 
GWR-based and RFATPK-based downscaled NTL. Bold shows the proposed method. 476 
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 477 

Figure 4: Downscaling results of NTL at 450 m for New Delhi, 2018. From left to right, the 478 
Reference NTL, Allocation-based downscaled NTL, Machine Learning with Splines-based 479 
downscaled NTL, GWR-based and RFATPK-based downscaled NTL. Bold shows the proposed 480 
method. 481 

Table 1: Quantitative comparison of the downscaling approaches at 450 m (reference is the original 482 
NTL) for Mumbai. The best performance is highlighted in bold. 483 

  2013 2014 2015 2016 2017 2018 2019 2020 

 

 

RMSE 

Allocation 10.1172 14.2775 10.9951 11.7604 11.8663 12.9181 15.5305 16.1761 

ML with splines 10.3092 16.5331 10.5267 11.0395 11.3876 12.166 15.4108 15.8129 

GWR 11.3387 17.8948 11.9249 12.9232 13.3665 14.0287 17.8138 17.9765 

RFATPK 1.7165 2.7673 2.0354 2.1364 2.7848 2.498 4.1899 3.4906 

 

 

MSE 

Allocation 102.359 203.848 120.893 138.307 140.81 166.877 241.198 261.668 

ML with splines 106.279 273.343 110.811 121.870 129.678 148.013 237.494 250.049 

GWR 128.567 320.224 142.205 167.009 178.664 196.804 317.332 323.157 

RFATPK 2.9464 7.6583 4.1429 4.5645 7.7555 6.2403 17.556 12.1843 
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CC 

Allocation 0.8187 0.7839 0.7893 0.7918 0.7817 0.7818 0.761 0.7254 

ML with splines 0.8041 0.6724 0.8005 0.8116 0.7911 0.8002 0.7515 0.7224 

GWR 0.7566 0.5985 0.7342 0.7295 0.6961 0.7224 0.647 0.6181 

RFATPK 0.995 0.9923 0.9932 0.9935 0.9887 0.9923 0.9838 0.9884 

 484 

Table 2: Quantitative comparison of the downscaling approaches at 450m (reference is the original 485 
NTL) for New Delhi. The best performance is highlighted in bold. 486 

  2013 2014 2015 2016 2017 2018 2019 2020 

 

 

RMSE 

Allocation 9.4589 9.0099 9.1661 8.1967 8.5255 8.3571 8.4641 7.5097 

ML with splines 9.0594 9.1414 8.0654 7.8573 7.71 7.5779 8.5324 6.5307 

GWR 9.8107 10.057 10.7049 8.9059 9.6294 8.9825 9.3896 8.5971 

RFATPK 2.5113 2.2719 2.5727 2.1916 2.3779 2.1511 1.8615 2.0369 

 

 

MSE 

Allocation 89.471 81.1797 84.0189 67.1861 72.6850 69.8423 71.6414 56.3963 

ML with splines 82.0733 83.5664 65.051 61.7373 59.4446 57.4259 72.8033 42.6505 

GWR 96.2505 101.154 114.596 79.3157 92.7269 80.6858 88.165 73.9109 

RFATPK 6.3068 5.1617 6.6191 4.8033 5.6546 4.6276 3.4655 4.1491 

 

 

CC 

Allocation 0.9157 0.9234 0.9189 0.9165 0.9094 0.9068 0.8953 0.9091 

ML with splines 0.9233 0.9214 0.9381 0.9241 0.927 0.9245 0.8941 0.9325 

GWR 0.9095 0.9041 0.8882 0.9014 0.8832 0.8922 0.8702 0.8799 

RFATPK 0.9943 0.9953 0.9938 0.9943 0.9932 0.9941 0.9952 0.9936 

 487 

Tables 1 and 2 provide a quantitative comparison of the downscaling methods using three indices: 488 
Root Mean Square Error (RMSE), Mean Square Error (MSE) and Correlation Coefficient (CC). 489 
RFATPK is clearly more precise than the three benchmark methods in terms of all three indices. 490 
This is due to the fact that the sceneries under study are highly developed metropolitan 491 
environments with a variety of impervious surfaces (such as buildings, roads, and vegetation), 492 
which are better suited to being well described by a spatially non-stationary model. Machine 493 
Learning with Splines yielded greater accuracy compared to GWR and Allocation-based 494 
downscaling. The least accuracy resulted for GWR-based downscaling, in terms of all three 495 
indices. 496 
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4.1.2. Downscaling prediction (450 m to 100 m) 497 

