
It is too hot in here!

A performance, energy and heat

aware scheduler for Asymmetric

multiprocessing processors in

embedded systems.

Willy Michel Henri Wolff, BSc, MSc

School of Computing and Communications

Lancaster University

A thesis submitted for the degree of

Doctor of Philosophy

April, 2023

It is too hot in here!

A performance, energy and heat aware scheduler for Asymmetric

multiprocessing processors in embedded systems.

Willy Michel Henri Wolff, BSc, MSc.

School of Computing and Communications, Lancaster University

A thesis submitted for the degree of Doctor of Philosophy. April, 2023

Abstract

Modern architecture present in self-power devices such as mobiles or tablet

computers proposes the use of asymmetric processors that allow either energy-

efficient or performant computation on the same SoC.

For energy efficiency and performance consideration, the asymmetry resides in

differences in CPU micro-architecture design and results in diverging raw computing

capability. Other components such as the processor memory subsystem also show

differences resulting in different memory transaction timing. Moreover, based on a

bus-snoop protocol, cache coherency between processors comes with a peculiarity in

memory latency depending on the processors operating frequencies.

All these differences come with challenging decisions on both application

schedulability and processor operating frequencies. In addition, because of the small

form factor of such embedded systems, these devices generally cannot afford active

cooling systems. Therefore thermal mitigation relies on dynamic software solutions.

Current operating systems for embedded systems such as Linux or Android

do not consider all these particularities. As such, they often fail to satisfy user

expectations of a powerful device with long battery life.

To remedy this situation, this thesis proposes a unified approach to deliver high-

performance and energy-efficiency computation in each of its flavours, considering

the memory subsystem and all computation units available in the system. Perfor-

mance is maximized even when the device is under heavy thermal constraints. The

ii

proposed unified solution is based on accurate models targeting both performance

and thermal behaviour and resides at the operating systems kernel level to manage

all running applications in a global manner.

Particularly, the performance model considers both the computation part and

also the memory subsystem of symmetric or asymmetric processors present in

embedded devices. The thermal model relies on the accurate physical thermal

properties of the device. Using these models, application schedulability and

processor frequency scaling decisions to either maximize performance or energy

efficiency within a thermal budget are extensively studied.

To cover a large range of application behaviour, both models are built and

designed using a generative workload that considers fine-grain details of the

underlying microarchitecture of the SoC. Therefore, this approach can be derived

and applied to multiple devices with little effort.

Extended evaluation on real-world benchmarks for high performance and general

computing, as well as common applications targeting the mobile and tablet market,

show the accuracy and completeness of models used in this unified approach to

deliver high performance and energy efficiency under high thermal constraints for

embedded devices.

iii

Declaration

I declare that the work presented in this thesis is, to the best of my knowledge and

belief, original and my own work. The material has not been submitted, either in

whole or in part, for a degree at this, or any other university.

Willy Michel Henri Wolff

April, 2023

iv

Acknowledgements

This PhD would not have been possible without the funding from Lancaster

University by an EPSRC studentship and an industrial CASE studentship with

ARM.

First, I want to thank my supervisors: Dr. Barry Porter, Dr. Zheng Wang and

Geraint North; and the jury: Pr. Joe Finney and Pr. Steve Furber. Many thanks

for your crucial feedback.

I would like to thank Pr. Philippe Clauss and Pr. Cédric Bastoul. Without you,

I would never have embarked on this path.

Special thanks to Arm folks in Cambridge, Austin and Manchester that helped

me to tame the beast I was working on. Especially to David Brooke and Christopher

Tory, I will always be grateful to have been able to snoop your knowledge out-of-

order. You helped me to put my work in-order. Thank you guys, I will continue to

speculate before retiring.

Thanks to the CE-OSS-kernel-power team in Arm for the long discussions about

scheduling and power.

Thanks to Pierre David, Alain Ketterlin and people from ICPS at Université de

Strasbourg that helped me throughout my studies.

I want to thank all my colleagues in SCC. Particularly Ben and Andrew with

whom I had the pleasure of sharing an office. And Helena, Alex and Pierre with

whom I shared TA and some other nice discussions about PhD life.

Thank you to Peter Garraghan, Bran Knowles, John Vidler and Andrew Scott

for helping me to tackle the issues from a different perspective.

Many thanks to my friends near and far who have supported me through these

years, Adilla, Juan, Déborah, Tidiane, Flow, Gilles, Kevin, Lucie, Pauline, Romain,

Yann, Fab, Julien, Didier, Adam, Maemi, Fan, Dji, Mat, PK and Josh.

Thank you Seb, it was short but intense. I truly miss you.

Thanks to my family that supported me throughout my studies.

Leaving the most important until last, my wife Aude. Your unwavering love

v

during these long long nights and all these years is priceless.

vi

List of Publications

Contributing Publications

Wolff, W., Porter, B., “Performance Optimization on big.LITTLE Architectures:

A Memory-latency Aware Approach”. In: The 21st ACM SIGPLAN/SIGBED

Conference on Languages, Compilers, and Tools for Embedded Systems. New York,

NY, USA: ACM, June 2020, pp. 51–61. isbn: 9781450370943. doi: 10.1145/

3372799.3394370

Wolff, W., Porter, B., What am I waiting for? Energy and Performance

Optimization on big.LITTLE Architectures: A Memory-latency Aware Approach.

Dec. 2020

Additional Publications

Taylor, B., Marco, V. S., Wolff, W., Elkhatib, Y., Wang, Z., “Adaptive deep

learning model selection on embedded systems”. In: Proceedings of the 19th ACM

SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools

for Embedded Systems. New York, NY, USA: ACM, June 2018, pp. 31–43. isbn:

9781450358033. doi: 10.1145/3211332.3211336

Ye, G., Tang, Z., Fang, D., Chen, X., Wolff, W., Aviv, A. J., Wang, Z., “A Video-

based Attack for Android Pattern Lock”. In: ACM Transactions on Privacy and

Security 21.4 (Nov. 2018), pp. 1–31. issn: 2471-2566. doi: 10.1145/3230740

Linux Kernel and Other Project Contributions

Szyprowski, M., Kozlowski, K., Wolff, W., ARM: dts: exynos: Disable frequency

scaling for FSYS bus on Odroid XU3 family. 2020. url: https://git.kernel.

org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9ff416cf45a

08f28167b75045222c762a0347930

vii

https://doi.org/10.1145/3372799.3394370
https://doi.org/10.1145/3372799.3394370
https://doi.org/10.1145/3211332.3211336
https://doi.org/10.1145/3230740
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9ff416cf45a08f28167b75045222c762a0347930
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9ff416cf45a08f28167b75045222c762a0347930
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9ff416cf45a08f28167b75045222c762a0347930

Luba, L., Choi, C., Wolff, W., Kozlowski, K., memory: samsung: exynos5422-dmc:

Add module param to control IRQ mode. 2020. url: https://git.kernel.org/

pub/scm/linux/kernel/git/stable/linux.git/commit/?id=4fc9a0470d2dc

370289e9d883feb41e5dd2c6303

Luba, L., Choi, C., Wolff, W., Kozlowski, K., memory: samsung: exynos5422-dmc:

Adjust polling interval and uptreshold. 2020. url: https://git.kernel.org/pub/

scm/linux/kernel/git/stable/linux.git/commit/?id=74ca9e46107879551e

2625bfbfbfd71da1881b82

Wolff, W., Lezcano, D., Kumar, V., thermal/drivers/cpufreq cooling: Fix return

of cpufreq set cur state. 2020. url: https://git.kernel.org/pub/scm/linux/

kernel/git/stable/linux.git/commit/?id=ff44f672d74178b3be19d41a169b

98b3e391d4ce

Mihailescu, M., Wolff, W., Kozlowski, K., Szyprowski, M., ARM: dts: exynos:

Add CPU perf counters to Exynos54xx boards. 2017. url: https://git.kernel.

org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=c4f2fc00defc

65950dfabce7a4c70cd2a289111d

Wolff, W., Kozlowski, K., Zolnierkiewicz, B., ARM: dts: exynos: fix incomplete

Odroid-XU3/4 thermal-zones definition. 2017. url: https://git.kernel.org/

pub/scm/linux/kernel/git/stable/linux.git/commit/?id=e740731dae9470f

7fb86efa643ec881a66d4e4c0

Wolff, W., Rui, Z., thermal: fix source code documentation for parameters. 2017.

url: https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.

git/commit/?id=0d76d6e1eede5f2aa13695cb4c9d763bb3555e3e

Wolff, W. ARM: dts: exynos: add CCI-400 PMU nodes support to Exynos542x

SoCs. Under review. 2019. url: https://lore.kernel.org/patchwork/patch/

1061141/

viii

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=4fc9a0470d2dc370289e9d883feb41e5dd2c6303
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=4fc9a0470d2dc370289e9d883feb41e5dd2c6303
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=4fc9a0470d2dc370289e9d883feb41e5dd2c6303
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=74ca9e46107879551e2625bfbfbfd71da1881b82
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=74ca9e46107879551e2625bfbfbfd71da1881b82
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=74ca9e46107879551e2625bfbfbfd71da1881b82
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=ff44f672d74178b3be19d41a169b98b3e391d4ce
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=ff44f672d74178b3be19d41a169b98b3e391d4ce
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=ff44f672d74178b3be19d41a169b98b3e391d4ce
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=c4f2fc00defc65950dfabce7a4c70cd2a289111d
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=c4f2fc00defc65950dfabce7a4c70cd2a289111d
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=c4f2fc00defc65950dfabce7a4c70cd2a289111d
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=e740731dae9470f7fb86efa643ec881a66d4e4c0
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=e740731dae9470f7fb86efa643ec881a66d4e4c0
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=e740731dae9470f7fb86efa643ec881a66d4e4c0
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=0d76d6e1eede5f2aa13695cb4c9d763bb3555e3e
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=0d76d6e1eede5f2aa13695cb4c9d763bb3555e3e
https://lore.kernel.org/patchwork/patch/1061141/
https://lore.kernel.org/patchwork/patch/1061141/

Wolff, W., Lowe-Power, J., Travaglini, G., Nikoleris, N., kokoro, gem5: config,

arm: memoryMode test. 2019. url: https://gem5.googlesource.com/public/

gem5/+/ea088f5150d03d4481555ecbbfa2afba3a87468a

Szyprowski, M., Wolff, W., Kozlowski, K., ARM: dts: exynos: Disable frequency

scaling for FSYS bus on Odroid XU3 family. 2020. url: https://git.kernel.

org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9ff416cf45a

08f28167b75045222c762a0347930

ix

https://gem5.googlesource.com/public/gem5/+/ea088f5150d03d4481555ecbbfa2afba3a87468a
https://gem5.googlesource.com/public/gem5/+/ea088f5150d03d4481555ecbbfa2afba3a87468a
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9ff416cf45a08f28167b75045222c762a0347930
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9ff416cf45a08f28167b75045222c762a0347930
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9ff416cf45a08f28167b75045222c762a0347930

Contents

Contents xii

List of Figures xiv

List of Tables xv

List of Abbreviations xviii

1 Introduction 1

1.1 Goals and research questions . 2

1.2 Contributions . 3

1.3 Thesis Overview . 5

2 Background 6

2.1 Power and temperature basics . 9

2.2 Processing Element Architecture . 10

2.3 Multiprocessing . 14

2.4 Memory Architecture . 16

2.4.1 Memory hierarchy . 16

2.4.2 Data coherency . 19

2.5 Summary and putting all together . 23

3 Related work 26

3.1 Scheduling on single-ISA AMP . 26

3.2 Thermal management . 31

3.2.1 RC-network thermal model 31

3.2.2 Thermal management on uni-processor and SMP 31

3.2.3 Thermal management on single-ISA AMP 33

3.3 Summary . 37

4 Multiprocessing and frequency scaling: when data takes its time. 40

4.1 Memory architecture background . 42

4.2 Modeling snooping latency . 44

4.2.1 Memory latency exploration 47

4.2.2 Detection of snooping latency 50

4.3 A snoop-aware frequency governor . 52

4.3.1 Linux DVFS governor . 52

4.3.2 DVFS ondemand-anti-snoop governor 53

4.3.3 Implementation details . 55

4.4 Evaluation . 56

4.4.1 Benchmark selection . 58

4.4.2 Results . 59

4.4.3 Discussion . 61

4.5 Summary . 63

5 Scheduling on single-ISA asymmetric multiprocessing systems for

embedded systems: when the temperature comes into play. 64

5.1 Approach to reduce chip temperature 65

5.1.1 A simple approach for frequency scaling 66

5.1.2 A simple approach to reduce core activity

with SIGSTOP & SIGCONT 69

5.1.3 A simple approach to reduce core activity with task migration 70

5.2 Thermal management on single-ISA heterogeneous

multiprocessing systems . 72

xi

5.2.1 Capacity-Aware Scheduling and

Energy-Aware Scheduling;

Linux CFS on heterogeneous platform 73

5.2.2 Thermal Balance Aware System Scheduler 77

5.2.2.1 Imbalanced thermal behaviour 78

5.2.2.2 Thermal Balance Aware System Scheduler: overview 80

5.2.2.3 Thermal Balance Aware System Scheduler: deeper

details . 82

5.2.2.3.1 Scheduler hint: application code flow 82

5.2.2.3.2 Scheduler hint: application memory re-

quirement 86

5.2.2.4 Thermal Balance Aware Scheduler: algorithm 89

5.3 Evaluation . 91

5.3.1 Benchmark selection . 93

5.3.2 Results . 93

5.4 Summary . 98

6 Conclusion 101

6.1 Thesis summary and contributions 101

6.2 Future research directions . 103

6.3 Concluding Remarks . 105

References 106

xii

List of Figures

2.1 Microprocessor trends over the past 50 years 8

2.2 A 5-stage pipeline for a RISC processor 12

2.3 2-way superscalar processor example 13

2.4 Memory hierarchy . 16

2.5 Memory architectures . 18

2.6 Cache coherence problem example . 19

2.7 big.LITTLE architecture schematic 25

3.1 Experimenting two code constructions with an IPC value of one that

face different power consumption . 38

4.1 Benchmark on the LITTLE cluster, big cluster idle 45

4.2 Benchmark on the big cluster, LITTLE cluster idle 46

4.3 Decision trees used to find CPU frequencies that limit snooping latency 50

4.4 Time results of microbe benchmark 56

4.5 Results of experiments on real-world benchmarks, using the Linux

ondemand governor as a baseline . 57

5.1 Thermal governor step wise execution trace 68

5.2 Trace of a thermal governor employing task migration and frequency

scaling . 71

5.3 Uniqueness of CPU core thermal caracteristic 77

5.4 Thermal coupling and Process Variation effect 79

5.5 Percentage of instructions speculatively executed against instructions

retired . 85

5.6 Miss ratio curve of art from SPEC CPU2000 benchmark suite

considering a fully-associative cache with a least recently used

replacement policy on 64-byte blocks 88

5.7 Results on XU3 1 device. 94

5.8 Results on XU3 2 device. 95

5.9 Results on XU3 3 device. 96

xiv

List of Tables

2.1 big.LITTLE system constitution . 24

3.1 An overview of the work presented in section 3.1 on scheduling

strategies for single-ISA AMP systems 27

3.2 An overview of the work presented in section 3.2.3 on thermal

management for single-ISA AMP systems 34

List of Abbreviations

ALU Arithmetic Logic Unit

AMP Asymmetric MultiProcessing

ARMA AutoRegressive Moving Average

CAS Capacity-Aware Scheduler

CCI Cache Coherent Interconnect

CFS Completely Fair Scheduler

CISC Complex Instruction Set Computer

CMOS Complementary Metal-Oxide-Semiconductor

CPI Cycle Per Instruction

CPU Central Processing Unit

DLP Data-Level Parallelism

DRAM Dynamic Random-Access Memory

DSM Distributed Shared Memory

DSP Digital Signal Processor

DVFS Dynamic Voltage and Frequency Scaling

EAS Energy-Aware Scheduler

GPU Graphics Processing Unit

HMP Heterogeneous MultiProcessing

ILP Instruction-Level Parallelism

IoT Internet of Things

IPA Intelligent Power Allocation

IPC Instruction Per Cycle

ISA Instruction Set Architecture

LLVM Low Level Virtual Machine

MIMD Multiple Instruction, Multiple Data

MLP Memory-Level Parallelism

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

MPKI Misses Per Kilo Instructions

MRPI Memory Reads Per Instruction

NUMA Non-Uniform Memory Access

OPP Operating Performance Point

PE Processing Element

PID Proportional Integral Derivative

PIE Performance Impact Estimation

xvii

PMC Performance Monitoring Counter

PMU Performance Monitoring Unit

QoS Quality of Service

RAM Random-Access Memory

RISC Reduced Instruction Set Computer

RMSE Root Mean Square Error

SF Speedup Factor

SIMD Single Instruction, Multiple Data

SMP Symmetric MultiProcessing

SoC System-on-Chip

SRAM Static Random-Access Memory

TBASS Thermal-Balance Aware System Scheduler

TDP Thermal Design Power

TLP Thread-Level Parallelism

UMA Uniform Memory Access

WSS Working Set Size

xviii

Chapter 1

Introduction

Power and thermal dissipation is the key technology limitation that has led to

the introduction and proliferation of multicore and now many-core–processors.

However, even many-core processors may not overcome the “power wall” [49, 23].

The introduction of asymmetric multicore multiprocessors brings the opportunity

to deliver high performance for demanding applications while satisfying energy

efficiency for lightweight applications [6, 71].

Nowadays, hardware to support both high performance and energy efficiency

is well spread in the small form factor such as mobile and other small embedded

systems. It started spreading to the laptop and desktop markets. However, the

software to tame such architecture still lacks of maturity. This thesis explores

different aspects of software scheduling and frequency scaling for such devices.

Multiple works have explored thoroughly scheduling strategies considering a

precise knowledge of the workload to determine the benefit of using the high

performance or energy-efficient processing elements of the device. For instance, in

[91, 111], the authors use an offline analysis that discovers the workload phase and

the performance and energy profiles. These works tend to find Pareto optimality

situations for workload phases. The runtime then replays the workload phases

depending on the user goal, performance and/or energy consumption. However,

this strategy requires a long offline exploration of any single workload, and as such,

2 Introduction

does not scale.

In the industry, there exist two tremendous examples of scheduling strategies.

Operating systems that equip devices from the Apple brand employ a recom-

mendation from the developer to either use the performant cores for intensive

tasks or energy-efficient cores for background tasks. However, this strategy could

lead to over-provisioning resources to applications that do not have good use of

performant cores due to their code construction. In the Linux and Android equipped

device market, the EAS scheduler is an automated scheduling system that uses a

performance metric derived offline. However, this performance metric is highly

dependent on the workload used and fails to capture the performance of the full

system.

