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Abstract  

Model selection for time series forecasting is a challenging task for practitioners and 

academia. There are multiple approaches to address this, ranging from time series analysis 

using a series of statistical tests, to information criteria or empirical approaches that rely 

on cross-validated errors. In recent forecasting competitions, meta-learning obtained 

promising results establishing its place as a model selection alternative. Meta-learning 

constructs meta-features for each time series and trains a classifier on these to choose the 

most appropriate forecasting method.  

In the first part, this thesis studies the main components of meta-learning and analyses 

the effect of alternative meta-features, meta-learners, and base forecasters in the final 

model selection results. We investigate different meta-learners, the use of simple or 

complex base forecasts, and a large and diverse set of meta-features. Our findings show 

that stationarity tests, which identify the presence of unit root in time series, and proxies 

of autoregressive information, which show the strength of serial correlation in a series, 

have the highest importance for the performance of meta-learning. On the contrary, 

features related to time series quantiles and other descriptive statistics such as the mean, 

and the variance exhibit the lowest importance. Furthermore, we observe that using 

simple base forecasters is more sensitive to the number of groups of features employed 

as meta-feature and overall had worse performed. In terms of the choice of learners, 

classifiers with evidence of good performance in the literature resulted in the most 

accurate meta-learners.  

The success of meta-learning largely depends on its building components. The selection 

and generation of the appropriate meta-features remains a major challenge in meta-

learning. In the second part, we propose using Convolutional Neural Networks (CNN) to 

overcome this. CNN have demonstrated breakthrough accuracy in pattern recognition 

tasks and can generate features as needed internally, within its layers, without intervention 

from the modeller. Using CNN, we provide empirical evidence of the efficacy of the 

approach, against widely accepted forecast selection methods and discuss the advantages 

and limitations of the proposed approach. 

Finally, we provide additional evidence that using meta-learning, for automated model 

selection, outperformed all of the individual benchmark forecasts.  

Keywords: Forecasting; Model selection; Meta-learning; Meta-features; Convolutional 

neural network.  
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1 Introduction and 

Background  

1.1 Motivation  

The rapid development of computing resources eases the process of collecting 

a large amount of data for enhancing business analytics. Meanwhile, Big Data 

brings challenges for forecasting, such as selecting an appropriate forecasting 

model efficiently for tens of thousands of time series. This has attracted the 

attention of an increasing number of scholars. 

There are multiple approaches used for model selection: ranging from 

statistical tests to information criteria or empirical approaches that rely on 

cross-validation (Fildes, 1989, Fildes and Petropoulos, 2015). Information 

criteria, which are penalised likelihood functions (i.e., Akaike information 

criteria (AIC), Bayesian information criteria (BIC), and so forth), balance the 

goodness of fit with model complexity and are calculated based on in-sample 

data (i.e., data used for fitting the model). In contrast, the cross-validation 

approach evaluates the models’ performance by some error measures (i.e., 

MASE, RMSE, and so forth) on a validation set, which is not used for fitting 

the model (Hyndman and Athanasopoulos, 2014). Compared to the 

information criteria, cross-validation differs in three aspects. First, multi-step-

ahead forecasts can be used to inform model selection. Second, cross-

validation can evaluate the forecasts generated by different classes of 
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forecasting models or a combination of different models from various classes. 

Last, pre-processing of in-sample data, such as truncating and 

transformations, does not invalidate different models’ comparisons. A 

limitation of the cross-validation approach is that the validation set must be 

split from the original series, which sometimes may be problematic due to the 

limited available sample. 

 However, both these approaches require implementing all candidate 

forecasting models for each time series before evaluation and selection. These 

so-called “wrapper approaches” significantly increase computational costs 

and time when facing a large set of time series. In that case, meta-learning has 

been proposed as a promising alternative for forecasting model selection and 

has been explored by many studies. Meta-learning is a “filter” methodology 

that learns to select the best forecasting model based on extracted time series 

characteristics (meta-features) without implementing the competing 

candidate forecasts. Lemke and Gabrys (2010) suggest that meta-learning 

relates the objective of time series forecasting to selecting or combination of 

the most suitable forecasting models using a meta-learner based on meta-

features extracted from time series. A meta-learner is a classification 

algorithm, where meta-features are used as input, and the best forecasting 

model is the label of the classification algorithm. A meta-learner relates the 

meta-features with models’ performance. It outputs a set of weights 

representing the performance of each candidate model and recommends the 

most appropriate model (i.e. the one with the largest weight) or a combination 

of them according to their weights. Meta-learning avoids implementing all 

candidate forecasting models, which can significantly save computational 

time and costs.  

This doctoral thesis focuses on evaluating alternative building blocks of meta-

learning, including meta-learners, base forecasters, and, more importantly, 

meta-features. To the best of our knowledge, most existing meta-learning 

methods in forecasting model selection and combination rely heavily on 

judgementally selected meta-features. Based on a review of previous meta-

learning studies in forecasting model selection, a varied set of features are 

introduced for different situations. Besides, the process of choosing a set of 
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useful manually constructed features is challenging since this process requires 

a deep understanding of features’ concepts and empirical evidence that can 

demonstrate the usefulness of these features from related studies.  

1.2 Meta-learning and meta-features  

Although the meta-learning approach has shown its superiority in terms of 

model selection and combination (Talagala et al., 2018; Montero-Manso et 

al., 2018), the meta-feature extraction process is challenging and potentially 

unreliable in the context of Big data (large number of time series). According 

to Ma and Fildes (2020), current meta-learning studies rely heavily on 

manually selected meta-features. 

Many attempts have been made on mining more useful time series features. 

Fulcher (2018) summarises thousands of such features to provide more useful 

insights into the time series structure. Christ et al. (2018) introduce a Python 

package that can extract 794 features from time series and select statistically 

significant features via hypothesis tests; they describe the application of these 

features, such as in regression and clustering. Hyndman et al. (2019) 

summarise several feature-extracting methods which have been successfully 

applied in time series problems, including anomaly detection (Hyndman, 

Wang, and Laptev, 2015), forecasting method evaluation (Kang, Hyndman, 

and Smith-Miles, 2016), and time series classification (Fulcher and Jones, 

2014). 

Inspired by these studies related to time series features, we argue that selected 

time series meta-features play an important role in forecasting using meta 

learning. Indeed, the potential usefulness of time series features in forecasting 

has been discussed by some early studies. For example, according to 

empirical results of M3 Competition (Makridakis and Hibon, 2000), 

Lawrence (2001) and Hyndman (2001) argue that useful information that 

exists in time series can improve the process of selecting the most suitable 

forecaster or a combination of forecasters with appropriate weights. Wang et 

al.  (2009) propose a meta-learning framework to recommend acceptable 

forecasting models. They introduce a set of comprehensive time series 

features and visualise the time series features in a two-dimensional map. Due 
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to the generality and usefulness of this vector of features, Widodo and Budi 

(2013) adopt it to build a meta-learning framework applied in forecasting 

model selection. They implement Principal Component Analysis (PCA) to 

reduce the extracted time series features and find that such a dimensional 

reduction process improves the forecasting performance of meta-learning 

without damaging its classification performance. Kück et al. (2016) consider 

a new set of meta-features related to errors of forecasting algorithms and 

employ Multilayer Perceptron (MLP) as a meta-learner. They evaluate their 

meta-learning framework in the NN3 time series competition (Crone, Hibon, 

and Nikolopoulos, 2011) and conclude that including error-based features 

helps the meta-learner to learn more useful patterns and thus improves the 

overall accuracy of forecasting.  

More recently, Talagala et al. (2018) propose a more general meta-learning 

framework called FFORMS (Feature-based FORecast Model Selection), 

where they further expand the feature space to include 33 features based on 

Wang et al.  (2009), Hyndman et al. (2015) and Kang et al. (2017). Montero-

Manso et al. (2018) introduce FFORMA (Feature-based FORecast Model 

Averaging) with 42 meta-features where the output of the meta-learner is a 

set of weights assigned to each candidate’s forecasting models instead of the 

index of the best forecaster. This approach achieves the second rank in the 

M4 competition (Makridakis, Spiliotis, and Assimakopoulos, 2020). 

Through consideration of the pertinent research in this area, it can be inferred 

that the selection of a proper subset of meta-features mainly follows the 

decision makers’ expertise which is mostly subjective and non-systematic. 

Fulcher (2017), Fulcher and Jones (2014) and Timmer et al. (1993) indicate 

that it is difficult to conclude whether new features presented by researchers 

are better than existing alternatives. They mentioned that it is hard to 

determine whether methodologically complicated meta-features outperform 

simple alternatives. Therefore, analysing the meta-learning framework based 

on the meta-feature perspective and proposing techniques that rely less on the 

manually selected features is an urgent need in this field. Besides, having a 

systematic meta-feature analysing method with the potential for selecting 
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more representative features is also essential for improving the meta-learning 

performance.    

Furthermore, manually extracted meta-features from time series may not 

reflect all characteristics of the series. According to Li, Kang and Li (2019), 

current studies in this area mostly employ global features as the input of the 

meta-learning framework but neglect the importance of some local 

characteristics which may significantly affect the performance of different 

forecasting models. For instance, in the area of retail sales, if the promotion 

or special events exist in some time horizons of a time series, the value of 

sales in these time horizons is very likely to be significantly different from 

those without these activities or events (Fildes and Ma, 2019). In this case, if 

we only use some global features, such as trend or seasonality, the meta-

learner may not be able to learn local knowledge, and hence the meta-

learner’s input can mislead it. This can be resolved by proposing an 

automated approach which detects the important meta-features and forecasts 

based on them simultaneously.   

Although previously mentioned studies have stated that their proposed meta-

learning frameworks achieve a good result, no study directly argues about the 

reason for their superiority. It is not clear whether the high accuracy is due to 

the choice of their proposed features, meta-learners (as classifiers), or 

alternative forecasting models. Moreover, when there are many time series, 

the process of manually extracting features will cost comparable time and 

resources, which lowers the forecasting performance of the whole process of 

meta-learning particularly when the correlation between these features and 

forecasting models’ performance is weak. 

To the best of our knowledge, there is no study that evaluates the reliability 

and performance of meta-learning by considering the three facets of meta-

features, meta-learners, and base forecasters. Therefore, we aim to analyse 

these variations in the context of forecasting model selection and combination 

for business time series. 
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1.3 Contribution of the thesis  

Although there is substantial literature on meta-learning, the investigation of 

its use on time series data has largely been overlooked from the algorithmic 

and machine learning viewpoints. In this thesis, we build on this by taking a 

time series standpoint, bringing the learning from that literature to the 

specification and use of meta-learning in forecasting. 

• First, we propose a series of statistical tests, which build upon time 

series analysis theory that is often overlooked in the primary machine 

learning based meta-learning literature and evaluate their 

effectiveness. We analyse the relationship between these meta-

features and the meta-learners and compare the result of meta-learning 

with individual and aggregate forecasting model selection. We find 

that statistical tests performed better in meta-learning compared to 

pre-defined packages such as Tsfeatures. 

• Second, we analyse meta-learning from three aspects: meta-features, 

meta-learners, and base forecasters. To do so, we compare the results 

of simple and complex forecasting models, as well as single and 

ensemble meta learners. Moreover, we evaluate different groups of 

meta-features in the meta-learning context. In terms of the simple and 

complex base forecasters, we find that using more accurate base 

forecasters can improve the meta-learning accuracy. Moreover, we 

show that using more advanced base forecasters overfits the result of 

meta-learner. 

• Third, we evaluate the feature importance of a large number of meta-

features within ten groups of statistical tests, statistical description, 

autoregressive, autocorrelation and so forth, in responding to the 

forecasting model selection accuracy and analyse the forecasting 

performance of groups based on variants of meta-learners and base 

forecasters. We find that the larger Tsfresh set of meta-features 

performs best, compared to Tsfeatures. However, by eliminating the 

least important features, we could increase accuracy further. 

• Fourth, we propose the MetaTS package, an open-source Python 

library to ease meta-learning for time series forecasting by offering a 
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toolkit containing the typical components needed for a meta-learning 

workflow that facilitates the process of doing it for users. In addition 

to providing new components and facilities, we aim to unify the 

available Python libraries which can be useful for meta-learning on 

time series data.  

• Fifth, we run additional experiments using the MetaTS package to 

investigate the effect of feature importance on meta-learning 

performance. We show that, first, increasing the number of features 

does not necessarily improve meta-learning performance, so it may 

even have an adverse effect. Second, the quality of meta-features is 

very important in the performance of meta-learning, and features that 

are data-driven, such as autoencoders, which we extracted using 

MetaTS, have more quality than pre-defined features.Sixth, we 

propose a novel deep meta-learning framework where Convolutional 

Neural Networks (CNNs) can automatically extract and learn useful 

meta-features from time series. We demonstrate that the proposed 

CNN can effectively generate relevant features to the base forecasters 

and reduce the need for ad-hoc meta-features. The proposed CNN is 

also able to jointly construct the features and the classifier. We find 

that CNN can improve the meta-learner’s accuracy in the trend and 

level time series; however, it needs further analysis for the seasonal 

time series. 

• It is worth noting that for chapter 2, we use predefined properties of 

time series as meta-features, while in chapter 3 and 4 we extracted a 

new group of meta-features which are fundamentally different from 

the predefined features. We use autoencoders in chapter 3 and CNN 

for chapter 4.  

 

• Finally, we evaluate the ability of transfer learning for the deep meta-

learner for selecting a forecaster or the combination of forecasters in 

a real dataset (M3 competition). We compare the performance of our 

proposed transfer learning framework with conventional model 

selection approaches and demonstrate its efficacy, but also avenues 

for future research.   
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1.4 Structure of the thesis 

The next three chapters of this thesis consist of three potential research 

articles that are either submitted for publication or are in preparation for 

submission. The following is a brief description of each chapter: 

Chapter 2: Meta-Learning Using Statistical Tests for Forecasting Model 

Selection 

In this chapter, statistical tests are presented as a group of feature-based 

representation of time series, and their effectiveness is evaluated and 

compared with commonly used meta-features.  

Chapter 3: On the Design of Meta-learning for Forecast Selection. 

This chapter investigates the building blocks of meta-learning and analyses 

the impact of meta-features, meta-learners, and base forecasters in the final 

model selection output. To do so, we investigate three alternative meta-

learners, the use of simple or complex base forecasts, and a large and diverse 

set of meta-features. 

Chapter 4: Deep Learning for Forecasting Model Selection 

This chapter proposes the use of Convolutional Neural Networks (CNNs) to 

automatically extract and learn useful and model-performance-relative meta-

features from time series and then employ these to classify candidate 

forecasting models.  The deep meta-learner can generate features as needed 

internally, within its layers, without intervention from the modeller. Its 

properties and performance are examined using simulated and real data.  

Finally, chapter 5 provides a discussion and concluding remarks for the thesis, 

where current limitations, and future avenues of research are outlined.  
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2 Meta-Learning 

Using Statistical 

Tests for 

Forecasting 

Model Selection 

2.1 Introduction 

Nearly 30 years of research and empirical evidence on identifying and 

selecting the best forecasting method shows the challenging attribute of the 

model selection problem. Based on the “No Free Lunch (NFL)” theorem, the 

criteria of a proper model for one problem may not hold for another problem. 

This is the crucial idea that no one model works best for every problem and 

whenever a learning algorithm achieves good results on some problems, it 

must perform poorly on others (Giraud-Carrier, 2008b). Therefore, building 

a decision system which can select the best learning algorithm between 

candidates becomes a worthwhile endeavour. Moreover, the number of 

modelling algorithms and explanatory variables makes the selecting process 

a problem in itself to solve. In the business analytics area, finding a true 

classification or forecasting algorithm along with measuring its parameters is 

one of the crucial stages which is called 'model selection' (Smith-Miles, 

2009).  

In the forecasting community, forecasting managers may have to forecast 

thousands of series every month with heterogeneous time series patterns and 

many forecasting algorithms to match the series with them. At the same time, 

the quality and quantity of potential model inputs have increased 

exponentially, permitting models to use more information sources and 

support a higher frequency of decision making, such as daily and weekly 
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planning cycles. Consequently, the model selection issue arises in practice as 

an essential problem across all industries and sectors.  All these have 

facilitated and made necessary an increase in automation of the forecasting 

model selection. 

In business analytics, forecasters mainly use individual approaches such as 

penalized likelihood methods or empirical cross-validation with different 

error measures to forecast a collection of series, but a learning process does 

not exist to make the connection between the data characteristics and the 

models. To involve the learning process in the model selection, meta-learning 

from the machine learning field is utilized in the forecasting model selection. 

Based on Rice (1976), the mathematical definition of the meta-learning 

system is presented as follows:  

For a given problem space x ∈ P with features f (x) ∈ F, find the selection 

algorithm S(f (x)) in algorithm space A, such that the selected algorithm a ∈ 

A maximizes the performance mapping z (a(x)) ∈ Z in terms of a performance 

measure p (Rice, 1976). In a meta-learning system, features F from Rice’s 

formulation are called meta-features, and they represent inherent 

characteristics of a given task, x.  

Compared to a base learner (forecasting algorithms) which learns a particular 

task from the corresponding data (e.g., load forecasting, demand forecasting, 

and so forth), meta-learning continuously gains knowledge (e.g., the learning 

algorithm properties, the characteristics of the learning problems) from base 

learners in order to improve the performance of the learning algorithms 

(Giraud-Carrier, 2008a). Therefore, two concepts of (i) data characteristics 

and (ii) the best forecasting model can be connected by meta-modelling, 

which is a learning approach – seen in, for example, classification algorithms. 

However, doubts always exist on the efficiency of calculated data 

characteristics. A common challenge comes with the efficiency of meta-

features and how much these could be beneficial in selecting the best model. 

Is it possible to have less sophisticated but more descriptive meta-features in 

a meta-learning approach? Is using a complicated selection process in 

comparison to simple individual selection worth? While to answer these 
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questions, an overview of meta-learning as a model selection procedure as 

well as the implemented meta-features in forecasting problems is needed.  

Therefore, in this chapter, a brief review of the different model selection 

procedures in time series forecasting is studied, and then meta-learning 

studies in forecasting model selection are reviewed. More specifically, the 

implemented meta-feature in the feature-based representation of time series 

is considered broadly, and the gaps in utilized meta-features are investigated. 

In this regard, for the first time, the effectiveness of using statistical tests as a 

new group of meta-features is evaluated and compared with the commonly 

used meta-features. Finally, the relationship between the applied meta-

features and the meta-learner algorithms have been investigated, and the 

forecasting performance of meta-learning in comparison with individual 

model selection is further demonstrated. 

Consequently, contributions of the current research could be noted as: 1. 

Empirically demonstrating the usefulness of statistical tests as a new group of 

meta-features and comparing the forecasting performance with the other 

group of meta-features 2. Comparing different filter and wrapper model 

selection approaches and 3. Assessing the forecasting performance of using 

meta-learning for model selection in different sample sizes.  

The structure of this chapter is undertaken as follows: Section 2.2 articulates 

different model selection approaches in forecasting. Section 2.3 elucidates the 

features-based representation of time series while Section 2.4 explains the 

methodology and experimental design. Section 2.5 presents the results of the 

research and finally, section 2.6 concludes the article, and suggests the further 

scope of research. 

2.2 Model selection in forecasting 

Selecting an appropriate forecasting model because of the increasing number 

of algorithms, large number of business time series, and different time series 

patterns has turned into a complicated problem (Fildes, 2001). 
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2.2.1 Forecasting model selection using wrappers 

Two conventional approaches in time series forecasting are distinguished. 

Firstly, “aggregate selection”, which is the implementation of one model for 

all the time series. Secondly, “individual selection”, which is the 

identification of one particular method appropriate for each series and then 

the application of that model for forecasting (Fildes, 1989). 

Although the aggregate selection is simple in practice, in principle, different 

individual models, which take into the account time series characteristics such 

as trend and seasonality, make the forecasting more accurate (Fildes and 

Petropoulos, 2015). Further, in consideration of the NFL theorem, there is no 

guarantee that one forecasting model has proper accuracy in all or even more 

than one-time series (Ma and Fildes 2020). Fildes (2001) indicated that if 

individual model selection could be done perfectly, then the gains would be 

substantial. Individual selection mainly have classified into theoretical and 

empirical methods (Fildes and Petropoulos, 2015). 

A significant characteristic of empirical models is in using a validation (out 

of sample) performance to evaluate how well a model performs on the part of 

data which is not considered when fitting the model. Model selection on 

(cross-) validation has two advantages. Firstly, the performance of multiple 

step-ahead forecasts can be used to inform selection. Secondly, the validation 

approach is able to evaluate forecasts derived from any process (including 

combinations of forecasts from various models). The disadvantage of this 

approach is that it requires setting aside a validation set, which may not 

always be feasible. 

The theoretical models generally are penalized likelihood functions 

calculated in the in-sample data (Hyndman and Athanasopoulos, 2014). Two 

best-known criteria are the AIC and BIC and different developed versions of 

these two approaches. The robustness of theoretical models is that there is no 

need for a validation sample which requires more data for model fitting. The 

downside, however, is that manipulating time series by changing the number 

of data points or transforming the sample invalidates the comparison. Hence, 

researchers mainly recommend using them only within a single model family 
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(e.g. between exponential smoothing models) (Kourentzes, 2017). 

Information criteria measures the accuracy of one step ahead in-sample 

fitting; however, Fildes and Petropoulos (2015) shows the inefficiency of one 

step ahead forecasting in model selection. This is because of the fact that the 

likelihood function cannot be proper for multiple-step forecast if the 

postulated forecasting error is wrong (Xia and Tong, 2011). Therefore, cross 

validation statistics are mainly used in this study whilst the results are 

compared with AIC and BIC as benchmarks.  

All of the mentioned model selection approaches, either using information 

theoretic criteria or empirical criteria, require candidate forecasting 

algorithms to have been computed and the error utilized for the selection of 

the best algorithm. In machine learning, this is called the “wrapper approach” 

(Barak et al., 2015). Therefore, individual selection must implement all 

candidate models in the whole dataset to evaluate model performance, then 

select between them. 

2.2.2 Forecast model selection using filters  

Substantially increasing the number of time series for business forecasting 

makes the wrapper model selection highly time demanding, and in some cases 

inefficient. The filter approach is a favourable alternative which extracts 

information from the time series based on some protocols and exploits it for 

business forecasting. A filter-based model selection provides patterns that 

identify which model should be used for each time series forecasting without 

measuring all the past forecasts in a whole time series.  

In the forecasting model selection literature, filter approach-based selection 

protocols such as variance analysis (Gardner Jr and McKenzie, 1988), 

automatic identification (Vokurka et al., 1996), and rules-based forecasting 

(Adya et al., 2001) measure data characteristics and use them in forecasting 

models to generate the best prediction (Fildes et al., 2007).  

In contrast to forecasting model selection using wrappers, practitioners in 

forecasting as well as statistical and econometric research employ filters to 

conduct ex-ante model selection, narrowing the number of relevant 
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algorithms based upon time series features identified using visualisation of 

time series data and statistical tests.  

Surprisingly little research has been conducted on how to utilise data 

visualisation for filtering and model selection. Typically, a forecasting expert 

employs the use of time series graphs, seasonal diagrams, autocorrelation 

(ACF) and partial autocorrelation functions (PACF), spectral analysis and 

various seasonal subseries plots etc. for this purpose (Petropoulos et al., 

2018). 

In contrast, a number of statistical tests have been developed to determine an 

adequate model form ex ante by identifying the nature of the underlying data 

generating process, including statistical tests for stationarity, seasonality, 

trend, outliers, structural breaks and other regular and irregular time series 

patterns. As these tests are later on employed as both direct filters and meta-

features to train a meta-learning algorithm, based on the literature of time 

series we introduce a number of more common tests which have been 

implemented in many studies (Pohlert, 2016). 

• Trend Tests: 

In testing the trend, the non-parametric Mann-Kendall Trend test which has a 

null hypothesis of “no trend”, estimating  
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The statistic S is closely related to Kendall’s τ as given by τ = S / D, where  
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p is the number of the tied groups in the data set, and tj is the number of data 

points in the jth tied group (Pohlert, 2016).  

The Cox-Stuart trend test defines a binomial distribution for trend detection. 

Given a set of ordered observations X1, X2, ..., Xn, let c = n/2 if n even, or let 

c = (n+1)/2 if n odd. Then pair the data as X1, X1+c, X2, X2+c, ..., Xn-c, Xn. 

The Cox-Stuart test is then simply a sign test applied to this paired data. 

Alternatively, Spearman's rho (SR) test utilises rank-based non-parametric 

statistical test for detecting a monotonic time trend in a time series (Lehman, 

2005). 

• Stationarity Tests: 

Next, we introduce a number of stationarity tests, in essence testing the 

absence of trends and other patterns, most notably the ADF test and KPSS 

tests. 

The Augmented Dickey-Fuller test (ADF) test with the null hypothesis of a 

unit root: The alternative hypothesis could be different depending on which 

version of the test is used, but it is usually stationarity or trend-stationarity. 

Therefore, in this chapter, three kinds of tests which are “no constant-

no trend”, “constant-no trend”, and “constant-trend” were established.  The 

ADF test is based on estimating the test regression 

 

( 2-3) 

where 𝐷𝑡 is a vector of deterministic terms (constant, trend etc.) (Said and 

Dickey, 1984). The 𝑝 lagged difference terms, ∆yt−j, are used to approximate 

the ARMA structure of the errors, and the value of p is set so that the error εt 

is serially uncorrelated. Under the null hypothesis, ∆yt is I(0) (no trend) which 

implies that π = 0. The ADF t-statistic is then the usual t-statistic for testing π 

= 0. However, as mentioned before, with changing the π = φ−1, we can test 

the I(1).  

https://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/signtest.htm
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As an alternative to the ADF- family of tests, the Kwiatkowski–Phillips–

Schmidt–Shin (KPSS) tests for testing a null hypothesis that an observable 

time series has a unit root against the alternative of a stationarity around a 

deterministic trend (i.e., trend-stationary). 

The KPSS test statistic is the Lagrange multiplier (LM) or score statistic for 

testing σ2
ε = 0 against the alternative that σ2

ε > 0 and is given by 

 

( 2-4) 
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variance of ut using ˆ
tu . Under the null, yt has I(0) (Pohlert, 2016).  

• Seasonality Test: 

Moreover, we introduce a number of seasonality tests, which include the Chi 

square test, Friedman test, Multiplicative seasonality test (Pearson), and 

Kruskall-Wallis test. 

The Chi square test (χ2) is a goodness-of-fit test for detecting the seasonality 

which is relatively popular because of its simple mathematical theory (Nwogu 

et al., 2016). For testing the seasonality, the frequency 𝑂𝑖, i = 1, 2,…, k and 

the frequency 𝐸𝑖, i = 1, 2,…, k are the observed and expected value frequency 

at the 𝑖th season, respectively. Under the null hypothesis that there is no 

seasonal effect, then E1 = E2 =…= Ek and the statistic 

𝑇 = ∑(
(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

𝑘

𝑖=1

) 

( 2-5) 

is asymptotically distributed as χ2 with ν = k − 1 degrees of freedom (Horn, 

1977). 
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The Friedman test calculate the p-value for testing the seasonality as a non-

parametric alternative to ANOVA with repeated measures. No normality 

assumption is required. The Friedman statistic Q is given by 

12

( 1)
colQ SS

K K
=

+
 

( 2-6) 

where 
colSS  is the sum of squares between groups using the ranks instead of 

raw data. When k ≥ 5, the probability distribution of Q can be approximated 

by that of a chi-squared distribution and the null hypothesis is rejected 

when Q > . 

Furthermore, Pearson correlation facilitates a Multiplicative seasonality test 

(Lehman, 2005). 

The Kruskal-Wallis test of seasonality is a non-parametric test which is used 

in place of a one-way ANOVA. Kruskal-Wallis statistics H is given by 
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where 
BSS  is the sum of squares between groups using the ranks instead of 

raw data. This is based on the fact that
12( 1)

( 1)

k
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−

+
 is the expected value (i.e. 

mean) of the distribution of 
BSS . If there are small sample sizes and many 

ties, a corrected Kruskal-Wallis test statistic H’ = H/T gives better results 

where 
3

3

1
1 (f f )T

n n
= − −

−
 . Here, the sum is taken over all scores where 

ties exist, and f is the number of ties at that level. 

• Other Combinations: 

Finally, we test stationarity (level), trend, and seasonality of time series with 

some properties of the ACF plot. Slowly decay of ACF plot indicates a trend 

and the seasonality can be captured with the peak in a seasonal basis. The 

noise data (level) with ACF of a sampling distribution can be approximated 
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by a normal distribution with mean zero and standard error 
1

√𝑛
  where n is the 

number of observations in the series. We use this info to develop tests of 

hypotheses and confidence intervals for the ACF. We expect 95% of all 

sample ACF to be within  ±𝑧
1

√𝑛
 , then we have a stationary time series, 

otherwise the series can have trend / seasonality.  

Some of our meta-features are non-parametric tests which do not rely on 

standard normality assumptions and are often based on ranks rather than raw 

data. It is possible to extend our feature space by adding more statistical tests; 

however, the most popular tests have been used in this study, and we would 

like to investigate explicitly whether or not the meta-learning procedure can 

capture the correct forecast algorithm with common statistical tests (without 

measuring the forecast errors). 

2.2.3 Forecast model selection using machine learning  

Rice (1976) explained the model selection problem as a learning problem 

which attempts to capture the structural characteristics of the problem or 

instance and to use them for selection of the most relevant algorithm with a 

meta-level learning algorithm. In the forecasting, the meta-learning process 

is a learning approach which selects the best forecasting model based on the 

features of the time series without implementation of the candidate algorithms 

at first. Therefore, this is a filter approach with less computational cost for 

implementation. Figure 2-1 illustrated three main components of the meta-

learning procedure including base level models (forecasting algorithms), 

meta-features, and meta-level models (meta-learners) and their connection.  

Using model selection with machine learning in forecasting was first 

proposed by Arinze (1994). Chu and Widjaja (1994) proposed a neural 

network system to select among several exponential smoothing models using 

the autocorrelations. Both of these studies treat model selection as a 

classification problem, while outputs of the classification algorithm (machine 

learning model) rank the forecasting models, and the inputs are features 

calculated from the case study data. Therefore, these works can be viewed as 

particular examples of meta-learning, but they do not mention the context of 
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meta-learning. Prudêncio and Ludermir (2004) claimed that they used the 

context of meta-learning in time series forecasting for the first time. Two case 

studies were implemented, while in the first example, J.48 (a version of the 

C4.5 decision tree) is utilized to choose among two models of forecasting 

stationary time series (simple exponential smoothing model (SES), and the 

time-delay neural network (TDNN)), and in the second example, NOEMON 

as a meta-learner generates ranks for the pool of forecasting models.  