To facilitate visual comparison, three zoomed sub-areas selected randomly and their corresponding 498 
results are shown in Figure 6 Figure 7 for Mumbai and New Delhi, respectively. The sub-areas 499 
include landscapes with a mix of dense and less dense urban structures. The disaggregating 500 
findings demonstrate that RFATPK renders those landscapes well. Due to poor prediction, the 501 
GWR approach distorts the borders, whereas Machine Learning with Splines excessively smooths 502 
the boundaries. When it comes to preserving spectral characteristics and recovering both dense 503 
and less dense textures, RFATPK performs satisfactorily. 504 

 505 

 506 
Figure 5: Downscaling visual results (100 m) in three sub-areas for Mumbai, 2018. From left to 507 
right: Raw NTL, Allocation-based, Machine Learning with Splines, GWR, RFATPK. Each 508 
column illustrates one of the three selected random areas. Bold shows the proposed method. 509 

The variograms were compared for the different downscaling methods. Due to large volume of 510 
images produced regarding the comparison of the variograms for all the years, a single example 511 
for the year 2018 is shown for every region. 512 
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 513 
Figure 6: Variograms of the downscaling methods for Mumbai, 2018. a) Allocation-based 514 
prediction, b) Machine Learning with Splines-based prediction, c) GWR-based prediction and d) 515 
RFATPK-based prediction. Bold shows the proposed method. 516 

For the calculation of the variograms, the downscaled images were upscaled to 450 m, subtracted 517 
from the reference and the variograms computed between the downscaled image at 100 m and the 518 
subtraction. Compared to the other approaches, the Allocation-based downscaling method's 519 
variogram exhibited the highest semivariance (Figure 7). The GWR-based downscaling approach 520 
in Figure 9 provided the highest semivariance, while the Machine Learning with Splines-based 521 
downscaling method produced the lowest semivariance. 522 

 523 
Figure 7: Downscaling visual results (100 m) in three sub-areas for New Delhi, 2018. From left to 524 
right: Raw NTL, Allocation-based, Machine Learning with Splines, GWR, RFATPK. Each 525 
column illustrates one of the three selected random areas. Bold shows the proposed method. 526 
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 527 
Figure 8: Variograms of the downscaling methods for New Delhi, 2018. a) Allocation-based 528 
prediction, b) Machine Learning with Splines-based prediction, c) GWR-based prediction and d) 529 
RFATPK-based prediction. Bold shows the proposed method. 530 

In comparison to GWR and Machine Learning with Splines, the suggested RFATPK generated the 531 
best visual outcome among the three downscaling techniques and also had the attribute of perfect 532 
coherence (Table 3). Allocation-based downscaling also preserves the property of perfect 533 
coherence, but no new information is added and there is, consequently, no spatial variability in the 534 
NTL intensity within the fine resolution pixels. 535 

Table 3: Measurement of perfect coherence, of the four downscaling methods for Mumbai and 536 
New Delhi for all years under investigation. Bold shows the largest results in terms of coherence. 537 

  2013 2014 2015 2016 2017 2018 2019 2020 

 

 

Mumbai 

Allocation 0.9957 0.9907 0.9958 0.9958 0.995 0.9954 0.9949 0.9927 

ML with splines 0.9916 0.9869 0.9919 0.9917 0.9922 0.9925 0.9921 0.9897 

GWR 0.9756 0.9582 0.9797 0.9798 0.9784 0.9731 0.9744 0.9636 

RFATPK 0.9950 0.9923 0.9932 0.9935 0.9987 0.9923 0.9938 0.9984 

 