On the other hand, when the device is under heavy thermal conditions, the

scheduling strategies proposed above could be non-optimal. Generally, the strategy

to reduce the temperature is to reduce activity intensity. This is performed by

employing frequency scaling and activity migration. Following the scheduling

strategies presented above, migration between performant cores and energy-efficient

cores becomes critical and challenging to maximize performance under thermal

pressure. The current state-of-the-art does not put forward a holistic approach

of scheduling and frequency scaling considering application performance by taking

into account low-level micro-architectural detail.

1.1 Goals and research questions

The work presented in this thesis attempt to bridge the gap between workload

scheduling and frequency scaling strategies by considering the efficient use of the

underlying hardware which takes into account low-level micro-architectural features

and specificities of processing elements. To achieve this goal, this thesis is articulated

around these research questions:

RQ 1 To what extent frequency scaling could improve the energy efficiency of a

1.2. Contributions 3

computing device?

RQ 2 To what extent frequency scaling affects the system in terms of performance on

multiprocessors-equipped devices where data-coherency is implemented using

a bus-snoop protocol?

RQ 3 How to schedule workloads for performance while minimizing energy consump-

tion on systems that use asymmetric multicore multiprocessors?

RQ 4 How can thermal effects be effectively mitigated using software-based tech-

niques, for small-form factor computing devices where active cooling (e.g. fan,

liquid cooling) can not be employed?

Each of these research questions is explored using an empirical approach, in which

novel software techniques are developed and then tested against common benchmark

suites that represent different aspects of workload activity. The considered workload

types encompass web-browsing activities using BBench and Speedometer benchmark

suites and video decoding with mplayer. Other benchmarks from Spec, PARSEC and

Splash-3 benchmark suites were used to show the effectiveness of the approach

against a wide range of compute- and memory-intensive workloads, as well as single

and multithreaded workloads.

1.2 Contributions

One of the major novelties of this work is the fine detail exploration of the memory

communication timing considering the data-coherency mechanism to interconnect

the processing elements. This thesis makes the following contributions:

• A characterization of memory latency of data-coherency mechanism

based on a bus-snoop protocol considering frequency scaling of

processing elements:

4 Introduction

– design of a microbenchmark infrastructure and memory access sequencer

and analysis system to discover and identify specific conditions when

the data communication latency is sensitive to the perspective of an

application

– a simple model based on a decision tree to express the specific condition

when snoop latency becomes sensitive to user experience

– a runtime system that is effective in mitigating snoop latency without

disturbing the system

– the approach enables an increase in application performance of up to 40%

and reduces energy consumption by up to 70% compared to the Linux

default frequency scaling policy

• A study on scheduling and frequency scaling strategies to optimize

performance and energy efficiency under thermal pressure:

– provide a thorough study on the thermal imbalance of multi-core device

– characterization of effective workload quality regarding instruction-level

parallelism at runtime

– an offline characterization of the memory requirement of the application

– a runtime system as an application scheduler to guide use of the

underlying hardware specificities at a microarchitectural level

– a scheduling strategy that considers thermal characteristics of the device

and workload benefits of using a cluster type

– the approach enables an increase in application performance by 10% on

average and reduces energy consumption by 12% on average compared to

the Linux default scheduling strategy using a strict thermal policy

1.3. Thesis Overview 5

1.3 Thesis Overview

This thesis is organised as follows. Chapter 2 provides background information on

topics related to this thesis. It discusses process technology trends and their impact

on computer architecture. A constructive description of computer organization is

presented including microarchitecture design principles and hardware support for

parallel processing. The summary of this chapter presents the machine that is used

in subsequent chapters. Chapter 3 presents relevant related work related to the

scope of this thesis. Chapter 4 studies data-coherency mechanisms in multiprocessor

architectures based on a bus-snoop protocol with frequency scaling capability. It

discusses a non-linear memory communication latency relative to frequencies of

processing elements present in the system. Chapter 5 presents a scheduling strategy

that takes into consideration low-level microarchitectural aspects. In particular, this

strategy is applied for thermal management on asymmetric multicore multiprocessor

systems in a small form factor packaged computing device. Finally, chapter 6 sums

up the contributions of this work and details some future research directions.

Chapter 2

Background

Over the past 70 years, progress in the manufacturing process of semiconductors

has resulted in improvement of computing technology. Reduction in the size of

semiconductors enables the increase in transistor density per area and, thanks to

better architectural design, improves the performance of computing devices. In

1965, Gordon Moore predicted in his seminal paper that the number of transistors

in a chip would double every year. This prediction was amended in 1975 to every

two years. This trend is recognized as Moore’s law [100, 101].

Unfortunately, technology scaling started stalling around 2005 due to the

inherent physical properties of materials. Robert Dennard and his team observed in

1974 that power density stays constant as transistors get smaller [38]. By reducing

transistor size, the supply voltage can also be reduced with a proportional current

draw and enables increasing switching frequency of the transistor. This concept

is referred to as Dennard scaling and, in correlation with Moore’s law, enables

increasing processor performance by improving the manufacturing process. However,

at a very small size, the leakage current (and thus the increase in overall power

consumption) becomes problematic and leads to a slowdown of further scaling [37,

22, 64].

With Moore’s law still in effect while Dennard scaling reaches an end, it results

in processors that may no longer switch every transistor at full frequency without

7

exceeding the power or thermal limitations of the chip. This inability to utilize all of

the chip’s transistors at full frequency simultaneously is known as Dark Silicon [23,

49, 134]. One solution to the inability of scaling frequency of a single processor is to

use multiple processors operating in parallel while keeping these processors at a safe

frequency plateau. Figure 2.1 shows the trend of the past 50 years of microprocessor

computing systems.

In the quest to create performant computers while meeting a sustainable power

budget, a new strategy was proposed to design multicore processors utilizing different

micro-architectures on the same chip. In the literature, this architecture is referred to

as heterogeneous or asymmetric multiprocessing [77, 50, 55, 71, 96]. The rationale

motivating this architecture is the consideration that some software may deliver

similar performance whether running on a performant complex processor or on

a power-efficient simpler processor. However, a new difficulty that arises using

this architecture is software scheduling [79, 24]. This thesis explores some aspects

regarding data-coherency and application scheduling towards power and thermal

management of such architecture.

The remainder of this chapter will first establish the relation between power

consumption and temperature in section 2.1. Section 2.2 describes the basics of

processor architecture to understand common designs (i.e. in-order/out-of-order

pipelining, superscalar) to deliver high computing performance but at high-power

cost against a power-efficient simple design. In section 2.3, different aspects to bring

multiprocessing capability to a processor are discussed and how it can be achieved

considering both memory and data-coherency in the subsequent section 2.4.

Finally, section 2.5 summarizes this chapter and presents a computing device

that implements a heterogeneous multi-core processor packaged in a small form

factor targeting the embedded, tablet and smartphone market. The device is

used throughout the thesis to explore some aspects regarding data-coherency and

application scheduling towards power and thermal management.

8 Background

100

101

102

103

104

105

106

107

 1970 1980 1990 2000 2010 2020

Year

Number of transistors (thousands)
Single-Thread performance (SpecINT x 103)
Frequency (MHz)
Typical power (Watts)
Number of logical cores
Process nodes (nm)

Figure 2.1: Microprocessor trends over the last 50 years. Even though signs of

slowdown is appearing, the number of transistors have continued to scale as predicted

by Moore’s Law for over the past 50 years. Around 2005, power dissipation becomes

problematic as Dennard scaling came to an end. This power constraint prevented

increase in frequency, which in turn negatively affected CPU core performance. With

the difficulty to increase clock frequency, CPU architecture if focusing on exploiting

parellism by increasing the number of core on a single chip.

Data collection up to the year 2010 by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L.

Hammond, and C. Batten. Data collection from 2010 onward by K. Rupp. Data available at

https://github.com/karlrupp/microprocessor-trend-data

https://github.com/karlrupp/microprocessor-trend-data

2.1. Power and temperature basics 9

2.1 Power and temperature basics

This section establishes the relation of power consumption of a device and its

translation to heat and temperature.

Power dissipation in a digital CMOS 1 circuit is given by [32, 121]:

Power = Powerdynamic + Powerstatic

This formula consists of two parts, a dynamic part that contributes the most to

the power and is related to the power consumed by the device during its operation,

and a static part that relates to leakage due to physical properties inherent of the

material used to produce a transistor.

The dynamic power is in direct proportion to the transistors that are changing

state from on to off (and vice versa) at each clock cycle and is given by:

Powerdynamic = Frequency× Transistors switched× Energy per Transistor

= Frequency× Transistors switched× Capacitive load× Voltage2

The number of transistors switched denotes the activity of the device while executing

a workload.

The static power is given by:

Powerstatic = Currentleakage × Voltage

There are multiple sources of current leakage, with sub-threshold current,

gate oxide tunneling current and band-to-band tunneling current being the most

prominent. All these sources of leakage increase while transistors size shrink and

are also affected by the temperature. This dissertation does not consider directly

these notions in the methodology, the interested reader may refer to [95, 70, 25, 112,

1, 26] to get a deeper understanding of these different sources of current leakage.

1Complementary Metal-Oxide-Semiconductor (CMOS) is a type of Metal-Oxide-Semiconductor

Field-Effect Transistor (MOSFET) which is the basic component in a microprocessor.

10 Background

Finally, the steady-state temperature of the device can be determined by

considering the ambient temperature where the device is operating, the power

consumption of the device and the physical and thermal properties of the packaging

of the device (as Thermal Resistance). It is given by:

Silicon Temperature = Ambient Temperature + Thermal Resistance× Power

As the power may fluctuate with the workload activity, one may reduce the

temperature by using a heatsink or other cooling device to reduce the thermal

resistance of the system. The methodology of this thesis to lessen thermal effect

considers reducing the power needed to execute a workload by reducing the number

of transistors used by using a different processor design on an asymmetric chip, the

operating voltage and the frequency of the device.

2.2 Processing Element Architecture

This thesis will study scheduling strategies for processors embedding different micro-

architectures in a single chip. This section reviews the evolution of processor

architectural design that enables high-performance workload execution.

A program written in a programming language describes what must be done by a

machine. The source code of a program is compiled targeting a particular computer

architecture, also termed an Instruction Set Architecture (ISA).

The ISA acts as an interface between the software and the hardware, defining

available instructions, types and sizes of operands, how the memory is addressed,

available registers, etc.

Computational organization or microarchitecture is an implementation of a

computer architecture. For example, the Arm Cortex-A7 and Arm Cortex-A15

processors are instances of the ARMv7-A instruction set architecture with distinct

organization, favouring different aspects of computing. The A7 favours efficiency

and low-energy computing while the A15 targets performance and fast program

2.2. Processing Element Architecture 11

execution. Both of these microarchitectures can execute the same compiled program

as they both implement the same ISA.

For general-purpose processors, two types of ISA are predominant and commonly

used, Complex Instruction Set Computer (CISC) where instructions are complex

and optimized for particular operations; and Reduced Instruction Set Computer

(RISC) where instructions are simple. This statement is an oversimplification of the

two concepts, as, over the years, RISC architectures gain fairly complex arithmetic

operations such as the square root operator. However, there are two main features in

a RISC ISA: 1) the instruction format is of a fixed length, with bits of an instruction

identifying operation code (opcode) and operand registers, immediate or address; all

these fields are positioned at the same place in the instruction encoding. In contrast,

CISC encodes instructions in a format of variable length. This helps reduce code

density when an instruction uses a variable number of operands. For instance, a

NOP instruction in ARM A32 RISC ISA is encoded taking 4-bytes, (with opcode

0x00000000), while on x86-32 CISC ISA, a NOP instruction takes only 1-byte (with

opcode 0x90) as this instruction does not have any parameter. 2) RISC architecture

employs a load/store model where the only instructions that can access the memory

are the specific load and store instructions. Data is first loaded to a register before

being processed and then stored back to memory. In a CISC ISA, instruction can

refer to a memory address to make an operation.

The remainder of this section reviews some important microarchitecture features

that are commonly used in processor designs to deliver high computing performance.

Simply put, a program is a sequence of instructions that a processor executes one

after another in the order specified by the programmer. The life of an instruction

can be dissected into multiple phases or stages, each stage taking 1 clock cycle to

finish: 1) the instruction is first fetched from memory (IF), 2) this instruction is

then decoded and operands are retrieved (ID), 3) the instruction is executed (EX).

4) If the instruction is a memory operation, the memory access is then performed

using the address computed in the last stage (MEM). 5) Finally, the result of the

12 Background

Clock number

Instruction number 1 2 3 4 5 6 7 8 9

Instruction i IF ID EX MEM WB

Instruction i + 1 IF ID EX MEM WB

Instruction i + 2 IF ID EX MEM WB

Instruction i + 3 IF ID EX MEM WB

Instruction i + 4 IF ID EX MEM WB

Figure 2.2: Execution flow on a simple 5-stage pipeline for a RISC processor.

instruction is written back to the register (WB).

One can see that each of these stages is dependent within the instruction but may

be independent between consecutive instructions. An essential feature of any modern

microarchitecture is to perform these different phases in parallel when possible.

When there are no dependencies on data or register naming it is possible to deliver

instruction execution at every clock cycle. This technique is called pipelining and

Figure 2.2 shows such an execution pattern. Compared to a non-pipelined processor,

this processor could execute 5 times faster. On a CISC architecture, complex

instructions are generally decoded and dissected into multiple micro-operations at

the ID stage. In this case, later stages may take more clock cycles in the pipeline.

An important bottleneck in performance comes from long latency instructions

that stop the execution flow. For instance, in the presence of a multi-cycle operation

such as a divide instruction that may take many cycles to execute and produce a

result, no further instruction can be issued to the execution stage with an in-order

pipeline. Another example is a memory load operation, if a data access misses in

the cache, accessing a higher level of the cache hierarchy or off-chip memory may

take several hundred cycles until the data is fetched in a register and execution can

progress further.

When two instructions are independent, for instance an addition that is

independent from another addition or a divide operation, an interesting approach

2.2. Processing Element Architecture 13

IF ID

IF ID

ALU

ALU

MUL/DIV

LOAD/STORE

MEM WB

MEM WB

Figure 2.3: An example of a 2-way superscalar processor with 4 execution units.

would be to execute them in parallel. One solution is to multiply the number

of pipeline stream stages. In the literature, this notion is termed as superscalar.

Figure 2.3 shows an example of a 2-way superscalar pipeline. In this design,

there also exists 2 Arithmetic Logic Unit (ALU), 1 multiply/divide unit and 1

load/store unit. For this last unit, the load/store EXE stage computes the address

of the memory location, while the MEM stage performs the actual access. This

processor could execute 2 addition instructions during the same cycle (i.e. 2

instructions per cycle or IPC). In this example of superscalar microarchitecture, IF,

ID, MEM and WB have been duplicated, though it is not a requirement. In fact,

IF and ID could easily sustain a 1 cycle phase, EXE and MEM stages could take

multiple cycles to access memory on a load/store instruction, or on a floating-point

instruction. Thus, it is often interesting to incorporate only one IF, ID half-pipeline

stream and dispatch execution to the right EXE/MEM unit to continue the life

of the instruction. Pipelining and superscalar improve execution performances by

exploiting Instruction-Level Parallelism (ILP).

Continuing further on the path to exploit ILP, it is often possible to continue

instruction execution in parallel with a memory operation. However, in the pipelined

superscalar design presented above, though multiple independent instructions can

14 Background

be executed in parallel, the execution of those instructions remains in-order. Thus,

when one instruction is taking a long time to execute, the pipeline will stall and

performance degrades. One step further to improve performance is to allow out-of-

order execution of independent instructions, but keeping the instruction retirement

of the pipeline in order to maintain the semantics of the program. Over the past

years, multiple strategies have been proposed and implemented with great success

to allow out-of-order execution such as scoreboarding or Tomasulo algorithm with

the use of register renaming, reservation station and reorder-buffer.

Other performance enhancing features such as branch-prediction, speculative

execution, data prefetching exist. The interested reader may refer to any book

in Computer architecture for deeper understanding of these concepts [66, 124, 61].

In general, to implement these hardware features to improve the computing

performance of the processor, the length of the pipeline is increased as well. In

the same manner, each additional feature increases the transistor count and thus

the overall power consumption of the processor. Because of the difficulty to

dissipate this power due to physical limitations, it becomes harder to improve the

performance of a single Processing Element (PE). To cope with that limitation,

improvement in hardware design is pushing towards the exploitation of parallelism

by adding multiple processing elements that operate simultaneously. The next

section introduces different techniques to implement multiprocessing capability.

2.3 Multiprocessing

When multiple instructions do not have dependency between them, a superscalar

microarchitecture allows them to execute simultaneously, as long as there are

available execution units. When the software contains large portions of code that are

independent, a single superscalar processor unit may not be enough to exploit the

full performance potential of the software. However, the software can be written in

such a way as to expose a thread of execution and use processors capable of executing

2.3. Multiprocessing 15

several software threads simultaneously to exploit Thread-Level Parallelism (TLP).

This architecture is referred to as Multiple Instruction, Multiple Data (MIMD) in

Flynn’s taxonomy[53].

There exist various designs to achieve this goal, such as multi-core where the core

part within a processor is multiplied, or multiprocessor where multiple full processors

are present and interconnected. Another approach is hardware multithreading. In

multithreading, the computational part of the pipeline is shared amongst software

threads, but the hardware that holds the context of a particular software thread

is duplicated (i.e. register files, program counter and other registers to control the

logical core).

Another form of multiprocessing is to apply an identical treatment on multiple

data at once, such as vector instructions. For instance, applying a filter to an

image to transform each pixel of an image independently could be treated by

vector instructions. Vector instruction exploits Data-Level Parallelism (DLP) and

is referred as Single Instruction, Multiple Data (SIMD). Multiple SIMD instruction

set extensions are present in the market, such as NEON and SVE for the Arm ISA[7,

11, 129] or SSE and AVX for the x86 ISA[67] among others.

When the workload is well-known and highly specialized, a specific hardware

architecture targeting that workload can be used. For instance, this is the case for

graphical computation or highly vectorizable workload with the use of Graphics

Processing Unit (GPU), or Digital Signal Processor (DSP) where the memory

architecture and pipeline are optimized to treat signal based algorithms for audio,

speech processing and telecommunication among others. In this case, these different

processing units implement a different ISA than the CPU to fulfill their duty.