 

Figure 2-1. Overview of meta-learning procedure 

Zhou et al. (2012) proposed an improved decomposition method and back-

propagation  neural network model (BPNN) for gold price forecasting. In this 

approach, characteristics of different decomposed subsets of series are 

explored by training different BPNNs. A rate-based meta-learning model is 

used to identify the most suitable BPNN model for selecting one of the 

networks in determining the future trend of gold prices.  

Feature selection in meta-learning can be implicitly applied when decision 

trees are used as the meta-learner; however, within different studies in 

applying meta-learning to forecasting, to the best of our knowledge, Cui et al. 

(2016a) is the first work which implemented feature selection methods for 

meta-features’ reduction. They applied singular value decomposition, 
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stepwise regression, and ReliefF for feature selection, and used hit ratio and 

Spearman’s ranking correlation coefficient as performance evaluation of the 

meta-learning system. Talagala et al. (2018a) proposed a meta learning 

framework called FFORMS (Feature-based FORecast Model Selection) that 

uses a set of 33 meta-features for seasonal and non-seasonal data and a 

Random Forest as meta-learner to select the best single model from five main 

forecasting models including, ARIMA, ETS, Random walk, naïve, Theta, and 

their variants. Montero-Manso et al. (2020) proposed FFORMA (Feature-

based FORecast Model Averaging) which is a weighted combined model 

selection using meta-learning and obtained the second rank in the M4 

forecasting competition. The main difference of this study is that they used a 

weighted combination of Arima, ETS, Theta, Naïve, Seasonal Naïve, Neural 

Network, Random walk, TBATS, and STLM-AR models instead of solely 

selection with meta learners. They used XGboost as meta learner with 42 

meta-features. All of the features have been previously used in Talagala et al. 

(2018a) and Montero-Manso et al. (2018), and an R package ‘tsfeatures’ is 

developed by Hyndman et al. (2019) to facilitate the feature calculation. 

Recently, Ma, and Fildes (2021) present a meta-learning framework based on 

newly developed deep convolutional neural networks, which can first learn a 

feature representation from raw sales time series automatically, and then link 

the learned features with a set of weights that are used to combine a pool of 

base-forecasting methods. The experiments which are based on IRI weekly 

data show that the proposed meta-learner provides superior forecasting 

performance compared with a number of state-of-art benchmarks, though the 

accuracy gains over some more sophisticated meta-ensemble benchmarks are 

modest, and the learned features lack interpretability. When designing a meta-

learner for forecasting retail sales, they recommend building a pool of base-

forecasters including both individual and pooled forecasting methods, and 

target finding the best combination forecasts instead of the best individual 

method. 

A comparison between meta-learning studies in forecasting is presented in 

Table 2.2-1. Applied meta-learner, data set, the domain of the data, 

forecasting algorithms, feature selection procedure, and findings from the 

papers are considered as different criteria in Table 2.2-1. By evaluating the 
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last row of Table 2.2-1 (Findings), it can be inferred that meta-learning does 

not always deliver the minimum error in all cases. However, in addition to 

the accuracy, the computational time for model selection is also essential. 

Meta-learning mostly achieves a significant improvement in computational 

time in comparison to the wrapper model selection approach (Prudêncio et al., 

2011). For example, dos Santos et al. (2004) applied random walk, Holt, and 

auto-regressive (AR) models as sub learners and zoom ranked algorithm as a 

meta-learner. The results indicated that when the accuracy of the selected 

model is considered, the zoom rank results are not promising and the Holt 

model has the lowest error, but when the computation time is added into the 

cost function, zooming provides a small improvement in the model 

selection’s accuracy. The same evidence was reported by Lemke and Gabrys 

(2010a) while they considered 15 simple and combined models as base 

learners, whilst support vector machine, neural network, and decision tree 

were considered as meta-learning. In their first experiment, none of the 

applied meta-learners decreased the overall forecasting error; however, the 

zoom rank algorithm (combination of meta-learners) significantly reduced the 

symmetric Mean Absolute Percentage Error (sMAPE) of the overall 

forecasting error. 

Table 2.2-1. Summary of meta-learning literature in time series 

forecasting 

  Arinze (1994) 

Prudêncio 

and Ludermir 

(2004) 

Wang et al. 

(2009) 

Lemke and 

Gabrys 

(2010a) 

Matijaš et al. 

(2013) 

Kück et 

al. 

(2016b) 

Cui et al. 

(2016a) 

Talagala, et 

al. (2018) 

Montero-

Manso, et 

al. (2020) 

Ma, and 

Fildes (2021) 

Meta-

learner 
DT 

1) J48 SOM, NN, 
Euclidean 

distance, 

CART, LVQ 

network, 

MLP, Auto 

MLP, e-

SVM, 

Gaussian 

Process (GP). 

NN 

k-nearest 

neighbour, 

ANN 

Random 

Forest 
XgBoost CNN 

2) NOEMON DT DT, 

  

SVM, 

  
Zoomed 

ranking 

Data set 67-time series 
M3 (3003-

time series) 

315-time 

series 

NN3 111 

time series, 

NN5, 111-

time series 

1 time series 

with 69 Task 

NN3, 

111-time 

series 

44 

benchmarks 

from IEEE 

CEC 

2013&2014 

M3 M4 

IRI dataset 

(Bronnenberg

, Kruger, & 

Mela, 2008) 

Data 

Domain 

Econometric 

data on the US 

economy 

Demographic, 

Finance, 

Industry, 

Macro, 

Micro, Other 

economics, 

medical, 

engineering 

Business, 

cash machine 

withdrawal 

Load and 

electricity 
Business 

Simulated 

data in 

Engineering 

Business, 

Finance, 

Industry, 

Macro, 

Micro, 

Other 

Business, 

Finance, 

Industry, 

Macro, 

Micro, 

Other 

Business 

forecast 
6 Arima and 

ES models 

1) SES, 

TDNN 

RW, 

ARIMA, 

ES, NN 

Arima, SES, 

MA, Tylor, 

Regression, 

RW, ARMA, 

Similar Days 

algorithm, 

Layer RNN, 

ANN, 

ANA, 

AAN, 

AAA 

kriging, 

SVR, RBF, 

MARS, NN, 

PR 

Arima, 

ETS, Theta, 

Naïve, RW 

Arima, 

ETS, Theta, 

Naïve, NN, 

RW, 

ETS, ADL,  

ARX, ELM, 

SVM, GBRT, 
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  Arinze (1994) 

Prudêncio 

and Ludermir 

(2004) 

Wang et al. 

(2009) 

Lemke and 

Gabrys 

(2010a) 

Matijaš et al. 

(2013) 

Kück et 

al. 

(2016b) 

Cui et al. 

(2016a) 

Talagala, et 

al. (2018) 

Montero-

Manso, et 

al. (2020) 

Ma, and 

Fildes (2021) 

2) RW, Holt, 

AR 

Theta, NN, 

Elman NN 

MLP, m-

SVR, Robust 

LS-SVM 

TBATS 

STLM-AR 

ADLP, RF, 

ELMP 

Feature 

selection 

Implicitly with 

DT 
- 

Implicitly 

with DT 

Implicitly 

with DT and 

ZR 

Feature 

weighting 
- 

singular 

value 

decompositi

on, step-

wise 

regression, 

and ReliefF 

- 
Feature 

weighting 

Feature 

weighting 

Finding 
Faster and 

more accurate 

Faster but 

with the 

lower 

accuracy 

Faster and 

more 

accurate 

Winner of the 

competition, 

more accurate 

with zoom 

ranking 

More 

accurate 

More 

accurate 

More 

accurate 

More 

accurate 

More 

accurate 

More 

accurate 

DT: Decision Tree, RW: Random walk, HL: Holt exponential smoothing, AR: Auto-regressive model, SVR: Support 

vector regression, RBF: Radial basis function, MARS: Multivariate adaptive regression splines, NN: Neural network, 

PR: Polynomial regression.  

Combinations of meta-learners have also been studied by Matijaš et al. (2013). 

They considered four types of load forecasting task to apply the meta-learning 

approach to multivariate time series by ten different base learners and eight 

meta-learners. The results indicated a lower MAPE for all of the tasks with 

ensemble of meta-learning classifiers. Moreover, their overall runtime 

decreased by almost three times in comparison with the wrapper model 

selection. 

After the general overview about model selection and meta-learning, in the 

next section, feature-based representation of time series will be explained, 

and a common challenge with the efficiency of meta-features has been 

addressed.  

2.3 Features-based representation of time series: 

meta-features 

Analysing time series based on the property and structure of extracted 

features enhances our interpretation about the problem and eases the decision-

making process for selecting the appropriate forecasting model. The feature-

based representation of time series (meta-features) can exploit machine 

learning potential in discovering the hidden pattern in complex time series.  

Feature-based characterization of time series not only can be utilized on 

univariate time series, but also for multivariate versions, unordered data sets, 

and features of inter-relation between the pairs of time series. This study 
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mainly focuses on univariate time series to capture the underlying pattern and 

interesting structures in business domain datasets.  

Proper detection of time series’ similarities by their features’ characterization 

can tackle time series data mining problems, such as anomaly detection, motif 

discovery, model selection, clustering, and classification of time series 

(Bagnall et al., 2017). The superiority of using meta-features in these 

problems is that meta-features can take full-time series as an input rather than 

shorter subsequences, distilling the complex pattern into understandable, low 

dimensional properties. So, meta-features can be implemented on the time 

series with different lengths, phase-alignments, and context of the problem; 

the outcome will then be a matrix of time series (row) × features (columns) 

which is similar to the statistical learning cases. Therefore, there is no 

problem related to the length of the time-series and alignment in time. 

Secondly, the current space of the time series may not mirror the problem 

characterization, while a well-suited meta-feature transfers the problem into 

the feature space and provides interpretability and better understanding about 

the problem (Harvey and Todd, 2015). Note that different authors have 

discussed that the critical issue does not lie in developing or finding a complex 

prediction/classification algorithm, but in the selection of well-discriminating 

features (Timmer et al., 1993, Bagnall et al., 2012). Based on evidences from 

the Kaggle competition, the significant difference between the leaders and 

other competitors is hardly implementing sophisticated models, but creating 

relevant features from the dataset and predicting with them (Blum and Hardt, 

2015). However, from considering the feature list, it can be inferred that the 

selection of a proper subset of these meta-features mainly follows the 

expertise of data analysts and is mostly subjective and non-systematic. 

Fulcher (2017), Fulcher and Jones (2014), Timmer et al. (1993) indicated that 

it is difficult to conclude whether new features presented by researchers are 

better than existing alternatives. Moreover, it is hard to determine whether 

methodologically complicated meta-features outperform simpler alternatives. 

Fulcher et al. (2013) discussed that a threshold on the simple standard 

deviation computed for each time series provides comparable classification 

performance on different problems, undermining the need for computing 

nonlinear features or the use of complex classification algorithms. Commonly, 
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the main criteria for selection of meta-features is overall predictive accuracy 

using the subset of meta-features. However, based on Giraud-Carrier (1998), 

other criteria such as computational complexity, expressiveness, compactness, 

and prior knowledge encoding may have equal importance.  

Early efforts of meta-learning studies, which include meta-features in 

forecasting, have been summarized in Smith-Miles (2009). The number of 

implemented meta-features in papers is different, as while some researchers 

incorporated small sets of 6-13 features (Prudêncio and Ludermir, 2004, 

Wang et al., 2009, Venkatachalam and Sohl, 1999), others applied larger sets 

of 25- 38 features (Lemke and Gabrys, 2010a, Shah, 1997, Meade, 2000, 

Lemke and Gabrys, 2010b, Kück et al., 2016b). 

Until now, three main classes of meta-features have been suggested: 1. 

statistical and information-theoretic characterization, 2. model-based features, 

and 3. “landmarkers” (Brazdil et al., 2008). The first group estimated the 

statistical features of the dataset. For example, standard deviation of series, 

skewness, kurtosis, length of series, entropy of series, and number of 

exogenous variables are some of these features. As an example of the second 

type, one can build a decision tree from a dataset and capture the properties 

of the tree such as maximum tree depth, shape, and tree imbalance as model-

based features. Finally, the last class of so-called landmarkers exploits 

information obtained from the performance of a set of learners/forecasts and 

their accuracy is used to characterize the time series. The differences between 

the model-based features and landmarkers are related to the fact that the latter 

does not come under model characteristics, but performance measures of the 

built model. Kück et al. (2016b) used the errors on the training, validation, 

and test set of the neural network as landmarkers.  

Characteristics of a learning algorithm with meta-features and gaining a better 

view about the problem performance is a narrow research topic with limited 

literature on it (Vanschoren and Blockeel, 2006). For example, Hyndman et 

al. (2015b) used 18 meta-features to characterize the time series, then applied 

a two-dimensional principal component decomposition to the features to 

detect unusual series with bivariate outlier detection methods. Kang et al. 

(2017) visualized 6 meta-features into a two-dimensional principal 
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component feature space and explained which algorithm can be suited to 

forecast a specific type of time series in different parts of the space. Talagala 

et al. (2018a) used a set of 33 meta-features including different variant of 

Autocorrelation function (ACF) as well as some ETS model base meta-

features.  Montero-Manso et al. (2020) applied 42 meta-features mainly from 

Talagala et al. (2018a) study as well as model based meta-features from ARCH 

and GARCH.  

A summary of meta-features used in the literature is presented in Table 2.3-1. 

Hyndman, et al. (2015) and Kang et al. (2017) studies are not in the context 

of meta-learning; however, they use meta-features for time series evaluation. 

Table 2.3-1 classifies the meta-features into four sections which are statistical 

and information-theoretic features, model-based features, statistical tests, and 

land markers respectively. It can be inferred that land markers are hardly used 

since the learning models have to be applied on the whole data set, thus not 

benefitting from the speed of filter meta-features. Moreover, establishing 

statistical tests, a common way for time series trend and seasonality detection, 

is largely overlooked in this area. Statistical tests are a “filter” approach which 

only evaluate the time series and label them without learning from the past.  

It is truly rational that using statistical test for detecting the most important 

attributes of time series (level, trend, and seasonality) are more meaningful, 

than many statistical features such as skewness, lumpiness, etc. Statistical 

tests for determination of trend and seasonality of time series are commonly 

used between researchers (Kendall and Ord, 1990, Hamed, 2008, Sun and 

Fang, 2017, Sayemuzzaman and Jha, 2014), proposing better forecasting 

algorithms along with characterising the time series. Specifically, when the 

presence of seasonal or trend patterns are not entirely visible, these tests are 

more useful (Kourentzes, 2017). Therefore, for the first time, we establish 

different combinations of statistical tests in meta-learning to clarify the time 

series by determining the statistical relationships in the data, e.g., stationarity, 

seasonality, trends, and nonlinearity. 
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Table 2.3-1. Summary of implemented meta-features in different 

studies 

Features 
Arinze 

(1994) 

Prudêncio 

and 

Ludermir 

(2004) 

Wang et al. 

(2009) 

Lemke and 

Gabrys 

(2010a) 

Matijaš et 

al. (2013) 

Kück et 

al. 

(2016b) 

Hyndman et 

al. (2015b) 

Kang et 

al. (2017) 

Talagala, et 

al. (2018) 

Montero-

Manso, et al. 

(2020) 

Ma, and 

Fildes (2021 

Standard deviation  
✓   ✓  ✓   

✓      

Mean     
✓   

✓      

Minimum     
✓        

Skewness  
✓  ✓  ✓  ✓  ✓       

Kurtosis  
✓  ✓  ✓  ✓  ✓       

Length  
✓   ✓  ✓     ✓  ✓   

Granularity     
✓        

Periodicity (per) ✓   
✓   

✓  ✓       

Traversity     
✓        

Trend ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓  

Seasonal period        
✓     

Entropy       
✓  ✓  ✓  ✓  ✓ 

Step changes    ✓         

stability           ✓ 

hurst           ✓ 

Turning points ✓  ✓   ✓         

Kullback-Leibler (kl) 

score 
      

✓     
 

index of the 

maximum KL score 
      

✓     
 

Curvature       
✓   ✓  ✓  ✓ 

Peak       
✓   ✓  ✓   

Seasonality   
✓  ✓   

✓  ✓  ✓  ✓  ✓   

Linearity       
✓   ✓  ✓  ✓  

Lumpiness       
✓   ✓  ✓  ✓ 

Trough       
✓   ✓  ✓   

flat spots       
✓   ✓  ✓  ✓ 

Level shift       
✓   ✓  ✓   

Number of crossing 

points 
      

✓   ✓  ✓  
 

Spikiness       
✓   ✓  ✓  ✓ 

Variance change       
✓   ✓  ✓   

Fickleness     
✓        

Self-similarity   
✓    

✓       

Serial correlation ✓  ✓  ✓    
✓       

Model-based features ✓  ✓        ✓  ✓   

Predictability 

measure 
   ✓        

 

Nonlinearity measure   
✓  ✓   

✓      ✓ 

Largest Lyapunov 

exponent 
  

✓  ✓   
✓     ✓  

 

Durbin–Watson    ✓         

Exogenous     
✓        
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Features 
Arinze 

(1994) 

Prudêncio 

and 

Ludermir 

(2004) 

Wang et al. 

(2009) 

Lemke and 

Gabrys 

(2010a) 

Matijaš et 

al. (2013) 

Kück et 

al. 

(2016b) 

Hyndman et 

al. (2015b) 

Kang et 

al. (2017) 

Talagala, et 

al. (2018) 

Montero-

Manso, et al. 

(2020) 

Ma, and 

Fildes (2021 

Highest Acf     
✓     ✓  ✓   

Acf / diff Acf       
✓  ✓  ✓  ✓  ✓  

Pacf / diff Pacf     ✓        ✓ 

Domain frequency  
✓  ✓  ✓  ✓  ✓       

Diversity features    ✓         

Optimal Box–Cox 

transf. par. 
       

✓    
 

Mean of five first 

autocorrelations 
 

✓      
✓   ✓  ✓  

✓  

Test of Turning 

Points 
 

✓      
✓   ✓  ✓  

✓  

Test of 

autocorrelations 
 

✓      
✓   ✓  ✓  

✓  

Alpha           ✓ 

Beta           ✓ 

ARCH.LM           ✓ 

Recurrence 

quantification 

analysis (RQA) 

     ✓      

 

Mann-Kendall      ✓       

Spearman’s Rho      ✓       

Cox- Stuart      ✓       

Chi-square test      ✓       

Kruskal-Wallis test      ✓       

Train Error      
✓       

Validation error      ✓       

Train error ranking      ✓       

Validation error 

ranking 
     ✓      

 

 

By analysing the features presented in Table 2-2, we can find that still there 

is a lack of research in using the data driven features extracted from more 

advanced methods like unsupervised deep networks. We consider these group 

of features in the next chapters.  

2.4 Experimental Design 

2.4.1 Methodology 

Our aim is to assess the empirical accuracy of the meta-learning approach in 

forecasting model selection, in comparison to established benchmark 
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approaches. We train multiple classification algorithms to predict the most 

probable class membership of time series based only on the input features of 

statistical trend and seasonality tests, in an attempt to select the right base 

learner to predict future realisations of time series. 

In order to limit complexity, we constrain our classification to the four 

univariate classes of constant, trend, seasonal, and trend-seasonal time series 

of the Pegels-Gardner classification (Pegels, 1969, Gardner Jr, 1985). These 

four archetypical patterns represent the biggest theoretical differences in data 

generating processes of observed time series, each requiring a specific model 

form to be adequately captured and extrapolated. Should a meta-learner, or 

indeed any other benchmarking approach of model selection, fails to make 

these fundamental distinctions, it should result in increased forecast errors. 

Moreover, specific type of patterns like damp seasonal or damp trend are not 

considered here. 

To match the classes of the data generating process with base learners, both 

for meta-learning and alternative model selection benchmarks, we consider 

four Exponential Smoothing (ETS) methods, which are well-established in 

commercial forecasting software and research packages, and thus enhance the 

relevance of our experimental findings for researchers and practitioners 

(Gardner Jr, 2006). A survey of forecasting practices identified exponential 

smoothing families as the most frequently used methods (Weller and Crone, 

2012), with a proven track record in practice (Gardner Jr, 2006) and a proven 

relative performance compared to more complex methods (Makridakis and 

Hibon, 2000, Armstrong, 2006, Crone et al., 2011).  

The task of the meta learner is thus to select the Exponential Smoothing 

algorithm from the set of four archetypical algorithms of a constant model 

ETS(ANN), a seasonal model ETS(ANA), a trend model ETS(AAN), and a 

trend seasonal ETS(AAA). Each chosen algorithm is parameterised using 

maximum likelihood on the training data using the Smooth package in R 

(Svetunkov 2017).  

Predictive classification accuracy for a given multi-class classification 

problem depend on the type of classification algorithm used, the input 
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features utilised, and the data conditions. Consequently, our experimental 

design seeks to assess the sensitivity of the results across: 

• different classification algorithms in multi-class classification, 

including Decision Trees (DT), Neural Networks (NN), Support 

Vector Machines (SVM) and popular ensemble extensions such as 

Random Forests, Bagging, and Stochastic Gradient Boosting,  

• different sets of input features, limited to statistical tests of trend and 

seasonality and extended to include features used in previous meta 

learning studies, 

• different splits of the given dataset in training, validation and test data 

of 60:40, 70:30, and 80:20 to influence the ability for the classifier to 

learn the classification task on training data, and to generalise it to 

unseen test data. It should be noted that the results may alter with the 

change in the size of the training/test dataset because of shifting in 

data distribution. 

Therefore, in the first experiment, we would like to explicitly investigate 

whether the statistical tests are capable of detecting the level, trend, 

seasonality, and trend-seasonality in different time series.  

Secondly, to evaluate the potential of statistical tests as meta-features, we 

compare their forecast performance versus the statistical, information-

theoretic, and model-based features implemented in Hyndman, Wang, and 

Laptev (2015a).  Their features later presented as TsFeature and including 

mean, variance, the first order of autocorrelation, trend, linearity, curvature, 

seasonality, peak, trough, spectral entropy, lumpiness (changing variance in 

the remainder), spikiness, level shift (using rolling window), variance change, 

flat spots (using discretization), number of crossing points, Kullback-Leibler 

(kl) score, and an index of the maximum KL score. 

Finally, in the third experiment, we seek to assess the robustness of our 

approach by considering different training and test ratios consisting of 80%-

20%, 70%-30%, and 60%-40% to enhance the reliability of the experiment. 

Different sample size of training data may result in different features selected, 

different parameters estimated and thus different relative ranking of model 
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selection approaches, assessing the robustness of our proposed approach on 

different model forms and parameters. We select a specific random number 

to avoid different permutations in the cross-validation. 

The suggested approach has minimum assumptions or requirements and is 

easy to apply as a model selection approach. However, in this chapter, we 

investigate the ability of meta-learning to capture the trend and seasonality of 

time series and therefore consider four exponential smoothing variants that 

have clear patterns of trend and seasonality. Here, our main aim is pattern 

detection with meta-learning and not solely increasing the forecasting 

performance. However, for the forecasting performance, you would need 

more base forecasters. 

The practical importance of the chapter is that it enhances the accuracy of 

model selection further, while decreasing the selection time of commonly 

used wrapper model selection. In the big data era, which we are encompassed 

with lots of time series, the proposed model can get a reasonable accuracy 

within dramatically lower time.  It is worth mentioning that because of the 

pattern detection spirit of this chapter, we solely focus on selection not 

combination of base forecasters.  

It may happen that different selection criteria lead to different forecasts which 

makes uncertainty in identifying the best model; however, this problem can 

be alleviated using meta learning. Meta learning uses the character of time 

series to select the relevant forecast which result in the best accuracy in the 

similar data driven time series. This does not necessarily need to determine 

one best forecast for all-time series. 

2.4.2 Meta-learners for classification 

At the core of meta-learning, the choice of meta-learners may impact the 

classification performance and thus its forecasting performance. In our 

experiments the meta-learner is tasked with learning a relationship between 

input features of statistical tests computed on time series, and the final 

performance of four archetypical base learners of ETS each representing a 

class of constant, trended, seasonal or trend-seasonal time series. As different 
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classification algorithms partition feature space differently, we seek to 

evaluate a selection of different meta-learners in order assess similarities or 

differences in their performance on the same input features, most notably 

Decision Trees, Neural Networks and Support Vector machines, as well as 

ensembles of Decision Trees in the form of Bagged Trees, Random Forrest 

and XGBoost.  

• Artificial Neural Networks: 

Artificial neural networks are well-established algorithms, which are inspired 

by the functioning of biological nervous systems, and capable of multiclass-

classification (Priddy and Keller, 2005). In our application as meta-learners, 

the inputs of a neural network are vectors of features corresponding to the 

statistical tests, which are weighted and combined by linear filters to become 

inputs of hidden layers using non-linear combinations. In this study, 

feedforward neural network architecture of a multilayer perception (MLP) is 

used, with sigmoid activation function. For the number of hidden layer nodes, 

we use a convenient rule which suggests the mean value of input variables 

and output variables. So, we use two hidden layers that first one has 17 nodes 

and the second one has 7 nodes. The number of epochs is set to 200. We also 

train the network with different hyper parameters and find the mentioned 

parameters as the most optimised specification in the training set. Since these 

hyper parameters are determined in the training set, we control our results 

from overfitting. 

• Decision Tree: 

The Decision Tree (DT) algorithm is a non-parametric and non-linear 

machine learning technique. This technique takes advantage of a hierarchical 

structure for recursively segmenting training data and therefore it has a great 

flexibility and interpretability in data analysis. In this chapter, we are using 

CART (classification and regression tree) and the evaluation function used 

for splitting in classification trees is the Gini index. The Gini index can be 

stated as: 𝐺𝑖𝑛𝑖(𝑡) = 1 − ∑[𝑃(𝐾|𝑡)]2    where  𝑃(𝐾|𝑡)  is the proportion of 

finding the data class K in node t (node purity). The aim is to minimize the 

Gini index. From the formula it can be inferred that if the classification is 
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done in a perfect way, the Gini index would be zero (Friedman et al., 2001). 

For implementing this method, we use ‘rpart’ package in R (Therneau et al., 

2018) with 10-fold cross-validation and a maximum depth of 10 for the tree.  

• Support Vector Machine: 

Support Vector Machine (SVM) are an algorithm, where for a set of data 

(𝑥1, 𝑦1), (𝑥2, 𝑦2) … , (𝑥𝑛, 𝑦𝑛) where (𝑥𝑖, 𝑦𝑖) ∈ 𝑅2 are the respective input and 

output with the help of kernel functions the input data is converted to a new 

higher dimensional space which is called the feature space. In the feature 

space an estimated function such as: 𝑔(𝑥) =  𝛼𝑥 + 𝛽  will be considered, 

which is in fact the equation for a hyper plane in the feature space. Finally, 

with the help of Lagrange multipliers the equation for the hyper plane can be 

rewritten as: 𝑔(𝑥, 𝛽𝑖, 𝛽𝑖
∗) =  ∑ (𝛽𝑖 − 𝛽𝑖

∗)𝐾(𝑥, 𝑥𝑖) + 𝑐𝑛
𝑖=1   where 𝐾(𝑥, 𝑥𝑖)  is 

the kernel function. More details can be found in Vapnik (2013). In this 

chapter, we use ‘SVM’ function from ‘e1071’ package in R (Dimitriadou et 

al., 2006) with radial kernel function.  

• Random Forest: 

Random Forest (RF) is an ensemble classifier, made by a combination of 

decision trees which are created by recursive partitioning. In order to 

construct the RF model, with the help of bootstrapping, new sets of training 

data are created and then RF randomly chooses the variable for each set for 

better diversity in results. Then RF starts creating decision trees for each 

group with respective variables. Finally the outcome forest of trees will be 

combined and the average of the predictions will be considered as the result 

(Friedman et al., 2001). For testing the accuracy of the RF, Out-of-Bag (OOB) 

data which are the samples that were not selected in bootstrapping in the RF 

procedure, can be used. Choosing randomly a subset of predicting variables 

help the model to have less computation and to avoid the over-fitting problem. 

For implementing this method, we use Caret package in R with “ntree=500”, 

which indicates the number of trees that should be grown with 10-fold cross-

validation. 
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Bagging, which is an abbreviation for Bootstrap aggregation, is an ensemble 

technique that uses a bootstrap to generate samples of the original data. In 

prediction problems this algorithm averages the prediction over a collection 

of bootstrap samples and the class of a new observation is the most selected 

class among the number of trees constructed on the bootstrap samples 

(Breiman, 1996). In RF, trees are grown deep without pruning. But by 

building sufficient trees, the over-fitting is less probable to happen. The 

algorithm can be described by a loop where for I = 1: B we generate a 

bootstrapped sample of the data, then create unpruned decision trees on the 

samples, and then average over all the outcomes, and end. In this method, like 

the case of random forests before, OOB data can be used to evaluate the 

performance of the model (Kuhn and Johnson). In this chapter, we use the 

bagging function from ‘ipred’ library (Peters et al., 2009), with ‘nbag=25’ as 

the tuning parameter which indicates the number of bootstrap replications. 

Also, we use 10-fold cross validation as training control. 

• Extreme Gradient Boosting: 

The Extreme Gradient Boosting (XG-boost) is an optimized implementation 

of boosting method (Chen and Guestrin, 2016). In Additive learning of 

XGBoost, the first learner is fitted on the whole data, and the next learners 

are fitted to the residuals of the former learners. In fact, each learner is fitted 

using information from previously fitted learners. The general function for 

the prediction at each step is presented as follows: 

𝑓𝑗
𝑡̂ = ∑ 𝑓𝑖(𝑥𝑗)

𝑡

𝑖=1

= 𝑓𝑗
𝑡−1̂ + 𝑓𝑡(𝑥𝑗) 

( 2-8) 

where 𝑓𝑖(𝑥𝑗) is the learner at step i, ˆt

jf  is prediction at step t, and 
jx  is the 

input variable. Unlike the random forest and bagging, gradient boosting 

methods are prone to over-fitting if the number of trees is too large. A 

computation procedure for preventing over-fitting can be found in Fan et al. 