New 
Delhi 

Allocation 0.998 0.9994 0.998 0.9979 0.9978 0.9979 0.9978 0.9979 

ML with splines 0.9967 0.9967 0.9949 0.9964 0.9954 0.9948 0.9966 0.9946 

GWR 0.9943 0.9947 0.9877 0.9931 0.9857 0.9879 0.9856 0.9872 

RFATPK 0.9943 0.9953 0.9938 0.9943 0.9932 0.9941 0.9952 0.9936 

According to Table 3, the property of perfect coherence was achieved in all years for both regions 538 
only for the RFATPK and Allocation-based methods. RFATPK had the highest Correlation 539 
Coefficient (CC) index for the years 2014, 2017 and 2020, while the Allocation-based method 540 
produced the maximum for the rest of the years, for Mumbai. For New Delhi, the Allocation 541 
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method had the highest CC value for all years. In summary, the proposed method was the only one 542 
to achieve perfect coherence consistently throughout the years across all regions, despite the fact 543 
ML with Splines had higher values of CC for New Delhi compared to RFATPK. ML with Splines 544 
was inconsistent in achieving perfect coherence across the regions and for all years as it can be 545 
seen for the year 2014 for Mumbai. 546 

Tables 4 and 5 show the quantitative comparison of each method with the LuoJia 1-01 used as a 547 
reference. 548 

Table 4: Quantitative comparison of the downscaling approaches at 100 m for Mumbai, 2018 549 
(reference is the LuoJia 1-01). Bold shows the best results. 550 

  Allocation ML with 
splines 

GWR RFATPK 

Mean RMSE 13.9105 16.8635 15.7574 13.8938 

 MSE 196.1515 286.4333 248.6675 193.2563 

 PCC 0.6056 0.5274 0.5408 0.6757 

StD RMSE 1.8192 1.6027 0.6798 0.5219 

 MSE 50.9233 54.305 21.4063 14.7106 

 CC 0.0893 0.1044 0.066 0.0204 
 551 

Table 5: Quantitative comparison of the downscaling approaches at 100 m for New Delhi, 2018 552 
(reference is the LuoJia 1-01). Bold shows the best results. 553 

  Allocation ML with 
splines 

GWR RFATPK 

Mean RMSE 7.4432 7.711 8.5856 
 

6.7488 
 

 MSE 55.4679 59.4932 73.790556 
 

45.889 
 

 PCC 0.9268 0.9225 0.9062 
 

0.9392 
 

StD RMSE 0.2868 0.2044 0.31086 0.6541 

 MSE 4.2883 3.1429 5.401 8.8968 

 CC 0.0045 0.0048 0.0045 0.0068 
It can be seen in Tables 4 and 5 that the proposed method produced the smallest mean RMSE and 554 
mean MSE in each of the 50 iterations (2000 random samples in each iteration) as well as the 555 
largest mean correlation coefficient with LouJia1-01. More specifically, the RFATPK method, for 556 
Mumbai, produced the smallest average RMSE of 13.8938 nWcm-2sr-1, while the other methods 557 
produced larger RMSEs, with the Machine Learning with Splines being the largest. The same is 558 
true for MSE, where RFATPK produced the smallest average MSE compared to the other three 559 
methods. Finally, the correlation coefficient was the largest for RFATPK, at 0.6757 for Mumbai. 560 
For New Delhi, again RFATPK produced the most precise predictions compared to the other 561 
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approaches with mean RMSE, MSE and CC of 6.7488 nWcm-2sr-1, 45.889 nWcm-2sr-1 and 0.9392, 562 
respectively. Considering that the LouJia1-01 imagery is an external (unseen) validation dataset 563 
produced with different sensing characteristics than the NTL imagery and that the prediction is 564 
made at a four point fine-fold finer spatial resolution than the original data, this result can be 565 
considered promising for a range of applications. 566 