Modern systems may combine many of the above multiprocessing techniques to

achieve high performance. From the server to the Internet of Things (IoT) market,

all the spectra of computing systems implement multiprocessing in their various

forms.

A major problem of using multi-processing and interconnecting processing units

16 Background

Register file

L1 cache

L2 cache

L3 cache

Main memory

Hard disk and Flash memory

Speed,
Cost

Capacity

Figure 2.4: Typical memory hierarchy. The faster the memory, the higher the cost.

where each of them have their own internal memory is to ensure that all these

elements have the same “view” of the shared memory content, the data must be

coherent between all elements. The next section elaborates on this topic.

2.4 Memory Architecture

In the last section, different microarchitecture organizations related to computation

were introduced without considering any memory-related aspect. This section

elaborates on the matter. The first part of this section describes different memory

hierarchies, while the second part discusses cache-coherency problems when there

exists private and shared centralized memory space.

2.4.1 Memory hierarchy

In order to operate, data must be provided to execution units in a processing element.

An important fundamental observation of program execution is the principle of

locality: programs tend to reuse data and instructions they have used recently[39,

40, 41]. As such, the memory is organized in a hierarchy. This section describes

2.4. Memory Architecture 17

some organizations of common memory hierarchies employed in computing system

designs. Figure 2.4 shows a typical memory hierarchy.

At the closest level to execution units, most instructions of a processing element

work on data stored in a register. In a RISC architecture, computation is performed

exclusively using registers, with specific load from and store to instructions targeting

feeding and backing up registers from and to persistent storage for later use. In

general, CPU registers are limited in size (usually less than 64-bit) and number

(usually less than 32). They are often implemented to be very fast (in the order

of the picosecond) using Static Random-Access Memory (SRAM) technology, while

persistent storage is much larger (it is rare to have less than 1 MB) but much slower

(in the order of milliseconds for magnetic storage disk or microseconds for flash

memory). Also, because the fast memory of SRAM is more expensive than the

slow memory of persistent storage, the memory is organized around a multi-level

hierarchy between CPU registers and persistent storage that act as working memory.

Nowadays, CPUs implement between 1 and 3 levels (rarely 4) of intermediate caches,

that could be shared or private to CPU cores. Finally, between CPU caches and

persistent storage there is the main memory implemented with Dynamic Random-

Access Memory (DRAM) technology.

When the number of cores is low (typically 32 or fewer), they are interconnected

to the main memory and share the same memory space. This topology is called

Symmetric MultiProcessing (SMP). In such topology, each processor has equal access

rights and time to the memory (and inputs/outputs), thus the term symmetric.

In a single-chip multicore, the interconnection network is simply the memory bus.

When the processor count increases, communication between processors and the

main memory can be a limiting factor for performance. In this configuration a local

memory to the processor is generally present and this topology is called Distributed

Shared Memory (DSM). Figure 2.5 shows these two architectures.

As in an SMP architecture, all processors are interconnected to the shared

memory via some sort of a bus. Each processor has a uniform latency to access

18 Background

Processor

Cache

Processor

Cache

Processor

Cache

Processor

Cache

Bus arbiter
MemoryMemoryMemoryMemory

I/OI/OI/OI/O

(a) Architecture of a symmetric multiprocessor system. A bus arbiter is used to determine

which CPU gets to use the bus. Data coherency is ensured by a bus-snoop protocol.

Mutlicore
processor
+ caches

Memory I/O

Directory

Mutlicore
processor
+ caches

Memory I/O

Directory

Mutlicore
processor
+ caches

Memory I/O

Directory

Mutlicore
processor
+ caches

Memory I/O

Directory

Mutlicore
processor
+ caches

Memory I/O

Directory

Mutlicore
processor
+ caches

Memory I/O

Directory

Mutlicore
processor
+ caches

Memory I/O

Directory

Mutlicore
processor
+ caches

Memory I/O

Directory

Interconnection network

(b) Architecture of a distributed shared memory system. Data coherency is ensured by a

directory protocol.

Figure 2.5: Memory architectures.

2.4. Memory Architecture 19

Cache contents for Cache contents for Memory contents for

Time Event processor A processor B location X

0 1 1

1 A reads X 1 1

2 B reads X 1 1 1

3 A writes 0 into X 0 1 0

Figure 2.6: The cache coherence problem for a single memory location (X), read

and written by two processors (A and B), assuming a write-through cache policy. In

a write-through cache policy, the cache and the main memory are simultaneously

updated with the new value. With a write-back cache policy, though the memory

content is updated only when the memory block is evicted from the cache, the cache

coherency problem persists.

the memory, they are also called Uniform Memory Access (UMA) multiprocessors.

On the other hand, in a DSM architecture, the access time to reach a memory

block depends on the distance between the core that requests the memory block

and the current location of that memory block. Thus, they are also referenced as

Non-Uniform Memory Access (NUMA) systems.

2.4.2 Data coherency

With the presence of private (or local) memory living in a shared (or global) memory

space as in the case when each core has its own cache, comes the problem of cache

coherency. Figure 2.6 is an example of the problem. When core A is working on

a particular memory block X in its private cache (at time 1), and core B attempts

to work on this same memory block X (at time 2), the memory block X will be

present on both core A and B. The problem arises when one of the cores modifies

the content of the memory block X (at time 3). Without a coherency mechanism,

the two processors A and B will see different content in their private cache, which

20 Background

breaks coherency and can cause software to run incorrectly.

To solve this coherency problem, multiple strategies have been proposed. The

key concept is to keep track of the status (or state) of any sharing of memory blocks

currently in caches and define operations transitioning from one state to another

described in a finite state machine.

The states of a memory block can be as follows:

• M(odified): the cache has the most up-to-date value and the only valid copy

of the memory block and is potentially non-coherent with the main memory.

• S(hared): the cache has a read-only copy of the memory block. Other caches

may have valid, read-only copies of the memory block.

• I(nvalid): the memory block is invalid. The cache either does not contain the

memory block or it contains a potentially stale copy.

• O(wned): the cache has the memory block and may be dirty (non-coherent

with the main memory). Other caches may share the memory block in the

shared state without write permission. Other caches may request a read

operation. In that case, the data is supplied by the “owner” instead of the

main memory.

• E(xclusive): the cache has the memory block and is coherent with the memory.

No other copies of the memory block exist within other caches.

With these different states, one can design multiple state machines to describe

what to do when processors request to read or write from and into a memory

block. Multiple coherency protocols exist such as MSI, MEI, MES, MESI,

MOSI and MOESI, as well as peculiar extensions taking these protocols as the

basis for particular optimization to targeted workload or server and warehouse

architectures [5, 61, 103].

There are two main classes of coherence protocols in use, each of which uses

different techniques to track the sharing status: snooping and directory.

2.4. Memory Architecture 21

• In a directory protocol, the sharing status of a particular memory block is kept

in one location called a directory. When one core wants to read a memory

block, the cache controller of the core sends a request to the memory controller

of the directory that is managing the memory block (the home directory).

The directory has the information of the core that is the current owner, as

well as other sharers of the memory block. If the memory controller is the

current owner of the memory block, the memory controller completes the

transaction by sending the data to the requester. If the memory block is owned

by another cache controller, the memory controller forwards the request to the

concerned cache controller that will complete the transaction by sending the

data to the requester. The request and acknowledgement must transit first

to the memory controller that manages the directory of the memory block,

and possibly another cache controller if the memory block is currently owned

by another cache controller, thus it is referred to as a 2-hop protocol in the

literature.

• In a snooping protocol, the coherency is performed by broadcasting requests

to the bus. When a core wants to operate on a memory location, the cache

controller of the core initiates a request for the memory block by broadcasting a

request message to all other cache controllers. Each processor’s cache controller

monitors or snoops the bus and act in accordance with the request. The cache

controller will change the status of the memory block if that memory block

is present and acknowledges the request. The request and acknowledgement

messages are direct from cache-to-cache and are often referred to as a 1-hop

protocol in the literature.

One of the major problems with a snooping protocol is that the broadcasting

of coherency transactions becomes a bottleneck for performance for a large count

of processors. Another issue with broadcasting is energy consumption. When one

cache controller initiates a coherency transaction, the broadcast will target all other

cache controllers, even if they do not share the memory block concerned by the

22 Background

transaction. On the other hand, a directory protocol is scalable because it unicasts,

but many coherency transactions take more time because of a possible indirection

when the home directory is not the owner of the memory block. An intermediate

solution between a snooping protocol and a directory protocol is an insertion of the

directory concept at the interconnect network of a snooping protocol. This directory

structure in a snooping protocol is called a snoop filter. Instead of statically mapping

a range of memory blocks managed by one directory like in a directory protocol, the

snoop filter is a dynamic map that references memory blocks with the identifiers of

other sharers and the state of the memory block in a similar manner to that of a

directory protocol. The map is inclusive of the upward caches.

Besides the choice of the available memory block state model and the class of

the coherency protocol, there is the choice of action to perform when a core writes

to a memory block, invalidate or update sharers of that memory block. In an

invalidate protocol, when a core wants to write to a memory block, it first initiates

an invalidation request to all other caches before transiting to the M state when

the invalidation request is acknowledged. In an update protocol, when a core wants

to write to a memory block it initiates a coherence transaction to update copies in

all other caches. Comparing these two choices, update protocols reduce the latency

for a core to read a newly written memory block because the core does not require

to initiate and wait for a bus transaction to complete when it was already a sharer

of the memory block; the data is always up-to-date. However, update protocols

consume more bandwidth than invalidate protocols as an update message is larger

than an invalidate message (address + data instead of just an address). However, if

the workload never reuses the memory block and it is not evicted, the memory block

is continuously updated for no reason. In comparison to an invalidate protocol, the

updated memory block is brought back in the cache only when required.

2.5. Summary and putting all together 23

2.5 Summary and putting all together

In its simple form, general-purpose multicore processors consist of identical cores:

either large, complex and powerful ones consisting of a superscalar out-of-order

pipeline, or small low-power ones implementing an in-order pipeline. The Arm

big.LITTLE system [55] is an alternative to this design and proposes the use of a

“big” processor paired with a “LITTLE” processor to create a system that can

deliver high performance for the most demanding tasks while providing energy

efficiency for the less intensive tasks. This architecture is particularly interesting

for battery-powered mobile or tablet devices to accommodate high performance for

intensive tasks such as gaming or web browsing while delivering long battery life for

less demanding tasks such as texting, e-mail and audio.

This thesis studies scheduling strategies for single-ISA Heterogeneous MultiPro-

cessing (HMP) systems based on, but not limited to, an Arm big.LITTLE system.

The test platform used throughout the thesis is a HardKernel Odroid-XU3 which has

the Samsung Exynos5422 [120] System-on-Chip (SoC) implemented in a small form

factor using a 28 nm HKMG process node. This SoC is used on the Samsung Galaxy

S5 smartphone. Due to the small form factor of the SoC and the small-sized passive

cooling device of the smartphone, power dissipation and thus thermal regulation

becomes critical to achieve good performance. The scheduling strategies studied in

this thesis can be applied during any situation. However, the scheduling strategies

studied in this thesis are evaluated in the context of heavy thermal pressure which

is a common concern for embedded devices [49].

The big.LITTLE system on the SoC is composed of 4 Cortex-A15 cores as the big

processor while the LITTLE processor uses 4 Cortex-A7 cores. The main features

of both processors are summarized in Table 2.1. The terminology used by Arm to

refer to a multicore processor taking the role of either big or LITTLE is a cluster.

The rest of this thesis will use big clusters or LITTLE clusters to refer to them.

Both clusters are attached to an Arm CoreLink CCI-400 Cache Coherent

Interconnect. The interconnect guarantees data-coherency using a bus snoop

24 Background

protocol that does not contain a snoop filter to limit snoop traffic between the

two processors. The interconnect uses a MOESI state machine for cross-cluster

coherency. Figure 2.7 shows a block diagram of the SoC architecture.

Role big LITTLE

Processor Cortex-A15 Cortex-A7

Core count 4 4

Pipeline
integer 15 stage 8 stage

floating point 17-24 stage 10 stage

Execution out-of-order in-order

Issue width 3 2

Fetch width 3 2

L1 I-cache 32 KB/2-way private 32 KB/2-way private

L1 D-cache 32 KB/2-way private 32 KB/4-way private

L2 unified cache 2 MB/16-way shared inclusive 512 KB/8-way shared exclusive

Frequency range 0.2 to 2 GHz 0.2 to 1.4 GHz

Table 2.1: big.LITTLE system constitution.

2.5. Summary and putting all together 25

Cortex A15 Cluster

Memory controller ports System port

Cortex A7 Cluster

GIC-400 Generic Interrupt Controller

CCI-400 Cache Coherent Interconnect

IO Coherent
Master

A15
Core

A7
Core

Figure 2.7: big.LITTLE architecture implementation on our platform. Full data

coherency is assured by a bus-snooping protocol.

Chapter 3

Related work

This section reviews multiple works that are in direct relation to the subject of

this thesis about scheduling strategies and thermal management for single-ISA

AMP. In the literature, there exists different terminologies to identify the purpose

of one CPU core in relation to other CPU cores whether it targets execution

for performance of energy efficiency (i.e., big/LITTLE, big/small, fast/slow,

complex/simple, strong/weak, aggressive/lightweight). To simplify the discussion,

the terminology of big and LITTLE cores will be employed for the rest of this thesis

to identify either performant cores or energy-efficient cores respectively.

The section 3.1 will focus on application scheduling without the notion of

temperature. The following section 3.2 will continue on scheduling strategies towards

thermal management using thermal models for reactive and proactive approaches.

Finally, the summary in section 3.3 will show an experiment that demonstrates

the difficulty of thermal management in computing systems.

3.1 Scheduling on single-ISA AMP

This section reviews some work that focuses on scheduling for single-ISA AMP

systems. To help frame work in this thesis table 3.1 presents an overview of work

in this area.

3.1. Scheduling on single-ISA AMP 27

Table 3.1: An overview of the work presented in section 3.1 on scheduling strategies

for single-ISA AMP systems.

P
a
p
e
r

A
sy

m
m
e
tr
y

S
ch

e
d
u
li
n
g
c
ri
te
ri
o
n

Im
p
le
m
e
n
ta

ti
o
n

O
ffl
in
e

O
n
li
n
e

m
ic
ro

-a
rc
h
it
e
c
tu

re
fr
e
q
u
e
n
c
y

[7
8]

x
IP

C
si
m
u
la
ti
on

x

[1
3
]

x
IP

C
si
m
u
la
ti
on

x

[8
4
]

x
ta
sk

ti
m
e

si
m
u
la
ti
on

x

[8
1
]

x
ta
sk

re
m
ai
n
in
g
ti
m
e

si
m
u
la
ti
on

x

[1
2
2
,
1
2
3,

11
3
]

x
IP

C
an

d
m
em

or
y
p
ro
fi
le

si
m
u
la
ti
on

x

[7
4
,
11

4
]

x
x

IP
C

an
d
m
em

or
y
ac
ce
ss
es

si
m
u
la
ti
on

x

[1
3
6
]

x
n
ew

P
M
C
s
to

ex
p
os
e
th
e
le
n
gt
h
of

th
e
in
st
ru
ct
io
n
d
ep

en
d
en

cy
ch
ai
n

si
m
u
la
ti
on

x

[1
0
9
]

x
IP

C
an

d
m
em

or
y
ac
ce
ss
es

p
h
y
si
ca
l

x
x

[5
6
,
91

]
x

x
IP

C
,
m
em

or
y
ac
ce
ss
es
,
b
ra
n
ch

m
is
se
s
an

d
p
re
p
ar
ed

fo
rm

u
la

p
h
y
si
ca
l

x
a

x

[1
1
0
,
1
1
1]

x
x

IP
C
,
m
em

or
y
ac
ce
ss
es
,
b
ra
n
ch

m
is
se
s
an

d
p
re
p
ar
ed

fo
rm

u
la

p
h
y
si
ca
l

x
b

x

T
h
is

th
es
is

x
x

IP
C
sc

an
d
m
em

or
y
p
ro
fi
le

p
h
y
si
ca
l

x
d

x

a
ex
h
au

st
iv
e
offl

in
e
w
or
k
lo
ad

s
ch
ar
ac
te
ri
za
ti
on

b
ex
h
au

st
iv
e
offl

in
e
w
or
k
lo
ad

s
ch
ar
ac
te
ri
za
ti
on

,
th
e
w
or
k
in

[1
1
1
]
p
a
rt
ia
ll
y
re
m
ov
e
th
e
o
ffl
in
e

ch
ar
ac
te
ri
za
ti
on

c
IP

C
is

co
m
p
u
te
d
at

b
ot
h
d
is
p
at
ch

an
d
re
ti
re
m
en
t
p
ip
el
in
e
st
a
g
e
le
ve
l

d
offl

in
e
an

al
y
si
s
to

co
m
p
u
te

m
em

or
y
p
ro
fi
le

on
ly

fo
r
b
et
te
r
sc
h
ed
u
li
n
g
,
n
o
t
a
st
ri
ct

re
q
u
ir
em

en
t

28 Related work

In [78] and [13], authors propose a very similar scheduling approach that uses

Performance Monitoring Unit (PMU) counters to track Instruction Per Cycle (IPC).

Their strategies consist of executing the application thread for a small amount of

time on each core type to determine respective IPC performance. Once measured,

a thread will be mapped on a LITTLE core if it achieves only modest performance

improvement running on a big core and the thread that benefits significantly from

a big core is executed on a big core.

In [84], authors propose a load-balancing scheduler which gives more threads

to the big core. As this work considers asymmetry in core clock frequency only,

the number of threads that is allowed to run on the big cluster is computed as a

scaling factor from the little core clock frequency to the big core clock frequency.

The scheduler uses a “faster-core-first” strategy, favouring the use of the big core

when it is underutilized.

In [81], authors propose a scheduling scheme which schedules tasks with

longer remaining execution-time on big cores. This work considers multithreaded

applications and it relies on the assumption that threads have symmetric work to

do between synchronization points (i.e. barrier or termination). Tasks remaining

execution time to the next synchronization point is determined by using the

instruction retired PMU counter.

In [122, 123, 113], authors use the principle of the signature of an application to

guide scheduling decisions. The signature consists of the miss-rate profile based on

the reuse-distance profiles. The platform heterogeneity is only on frequency scaling.

In [74, 114], to perform scheduling, authors consider a Speedup Factor (SF) of

a single thread application and its extension to multithreaded applications termed

as “utility factor”. A speedup factor is “how much quicker an application retires

instructions on a fast core relative to a slow core”. In the case of frequency-based

heterogeneity, the SF is the miss rate profile as in their prior work [113]. In the case

of micro-architectural heterogeneity, authors use a regression model considering IPC

and other PMU counters related to misses in cache memory.