(2018). We implement this model using the ‘xgboost’ package in R (Chen et 

al., 2015) with ‘nround=100’ that indicates the maximum number of iterations 

and for this number we set the learning rate to 0.2 (eta=0.2). It is worth noting 
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that all the hyper parameters tuning are implemented in the training set for all 

the classifiers and therefore we avoid trapping in the overfitting.  

2.4.3 Feature encoding 

All classifiers have in common that their output corresponds to a multi-class 

classification problem of four classes, providing either the true class 

membership or the probability of belonging to one class of single ETS(ANN), 

Trend ETS(AAN), Seasonal ETS(ANA), or Trend-Seasonal ETS(AAA). The 

true class here means the algorithm that has the lowest error. 

All meta-learners receive the same meta-features to learn the mapping of 

input features to true class membership. These features include statistical tests 

of Mann-Kendall trend test, ADF test with alternative hypothesis  no Constant 

- no Trend, Constant- no Trend, and Constant – Trend, Spearman's rho (SR) 

trend test, Chi square seasonality test, Cox-Stuart trend test, Cox-Stuart 

dispersion test, Friedman seasonality test, Pearson correlation multiplicative 

seasonality test, ACF for detecting seasonality, trend, and level, 

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests, Kruskal-Wallis test of 

seasonality, and linear coefficient trend test. All tests are provided as a 

metrically scaled variable of the corresponding p-value of the statistical tests 

[0.00, …, 1.00], in addition to the ACF and ADF tests which are presented in 

four states with critical values of p<0.01 corresponding to strong significance 

of the test, 0.01<p<0.05 as moderate significance, 0.05< p<0.10 as weak and 

p>0.1 as not significant. Note however that the critical level of significance 

is not information provided, so must be learned by the meta-learner. The list 

of meta-features is presented in Table 2-3. 

It should be noted that the list of features presented in Table 2-3 is not a subset 

of Table 2-2. Rather, here we focus only on statistical tests, and we want to 

measure the performance of meta-learner by using these features. Table 2-2 

includes the predefined features that have been used in recent studies, but it 

does not include all the statistical tests that are in Table 2-3.  Also, Table 2-3 

can be extended, and more statistical tests can be added to it, but we 

considered those statistical tests that have been used more in recent studies. 
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Table 2.4-1. List of meta-features  

Number Features name Description 

1 Mann-Kendall  P-value for the Mann-Kendall test  

2 SpearmanRho P-value for the SpearmanRho test 

3 Cox-StuartTrend  P-value for testing trend  

4 Cox Stuart dispersion P-value for testing dispersion trend 

5 LinearCoefficient P-value for the coefficient test of linearity  

6 ChiSqMod P-value for the Chi Square seasonality test 

7 Kruskal-Wallis P-value for the Kruskal-Wallis test 

8 F-test P-value for the Friedman test 2 

9 Friedman test P-value for the Friedman test  

10 Kpss P-value for the KPSS test 

 Multiplicpval P-value for the Pearson test of multiplicative 

seasonality 

11 adf-R P-value for the ADF test 

12 ADF (no constant-no 

trend) 

In four states including No, Weak, Moderate, Strong 

13 ADF (constant-no 

trend) 

In four states including No, Weak, Moderate, Strong 

14 ADF (constant- 

trend) 

In four state including No, Weak, Moderate, Strong 

15 ACF-Stationary  In four states including No, Weak, Moderate, Strong 

16 ACF-Trend In four states including No, Weak, Moderate, Strong 

17 ACF-Seasonality In four states including No, Weak, Moderate, Strong  

   

 

2.4.4 Forecasting models as base learners 

One of the core components of meta-learning is the base learner, the 

forecasting algorithms to be selected by the classification algorithm. In this 

research, exponential smoothing (ETS) forecasting methods based on 

Gardner’s classification (Gardner Jr, 1985) with a fully automatic 

methodology using state space models developed by Hyndman et al. (2002) 

is used. All Gardner’s methods can be summarized by the following 

equations: 

𝑌𝑡 = ℎ(𝑥𝑡−1) + 𝑘(𝑥𝑡−1)𝜀𝑡 ( 2-9) 

𝑥𝑡 = 𝑓(𝑥𝑡−1) + 𝑔(𝑥𝑡−1)𝜀𝑡 ( 2-10) 
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where 1 ( 1)( , , , ,..., )t t t t t t mx l b s s s− − −= is a state vector, and { }t is a Gaussian 

white noise process with mean zero, variance σ2 and 1
ˆ ( )t tY h x −=  is the one-

step-ahead forecast. In this chapter, we only applied four ETS models which 

are: single exponential smoothing (SES), trend ETS (Holt model), seasonal 

ETS (Winter model), and trend-seasonal ETS (Holt-Winter model). Since we 

are using the Forecast package in R (Hyndman and Khandakar, 2007), these 

models are denoted as ANN, AAN, ANA, and AAA respectively.  

Other alternatives exist instead of ETS as base learner, such as artificial neural 

networks or other machine learning methods; however, they provide limited 

or no insights into how the forecasts are produced and which data properties 

are considered in the forecast (Sagaert et al., 2018), whilst with ETS the 

explicit model form determines their suitability to a data generating process, 

e.g. selecting a seasonal ETS(ANA) model for a seasonal time series without 

trend.  

2.4.5 Benchmark dataset  

As a dataset, we employ the reference benchmark dataset of the NN3 

competition. Note that the four classes of time series patterns capture all 

differences of the data generating processes in the benchmark dataset from 

the NN3 competition (Crone et al., 2011). The empirical benchmark dataset 

of the NN3 competition contains 111 monthly time series of industry sales, 

originally derived from the popular M3 competition of which most are from 

the economics and business sectors (Crone et al., 2011). Of the 111-time 

series, 46 are short (<60 data points), while the rest are considered long (80 

to 126 data points), which allows an assessment of the accuracy across 

different data conditions of time series length, a characteristic which may 

influence the precision of the statistical tests as well as the representativeness 

of empirical forecast errors and information theoretic metrics to be estimated.  

It should be noted that the length of time series may affect the quality of 

extracted meta-features. Therefore, in chapter 4 we analysed the performance 

of meta-learning on different length of the series. By the way, in this study, 

we did not split the time series into different fragments.  
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2.4.6 Forecasting model selection benchmarks 

We seek to assess the efficacy of meta-learning for model selection against 

established model selection benchmarks, which include different wrapper and 

filter approaches identified in our literature review.  

To begin, we consider the traditional form of aggregate model selection of 

applying each base learner ETS(ANN), ETS(ANA), ETS(AAN) and 

ETS(AAA) to all time series within the dataset, following the traditional 

suggestions by Fildes (1989). Aggregate model selection by terminology 

presumes that no (individual) model selection per times series implicitly 

equals a model selection for the dataset, so qualifies as a filter approach, 

normally decided by a human expert for reasons of convenience or limited 

computational powers. It still serves as a valid benchmark, most notably in 

the form of aggregate model selection of the Naïve and the Seasonal Naïve 

benchmark methods. 

With the growing compute power, both forecasting research and practice 

turned to employ model selection based on wrapper-based approaches, 

utilising either empirical performance measures of forecast accuracy such as 

sMAPE or MASE, estimated in-sample or out-of-sample with fixed or rolling 

origins, or alternatively on information criteria such as AIC, AICc or BIC. 

Considering the properties of the NN3 dataset, including short time series, we 

employ the AICc with correction for small sample sizes with the benchmark 

results denotes selAIC (Burnham and Anderson, 2003). Since all our base 

learners are exclusively from the same model family of ETS, a use of IC 

seems permissible.  

As a further benchmark we compare accuracy against individual model 

selection of ETS(ZZZ) automation developed to detect the appropriate 

exponential smoothing models by Hyndman and Khandakar (2007). This 

procedure selects the best fitting ETS candidate from different exponential 

smoothing models using the AIC criterion. Minimizing the AIC is 

asymptotically equivalent to minimizing the one-step-ahead out-of-sample 

MSE; a smaller AIC means better forecasts, and ZZZ can determine the 

optimized model of time-series based on minimizing the AIC. Therefore, as 
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a further benchmark we add selETS(ZZZ) utilising a wrapper with AIC 

selection. 

Although filter approaches using statistical tests are rarely used in practice, 

we consider the evaluation of their accuracy as an important intermediate step 

to meta-learning using the said tests. Consequently, we include statistical tests 

for seasonality and trend as benchmark. We run each statistical test 

independently, e.g., Cox-Stuart for detecting trend and the Friedman-test for 

detecting seasonality and combine both for a one-in-four class membership. 

As multiple test combinations are feasible, we constrain our analysis to four 

popular combinations of two tests.  

Finally, to determine a lower bound of forecast accuracy, we identify the 

lowest achievable error by selecting for each series that base learner with the 

lowest test error ex post, i.e., the error resulting from a perfect selection, 

denoted as selMinError.  

To summarise, we compare meta-learning model selection with 

representatives of all other approaches to forecast model selection, in order to 

assess the relative capability of the meta-modelling approach in a 

comprehensive design of multiple benchmark approaches. 

2.4.7 Assessing predictive accuracy 

Predictive accuracy may be assessed in two ways: first, as meta-learning is 

foremost a multiclass classification problem, through the classification 

accuracy of the meta-learner; second, we may assess the accuracy of meta-

learning through the final forecasting accuracy estimated from the base-

learner selected by meta-learning for each of the time series.  

First, we consider the simple average classification accuracy of each 

algorithm’s multiclass prediction in learning and generalising the meta-

learning task, i.e. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(2-11) 
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as the percentage of predicted true positives (TP) and true negatives (TN) over 

all predicted instances of TP, TN, false positives (FP), and false negatives 

(FN). This simple metric seems permissible as the NN3 dataset is balanced 

with regard to seasonality and short vs long series (so no severe or class 

imbalances need to be considered which would warrant more complex 

metrics such as multiclass ROC-curves and AUC, see, e.g. Fawcett (2006). 

The true class membership of each time series is determined ex-ante 

according to its identified time series pattern cp= [constant; trend; seasonal; 

trend-season] from the ETS forecasting algorithm with the lowest sMAPE 

test error. Note that this may induce potential misclassification in a few cases, 

e.g., by selecting a seasonal pattern as the true class for a time series due to 

the lower ETS(ANA) test-error on the last 12 months of test error, which has 

been caused by a diminished local time trend despite the global time series 

pattern resembling a trend-seasonal pattern. 

In addition to accuracy in predicting class membership of the meta-learner, 

we assess the forecasting accuracy of the chosen base-learner applied to the 

forecasting task. Once an  ETS algorithm is chosen, we assess a rolling origin 

symmetric mean absolute percentage error (SMAPE) from the actuals 
ty  and 

corresponding forecast ˆ
ty  for each forecasting horizon h= 1, …, H and 

across multiple forecasting origins i= 1, …, i+I-1 for each time series: 

1

, 1

1
ˆ ˆ( , ) ( , )

i I
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In order to make a better comparison, we define a metric called Relative 

sMAPE (RelsMAPE) for measuring forecasting accuracy. It is the ratio of 

the sMAPE between the candidate model and the benchmark model 

(aggETS(AAA)).  
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𝑅𝑒𝑙𝑠𝑀𝐴𝑃𝐸 =  
𝑠𝑀𝐴𝑃𝐸𝑖

ℎ

𝑠𝑀𝐴𝑃𝐸aggETS(AAA)
ℎ  

(2-14) 

Thus, the empirical evaluation employs a fixed horizon time window H=12, 

multi-origin I=6, out-of-sample evaluation on each time series, withholding 

18 observations for testing in order to ensure more valid and reliable estimates 

of forecast accuracy than feasible form a single holdout-validation window 

(Tashman, 2000). These errors are then averaged across all time series in the 

dataset. Given the test set of size m and horizon h, for each data set q = m-h+1 

the ETS parameters are reoptimized.  

2.5 Experimental results 

2.5.1 Meta-learning versus alternative model selection 

approaches 

First, we seek to assess the overall accuracy of meta-learning using statistical 

tests for time series patterns. Table 2-4 presents for each algorithm the 

forecast accuracy measured in RelsMAPE, and the classification accuracy on 

training and test data (80-20% for train-test percentage), including the 

respective ranks of algorithms. Table 2.5-1 also reports the RelsMAPE of 

aggregate and individual selection benchmarks, in addition to the naïve and 

seasonal naïve for the train and test, corresponding with ranks of them.   

Table 2.5-1. Classification and Forecasting Results of Model Selection 

Approaches (80%-20% holdout) 

  RelsMAPE Accuracy Rank RelsMAPE Rank Accuracy 

  Train Test Train Test Train Test Train Test 

selMinError 0.843 0.903 100.000 100.000  - -  -  - 

metaDecisionTree 0.898 0.959 56.000 36.600 5 4 7 12 

metaNN 0.880 0.959 100.000 46.670 4 4 1 6 

metaSVM 0.916 0.979 76.000 53.330 6 7 5 4 

metaRandomForrest 0.843 0.952 100.000 60.000 1 3 1 2 

metaBagTree 0.843 0.945 100.000 63.330 1 1 1 1 

metaXGBoost 0.843 0.945 100.000 56.660 1 1 1 3 

selAIC 0.976 0.979 54.000 53.330 10 7 8 4 
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  RelsMAPE Accuracy Rank RelsMAPE Rank Accuracy 

  Train Test Train Test Train Test Train Test 

selETS(ZZZ) 0.946 1.028 57.000 44.000 7 12 6 8 

aggETS(ANN) 1.108 1.234 10.000 14.000 16 15 18 17 

aggETS(AAN) 1.187 1.241 14.000 12.000 17 16 17 18 

aggETS(ANA) 0.946 1.034 40.000 38.000 7 13 11 11 

aggETS(AAA) 1.000 1.000 35.000 36.000 13 10 13 13 

Naive 1.373 1.497 24.000 35.000 18 18 16 14 

Seasonal Naive 1.012 1.386 31.000 22.000 14 17 15 16 

test CS & Fr  0.988 0.986 51.000 40.000 12 9 9 9 

test MK & Fr 0.976 1.007 45.000 30.000 10 11 10 15 

test CS& Sp  1.030 1.103 40.000 40.000 15 14 11 9 

testCS & KW  0.964 0.966 34.000 46.670 9 6 14 6 

mean of meta 0.873 0.959 88.667 52.765 3.00 3.33 2.67 4.67 

mean of sel 0.964 1.007 55.500 48.665 8.50 9.50 7.00 6.00 

mean of agg 1.060 1.131 24.750 25.000 13.25 13.50 14.75 14.75 

mean of test 0.988 1.014 42.500 39.168 11.50 10.00 11.00 9.75 

Overall, meta learning classifiers with statistical tests of time series patterns 

as input features outperforms all other approaches of forecasting models 

selection, including aggregate model selection, individual model selection 

using AIC (selAIC and selETS), and simple combinations of statistical tests 

on both classification accuracy and forecast errors. To generalise the 

indication of individual errors for groups of algorithms, we compare average 

ranks across groups of algorithms at the bottom of the Table 2-4: the group 

of metaTest shows an average rank of 3.33 with an average RelsMAPE of 

0.959 while individual selection ranks 9.50 on average with RelsMAPE of 

1.007, and tailed by aggregate selection with 13.50 average rank and 

RelsMAPE 1.131.  

With regard to individual algorithms, the ensemble meta learners 

metaBagTree achieve the lowest forecast error of 0.945 RelsMAPE and the 

highest classification accuracy of 63.33%, followed by the ensemble of 

metaXGBoost and metaRandomForrest with 0.945 and 0.952 RelsMAPE and 

56.66% and 60.00% classification accuracy respectively. The three 

ensembles of meta-learners are followed by individual meta-learners of 

metaNN, metaDecisionTree, and metaSVM in error and accuracy, with only 

metaSVM showing inferior performance to alternative model selection 
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approaches on the test data. It is noteworthy, that all three ensembles of meta-

learners lead the underlying single decision tree algorithm on both metrics, 

confirming findings from the literature that combinations of classifiers 

outperform individual ones. Extended experiments could consider ensembles 

of NNs and SVMS, although no direct equivalents of Random Forests or 

XGBoosting algorithms exist for other base learners. Overall, we conclude 

that all meta ensembles using statistical tests outperform individual meta 

learners of the same feature set, followed by all other approaches. 

To aid interpretation of the algorithms’ performance we determine a lower 

bound of forecast accuracy selMinError as the lowest achievable error given 

all base learners selected for each series, i.e., the error resulting from a perfect 

selection, resulting in a bound of 0.903 test RelsMAPE. Meta-learners using 

statistical tests for times series patterns get closest to this bound, with errors 

of 0.945, 0.952 and 0.959 RelsMAPE being the lowest of all algorithms. 

Aggregate selection of a single ETS algorithm across all-time series shows 

inferior forecast accuracy to model selection, as expected following the recent 

research. The least damaging aggregate selection strategy would employ a 

trend seasonal ETS(AAA) for all series, followed by a seasonal model 

ETS(ANA). This is intuitive given the balanced nature of the NN3 dataset: 

the aggregate seasonal algorithms would be capable of correctly capturing the 

50% of seasonal time series well but would underperform on the other 50% 

of non-seasonal series where the algorithms would still estimate seasonal 

coefficients, thus extrapolating noise into the future.  

Surprisingly, simple combinations of statistical test for seasonality and trend, 

which are rarely used in statistical forecasting perform on a par with 

individual model selection using AIC (selAIC) or AIC in ETS selection 

selETS(ZZZ), which are considered the current standard in forecasting model 

selection, and clearly outperform aggregate model selection. Most notably, in 

combining Cox-Stuart with Kruskal-Wallis test achieves a 0.966 RelsMAPE 

and 46.67 accuracy; note though that the result may be biased as the selection 

of statistical tests listed in Table 2-4 shows only the most promising 

combinations of trend and seasonality tests by accuracy: many inferior 

combinations are excluded for readability. In comparison to meta-learning 
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though, the leading combinations of statistical tests show both an inferior 

classification accuracy as well as forecasting accuracy, indicating that a more 

complex combination of all tests yields improved accuracy. The reason that 

the combination of statistical tests has unfavourable results is that they cannot 

detect patterns. Therefore, they do not have acceptable results when they are 

used as meta-learners. 

Overall, we observe that classification accuracy and forecast accuracy are 

correlated, which indicates that an improvement in classification induces an 

improvement in forecast error. This is an intuitive yet important finding, as it 

provides anecdotal evidence as to the efficacy of using classification for 

forecasting model selection, and the underlying narrative that selecting an 

adequate model class matching the time series pattern improves accuracy.  

Furthermore, it should be noted that the run-time of the competing approaches 

varies significantly: while meta-learning runs only a single ETS model 

(predicted to be the best given the statistical tests), individual model selection 

needs to compute all base learners, assess accuracy, and then select. 

Consequently, as long as statistical tests are executed faster than an ETS 

model, meta-learning promises increased efficiency on top of increased 

accuracy. 

To better understand the performance of meta-learners in the data set, 

comparing their results with the true class performance is necessary. As 

mentioned in the previous sections, true class is the class for a time series with 

the least error. We depict the relative error distribution diagram [see Figure 

2-2] to better understand the results. Our criterion for identifying the best 

model is the AIC measure. To draw the relative error distribution diagram, 

we define the relative error as a ratio, the numerator of which is the error 

related to the class predicted by the meta-learner, and the denominator is the 

error related to the true class. Since the true class always has the least error, 

this ratio is always greater than 1 (the more this ratio deviates from 1, the poor 

performance of meta-learners for that time series). Figure 2-2 shows two 

meta-learners' relative error distribution diagram, RF and Xgboost, for the 

training and test data of 80%-20% split. 
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Figure 2-2. Relative error distribution for RF and Xgboost 

 

According to Figure 2-2, it is clear that RF has performed better than Xgboost, 

which is consistent with the results obtained in Table 2-4. 

2.5.2 Meta-learning using “time series tests” versus 

alternative features 

We seek to assess the accuracy of meta-learning using statistical tests for time 

series patterns in comparison to alternative meta-features used successfully in 

other prominent stories. Table 2.5-2 presents for each algorithm the forecast 

accuracy measured in sMAPE, and the classification accuracy on training and 

test data, including the respective ranks of algorithms, for the new meta-

features based on statistical tests versus those in Hyndman et al. (2015b) as a 

baseline features. 

Table 2.5-2. Classification and Forecasting Results of Different Meta 

Features (80%-20% train test holdout) 

 

Statistical Test Meta-Features 
Hyndman, et al. (2015) Meta-

Features  

 sMAPE % Accuracy % sMAPE % Accuracy % 

 
Train Test Train Test Train Test Train Test 

metaDecsionTree 14.9 13.9 56.00 36.60 15 13.75 55.50 43.33 

meta NN 14.6 13.9 100.00 46.67 15.1 14.52 98.00 37.00 

metaSVM 15.2 14.2 76.00 53.33 14.5 14.35 70.37 40.00 
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metaRandomForre

st 

14 13.8 

100.00 
60.00 

13.97 14.06 
100.00 46.67 

metaBagTree 14 13.7 100.00 63.33 13.97 14.35 100.00 40.00 

metaXGBoost 14 13.7 100.00 56.66 13.97 14.09 100.00 43.30 

Mean Values 14.45 13.87  88.66 52.77 14.28 14.12 85.17 42.66 

 
Rank sMAPE % 

Rank Accuracy 

% 
Rank sMAPE % 

Rank Accuracy 

% 

 
Train Test Train Test Train Test Train Test 

metaDecsionTree 5 4 7 12 5 1 7 5 

meta NN 4 4 1 6 6 10 4 12 

metaSVM 6 7 5 4 4 7 5 7 

metaRandomForre

st 
1 3 1 2 

1 3 1 2 

metaBagTree 1 1 1 1 1 7 1 7 

metaXGBoost 1 1 1 3 1 4 1 6 

Mean Ranks 3 3.33 2.67 4.67 3.00 5.33 3.17 6.50 

We compare the performance of all meta learners, single and ensembles, 

using otherwise identical settings on two different meta-features: 17 statistical 

tests of time series patterns, and 21 meta-features used in Hyndman et al. 

(2015b). 

Both meta-learners are built using different meta-features of statistical tests 

versus those of Hyndman, et al.  perform well, showing comparatively low 

average forecast errors on test data of 13.87% and 14.12% and classification 

accuracies of 52.77 and 42.66 respectively, indicating their capability of 

separating classes and predicting suitable base learners. Overall, meta-

learners using statistical tests outperform those of Hyndman, et al. showing 

both lower average errors and higher average classification accuracies, and 

also each meta-learner outperformed its counterpart using the Hyndman, et 

al. features with the exception of MetaDecisionTree with a higher 13.90% 

versus 13.75% sMAPE and a lower classification accuracy of 36.60 versus 

43.33. However, all other meta-learners and meta-ensembles improve 

accuracy and corresponding ranks noticeably.  

The decision tree algorithm plot allows an intuitive interpretation of both the 

splitting criteria used and the resulting node purity for the four classes of ETS 

base learners, as shown in Figure 2-3. 
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Figure 2-3. Plot of decision tree splitting criteria for Statistical Test and 

Hyndman, et al. meta-features (80-20% test) 

The plot of the decision tree shows the first split is conducted on the ACF 

seasonality test, followed by p-value of Friedman test and p-value of Cox 

Stuart trend test. If the ACF Seasonality test says moderate or no seasonality 

(i.e. p>0.01), then Cox Stuart further splits with p-value >0.48 which rejects 

the trendy time series and label the time series as level, while p-value<0.48 

has ended to trend. Alternatively, Friedman indicates no seasonality (with p 

>0.014) and the Friedman test further splits into strong (i.e. p<0.01) or not 

strong. Apparently, most splitting criteria focus on differentiating seasonality 

with multiple test which helps to explain why meta-learning outperforms 

simple statistical seasonality tests. Note that the tree-structures show only the 

top features used after the algorithm automatically prunes the tree to a 

moderate size and level of generalisation, in essence performing feature 

selection on the feature sets as part of the parameterisation. The 

metaDecisionTree built on the Hyndman-features on the right naturally 

utilises different features to split, most prominently lumpiness, followed by 

linearity, spikiness, and entropy, not including any features suitable to 

indicate seasonality, trend or constant patterns. 
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To derive additional insights, an export of the relative importance of the input 

features, measured by the mean decrease in Gini for the metaRandomForrest, 

provides the order of the most to least discriminant features. 

 For time series tests, the seasonal tests of Friedman (6.8916) is most 

important, followed by ChiSq seasonal test (5.0259), Kruskal Wallis (4.7067) 

and Friedman test 2 (4.5204), Cox Stuart dispersion test (3.9875), Pearson 

multiplicative pval (3.3965) and Spearmans Rho (3.1352), moderate 

importance of otherwise important test Cox-Stuart Trend (2,8755), Mann 

Kendall (2.6623), Linear Coefficient (2.5234) and p-value of ADF (2.5122), 

ACF Seasonality (1.8424), with most stationarity tests trailing the others, with 

KPSS (1.6176), ADF Constant-Trend (1.469), ACF Stationarity (1,3005065), 

ADF Constant-No Trend (1.2959) and ACF Trend (1.2785) as expected. For 

the metaRandomForrest split on meta-features from Hyndman et al., the 

analysis of the mean decrease in Gini indicates the different features used, but 

notably also starting with the feature of season (5,971061), but then followed 

by seemingly less relevant attributes such as lumpiness (5,674215), linearity 

(4,982886), curvature (4,344528), trough (4,226755), variance change 

(4,000030), KLscore (3,715280), change.idx (3,401562), Cpoints (3,380744), 

spikiness (3,345100), peak (3,286640), level shift (2,985979), entropy 

(2,967787), and the presumably relevant indicators of trend (2,646244), 

ACF1 (2,329272) and flat.spots (1,812584) trailing other features less 

intuitively related to the correct selection of a base learner.  

Overall, in comparison to individual or aggregate model selection 

approaches, both sets of meta-features outperform all alternative approaches 

(see errors and accuracy in Table 2-4 of the previous section) indicating the 

suitability of meta-learning irrespective of the meta-feature set to differentiate 

patterns for the selection of base learners. With meta-features of statistical 

tests outperforming the Hyndman-features these should be considered for 

future use, or potentially combined with additional features for an even 

stronger feature set. 
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2.5.3 Meta-learning robustness by data conditions 

Next, we seek to assess the robustness of the meta-learning approach 

conditional on the data conditions, in particular the split between training data 

provided to the meta-learner for parameterisation and the test data for out-of-

sample evaluation of its accuracy. Given the limited number of 111 time 

series in the dataset, any allocation of more data to training may void the 

ability to generalise on fewer time series of the test data. We rerun all 

experiments on different splits of the hold-out data, gradually altering the 

distribution from 80% training and 20% test data split to 70%-30% and 60%-

40% split. As this changes the ground-truth of the datasets, we also provide 

RelsMAPE errors and classification accuracy for all benchmark algorithms 

of individual selection, aggregate selection and statistical tests in Table 2.5-3. 

Classification and Forecasting Results of Different Meta-Learning Dataset 

split.  

Table 2.5-3. Classification and Forecasting Results of Different Meta-

Learning Dataset split 

 
40%-60% (test – 

train) 

30%-70% (test – 

train) 

20%-80% (test – 

train) 

 
RelsMAP

E 
Accuracy 

RelsMAP

E 
Accuracy 

RelsMAP

E 
Accuracy 

 Train Test Test Train Test Test Train Test Test 

selMinError 0.865 0.841     - 0.853 0.850  - 0.824 0.873  - 

metaDecsionTree 0.919 0.890 47.62 0.882 0.929 43.75 0.882 0.933 36.60 

meta NN 0.919 0.907 42.86 0.882 0.929 53.12 0.882 0.933 46.67 

metaSVM 0.939 0.901 45.24 0.882 0.929 43.75 0.882 0.933 53.33 

metaRandomForrest 0.865 0.907 47.62 0.882 0.929 40.62 0.824 0.933 60.00 

metaBagTree 0.865 0.951 47.62 0.882 0.929 46.88 0.824 0.933 63.33 

metaXGBoost 0.865 0.907 35.50 0.882 0.929 47.22 0.824 0.933 56.66 

selAIC 0.980 0.967 45.00 1.000 0.929 48.10 0.941 0.933 53.33 

selETS(ZZZ) 0.973 0.940 47.62 1.000 0.929 44.12 0.941 1.000 44.00 

aggETS(ANN) 1.162 1.099 19.00 1.118 1.286 14.00 1.059 1.200 14.00 

aggETS(AAN) 1.270 1.099 12.00 1.118 1.429 10.00 1.176 1.200 12.00 

aggETS(ANA) 0.973 0.951 34.00 0.941 1.000 38.00 0.941 1.000 38.00 

aggETS(AAA) 1.000 1.000 35.00 1.000 1.000 40.00 1.000 1.000 36.00 

Naive 1.257 1.110 35.00 1.176 1.429 37.00 1.353 1.467 35.00 

Seasonal Naive 1.128 1.069 20.00 1.059 1.214 25.00 1.000 1.333 22.00 
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testCox-Stuart & 

Friedman  
1.007 0.934 20.00 0.941 1.143 0.17 0.941 0.933 40.00 

test Mann-Kendall & 

Friedman 
1.007 0.934 15.55 0.941 1.143 25.00 0.941 1.000 30.00 

testCox-Stuart & 

Spearman  
1.101 0.956 28.89 1.000 1.214 25.00 1.000 1.067 40.00 

testCox-Stuart & 

Kruskal-Wallis  
0.986 0.918 28.88 0.941 1.071 30.56 0.941 0.933 46.67 

Mean MetaTests 0.895 0.910 44.41 0.882 0.929 45.89 0.824 0.933 52.77 

Mean Sel 0.976 0.953 46.31 1.000 0.929 46.11 0.941 1.000 44.00 

Mean Agg 1.101 1.037 25.00 1.059 1.143 25.50 1.059 1.067 28.67 

Mean Tests 1.026 0.936 23.33 0.941 1.143 20.18 0.941 1.000 39.17 

 Rank sMAPE rkAcc Rank sMAPE rkAcc Rank sMAPE rkAcc 

 
Train Test Test Train Test Test Train Test Test 

metaDecsionTree 4 1 1 5 1 6 5 4 12 

meta NN 4 3 7 4 6 1 4 4 6 

metaSVM 6 2 5 5 2 6 6 7 4 

metaRandomForrest 1 3 1 1 2 8 1 3 2 

metaBagTree 1 10 1 1 7 4 1 1 1 

metaXGBoost 1 3 8 1 2 3 1 1 3 

selAIC 9 13 6 13 8 2 10 7 4 

selETS(ZZZ) 7 9 1 11 2 5 7 12 8 

aggETS(ANN) 15 15 16 16 16 16 16 15 17 

aggETS(AAN) 16 15 18 17 18 17 17 16 18 

aggETS(ANA) 7 10 11 10 9 10 7 13 11 

aggETS(AAA) 11 14 9 14 10 9 13 10 13 

testCox-Stuart & 

Friedman  
12 7 14 9 12 18 12 9 9 

test Mann-Kendall & 

Friedman 
12 7 17 8 13 13 10 11 15 

testCox-Stuart & 

Spearman  
14 12 12 11 15 13 15 14 9 

testCox-Stuart & 

Kruskal-Wallis  
10 6 13 7 11 12 9 6 6 

Mean Rank MetaTests 2.8 3.7 3.83 2.83 3.33 4.67 3.00 3.33 4.67 

Mean Rank Sel 8.0 11.0 3.50 12.00 5.00 3.50 8.50 9.50 6.00 

Mean Rank Agg 12.3 13.5 13.50 14.25 13.25 13.00 13.25 13.50 14.75 

Mean Rank Tests 12.0 8.0 14.00 8.75 12.75 14.00 11.50 10.00 9.75 

Analysing the relative errors, accuracies and their ranks within each dataset 

split we observe that meta-learners using statistical tests reliably outperform 
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all alternative model selection approaches and show a constant relative 

ranking ahead of individual selection, selection using a combination of tests, 

with aggregate model selection last. This indicates the robustness of the meta-

learning approach to changes in the data set and its ability to work with 

smaller datasets as well as larger datasets to select relevant features and 

classify time series. 