4.2. Night Light Development Index 567 
The index was calculated utilizing the coarse-resolution nocturnal data (NLDIcoarse) and the 568 
disaggregated NTL (NLDIfine). To validate the results, the values of the Human Development 569 
Index for New Niludipine Delhi for the years 2013 to 2019 were acquired from the Global Data 570 
Lab website (https://globaldatalab.org/) (accessed 05/02/2023). The relationship between the 571 
NLDI and HDI is well established in the literature. Hence, this index was selected for validation 572 
(Elvidge et al., 2012). Using the NLDIcoarse the Pearson’s correlation coefficient with the HDI was 573 
-0.35 while when using the NLDIfine the association with the HDI was -0.48. These results are 574 
impressive, indicating that the downscaled NTL data were more correlated with human 575 
development compared to the raw NTL data at 450 m. 576 

 577 

 578 

Figure 9: Night Light Development Index plotted through time for Mumbai (red line) and New 579 
Niludipine Delhi (green line). 580 

Figure 10 illustrates the evolution of the NLDI for the period 2013-2020 for the cities of Mumbai 581 
and New Niludipine Delhi. It can be seen that the index for Mumbai shows an upward trend which 582 
means that light inequality is increasing. On the contrary, the NLDI index for New Niludipine 583 
Delhi is decreasing with the exception for 2015. The data are consistent with the HDI index from 584 
Global Data Lab which reveals an increase in the index through time (Table 6). 585 

https://globaldatalab.org/
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 586 

Table 6: The HDI and NLDI indexes for New Delhi. 587 

Year HDI NLDI 
2013 0.72 0.25 
2014 0.73 0.25 
2015 0.73 0.26 
2016 0.73 0.24 
2017 0.74 0.24 
2018 0.74 0.25 
2019 0.75 0.24 

According to many authors, there is an inverse relationship between the two indices (Elvidge et 588 
al., 2012; Ghosh et al., 2013). There are no yearly measures of HDI for Mumbai to validate the 589 
results, but many newspapers highlighted the rise in inequality in this region (Bendix, 2018; Ashar, 590 
2019). 591 

4.3. Gross National Income per capita 592 
The GNI was measured only for New Niludipine Delhi for the years 2013 to 2019. It can be seen 593 
from Table 7 that there was a slight increase in the index from 2013 to 2015, then a small decrease 594 
for 2015 and then the index increased again. The second and third columns show the Sum of Lights 595 
(SOL) for the coarse resolution and fine resolution NTL. The GNI index is measured in 1000 US 596 
dollars and the values are in logarithmic scale as well the SOL. The coarse and fine SOL showed 597 
overall a slight decrease in grey values, but the downward is more obvious in the coarse SOL. 598 

Table 7: Yearly GNI values and the Sum of Lights values using the coarse and fine spatial scale 599 
NTL. 600 

Year Coarse SOL Fine SOL GNI 
2013 5.334 6.625 9.345 
2014 5.34 6.635 9.378 
2015 5.346 6.623 9.528 
2016 5.299 6.602 9.449 
2017 5.3 6.594 9.522 
2018 5.289 6.563 9.576 
2019 5.272 6.57 9.618 

The correlation coefficient (R2) between Fine SOL and GNI is much higher compared to Coarse 601 
SOL and GNI. Specifically, Fine SOL predict 67.6% of the variance in annual GNI, compared to 602 
47.4% that Coarse SOL does. The model fit utilizing the fine spatial resolution NTL is noticeably 603 
better by about 20% contrasted to coarse resolution NTL. 604 