3.1. Scheduling on single-ISA AMP 29

In [136], authors propose Performance Impact Estimation (PIE), a model to

predict the best task-to-core mapping. In particular, the proposed runtime tracks

the ILP and MLP of a task running on one core type to predict performance on the

other core type. In this work, authors make some simplifying assumptions such as

the presence of an identical cache hierarchy on both core types. In addition, a set of

new hardware counters to record inter-instruction dependency distance distribution

is required and are not available in existing processors. The proposed solution is

evaluated on a simulator.

In [109], authors propose performance and power estimation models using

several offline analyses of workloads. Both models are inserted into the binary

of the workload. These models are instantiated at runtime to perform application

scheduling. Models consist of prepared formulas considering PMU counters based

on multiple offline analyses to determine the Cycle Per Instruction (CPI) stack from

both computing intensity and latency penalty from memory accesses. Their study is

performed only on a single thread application, with unused CPU cores and clusters

offline. As such, this strategy does not capture thread memory interference such as

data-coherency mechanisms and thrashing of shared cache memory.

In the XNU kernel (for macOS and iOS), the scheduler is guided by a QoS

recommendation from the programmer of an application [3]. Internally, the scheduler

uses this recommendation to schedule tasks on big cores or LITTLE cores (named

P and E cores in the source code). Kernel tasks are assigned to E-cores, while the

mapping of users’ tasks forming an application follows the suggestion of QoS run

queues. If too many tasks are suggested to run on big cores, low-priority tasks are

spilt to LITTLE cores, or if there are unused LITTLE cores, these cores could steal

tasks from big cores. A rebalance logic will readjust tasks to their recommendation.1

In the Linux kernel (and therefore Android and derivatives), the scheduler

1Source code can be found at: https://github.com/apple-oss-distributions/xnu/blob/

main/osfmk/kern/sched_amp.c, https://github.com/apple-oss-distributions/xnu/blob/

main/osfmk/kern/sched_amp_common.h and https://github.com/apple-oss-distributions/

xnu/blob/main/osfmk/kern/sched_amp_common.c

https://github.com/apple-oss-distributions/xnu/blob/main/osfmk/kern/sched_amp.c
https://github.com/apple-oss-distributions/xnu/blob/main/osfmk/kern/sched_amp.c
https://github.com/apple-oss-distributions/xnu/blob/main/osfmk/kern/sched_amp_common.h
https://github.com/apple-oss-distributions/xnu/blob/main/osfmk/kern/sched_amp_common.h
https://github.com/apple-oss-distributions/xnu/blob/main/osfmk/kern/sched_amp_common.c
https://github.com/apple-oss-distributions/xnu/blob/main/osfmk/kern/sched_amp_common.c

30 Related work

migrates tasks between CPU cores considering a computing capacity model that

represents the performance of the CPU related to the others. This work will be

discussed in depth in section 5.2.1 of chapter 5 as the work of this thesis is directly

compared to it.

In [56, 91], authors propose to dissect applications via a compiler approach

snippet which consists of a set of basic blocks using LLVM. Each snippet contains

calls to monitor PMU counters to determine instruction and memory intensiveness

of the snippet. An offline analysis is performed to stress each snippet exhaustively

over configurations of allowed CPU cores and frequencies. They determine

Pareto-optimal configuration for different objective functions to minimize energy

consumption or maximize performance. The output of the offline analysis is stored

in a file that is reused at runtime for further runs of the application. The offline

analysis seems intractable for a large number of applications as generated models

are tailored to the device under scrutiny.

In [110], authors propose a static scheduling strategy from an offline study.

The offline study thoroughly explores every combination of core mapping on a

big.LITTLE system that led to the least execution time. Once the static scheduling

is determined, the operating frequencies of clusters are adjusted using a Memory

Reads Per Instruction (MRPI) metric. The runtime uses a low frequency for

applications that are considered memory intensive, as these applications will suffer

less performance degradation compared to computationally intensive tasks.

In [111], authors continue the work of [110] to limit the requirement of the

exhaustive application’s performance estimation by using a performance prediction

at runtime via a machine learning model using PMU counters trained offline on

a subset of workloads. At runtime, CPU core resources are adjusted at workload

creation/completion using the performance prediction model.

3.2. Thermal management 31

3.2 Thermal management

This section reviews some work related to thermal management for computing

systems. The next section introduces a thermal model that is used to a great

extent to predict the temperature of a system. The following sections review work

on thermal management for uni-processor, SMP and single-ISA AMP.

3.2.1 RC-network thermal model

There exists a well-known duality between heat transfer and electrical phenomena

[121] which provides a convenient basis for modelling the chip temperature using a

dynamic compact thermal model [44, 126]:

1

Rth

T (t) + Cth
dT (t)

dt
= P (t)

where Cth and Rth are the thermal capacitance and thermal resistance (the inverse

of thermal conductance) respectively, T and P represent the current temperature

and power consumption at the time t.

In practice, thermal management is performed at a regular sampling period.

Therefore, this differential equation can be discretized and rearranged to predict

the temperature at the next sampling period by:

T ′(t) =
P (t)

Cth

− T (t)

RthCth

With the use of system identification or model fitting tools, one can derive Cth

and Rth parameters using a set of workload showing different power consumption and

monitoring the input temperature of the current sample, and output temperature

at the next sample.

3.2.2 Thermal management on uni-processor and SMP

This section reviews work related to thermal management for uni-processor and

SMP. These works may not be applied directly to single-ISA AMP without

32 Related work

severe loss in performance, but are interesting thermal management approaches

for computing systems.

In [75, 76], authors adjust the task scheduling time slices. Reducing the time of

“hot” jobs leads to slightly degraded application performances but limits the need

for more severe thermal throttling techniques such as frequency scaling.

In [28, 45], authors use a compiler approach to determine application phases.

They adjust task priority and execution time to control the temperature with a

fully utilized system.

In [154], authors organize the order of execution of tasks to control the

temperature. Their approach is to interleave “cold” tasks while “hot” tasks are

running to limit thermal throttling.

In [63], authors propose activity migration to control the temperature of

CPU cores. They use PMU counters and an RC-network to predict CPU core

temperatures.

In [152], authors propose a scheduling system to control the temperature. They

use PMU counters and RC-network to predict the temperature. Two predictive

models are used, one to predict application temperature, and another to predict

CPU core temperatures. Another mechanism to adjust tasks priority is in place.

Recently, Arm introduced Intelligent Power Allocation (IPA) which maximizes

the performance of the device within a thermal envelope [12]. It accomplishes this

by integrating thermal closed-loop management with intelligent power distribution

amongst system components. A system component is a block that supports

frequency scaling which could be CPUs, GPUs, DSP, etc. At its heart, IPA

uses frequency scaling on system components to distribute performance and power

requests based on power budget and thermal headroom in the system. The power

budget is estimated using a Proportional Integral Derivative (PID) controller. Each

system component can request different performance levels. And by using a power

model, IPA estimates their relative power consumption and thermal impact on

the system. The power budget is then intelligently distributed among system

3.2. Thermal management 33

components in the device to maximize performance while keeping the temperature

under control.

Under Linux, the default thermal management employs a frequency scaling

approach. This strategy will be presented and explored in detail in chapter 5.

3.2.3 Thermal management on single-ISA AMP

This section reviews some works specific to the thermal management for single-ISA

AMP systems. To help frame work in this thesis table 3.2 presents an overview of

work in this area.

In [102], authors propose a QoS-based resource management to schedule tasks on

a cluster at a specific frequency to satisfy the QoS requested for the tasks. Thermal

management is relative to the Thermal Design Power (TDP) budget of a cluster.

They rely on the Linux CFS scheduler for task-to-core mapping and do not control

specific CPU core assignment within a cluster.

In [125], authors use state-space modelling based on an RC-network model to

predict the temperature and to determine a thermal budget to operate the device.

The strategy consists of using the highest tolerable frequencies with all big cores

according to the power budget. When the power budget cannot be met, individual

CPU cores that have the highest temperature is powered off, leaving the scheduling

responsibility to the operating system to reassign applications to other cores. The

evaluation considers only single-threaded applications.

In [17, 20], authors predict power and temperature using state-space modelling

with an RC-network model to allow the number of cores used and the maximal

frequency of the big cluster that satisfy thermal constraints. If the prediction

suggests 0 CPU core from the big cluster at the minimal frequency that satisfy

thermal constraints, tasks are mapped to the LITTLE cluster and the hottest core

of the big cluster is set to offline as a last resort. It seems that once a core is set

to offline, it is never set to online later. The task-to-core mapping is not controlled

precisely and the work rely on the Linux CFS scheduler. Therefore, if a workload

34 Related work

Table 3.2: An overview of the work presented in section 3.2.3 on thermal

management for single-ISA AMP systems.

P
a
p
e
r

S
ch

e
d
u
le
r

O
ffl
in
e
p
re

d
ic
ti
o
n

m
o
d
e
l

[1
02

]
ow

n
sc
h
ed

u
le
r
fo
r
in
tr
a-
cl
u
st
er

m
ig
ra
ti
on

O
S
d
ef
au

lt
fo
r
in
te
r-
cl
u
st
er

m
ig
ra
ti
on

n
on

e

[1
25

]
O
S
d
ef
a
u
lt

R
C
-n
et
w
or
k
st
a
te
-s
p
ac
e
th
er
m
a
l
m
o
d
el

[1
7,

2
0]

O
S
d
ef
a
u
lt

R
C
-n
et
w
or
k
st
at
e-
sp
ac
e
th
er
m
al

m
o
d
el

an
d
p
ow

er
m
o
d
el

[1
15

,
11

8
,
1
16

,
11

7
]

ow
n
sc
h
ed

u
le
r
u
si
n
g
ex
h
au

st
iv
e

offl
in
e
w
o
rk
lo
ad

ch
a
ra
ct
er
iz
at
io
n

li
gh

t
h
ar
d
w
ar
e
th
er
m
al

ch
ar
ac
te
ri
za
ti
on

[1
38

]
sc
h
ed

u
li
n
g
b
a
se
d
o
n
[1
10

]
(s
ee

se
ct
io
n
3.
1

A
R
M
A

m
o
d
el

[7
2,

7
3]

ow
n
sc
h
ed

u
li
n
g
st
ra
te
gy

b
as
ed

on

IP
C

of
ta
sk
s

n
on

e

T
h
is

th
es
is

ow
n
sc
h
ed

u
li
n
g
st
ra
te
gy

b
as
ed

on

IP
C

an
d
m
em

or
y
p
ro
fi
le

of
ta
sk
s

li
gh

t
h
ar
d
w
ar
e
th
er
m
al

ch
ar
ac
te
ri
za
ti
on

3.2. Thermal management 35

has an uneven computing activity or dynamic phase activity change, this strategy

may not find the best tasks mapping before reducing the performance of the system.

In [18, 19], authors focus on maximizing performance of foreground tasks that

run on the GPU under an Android environment. When an intensive background task

on the big cluster causes a thermal emergency, tasks are migrated to the LITTLE

cluster. The frequency control of the big cluster is performed using the default

DVFS governor. Tasks scheduling on the CPU are not controlled precisely. The

main drawback of this strategy is when the foreground application depends on a

background task. The proposed strategy does not capture dependency relationship

of tasks and may deliver poor performance to a foreground application that is waiting

for a background task that runs on the LITTLE cluster.

In [115, 118, 116, 117], authors propose a QoS-based thermal management

strategy to satisfy user experience. To do so, they allow short burst workload to

exhaust thermal headroom and focuses on slightly degrading the QoS for long-time

running workload by using frequency scaling that employs a step-by-step frequency

reduction if the device is over a thermal limit. An offline analysis is used to

characterize the device for thermal coupling between CPU cores with the GPU,

and also for application performance characterization. This offline analysis is used

at runtime to schedule applications. In particular, offline thermal characterization is

used to determine an order in which cores are likely to heat up rapidly relative to each

other. This offline analysis is then reused for scheduling during a thermal emergency.

On the other hand, application performance characterization helps in determining

tasks and threads which are part of the critical path that contributes the most to the

QoS metric and user experience. These tasks are then mapped to the big cluster,

while the other tasks stay on the LITTLE cluster. If the temperature of the device

cannot be reduced further after reaching the lowest available frequency on the big

cluster, all applications are migrated to the LITTLE cluster. The offline analysis

must be performed for every application before being usable under this thermal

strategy. This step can be long and difficult to scale when applications contain a

36 Related work

large number of threads, and each thread has erratic activities that contribute to

the critical path.

In [138], authors propose a predictive thermal and power management approach

based on the gradient of the last two temperature readings and a power model using

an AutoRegressive Moving Average (ARMA) model. A dynamic error correction is

applied to the thermal predictor at runtime. The frequency of a cluster is adjusted

by using the information of Memory Reads Per Instruction Retired that the cluster

is currently experiencing. The scheduling strategy is based on the work from [110].

In [72, 73], authors use performance models built at runtime to predict which

is the best option between intra- and inter-cluster migration and frequency scaling

to reduce the device temperature. When there is a thermal emergency on the big

cluster, they first try to migrate tasks between cores if there are any that are not

being used. Otherwise, they migrate all tasks from the big cluster to the LITTLE

cluster. While doing so, they build two models that attempt to predict the cost

of migrations between clusters, as well as the performance loss by using DVFS on

the big bluster. Both models take IPC and cluster operating frequencies as input

and produce some sort of cost factor. As the model is built at runtime, it requires

testing the two approaches of migration-based and DVFS-based approach separately.

Once these penalty models are built, they can identify what would be the best

approach in the event of a subsequent thermal emergency. Both models are reset if

the workload changes. This strategy is effective when the workload is regular and

linear in its dynamic behaviour. However, when the workload is constantly changing

this strategy may be inefficient. The evaluation considers multiple single-threaded

applications and does not involve multithreaded applications nor relative penalties

due to memory communication.

3.3. Summary 37

3.3 Summary

All related works presented in this chapter that attempt to predict values from power

consumption and heat production show more or less errors between the predictive

models and the truth.

This is due to the nature of the underlying hardware. In section 2.1, the

relationship between the number of switched transistors and power consumption

has been established. The more transistors involved, the greater the power

consumption. As such, one could not extract the precise power consumption

(therefore the temperature) without knowing the exact calculation beforehand.

In [107], the authors conducted an experiment where they exhaustively exercise

the mul instruction on all operand values on an 8-bit Atmel AVR processor. The

results show that there is a 15% difference in power consumption depending on the

value of the operands.

Moreover, the input of the model is generally a util metric provided by the

operating system kernel which is based on the scheduling time slice. However, this

metric does not encompass the actual physical use of the hardware considering micro-

architectural specificities. Another approach is to use PMU counters to account

for the number of instructions executed. Sadly, while being more fine-grained,

this approach has its own drawback. figure 3.1 shows an experiment comparing

two code constructions running on a Cortex-A15 consisting of “add r0, r0, r0”

for figure 3.1a, or “mul r0, r1, r2” for figure 3.1b. Both code construction have

an IPC value of one. However, the add code construction draws about 12% more

power than a mul code construction. Thus, the non-injective non-surjective relation

between IPC and power is not trivial and any model will be inaccurate by just

considering PMU counters in isolation.

In addition, the nature of the memory hierarchy may result in different timing

latencies depending on the actual data location. For instance, the same memory load

instruction could have a low latency if the data is located in the local cache, and high

latency if the data is residing in a remote cache or off-chip memory. Moreover, we will

38 Related work

 32

 34

 36

 38

 40

 42

 44

 46

 48

 100 120 140 160 180 200 220 240

0.6

0.8

1.0

1.2

1.4

T
e
m
p
e
r
a
t
u
r
e

(
°C
)

P
o
w
e
r

(
W
)

Time (s)

Temperature
Power

(a) add r0, r0, #1

 32

 34

 36

 38

 40

 42

 44

 46

 48

 100 120 140 160 180 200 220 240

0.6

0.8

1.0

1.2

1.4

T
e
m
p
e
r
a
t
u
r
e

(
°C
)

P
o
w
e
r

(
W
)

Time (s)

Temperature
Power

(b) mul r0, r1, r2

Figure 3.1: Two different program that have an IPC value of one, but face

different power consumption. The program exercise repeatedly an add instruction

in figure 3.1a, and a mul instruction in figure 3.1b for one minute.

The rest of the code that drives the execution is the same and consists of a simple

loop. The number of instructions in the loop is set to fit in a virtual memory

page of 4 KB to limit TLB operations, the number of iterations per loop for both

programs is the same and both experiments operate under the same setup on CPU

frequency and core mapping. Therefore, the only difference in hardware usage is the

instruction and registers used.

With a steady-state temperature of 46 ◦C and 1.46 W of power consumption

for the add instruction and a steady-state temperature of 44 ◦C and 1.28 W of

power consumption for the mul instruction, there are 4% difference in steady-state

temperature and 12% difference in power consumption while the IPC is 1.

3.3. Summary 39

see in chapter 4 that the system under study shows a non linear latency depending

on the frequencies of components of the system. This non-determinism will bring

inaccuracy to any model that targets hardware comprising such a hierarchy.

Furthermore, the complexity of predictive models to consider transient temper-

ature and the positive feedback loop nature between thermal and power leakage

requires expensive code in space and time. Also, the utilization of such models

directly on the device has an intrusive impact on the system.

For these reasons, the thermal management approach proposed in this thesis in

chapter 5 comprising scheduling and frequency scaling does not involve a complex

predictive thermal model. Instead, the approach uses directly available thermal

sensors and acts reactively to thermal events.

Chapter 4

Multiprocessing and frequency

scaling: when data takes its time.

Modern embedded platforms such as mobile and tablet devices have become a

ubiquitous part of the modern computing ecosystem. Their battery-powered design

has driven a new wave of hardware research, including the asymmetric multiprocessor

(AMP). This is a System-on-Chip (SoC) which offers a cluster of CPU cores designed

to be energy efficient, and another designed to offer high performance. This concept

has been implemented in the ARM big.LITTLE architecture which is widely adopted

in mobile platforms, including the Samsung Galaxy range. The big.LITTLE design

has an energy efficient processor (named LITTLE) with a performant but more

power-hungry processor (named big), where each processor also offers a range of

frequency settings. This design exposes a large optimization space for software

to trade performance against reduced energy consumption by choosing a processor

depending on energy and time constraints.