Within meta-learners, we see an improvement in ensemble methods 

metaBagTree, metaRandomForrest, and metaXGBoost, showing lowest 

errors and highest classification accuracy on larger training datasets of 80% 

and 70%, towards a single learner of metaDecisionTree for less training data. 

At the same time, relative individual model selection performance 

deteriorates, and the use of simple test combination improves, whilst 

aggregate model selection performance remains inferior although. Note that 

the errors and classification accuracies across (random) dataset splits are no 

longer comparable, as they are computed on different underlying time series 

and thus patterns, and thus yield little insight as to the underlying dynamics 

of error improvements.  

To further interpret the consistency of used features and their critical values 

in splitting the tree, Figure 2-4 visualises the splitting criteria used by the 

metaDecisionTree algorithms trained on each of the three different dataset 

splits. 
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 60%-40 % 

 

70%-30 % 

 

80%-20 % 

 

Figure 2-4. Decision Tree plots for data splits of 60%-40%, 70%-30%, 

and 80%-20% (from left to right) 

The metaDecisionTree trained on 60%-40% training and test data split, splits 

first on the Friedman test, then ChiSq Seasonality test and ACF seasonality 

test, and finally on Pearson multiplicative seasonality test which all are 

seasonality tests. metaDecisionTree trained on a 70%-30% data split, 

providing more evidence in training data to construct the splitting rules yet 

less data to evaluate it; the Friedman seasonality test is chosen first, followed 

by the ChiSq seasonality test and the ACF seasonality test, and employing the 

Cox-Stuart dispersion test followed by a KPSS stationarity test. Finally, as 

already mentioned, the 80%-20% split first splits on an ACF seasonality tests 

to separate classes “no”, weak” and “moderate” seasonality (i.e., p>0.01) 

from “strong” (p<0.01), followed by the Cox-Stuart Trend and Friedman 

seasonality test run twice using different thresholds next. 

We observe that as the data split changes the meta-learner changes the 

selected features, their order (and thus relative importance) and the thresholds 

depending on the provided training data (sensitivity to data). However, some 

consistent patterns emerge: first, all meta-learners utilise seasonality tests, 

indicating their predictive power in reducing forecast errors; second, all meta-

learners combine multiple seasonality tests, indicating that the use of a single 
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seasonality test is not sufficient to reduce forecast errors. This also justifies 

the relative performance, showing how meta-learning is capable of 

outperforming a single combination of statistical seasonality tests. Indeed, 

most splitting criteria across metadata samples aim at classifying seasonality, 

which suggest that classifying seasonality correctly is of particular 

importance in improving accuracy on the NN3 dataset, as was indicated by 

the competition organisers. Amongst the tests, the ACF seasonality test and 

the Friedman seasonality test are included as meta-features in all meta-

learners, pointing to their predictive power. In comparison, trend tests show 

less predictive value, with only the Cox-Stuart Trend utilised at lower levels 

of the decision tree.  

2.5.4 Limitations in selection accuracy  

To exemplify challenges in determining the ground truth, we seek to show 

limitations in matching the true class membership based on the ex-post actual 

forecast errors with the time series data based on selected examples. This 

should be interpreted as an attempt to show the challenges always inherent in 

model selection on empirical datasets with high noise levels, outliers, and 

structural breaks, and not to undermine the validity of applying classification 

on time series data.  

Selected time series are plotted in Figure 2-5, with their true class 

membership versus the predicted class membership by each meta-learner 

provided in Figure 2-5. 

 

   



Chapter 2: Meta-Learning Using Statistical Tests for Forecasting Model Selection 

Sasan Barak -August 2021  53 

   

  

 

Figure 2-5.  Plot of 8 time series with complex patterns and structural 

breaks 

Many of these series show structural breaks, such as flattening out trends in 

time series #10, #78 and #107, or level shifts in #81, as well as outliers in 

series #79 and #85, all contained in the test data. Other patterns such as 

seasonality in series #78 is masked by a high level of randomness. As a result, 

the associate ground truth assigned to each series (identifying the “true” time 

series pattern by proxy of selecting the ETS algorithm and thus model form 

with the lowest test errors). Consider series #78: with randomness 

overshadowing seasonality, a constant ETS variant (ANN) shows a lower 

forecast error on the test data than a potentially more adequate seasonal 

variant, which has similar but slightly higher errors. It stands for discussion 

whether the true class membership should now be the one of the observed 

patterns, identified by a statistical expert using additional tools such as 

autocorrelation and partial autocorrelation functions (ACF/PACF), or by the 

base learner providing the lowest forecast accuracy using a robust fixed-
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horizon multi-origin evaluation with a robust error metric. These potential 

discrepancies on a subset of series are verified in Figure 2-5.  

Table 2.5-4. The prediction of meta learning for randomly selected time 

series vs best forecast 

 Xgboost NN DTree RF BagTree SVM Best Forecast 

TS, No 10 Trend Season Season Trend Trend Season Trend 

TS, No 12 Trend Season Trend-Season Trend Trend Season Trend 

TS, No 78 Season Season Season Season Season Season Level 

TS, No 79 Level Trend Level Level Level Seasonal Trend 

TS, No 81 Level Trend Trend Level Level Trend Trend-Season 

TS, No 85 Trend Trend Level Trend Trend Seasonal Season 

TS, No 103 Season Season Season Season Season Season Trend-Season 

TS, No 107 Season Trend-Seasonal Trend-Season Trend-Season Trend-Season Season Season 

However, attempts to employ an alternative (manual expert based) labelling 

approach for the ground truth showed equal challenges, in improving 

classification accuracy, but also increasing forecast errors. As a result, we 

alert the reader to limitations in identifying ground truth on non-synthetic 

time series with structural breaks, dominant outliers and noise. 

2.6 Conclusion 

Partial or full automation in time series model selection with increasing pace 

in the number of time series and power of computing, as well as complexity 

in the dynamic pattern of time series is an inevitable requirement. It is a 

common knowledge that no model can obtain high accuracy on all data set, 

therefore, discovering the pattern in which the algorithm can perform well is 

really valuable. Feature-based time series representation (meta-features) aids 

to enhance our interpretation about the structure and properties of time series 

and ease the decision-making process for selection of time series prediction 

models. Meta-features provide a guideline of how to relate a learning 

algorithm with those domains in which an algorithm performs well.  A large 

number of meta-features have been discussed in different studies; however, 

using statistical tests, which have a solid background in time series 

evaluation, to assess their efficiency as meta-features in meta-learning 

approach is relatively neglected, and there is limited research for investigation 
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of their impact on creating meta-learning. Therefore, three main ideas have 

been studied in this chapter. Firstly, a review about the model selection 

approaches in time series forecasting is presented; secondly, the feature-based 

time series representation and its literature have been investigated; and 

finally, the effectiveness of using statistical tests as new meta-features is 

evaluated, and the relationship between the meta-features and the meta-

learner algorithms have been clarified.  

The point we should pay attention to is that our goal in this chapter is not 

finding the best forecasting algorithm. In other words, we are not going to 

implement a huge number of forecasting algorithms to find the best one. 

Rather, our goal is to check whether the meta-learning method as a filter 

approach can predict four patterns: level, season, trend, and trend-season. As 

mentioned, we used ETS algorithms as forecasters in the meta-learner. We do 

not use ARIMA algorithms in our research, but some of the exponential 

smoothing models are special cases of ARIMA models. Therefore, the study 

can be extended to the family of ARIMA methods without significant 

differences in the results. 

In general, choosing the base learners and meta-features need intelligent 

design. The extracted meta-features in all meta-learning problems not only 

should be representative for their problem domain, but also to the base 

forecasting models.  For example, in the current chapter, we use statistical 

tests which can measure the forecast models’ properties (e.g., Trend, 

Seasonality). In the literature, none of the studies justifies their reasons for 

choosing the base forecast combination. 

Future research directions of the chapter include but are not limited to: 

1. Using ensemble meta-learners in the framework of fusion models to 

improve the classification accuracy, 

2. Applying more forecast algorithms as base learners and evaluate their 

behaviour regarding the statistical test, 

3. Increasing the number of meta-features and focus more on data-driven 

meta-features  
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4. Creating features based on expert’s knowledge for the problem at hand 

5. Assessing the potential of the proposed model on different time series data 

sets such as M3, M4, and NNGC, 

6. Considering feature selection methods for weighting the meta-features or 

selecting the most important ones. 



Chapter 3: On the Design of Meta-learning for Forecast Selection 

Sasan Barak -August 2021  57 

3 On the Design of 

Meta-learning 

for Forecast 

Selection 

3.1 Introduction 

Time series forecasting is important for business analytics. Accurate forecasts 

can help enterprises make informed business decisions. How to select a 

suitable forecasting model or a suitable combination of forecasting models is 

at the core of forecasting. For real data, we do not know the underlying data 

generating process, so the modeller has to choose from the multitude of 

available models and methods, each appropriate to capture different 

characteristics in a time series. The problem itself is difficult and becomes 

more challenging when the potential models are numerous, the number of 

time series large, or the sample size of each series limited.   

There are several approaches to perform model selection for forecasting 

problems. It can be done as a wrapper-based approach, where all candidate 

models have to be evaluated, and the selection is based on their performance 

by using information criteria (Burnham and Anderson, 2002) or empirical 

cross-validated error metrics (Fildes and Petropoulos, 2015) or judgment 

(Petropoulos et al., 2018). Regardless of its simplicity, this approach requires 

substantial computation cost, especially when we have multiple models and 

a large number of time series. On the other hand, we have filter-based 

approaches, which implement some rules to filter out models to reach the best 

model for each type of series without applying all the candidate models (Box 

et al., 2015). Filter-based model selection can also be performed effectively 

using expert judgment (Goodrich, 1992, Adya et al., 2001). Although by 

implementing the expert insights we may reach better results, the availability 
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of experts and cost-related issues can limit the scope of this approach both for 

wrappers and filters. Alternatively, classification models can be used to learn 

the relation between a time series and model performance, so as to aid the 

selection. This approach, which is called meta-learning, incorporates a learner 

model (meta-learner) to find out the connection between time series 

characteristics and model performance, and overcoming some of the 

limitations of conventional model selection.  

In meta-learning methodology, choosing distinct data characteristics (called 

meta-features) as inputs for the meta-learner is a critical and challenging 

stage, and its performance relies strongly on the appropriateness of the 

selected meta-features. Meta-features that abstract the structure of data can be 

created using descriptive statistics (like standard deviation, mean, skewness, 

granularity, etc.), model-based methods (like serial correlation, nonlinearity 

measures, largest Lyapunov exponent, etc.), statistical tests (like Cox-Stuart 

dispersion test, Spearman’s rho test, Noether’s cyclical trend test, Kruskal-

Wallis test, F-test, etc.; Vilalta et al. (2004), among other approaches.  

Most proposed meta-learning methods depend on the constructed meta-

features selected by the modeller. However, there is limited research on 

evaluating the effect of using alternative banks of expert-designed features on 

the performance of the meta-learning. In this paper, we put more attention on 

the effectiveness of different sets of meta-features. More precisely, we group 

meta-features gathered from different sources based on their method of 

calculation and compare their relative contribution in forecasting model 

selection accuracy to uncover the effect of each group. Moreover, we propose 

a novel data-driven meta-features extraction approach using deep 

unsupervised learning for automatically generating the rich meta-features and 

compare the most effective manual selected features with our proposed data-

driven meta-features.  

In order to extract the interaction between meta-feature, forecasters, and 

meta-learners, different tree-based classifiers are implemented as potential 

meta-learners. We use decision tree, random forest, and XGBoost classifiers 

to investigate the sensitivity of our findings. We also explore the impact of 

the pool of forecasts that the meta-learner chooses from. We include simple 
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and complex ones, the latter containing automated model building, or 

selection algorithm and combination methods. Finally, in a large dataset, we 

compare the performance of model combination and model selection 

separately and show even a simple meta-learning outperform the individual 

model selection.  

In order to provide a comprehensive package to facilitate the process of meta-

learning in forecasting time series and to conduct various investigations, we 

introduce the MetaTS package, a free and open-source Python library 

developed to ease meta-learning for time series forecasting by offering a 

toolkit containing the typical components needed for a meta-learning 

workflow. In addition to providing new components and facilities, I aim to 

unify the available Python libraries which can be useful for meta-learning on 

time series data. 

The contributions of this study can be summarised as follow: 

• Comparing different groups of meta-features in the meta-learning 

context, and exploring if particular classes of meta-features are more 

informative 

• Proposing a new group of data-driven meta-features using deep 

unsupervised learning and compare them with manually selected 

features 

• Evaluating the effect of using simple and complex base forecasts on 

the performance of the meta-learner and the usefulness of meta-

features 

• Analysing the effect of meta-learners on the overall performance of 

meta-learning and comparing the model selection versus model 

combination   

• Proposing a free and open-source Python library to ease meta-learning 

for time series forecasting 

• Analysing the meta-features importance in the meta-learning  

The rest of this chapter is organised as follows. Section 3.2 summarises the 

relevant model selection literature. In Section 3.3, we detail the meta-learning 

used here. Section 3.4 outlines the experimental design and Section 3.5 
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presents our results, which are discussed further in Section 3.6. In Section 3.7, 

we propose a new data-driven meta-learning and discuss the efficiency of 

automated feature extraction and finally, conclusions and further research 

directions are provided in Section 3.8. 

3.2 Literature review  

There are multiple approaches to addressing model selection in the 

forecasting literature. Typically, this has been done by comparing competing 

forecasts using information criteria or empirical cross-validated errors. 

Using information criteria, we can devise automated procedures for model 

selection (Hyndman et al., 2002). Several alternative information criteria can 

be used, for example, the Akaike’s Information Criterion (AIC) or the 

Bayesian Information Criterion (BIC). These penalise the model fit that has 

the maximised likelihood, for its complexity, as captured by the number of 

parameters (Burnham and Anderson, 2002). Selecting models using different 

information criteria is shown to result in potentially different models but with 

similar results from a forecasting performance perspective (Billah et al., 

2006). Nevertheless, when using information criteria, the likelihood function 

should be comparable across all models. Accordingly, comparing models that 

use different data transformations can be challenging, and precludes choosing 

among non-model-based forecasters, which causes problems when diverse 

comparisons of forecasts are needed. 

Using a validation set to compare the performance of forecasts is another 

common approach for model selection (Fildes and Petropoulos, 2015). After 

dividing data into training and validation sets, and then fitting and evaluating 

forecasts on them, the best performing method on the validation set is chosen. 

This procedure relies on measuring the forecasts’ performance multiple times, 

using a rolling origin evaluation scheme. The idea behind the rolling origin 

scheme is to train and validate a model on different subsets of data, much like 

with cross-validation. However, in forecasting, for many methods and 

models, the temporal ordering is important, and therefore with rolling origin 

we always move forward in time, in contrast to the standard cross-validation, 

as we roll across forecast origins in the validation set. Evaluating models with 
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rolling-origin can increase the robustness of predictions and reduce the 

sensitivity to a specific subset of data (Tashman, 2000, Fildes, 1992). 

Although AIC is equivalent to the one-step-ahead out-of-sample cross-

validated mean squared error (Stone, 1977), cross-validation can be applied 

with different forecast horizons and error metrics to obtain results 

corresponding more to the problem at hand. However, the cross-validation 

approach, similar to employing information criteria, introduces substantial 

computational cost for selecting the best model, as not only we need to 

generate all forecasts, but also iterate them across the rolling origins.  

An effective alternative to information criteria or using a validation set is 

meta-learning. The meta-learning concept was presented in the context of 

forecasting time series by Prudêncio and Ludermir (2004). Meta-learning 

consists of different elements: the meta-features, the meta-learner, and the 

base forecasters. The meta-learner is tasked with capturing the relation 

between extracted features of time series (meta-features) and the forecasting 

performance of the base forecasters. Accordingly, the learned knowledge can 

be used to predict the best forecaster for each time series based solely on its 

characteristics.  

Although the classifier (meta-learner) has an essential role in meta-learning, 

capturing a high-quality representation of the time series behaviour by 

identifying the best meta-features set has been attracted the most attention in 

meta-learning studies. Three main classes of meta-features have been 

suggested: (i) statistical and information-theoretic characterisation, (ii) 

model-based features, and (iii) landmarkers (Brazdil et al., 2008). The first 

group estimates the statistical features of the dataset, for example, the mean, 

standard deviation, skewness, kurtosis, and length of the series. As an 

example of the second type, one can build a decision tree from a dataset and 

capture the properties of the tree, such as the maximum tree depth, its shape, 

and the tree imbalance. Finally, the last class of so-called landmarkers 

exploits information obtained from the performance of a set of forecasts to 

characterise the time series. The differences between the model-based 

features and landmarkers are related to the fact that the latter does not come 

under model characteristics, but rather performance measures. Kück et al. 



Chapter 3: On the Design of Meta-learning for Forecast Selection 

Sasan Barak -August 2021  62 

(2016b) used errors on the training, validation, and test sets of the neural 

network as landmarkers. In the literature, there have been several studies that 

explored the different combinations of various time series features in meta-

learning as their model selection approach.  

Prudêncio and Ludermir (2004) empirically explore the feasibility of meta-

learning in time series forecasting model selection using two case studies. In 

the first study, they introduce two forecasting models (a time-delay neural 

network and simple exponential smoothing model) and choose ten meta-

features including length, autocorrelation coefficients, statistically significant 

coefficients, coefficients of variation, skewness, kurtosis, and a test of turning 

points for randomness, from 99 time series, and then employed the C4.5 

Decision Tree algorithm as a meta-learner. They find that the average error 

of forecasts proposed by the meta-learner for the 99 test time series is lower 

than that of using either of the two forecasters. In the second study, they chose 

another batch of candidate forecasting models (i.e. random walk, Holt’s linear 

exponential smoothing, and AR models) and increased the number of time 

series to 645 yearly time series from the M3 competition (Makridakis and 

Hibon, 2000). Besides selecting forecasting model, their proposed meta-

learner NOEMON method can output the ranking of the forecasting models 

(Kalousis and Theoharis, 1999). 

Similarly, Wang et al. (2009) proposed a meta-learning framework to 

recommend suitable models to generate forecasts. They introduce a set of 

more comprehensive time series features, and the number of candidate 

forecasters is expanded to four, including three traditional statistical models 

and one machine learning algorithm (a Neural Network). They use both 

supervised (C4.5 Decision Tree) and unsupervised (SOM clustering 

algorithms) meta-learners and visualise the time series features in a two-

dimensional map. Their results indicate that using combined forecasts, 

weighted based on their derived selection rules, can achieve better forecasting 

accuracy compared to using only one of the base forecasters. Inspired by 

Wang et al. (2009), Lemke and Gabrys (2010a) further explore the 

performance of the rank-based combination of candidate forecasting models 

and compare it with different meta-learners, such as a Neural Network, a 
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Decision Tree, and a Support Vector Machine. They conclude that this 

combination method can achieve a comparable result over the selection 

method. Due to the generality and usefulness of the time series features 

introduced by Wang et al. (2009), the set of features are adopted by Widodo 

and Budi (2013). In an attempt to further reduce the dimensionality of the 

extracted time series features, they use principal component analysis. They 

find that such a dimensional reduction process can be helpful for improving 

the forecasting performance of meta-learning without damaging its 

classification performance.  

Kück et al. (2016b) consider a new set of meta-features related to forecasting 

errors for candidate forecasters and employ a Multilayer Perceptron (MLP) 

as the meta-learner. They use their meta-learning framework in a large 

number of time series related to industry sales from the NN3 competition 

(Crone et al., 2011) and find that including error-based features can help the 

meta-learner capture more useful meta-knowledge related to the forecasting 

models’ performance and thus help improve the overall accuracy of 

forecasting. Cerqueira et al. (2017) introduce a meta-learning framework 

where a so-called arbitrated dynamic ensemble, the meta-learner, is used to 

predict the weights for candidate forecasters based on their prediction errors. 

These are combined to generate forecasts based on their weights. Their results 

show that this framework obtains similar performance compared to other 

state-of-the-art methods for combining forecasts. 

Talagala et al. (2018b) propose a more general meta-learning framework 

called FFORMS (Feature-based FORecast Model Selection) where a Random 

Forest algorithm is adopted as meta-learner to separately learn the selection 

mapping using meta-features extracted from yearly, quarterly, and monthly 

time series from the M1 (Makridakis et al., 1982) and the M3 competition 

(Makridakis and Hibon, 2000). They further expand the feature space to 

include 33 time series features based on Wang et al. (2009); Hyndman et al. 

(2015a); Kang et al. (2017), from which 25 features are extracted from yearly 

time series while 30 features are extracted from quarterly and monthly time 

series. They also apply time series augmentation in the original time series set 

by simulating new time series which have similar characteristics to the 
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sampled one. They show FFORMS to provide competitive results compared 

to a series of benchmark forecasting models.  

Based on the FFORMS framework proposed by Talagala et al. (2018b), 

Montero-Manso et al. (2020) introduce a new meta-learning framework 

named FFORMA (Feature-based FORecast Model Averaging) where the 

output of the meta-learner is a set of weights assigned to each candidate 

forecasting model, instead of selecting only the best forecaster from candidate 

forecasting models. They further extend the time series space to include 

100,000 time series, including daily, hourly, monthly, quarterly, and yearly 

time series from the M4 forecasting competition (Makridakis et al., 2020). 

They achieved the second most accurate point forecast and prediction interval 

performance in the M4 competition. Moreover, using a convolutional deep 

neural network,  Ma and Fildes (2020) proposed a meta-learning framework 

to extract representative features from raw sales time series and implemented 

the obtained classification output to combine multiple base-forecasting 

models. They show that the proposed meta-learner provides superior 

forecasting performance compared with a number of state-of-art benchmarks.   

By reviewing the literature in this field, we are curious to know the impact of 

different group of meta-features on the forecasting model selection and 

analysing the meta-features importance in the meta-learning. 

3.3 Methodology 

In this research, we aim to investigate the characteristics of meta-learning. To 

achieve this aim, we analyse the meta-learning from three facets: (i) the meta-

feature; (ii) the meta-learner; and (iii) the base forecasters. For the first 

perspective, we use different groups of meta-features extracted from two 

main sources Tsfresh (Christ et al., 2018), and Tsfeatures (Hyndman et al., 

2019). Moreover, we compare these groups with a proposed automated meta-

features extraction approach using Autoencoders. Second, for the meta-

learner, we used three classification algorithms of increasing capabilities. We 

also compare the effectiveness of model selection and combination in a big 

database. Finally, for the base forecaster, two different groups are used which 

can be categorised into simple and complex. We distinguish the complex 
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forecasters as those that use some internal model selection or combination 

process. The aim of using these different viewpoints in studying these 

elements of meta-learning is to find how they affect the meta-learning 

performance, separately or together. Meta-learning Framework 

The proposed meta-learning approach is shown in Figure 3-1. In the first step, 

single and complex forecasters are used to predict the target time series and 

ranked for each time series according to their accuracy. This is done on a 

training set of time series. Meta-features are extracted and computed for each 

of these time series. Afterwards, extracted features and forecasts’ ranks are 

inputted into the meta-learner. The meta-learner identifies which base 

forecaster model can be considered as appropriate for a time series, depending 

on its structure and behaviour, as abstracted by the meta-features.  

 

Figure 3-1.  The proposed meta-learning methodology 

For the time series in the test set, the meta-learners will predict which forecast 

is appropriate and will recommend it or combine the forecasters based on the 
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meta-classifier weights. The process is repeated for all combinations of 

elements, resulting in 14 setups (two groups of meta-features, three 

classifiers, two sets of forecasts, a data driven group of meta-features, and a 

large data set for forecast selection and combination).   

3.3.1 Meta-learners 

• Decision Tree: 

Decision trees are one of the more well-known classifiers, broadly studied in 

the literature. Decision trees are competitive to the other machine learning 

approaches not only in terms of prediction accuracy but also in model 

interpretability and simplicity (Brockwell and Davis, 2016). As classifiers, 

we consider the standard single decision tree, and the more advanced Random 

Forest, and XGBoost classifiers that are representative of single, bagged, and 

boosted versions of decision tree models, respectively. 

• Random Forest: 

Random Forest is an ensemble learning method that can be applied for both 

classification and regression (Liaw and Wiener, 2002). In Random Forests, 

multiple simple trees are generated, acting as weak learners that make use of 

a single or few features with limited tree size. The individual trees are then 

combined to produce the aggregate prediction of the Random Forest. In each 

splitting step at a tree’s nodes, a subset of features from the total features is 

selected. The tree split that reduces the maximum heterogeneity among sub-

nodes is selected. Different measures have been proposed as metrics for 

evaluating the heterogeneity of nodes, including the Gini index, entropy, and 

the classification error (Hastie et al., 2009). The random selection of 

predictors enhances the classifier to be more unbiased and help it to avoid 

over-fitting. Furthermore, the use of limited features in each tree helps the 

classifier to train on high dimensional datasets effectively. Talagala et al. 

(2018b) used a Random Forest successfully in their meta-learner for the M4 

forecasting competition (Makridakis et al., 2020).  

• XGBoost: 
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XGBoost (Chen and Guestrin, 2016) is an ensemble method that incorporates 

a boosting method to integrate multiple weak learners and create a strong 

learner. It has been shown to perform very competitively in different 

forecasting and data mining competitions. In contrast to bootstrap aggregator 

(bagging) methods like Random Forest that ensemble weak models in a 

parallel approach, boosting models try to enhance true base models in a 

sequential process. At each iteration of the gradient boosting method, a new 

base model is trained to correct the previous predictor with the aim of 

optimising an appropriate loss function. A Regularisation term can be added 

to the loss function to increase the reliability of XGBoost (Zhang et al., 2018). 

Montero-Manso et al. (2020) applied XGBoost for meta-learning model 

combination in the M4 competition and ranked second in terms of forecasting 

accuracy. 

We also implemented some other meta-learners such as simple neural 

network and SVM, but the results did not show an improvement in the 

forecasting performance and then we decided to only report the current 

models.  

3.3.2 Base forecasters 

As forecasting methods have increased in complexity, they often include 

some elements of model selection and combination. In this study, to 

investigate the effect of simplicity (or complexity) of the base learners, two 

different groups are tested. The first group of forecasters consists of a set of 

exponential smoothing models that are typically used in practice to cover 

different time series patterns. Exponential smoothing (ETS) models are 

classified based on their structure that can capture, with the inclusion of trend 

and seasonality components. These components can interact additively (A), 

or multiplicatively (M), between them and with the error term of the model. 

The trend can be linear or damped (d). Using the model classification of the 

space-state ETS models by Hyndman et al. (2008), different models are 

designated with three parts. The first part stands for the type of the error term 

("A" or "M"), the second part is for the trend ("N", "A", "Ad", "M" or "Md"), 

and the last one is for the type of seasonality ("N", "A", or "M"). In all cases 

"N" stands for none, characterising the case when there is no trend or 
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seasonality. We choose ANN, AAN, AAdN, MNM, and MAM from the ETS 

family of models as simple base forecasters. These correspond to some of the 

well-known exponential smoothing methods, such as the single exponential 

smoothing (ANN), Holt’s smoothing (AAN), Damped trend (AAdN), and 

two refined versions of Holt-Winters smoothing without and with a trend 

(MNM and MAM) that assume multiplicative errors. These groups of models 

are common in practice and approximate many of the other specifications in 

the ETS (Weller and Crone, 2012). We also use the Theta method 

(Assimakopoulos and Nikolopoulos, 2000), which was the best performer in 

the M3 forecasting competition (Makridakis and Hibon, 2000), and can be 

seen as a special case of exponential smoothing (Hyndman and Billah, 2003). 

The second group of forecasters contains complex forecasters. Complexity 

means that the learning method is complex, or the setup of it (such as with 

many hyperparameters or other tuning/design choices). Automated ETS 

(Hyndman et al., 2008), Automatically specified ARIMA, MAPA 

(Kourentzes and Petropoulos, 2014), TBATS (De Livera et al., 2011), 

forecTheta (Fiorucci et al., 2016), and Temporal Hierarchical Forecasting 

(THieF) (Athanasopoulos et al., 2017) are considered as complex base 

forecasters. These are detailed below.  

• Automated Exponential Smoothing: 

Automated exponential smoothing selects the best types of error, trend, and 

seasonality components automatically, by information criteria measures 

(such as AIC, or BIC). We follow Hyndman and Khandakar (2007) for 

automatically specifying the ARIMA models (Auto ARIMA). The order of 

differencing is determined first, relying on the statistical test, both for the 

level and seasonal differences. Subsequently, the orders of the autoregressive 

and moving average components are set by minimising the AIC corrected for 

sample size. 