5. Discussion 605 

5.1. Random Forest area-to-point regression Kriging (RFATPK) 606 
RFATPK is analogous to the AATPRK reported by Wang et al., (2016a). However, a different 607 
non-stationary model was implemented in this study. The results show a notable improvement of 608 
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the merged images both visually and quantitatively resulting from the adoption of the spatial non-609 
stationary regression model, reflected in a correlation coefficient larger than 0.84 in the regression 610 
part for all months and cities, with the exception of Mumbai 2020. In RFATPK, residual 611 
sharpening was conducted by ATPK which considered a global method and it is different from the 612 
approach proposed by Pardo-Iguzquiza et al. (2011), who developed a local scheme for Kriging 613 
interpolation. For each coarse pixel in local ATPK interpolation, semivariogram deconvolution is 614 
used to parameterize the regression model and the Kriging weights are calculated. This requires a 615 
lot of computational power, especially for areas with many pixels. We instead used global ATPK, 616 
which does not require the same computational cost. Since RFATPK is an extension of ATPRK, 617 
it benefits from ATPRK's advantages as it takes into consideration both the size of the support and 618 
the spatial correlation. Additionally, it can accurately maintain the spectral characteristics of the 619 
original coarse data, as illustrated in Tables 4 and 5. The experimental results showed that 620 
RFATPK predicted more accurately than the three benchmark techniques. The resulting residuals 621 
may differ significantly from region to region if the global regression model in ATPRK is unable 622 
to represent adequately the relationship between the coarse and fine images when the observed 623 
scene varies locally (i.e., requiring a spatially non-stationary method). Thus, the residuals produced 624 
by the local non-stationary regression model are likely to be more suited for subsequent 625 
manipulation using a stationary downscaling model. Another point of consideration is the scale 626 
effect. It is acknowledged that due to the scale effect there exists differences in the two 627 
downscaling processes, that is, from 2025 m to 450 m and from 450 m to 100 m spatial resolution 628 
(Zhou et al., 2016; Pu, 2021). The scaling effect in downscaling NTL from a coarse spatial 629 
resolution to a high spatial resolution is beyond the scope of this research. 630 

5.2. RFATPK and benchmark comparison 631 
When the area of interest is spatially heterogeneous, the RFATARK technique yields more precise 632 
predictions. Comparing the proposed RFATPK method against three other image fusion 633 
techniques (GWR from regression-based methods, machine learning with splines from hybrid-634 
based techniques and allocation of raster value) is of great interest. Since all computations are 635 
undertaken independently in each coarse band, RFATPK is substantially faster than the hybrid 636 
technique since it needs to model only the auto-semivariogram for each low resolution image. The 637 
Kriging system in Equation 6's matrices now have substantially smaller sizes. Consequently, 638 
RFATPK is more user-friendly and much simpler to automate. Although the regression-based 639 
method is similar to RFATPK, the latter has the appealing property of perfect coherence, which is 640 
inherent with ATPK. Compared to the simple allocation of raster values, the geostatistical solution 641 
preserved fairly accurate, both visually and quantitatively, the spatial patterns of NTL intensity, a 642 
property which simple allocation of raster values does not have. In conclusion, the suggested 643 
RFATPK method has the following features and benefits. 644 

1. Regression modelling can employ fines-resolution predictors to lessen the uncertainty in 645 
spatial downscaling, improving the fused images visually and quantitatively; 646 

2. RFATPK clearly takes into consideration the spatial (auto) correlation between the data 647 
and the size of the support (pixel) by inheriting the advantages of ATPRK; 648 

3. RFATPK, can precisely preserve the spectral features; 649 
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4. Unlike machine learning with splines, which executes six regression models, RFATPK 650 
executes only one local model and incorporates a global method (ATPK), calculates the 651 
Kriging weights only one time for the entire region and uses considerably smaller matrices 652 
in the Kriging method; this makes it faster for downscaling images. 653 

5.3. Use case studies 654 
Monitoring socioeconomic indicators at the city-scale is of great importance for governments and 655 
policy makers. As such unbiased data at fine spatial resolution are a critical input to support policy 656 
development and decision-making. To highlight the applicability of the downscaling method, two 657 
socioeconomic applications were considered at the city-scale. 658 