In order to simplify software development for the platform, the hardware offers

transparent data coherency between its processor clusters. On many big.LITTLE

platforms, this is implemented via the ARM CoreLink CCI-400 interconnect [6]

which uses a bus-snooping protocol: when a data access is issued by a processor,

the interconnect will broadcast a message to all processors to check whether the

41

data is present in their local cache before accessing RAM. Because the interconnect

communicates with the processor, extra latency can be introduced in this procedure

if the processor’s clock frequency is low. Experimental exploration shows that gcc

can suffer an 80% slowdown due to this mechanism. While newer big.LITTLE

platforms include a hardware snoop filter to mitigate these effects, the popular CCI-

400 interconnect remains in wide use across the world – a recent study by Facebook

reports that 75% of smartphones using their platform have CPU designs released

before 2013 [150], before any big.LITTLE hardware snoop filters were designed.

This chapter presents a software solution to this problem with a novel ondemand-

anti-snoop governor, a new Dynamic Voltage and Frequency Scaling (DVFS)

governor which enhances the standard Linux ondemand governor to consider the

memory traffic between processor units and main memory at a hardware-level. The

proposed approach is highly generalized, working transparently across all software,

and requires only a simple, generic, train-once model of real-time system activity

to learn snoop effects in a range of scenarios. Evaluation of this work shows that

performance improvements of up to 40% can be achieved with this new dynamic

frequency governor on real-world software.

The main contributions of this work are:

• A methodology to characterize snooping latency effects on the bus-snoop

protocol interconnect fabric.

• A simple but effective model of snoop latency using a microbenchmark; the

model is trained once on this benchmark and then applies generically to all

software.

• A new DVFS governor which uses the proposed model together with hardware-

level information to mitigate snooping latency in real-time by locating the ideal

holistic frequency configurations on the SoC.

This chapter is organized as follows. Section 4.1 first presents the hardware

architecture in detail on which the study is conducted. Section 4.2 then presents

42 Multiprocessing and frequency scaling: when data takes its time.

a model of snooping effects, considering hardware-level data, and a new frequency

scaling governor using this model to mitigate snooping latency. An evaluation of the

new governor on a set of real-world workloads is presented in section 4.4. Finally,

the chapter is summerised in section 4.5.

4.1 Memory architecture background

To understand the relative difference in execution time for different clock frequencies,

this section first explains in detail how memory works on the platform used for this

study.

The platform in question is an Odroid-XU3 from HardKernel [58], which

implements the Exynos 5422 System-on-Chip (SoC) from Samsung [120]. The SoC

itself is identical to that used in the Samsung Galaxy S5 smartphone, though the host

board is slightly different. Section 2.5 provides more detail of the SoC architecture,

which implements two CPU clusters of 4 cores each, for a total of 8 cores. One

cluster targets energy efficiency (named LITTLE) and uses a Cortex-A7 [10], while

the other cluster targets performance (named big) and uses a Cortex-A15 [9]. Each

CPU core has its own private L1 cache and shares one L2 cache within the same

cluster. Both CPUs have 32 KB instruction cache and 32 KB for data in L1 cache.

The LITTLE cluster has a unified 512 KB L2 last-level cache, while the big cluster

has 2 MB. Finally, CPU core clock frequency is shared between cores within the

same cluster.

In this SoC, data cache coherency between the two clusters is managed by the

ARM CoreLink CCI-400 Cache Coherent Interconnect [8]. Using this interconnect

fabric, when a CPU core in a cluster performs a read/write memory operation for

data that is not contained in its internal cache, the interconnect checks if the data

is present in the cache of the other cluster, and if not, it then performs an access

to off-chip main memory (RAM). This check is performed by an operation called

snooping, for which further specification details can be found in the relevant ARM

4.1. Memory architecture background 43

white paper [130].

The effect of snooping on this hardware is that extra latency can be introduced

when a process performs several memory accesses and when the frequency of the

other cluster is low. This is because the interconnect fabric communicates with the

CPU cluster to check its cache status, and the cache status check is performed at

a speed relative to the current clock frequency of the cluster. Therefore, a process

running on one CPU cluster can stall on memory accesses because another cluster

has a low clock frequency.

This effect interacts with the common dynamic CPU frequency scaling policy

(DVFS) used in Linux, and present on the majority of Android smartphones (the

popular Energy Aware Scheduler (EAS) for Android uses a frequency governor with

a very similar design to that used in standard Linux). DVFS by default attempts

to reduce the clock frequency of a CPU whenever it is idle, to correspondingly

reduce the amount of energy consumed by that CPU. Whenever one particular CPU

cluster on a big.LITTLE chip has a low workload intensity, the clock frequency of

that cluster is reduced, which can in turn cause snoop-induced stalling on memory

accesses across other clusters. Experimentation shows that this stalling can cause

a slowdown of up to 80% for the most memory-intensive applications – which is a

very significant impact for the wide range of smartphone models using this hardware

architecture.

Obvious solutions to this problem are (i) to always run all CPUs at their highest

clock frequency, or (ii) to try to completely power down CPUs that aren’t being

heavily used (as powering down a CPU cluster also removes snooping effects).

Both approaches are problematic: running CPU clusters at high frequencies incur

significant energy penalties and so will reduce battery lifetime while powering down

a CPU cluster takes a significant amount of time to migrate tasks and deactivate

cluster-bound kernel services (our measurements with hotplug show that Linux

takes 300 ms to power down a low-workload cluster). A third approach for an idle

CPU with no workload is to rely on periodically putting that CPU into sleep mode

44 Multiprocessing and frequency scaling: when data takes its time.

via the cpuidle framework (rather than forcing a full power down), and periodically

waking the CPU to accommodate kernel maintenance routines. However, during all

of the periods in which the CPU is awake this may incur snooping latency.

Therefore, neither of these approaches is attractive by themselves. Instead, a

model of the hardwar snooping behaviour and its interaction with clock frequencies

is used to discover how the snoop architecture behaves. In particular, this model is

trained on a microbenchmark that stresses in isolation the memory subsystem. Using

this trained model, a new dynamic frequency governor is proposed. This governor

monitors the system in real-time to continually find a balance between raising clock

frequencies to avoid snoop-induced stalling when needed while still keeping them as

low as possible to conserve energy. This governor is most effective when multiple

clusters are awake with at least some workload, but is also complementary to periodic

CPU sleep protocols used on completely idle clusters during the times when that

CPU wakes for maintenance procedures.

The next section introduces the design of this model and its training.

4.2 Modeling snooping latency

The first step is to develop a detailed model of the conditions under which snooping

latency occurs and to understand which hardware monitors can be measured to

enable the detection of this effect in real-time and correlate it with a model. This

procedure is done by using a microbenchmark that targets a range of different

memory access patterns.

The following subsections first present a study of snoop latency effects, in general,

using this microbenchmark, then discuss how one could detect these effects in real-

time using Performance Monitoring Counter (PMC) on both the CPU and the

interconnect fabric.

4.2. Modeling snooping latency 45

(a) CPU cycles spent to perform a memory access.

0

50

100

150

200

250

300

350

400

0.
2-
1.
4-
93
3

0.
3-
1.
4-
93
3

0.
4-
1.
4-
93
3

0.
5-
1.
4-
93
3

0.
6-
1.
4-
93
3

0.
7-
1.
4-
93
3

0.
8-
1.
4-
93
3

0.
9-
1.
4-
93
3

1.
0-
1.
4-
93
3

1.
1-
1.
4-
93
3

1.
2-
1.
4-
93
3

1.
3-
1.
4-
93
3

1.
4-
1.
4-
93
3

1.
5-
1.
4-
93
3

1.
6-
1.
4-
93
3

1.
7-
1.
4-
93
3

1.
8-
1.
4-
93
3

1.
9-
1.
4-
93
3

2.
0-
1.
4-
93
3

c
p
u
_
c
y
c
le
s

<big frequency (GHz) - LITTLE frequency (GHz) - memory frequency (MHz)>

(b) CPU PMCs memory bus access for the process.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.
2-
1.
4-
93
3

0.
3-
1.
4-
93
3

0.
4-
1.
4-
93
3

0.
5-
1.
4-
93
3

0.
6-
1.
4-
93
3

0.
7-
1.
4-
93
3

0.
8-
1.
4-
93
3

0.
9-
1.
4-
93
3

1.
0-
1.
4-
93
3

1.
1-
1.
4-
93
3

1.
2-
1.
4-
93
3

1.
3-
1.
4-
93
3

1.
4-
1.
4-
93
3

1.
5-
1.
4-
93
3

1.
6-
1.
4-
93
3

1.
7-
1.
4-
93
3

1.
8-
1.
4-
93
3

1.
9-
1.
4-
93
3

2.
0-
1.
4-
93
3

m
e
m
o
ry
_
b
u
s
_
a
c
c
e
s
s

<big frequency (GHz) - LITTLE frequency (GHz) - memory frequency (MHz)>

(c) CCI PMCs stall cycles per read on the big port.

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

0.
2-
1.
4-
93
3

0.
3-
1.
4-
93
3

0.
4-
1.
4-
93
3

0.
5-
1.
4-
93
3

0.
6-
1.
4-
93
3

0.
7-
1.
4-
93
3

0.
8-
1.
4-
93
3

0.
9-
1.
4-
93
3

1.
0-
1.
4-
93
3

1.
1-
1.
4-
93
3

1.
2-
1.
4-
93
3

1.
3-
1.
4-
93
3

1.
4-
1.
4-
93
3

1.
5-
1.
4-
93
3

1.
6-
1.
4-
93
3

1.
7-
1.
4-
93
3

1.
8-
1.
4-
93
3

1.
9-
1.
4-
93
3

2.
0-
1.
4-
93
3

s
ta
ll_
c
y
c
le
s
 p
e
r

 r
e
a
d
_
re
q
u
e
s
ts

<big frequency (GHz) - LITTLE frequency (GHz) - memory frequency (MHz)>

67108864_0
67108864_1
67108864_16
33554432_0
33554432_1
33554432_16
1048576_0

1048576_1
1048576_16
160100_0
160100_1
160100_16
131072_0
131072_1

131072_16
65536_0
65536_1
65536_16

4_0
4_1
4_16

Figure 4.1: Benchmark on the LITTLE cluster, big cluster idle

46 Multiprocessing and frequency scaling: when data takes its time.

(a) CPU cycles spent to perform a memory access.

0
50
100
150
200
250
300
350
400
450

2.
0-
0.
2-
93
3

2.
0-
0.
3-
93
3

2.
0-
0.
4-
93
3

2.
0-
0.
5-
93
3

2.
0-
0.
6-
93
3

2.
0-
0.
7-
93
3

2.
0-
0.
8-
93
3

2.
0-
0.
9-
93
3

2.
0-
1.
0-
93
3

2.
0-
1.
1-
93
3

2.
0-
1.
2-
93
3

2.
0-
1.
3-
93
3

2.
0-
1.
4-
93
3

c
p
u
_
c
y
c
le
s

<big frequency (GHz) - LITTLE frequency (GHz) - memory frequency (MHz)>

(b) CPU PMCs memory bus access for the process.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

2.
0-
0.
2-
93
3

2.
0-
0.
3-
93
3

2.
0-
0.
4-
93
3

2.
0-
0.
5-
93
3

2.
0-
0.
6-
93
3

2.
0-
0.
7-
93
3

2.
0-
0.
8-
93
3

2.
0-
0.
9-
93
3

2.
0-
1.
0-
93
3

2.
0-
1.
1-
93
3

2.
0-
1.
2-
93
3

2.
0-
1.
3-
93
3

2.
0-
1.
4-
93
3

m
e
m
o
ry
_
b
u
s
_
a
c
c
e
s
s

<big frequency (GHz) - LITTLE frequency (GHz) - memory frequency (MHz)>

(c) CCI PMCs stall cycles per read on the big port.

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

2.
0-
0.
2-
93
3

2.
0-
0.
3-
93
3

2.
0-
0.
4-
93
3

2.
0-
0.
5-
93
3

2.
0-
0.
6-
93
3

2.
0-
0.
7-
93
3

2.
0-
0.
8-
93
3

2.
0-
0.
9-
93
3

2.
0-
1.
0-
93
3

2.
0-
1.
1-
93
3

2.
0-
1.
2-
93
3

2.
0-
1.
3-
93
3

2.
0-
1.
4-
93
3

s
ta
ll_
c
y
c
le
s
 p
e
r

 r
e
a
d
_
re
q
u
e
s
ts

<big frequency (GHz) - LITTLE frequency (GHz) - memory frequency (MHz)>

67108864_0
67108864_1
67108864_16
33554432_0
33554432_1
33554432_16
1048576_0

1048576_1
1048576_16
160100_0
160100_1
160100_16
131072_0
131072_1

131072_16
65536_0
65536_1
65536_16

4_0
4_1
4_16

Figure 4.2: Benchmark on the big cluster, LITTLE cluster idle

4.2. Modeling snooping latency 47

4.2.1 Memory latency exploration

To study snooping latency on memory operation, a microbenchmark has been

designed to stress the memory subsystem. This microbenchmark is largely inspired

by other works on the subject [31, 94, 135]. However, those were lacking of generality

and practicability for the purpose of this study. The benchmark runs a pointer-

chasing loop over an array of a given size; values in the array represent the next

index to follow in this same array for the next iteration. The benchmark can be

configured to access the array using a range of different patterns, including a linear

access of a unit stride, a stride of a cache line size, or a random pattern which

prevents smart CPU memory prefetchers from being effective 1.

The benchmark is executed on one active cluster, keeping the other cluster idle,

over each possible set of cluster frequencies and with different parameterizations to

cover a large range of use cases. The parameterization comprises all three memory

pattern accesses and multiple different array sizes. The array size itself is chosen

to either fit or not fit in the different CPU internal cache sizes of both clusters, the

latter case forcing off-chip memory access.

The figure 4.1 presents the overall results of running the benchmark on the

LITTLE cluster and keeping the big cluster idle while the figure 4.2 presents the

reverse scenario. Each graph shows all three memory access patterns with different

array sizes. The graph legend shows the size (in number of indexes in the array) and

pattern access for each series – where an access pattern 0 is the random pattern, 1

is a strictly sequential pattern, and 16 is a sequential pattern with a stride of the

size of a data cache line of the CPU (both CPU clusters use a fixed line length of 64

bytes for their data cache at each cache level and array indexing via a size t type

which is an unsigned integer of 4 bytes on a 32-bit CPU).

First, let us begin by measuring the overall total number of CPU clock cycles

spent to perform a single memory access in the benchmark (which reads the index of

the next memory access in the array); the results of this are shown in figure 4.1a and

1The code source of the benchmarck is available at https://github.com/wwilly/benchmark

https://github.com/wwilly/benchmark

48 Multiprocessing and frequency scaling: when data takes its time.

figure 4.2a for the benchmarks running on the LITTLE and big cluster respectively.

The x-axes of all graphs show the CPU and main memory frequency configuration

in the format {big freq}-{LITTLE freq}-{mem freq}2, and the y-axes show CPU

cycles. figure 4.1a and figure 4.2a show that there is an increase in the number of

cycles for any benchmark with an array of more than 131,072 elements3, or when

the memory access pattern is not strictly sequential. In both of these cases, there is

an additional increase in cycles when the idle cluster has its frequency set below a

certain level; in figure 4.1a this increase in cycles occurs when the idle big cluster

drops below 0.7 GHz, while in figure 4.2a it occurs when the idle LITTLE cluster

drops below 0.4 GHz.

One can note that, where a performance drift occurs, frequencies are at different

levels depending on the cluster. This can be explained by differences in the

microarchitecture design of both processors regarding pipelining. On the LITTLE

cluster (Cortex-A7), the latency of an L1 cache hit is three cycles in the best case,

while it is four cycles on the big cluster (Cortex-A15). As such, it is assumed that

a snoop acknowledgement on the big cluster is deeper in the pipeline than on the

LITTLE cluster, hence the different level of performance drift.

The graphs in figure 4.1b-c and figure 4.2b-c show information from the PMCs

that are used to detect snooping latency cases in real-time. These PMC readings

are taken across an identical set of frequencies and benchmarks to those used in

figure 4.1a and figure 4.2a. In detail, figure 4.1c shows CCI stalling cycles per read

request coming from the LITTLE cluster, while figure 4.2c shows CCI stalling cycles

per read request coming from the big cluster. In both cases one can clearly see that

this PMC correlates with the snoop mechanism effect: when clock frequencies are

too low under certain memory access patterns, a higher stalling cycles is recorded

on this PMC. Therefore, while this PMC shows part of the picture, it is only able

2CPU frequencies are shown in GHz, and memory in MHz. Dynamic adjustment of both

memory and CPU frequencies is available by default on the Linux kernel on the tested platform.
3This threshold is a result of the L2 cache size on the LITTLE cluster, which is 512 KB

(131, 072× 4bytes).

4.2. Modeling snooping latency 49

to report all events from an entire cluster, involving all of its cores, and all of its

processes.

It is also useful to understand the memory profile of a particular process for

which one would like to optimize, to figure out if the snoop latency measurements

are actually affecting this process. Because the governor tends to be agnostic in

any application-specific knowledge or static memory profiling, the governor uses a

CPU PMC providing real-time memory bus usage for each core. figure 4.1b (and

figure 4.2b) shows the mem bus access PMC for the microbenchmark running on

the LITTLE and big cluster respectively which offers exactly this information in

real-time. Here one can see that the number of memory accesses per cycle appears

to reduce across benchmark configurations as the CPU frequency of the other cluster

is lowered. This decrease is caused by the stalling effect itself, such that a process

has an apparently lower amount of memory access as recorded by this PMC if that

process is being affected by snoop-based stalling. This effectively reduces the speed

with which that process executes and so reduces its apparent memory access volume

per cycle.

The combined data from these PMCs indicates that stalling for a particular

process of interest can be detected by reading the CCI PMC of its non-resident

cluster, and the memory bus access profile CPU PMC of the process on its resident

cluster. When the memory access profile exceeds a certain memory size or has a

non-sequential pattern and begins to show lower memory accesses per cycle, and

the CCI PMC of the non-resident cluster indicates stalling, one can assume that the

clock frequency of the other cluster must be increased to reduce stalling effects for

this particular process.

The next section proposes a formal way to use these PMCs to dynamically

determine when the snooping mechanism could affect application performance.

50 Multiprocessing and frequency scaling: when data takes its time.

cci_congestion <= 0.01074

memory_bus_access <= 4e-05

True

memory_bus_access <= 0.00822

False

decision = decrease_frequency decision = decrease_frequency decision = decrease_frequency decision = increase_frequency

(a) Decision tree used to manage frequency of the big cluster.

cci_congestion <= 0.00023

memory_bus_access <= 0.05568

True

memory_bus_access <= 0.00468

False

decision = decrease_frequency decision = decrease_frequency decision = decrease_frequency decision = increase_frequency

(b) Decision tree used to manage frequency of the LITTLE cluster.