• Multi Aggregation Prediction Algorithm: 

The Multi Aggregation Prediction Algorithm (MAPA) is a temporal 

aggregation methodology for the ETS models.  In the first step, a time series 
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with a given frequency is aggregated by considering groups of values to create 

constructed lower frequency representations of the time series. In the next 

step, each aggregated time series is predicted by an exponential smoothing 

model, which can differe based on the time series behaviour. In the final step, 

the obtained components of ETS models are combined to create a final 

forecast.  

• TBATS: 

TBATS belongs to the exponential smoothing family and includes an 

appropriate Box-Cox transformation, dampening, ARMA errors, and 

trigonometric seasonality (De Livera et al., 2011). TBATS can adjust the type 

of included components, similar to ETS, using information criteria. 

• Force Theta: 

The Theta method proposed by Assimakopoulos and Nikolopoulos (2000) 

uses a decomposition method that takes place on seasonally adjusted data. 

The variations and movements of time series are captured by using the fitted 

lines referred to as “theta lines”. ForecTheta is a generalisation of the Theta 

method that optimises the construction of theta lines, based on various 

validation schemes. 

• Temporal hierarchical Forecasting: 

The Temporal hierarchical Forecasting (THieF) methodology is proposed by 

Athanasopoulos et al. (2017) by generalising MAPA with the use of the 

hierarchical forecasting framework. THieF is more flexible than MAPA in 

that it is model independent and permits for most flexible schemes to combine 

the forecast across different aggregation levels. As with MAPA, THieF 

mitigates modelling uncertainty by relying on model combinations.   

3.3.3 Meta-features 

One advantage of using meta-features is their applicability to almost all-time 

series, disregarding their context, potential sub-structures, and other 

characteristics. Moreover, abstracting the time series modelling problem into 

a feature space may provide more insights about the behaviour of the time 
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series, and improve the understanding of the relation between time series that 

use the same base forecaster (Harvey and Todd, 2015). Additionally, we note 

that the most crucial difference between highly ranked meta-learning methods 

in well-known competitions is linked to the creative selection of features 

(Blum and Hardt, 2015). 

We utilise three built-in meta-feature packages designed for time series. The 

first feature set originates from a tool for time series feature extraction called 

Time Series Feature Extraction based on Scalable Hypothesis tests (Tsfresh). 

This facilitates the feature selection process for time series forecasting 

problems by combining 63 time series characterisation methods and 

calculates up to 163 features (Christ et al., 2018).  

The second set, Tsfeatures, is provided by Hyndman et al. (2019) and includes 

42 different methods for feature extraction. These features are gathered from 

different studies: Hyndman et al. (2015a), Kang et al. (2017), Talagala et al. 

(2018b), and Montero-Manso et al. (2020). All together this package consists 

of descriptive statistics and model-based meta-features including spectral 

entropy, autocorrelations, partial autocorrelation, nonlinearity, the strength of 

seasonality and trend, and so on.  

Both mentioned packages proposed manual features that are not necessarily 

related to the time series generation process. On the other hand, for the first 

time, we used Autoencoders as a typical deep unsupervised neural network 

model to extract the rich features for meta-learning.  

Autoencoders are unsupervised neural networks aiming to reconstruct input 

data (Hinton and Salakhutdinov, 2006). Autoencoders compress the input into 

lower-dimensional data in the encoder part and reconstruct the output from 

the encoded representation in the decoder part. The encoded data called the 

latent space is a compact representation or compression of the input.  

More formally, in the context of autoencoders, there exist two spaces, which 

are often Euclidean spaces, decoded space 𝑋 and the encoded space Z, while 

𝑋 ∈ ℝ, Z ∈ ℝ. Two main functions in autoencoders are encoder function 

𝐸∅ ∶  𝑋 → 𝑍 , which is parametrized by ∅  and the decoder 𝐷𝜃 ∶  𝑍→ 𝑋  
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parametrized by 𝜃.  The loss function, i.e., Mean squared error (MSE) for 

proposed autoencoders are defined as 

min
𝜃,∅

𝐿(𝜃, ∅), 𝑤ℎ𝑒𝑟𝑒 𝐿(𝜃, ∅) =
1

𝑁
 ∑ ‖𝑥𝑖 − 𝐷𝜃(𝐸∅ (𝑥𝑖)‖2

2𝑁
𝑖=1                                      ( 

3-1) 

where D and E are the decoder and encoder, respectively. 

The general architecture of autoencoders consisting of an encoder, latent 

representation and a decoder is shown in Figure 3-2. 

 

Figure 3-2. AutoEncoder Architecture 

For the third group, we develop MetaTS which is an open-source Python 

library designed to ease meta-learning for time series forecasting by offering 

a toolkit containing the typical components needed for a meta-learning 

workflow. In addition to provide new components and facilities, MetaTS aims 

to unify the available Python libraries which can be useful for meta-learning 

on time series data. Here we use the meta-feature extraction part of this 

package to generate data driven meta-Features using deep autoencoders. For 

more information about the package, visit 

https://github.com/DrSasanBarak/metats 

In this paper, we first focus on the mentioned predefined features from first 

and second packages, but we also use the autoencoder as a deep unsupervised 
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learning model from third package to extract features from time series and 

compare them with the predefiend features. Of course, there are still features 

not considered like harmonics, fractalism, distributions of events, intermittent 

events, bursts of events, non-monotonicity/jumps, second order properties, 

derivate characteristics and others; however, MetaTs is supporting user-

defined meta-features for implementing in future studies.   

3.4 Experimental Design  

3.4.1 Dataset 

To perform our evaluation, we use the M3 and M4 competitions dataset 

(Makridakis and Hibon, 2000, Makridakis et al., 2018).  The M3 competition 

data contains a total of 3003 time series of varying industries and sampling 

frequencies. Table 3.4-1 presents the forecast horizons and the number of 

time series for our training and test datasets. 

Table 3.4-1. The classification of M3 data  

Time 

Interval 
Horizon Training Test Total 

Yearly 6 516 129 645 

Quarterly 8 604 152 756 

Monthly 18 1142 286 1428 

Other 8 139 35 174 

Total 308 2401 602 3003 

We use a different forecast horizon for each set of time series, matching the 

design of the M3 competition.  The horizon for the Yearly, Quarterly, 

Monthly, and Other series are 6, 8, 18, and 8 periods, respectively. With 

respect to the base forecasters, we evaluate the accuracy on a test set of equal 

length to the forecast horizon, using all other observations to fit the various 

base forecasters to the data. For each group of time series (yearly, quarterly, 

monthly, and other) we use cross-validation of 80% of the time series (2402 

time series) to train the meta-learner and the remaining 20% (611 time series) 

to test the performance.  
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For a experiement on a larger data, we randomly select 10000 time series 

from the M4 monthly dataset to assess the performance of Meta-Learning. To 

obtain time series with equal length, we chop the beginning of each series. 

Furthermore, we rescale each time series as a pre-processing step, and 

eventually, we end up with 10000 series of length 120. Figure 3-3 shows some 

samples from the data. Different kinds of trends, seasonality, and other 

characteristics of time series is evident.  

 

Figure 3-3. Sample of M4 monthly data 

In our bigdata experiment, we divide each M4 series into three parts. The first 

part with a length of 108 used for training the meta-learner to forecast the 

second part i.e. 12 steps ahead. The last 12 data points is used as the test data 

to assess the performance of the meta-learner.  

3.4.2 Base forecasters 

3.4.2.1 Simple base forecasters 

We used the ‘smooth’ package (Svetunkov, 2017) for the R language (Team, 

2013) to produce four simple ETS models. The smoothing parameters, as well 

as any initial values, are optimised by maximum likelihood. Moreover, the 

forecasts for the Theta model are produced using the ‘thetaf ()’ function from 

the forecast package in the R language with its default configuration 

(Hyndman et al., 2020). 
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3.4.2.2 Complex base forecasters 

In contrast to simple base forecasters, complex base forecasters have an 

internal model selection which helps to select better model form or 

hyperparameters according to time series structure.  

For the automated exponential smoothing, that selects the best types of error, 

trend, and seasonality components automatically, we use the ‘es ()’ function 

from the ‘smooth’ package for R (Svetunkov, 2017).  

For the ARIMA models, we use the ‘auto.ssarima()’ function from the same 

package. 

For MAPA and forecTheta models, we use the R packages with the same 

name, MAPA and forecTheta, respectively (Kourentzes and Petropoulos, 

2014, Fiorucci et al., 2016). For forecasting with TBATS, we use the ‘tbats 

()’ function form ‘forecast’ package for R with its default configuration. 

Finally, we use the ‘thief’ package for R, using ARIMA forecasts for each 

temporal level, to produce the THieF forecasts. 

3.4.3 Meta-learners  

For implementing decision tree, random forest, and XGboost models, we use 

‘rpart()’, ‘rf()’ and ‘xgbTree()’ functions from the Caret package for R (Kuhn, 

2008), respectively. We use ‘repeatedcv ()’ from Caret package for 

controlling the training evaluating using 10-fold cross-validation repeated for 

five times with search approach as "random".  

3.4.4 Meta-features 

We use the Tsfresh python implementation (Christ et al., 2018), the 

Tsfeatures package (Hyndman et al., 2019) for R (Team, 2013), and our 

developed Python package, MetaTs. The extracted features, from both 

Tsfresh and Tsfeatures, are grouped with distinct categories of features based 

on their base calculation methods into autoregressive parameters, 

autocorrelation coefficients, wavelet transformation coefficients, Dickey-

Fuller test parameters, energy-based properties, entropy-based features, 

Fourier Transform coefficients, time series quantiles, statistical summary 
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values, STL decomposed features. However, the MetaTs provides a group of 

rich meta-features that is obtained from the process of time series generation. 

The list of the individually extracted features with their corresponding group 

are reported in Appendix A. A summarised overview of each group of 

features is provided below. 

3.4.4.1 Autoregressive parameters  

These features are calculated based on an autoregressive (AR) model of past 

values of the variable. Let 𝑝  be the maximum lag of the autoregressive 

process and 𝑦𝑡 a time series values at time 𝑡, 𝑐𝑖 coefficients in the following 

formula are considered as autoregressive features (Box et al., 2015). 

𝑦𝑡 = 𝑐𝑜 + ∑ 𝑐𝑖𝑦𝑡−𝑖

𝑝

𝑖=1
+ 𝜀𝑡 

( 3-2) 

3.4.4.2 Autocorrelation coefficients 

The autocorrelation measures the linear relationship between lagged 

values of a time series. There are several autocorrelation coefficients, based 

on the value of the lag. The lag 𝑘 autocorrelation is defined as: 

𝑟𝑘 =
∑ (𝑦𝑡 − 𝑦̅)(𝑦𝑡−𝑘 − 𝑦̅)𝑇

𝑡=𝑘+1

∑ (𝑦𝑡 − 𝑦̅)2𝑇
𝑡=1

 
( 3-3) 

where 𝑦̅ is the average values of 𝑦𝑡 and T is the length of the time series (Box 

et al., 2015). 

3.4.4.3 Wavelet transformation coefficients 

Wavelet transformation modifies a signal (time series) into different forms 

with the aim of extracting hidden characteristics. In this study, we use values 

from different coefficients in a continuous wavelet transformation known as 

the “Mexican hat wavelet”. The transformation is defined as (Gomes and 

Velho, 2015): 

𝑦𝑐𝑤𝑡 =
2

√3𝑎𝜋
1
4

(1 −
𝑦𝑡

2

𝑎2
) 𝑒

−
𝑦𝑡

2

2𝑎2 
( 3-4) 
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where 𝑦𝑐𝑤𝑡  is the continuous wavelet transformed time series and 𝑎 is the 

width parameter of the wavelet function. 

3.4.4.4 Dickey-Fuller test parameters 

The Dickey-Fuller test is a hypothesis test that checks whether a unit root is 

present in a time series sample. This group of features returns the values of 

the respective test statistic. 

3.4.4.5 Energy-based properties 

The sum over the squared values of a signal (time series), which is called” 

energy”, is representative of energy carried in the signal. Absolute energy and 

energy ratio by chunks (energy of a subset of the time series) are considered 

as the energy-based properties for time series (Pollock et al., 1999). 

𝐸 = ∑ 𝑌𝑡
2

𝑇

𝑡=1
 

( 3-5) 

3.4.4.6 Entropy-based features 

In information theory, the inherent uncertainty in the possible outcomes of a 

random variable is referred to as entropy. Different values can be calculated 

based on the entropy concept, including Shanon entropy (Shannon, 1948), 

approximate entropy (Yentes et al., 2013), and sample entropy (Richman and 

Moorman, 2000). These are implemented as entropy-based features. 

3.4.4.7 Fourier Transform coefficients 

Fourier coefficients of a one-dimensional discrete Fourier transform for real 

inputs are obtained by the Fast Fourier Transformation algorithm to create 

these groups of features. A Fast Fourier Transformation is defined as (Phillips 

et al., 2003): 

𝐶𝐾 =
1

𝑁 ∑ 𝑦𝑡 exp (−2𝜋𝑖
𝑡𝑘
𝑁 )𝑁−1

𝑡=0

                               𝑓𝑜𝑟     𝐾

=  0 to 𝑁 − 1 

( 3-6) 
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where N is the number of all periods, 𝑦𝑡 is the value of the series at time t, k 

is the current frequency we are considering, and Ck is the value of the meta-

feature at frequency k in the time series. These are used as features.  

3.4.4.8 Time series quantiles 

This group of features contains values represents the conditional distribution 

of time series, including sample q quantile (value of time series greater than 

q% of time series ordered values), the change quantile  (difference among two 

quantiles), and other variables. 

3.4.4.9 Descriptive statistics  

Descriptive statistics of the time series such as its mean, variance, minimum, 

and maximum. 

3.4.4.10 STL decomposed features  

The STL method was developed by Cleveland et al. (1990) as a robust method 

for decomposing time series into seasonality, trend, and an error component. 

Various measures of trend and seasonality of a time series based on the STL 

decomposition are provided. 

 

 

3.4.5 Evaluation metrics 

The accuracy of the different forecasting approaches is evaluated using the 

Average Relative Mean Absolute Error (AvgRelMAE). The AvgRelMAE is 

the geometric mean of the relative Mean Absolute Error (MAE) for each 

series:    

AvgRelMAE = √∏
MAE𝑗

MAE𝑗,𝑏

𝑛

𝑗=1

𝑛

 

( 3-7) 

MAE𝑗:  
1

ℎ×𝑚
∑ ∑ |𝑦𝑗,𝑡 − 𝑦̂𝑗,𝑡|ℎ

𝑡=1
𝑚
𝑖=1    ( 3-8) 
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where 𝑦𝑗,𝑡  is the observation at period t for series j, 𝑦̂𝑗,𝑡  is the forecast at 

period t for series j, n is the number of time series that we summarise accuracy 

over, MAE𝑗 is the mean absolute error for time series j of the forecast over m 

origins and h-step ahead and MAE𝑗,𝑏  is the equivalent of a benchmark 

forecast. The Naïve forecast is considered as the benchmark, which simply 

extrapolates the last observation as a forecast for all h-periods. AvgRelMAE 

has desirable statistical properties as shown by Davydenko and Fildes (2013). 

This metric is simple to interpret. When the value is below 1 then the forecast 

is better than the benchmark and vice versa.  We report the forecast accuracy 

of the competing methods using the AvgRelMAE, as in ( 3-9). We also report 

the classification accuracy of the meta-learners. The classification accuracy 

provides the percentage of cases that a min error forecast model is selected 

correctly by a selection methodology.    

3.5 Results 

3.5.1 Accuracy of base forecasters  

The error metrics are reported for all time series as an overall, and for groups 

(Yearly, Quarterly, Monthly, and Other) separately. Table 3.5-1 reports the 

RelAvgMAE for the simple base forecasters on the 20% test set. The best 

performing forecast in each case is highlighted in bold. Unsurprisingly, the 

Theta model, which was the top performer in the M3 competition, is the most 

accurate. ETS(AAdN) model surpasses other ETS models overall, and the 

single exponential smoothing (ANN) results in lower error than the AAN and 

the MAM forecasts. 

Table 3.5-1. AvgRelMAE of simple base forecasters 

AvgRelMAE 

 ANN AAN AAdN MNM MAM Theta 

Total 0.997 1.056 0.982 0.991 1.020 0.865 

Yearly 1.002 1.031 1.018 1.005 1.054 0.990 

Quarterly 0.985 0.994 0.962 0.981 0.988 0.904 

Monthly 1.001 1.120 0.988 0.989 1.040 0.840 

Other 0.997 0.850 0.845 0.997 0.846 0.590 
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Similarly, the accuracy of the complex base forecasters is reported in Table 

3.5-2. In agreement with Athanasopoulos et al. (2017), THieF overall 

outperformed other forecasts. ForecTheta and MAPA achieved the best 

overall accuracy after THieF. On the other hand, Auto.Arima exhibited poor 

overall accuracy with an AvgRelMAE of over 1, which means a worse 

performance than naïve forecast. 

Table 3.5-2. AvgRelMAE of complex base forecasters 

AvgRelMAE 

 ETS Auto.Arima MAPA TBATS ForecTheta THieF 

Total 0.937 1.009 0.903 0.945 0.902 0.872 

Yearly 1.182 1.228 1.078 1.240 0.996 0.962 

Quarterly 1.183 1.160 1.159 1.213 1.138 1.152 

Monthly 0.790 0.928 0.775 0.770 0.817 0.773 

Other 0.459 0.440 0.486 0.470 0.528 0.463 

When we look at separate groups of time series, different forecasters 

performed best for each case.  

Results from the simple and complex forecasters demonstrate that the latter 

were more accurate, as expected. It is of interest to observe how meta-learning 

can improve further on these results.  

3.5.2 Meta-learner classification 

The classification accuracy of competing meta-learners is reported in Error! R

eference source not found.. The best result in each scenario (column) is 

highlighted in boldface, and the best overall results for the simple and 

complex forecasters are underlined.  

Table 3.5-3. Classification accuracy of meta-learners using simple and 

complex base forecasters 

 Simple Complex 

 Feature set Tsfresh Tsfeatures Tsfresh Tsfeatures 

Decision Tree 18.14 18.97 26.29 25.79 

Random Forest 26.13 24.46 30.78 31.12 

XGBoost 24.21 20.13 29.45 27.79 
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Average 22.82 21.18 28.84 28.23 

Random Forest and XGBoost models perform substantially better than 

Decision Tree meta-learner, which can be attributed to their inherent bagging 

and boosting, respectively. In both cases of simple and complex forecasters, 

the Random Forest showed superior performance to XGBoost. 

The Tsfresh set of meta-features resulted in better accuracy on average for 

simple models, while the complex methods obtain better classification 

accuracy with Tsfeatures. However, Tsfresh has on average higher accuracy 

for both simple and complex models. We attribute this to the diverse pool of 

features included.  

3.5.3 Accuracy of meta-learners 

In this section, we compare the performance of the competing meta-learners. 

The results for the simple and complex forecasters are reported in Table 3.5-4 

and Table 3.5-5, split by meta-learner and feature set. The best performance 

in each set of time series is highlighted in boldface.  

Table 3.5-4. Meta-learning accuracy with simple base forecasters. 

 AvgRelMAE 

 Decision Tree Random Forest XGBoost 

 Tsfresh Tsfeatures Tsfresh Tsfeatures Tsfresh Tsfeatures 

Total 0.962 1.028 0.868 0.928 0.885 0.939 

Yearly 0.958 1.027 0.946 0.896 0.960 0.942 

Quarterly 1.071 1.123 0.931 1.067 0.968 1.097 

Monthly 0.979 1.031 0.863 0.939 0.844 0.945 

Other 0.695 0.876 0.638 0.639 0.688 0.658 

The Random Forest meta-learner demonstrated the best overall accuracy, in 

agreement with.  

Comparing the best simple base forecasters’ accuracy reported in Table 3.5-5 

with the meta-learning approach, we can see that Theta (AvgRelAME: 0.865) 

performed slightly better than the best meta-learning approach (Random 

Forest with Tsfresh). As was reported in Table 3.5-5, the forecast accuracy of 
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Theta was far better than other simple base models, which can limit the 

advantage of the meta-learning approach.  

The Tsfresh set of features performed better than the Tsfeatures set, in 

agreement with. In Table 3.5-5, we can observe a similar result for the 

complex forecasters, with the Random Forest meta-learner, relying on 

Tsfresh performing best.   

Table 3.5-5. Meta-learning accuracy with complex base forecasters 

 AvgRelMAE 

 Decision Tree Random Forest XGBoost 

 Tsfresh Tsfeatures Tsfresh Tsfeatures Tsfresh Tsfeatures 

Total 0.868 0.876 0.824 0.857 0.843 0.890 

Yearly 1.025 1.034 0.881 1.028 0.985 1.143 

Quarterly 1.101 1.067 1.084 1.070 1.044 1.072 

Monthly 0.768 0.778 0.737 0.748 0.761 0.771 

Other 0.475 0.498 0.475 0.467 0.428 0.470 

 

By comparing the meta-learning results in Table 3.5-4 and the individual base 

forecaster performance in Table 3.5-5, we can confirm that in all cases, the 

meta-learning approach performed significantly better than the best base 

complex forecaster. Overall, THieF obtained an AvgRelMAE of 0.872, while 

the meta-learner achieved 0.824. 

This result suggests some similarities of meta-learning with the forecast 

selection and combination literature. When there is a dominating forecast in 

the pool of potential models (or equivalently, very poorly performing 

forecasts) the selection and combination of forecasts is harmed, which can be 

resolved by first pre-filtering the forecasters considered in the pool (for a 

more detailed discussion see, Kourentzes et al. (2019b). For our case, Theta 

substantially outperformed all alternatives in the simple forecasters, and 

therefore the meta-learner only introduced learning errors. For the complex 

forecasters, all forecasts are competitive and perform well. This is also 

illustrated in the diverse best performer for each subset of time series reported 

in Table 3.5-5. Although the meta-learner can again introduce potential 
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classification errors, it is now able to add value to the forecast selection by 

distinguishing between the various complex forecasters for each time series. 

Also note that all complex forecasters have some model selection or 

combination routine, which however is not able to accurately pick the best 

option for all-time series. The meta-learner using a much richer set of meta-

features can complement this inherent mechanism in the complex forecasters, 

providing further accuracy improvements. 

3.5.4 Feature importance in Meta-learning  

We saw that the Random Forest meta-learner showed the best performance in 

both cases. Here, we explore further how the classifier used the meta-features. 

Although Tsfresh was overall better, it may be that it contains some meta-

features that are not useful, or equivalently misses some of the beneficial ones 

in Tsfeatures. We extract the feature importance values for all individual 

meta-features and report the mean value of the relative importance for each 

group of features. The importance is calculated as in Hastie et al. (2009). 

Table 3.5-6 reports the importance value of the 10 meta-feature groups for 

both simple and complex base forecasters. We can see that the Dickey-Fuller, 

Auto-Regressive, and Auto Correlation feature sets presented the highest 

importance values in both cases. Features based on time series quantiles and 

descriptive statistics showed the lowest importance value, suggesting that 

these two feature groups did not provide critical information for meta-learner 

to detect the best base forecaster for the time series.  

We note that a considerable proportion of Tsfeatures meta-features were 

classed in the lower importance groups, explaining the accuracy results 

reported in the previous section.  

Table 3.5-6. Importance value of feature groups  

 Simple  Complex 

Feature group rank importance value rank importance value 

Dickey Fuller 1 0.95 1 0.79 

Auto Regressive 2 0.76 2 0.77 

Auto Correlation 3 0.73 3 0.73 

Energy 4 0.69 5 0.67 
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Entropy 5 0.68 7 0.65 

Wavelet Transformation 6 0.67 4 0.68 

Fourier Transformation 7 0.64 8 0.66 

STL 8 0.60 6 0.64 

Quantiles 9 0.57 9 0.58 

Descriptive Statistics 10 0.41 10 0.44 

To further explore the value of each group of meta-features, we construct 

Random Forest classifiers using initially all features (from both Tsfresh and 

Tsfeatures) and evaluate its accuracy. We then remove the least important 

group of meta-features and re-train the classifier and evaluate its forecasting 

accuracy. We repeat until we are left with only the most important group of 

features. This process is repeated for the simple and complex base forecasters 

separately. The results are reported in Table 3.5-7 and Figure 3-4. 

Table 3.5-7. Comparison of the RelAvgMAE for simple and complex 

models 

Number of feature groups used 1 2 3 4 5 6 7 8 9 10 

Simple models 0.965 0.970 0.885 0.88 0.885 0.915 0.895 0.87 0.872 0.874 

Complex models 0.853 0.840 0.86 0.83 0.815 0.805 0.815 0.816 0.82 0.825 
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Figure 3-4. AvgRelMAE for cases containing different groups of 

features 

In Figure 3-4, it is clear that removing feature groups can initially improve 

the forecast accuracy. When too many groups are eliminated the accuracy is 

harmed. The improvement appears to be more substantial for complex base 

forecasters, where the meta-learner adds most value. It can be observed that 

the meta-learner is more sensitive for the simple base forecasters, as limiting 

the features only makes learning more difficult. For both cases, we can see 

that adding all groups of features can decrease the performance of meta-

learner (see Table 3.5-7), suggesting the suboptimality of purely 

judgementally generated features. This insight calls for additional research on 

algorithmically filtering features.  

3.5.5 Model selection or model averaging  

To prove the robustness of our result in a bigger data set and analyse the effect 

of model selection versus model averaging, in this experiment we randomly 

select 10000 of monthly M4 competition dataset as mentioned in 3.4.1. We 

begin our experiment by applying our presented forecasting models, Theta, 

Automated ETS (AutoETS), TBATS, AutoArima, and THieF. For the sake 

of simplicity, we used 4 meta-features from TsFresh package which shown 

their competence in the previous experiment: 

● Auto Correlation 
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● Variation Coefficient 

● Dickey Fuller 

● Auto Regressive 

The above features are used as the input of meta learner for selecting the 

suitable forecaster for each series.  

For meta-learning, we used Random Forest for both selecting and averaging 

strategies. The meta-learner is able to produce probabilistic predictions for 

choosing the best forecasters. We used these probabilities to compute a 

weighted average of forecasts in the averaging scheme.  

Table 3.5-8 summarises the performance of each model individually in 

addition to the result of meta-learning with the averaging and selection 

strategies on the M4 dataset to forecast test data for 10000 time series. As you 

can see, Meta-Learning shows a superior performance even using four meta-

features (we use AutoETS error as a benchmark for all models). Both meta-

learning approaches outperform the individual forecasters, while the 

averaging obtains better result than model selection. 

Table 3.5-8. Overall forecasting performance for 12 steps ahead of 

monthly M4  

Model AvgRelMAE 

Meta-Learning (Averaging) 0.9302 

Meta-Learning (selection) 0.9458 

ThieF 0.9812 

AutoETS 1 

Theta 1.0295 

TBATS 1.1528 

Auto Arima  1.231 
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It is worth checking how meta-learner uses our selected four features to 

choose the best forecasting model. As the meta-Learner is a standard 

classifier, we can use SHAP (Lundberg and Lee, 2017) or any other method 

to explain and interpret its prediction. In Figure 3-5, we analyse the most 

important features for deciding whether to use the AutoETS or not. From top 

to down, we plot the SHAP for the Auto Correlation, Variation Coefficient, 

Dickey Fuller, and Auto Regressive. It turns out that among the computed 

meta-features, Auto Correlation is the most important feature in selecting the 

AutoETS as the main forecasting model. 

 

Figure 3-5. SHAP value for the meta-features importance 

 

3.6 Data-driven meta-features 

Though meta-learning approach have shown their superiority in terms of 

model selection and combination, the meta-feature extraction process is 

challenging and potentially unreliable in the context of big time series. 

According to Ma & Fildes (2020), current forecasting studies related to meta-

learning rely heavily on manually selected meta-features. However, in order 

to extracting useful meta-features, business analysts are required to deeply 

understand all time series features and have rich experiences in feature 

selection, which is significantly complicated and challenging for them. These 

requirements make it difficult for meta-learning approach to be widely used 

in real-life business time series forecasting. 
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From a generative point of view, model selection is equivalent to discovering 

the underlying data generation process. From this perspective, the forecasting 

model that is able to simulate the data generation process is the ideal choice 

for forecasting. Therefore, we propose a deep unsupervised learning based on 

Autoencoder to extract rich features from the latent layer of the data 

regeneration process. Here, we want to analyse the potential of this new group 

of deep meta-features in comparison with the manually calculated features 

from the meta-learning packages. 

As an example, consider a set of time series sampled from two different 

variants of the exponential smoothing family say ANN and MMM with 

random parameters. In order to compare our proposed meta-features with 

statistical meta-features, we first extract a set of statistical features using 

TsFresh containing 426 features for each series. The Figure 3-6 depicts the 

feature space after dimensionality reduction. 

 

 

 

Figure 3-6. classifying the two variants of the exponential smoothing 

family without using Auto Encoder 

As you can see in the Figure 3-6, classifying the two variants of the 

exponential smoothing family is not trivial in this space. The reason is that 
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the statistical and hand-crafted features are not necessarily related to the data 

generation process. On the other hand, since the objective of an Auto Encoder 

is to minimize the reconstruction loss, the latent space has to contain the 

information that is enough to re-generate the data. More specifically, the 

extracted features should be rich enough for mimicking the data generation 

process. Therefore, it is not surprising to see that the features extracted from 

Auto Encoder could be more informative, especially for model selection.  

In the next step, we extract a set of meta-features for the same data using an 

MLP Auto Encoder [See 3.3.4]. As you can see in the Figure 3-7, in this space 

two classes can be separated easily using a linear classifier.  

 

Figure 3-7. classifying the two variants of the exponential smoothing 

family with using Auto Encoder 

Note in this example, the feature vector for each series extracted using 

TsFresh had a dimension of 426 while the dimension of Auto Encoder’s latent 

space was 8 which is more efficient for any analysis including model 

selection. 
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3.7 Limitations 

Since we are faced with solving the classification problem in meta learning, 

the limitations that exist in classification problems can also be discussed here. 