5.3.1. Night Light Development Index 659 
The index is an estimation for economic and human development in a region. The strong 660 
association between the NLDI and the HDI suggests the former index measures human 661 
development, which is consistent with Elvidge et al. (2012). The results using the fused NTL are 662 
encouraging and we suggest the downscaled data are suitable for measuring human development 663 
at the city-scale. 664 

5.3.2. Gross National Income per capita 665 
The reference NTL data were less accurate at predicting yearly GNI than the downscaled NTL at 666 
the city scale. The application of studies that demonstrate the efficiency of estimating such 667 
socioeconomic indicators at the city level is called into question by the poor association between 668 
coarse resolution nocturnal data and GNI and makes it difficult to understand how such data may 669 
serve as a reliable indicator of changes in city-scale economic activity. The results provided here, 670 
on the other hand, point to the downscaled NTL as a far more accurate way to quantify GNI and a 671 
viable substitute for the index. 672 

5.4. Future research 673 
The point spread function (PSF) exists in every satellite sensor imagery. It has a significant impact 674 
on image quality and sets a strict cap on how much information is included in satellite sensor 675 
images (Wang et al., 2020). It is clear that the PSF can affect the downscaling process because 676 
disaggregating methods aim to increase the pixel size by creating more (sub-) pixels than the 677 
original image and thus, better describing the spatial content of a region. A variety of PSFs will be 678 
evaluated in a future effort to reduce the uncertainty in the downscaling procedure. Another 679 
important limitation is that NTL values cannot be determined from a single covariate, as shown by 680 
the global model. This means that, more ancillary variables are more suitable for charactering NTL 681 
intensity and may lead to more accurate prediction of the trend (Ye et al., 2021). Future research 682 
will focus on incorporating more ancillary variables, mainly from the so called ‘social pixels’, for 683 
example, geo-tagged Twitter data or geo-located POIs. Thus, fusion with social data at a fine 684 
resolution should be tested in future. Lastly, as mentioned in the Discussion, Section 5.1, this 685 
research did not take into account the scale effect. Therefore, studies in the future should need to 686 
be designed for and check if the by accounting for the scale effect will improve the downscaling 687 
predictions. 688 
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6. Conclusion 689 

Spatial downscaling is widely used to transform remotely sensed images from coarse resolution to 690 
fine resolution in order to track human activity. For the first time, a strategy for spatially 691 
downscaling nocturnal pictures was presented in this study using RF and ATPK. The RFATPK 692 
approach has the advantage of taking into consideration both the spatial correlation between the 693 
response variable and the predictors as well as local spatial variation. To show the effectiveness of 694 
this approach, it was used on yearly coarse NTL products in two separate Indian megacities. 695 

The geostatistical RFATPK solution was compared against three benchmark algorithms in 696 
experiments conducted on one experimental case in the two mega-cities. The results are 697 
summarized as follows: 1) The three benchmark methods were outperformed by RFATPK, 698 
demonstrating the utility of this technique for spatial sharpening; 2) RFATPK, consistently, 699 
assures total coherence with the original coarse data, in contrast to two of the benchmarks, and 3) 700 
due to its spatially non-stationary nature, RFATPK was able to lower the residual variance in 701 
comparison to a single, global regression model. The encouraging results suggest that RFATPK 702 
can produce images that are suitable for socioeconomic analysis at the city-scale, as illustrated 703 
when comparing a human development index using coarse-resolution NTL data against fine-704 
resolution nocturnal lights. Indeed, the GNI index was better approximated using the downscaled 705 
NTL data. Another application suggesting that the disaggregated NTL are more suitable for fine 706 
scale (social) applications was the measurement of wellbeing by means of light inequality. The 707 
results implied that using the proposed solution, the nocturnal satellite sensor data are closer to the 708 
values of the official statistics (i.e., HDI). According to the results, our method can be generalized 709 
worldwide (i.e., to other cities) and for a variety of social science applications. 710 
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