Figure 4.3: Decision trees used to find CPU frequencies that limit snooping latency.

4.2.2 Detection of snooping latency

As shown in the section 4.2.1, for certain combinations of stalling cycles on the

CCI PMC and memory bus access via the CPU’s PMC, a clear trend of increase in

latency can be seen. However, these increases show a non-linear relationship between

the PMC values (specifically: the values reported in figure 4.1b and figure 4.1c

relative to processes running on the LITTLE cluster; and the values in figure 4.2b

and figure 4.2c for processes running on the big cluster). These non-linear relations

are difficult to capture heuristically. Instead, an offline automatic modelling process

has been developed to determine the ideal levels to configure the respective CPU

frequencies.

There are two key questions to consider in solving this task: 1) which CPU

frequency configuration has performance loss? and 2) what values do the relative

PMCs report when there is known snooping latency?

4.2. Modeling snooping latency 51

A rigorous test for the first question would be to detect when the performance

variation is statistically significant and not inherent noise due to the operating

system’s process management. To determine whether there is a statistically

significant variation, a Student’s t-test is performed on each execution trace

(scanning each CPU configuration) against the highest possible frequency of both

clusters. The Student’s t-test is a standard statistical method to establish whether

or not a difference between two data sets is significant. For this study, a problematic

snooping latency is assumed when the p-value of this statistical test is higher than

0.05.

Once execution instances that have snooping latency issues are identified, the

second question can be answered using a machine learning model. The goal of this

step is to find thresholds on which there is a problematic snooping latency relative

to the hardware-level monitoring points of the CPU PMC memory bus access and

CCI PMC stall cycles. Since the objective is to find a way to make a quick

decision at runtime to detect and mitigate snooping latency at any given time, a

decision tree to model the situation is used. Decision trees are relatively simple

models which are trained on a set of example data, for which execution instances

are used to determine which input values (PMC levels in this case) should imply

which output values (increase or decrease clock frequency). Once trained they can

be automatically converted to simple C programs of if-else statements for rapid

runtime decision-making.

As both cluster frequencies are managed independently, two decision trees are

built by considering the CPU PMC of the process of the resident core cluster, and the

CCI PMCs of the other non-resident cluster. In other words, when the frequency

of the LITTLE cluster is controlled, stalling cycles per read request on the

channel of the big cluster is considered, and vice versa.

Figure 4.3a and figure 4.3b show the trained decision trees to use while managing

the frequency of the big and LITTLE cluster respectively. In the trees, the variable

cci congestion corresponds to the quotient of CCI PMCs, while memory access

52 Multiprocessing and frequency scaling: when data takes its time.

corresponds to the sum of processes CPU PMC memory bus access of applications

to optimize. At runtime, if PMC values are over these thresholds, the system is

deemed to be in problematic snooping latency territory and CPU frequency may

be increased to limit performance loss. Both steps of computing Student’s t-test

statistic and the generation of the decision trees were carried out using scikit-

learn[108].

The next section presents the use of this model at runtime as part of the OS

frequency management process.

4.3 A snoop-aware frequency governor

This section presents the runtime algorithm for frequency scaling which uses the

decision trees derived from the offline modelling procedure. These decision trees are

implemented at runtime as a set of ‘‘if-then-else’’ control flow construction.

This helps in making almost instant decisions on which clock frequencies to use

across both CPU clusters based on the current memory access characteristics of a

process of interest, and the stalling behaviour of the inter-cluster cache interconnect.

This section will first present how the default Linux kernel algorithm to manage

CPU frequencies is working. And then proposes a refined version which leverages

runtime hardware-level information to alleviate snooping latency.

4.3.1 Linux DVFS governor

Algorithm 1: Linux DVFS ondemand governor.

1 if load > up threshold then

2 cpu freq = max cpu freq

3 else

4 cpu freq = min cpu freq + load ∗ (max cpu freq −min cpu freq)/100

5 end

4.3. A snoop-aware frequency governor 53

To limit the energy consumption of a device when there is no CPU activity,

Linux dynamically adjusts the speed and therefore power settings of all CPUs using

DVFS. This is implemented in the logic of a module termed a governor.

The default governor used in many flavours of Linux is the ondemand gover-

nor [106] which works simply by adjusting the CPU frequency in direct proportion

to the current load of the CPU, where the load level is defined as the amount of

time for which the CPU is non-idle during the last sampling period. The algorithm 1

shows the main body of this standard governor 4, which is also very similar to that

used with the EAS scheduling framework (schedutil governor) on Android.

This governor does not rely on any in-depth hardware-level information, basing

its decision-making only on process activity levels over time. As such, the governor

would choose the lowest frequency for a cluster when it is idle. However, as shown

in the previous section, this decision may induce snooping latency combined with

certain memory behaviour for a process running on another cluster.

To avoid this issue on AMP architectures which employ a bus-snoop cache

coherency protocol, a more advanced governor which uses real-time hardware-level

data is proposed in the next section.

4.3.2 DVFS ondemand-anti-snoop governor

The approach to avoid snooping latency is based on progressively finding the right

frequency where the trained model does not detect any latency caused by the

snooping mechanism. Using the model presented in section 4.2, a refinement of

the ondemand governor is built by integrating information from both CCI PMCs

and CPU PMCs of processes to avoid snooping latency when the model indicates

that it is occurring. The algorithm 2 shows this enhanced ondemand-anti-snoop

governor, which integrates the decision tree compiled out to C code as ‘‘if-then-

else’’ control flow constructions.

4The full source code of the governor can be found at https://git.kernel.org/pub/scm/

linux/kernel/git/stable/linux.git/tree/drivers/cpufreq/cpufreq_ondemand.c

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/drivers/cpufreq/cpufreq_ondemand.c
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/drivers/cpufreq/cpufreq_ondemand.c

54 Multiprocessing and frequency scaling: when data takes its time.

Algorithm 2: Enhanced DVFS ondemand-anti-snoop governor.

1 if load > up threshold then

2 cpu freq = max cpu freq

3 else

4 cci congestion = update pmc cci congestion()

5 memory access = update pmc memory access()

6 if cci congestion > cci congestion threshold

7 and memory access > memory threshold then

8 stall cpu freq = cpu freq + cpu freq step

9 else

10 stall cpu freq = cpu freq − cpu freq step

11 end

12 cpu freq = min cpu freq + load ∗ (max cpu freq −min cpu freq)/100

13 cpu freq = clamp(max(cpu freq, stall cpu freq))

14 end

4.3. A snoop-aware frequency governor 55

This enhanced DVFS governor works as follows. The first step is to update

the relevant hardware information by reading PMU counters (lines 4 and 5), then

consults the trained decision tree (compiled out to C code, on lines 6 and 7) to

determine whether the model suggests increasing the CPU frequency or reducing it

for a given cluster. Following this, the procedure calculates both (a) the suggested

CPU frequency based on the current system load, and (b) the recommended

frequency based on the model, and set the actual frequency to whichever of (a)

and (b) is higher (line 13)5. This comparison is necessary because the load-based

frequency scaling approach may recommend a higher frequency than the model

for scenarios in which CPU-intensive processes are running that incur no snooping

latency. Likewise, the load-based approach may suggest a lower frequency for a less

busy CPU cluster, when another cluster is actually stalling due to cache snooping,

in which case the model will suggest the higher frequency.

4.3.3 Implementation details

The proposed approach is implemented directly in the Linux kernel v5.15 by

modifying the task struct to allow per-thread CPU PMCs readings. Also, the

ondemand-anti-snoop governor reads CPU PMCs for each thread that has been

active over the last period, and CCI PMCs6 from the interconnect. Because of this

additional periodic monitoring of PMCs, this approach incurs a small continuous

overhead that will be discussed in detail in the section 4.4.3. All software and

benchmarks have been compiled using GCC v10.2 and run on a Debian 11 Linux

distribution.

5The clamp notation on line 13 includes a calculation of both the valid frequency range of the

CPU according to its design specifications, and its maximum actual range advised by the thermal

driver, taking into account automated thermal protection.
6Support for reading CCI-400 PMCs is not currently available in the mainline kernel source

code; support has been added for these PMCs to the Linux kernel and a patch submitted to the

Linux mainline maintainer is currently under review.

56 Multiprocessing and frequency scaling: when data takes its time.

0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4

caches-67108864_0-L

caches-67108864_0-b

caches-67108864_16-L

caches-67108864_16-b

caches-67108864_1-L

caches-67108864_1-b

caches-33554432_0-L

caches-33554432_0-b

caches-33554432_16-L

caches-33554432_16-b

caches-33554432_1-L

caches-33554432_1-b

caches-1048576_0-L

caches-1048576_0-b

caches-1048576_16-L

caches-1048576_16-b

caches-1048576_1-L

caches-1048576_1-b

caches-160100_0-L

caches-160100_0-b

caches-160100_16-L

caches-160100_16-b

caches-160100_1-L

caches-160100_1-b

caches-131072_0-L

caches-131072_0-b

caches-131072_16-L

caches-131072_16-b

caches-131072_1-L

caches-131072_1-b

caches-65536_0-L

caches-65536_0-b

caches-65536_16-L

caches-65536_16-b

caches-65536_1-L

caches-65536_1-b

caches-4_0-L

caches-4_0-b

caches-4_16-L

caches-4_16-b

caches-4_1-L

caches-4_1-b

sp
ee

du
p

ondemand
idle_cluster_lowest_frequency

idle_cluster_highest_frequency
ondemand-anti-snoop

Figure 4.4: Time results on microbe, the microbenchmark used to train the decision

trees. The baseline is the Linux ondemand governor.

4.4 Evaluation

To evaluate the performance of the software solution to avoid snooping latency, this

section compares the new ondemand-anti-snoop governor against three alternatives

using a set of benchmarks (discussed in the following section). The first alternative

uses the default CPU DVFS ondemand governor and serves as a reference for other

comparators. The second one sets the active cluster to its highest frequency while

forcing the idle cluster to its lowest frequency. This setting is meant to determine the

worst case scenario when snooping latency is not taken into account but exhibits low

energy usage. The third one sets both clusters at their highest frequency, achieving

the minimal time for the workload at the expense of higher energy costs.

Both metrics of execution time and energy consumption are considered and each

benchmark are executed five times and the average (using a geometric mean [52]) of

execution time and energy consumption are taken to normalize noise and reduce the

effect of outliers. Energy consumption is measured using onboard energy sensors

that measures power consumption where a reading is taken every 263808 µs and

accumulated in a variable that represents the energy consumed during the last

sampling period. This accumulator is reset before running a benchmark, and the

first reading after the benchmark has finished is reported as energy.

4.4. Evaluation 57

(a) Speedup.

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

S
P
E
C
::g
c
c
-g
2
3
-L

S
P
E
C
::g
c
c
-g
2
3
-b

S
P
E
C
::b
w
a
v
e
s
-te
s
t-L

S
P
E
C
::b
w
a
v
e
s
-te
s
t-b

S
P
E
C
::h
2
6
4
re
f-tra

in
_
b
a
s
e
lin
e
-L

S
P
E
C
::h
2
6
4
re
f-tra

in
_
b
a
s
e
lin
e
-b

S
P
E
C
::p
o
v
ra
y
-tra

in
-L

S
P
E
C
::p
o
v
ra
y
-tra

in
-b

m
p
la
y
e
r-je

lly
fi
s
h
-3
-m
b
p
s
-h
d
-h
2
6
4
.m
k
v
-L

m
p
la
y
e
r-je

lly
fi
s
h
-3
-m
b
p
s
-h
d
-h
2
6
4
.m
k
v
-b

b
b
e
n
c
h
::a
m
a
z
o
n
-L

b
b
e
n
c
h
::a
m
a
z
o
n
-b

b
b
e
n
c
h
::b
b
c
-L

b
b
e
n
c
h
::b
b
c
-b

b
b
e
n
c
h
::c
ra
ig
lis
t-L

b
b
e
n
c
h
::c
ra
ig
lis
t-b

b
b
e
n
c
h
::e
b
a
y
-L

b
b
e
n
c
h
::e
b
a
y
-b

b
b
e
n
c
h
::g
o
o
g
le
-L

b
b
e
n
c
h
::g
o
o
g
le
-b

b
b
e
n
c
h
::m

s
n
-L

b
b
e
n
c
h
::m

s
n
-b

b
b
e
n
c
h
::s
la
s
h
d
o
t-L

b
b
e
n
c
h
::s
la
s
h
d
o
t-b

b
b
e
n
c
h
::tw

itte
r-L

b
b
e
n
c
h
::tw

itte
r-b

b
b
e
n
c
h
::y
o
u
tu
b
e
-L

b
b
e
n
c
h
::y
o
u
tu
b
e
-b

s
p
e
e
d
o
m
e
te
r-L

s
p
e
e
d
o
m
e
te
r-b

s
p
e
e
d
u
p

ondemand
idle_cluster_lowest_frequency
idle_cluster_highest_frequency

ondemand-anti-snoop

(b) Energy saving.

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

S
P
E
C
::g
c
c
-g
2
3
-L

S
P
E
C
::g
c
c
-g
2
3
-b

S
P
E
C
::b
w
a
v
e
s
-te
s
t-L

S
P
E
C
::b
w
a
v
e
s
-te
s
t-b

S
P
E
C
::h
2
6
4
re
f-tra

in
_
b
a
s
e
lin
e
-L

S
P
E
C
::h
2
6
4
re
f-tra

in
_
b
a
s
e
lin
e
-b

S
P
E
C
::p
o
v
ra
y
-tra

in
-L

S
P
E
C
::p
o
v
ra
y
-tra

in
-b

m
p
la
y
e
r-je

lly
fi
s
h
-3
-m
b
p
s
-h
d
-h
2
6
4
.m
k
v
-L

m
p
la
y
e
r-je

lly
fi
s
h
-3
-m
b
p
s
-h
d
-h
2
6
4
.m
k
v
-b

b
b
e
n
c
h
::a
m
a
z
o
n
-L

b
b
e
n
c
h
::a
m
a
z
o
n
-b

b
b
e
n
c
h
::b
b
c
-L

b
b
e
n
c
h
::b
b
c
-b

b
b
e
n
c
h
::c
ra
ig
lis
t-L

b
b
e
n
c
h
::c
ra
ig
lis
t-b

b
b
e
n
c
h
::e
b
a
y
-L

b
b
e
n
c
h
::e
b
a
y
-b

b
b
e
n
c
h
::g
o
o
g
le
-L

b
b
e
n
c
h
::g
o
o
g
le
-b

b
b
e
n
c
h
::m

s
n
-L

b
b
e
n
c
h
::m

s
n
-b

b
b
e
n
c
h
::s
la
s
h
d
o
t-L

b
b
e
n
c
h
::s
la
s
h
d
o
t-b

b
b
e
n
c
h
::tw

itte
r-L

b
b
e
n
c
h
::tw

itte
r-b

b
b
e
n
c
h
::y
o
u
tu
b
e
-L

b
b
e
n
c
h
::y
o
u
tu
b
e
-b

s
p
e
e
d
o
m
e
te
r-L

s
p
e
e
d
o
m
e
te
r-b

e
n
e
rg
y
_
s
a
v
in
g

ondemand
idle_cluster_lowest_frequency
idle_cluster_highest_frequency

ondemand-anti-snoop

Figure 4.5: Results of experiments on real-world benchmarks, using the Linux

ondemand governor as a baseline.

58 Multiprocessing and frequency scaling: when data takes its time.

4.4.1 Benchmark selection

This work has been evaluated with a set of 15 different benchmarks. This includes

popular benchmarks for CPU profiling chosen to demonstrate performance in the

best, worst, and average case; and also benchmarks which are representative of the

general use cases of mobile devices using this CPU architecture.

To evaluate the new governor on specific conditions that stress decision trees

code blocks of the ondemand-anti-snoop governor, a set of benchmarks from the

standard SPEC2006 benchmark suite was selected [62]. The selection of specific tests

is based on existing research by Jaleel [69] which studies this benchmark suite in

detail to characterize it in terms of CPU cache memory misses per 1,000 instructions,

a metric termed ‘MPKI’ which interacts with the hardware features that the new

governor is designed to optimize. Benchmark selection comprises the gcc benchmark

with g23 input and bwaves with test input as these benchmarks face high MPKI

for both clusters. For comparison, povray with train input was also selected as

it faces very little MPKI. On the other hand, h264ref with train input is used

as its MPKI appears below 2 MB, causing the LITTLE cluster to face high snoop

latency while the big cluster should not suffer much. These benchmarks are chosen to

provide a clear theoretical picture of the characteristics of the new governor in best,

worst, and middle-ground scenarios. Finally, this work was also evaluated on the

microbenchmark used to train the decisions trees as discussed in the section 4.2.1,

to show how it performs at runtime when using the ondemand-anti-snoop governor.

The particular SoC present in the platform used in this work, the Exynos 5422,

is mostly used on mobile devices including smartphones and tablet computers.

To reflect two of the dominant end-user applications for these devices, a set of

standard web-browsing benchmark suites and a video decoding benchmark is used,

demonstrating the effects of the new ondemand-anti-snoop governor in a realistic

end-user setting. In detail, BBench [57] and Speedometer 2.0 [4] are used for web-

browsing benchmarks. BBench is used to test general web browsing, which performs

automatic browsing by loading and scrolling a selected web page. Speedometer

4.4. Evaluation 59

2.0 is used to specifically test JavaScript performance in the browser to model

highly interactive websites. Both aspects of this web browser benchmarking are

performed using the Chromium browser controlled by puppeteer [35]. All of the

performance measurements that are reported include the launch of Chromium, page

loading, full JavaScript execution and taking a screenshot of the full rendered final

web page. The server-side elements of the Speedometer 2.0 benchmark are hosted

on an isolated local Apache web server serviced by a 1 Gb Ethernet connection.

For video decoding benchmarks the standard Linux mplayer application with the

command-line parameters -nosound -vo null -benchmark options is used, using

a specific video stored locally on the device and publicly available for replication [2].

4.4.2 Results

The experimental execution time results are shown in figure 4.4 for the microbench-

mark used to train the decision trees used in ondemand-anti-snoop governor and

figure 4.5a for real-world benchmarks. Figure 4.5b shows the energy results for

real-world benchmarks. On both graphs the x-axis labels have the format {name}-

{input}-{cluster} and show which benchmark name is being used, its input type,

and the cluster (b/L) on which the benchmark is executed (the other cluster is kept

idle). On both graphs data is reported in terms of how many times better or worse

it is compared to the default Linux ondemand governor (thereby using this governor

as a consistent baseline). All results involving ondemand-anti-snoop governor are

achieved using real-time monitoring of each process, along with stalling effects on

the cache interconnect to dynamically scan for the ideal clock frequencies of both

clusters.