One of the most critical limitations in classification problems is imbalanced 

data that cause bias. Training a machine learning model on an imbalanced 

dataset can introduce unique challenges to the learning problem. Imbalanced 

data typically refers to a classification problem where the number of 

observations per class is not equally distributed; often, you'll have a large 

number of data/observations for one class (referred to as the majority class), 

and much fewer observations for one or more other classes (referred to as the 

minority classes) 

In meta-learning, the imbalanced data problem arises when one of the 

algorithms performs better than the other. To avoid this situation, we need to 

use more accurate base forecasters. On the other hand, machine learning 

forecasting algorithms usually have better performance, so we should not use 

only one of them. 

If the nature of the data is such that most time series are in one class, and it is 

impossible to avoid imbalanced data, we need to use the methods to solve this 

problem. These methods help the meta-learner and prevent bias. They 

concentrate on modifying the training set to make it suitable for a standard 

learning algorithm. This can be done by balancing the distributions of the 

dataset which can be categorized in two ways (Thabtah et al. 2020):  

• Under-sampling 

The primary under-sampling technique that arbitrarily eliminates examples of 

the majority class to balance the dataset is known as random under-sampling 

(Kotsiantis, Kanellopoulos, & Pintelas, 2006). Researchers such as Guo et al. 

(2008) reveal the primary drawback associated with this method to be the 

disposal of useful information that can prove to be crucial in the later 

classification stages. Many under-sampling approaches have been proposed 

such as Condensed Nearest Neighbour Rule (CNN), Wilsons Edited Nearest 

Neighbour Rule (ENN), Neighbourhood Cleaning Rule (NCL), Tomek Links, 
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and One-sided selection (OSS) (Hart, 1968; Tomek, 1976; Wilson, 1972; 

Laurikkala, 2001). 

• Oversampling 

Oversampling is another common sampling approach used to deal with an 

imbalanced class problem. Various oversampling strategies are available 

including random oversampling, focused oversampling, and synthetic 

sampling (Estabrooks, Jo, & Japkowicz, 2004; Chawla et al., 2002; Kubat & 

Matwin, 1997). The method in which the instances of the minority class are 

randomly replicated until they have equal representation is known as random 

oversampling (Buda, 2017). Random oversampling has two major 

shortcomings: it increases the possibility of overfitting of the classifier on the 

training dataset, and if the original data already has high dimensionality, it 

mounts the computation cost thus increasing the training time of the classifier 

(Chawla, 2005). In focused oversampling, only those minority class values 

with samples occurring on the boundary between the majority and minority 

class values are resampled. However, Chawla et al. (2002) state that these 

methods of oversampling by replication lead to a more specific decision 

region of the minority class. To overcome this and broaden this decision 

region, they propose an advanced heuristic oversampling technique called the 

Synthetic Minority Oversampling Technique (SMOTE). SMOTE is a 

technique in which oversampling of the minority class is carried out by 

generating synthetic examples. These new synthetic minority class examples 

are the result of interpolation between closely located minority class samples. 

Chawla et al., (2002) describe the process of SMOTE as calculating the 

nearest same-class neighbours for every minority example and then based on 

the required oversampling rate, randomly choosing from these neighbouring 

examples. The synthetic examples are then generated at random points along 

the line segments joining the minority examples with these chosen 

neighbours. This process expands the decision region pertaining to the 

minority class. 
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3.8 Conclusion 

In this study, we investigate the design of meta-learning for time series 

forecasting. To explore the impact of different elements of meta-learning, 

including the meta-learner, the meta-features, and the pool of base 

forecasters, we studied three tree-based classifiers as meta-learners, three 

distinct sets of features, namely the Tsfresh, the Tsfeatures, and a new deep 

data-driven features from MetaTs, two groups of simple and complex base 

forecasters grouped according to having some internal model selection and/or 

combination, or not.  Finally, model selection and model averaging in meta-

learning is analysed.  

We find that the Random Forest and XGBoost classifiers performed best. 

Although the result is not unexpected, it is interesting as these classifiers 

arguably do not require careful feature selection.  

We find that the larger Tsfresh set of meta-features performs best, compared 

to Tsfeatures. However, when we looked at the various groups of meta-

features included in these sets, we showed that by eliminating the least 

important features, we could increase accuracy further. From an aggregated 

viewpoint we identified the groups of meta-features that used model 

characteristics (e.g., based on the statistical test, autocorrelation, etc.) to be 

more informative than descriptive features (such as quantiles, mean, etc.). 

This calls for more research into algorithmically choosing the appropriate 

meta-features from a large pool of features. We note that even though the best 

performing Random Forest does not require fine-tuning of its inputs when 

groups of meta-features were eliminated the forecast accuracy of the meta-

learner improved. Naturally, excessive elimination of features was damaging.  

We investigate the effect of feature selection on meta-learning performance. 

We show that: first, increasing the number of features does not necessarily 

improve meta-learning performance; it may even have an adverse effect. 

Second, the quality of meta-features is very important in the performance of 

meta-learning, and features that are data-driven, such as rich features 

extracted by autoencoders, have more quality than pre-defined features. They 
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give better feature space segregation for enhancing the classification power 

and consequently model selection performance.  

In terms of the simple and complex base forecasters, we show that using more 

accurate base forecasters can help the meta-learner. We argue that when a 

base forecaster dominates over all other forecasters, then meta-learning does 

not add value and can potentially even harm the forecast accuracy, by 

introducing learning errors. On the other hand, when high-quality base 

forecasters are used, meta-learning can provide even more benefits.  

Finally, we improve the forecast accuracy by model averaging the time series; 

note that the selection of an appropriate pool of forecasters, ensuring both 

quality and diversity, appears to be essential for the good accuracy of the 

meta-learner.  

 

 

 



Chapter 4: Deep Learning for Forecasting Model Selection 

Sasan Barak -August 2021  93 

4 Deep Learning 

for Forecasting 

Model Selection 

4.1 Introduction  

Selecting the appropriate forecasting model among a wide variety of 

alternatives remains a challenging task. The modeller has to identify a model 

that adequately captures the key features of the unknown underlying data 

generating process, while at the same time managing the complexity of the 

model to ensure good forecasting performance. Therefore, building a decision 

system that can select the best forecasting algorithm between candidates 

remains a worthwhile endeavour. 

There are multiple approaches to addressing this problem in the forecasting 

model selection literature. Typically, this has been done by comparing 

individual approaches, such as information criteria methods and empirical 

cross-validated errors. The information criteria approach relies on using 

penalised likelihood functions for evaluating the goodness of fit, e.g., Akaike 

information criteria (AIC) and Bayesian information criteria (BIC) and their 

variations (Burnham and Anderson, 2002). In contrast, cross-validation relies 

on using a validation sample to evaluate the model’s performance (Fildes and 

Petropoulos, 2015). Although we reduce the available sample for model 

fitting, the validation sample enables us to assess multiple-step-ahead 

forecasts and different loss functions, while manipulating the time series with 

transformations, or changing the sample size, do not invalidate the 

comparisons of forecasters performance.  

Individual model selection has to implement all candidate models to evaluate 

their performance and select between them. This wrapper procedure is 

computationally intensive and often infeasible to implement sufficiently due 
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to the size of the forecasting problem at hand. For example, in modern 

retailing applications, we often need to forecast repeatedly several thousand 

of time series at a high frequency (Fildes et al., 2019). On the contrary, filter 

approaches rely on identifying the correct candidate model, without 

implementing all alternatives and evaluating them, exemplified in the 

methodology of ARMA model building (Box et al., 2015). Meta-learning, a 

filter methodology, is a learning approach which selects the best forecasting 

model based on characteristics (meta-features) of a time series, without the 

implementation of the candidate forecasts. Therefore, this can have 

substantially less computational costs for the application. Although a filter 

approach such as meta-learning can select the appropriate model without 

implementing all models in the data set, its performance relies strongly on the 

appropriateness of the extracted features from the time series (meta-features).  

So far, existing research in meta-learning focuses on extracting a large 

collection of universal meta-features from time series and using a classifier 

(meta-learner) to map the connection between meta-features and model 

selection. For example, Talagala et al. (2018a) proposed a meta-learning 

framework, called FFORMS (Feature-based FORecast Model Selection), that 

uses a set of 45 meta-features and a Random Forest as meta-learner to select 

the best single model from nine base forecasters. The performance of meta-

learning is evident in the recent M4 competition (Makridakis et al., 2018) 

with Montero-Manso et al. (2020) by proposing FFORMA (Feature-based 

FORecast Model Averaging) that ranked second. 

The proposed meta-learning methods depend on meta-features that are 

constructed using expert prior knowledge and judgment. Furthermore, there 

is no evidence that calculating a set of prior designed features can capture all 

intrinsic properties embedded in data. Thus, in this research, inspired by deep 

feature learning for image classification (Bengio et al., 2013, LeCun and 

Bengio, 1995, LeCun et al., 2010), we design a meta-learning framework 

based on deep convolutional networks that can learn a feature representation 

from raw time series automatically, without any intervention from the 

modeller. Among the many deep learning algorithms available, convolutional 

neural networks (CNN) have achieved a breakthrough accuracy in general 



Chapter 4: Deep Learning for Forecasting Model Selection 

Sasan Barak -August 2021  95 

pattern recognition tasks, such as image classification by automatically 

learning features from the dataset (Simonyan and Zisserman, 2014, Van den 

Oord et al., 2013), and sequential data classification, language modelling and 

other related problems in natural language processing (Collobert and Weston, 

2008, Kalchbrenner et al., 2014).  

This chapter evaluates the potential of deep learning for time series model 

selection, without relying on external features. The time series model 

selection can be treated as a one-dimensional recognition task, and the 

proposed CNN allows learning different levels of representations (the meta-

features) together with a classifier, jointly and automatically. We provide 

empirical evidence of the efficacy of the approach against widely accepted 

forecast selection methods and discuss the advantages and limitations of the 

proposed alternative. While the majority of time series meta-learning have 

focused on meta-features, in this chapter, we focus on abstracting these 

directly from the time series, providing a comparable approach in inputs and 

complexity to conventional time series selection approaches. We evaluate the 

robustness of the proposed approach for both long and short time series, using 

simulated and real data, to better highlight the conditions when the proposed 

approach performs well.  

The structure of this chapter is as follows:  Section 4.2 presents a background 

in model selection approaches and deep learning studies for time series. 

Section 4.3 explains the proposed methodology. Section 4.4 describes the 

experimental setup and summarises our findings.  Section 4.5 presents a 

discussion of the approach, and finally, Section 4.6 concludes and indicates 

further research. 

4.2 Background of model selection in time series  

4.2.1  Conventional forecast selection and combination  

4.2.1.1 Selection 

There have been many studies elaborating on forecasting model selection. 

Traditionally, model selection was the outcome of a detailed time series 

exploration, where the analyst would identify the influential patterns in a time 
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series, such as seasonality or the presence of unit roots, among other features 

such as outlying observations, to identify the best forecasting model (Box et 

al., 2015, Makridakis et al., 2008). This exploration approach was given 

further credence by Petropoulos et al. (2018), showing that even non-experts 

could perform accurate model selection when following a structured 

exploration approach. However, this approach is very subjective and often 

very difficult to automate and scale up (Ord et al., 2017). Nonetheless, it has 

resulted in the development of a multitude of statistical tests that can support 

automatic model building (for example, see(see Hyndman and Khandakar, 

2007), but also the development of expert systems and rule-based forecasting 

approaches, where ad-hoc procedures are used to identify the appropriate 

forecasting method (Goodrich, 1992, Adya et al., 2001). 

A more theoretically consistent approach to model selection has been to rely 

on information criteria. The use of information criteria to choose between 

forecasting models has been central in statistical and econometric model 

building. Information criteria, such as AIC or BIC, penalise the optimised 

likelihood function for the model’s complexity, so as to avoid overly flexible 

models that may lead to overfitting and poor forecasting performance 

(Burnham and Anderson, 2002). Although the different information criteria 

have different foundations and properties, in terms of forecasting 

performance they often lead to similar results, even if a different model is 

selected (Billah et al., 2006). Furthermore, they have been shown to reliably 

identify the appropriate model form for many popular forecasting model 

families with no user intervention (Burnham and Anderson, 2002, Hyndman 

and Khandakar, 2007, Hyndman et al., 2008). However, information criteria 

require that the likelihood between the alternative models is comparable, 

which excludes comparing models with different data transformations, or 

differencing, and requires care in the construction of lagged realisations. 

More crucially they require the existence of a statistical model to underly the 

forecasts, and therefore cannot be used with many popular heuristic 

forecasting methods, machine learning or artificial intelligence. This 

ultimately makes then inappropriate when diverse forecast need to be 

compared. 
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To overcome the limitations of information criteria, the modeller can rely on 

cross-validation, which has been applied in various flavours in time series 

forecasting (e.g., (Fildes and Petropoulos, 2015); (Kourentzes et al., 2019a). 

Cross-validation does not rely on the existence of a statistical model but rather 

compares the performance of competing forecasting approaches on a 

validation sample. As some sample needs to be retained for the comparison, 

cross-validation exchanges flexibility with loss of training sample. In contrast 

to information criteria, there is no need for the existence of a comparable 

optimised likelihood, which has made cross-validation the method of choice 

for many machine learning approaches, as a likelihood function is often not 

available (Ord et al., 2017). Stone (1977) showed that AIC is equivalent to 

the one-step-ahead out-of-sample cross-validated error. However, as cross-

validation is more flexible, both the forecast horizon and the loss function can 

be adjusted to fit better to the relevant forecasting problem (Fildes and 

Petropoulos, 2015). Nonetheless, the need for an adequate sample is a 

significant weakness of the approach, as on the one hand, many applications 

have limited sample availability, and on the other hand, cross-validation on a 

limited sample is unreliable (Fildes and Petropoulos, 2015). In practice, this 

forces the modeller to often rely on the methodologies above.     

All the above approaches, either using information criteria or cross-validated 

errors require the deployment of the competing forecasting algorithms, 

increasing the computational cost of the model selection substantially. This is 

a common feature of ‘wrapper’ approaches that need trailing of all alternative 

models (Barak et al., 2015). As with time series exploration and statistical 

testing, ‘filter’ approaches attempt to indicate the appropriate model without 

the need to deploy all alternatives.   

To this end, meta-learning is a promising alternative, where the so called 

‘meta-features’ are extracted from a time series and used as inputs to a 

classifier to select the best forecasting model.  Meta-learning overcomes the 

limitations of information criteria in requiring a comparable optimised 

likelihood, but also does not require a dedicated sample for the calculation of 

the cross-validated errors. Furthermore, meta-learning is typically 

implemented as a filter and does not require deploying the competing models 
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first, avoiding the related computational costs. Using model selection with 

meta learning in forecasting was first proposed by Arinze (1994). Chu and 

Widjaja (1994) proposed a neural network system to select among several 

exponential smoothing models using the autocorrelation function. Since then, 

many attempts have been made to improve the results of these filter 

recommender systems for time series analysis. Lemke and Gabrys (2010a) 

implemented 15 simple and combined forecast models, and used a support 

vector machine, neural network, and decision tree as meta-learning models in 

NN5 time series forecasting. Zhou et al. (2012) proposed a rate-based meta-

learning model to identify the most suitable back-propagation  neural network 

(BPNN) models in forecasting the gold price. Matijaš et al. (2013) applied the 

meta-learning approach to multivariate time series of four load forecasting 

tasks. Kück et al. (2016a) studied the use of different feature sets for a neural 

network meta-learner, and Talagala et al. (2018a) exploring further potential 

of meta-features. Ma and Fildes (2020) proposed a meta-learning framework 

based on convolutional neural networks, which uses external meta-features, 

but also the raw time series to obtain combination weights for a pool of base-

forecasting methods, demonstrating very promising performance.  

Although the choice of a classifier is important, creating a representative set 

of meta-features has been a focal point for the meta-learning community, with 

open questions on both designing and selecting useful meta-features, given 

the time series and the competing forecast considered. Overcoming this has 

been one of the central motivations for this work. 

4.2.1.2 Combination 

An alternative to selecting a single forecast is to combine different forecasts, 

and its benefits are widely accepted (Elliott and Timmermann, 2016). Model 

combination leads to a reduction of model uncertainty, since the modeller 

does not have to choose a single best model, simplifying the forecasting 

process, as well as mitigating the forecast error variance. Chan and Pauwels 

(2018) demonstrate that simply selecting a single model on cross-validated 

errors will lead to a biased selection, supporting a combination approach.  
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In the prediction literature, model combination has received a lot of attention 

(Barak et al., 2017). The combination of predictions has resulted in many 

superior algorithms, such as the Random Forests, which is a combination of 

multiple decision trees for classification and regression problems (Breiman, 

2001), bagging of time series to improve the performance of exponential 

smoothing (Bergmeir et al., 2016), combining forecasts from different 

temporally aggregated versions of the data (Kourentzes et al., 2014), forecast 

islands, a heuristic to automatically identify forecast pools for combination 

(Kourentzes et al., 2019b) among others. Montero-Manso et al. (2020) 

proposed a feature-based forecast model averaging, which is a weighted 

combination of 9 forecasting models using XGboost as a meta-learner and 

obtains the second rank in the M4 forecasting competition. Ma and Fildes 

(2020) explore a similar approach with CNN. 

The combination literature has faced the paradoxical finding that simple 

combination methods, such a simple average or median, often perform better 

than theoretically elegant approaches that rely on optimal weighting schemes, 

for a variety of optimality criteria. Smith and Wallis (2009) provide an 

explanation that this is due to estimation errors of the combination weights, 

which propagate to the combined forecast. Therefore, fixed suboptimal 

weights can perform better than estimated weights. This has led to various 

innovations in the combination literature, which tries to restrict the estimation 

uncertainty, with forecast pooling being one such approach that first 

eliminates forecasts from the combination, before estimating weights for the 

remaining ones (Kourentzes et al., 2019a), thus limiting the combination 

weight uncertainty. Kolassa (2011) showed that combining forecasting 

models using AIC weights leads to more accurate results than selecting a 

single model on AIC. A distinctive difference between AIC weights and 

conventional optimal combination weights is that the former is calculated 

indirectly. Given a model we calculate its weight relying on its AIC, without 

performing any further estimations. This limits the uncertainty that 

propagates to the combined forecast. We argue that combinations of forecasts 

using meta-learning have similar properties, as any weights are conditional 

on the (pre-calculated) meta-features and therefore are indirectly calculated.  
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4.2.2 Deep learning approaches for time series forecast 

selection  

Convolutional neural network (CNN) is a deep learning method, where 

different layers with specialized architecture (LeCun et al., 1998). CNN 

consists of three main layers (i) the convolution layer; (ii) the pooling layer; 

and (iii) a fully connected layer. Each CNN has two steps for training the 

network, which is feedforward and back-propagation. In the first step, the 

input vector feeds to the network, and the output calculated. The network 

errors are computed by output results and applied to regulate the network 

parameters or, in a better word, the training process.  Herein, the output of the 

network is compared with the actual response by a loss function, and the error 

rate is estimated. In the next step, based on the estimated error rate, the 

learning of the back-propagation process is continued until a predetermined 

bound reached.  

There are several CNN applications on time series with the main focus being 

on time series classification (Wang et al., 2016, Cui et al., 2016b, Zhao et al., 

2017). There is limited research on using CNN for time series forecasting. To 

the best of our knowledge, the first application of CNN for time series 

modelling is for generating raw audio waveforms with the Wavenet network 

(Oord et al., 2016). This model, when applied to text-to-speech, yields state-

of-the-art performance. Recently, Li et al. (2020) transferred time series 

images into recurrence images, then extracted features with a max-pooling 

layer, which are then used for forecast model averaging. However, analyzing 

time-series images results in sparse matrixes which distort the functionality 

of pooling layers. Finally, Salinas et al. (2020) proposed DeepAR, a 

probabilistic forecasting methodology based on training an autoregressive 

recurrent neural network model on a large number of related time series.  

4.3 A convolutional neural network for meta-learning   

A CNN is made up of different components, which when working together 

give it its properties. Here we will first introduce the various components, and 

then show how these are used for our purpose, while attempting to make 

connections with conventional model selection procedures.  
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We restrict the description of the various components to the 1-dimensional 

case, which is apt for univariate time series data, rather than the higher-

dimensional cases, which are more common in areas such as image 

recognition. For a detailed description of CNN, we refer the reader to 

Goodfellow et al. (2016).  

4.3.1 The convolution layers 

Given a time series 𝒚 = 𝑦1, … , 𝑦𝑛 , where 𝑛  is the sample size, the CNN 

applies a series of the so-called filters (or kernels) to highlight different 

aspects of the data. Let us focus on the operation of a single filter, which itself 

requires a one-dimensional vector weight 𝒘 , containing 𝑓  elements 

(commonly referred to as the receptive field), that is multiplied with the local 

𝑓 observations of 𝒚: 

𝒐𝒕 = ∑ 𝒘𝒊𝒚𝒕−⌊
𝒇

𝟐
⌋+𝒊−𝟏

𝒇
𝒊=𝟏    (4-1) 

where 𝒐𝒕 is the value of the filter at time t that is computed by the vector 

multiplication of 𝒘  and the 𝒇  observations symmetrically surrounding 𝒚𝒕 . 

That already suggests that for the one-dimensional convolution 𝒇 

conveniently takes odd values and that the 𝒐𝒕 cannot be computed for the first 

and last ⌊𝒇/𝟐⌋ observations. Observe that the filter is very similar to the well-

known centered moving average (Ord et al., 2017), but with weights 𝒘 . 

Different weights highlight different aspects of the time series. For example, 

if the weights are approximately equal, this will filter high-frequency 

components of the time series. We can also draw parallels to conventional 

time series transfer functions and autoregressive models, however, it is 

important to note that for convolution filters there are no restrictions on the 

weights to satisfy the usual invertibility and stability conditions (Box et al., 

2015), given that they do not perform a forecasting task.   

Within a convolution layer of the CNN, each filter is embedded into a neuron: 

𝑧𝑡 = 𝑔(𝑜𝑡 + 𝑏),                                                                                                       (4-2) 

where 𝑔(⋅)  is a nonlinear activation function, typically for deep learning 

being the Rectified Linear max(0, 𝑥) , with 𝑥  being the input, and 𝑏  is a 



Chapter 4: Deep Learning for Forecasting Model Selection 

Sasan Barak -August 2021  102 

constant, referred to as the bias. Additionally, we may consider a stride 

parameter that instructs the filter to be applied to every observation. The stride 

parameter is typically 1 (every observation) or 2 (every second observation). 

The stride helps to reduce the computational cost by down-sampling the input 

(Krizhevsky et al., 2012). 

Within a convolutional layer, we can have 𝑘 such filters, each with each its 

own set of weights and bias. However, to simplify the design of the layer, it 

is common practice to use the same number of elements, activation functions, 

and stride across all filters. Therefore, given a time series 𝒚 the output of the 

convolutional layer is a matrix with dimensions 𝑘 × (𝑛 − ⌊
𝑓

2
⌋) and requires 

𝑘(𝑓 + 1) parameters to be trained.  

In a well-trained network, each of the filters will highlight a different feature 

of the time series. Herein lies a key argument for our approach. Instead of 

relying on externally designed and selected features, we let the CNN identify 

the most appropriate ones for the given dataset and available forecasts to 

choose from for the meta-learner.  

4.3.2 The pooling layers 

To mitigate overfitting and to reduce the computational complexity, we use a 

pooling layer, which simply aggregates inputs locally. In the pooling layer, 

we process each input (the output of a single filter from the convolution layer) 

independently. There are two widely used pooling operators, the maximum 

and the average. Using these, we calculate either the maximum or the average 

every 𝑠  observations in a non-overlapping manner. Pooling effectively 

operates as a down-sampling mechanism. 

In CNN, it is common to follow a convolutional layer with a pooling layer. 

For example, suppose we have a time series with 100 observations that is 

inputted in a convolution layer with 10 filters and a receptive field of 5 

observations. The output of the layer will be a matrix of 10 rows with 96 

observations each (we lose ⌊5/2⌋ observations from the beginning and the 

end of the time series due to the convolution). This can then be fed to a 

pooling layer, for example, with a stride 𝑠 = 2. Every 𝑠  observations are 
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aggregated into a single observation (in a non-overlapping fashion), reducing 

the data to 10 rows of 48 observations. In a deep convolutional network, the 

output of the pooling layer will typically be inputted into a subsequent 

convolution layer, and so on. Observe that the subsequent layers, on the one 

hand, will require fewer parameters, and on the other hand, will use data with 

higher abstraction, due to the filtering and the pooling. After multiple steps 

of convolution and pooling, the CNN internally represents highly informative 

meta-features of the input time series, without the intervention of the 

modeller.  

The (one dimensional) pooling layer has a well-known time series equivalent, 

which is the non-overlapping temporal aggregation. For instance, Kourentzes 

et al. (2014) use the average as a temporal aggregation operator to filter high-

frequency time series components, such as noise and seasonality, to help 

highlight different features in the data. It should be noted that there is a trend 

in CNN networks to replace the pooling layer with a stride in the convolution 

layer of equal size (Springenberg et al., 2014). This mirrors the use of flow 

and stock variables in time series temporal aggregation, where in the first, we 

aggregate observations throughout the period of interest, while in the latter, 

we measure only at intervals of the period of interest.  

Once we consider the multiple iterations of convolution and pooling layers in 

a deep convolutional network, there is a further analogy with time series 

models from the literature. Kourentzes et al. (2014) and Athanasopoulos et 

al. (2017) propose using multiple temporal aggregation views of a time series 

to mitigate modelling uncertainty, by purposefully highlighting different time 

series components, and demonstrate that this approach leads to increased 

accuracy over selecting a time series model using only on the original data. 

Kourentzes et al. (2017) provided evidence that it is the multiple levels of 

temporal aggregation that help gain the accuracy improvements, rather than 

the act of aggregating itself, demonstrating that considering the higher 

abstractions of the original time series data can help in forecasting. CNN 

performs the analogous data transformation internally, with one additional 

advantage. In the multiple temporal aggregation literature, the temporal 

aggregation always assumes equal weights over the observations within the 
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aggregation span, while in CNN, the filters in the convolutional layer allow 

not only weighted representations but also multiple ones, as it is common to 

use multiple filters. Therefore, we argue that this is another potential strength 

of CNN over conventional time series modelling approaches, in that the CNN 

can learn the appropriate representations from the data, rather than relying on 

external modelling decisions.  

4.3.3 The classifier 

Once we have processed the time series through multiple convolutional and 

pooling layers, we have a set of highly abstracted rich meta-features. These 

are inputted into a fully connected layer, much akin to a layer from a 

conventional neural network classifier, that has the task to classify the time 

series to a forecaster, given the constructed meta-features. The output of this 

layer indicates what forecaster should be used for the given time series. This 

resembles a conventional meta-learner in its purpose and structure. Figure 4-1 

summarizes the different elements of the proposed meta-learner CNN. 

 

Figure 4-1. Convolutional network structure  

The key difference to conventional meta-learners lies in the training of the 

network. Typically, we use a set of pre-defined external features that are 

inputted into a classifier that acts as the meta-learner. Therefore, in learning 

the associations between time series and forecasts, the classifier is inherently 

restricted given its inputs. This is in contrast with the CNN, where both the 
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construction of the meta-features and the classification are learned 

simultaneously. This provides increased flexibility to the classification 

capabilities of CNN, as the constructed meta-features can be learned to better 

match the available pool of forecasts and the characteristics of the time series 

dataset.  

We argue that this is yet another advantage of our proposed approach, as the 

CNN meta-learner is not biased in any way by prior choices by the modeller 

or the difficulty of generating appropriate external meta-features. This 

difficulty lies not only in potential computational challenges but also in the 

various tools and methods we have available to characterize time series, 

which may or may not help the classifier match the time series to a given pool 

of forecasts. To exemplify this argument, different time series model families 

can process information differently. For instance, the exponential smoothing 

family of models considers time series as the combination of three 

components, the local level, the local trend, and the local seasonality, 

interacting in an additive or multiplicative way, between them and with the 

innovation term (Gardner Jr, 2006). In identifying the best exponential 

smoothing model, exploration tools such as the autocorrelation function, or 

the partial autocorrelation function are of little use. Furthermore, standard unit 

root tests are also of little use, as all exponential smoothing models contain a 

unit root, even though we classify them (perhaps unhelpfully) into level and 

trend models. 

On the other hand, Petropoulos et al. (2018) demonstrated that classical time 

series decomposition provides useful information in distinguishing between 

exponential smoothing models. When considering ARIMA models, we can 

arguably make the opposite arguments, where the autocorrelation and partial 

autocorrelation functions are useful, as are unit root tests (Box et al., 2015), 

whereas classical time series decomposition is of limited use. This illustrates 

that different model families may rely on different sets of meta-features, 

which remains an open question in the literature. The proposed CNN 

approach overcomes this by matching the learned meta-features with the pool 

of forecasts to assign to each time series.  
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4.3.4 Forecast selection and combination 

The proposed CNN can be used for either selecting a forecast or providing 

combination weights for the considered forecasts. The classifier relies on the 

softmax function, which outputs for each of the potential forecasts a 

normalized probability that it is the appropriate one. Suppose we are 

considering 𝑚 alternative forecasts to choose from. The final element of the 

CNN is a softmax function that expects a 𝑚-dimensional vector 𝒒,  from the 

classifier layer and outputs a  𝑚 -dimensional vector 𝝈  of normalized 

probabilities: 

𝜎𝑖 =
𝑒𝑞𝑖 

∑ 𝑒
𝑞𝑗𝑚

𝑗=1

                                                                                                               (4-3) 

When the task involves the selection of a single forecast, we simply choose 

the forecast with the maximum probability 𝜎𝑖. When the task involves the 

combination of the forecasts, we use the normalized probabilities as 

combination weights for the forecasts.  

4.4 Experimental Evaluation 

In this section, we outline the problem and data set as well as the experimental 

setup that we use to empirically evaluate CNN against conventional forecast 

selection and combination methodologies.  

4.4.1 Datasets 

We generate simulated time series from known data generation processes, to 

assess the ability of the proposed CNN to identify the correct model. For this 

purpose, we rely on the exponential smoothing (ETS) families of models, 

which has been shown to perform well for business time series from several 

applications (Makridakis and Hibon, 2000, Gardner Jr, 2006). Furthermore, 

exponential smoothing remains one of the most widely used models in 

business practice (Weller and Crone, 2012), and therefore being able to select 

the appropriate ETS model form is very relevant to practice. In a survey of 

forecasting practices, the exponential smoothing family of models is used in 

almost 1/3 of times (32.1%), with averages coming second (28.1%) and naïve 
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methods third (15.4%). More advanced forecasting techniques are only used 

in 10% of cases. 