The first step of this evaluation is to check how the new governor behaves against

the microbenchmark used to train the model as described in section 4.2. On average,

in figure 4.4 one can see that the new governor outperforms the ondemand governor

by 1.4x. ondemand-anti-snoop governor is also always at least as good as the

ondemand governor across all benchmarks, indicating that the inherent overhead

60 Multiprocessing and frequency scaling: when data takes its time.

of using PMCs at runtime has limited impact on the system compared to its

benefits. The varying performance of this governor across specific configurations of

this benchmark is simply down to the relative memory intensity and access pattern

of each particular configuration – those which incur more L2 cache misses see a

higher benefit using ondemand-anti-snoop governor.

The next step is to evaluate this work on realistic benchmarks, including those

designed to test specific aspects of the new governor and those representatives of

common end-user activities. Considering execution time first, across all results,

in figure 4.5a one can see that the configuration that keeps the idle cluster at

its highest frequency gains the highest performance (at the cost of unnecessary

energy consumption). The new governor consistently comes in second, followed by

the ondemand governor. In some cases, this difference is very significant – against

the SPEC2006 benchmark the new governor delivers 1.4x speedup for the gcc test

compared to the ondemand governor. The exact level of speedup is highly dependent

on the memory usage characteristics of the benchmark, with the povray test yielding

a very minor speedup due to its low level of main memory usage. Examining real-

world applications, on web browsing benchmark against a series of different popular

web pages gains between 1.1x and 1.25x speedup for page loading, while Speedometer

JavaScript tests yield up to 1.3x speedup under ondemand-anti-snoop governor.

Considering the energy, shown in figure 4.5b, the graph demonstrates the benefit

of ondemand-anti-snoop to the overall performance/energy profile of the device. As

an example, one can see that SPEC2006 benchmark’s gcc test under ondemand-anti-

snoop saves 1.7x the amount of energy compared to the default ondemand governor

while also (from the previous graph) completing the benchmark 1.4x faster. This

is also useful to compare against the configuration which runs the idle core at its

highest frequency: although this configuration completes the benchmark faster than

ondemand-anti-snoop, it also uses far more energy. However, this knowledge is to

be balanced.

When the active cluster is the LITTLE cluster, setting the big cluster (which

4.4. Evaluation 61

implements an out-of-order pipeline) to a higher frequency than necessary consumes

a significant amount of unnecessary energy.

In the reverse scenario, when the active cluster is the big cluster and the LITTLE

cluster (which implements an in-order pipeline) is kept idle, as this last consumes

a small amount of energy overall, the amount of wasted energy while running this

cluster to its highest frequency is not that significant.

In consequence, the energy saving of the ondemand-anti-snoop governor is less

than the idle cluster highest frequency governor when activated on the big

cluster. This is prominent on some benchmarks such as gcc and bwaves, and

visible on other benchmarks such as mplayer and bbench. The reason behind this

is because gcc and bwaves have significantly more memory requirements than the

other benchmarks.

Therefore, the ondemand-anti-snoop governor finds a useful balance between

performance and energy when employed on the LITTLE cluster. This is demon-

strated throughout all of the benchmarks running on the LITTLE cluster, where the

ondemand-anti-snoop governor offers a significant energy saving over the ondemand

governor while also yielding higher performance.

Finally, all of these benchmarks are subject to different dynamic activity phases

over their execution lifetime and none have been seen before by the trained model.

This indicates that this approach deals well with fluctuations of memory usage over

time by dynamically adjusting frequencies on a continuous basis. Furthermore,

its training on a single set of focused benchmarks around energy characteristics

generalizes very well to good performance on a broad range of new benchmarks.

4.4.3 Discussion

This new ondemand-anti-snoop governor aims to avoid snooping latency using

dynamic hardware-level information from PMCs, along with a simple trained model

of how the CPU clusters behave at different frequencies and with different memory

access scenarios.

62 Multiprocessing and frequency scaling: when data takes its time.

This section discusses the overhead of the proposed approach and its broader

implications. The runtime overhead of the governor comes from the fact that

it reads PMCs for every individual process (thread) to understand in real-time

how the memory accesses of a process of interest interact with CPU performance.

The reading of one PMC took between 0.6 µs and 4.7 µs on average depending

on which CPU the kthread worker and user tasks are mapped. The runtime

performs readings of only five CCI PMCs (cycle, read data stall cycle and

read requests for both clusters), and two CPU PMCs per task that has been active

during the last period (cycle and memory bus access). This very low update time,

coupled with the fact that PMC readings and decision-making do not require any

application to stop their execution, even briefly, indicates that the overhead of this

approach is far outweighed by the benefits it brings in overall performance and

energy usage.

This new DVFS governor succeeds in limiting snoop latency with a pure-software

solution. This approach is valuable in any heterogeneous multi-core design in

which cache coherency checks are dependent on the relative clock frequencies of

each different cluster. In these chip designs, a very simple model can be trained

and used to capture the interaction between memory access and frequency, and

combine this with real-time monitoring to configure the clock frequencies of all

clusters in a processor to an ideal system-wide setting. While some newer processor

designs include extra hardware support to aid with cache coherency, in which the

interconnect maintains a list of which memory is currently in the cache of each

cluster, a large number of existing devices do not have this capability and so will

benefit from this approach. A recent study [150] suggests that as much as 75%

of today’s smartphone population use CPU designs that were released before 2013

and rely on a cache coherence interconnect with no hardware snoop filter support,

making this approach very widely applicable across popular end-user devices today.

4.5. Summary 63

4.5 Summary

The increasing demand for performance and energy efficiency has led embedded

systems such as mobile and tablet devices to employ heterogeneous multiprocessor

system-on-chips. The combination of different kinds of core types and frequency

configurations helps to fine-tune energy efficiency and/or performance at runtime.

Thanks to full data coherency managed in hardware through an interconnect fabric,

the software developer can ignore data cache coherency management as threads

spread across processors. However, the interconnect fabric on some SoC can cause

significant performance drops if processors are poorly configured. The work in this

chapter has shown that these performance drops can be attributed to snooping

latency which can occur when the software has large amounts of memory traffic and

CPU frequencies are set too low aiming to save energy.

This chapter has presented an automated characterization of this snooping

latency for any SoC that implements ARM CoreLink CCI-400 as its interconnect.

A simple model has been built that takes into account hardware-level information

in accordance with software memory usage to detect when snooping latency occurs

and its extent. This simple model has been used to develop a new ondemand-anti-

snoop dynamic frequency governor to manage CPU cluster frequencies and avoid

snooping latency.

Evaluation of this governor shows that a speedup of more than 40%, with a 70%

energy saving, can be achieved versus the default Linux ondemand governor on a real-

world application. This new governor, based on hardware-level use of PMCs, does

not depend on any particular software knowledge or modification to operate and

resides directly in the operating system, fully transparent to application software.

This chapter has demonstrated one possible hardware-tuned enhancement

to frequency scaling technique on asymmetric multiprocessor where data cache

coherency is implemented using a snoop bus protocol; the next chapter will continue

this work considering scheduling of applications on such systems.

Chapter 5

Scheduling on single-ISA

asymmetric multiprocessing

systems for embedded systems:

when the temperature comes into

play.

It is general knowledge that that high temperature causes unreliability and worse,

physical damage to the hardware [82, 137, 92, 128, 68, 97, 153]. On the server

and desktop market, machines are dimensioned to allow the use of cooling devices

such as heat sinks, fans, or even liquid cooling to restrain the temperature from

reaching high levels. However, the hardware considered in this work is of small form

factors for pocket or tablet-sized devices and does not have room for active cooling

apparatus. If the operating system is not able to limit the temperature, a guard is

generally present to shut down the machine as a last resort to prevent permanent

damage to the hardware and to the user of the device.

Suggested in section 2.1, the temperature of a CPU is in direct relation to the

frequency, voltage, and the work performed by this CPU. To mitigate and protect

5.1. Approach to reduce chip temperature 65

the device, a simple approach to reduce the temperature of the CPU once it reaches

a certain level is to reduce either the frequency, the voltage, the core activity, or a

mix of them.

Generally, the manufacturer provides a voltage table for safe operation of the

CPU operating at its different configurable frequencies. As this table already

suggests the minimal voltage required to operate the CPU safely, there is no sensible

optimization to bring by tweaking this parameter. However, there is plenty of

room to optimize the temperature by scaling the frequencies and core activities

by application scheduling.

The remainder of this chapter is as follows. Section 5.1 presents simple strategies

to limit the temperature and their drawbacks regarding performance by touching

frequency and core activity in isolation. Section 5.2 explores thermal management

on AMP systems using the standard solution for Linux/Android operating system

and its limitation. This section also introduces TBASS. TBASS is a new solution that

proposes a unified approach to alleviate drawbacks and limitations discovered in the

current state-of-the-art thermal management and scheduler in Linux. Both default

Linux scheduler+thermal manager and TBASS will be compared on multithreaded

workloads taken PARSEC-3.0 and Splash-3 benchmark suite in section 5.3. Finally,

section 5.4 concludes this chapter.

5.1 Approach to reduce chip temperature

To understand the performance impact on applications and effectiveness in mitigat-

ing the temperature, the following sections study different strategies by manipulating

the frequency and core activity of the CPU in isolation. Also, this section is

treated as a foundation to understand different aspects of thermal management and

consider homogeneous systems where each CPU core deliver the same computing

performance. These different strategies will be combined and confronted to target

heterogenous systems in section 5.2.

66
Scheduling on single-ISA asymmetric multiprocessing systems for embedded

systems: when the temperature comes into play.

5.1.1 A simple approach for frequency scaling

Frequency scaling is a well-known technique and is common in operating systems.

For instance, when the temperature of a CPU core increases above a specified

threshold, the thermal manager of the kernel reduces the CPU frequency, to

eventually increase it back when the thermal emergency is mitigated.

In Linux (and by extension Android), the thermal manager reduces the OPP of

the chip by one step. Once the chip temperature has dropped below the threshold,

the OPP of the chip is increased to improve the performance. This strategy is

designated as the step wise thermal governor and is presented in listing 5.1.1

Figure 5.1 shows a trace demonstrating the step wise thermal governor in

action. As can be seen, this simple strategy is effective in limiting the temperature

to reach a critical level. However, there are multiple issues in its definition.

The first issue is that this simple thermal policy does not force the temperature

to stay below the thermal limit. As such, it is possible to still reach and stay at a

high temperature and face instability. For instance, during a workload burst, the

temperature could reach a very high temperature. If after scaling down by one step

the temperature becomes stable, no further cooling action is taken and thus the

temperature is not reduced. To alleviate this issue, the ENFORCE STRICTNESS option

in listing 5.1 could be considered to enforce strict consideration of the thermal limit.

Another issue of this strategy is that it considers only temperature mitigation

of the single CPU core covered by the thermal sensor, and does not consider the

performance of the system as a whole. As such, when the frequency of a particular

core is shared with other cores, this strategy will reduce the performance of all sibling

cores. Moreover, other parts of the system may be impacted by the operating

frequency of particular CPUs. For instance, chapter 4 studied a system where

memory communication latency is tightly coupled with CPU frequency. Thus, when

1Linux source code of the step wise thermal governor could be found at https:

//git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/drivers/thermal/

gov_step_wise.c

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/drivers/thermal/gov_step_wise.c
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/drivers/thermal/gov_step_wise.c
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/drivers/thermal/gov_step_wise.c

5.1. Approach to reduce chip temperature 67

1 void thermal_governor_stepwise_principle ()

2 {

3 while(true) {

4 bool req_step_down = false;

5 bool req_step_up = false;

6
7 for_each_thermal_zone(tz) {

8 if (tz ->temperature >= th_limit) {

9 switch (tz ->trend) {

10 case THERMAL_TREND_STABLE:

11 #ifdef ENFORCE_STRICTNESS

12 req_step_down |= true;

13 #endif /* ENFORCE_STRICTNESS */

14 break;

15
16 case THERMAL_TREND_RAISING:

17 req_step_down |= true;

18 break;

19
20 case THERMAL_TREND_DROPPING:

21 break;

22 }

23 } else {

24 switch (tz ->trend) {

25 case THERMAL_TREND_STABLE:

26 case THERMAL_TREND_RAISING:

27 break;

28
29 case THERMAL_TREND_DROPPING:

30 req_step_up |= true;

31 break;

32 }

33 }

34 }

35
36 if (req_step_down) {

37 freq_step_down ();

38 } else if (req_step_up) {

39 freq_step_up ();

40 }

41
42 sleep(polling_time);

43 }

44 }

Listing 5.1: Thermal manager implementing a simple frequency scaling approach.

68
Scheduling on single-ISA asymmetric multiprocessing systems for embedded

systems: when the temperature comes into play.

 60

 62

 64

 66

 68

 70

 72

 74

 76

 78

 80

 10 15 20 25 30 35 40 45 50 55

T
e
m
p
e
r
a
t
u
r
e

(
°C
)

Time (s)

cpu0
cpu1
cpu2
cpu3

1.0

1.2

1.4

1.6

1.8

2.0

 10 15 20 25 30 35 40 45 50 55

F
r
e
q
u
e
n
c
y

(
G
H
z
)

Time (s)

Figure 5.1: A workload using four threads under the stepwise thermal governor.

The thermal limit is set to 75 ◦C. This thermal governor reacts considering the

temperature trend, but does not enforce a strict thermal limit. When a temperature

trend is stable but over the thermal limit, the governor does not react.

5.1. Approach to reduce chip temperature 69

this aspect is not considered, this strategy in isolation could impact the performance

of the entire system.

Lastly, this strategy does not consider any scheduling decision. Under Linux, the

Completely Fair Scheduler (CFS) [88] is generally employed to manage the placement

of tasks on the CPU. This scheduler is used to maximize overall CPU utilization

while also maximizing interactive performance. However, it does not consider the

thermal situation of CPU cores and relies on the thermal governor to manage device

temperature. If the scheduler decides to use repeatedly hot cores, frequent cooling

action has to be taken, resulting in performance degradation.

Unfortunately, the current situation of dissociating decisions from the scheduler

and the thermal governor impacts both performance and thermal balance. Later in

this chapter, a unified approach of frequency scaling and scheduler is proposed to

maximize application performance while respecting a safe thermal operating range.

5.1.2 A simple approach to reduce core activity

with SIGSTOP & SIGCONT

The POSIX standard allows to stop and resume any process by the use of signals.

SIGSTOP suspends the process while SIGCONT resumes it. This mechanism could be

used to reduce CPU core activity by suspending running tasks that are mapped on a

CPU core which has its temperature above the thermal limit. Eventually, tasks are

resumed when the temperature drops below the limit. When all tasks are suspended,

frequency scaling could be used to reduce further CPU power consumption and

eventually reduce the temperature.

One of the main drawbacks of this strategy is that it stops any progression

of the suspended tasks. In a multithreaded context, this can have a particularly

undesirable effect. For instance, in an application where a thread that has the role

of a controller for multiple workers in a thread pool is mapped on the hottest core,

and assuming that all worker threads get to a point where they are unable to proceed

any further without a signal from the control thread, the application may lock for a

70
Scheduling on single-ISA asymmetric multiprocessing systems for embedded

systems: when the temperature comes into play.

very long time until the hottest core cools down enough to resume progression.

Other disadvantages of this strategy lie in its inability in reducing core

temperature. Supposing there is a high thermal coupling between two cores.

Considering two applications, one application may run on a core that is likely to get

hot because of thermal coupling. This application may be stopped for a very long

time if the other application is sparsely suspended. Another consideration is if the

ambient temperature is warm, the core temperature may cool down at a very slow

pace. These situations could be dramatic for performance.

5.1.3 A simple approach to reduce core activity with task

migration

Another approach for reducing CPU core activity to limit the temperature is to

migrate running tasks from hot cores to colder cores. A key point of this approach

is to find a mapping that could be kept longer before re-engaging task migrations

(limiting overhead of cold CPU cache) or involving other techniques to mitigate heat

generation.

A simple heuristic to do task mapping is to assume that the more work the task

performs, the more the task generates heat. As such, the load (i.e., the percentage of

time the task has run during a scheduling time window) is generally a first metric to

consider. With deeper insight and hardware support such as performance counters,

Instruction Per Cycle (IPC) could be used to determine a mapping. Thus, a mapping

such as assigning in descending order the hottest tasks to the ascending order of

colder cores could be used. If there are no colder CPU cores available, whether all

cores are used in a multithreaded context or temperatures of all free cores already

exceed the thermal limit, other techniques are required to reduce the temperature.

The trace in figure 5.2 shows this strategy using a multithreaded application with

3 active threads. In this experiment, the criterion used to determine tasks’ hotness

order is ((instruction∗1000)/cycle)+100∗ load. The rationale behind this criterion

is that it is assumed that the more instructions per cycle, the higher probability of

5.1. Approach to reduce chip temperature 71

 50

 55

 60

 65

 70

 75

 80

 11 11.5 12 12.5 13 13.5 14 14.5 15

T
e
m
p
e
r
a
t
u
r
e

(
°C
)

Time (s)

cpu3
cpu2
cpu1
cpu0

1.0

1.2

1.4

1.6

1.8

2.0

 11 11.5 12 12.5 13 13.5 14 14.5 15

F
r
e
q
u
e
n
c
y

(
G
H
z
)

Time (s)

Figure 5.2: A workload using three threads under a thermal governor that does task

migration first, followed by frequency scaling if optimal task mapping is assumed to

be found. The thermal limit is set to 75 ◦C.

72
Scheduling on single-ISA asymmetric multiprocessing systems for embedded

systems: when the temperature comes into play.

generating heat subsits and the longer a thread is running, the more it contributes

to generating heat. Also, as the actual code is directly in the kernel, a factor of 1000

is used to keep enough precision in fixed-point arithmetic. When the best mapping

is found per this heuristic but core temperature is still above the limit, frequency

scaling is used.

There are two main problems about this strategy. The first problem is that the

instruction performance counter is an aggregation of multiple micro-architecture

operations. As shown in figure 3.1 in section 3.3 from the chapter 3, a program that

performs one add instruction per cycle will have the same value of IPC as a program

that performs one mul instruction per cycle. However, these two instructions

involve different physical part of the chip resulting in mul instruction drawing less

power than add instruction. Hence, this heuristic will not accurately discriminate

the CPU burning tasks. Nonetheless, consideration of the load metric mitigates

this inaccuracy by giving more weight to the running period of the application.