The ETS family of models includes possible combinations of trend, season, 

and innovations terms, resulting into 30 distinct models. Table 4.4-1 

provides the 15 additive error models, which are mirrored by an equal 

number of 15 multiplicative error variants (Hyndman et al., 2008). We 

consider two model selection scenarios: (i) a 4-model set of alternatives; and 

(ii) a 15-model. The 4-model option includes the ANN, ANA, AAN, and 

AAA cases from Table 4.4-1, capturing four relatively easy to distinguish 

cases. The 15-model scenario considers all alternatives in Table 4.4-1, 

constituting a much more challenging model selection problem, as many 

options can appear almost identical for certain parameters ranges (Hyndman 

et al., 2008). For each scenario, we consider a ‘short’ and ‘long’ history 

case, with 48 and 144 monthly observations respectively. For each 

combination of scenario, sample, and model, we generate 10,000 time 

series. Therefore, for the 4-model case, we have 40,000 series, and 150,000 

series for the 15-model case for each history length. All series are generated 

randomly using the smooth package (Svetunkov, 2017) for R (Team, 2013). 

We simulate these time series with random number generation function and 

the error term are randomly chosen between Normal, T-student, Uniform, 

and Beta distributions. Parameters for each distribution are selected 

randomly but mainly around the following ranges: for Beta: sshape1=1.5, 

sshape2=1.5; for Normal: mean=0, SD=100; for Uniform: min=-0.5, 

max=0.5; and for T-student: mean=0, SD=100). The frequency of generated 

time series is equal to 12.  

Table 4.4-1. Additive error ETS models  

Trend Component 

Seasonal Component 

N (None) A (Additive) M (Multiplicative) 

N (None) ANN ANA ANM 

A (Additive) AAN AAA AAM 
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Ad (Additive damped) AAdN AAdA AAdM 

M (Multiplicative) AMN AMA AMM 

Md (Multiplicative damped) AMdN AMdA AMdM 

 

 To facilitate the training requirements of the proposed CNN, we split the data 

into three sets, with 80% of the time series for training, and the remaining two 

10% sets for validation and test set purpose. We train the network to assign 

the appropriate forecasting model in the training set series. Then it is used to 

label the series belonging to the validation and tests sets.  

In general, CNN needs a very large sample for training. This is also true for 

our proposed CNN meta-learner. This limits its applicability for many 

business forecasting applications. One way to overcome this limitation is to 

rely on transfer learning, where the network is trained on a large, often 

synthetic, dataset, and then applied to a different one with no further training. 

To assess the efficacy of this, we use the M3 competition dataset of monthly 

time series (Makridakis and Hibon, 2000), that contains real time series from 

various sources. These series exhibit different combinations of trend and 

seasonality, as well as having periods of outlying observations. We use the 

trained network of both the 4-model and the 15-model CNN for long time 

series, to access how it compares with conventional model selection done on 

each series of the M3 dataset independently, as is the standard practice.  

4.4.2  Convolutional Neural Networks Architecture 

We implement the CNN in Python using the Keras framework (Chollet, 

2015), using three convolutional layers with Rectified Linear unit activation 

functions (ReLU), with 100 filters and a receptive field of 12 periods. Each 

convolutional layer is paired with a pooling layer, using the average operator, 

and the stride is set to two. The receptive field of 12 periods, matches the 

sampling frequency of the data. Therefore, the filters, depending on their 

weights, are able to handle the seasonal nature of the time series. Too small 

receptive field can make the network struggle to represent the typical features 
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of the time series, while larger values can reduce the available sample by 

removing the information at the edge of the series, which can be a limiting 

factor for the short time series (Zhao et al., 2017). We pair the convolutional 

layers with pooling layers, using a stride of 2. In total we employ 3 such pairs.  

Moreover, in between the convolutional and pooling layer of the 2nd pair, we 

introduce a dropout layer. This helps to mitigate overfitting during training, 

by substituting a random 20% of the values passed from pair of layers to the 

next with 0. The use of dropout layers has been found to be an effective way 

to increase the generality of CNN and largely prevents overfitting 

(Goodfellow et al., 2016).  

The output of the last convolutional - pooling layers chain is 2-dimensional 

(pooled observations × number of filters). We transform this into a column 

vector and input it into the last fully connected layer that is tasked with the 

classification. For this layer, we use the softmax activation function. The 

output is either a 4-model or 15-model probability vector, which we can use 

to either select the most probable model or combine them using these 

probabilities as weights. This structure is chosen by evaluating different 

options and hyperparameters on the validation set. We choose the one that 

obtains the highest classification accuracy. 

We train the network using the rmsprop optimizer (Tieleman and Hinton, 

2012) measuring the classification discrepancy between the selection of the 

CNN and the true model that was used to generate the time series in the 

training set. During training, all weights corresponding to the filters in the 

convolutional layers and the fully connected classification layer are updated. 

Therefore, during training, CNN learns both how to construct the most helpful 

meta-features, but also how to use them to classify the time series. We argue 

that this flexibility is a major difference for convolutional meta-learning, 

where these two steps are performed separately and arguably with a different 

loss function.  

In choosing the hyper parameters and activation functions of CNN models, 

we use KerasTuner as a robust hyper parameter optimisation framework and 

its random search module. Finding the optimal neurons was performed by 
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searching among a group of 32, 64, 128, 256, and 512 neurons and ReLU, 

ELU for the activation functions. Regarding the initial learning rate choice, 

we searched in an interval of 0.001 to 0.1 with the step of 0.002. Furthermore, 

the learning rate decay of 0.001 is used as the learning rate scheduler. All 

regularisation parameters, such as dropout rates, are chosen using the 

aforementioned framework. 

Although the simulated time series have fixed and known lengths, that would 

not be generally expected in practice, and it is not true for the real dataset used 

in the evaluation. The difference in time series length is not a complication 

for the convolution layers, as they scan the time series locally. However, when 

we reach the classifier, the size of inputs must be fixed. To overcome this, we 

use a so-called global average pooling layer. At this point the output of the 

last pair of convolutional and pooling layers will be a matrix with 100 

columns, each corresponding to a filter used for the convolution. The rows 

depend on the length of the time series, the number of pooling layers and their 

stride. Therefore, this is what we expect to vary when the number of 

observations in a time series changes. The global average pooling layer 

reduces each column to a single point by using the average, resulting in a 

vector with 100 elements, matching the number of filters used, irrespectively 

of the size of the time series. This information is passed to the classifier, thus 

resolving any sample size issues. This final level of abstraction results in the 

rich meta-features that the CNN meta learner can provide in a data driven 

fashion. We contrast this with conventional meta-learning, where the 

modeller selects the nature and number of meta-features, which are again 

collated in a vector prior to being passed to the classifier. The CNN produces 

automatically as many as the number of filters in the convolutional layers, in 

a data driven way that matches the time series used for training with the 

specific forecasts considered.   

It should be noted that in order to be scalable, avoid overfitting, and have 

robust results, we used one structure in the design of CNNs in all of this study. 
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4.4.3 Benchmark Algorithms  

We use four for model selection benchmarks, two based on information 

criteria and two on time series analysis using statistical testing: (i) AICc; (ii) 

BICc; (iii) statistical tests, Cox-Stuart and Friedman; and (iv) statistical tests 

Mann-Kendall and Friedman.  

AICc and BICc are bias-corrected versions of AIC and BIC respectively, for 

small sample sizes (Burnham and Anderson, 2004). For larger samples, these 

become asymptotically the same as AIC and BIC, and therefore it is often 

recommended to use the corrected versions (Burnham and Anderson, 2004, 

Hyndman et al., 2008). Note that the ETS family of models with automatic 

model selection based on AIC has been found to perform very well on the M3 

dataset (Hyndman et al., 2002, Hyndman et al., 2008).   

The two selection algorithms based on statistical tests rely on the same 

seasonality test, but different trend tests. More specifically, for the trend tests, 

we use the Cox-Stuart (CS) and the Mann-Kendall (MK) tests (details in 

Appendix B). For the seasonality test, we rely on the Friedman (F) test, 

adapted to test whether the distribution of seasonal indices in a time series 

differs or not [see Appendix C, (Kourentzes, 2019b)]. Although there are 

many possible alternative tests, we rely on some of the most common ones, 

known for their robustness (Sun and Fang, 2017, Sayemuzzaman and Jha, 

2014).   

4.4.4 Evaluation scheme 

We evaluate both the accuracy of selecting the appropriate model, but also 

the resulting forecast accuracy. As the candidate ETS models’ parameters are 

optimised for each time series, similar models may perform well in terms of 

forecasting, even if only one is the correct generating model. Consider for 

example the case of ANN, the local level model, and AAN, the local trend 

model, where the latter can approximately behave like the former (Hyndman 

et al., 2008). This has been shown to be the case when selecting a model with 

information criteria, where different models may be picked by different 

criteria, which nonetheless perform similarly in terms of forecasting accuracy 

(Billah et al., 2006). Therefore, it is important to evaluate both aspects. 
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First, we evaluate the classification accuracy of the competing model 

selection approaches for the simulated time series. The classification accuracy 

provides the percentage of cases that a model is selected correctly by a 

selection methodology.  We do not provide this metric for the real time series 

of the M3 competition, as the true data generating process is unknown.  

To assess the forecast accuracy, we need to generate forecasts for each time 

series. To this end, we withhold the last 15 observations as a test set and 

produce rolling origin forecasts with a forecast horizon of 12-step ahead (Ord 

et al., 2017). This results in 3 forecasts per time series, exhausting the test set. 

At each origin the forecasting model is reoptimized. Moreover, these 15 

observations are not used for model selection. All forecasts are generated 

using ETS models, as implemented in the smooth package (Svetunkov, 2017) 

for R.  

We measure the forecast accuracy using the AvgRelMAE, proposed by 

Davydenko and Fildes (2013), due to its desirable statistical properties such 

as symmetric cost on positive and negative errors, as well as negligible chance 

to face computational issues. The AvgRelMAE is calculated as follows:  

AvgRelMAE = √∏
MAE𝑗

MAE𝑗,𝑏

𝑛
𝑗=1

𝑛
                                                                                                   (4-4) 

MAE𝑗:  
1

ℎ×𝑚
∑ ∑ |𝑦𝑗,𝑡 − 𝑦̂𝑗,𝑡|ℎ

𝑡=1
𝑚
𝑖=1                                                                                             (4-5) 

where 𝑦𝑗,𝑡  is the observation at period t for series j, 𝑦̂𝑗,𝑡  is the forecast at 

period t for series j, n is the number of time series that we summarise accuracy 

over, MAE𝑗  is the mean absolute error for time series j of forecast over m 

origins and h-step ahead and MAE𝑗,𝑏  is the equivalent for a benchmark 

forecast.  

We are interested in measuring the bias as well. For this, we rely on a 

modification of the AvgRelMAE, the AvgRelAME, that measures the 

absolute magnitude of bias in a prediction as:  

AvgRelAME = √∏
AME𝑗

AME𝑗,𝑏

𝑛
𝑗=1

𝑛
                                                                                                   (4-6)                                                             
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AME𝑗=  
1

𝑚
∑ ∑ |𝑦𝑗,𝑡 − 𝑦̂𝑗,𝑡|ℎ

𝑡=1
𝑚
𝑖=1                                                                                                 (4-7) 

AME𝑗  is the absolute mean error for time series j, of the forecast over m 

origins and h-steps ahead, and AME𝑗,𝑏  is the equivalent for a benchmark 

forecast.  

As a benchmark for both measures, we use the forecasting model selected by 

AICc for each time series. Both metrics are very simple to interpret. When 

their value is below 1 then the forecast is better than the benchmark and vice 

versa.  

4.4.5 Model combination  

For CNN, we calculate the weighted model combination with the weights 

being the probability of the forecasting models assigned by the network.  

As benchmarks, we use the AICc and BICc combination weights. Given a set 

of 𝑃 forecasting models, the combination weights (Wi) are calculated as: 

𝛥𝐴𝐼𝐶𝑖 =  𝐴𝐼𝐶𝑖 – 𝑚𝑖𝑛 𝐴𝐼𝐶(𝑃)    𝑖 = 1,2,3, … , 𝑃                                                          

(4-8)             

𝑊𝑖 =
𝑒(−0.5 𝛥𝐴𝐼𝐶𝑖)

∑ 𝑒(−0.5 𝛥𝐴𝐼𝐶𝑖)𝑃
𝑖=1

                                                                                                    (4-9)                              

A similar procedure is used for BICc combination weights.  

4.4.6 Python package 

For the purpose of providing a comprehensive framework of meta-learning in 

Python, we develop the MetaTS which is an open-source Python library 

designed to ease meta-learning for time series forecasting by offering a toolkit 

containing the typical components needed for a meta-learning workflow. In 

addition to provide new components and facilities, MetaTS aims to unify the 

available Python libraries which can be useful for meta-learning on time 

series data. For more information about the package, visit 

https://github.com/DrSasanBarak/metats. 
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4.5 Results of classification and forecasting with CNN 

and Benchmarks  

4.5.1 Classification accuracy  

  Table 4.5-1 presents the classification accuracy for the 4- and 15-model 

cases, for the two different time series history length. Each column refers to 

a scenario, and the best performing selection approach highlighted in 

boldface.  

In all cases, CNN performs best. First, we consider the 4-model case, where 

the AICc and BICc follow, and the statistical tests rank last. Note that the 

CNN and statistical tests display minimal differences for the different time 

series lengths. This is not the case for the information criteria which rely on 

having enough sample to estimate the model parameters adequately. Observe 

that the statistical tests perform rather poorly, even when the classification is 

between 4 quite distinct forecasts.   

Shifting our attention to the 15-model case the overall classification accuracy 

drops substantially. This is to be expected given the similarity of the different 

models (see). Furthermore, even without the exact model choice, the 

forecasting performance may not be substantially harmed, as it depends on 

the optimized model parameters. For example, although the linear and the 

damped trend models are distinct, the resulting prediction can be fairly similar 

for some parameter ranges. The CNN remains first, with an accuracy of 

slightly over 55%, while the information criteria are closer to 50%.  

Table 4.5-1. Classification accuracy of model selection 

 

Classification accuracy % 

4-model sample  15-model sample  

48 144  48 144 

AICc 90.65 93.82  43.60 50.10 

BICc 93.47 94.57  52.26 52.44 

CNN 98.97 98.87  58.04 55.65 

CS-F 49.82 48.80  — — 

MK-F 64.65 60.92  — — 



Chapter 4: Deep Learning for Forecasting Model Selection 

Sasan Barak -August 2021  115 

In Table 4.5-1, we do not report the results of the MK-F and CS-F for the 15-

model sample. The reason is the nature of MK-F and CS-F tests. Because they 

can only recognize trends and seasonality, they are divided into four classes 

depending on whether a time series has a trend/seasonality or not. Therefore, 

these algorithms can only be used to divide four classes and cannot separate 

15 different classes. 

Tables D-1 to D-4 in Appendix D, present the confusion matrices on the test 

set for the CNN for the 4 scenarios. The insight we gain from there is that 

ANN, which is a non-stationary model, is at times mixed with trend models. 

Furthermore, some issues appear between different trend types, i.e., linear and 

damped. As discussed in the design of the simulation, these issues are 

expected and are very challenging for all selection approaches considered.  

4.5.2 Forecasting errors 

Table 4.5-2 and Table 4.5-3 summarize the AvgRelMAE and the 

AvgRelAME for the 4 and 15 model selection scenarios, with the 44 and 144 

time series length, for the simulated datasets. The tables provide the results 

for both the selection and the combination scenarios. For each column, the 

best selection and combination result is presented in boldface.   

Table 4.5-4 shows that in all cases, the CNN chooses models that result in the 

lowest forecast errors, for selection or combination, across all scenarios. We 

observe that there are minimal differences between AICc and BICc, but also 

between the selection by statistical tests, where available. Given that the 

results are based on simulations, and the size can be increased arbitrarily, we 

do not test whether the differences are statistically significant.  Table 4.5-5 

presents the forecast bias magnitude results. In all but the 15-model and short 

history case the CNN ranks first. For that case, BICc performs particularly 

well. It is also interesting to observe that the reported similarities of the 

various benchmarks on forecast accuracy (Table 4.5-6) do not hold for the 

magnitude of the bias, in.  
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Table 4.5-2. AvgRelMAE for the 4-model and 15-model samples with 44 

and 144 time series length  

 

Model Choice  

4-model sample  15-model sample  

48 144  48 144 

Selection      

AICc 1 1  1 1 

BICc 0.983 1.015  1.026 0.991 

CNN 0.946 0.996  0.855 0.934 

CS-F 1.045 1.040  — — 

MK-F 1.027 1.029  — — 

Combination       

AICc Comb 1 1  1 1 

BICc Comb 0.962 1.026  1.138 0.980 

CNN Comb 0.951 0.989  0.867 0.935 

Table 4.5-3. AvgRelAME for the 4-model and 15-model samples with 44 

and 144 time series length 

 

Model Choice  

4-model sample  15-model sample  

48 144  48 144 

Selection      

AICc 1 1  1 1 

BICc 0.932 0.986  0.671 0.854 

CNN 0.847 0.985  0.959 0.849 

CS-F 1.173 1.187  — — 

MK-F 1.145 1.185  — — 

Combination       

AICc Comb 1 1  1 1 

BICc Comb 0.932 0.999  0.708 0.871 

CNN Comb 0.852 0.992  0.964 0.847 

Table 4.5-7 presents the overall results across the M3 monthly dataset. We 

can observe that although CNN is quite competitive, it does not rank first in 
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terms of AvgRelMAE, neither in the selection nor the combination tasks, with 

BICc being the overall best. Nonetheless, the CNN outperforms the AICc in 

the 4-model scenario. In terms of AvgRelAME, the CNN ranks first on the 4-

model case and when selecting a model in the 15-model case.  

Note that both AICc and BICc are choosing using the M3 data, while the CNN 

is trained in the simulated data and has not been trained in the richness of data 

structures observed in the M3 monthly data. In this respect, its forecasting 

performance is possible to improve with further additional training series. We 

argue that this is a worse case performance as all the simulated series, that the 

CNN was trained on, did not have any outliers or other effects present in the 

real time series. Nonetheless, it is possible to generate such cases and augment 

the performance of CNN, or alternatively use some of the real time series to 

fine tune the transfer learning for the CNN. 

Table 4.5-4. Overall CNN forecasting results on M3 dataset 

Model Choice  

4 class  15 class 

AvgRelMAE AvgRelAME  AvgRelMAE AvgRelAME 

Selection      

AICc 1 1  1 1 

BICc 0.967 0.767  1.002 0.895 

CNN 0.978 0.670  1.051 0.942 

CS-F 1.045 1.077  — — 

MK-F 1.142 1.125  — — 

Combination       

AICc Comb 1 1  1 1 

BICc Comb 0.974 0.826  1.006 0.900 

CNN combined 0.982 0.707  1.051 1.065 

 

To further understanding the M3 results, we rely on the model selection 

achieved by AICc to characterize the real time series. Although the assigned 

labels do not correspond to the true data generation process, it provides some 
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indication. To avoid overly influencing our analysis to the AICc selection, we 

further group together the labelled series into level, trend, seasonal, and trend-

seasonal series, rather than the individual ETS models. Table 4.5-2 to Table 

4.5-8 split the forecasting performance results for the M3 accordingly, for the 

4-model and 15-model cases.  

The tables are structured as follows. Each row corresponds to a time series 

type, labelled as described above. The columns further split the series into 

three groups: Short (≤ 48 observations), Medium (48 < observations ≤ 96), 

and Long (> 96 observations). For each case, we provide the performance of 

the AICc, BICc, and the proposed CNN. The best performing selection is 

highlighted in boldface.  

In and that report the 4-model case, we observe that the CNN performs poorly 

for the series that exhibit some seasonal component. The result seems to 

improve as the time series length increases. It is also interesting to note that 

when comparing the overall performance over sample sizes, CNN is a strong 

contender for short series.  

Table 4.5-5. AvgRelMAE for the 4-model sample by series type 

Series Type 

Short   Medium  Long 

AICc BICc CNN  AICc BICc CNN  AICc BICc CNN 

Level 1 1 0.984  1 1 1.031  1 1 1.042 

Trend 1 0.899 0.881  1 0.889 0.942  1 0.957 0.806 

Season 1 0.991 1.500  1 0.962 1.174  1 1.003 1.039 

Trend-season 1 0.480 0.971  1 0.911 1.265  1 1.015 1.216 

Overall 1 0.942 0.949  1 0.953 1.096  1 0.984 0.955 
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Table 4.5-6. AvgRelAME for the 4-model sample by series type 

 

Table 4.5-7 and Table 4.5-8 report the results for 15-model case, which 

largely mirror the ones reported for the 4-model case.   

  Table 4.5-7. AvgRelMAE for the 15-model sample by series type 

 

Table 4.5-8. AvgRelAME for the 15-model sample by series type 

Series Type 

Short   Medium  Long 

AICc BICc CNN  AICc BICc CNN  AICc BICc CNN 

Level 1 1 0.979  1 1 1.117  1 1 1.213 

Trend 1 0.845 0.783  1 0.394 0.305  1 0.721 0.281 

Season 1 0.668 0.824  1 1.123 1.358  1 0.816 0.929 

Trend-season 1 0.650 0.913  1 0.392 0.374  1 0.905 1.032 

Overall 1 0.906 0.874  1 0.598 0.590  1 0.792 0.631 

Series Type 

Short   Medium  Long 

AICc BICc CNN  AICc BICc CNN  AICc BICc CNN 

Level 1 1 0.975  1 1 0.997  1 1 0.990 

Trend 1 0.917 0.958  1 0.982 1.004  1 1.011 0.995 

Season 1 0.992 1.404  1 1.048 1.265  1 1.003 1.140 

Trend-season 1 0.765 0.698  1 1.157 1.247  1 1.078 0.919 

Overall 1 0.954 0.974  1 1.038 1.143  1 1.014 0.991 

Series Type 

Short   Medium  Long 

AICc BICc CNN  AICc BICc CNN  AICc BICc CNN 

Level 1 1 1.577  1 1 1.009  1 1 1.001 

Trend 1 0.839 1.005  1 0.713 0.634  1 0.857 0.828 

Season 1 0.825 1.736  1 1.048 1.282  1 0.847 0.907 

Trend-season 1 0.847 0.513  1 0.595 0.875  1 1.131 0.811 

Overall 1 0.902 1.248  1 0.809 0.878  1 0.891 0.880 
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4.6 Discussion  

4.6.1 Stability of the CNN model selection  

In this section, we look at the stability of model selection of CNN across 

forecast origins. CNN is not retrained and is simply re-run as new observation 

becomes available. We simulate four 480 length time series from models 

AAA, ANA, AAN, and ANA. We split each series in 433 sliding windows of 

48 data points each and test the pre-trained CNN on each. We record the 

selection for all 433 windows and present the results in Table 4.6-1. This 

experiment explicitly evaluates the potential of the CNN to select a model 

consistently. Note that here we ensure adequate testing samples by simulating 

a very long time series, rather than many short ones. The benefit in this is that 

we can test the model selection as the patterns in the series evolve, given their 

stochastic generation process. The results show that for AAA and ANN, CNN 

can detect the correct model always, while for ANA and AAN, the 

classification accuracy is lower, determining a weakness of the network on 

seasonal series.  

Table 4.6-1. Stability of the CNN model selection 

Target Correct model detection % 

ANN 100 

AAN 87.3 

ANA 47.9 

AAA 100 

As mentioned, CNN cannot detect seasonality correctly, which is one of its 

limitations. This is because the CNN algorithm needs lots of training data to 

perform best. Since the size of the time series in the dataset is not large, this 

algorithm does not understand well whether the time series has seasonality 

and therefore has a problem detecting it. Of course, this limitation can be 



Chapter 4: Deep Learning for Forecasting Model Selection 

Sasan Barak -August 2021  121 

overcome by adding a dummy variable related to seasonality as an input to 

the model. In other words, we first detect seasonality using ETS models and 

give its output as a dummy variable to the CNN model. In this case, the 

accuracy of CNN in predicting seasonality will be improved. 

4.6.2 Why the CNN works?  

We have argued that the CNN imposes multiple transformations and 

aggregations of the input time series, abstracting rich meta-features.  

 Figure 4-2 illustrates the values of two consecutive convolutional layers, on 

the left and the right side of the picture, for an example series. The original 

series is plotted on the top-

left panel. In the left side of the Figure 4-2, we provide 15 examples of filter 

outputs from the first convolutional layer, while the right side provides 9 

examples of the second convolutional layer. Observe how the original time 

series is transformed into multiple different views, as well as how the second 

layer looks at more aggregate views. As the information is processed through 

the network, higher abstractions of the time Figure 4-2 series are generated, 

recording and summarizing the time series in different ways. We argue that 

although many may not be interpretable by the user, they carry useful 

information for the selection of the appropriate forecast.   

Figure 4-2. Feature representation of two convolutional layers 
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More specifically we want to argue that why extracted and automated meta-

features from CNN in compare with hand-crafted statistical meta-features are 

more suitable for model selection in terms of both quality and efficiency? 

As an example, consider a set of time series randomly sampled from two 

different variants of the exponential smoothing family say ANN and MMM. 

We first extract a set of statistical features for our sample data using TsFresh 

(Christ et al., 2018) containing 426 features for each series. Figure 4-3 depicts 

the feature space after dimensionality reduction using principal component 

analysis (PCA). The x-axis and y-axis are PCA1 and PCA2 representing the 

direction of maximum variation through the data, respectively.  

 

Figure 4-3. Variation of the exponential smoothing family 

As you can see in the Figure 4-3, classifying the two models of the 

exponential smoothing family is not trivial in this space. The reason is that 

the statistical and hand-crafted features are not necessarily related to the data 

generation process. 

On the other hand, since the objective of a CNN is to capture hidden patterns 

inside the series, the layers have to contain the information that is enough to 

explain the data. In other words, the needed information for mimicking the 

data generation process. Therefore, it is not surprising to see that the features 

extracted from CNN are more informative, especially for model selection. So, 

in the next step, we extract a set of meta-features for the same data using a 
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CNN with different number of channels. Figure 4-4 demonstrates the feature 

space of CNN with respectively 1, 2, 4, and 8 channels. As you can see, as 

the number of channels increases, two classes become more isolated in the 

feature space. 
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Figure 4-4. CNN meta space for different channels 

Note in this example, the feature vector for each series extracted using 

TsFresh had a dimension of 426 while the dimension of extracted feature from 

CNN was 12 which is more efficient for any analysis including model 

selection. 

 

4.7 Conclusion  

In this chapter, we propose a novel use of deep learning in time series forecast 

selection. In contrast to the common model selection approaches, which are 

time-consuming in a big dataset or limited in the types of forecasts that can 
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consider, the proposed CNN based model selection procedure is able to both 

select among a variety of forecasts that are not comparable via information 

criteria or similar, but also avoid resource constraints, due to the 

computational needs of cross-validation or similar approaches.  

We train a CNN with one-dimensional convolutional layers on univariate 

time series for selecting amongst exponential smoothing models. The 

proposed CNN uses only past observations of the time series to assign an 

appropriate forecast to the time series. This is done by internally constructing 

features that help it match the available pool of forecasts to the provided time 

series data. We argue that this has a lot of similarities with meta-learning. 

However, our proposed approach has one important difference: it does not 

require the modeler to provide externally constructed meta-features. These 

are generated internally, not only simplifying and automating the process but 

also removing the need for the modeler to identify the appropriate set of meta-

features. We postulate that this added flexibility allows it to match its internal 

representations as needed to best distinguish between the available forecasts.  

Experimental results on both real and synthetic data show that the CNN 

performs very competitively against well-established approaches that use 

information criteria and statistical model selection. The former is often 

considered state-of-the-art for the exponential smoothing family of models. 

Due to the training needs for CNN, we rely on transfer learning to use it on 

real data. Although its performance is found to be promising, we identify a 

deficiency in detecting seasonal series. Further research should explore this 

further. Moreover, it would be pertinent to investigate further how to aid the 

learning of the network in the necessary transfer learning environment. 

Potential future studies include seeding the training set with real time series 

or introducing simulated examples of outliers and structural breaks.   
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5 Conclusion 

This thesis analysed different meta-learning facets as an automated model 

selection approach for time series forecasting. Three meta-learning elements 

including the meta-features, the base learners, and the meta-learners 

(classifiers) were studied, and novel ideas to improve the overall forecast 

accuracy were presented.  

In the second chapter, we investigated the idea of feature-based representation 

of time series and reviewed different groups of meta-features. Following this, 

we suggested a new group of meta-features based on statistical tests. To date, 

the use of statistical tests as meta-features has not been studied broadly in the 

literature; however, these tests have a solid background in time series 

analysis. Therefore, we explored their impact on the meta-learning accuracy 

and compared them with a prebuilt group of meta-features (tsfeatures). 

Moreover, the relationship between the meta-features, type of time series, and 

the base forecasters was evaluated to analyse the reason for obtaining good 

results in the meta-modelling. We empirically evaluated the new meta-

features performance compared to commonly accepted model selection 

approaches such as information criteria and aggregated selection to test our 

approach's efficiency. We found that the selection process of base learners 

and meta-features needs intelligent design. The extracted meta-features in all 

meta-learning problems should be representative for the problem domain and 

forecast models.  In the literature, none of the related studies justifies its 

reasons for choosing a different group of meta-features. This calls for more 

research into algorithmically choosing the most appropriate meta-features 

from a large pool of features.  

In the third chapter, to explore the impact of different meta-learning elements, 

we studied meta-learning from three aspects: meta-feature, meta-learner, and 

the pool of base forecasters. Studying these elements helped us to understand 

their impact on the meta-learning performance individually or 
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simultaneously.  For the first perspective, we analysed different sets of meta-

features from two prebuilt packages (Tsfresh, Tsfeatures) to study the 

features' importance in enhancing meta-learning accuracy. Second, to 

evaluate the meta-learners, we implemented three classification algorithms 

with single and ensemble properties. Finally, we applied two groups of base 

forecasters categorised as simple and complex forecasters. These models are 

categorised based on having internal model selection/combination features.  

Our finding shows that ensemble meta-learners, including random forest and 

XGBoost, perform best without excessive parameter tuning.  Moreover, we 

argue that the Tsfresh, which has more extensive meta-features, outperforms 

the Tsfeatures, due to the type of features that are available in the Tsfresh. 

When we analysed all groups of features, we found that meta-features that 

used model characteristics (e.g., based on the statistical test, AR and MA of 

a ARIMA model) are more informative than the descriptive features (such as 

quantiles, mean, std, statistical summary). Since the Tsfeatures consist of 

many statistical description-based meta-features, its low performance is not 

unexpected.  

In general, it was found that applying meta-learning as an automatic model 

selection outperformed all of the individual benchmark forecasters. Besides, 

we observed that simple base forecasters are more sensitive to the number of 

meta-feature groups. In contrast, dropping some of the least important feature 

groups increased the accuracy of meta-learning prediction for complex 

models. 

Regarding base forecasters, we found that when all individual forecasters are 

chosen from a homogenous set of methods, meta-learning improves the 

overall model selection performance. However, meta-learning does not add 

value to the forecast accuracy when a base forecaster dominates all 

other forecasters. On the other hand, using complex and powerful base 

forecasters shows the potential of meta-learning in obtaining even more 

accuracy.  Therefore, selecting a diverse and powerful pool of forecasters is 

essential to ensure the success of meta-learning.  

Still, manually selected meta-features cannot satisfy our automated model 

selection aim. Due to high dependence on human judgement, and potentially 
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low return of manually extracting features, it is helpful to find a method that 

can further reduce the human intervention and automate feature extracting 

and forecasting. In this case, deep CNN-based meta-learning proves to be a 

promising approach for capturing the time-series features and simultaneously 

forecasting them.   

Therefore, in the fourth chapter, we proposed a novel deep meta-learning 

method based on Convolutional Neural Networks (CNNs). The advantage of 

the proposed approach is that it can automatically extract and learn features 

from time series. The common meta-learning approaches require manually 

defining and extracting features in an unsupervised way, which costs much 

time and requires expert knowledge in time series features. These 

requirements are unrealistic when faced with many time series from various 

business domains. Instead, CNN automates this complicated feature 

extracting process in meta-learning.  

We trained the CNN using one-dimensional convolutional layers on 

univariate time series for selecting amongst exponential smoothing models. 

We employed the transfer learning idea to train the network on augmented 

synthetic data and evaluate it on real data. The time series augmentation was 

applied using a simulation package to enhance the sampling of ETS models. 

We increased the diversity of our simulated data generating a vast number of 

series using random model parameters.   

 Our findings showed that using our proposed deep meta-learning approach 

with transfer learning can achieve competitive results compared to the 

common meta-learning approaches. Our proposed deep meta-learning 

approach overcomes this challenge and manual feature generation and can be 

applied reliably in real-life business time series forecasting. Using augmented 

data to train our deep meta-learning approach dramatically increased the 

accuracy of our forecasting results. Having more representative simulated 

data could be a way to further improvement of the accuracy.  
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5.1  Implication for practice 

Based on Alvarado-Valencia et al. (2017) and Petropoulos et al. (2018), time 

series methods are relatively intuitive, which makes them easy to apply by 

the end-users. On the contrary, machine learning and deep learning methods 

are often regarded as black boxes and are complex methods. They often 

provide limited or no insights into how the forecasts are formed and which 

features are essential. Because of this critical attribute, users and industry are 

mainly prone to use statistical and “glass” box methods. Although Meta-

learning appears as an ML-based approach, it provides rule-based forecasting 

using the characteristics of the time series. In this way, the user can find the 

extracted rules from the meta-learner and understand the results by analysing 

the meta-features.  Due to the high interpretability potential of meta learning-

based model selection, users may find meta-learning easier to accept 

compared to standard (somewhat opaque) model selection approaches and 

forecast combinations. This user-study should be the focus of future work.  

Meta learning can propose solutions for large-sized industry problems and 

mid-sized (or smaller) forecasting problems. We motivate the thesis within 

the realm of big data, but the majority of companies are not dealing with many 

time series. Moreover, one of the main challenges in training deep NN models 

is the lack of sufficient data.  This thesis addresses this problem by providing 

a hybrid data augmentation and meta learning approach. The proposed 

transfer learning technique enhances the training rate of the time series and 

helps deep meta learners utilised in small-sized problems. An interesting 

question that remains is to what extend the success of transfer learning 

suggests that a company with a small to mid-sized forecasting problem can 

simply use a pre-trained meta-learner; this would overcome any data 

limitations. 

In this thesis, we deliberately focus on exponential smoothing based models.  

These models are widely used in practice. In a survey of forecasting practices, 

this family used in more than one-third of times (32.1%) (Weller and Crone, 

2012).  Furthermore, Fildes et al., (2009) reveal an empirical study result that 

explains “the most common approach to forecasting demand in support of 

supply chain planning involves the use of a statistical software system which 



Chapter 5: Conclusion 

Sasan Barak -August 2021  130 

incorporates a simple univariate forecasting method, such as exponential 

smoothing, to produce an initial forecast”. It specifies that three-fourth of 

companies use variants of exponential smoothing methods. Therefore, 

applying meta learning in exponential smoothing variants can improve the 

forecasting practice in the industry. Due to the simplicity of meta-learning, its 

implementation in a software is easy, at the same time, open-source packages 

such as MetaTS allow users to make more advanced uses. 

Finally, the growing willingness of industry to use open-source software 

makes deep NN applications more feasible in practice. This could help to 

move towards more automated model selection approaches such as meta-

learning.  

 

5.2 Limitations 

One of the main problems in CNN implementation for time series forecasting 

is the variable length of the time series, which CNN cannot easily handle. 

There are some approaches such as zero paddings, global pooling; however, 

the efficacy of these approaches is data dependent. We overcome this problem 

using an augmentation approach, with our simulated time series being as long 

as the longest real time series. Thus, in the testing phase, we used zero 

padding at the beginning of the shorter time series to align with the training 

data length. This helps us address the time series length problem, but the zero 

numbers at the beginning of the time series may decrease the accuracy of the 

CNN forecasting. We tried to use a rolling window approach, but the 

differences were marginal. Analysing different approaches for handling time 

series of different length with deep neural networks remains unresolved. This 

is more important in CNN because of its high sensitivity to the size of the 

input data. We have not reached the best solution here, and it is still an open 

question for further research.  

One of the unanswered questions here is the impact of the data on our results. 

Our methodology here is empirical research. This means that it is data-

dependent and model-dependent. We used NN3 and M3, which are types of 
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data on which exponential smoothing variants have performed better. Our 

augmented data is also based on exponential smoothing distribution. 

However, model selection from different data sources such as energy, call 

centres, finance, etc. is the ultimate goal of meta-learning. Although 

mentioned studies in the literature show that meta learning can outperform 

other approaches on a variety of data sources, using all those data sources 

together and training a meta-learner on all these different types of time series 

has not been investigated. Assessing the potential of the proposed model on 

different publicly available time series datasets such as the M4, M5, NN5, 

and NNGC and evaluating the effect of the number of time series in the meta-

learning approach is one way to start this investigation. Moreover, our 

candidate forecasting algorithms are from very related families of models. 

Having less related models such as LSTMs or models with global training is 

of further interest.  

Based on the amount of empirical evidence, we can argue that Meta-learning 

is a powerful approach in big data; however, there is not enough evidence that 

shows its potential for different types of data.  Cross-domain effects of time 

series on each other have not been analysed in this study. Maybe the cross-

domain transfer of meta-knowledge is a key for successfully forecasting 

multiple data sources in meta-learning.  

We used two sets of pre-made features. In the third chapter, we went beyond 

these two groups and evaluated the impact of different meta-features on 

forecasting accuracy. We empirically demonstrated the successful types of 

features by analysing the characteristics of the features.  The results may hold 

for different sets of features, but it is not a given. In this thesis we used to 

extensive sets of features, but these do not cover all possible types of 

specifications of features. Nonetheless, we argue that the approach we 

followed in the analysis here can be easily extended to include more features 

and investigate the usefulness of different classes of features not used here.  

Having an ensemble meta-learner instead of an individual classifier may 

improve classification accuracy. There is a direct relationship between the 

forecast accuracy and the classifier (meta-learner) accuracy in many meta-

learning implementations. Therefore, a fusion of models as an ensemble 
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meta-learner can increase the classifier competence. We did not use ensemble 

meta learner; however, it is worth noting that having more sophisticated 

classifiers in small-sized problems may lead to overfitting. Again, data 

augmentation and transfer learning may be helpful approaches to overcome 

data limitations.  

Another important aspect of this thesis is related to the extracted features from 

the CNN. We interpret these as meta-features, but we do not show how these 

correlates, if at all, with existing features, and we do not show what style of 

meta-features the CNN extracted. This is a limitation because the features 

extracted by CNN although perform well, are like a black box that lessen our 

interpretation power. The meaning of the power of interpretability is that, 

unlike the features that are extracted through statistical tests, we cannot talk 

about the nature of these features. 

Although we have used several methods, such as dropout and batch 

normalisation, which have been widely accepted in preventing overfitting for 

CNNs, the overfitting issue still partially exists in our proposed deep meta-

learning approach. This may also connect to the relatively worse performance 

of the CNN on seasonal time series.  

 

5.3 Further Research 

 

In our discussion so far, we already identified a number of open questions for 

future research. Here we list a number of potentially fruitful avenues of 

research in addition to the elements identified before. 

Exploring the potential of applying other state-of-the-art architectures of 

CNNs in our proposed deep meta-learning approach, such as Inception-v4 

(Szegedy et al., 2016) and Resnet (He et al., 2016). These are developed 

versions of the CNN model, and they show their superiority in image 

recognition tasks. However, there is a limited study to implement these 

models in time series forecasting and their potential in a one-dimensional 
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convolution are not clearly analysed.  We argue that some of the features of 

these innovations can potentially help generate richer meta-features. 

Similarly, implementing data augmentation using deep approaches such as 

Generative Adversarial Network and Variational Autoencoders. These 

approaches generate the time series using the extracted meta-features in the 

latent space of the time series and may better support a deep meta-learning 

approach.  

Remaining on the modelling front, the main focus of this work has been on 

the model selection, matching the common approach to forecasting in 

practice. Selecting a single time series model is often helpful for the users, 

especially when this is a well understood forecasting model, as it increases 

the trust in the forecasts. Nonetheless, there is a overwhelming evidence that 

forecast combination can result in more stable and accurate forecasts. 

Evaluating the performance of our proposed deep meta-learning approach for 

forecasting model combination using other loss functions, such as weighted 

average loss function could be useful. In general, more focus on model 

averaging than model selection could be useful. 

In terms of the base forecaster models, applying less related models such as 

LSTM and RNN to the current forecasting algorithms and evaluating their 

impact on the accuracy could be useful. We identified that when there is a 

substantially better base forecaster then meta-learning adds limited value. In 

this work we used models fitted to individual time series only. It is of interest 

to understand how this finding holds when we use global forecasting models, 

trained on multiple time series, whether this is conditional on individually 

trained models, as the global models are typically not optimal on any single 

time series, in the usual minimum fitting error sense.   

Finally, in terms of data we already identified the desirability for using a 

variety of time series domains, especially for instance for the seasonal case. 

We also note that training with simulated data needs further investigation for 

the parameter tuning of the generator. Here we simulated data that reasonably 

matched the real times series. However, this may in fact limit the learning of 



Chapter 5: Conclusion 

Sasan Barak -August 2021  134 

the CNN and a more diverse set of parameters for simulating time series could 

be beneficial. This, for example, may also resolve the poor performance in 

seasonal data. Furthermore, adding simulated data of outliers and structural 

breaks and evaluating the potential of meta-learning in this data is of interest, 

particularly when these are very common in some forecasting applications, 

such as retailing.  

Overall, meta-learning is a very promising alternative to conventional model 

selection methodologies. We have identified a number of ways to progress 

the research based on the findings of this thesis. We argue that although 

standard meta-learning works well, leveraging the potential of deep learning 

and CNNs can lead to exciting future research.  
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6 Appendices 
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Appendix A. Features classification based on their 

calculation method  

 

Table A-1.  Features classification based on their calculation method 

Feature group Features 

Dickey Fuller 

2 features including augmented dickey fuller “pvalue” and “teststat” attributes. 

1. value__augmented_dickey_fuller__attr_"pvalue" 

2. value__augmented_dickey_fuller__attr_"teststat" 

 
 

Auto Regressive 

2 features extracted from autoregressive process, including AR(10) first and 

second coefficients. 

1. value__ar_coefficient__k_10__coeff_0 

2. value__ar_coefficient__k_10__coeff_1 
 

Auto Correlation 

19 features obtained from: 

• the differenced series of autocorrelation function (lag 1 and 10); 
• the twice-differenced series of autocorrelation function (lag 1 and 10); 
• error autocorrelation function for lags 1 and 10 
• seas_acf1: the sum of squares of the first 10 autocorrelation coefficients 
• the variance and median of aggregate autocorrelation vectors of lags 1 to 9; 
• autocorrelation value for lags 2 and 4 
• partial autocorrelation of the time series (lags of 1 to 9); 

 

1. diff1_acf1 

2. diff1_acf10 

3. diff2_acf1 

4. diff2_acf10 

5. e_acf1 

6. e_acf10 

7. seas_acf1 

8. value__agg_autocorrelation__f_agg_"median" 

9. value__agg_autocorrelation__f_agg_"var" 

10. value__autocorrelation__lag_2 

11. value__autocorrelation__lag_4 

12. value__partial_autocorrelation__lag_1 

13. value__partial_autocorrelation__lag_2 

14. value__partial_autocorrelation__lag_3 

15. value__partial_autocorrelation__lag_4 

16. value__partial_autocorrelation__lag_5 

17. value__partial_autocorrelation__lag_7 

18. value__partial_autocorrelation__lag_8 
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19. value__partial_autocorrelation__lag_9 
 

Energy 

10 features calculated as the sum of squares of chunk I (for I from 1 to 10) out of 

10 chunks expressed as a ratio with the sum of squares over the whole series. 

1. value__abs_energy 
2. value__energy_ratio_by_chunks__num_segments_10__segment_focus_0 
3. value__energy_ratio_by_chunks__num_segments_10__segment_focus_1 
4. value__energy_ratio_by_chunks__num_segments_10__segment_focus_3 
5. value__energy_ratio_by_chunks__num_segments_10__segment_focus_4 
6. value__energy_ratio_by_chunks__num_segments_10__segment_focus_5 
7. value__energy_ratio_by_chunks__num_segments_10__segment_focus_6 
8. value__energy_ratio_by_chunks__num_segments_10__segment_focus_7 
9. value__energy_ratio_by_chunks__num_segments_10__segment_focus_8 
10. value__energy_ratio_by_chunks__num_segments_10__segment_focus_9 

Entropy 

5 features including Shanon entropy, binned entropy calculated based on 

different equidistant bins of time series, and cross power spectral density of the 

time series at different frequencies (3 coefficients). 

1. Shanon entropy 

2. value__binned_entropy__max_bins_10 

3. value__spkt_welch_density__coeff_2 

4. value__spkt_welch_density__coeff_5 

5. value__spkt_welch_density__coeff_8 
 

Wavelet Transformation 

12 features of continuous wavelet transformation (cwt) considering multiple 

values for two different parameters including : widths, coefficients. 

 

1. value__cwt_coefficients__widths_(2,5,10,20)__coeff_0__w_2 
2. value__cwt_coefficients__widths_(2,5,10, 0)__coeff_0__w_5 
3. value__cwt_coefficients__widths_(2,5,10, 20)__coeff_13__w_5 
4. value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_14__w_2 
5. value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_14__w_20 
6. value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_2__w_2 
7. value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_2__w_5 
8. value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_4__w_2 
9. value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_5__w_2 
10. value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_6__w_2 
11. value__cwt_coefficients__widths_(2, 5, 10, 20)__coeff_7__w_10 
12. value__number_cwt_peaks__n_1 

Fourier Transformation 

35 features are extracted from the one-dimensional discrete Fourier Transform 

by fast Fourier transformation algorithm including real part (attr="real"), the 

imaginary part (attr="imag"), the absolute value (attr="abs") and the angle in 

degrees (attr="angle") (35 features); and 4 features including spectral centroid 

(mean), variance, skew, and kurtosis of the absolute Fourier transform spectrum. 

1. value__fft_coefficient__coeff_0__attr_"abs" 

2. value__fft_coefficient__coeff_1__attr_"abs" 

3. value__fft_coefficient__coeff_1__attr_"angle" 

4. value__fft_coefficient__coeff_1__attr_"imag" 

5. value__fft_coefficient__coeff_1__attr_"real" 
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6. value__fft_coefficient__coeff_10__attr_"abs" 

7. value__fft_coefficient__coeff_10__attr_"angle" 

8. value__fft_coefficient__coeff_10__attr_"real" 

9. value__fft_coefficient__coeff_2__attr_"abs" 

10. value__fft_coefficient__coeff_2__attr_"angle" 

11. value__fft_coefficient__coeff_2__attr_"imag" 

12. value__fft_coefficient__coeff_2__attr_"real" 

13. value__fft_coefficient__coeff_3__attr_"abs" 

14. value__fft_coefficient__coeff_3__attr_"angle" 

15. value__fft_coefficient__coeff_3__attr_"imag" 

16. value__fft_coefficient__coeff_4__attr_"abs" 

17. value__fft_coefficient__coeff_4__attr_"angle" 

18. value__fft_coefficient__coeff_4__attr_"imag" 

19. value__fft_coefficient__coeff_5__attr_"abs" 

20. value__fft_coefficient__coeff_5__attr_"angle" 

21. value__fft_coefficient__coeff_5__attr_"imag" 

22. value__fft_coefficient__coeff_5__attr_"real" 

23. value__fft_coefficient__coeff_6__attr_"abs" 

24. value__fft_coefficient__coeff_6__attr_"angle" 

25. value__fft_coefficient__coeff_6__attr_"imag" 

26. value__fft_coefficient__coeff_7__attr_"abs" 

27. value__fft_coefficient__coeff_7__attr_"angle" 

28. value__fft_coefficient__coeff_7__attr_"imag" 

29. value__fft_coefficient__coeff_8__attr_"abs" 

30. value__fft_coefficient__coeff_8__attr_"angle" 

31. value__fft_coefficient__coeff_8__attr_"real" 

32. value__fft_coefficient__coeff_9__attr_"abs" 

33. value__fft_coefficient__coeff_9__attr_"angle" 

34. value__fft_coefficient__coeff_9__attr_"imag" 

35. value__fft_coefficient__coeff_9__attr_"real" 

36. value__fft_aggregated__aggtype_"centroid" 

37. value__fft_aggregated__aggtype_"variance" 

38. value__fft_aggregated__aggtype_"kurtosis" 

39. value__fft_aggregated__aggtype_"skew" 
 

STL 

19 features including linearity, trend, seasonal_period, and seasonal_strength 

calculated based on the coefficients of an orthogonal quadratic regression; Also 

STL decomposed features extracted from linear least-squares regression for 

values of the time series that were aggregated over (10 and 5 ) chunks,  consisting 

of “pvalue”, “R square value (rvalue)”, “intercept”, “slope”, “standard error 

(stderr)” of linear least-squares regression for values of the time series that were 

aggregated over (10 and 5 ) chunks.  

 

1. linearity 

2. seasonal_period 

3. seasonal_strength 
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4. trend 

5. value__agg_linear_trend__f_agg_"max"__chunk_len_10__attr_"stderr" 

6. value__agg_linear_trend__f_agg_"mean"__chunk_len_10__attr_"stderr" 

7. value__agg_linear_trend__f_agg_"min"__chunk_len_10__attr_"intercept" 

8. value__agg_linear_trend__f_agg_"min"__chunk_len_10__attr_"slope" 

9. value__agg_linear_trend__f_agg_"min"__chunk_len_10__attr_"stderr" 

10. value__agg_linear_trend__f_agg_"min"__chunk_len_5__attr_"rvalue" 

11. value__agg_linear_trend__f_agg_"min"__chunk_len_5__attr_"stderr" 

12. value__agg_linear_trend__f_agg_"var"__chunk_len_10__attr_"rvalue" 

13. value__agg_linear_trend__f_agg_"var"__chunk_len_10__attr_"stderr" 

14. value__agg_linear_trend__f_agg_"var"__chunk_len_5__attr_"rvalue" 

15. value__agg_linear_trend__f_agg_"var"__chunk_len_5__attr_"slope" 

16. value__agg_linear_trend__f_agg_"var"__chunk_len_5__attr_"stderr" 

17. value__c3__lag_3 

18. value__linear_trend__attr_"pvalue" 

19. value__linear_trend__attr_"stderr" 
 

Quantiles 

23 features related to a corridor selected by specific values for low and high 

quantiles of the time series; Features are calculated as the outputs of applying 

different aggregator function (mean and variance) on consecutive changes of 

values in each corridor. The change values can be considered as absolute or not. 

1. value__change_quantiles__f_agg_"mean"__isabs_True__qh_0.2__ql_0.0 

2. value__change_quantiles__f_agg_"mean"__isabs_True__qh_0.4__ql_0.2 

3. value__change_quantiles__f_agg_"mean"__isabs_True__qh_0.6__ql_0.4 

4. value__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.4 

5. value__change_quantiles__f_agg_"mean"__isabs_True__qh_0.8__ql_0.6 

6. value__change_quantiles__f_agg_"mean"__isabs_True__qh_1.0__ql_0.8 

7. value__change_quantiles__f_agg_"var"__isabs_False__qh_0.2__ql_0.0 

8. value__change_quantiles__f_agg_"var"__isabs_False__qh_0.4__ql_0.2 

9. value__change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.0 

10. value__change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.2 

11. value__change_quantiles__f_agg_"var"__isabs_False__qh_0.6__ql_0.4 

12. value__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.2 

13. value__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.4 

14. value__change_quantiles__f_agg_"var"__isabs_False__qh_0.8__ql_0.6 

15. value__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.0 

16. value__change_quantiles__f_agg_"var"__isabs_False__qh_1.0__ql_0.2 

17. value__change_quantiles__f_agg_"var"__isabs_True__qh_0.4__ql_0.0 

18. value__change_quantiles__f_agg_"var"__isabs_True__qh_0.4__ql_0.2 

19. value__change_quantiles__f_agg_"var"__isabs_True__qh_0.6__ql_0.4 

20. value__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.4 

21. value__change_quantiles__f_agg_"var"__isabs_True__qh_0.8__ql_0.6 

22. value__index_mass_quantile__q_0.1 

23. value__index_mass_quantile__q_0.9 

Descriptive Statistics 
38 features including statistical summary of the time series such as mean, variance, 

minimum, maximum in conjunction with other feature related to distribution of 

data  
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1. curvature 

2. nperiods 

3. peak 

4. spike 

5. trough 

6. value__ complexity-invariant distance for time series 

7. value__count_above_mean 

8. value__has_duplicate 

9. value__has_duplicate_min 

10. value__kurtosis 

11. value__large_standard_deviation__r_0.15 

12. value__large_standard_deviation__r_0.2 

13. value__large_standard_deviation__r_0.25 

14. value__large_standard_deviation__r_0.30 

15. value__large_standard_deviation__r_0.35 

16. value__last_location_of_minimum 

17. value__longest_strike_above_mean 

18. value__longest_strike_below_mean 

19. value__maximum 

20. value__minimum  

21. value__mean_second_derivative_central 

22. value__mean_abs_change 

23. value__number_peaks__n_10 

24. value__number_peaks__n_5 

25. value__percentage_of_reoccurring_datapoints_to_all_datapoints 

26. value__ratio_beyond_r_sigma__r_0.5 

27. value__ratio_beyond_r_sigma__r_1 

28. value__ratio_beyond_r_sigma__r_2 

29. value__ratio_beyond_r_sigma__r_2.5 

30. value__ratio_beyond_r_sigma__r_3 

31. value__ratio_beyond_r_sigma__r_5 

32. value__skewness 

33. value__standard_deviation 

34. value__sum_of_reoccurring_data_points 

35. value__symmetry_looking__r_0.05 

36. value__symmetry_looking__r_0.1 

37. value__time_reversal_asymmetry_statistic__lag_3 

38. value__variance 
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Appendix B. Trend tests 

B1. Cox-Stuart test 

The Cox-Stuart test non-parametrically defines whether there is a change in 

the mean of the series. Given a set of ordered observations X1, X2, ..., Xn, let 

𝑐 =  
𝑛

2
   𝑖𝑓 𝑛   𝑒𝑣𝑒𝑛                                                                             (B-1) 

   =  
(𝑛+1)

2
  𝑖𝑓 𝑛 𝑜𝑑𝑑 

We split the time series into two parts prior and after 𝑐. Then pair the data 

as X1, X1+c, X2, X2+c, ..., Xn-c, Xn. The Cox-Stuart test applies a sign test to the 

paired data (Hollander et al., 2013). Cox-Stuart test is applied to the de-

seasonalized time series with tsutils package (Kourentzes, 2019a) in R. 

B2. Mann-Kendall test  

Mann-Kendall trend test with the null hypothesis of “no trend” (MK) is 

calculated according to: 

                                  (B-2) 

where        
( )

1 0

0 0

1 0

if X

if X

if X

sgn x




= =
− 

 .                                                                                                         (B-3) 

The statistic S is closely related to Kendall’s τ, as given by τ = S / D where  

          (B-4) 

P is the number of the tied groups in the data set, and tj is the number of data 

points in the jth tied group (Pohlert, 2016). Mann-Kendall trend test is applied 

to the deseasonalized time series with Trend package (Pohlert et al., 2016) in 

R.  
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Appendix C. Seasonality test 

C1. Friedman test  

The test is a nonparametric alternative to ANOVA, and we apply it to the de-

trended time series’ seasonal indices, as extracted by classical decomposition 

(Hyndman and Athanasopoulos, 2018). No normality assumption is required 

for the distributions of the seasonal indices. The Friedman statistic 𝑄 is given 

by 

𝑄 =
12

𝑛𝐾(𝐾+1)
𝑆𝑆𝑐𝑜𝑙

′   ,                                                                                            (C-1) 

 

where colSS  is the sum of squares between groups using the ranks instead of 

raw data. The Friedman test assumes that there are K experimental treatments 

(K ≥ 2), and the observations are arranged in n blocks. When K ≥ 5, the 

probability distribution of 𝑄 can be approximated by that of a chi-squared 

distribution and the null hypothesis is rejected when 𝑄 > 𝜒𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙
2 . The test is 

applied with tsutils package (Kourentzes, 2019a) in R. 
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Appendix D. CNN confusion matrix 

 

Table D-1. CNN confusion matrix for 144 length time series with 15 

classes 

T\P 
AN

N 

MN

N 

AA

N 

AAD

N 

MA

N 

MA

DN 

AN

A 

MN

A 

AA

A 

AA

DA 

MA

A 

MA

DA 

MN

M 

MA

M 

MAD

M 

ANN 
19

5 
0 42 4 1 0 2 0 0 8 0 3 10 0 3 

MNN 1 46 0 203 0 2 0 0 0 0 0 0 0 0 1 

AAN 
17

8 
1 58 1 1 0 6 1 0 10 0 1 4 1 4 

AAD

N 
0 33 0 210 0 1 0 0 0 0 0 0 0 0 0 

MAN 0 0 0 0 178 0 0 0 0 0 0 0 24 23 2 

MAD

N 
0 2 0 0 0 207 0 0 0 0 0 0 0 0 35 

ANA 12 0 8 0 2 0 97 2 5 69 1 26 10 0 0 

MNA 0 0 0 0 0 0 1 191 1 0 45 0 0 1 0 

AAA 1 0 1 1 0 0 0 0 
11

1 
7 0 139 0 0 3 

AAD

A 
20 0 20 0 2 0 53 0 12 116 0 39 12 0 0 

MAA 0 0 0 0 0 0 1 217 0 0 60 0 0 2 0 

MAD

A 
0 1 0 0 0 1 3 0 90 7 0 110 0 0 9 

MN

M 
3 0 1 0 155 0 0 0 0 0 0 0 71 17 0 

MA

M 
0 0 0 0 31 6 0 11 0 0 0 0 3 189 2 

MAD

M 
0 0 0 0 0 1 0 0 0 0 0 1 0 0 248 

Accuracy on test data: 55.65% 



Chapter 6: Appendices 

Sasan Barak -August 2021  144 

Table D-2. CNN confusion matrix for 48 length time series with 15 

classes 

T/P 
AN

N 

MN

N 

AA

N 

AAd

N 

MA

N 

MAd

N 

AN

A 

MN

A 

AA

A 

AAd

A 

MA

A 

MA

dA 

MN

M 

MA

M 

MAd

M 

ANN 
46

9 
27 0 0 0 0 0 0 0 0 0 0 3 1 0 

MNN 24 468 0 2 5 1 0 0 0 0 0 0 0 0 0 

AAN 1 5 
24

7 
238 7 2 0 0 0 0 0 0 0 0 0 

AAd

N 
1 6 

23

6 
239 15 2 0 0 0 0 0 0 0 1 0 

MAN 0 8 0 3 431 39 0 0 0 2 15 2 0 0 0 

MAd

N 
2 9 1 4 396 56 0 0 1 0 27 4 0 0 0 

ANA 0 0 0 0 0 0 
42

9 
62 0 1 0 0 8 0 0 

MNA 0 0 0 0 0 0 
13

6 
278 2 2 2 9 71 0 0 

AAA 0 0 1 0 1 0 2 6 
23

1 
244 2 12 1 0 0 

AAd

A 
0 0 0 0 2 0 2 14 

19

8 
256 7 21 0 0 0 

MAA 0 0 0 0 22 2 9 60 16 10 226 151 10 0 4 

MAd

A 
0 0 0 0 21 5 10 59 8 4 165 211 8 3 6 

MN

M 
4 3 0 0 0 0 17 42 0 0 0 0 416 1 17 

MA

M 
2 0 0 1 0 0 0 4 0 0 4 1 67 47 374 

MAd

M 
1 0 0 0 0 0 0 5 0 0 4 3 79 59 349 

classification accuracy: 58.04 % 
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Table D-3. CNN Confusion Matrix for 48 length time series with 4 

classes  

AAN AAA ANA ANN T\P 

2 0 0 998 ANN 

0 0 1000 0 ANA 

2 973 25 0 AAA 

988 0 0 12 AAN 

 

Table D-4. CNN Confusion Matrix for 144 length time series with 4 

classes  

ANN ANA AAN AAA T\P 

0 24 5 972 AAA 

2 0 982 6 AAN 

0 1010 0 8 ANA 

991 0 0 0 ANN 
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