The second problem is that this strategy assumes that all CPU cores deliver the

same performance during task placement. Hence, in the context of heterogeneous

architecture, as energy efficient CPUs draw less power (i.e., has cooler temperature)

than performant CPU, this strategy will favour an energy efficient CPU whereas a

performant CPU would be a better option performance-wise.

This section has demonstrated the complexity of thermal management, where

each simple approach has significant shortcomings. In the next section, a new

scheduling and thermal strategy that combines these simple approaches in a unified

manner to target such heterogeneous system will be presented.

5.2 Thermal management on single-ISA hetero-

geneous multiprocessing systems

On AMP systems such as Arm big.LITTLE [55], not all cores deliver the same

performance at the same core frequency. In this context, when employing a task

5.2. Thermal management on single-ISA heterogeneous
multiprocessing systems 73

migration approach to mitigate the temperature, the choice of a cooler CPU core

becomes non-trivial.

This section presents two schedulers that exploit the heterogeneity of the

CPU design to maximize energy efficiency and performance. The first scheduler

presented is the Linux standard scheduler (CFS) and its enhancement introducing

the knowledge of hardware performance asymmetry of different CPU type (CAS)

with its variant that integrates energy consideration (EAS). This scheduler is used

by default on smartphones equipped with heterogeneous architecture in recent

Linux and Android kernels (Linux mainline v5.0 and android-4.4). The heart of

its design is to fully consider the computing performance of individual CPU cores

on a heterogeneous system and to deliver energy-efficient scheduling for each task

with a minimal impact on throughput. However, it does not take into consideration

the thermal characteristics of the device and may fail to deliver its full performance

potential.

To address this flaw, a new scheduler is proposed that introduces thermal

knowledge in its design and improves application performance while near the thermal

limit. The scheduler favours the use of cold cores to limit thermal cooling action in

the long term. Aside from this approach, it also takes a step further and suggests a

surprising strategy of not using the most performant CPU core when available, even

if its core temperature is below the thermal limit. This strategy is employed in the

hope of using the CPU at a higher frequency to improve the overall performance of

the device.

5.2.1 Capacity-Aware Scheduling and

Energy-Aware Scheduling;

Linux CFS on heterogeneous platform

Since version 2.6.23 of the Linux kernel, Completely Fair Scheduler (CFS) becomes

the default scheduler [86]. In simple words, CFS tries to assign a fair proportion of

74
Scheduling on single-ISA asymmetric multiprocessing systems for embedded

systems: when the temperature comes into play.

CPU processing time for each task on an “ideal, multitasking CPU”.

To do so, the scheduler uses the concept of a “load” metric, which is a metric of

time duration, weighted by priority (the nice value). As on a real hardware, true

multitasking is not achievable (i.e. on a CPU core, there is only one task running

at any single time), the scheduler uses the concept of virtual runtime (vruntime)

to determine the amount of time that a task would have run if there were no other

tasks running.

The scheduler uses a time-ordered red-black tree to represent tasks that are to

be executed on a CPU core (there are as many trees as CPU cores). In this tree, a

node represents a task, and the task vruntime is used as an index in the tree, such

as the leftmost node in the tree has the lowest vruntime, and this task deserves

the most to execute when the currently running task goes to sleep or the scheduler

timer expires. When the currently running task is preempted or goes to sleep, its

vruntime is increased by the amount of time it had run, adjusted with its nice

value.

In general, processes do not have a fixed and constant activity throughout their

existence, and it is a possibility that cores might become idle when there are still

work to do, which impact performance. As such, on a multiprocessor system, to

improve application throughput, when a core becomes newly idle, the scheduler will

try to pull tasks from other cores. If there are no pullable tasks, the core will enter

on idle state (C-state). Also, the scheduler will regularly rebalance these trees

which will be discussed later in this section.

Considering that each CPU cores are equal, CFS tries to spread, as much as

possible, runnable tasks amongst CPU cores to maximize applications throughput.

On heterogeneous platforms such as Arm big.LITTLE, it is wrong to consider all

CPU cores equal. To make efficient use of this hardware topology, a capacity model

is introduced in CFS that relates performance of a CPU in relation with other CPUs.

The model is constructed as follows: with frequencies of all CPUs set to their

maximum, a workload is executed on each CPU core individually, producing a

5.2. Thermal management on single-ISA heterogeneous
multiprocessing systems 75

perf workload value per CPU core. Then, the capacity of a CPU core is computed

as:

capacitycpu =
perf workloadcpu
frequency(cpu)

∗ 1024

max(perf workload)

For instance, considering a hypothetical dual processor where the first CPU A can

retire 2 instructions per cycle, the second CPU B can retire 1 instruction per cycle

and both running at the same fixed frequency, the CPU A will have a capacity

of 1024, while the CPU B will have a capacity of 512. In practice, there is no

“standard” workload to determine the capacity. However, it is suggested to use

the Dhrystone 2.0 benchmark [47].

With this addition, CFS becomes Capacity-Aware Scheduler (CAS) in the Linux

literature [85] and introduces the concept of task “utilization” (task util). task -

util is a percentage meant to represent the throughput requirements of a task and

can be considered as the task’s duty cycle during a scheduling period. For example,

in a typical homogeneous system, a task that has 100% of task util is a task

that never sleeps, while 10% suggests a small periodic task that spends more time

sleeping than executing. To cope with dynamic hardware performance, this metric

is also capacity and frequency agnostic and is computed as:

task util(p) = duty cycle(p) ∗ curr frequency(cpu)

max frequency(cpu)
∗ capacity(cpu)

max capacity

where duty cycle is the ratio of the running time of the task p against the

scheduling period; curr frequency, max frequency and capacity denote the

current frequency, the maximum frequency and the capacity of the CPU core to

which the task is currently assigned to, and finally max capacity is the maximum

capacity of the system, which is always 1024. Hence, task util delineates the task

utilization as if the task were running on the most performant CPU in the system at

the highest frequency. Like the CPU capacity model, the scale of this metric spans

from 0 to 1024.

Energy-Aware Scheduler (EAS) [87] can be considered as an extension to CFS-

CAS in the sense that it replaces task placement decisions during the wakeup path

76
Scheduling on single-ISA asymmetric multiprocessing systems for embedded

systems: when the temperature comes into play.

(i.e. when a task becomes runnable after a sleep, mutex release, IO operation, etc.).

EAS uses the capacity model, with the addition of an energy model to make task

placement decisions. The energy model is based on static information of energy

consumption of each CPU core at each frequency (P-state). During the wakeup

path, the newly awaken task will be migrated if EAS finds a better mapping that

reduces energy consumption without harming the systems throughput.

If during execution, any of the CPUs have a task where its task util is higher

than 80%, the system is considered as “overutilized”, EAS is deactivated and the

scheduler will regularly try to readjust task mapping to maximize the performance

of the system with a load balancing procedure. To do so, the scheduler will use

task util and load metrics to balance tasks amongst CPUs to maximize system

throughput and keep execution time fairness amongst tasks. Using the task util

metric, the scheduler will try to place tasks on CPU cores with enough spare capacity

(i.e. task util(p) < capacity(cpu)).

On top of that, a new mechanism is introduced that let the user clamp a task -

util value for particular tasks. This can be used to reduce a task util of a busy

loop task (which should have 100% utilization), or on the contrary, boost a task -

util of a small periodic task (e.g. 10% utilization) as to guide the scheduler and

map tasks on a particular CPU type. For instance, this can help in forcing a small

periodic latency-critical thread in a video game to run on the big cluster and improve

its frame per second. Another use case is to force a non-sensitive background task

to run on the LITTLE cluster and leave the big cluster to more important tasks for

the user experience.

With the use of capacity and energy models, the scheduler can efficiently operate

heterogeneous systems by scheduling tasks on an appropriate CPU type considering

task computing demand and improve user experience. However, this scheduler does

not consider CPU core temperature. As such, with the lack of core temperature

knowledge, tasks may be assigned to cores that are already above the thermal limit.

Thus, thermal actions such as performance degradation with frequency scaling may

5.2. Thermal management on single-ISA heterogeneous
multiprocessing systems 77

be taken often and could lead to poor performance.

The next section will elaborate more on the subject and propose a new scheduler

that uses thermal information during task placement to maximize performance when

the device is under thermal pressure.

5.2.2 Thermal Balance Aware System Scheduler

 40

 45

 50

 55

 60

 65

 70

 0 2 4 6 8 10 12 14

T
e
m
p
e
r
a
t
u
r
e
(
°C
)

Time(s)

cpu1
cpu2
cpu3
cpu0

Figure 5.3: Thermal trace superposition of separate execution of CoreMark on each

core. Peak temperature and increase rate are unique to each core.

As the manufacturing process and semiconductor are not perfect, process

variations are frequent and tend to be more pronounced as process nodes shrink [34].

Process variation has been identified and studied in multiple prior works [46, 16, 65,

80, 155]. Similarly, the floorplanning of a design does affect CPU core thermal

temperature [99, 36, 43, 117, 83].

The device used in this work is not protected from these effects. On the particular

hardware used in this study, a Hardkernel Odroid-XU3 board that uses a Samsung

Exynos5422 SoC2, it appears that during a stable and steady thermal hot situation,

2The SoC used on this board, a Samsung Exynos 5422, is also present in the Samsung Galaxy

78
Scheduling on single-ISA asymmetric multiprocessing systems for embedded

systems: when the temperature comes into play.

two CPU cores are relatively hotter than others by more than 5◦C (see figure 5.3).

If during execution and in a situation where all cores are near the thermal limit,

avoidance of using these two CPU cores may lead to a higher CPU frequency

resulting in higher application performance.

This section analyses this peculiar unbalanced thermal behaviour present in

hardware in deeper detail. A new scheduler will then be proposed that exploits

this behaviour. This new scheduler considers avoidance of CPUs that are likely to

push the device into thermal imbalance to maximize CPU frequency in the hope of

increasing overall application performance.

5.2.2.1 Imbalanced thermal behaviour

Like EAS, the proposed scheduler uses the capacity model presented above to make

scheduling decisions. However, contrary to EAS, task placement is achieved using

thermal information and makes the choice of not using performant CPU cores if they

are likely to cause a high imbalance between CPU cores’ temperatures depending

on the current thermal situation.

To do so, the scheduler employs a thermal heatmap model that helps identify

cores that are likely to be hotter than others. The thermal heatmap model is derived

during an offline stress test that tends to push the device above its thermal limit

to discover peak temperatures of each CPU core and the GPU. To achieve good

accuracy and avoid damaging the device, all experimentations are conducted with

the device inside a thermal chamber where the thermal environment is under control.

The stress test consists of a synthetic workload written in assembly tailored to the

specific CPU and performs instructions repeatedly without pause in the pipeline. To

stress the GPU alongside, the benchmark terrain from the glmark2 es2 OpenGL

benchmark suite [54] is used as it shows the highest energy consumption and

temperature increase of the benchmark suite. Figure 5.4 shows average CPU cores

and GPU peak temperature (along the y-axis) on multiple boards (along the x-axis)

S5 smartphone as well as other devices.

5.2. Thermal management on single-ISA heterogeneous
multiprocessing systems 79

CPU0

CPU1

CPU2

CPU3

GPU

XU3-0 XU3-1 XU3-2 XU3-3

73.445 73.2663 74.54 76.7862

75.6612 78.9538 78.0638 78.025

79.8012 79.4287 79.92 79.8662

74.74 72.9837 72.02 74.0525

67.6225 67.9587 67 69.0437

 55

 60

 65

 70

 75

 80

T
e
m
p
e
r
a
t
u
r
e
(
°C
)

(a) CPU

CPU0

CPU1

CPU2

CPU3

GPU

XU3-0 XU3-1 XU3-2 XU3-3

78.2242 76.8482 78.5579 78.005

74.8186 75.4128 75.1675 72.4474

78.068 74.8469 75.631 73.4173

76.1524 72.2949 71.937 71.5789

79.7267 79.9172 79.8589 79.812

 55

 60

 65

 70

 75

 80

T
e
m
p
e
r
a
t
u
r
e
(
°C
)

(b) GPU

CPU0

CPU1

CPU2

CPU3

GPU

XU3-0 XU3-1 XU3-2 XU3-3

79.9037 79.0813 80.3075 79.7712

77.5038 79.0325 77.985 75.3313

80.665 78.79 78.3538 76.275

77.9125 75 73.91 73.65

79.7462 79.6975 79.8775 79.6888

 55

 60

 65

 70

 75

 80

T
e
m
p
e
r
a
t
u
r
e
(
°C
)

(c) CPU+GPU

CPU0

CPU1

CPU2

CPU3

GPU

XU3-0 XU3-1 XU3-2 XU3-3

54.275 50.1287 51.4425 54.5638

54.11 53.9325 53.11 53.6263

59.4225 55.0112 55.69 56.6587

56.82 52.0013 50.8187 53.8887

51.4738 50.3312 49.5513 52.7325

 55

 60

 65

 70

 75

 80

T
e
m
p
e
r
a
t
u
r
e
(
°C
)

(d) idle

Figure 5.4: Average core temperatures of the SoC while running a stress test

on different boards while stressing only the CPU (a), the GPU (b), and both

CPU+GPU (c). The SoC is idle in (d) with both CPU and GPU set to their

minimum frequencies.

Even for the same board model revision, each computing core has its own thermal

characteristics due to manufacturing process variations and thermal coupling.

80
Scheduling on single-ISA asymmetric multiprocessing systems for embedded

systems: when the temperature comes into play.

using the stress test during steady temperature after 1 minute of execution3. In this

experiment, figure 5.4a (figure 5.4b) shows the stress test with CPU (GPU) only

with the GPU (CPU) frequency set to its minimum; in figure 5.4c both CPU and

GPU are set to use their highest tolerable frequencies.

Overall, core 3 is always the coolest core. When the CPU is used while the GPU

is idle 5.4a, cores 1 and 2 are the hottest CPU cores. When the GPU is used while

the CPU is idle 5.4b, it can be seen that core 0 has the highest temperature. This

indicates a strong thermal coupling between the CPU core 0 and the GPU. While

both CPU and GPU are used at the same time 5.4c the strong thermal coupling is

emphasized. It is interesting to note that CPU cores 1 and 2 are not the highest

temperature in this last case.

The next section presents a new scheduler that takes this thermal behaviour into

consideration.

5.2.2.2 Thermal Balance Aware System Scheduler: overview

The key point of this new scheduler is to exploit the imbalanced thermal behaviour

between CPU cores, heterogeneity in the CPU design with its asynchronous CPU

cores’ computing and memory capacity of the device. This allows the scheduler

to run all cores at higher frequencies for longer while balancing the different needs

to CPU-bound vs. memory-bound tasks in the context of asynchronous CPU core

characteristics.

The current Linux step wise thermal governor tries to reduce the highest

temperature sensed. On the board used in this study, each core within a cluster

shares the same frequency. Hence step wise will penalize all tasks that are running

on the cluster, even if the temperature of a particular core is below the thermal

threshold.

Rather than penalizing all tasks running on a cluster, this new scheduler takes

a chance not to use cores from the cluster that are likely to get hotter than others

3At this time of execution, both CPU and GPU are throttled because of the temperature.

5.2. Thermal management on single-ISA heterogeneous
multiprocessing systems 81

on the same cluster by deporting tasks on other clusters. In particular, this new

scheduler takes a chance not to use cores from the big cluster that are likely to get

hotter than others by dispatching tasks onto the LITTLE cluster and keeping these

hottest cores from the big cluster idle. By doing so, it is possible to run the big cluster

at a higher frequency. In other words, the scheduler increases raw CPU performance

for fewer core. However, employing this strategy should not be taken naively as it

may result in reduced performance. For instance, when the big cluster is above the

thermal limit, but its computing capacity is still higher than the LITTLE cluster, it

is preferable from a performance point of view to decrease the computing capacity

of the big cluster than to dispatch onto the LITTLE cluster. Another problem

could occur in the context of multithreaded applications (e.g. threads could suffer

from memory communication if they do not reside on the same cluster). Hence, the

scheduler deports tasks to the LITTLE cluster when both clusters reach seemingly

the same performance considering running tasks.

To model differences in the computing performance of heterogeneous platforms,

CFS-CAS-EAS uses a computing capacity model which is fixed at boot time of the

Linux kernel and kept static for the lifetime of the running system. This model is

derived using a single benchmark during an offline procedure. The documentation

provided by Arm to extract this capacity model suggests the use of a benchmark

with a small working set size, so that the executable binary and the dynamic

data during its execution could both reside in the CPU cache. In particular, the

documentation recommends Dhrystone 2.0 as a benchmark [47]. This enables an

easy and quick setup to compare CPU micro-architecture performance features.

However, in general computing, this procedure fails to apprehend applications that

use memory extensively that does not particularly fit in CPU caches [141].

To alleviate this concern, the new scheduler proposes the use of a dynamic com-

puting capacity model that is adjusted at runtime considering running applications.

The next section describes an approach to determine a dynamic model at runtime

using performance monitoring counters.

82
Scheduling on single-ISA asymmetric multiprocessing systems for embedded

systems: when the temperature comes into play.

5.2.2.3 Thermal Balance Aware System Scheduler: deeper details

In this section, the new scheduler is explained in detail.

The proposed new scheduler uses a new modelling procedure and adopts a

dynamic computing capacity model that considers dynamic information during

the execution of applications using Performance Monitoring Unit (PMU) counters

and their memory requirements. This new approach enables captures dynamic

information that helps to determine if the LITTLE cluster is good enough to

execute a particular program with its dynamic behaviour. The scheduler uses two

informations to make task mapping decisions. It first determines if the code flow

could be executed on the LITTLE cluster without losing performance considering

the current frequency of the big cluster. Secondly, it uses the knowledge of the

application memory requirements. The following describes these two aspects of the

scheduler.

5.2.2.3.1 Scheduler hint: application code flow

While not a being requirement in a big.LITTLE design, the big cluster generally

employs a CPU that uses an out-of-order pipeline, whereas the LITTLE cluster uses

an in-order pipeline. Other differences reside in the amount of memory in their CPU

caches, with the LITTLE cluster benefiting from far less CPU cache memory than

the big cluster.

The benefit of an out-of-order pipeline over an in-order resides in the capability of

dynamically reordering instructions to exploit instruction-level parallelism and hide

latency of some operation. For instance, when the program performs a memory

operation, while an in-order pipeline has to stall execution until the memory

operation has completed, an out-of-order pipeline has the possibility to execute

instructions that are independent from the memory operation [61].

On the hardware used in this study, instruction fetch, decoding and dispatch

stages of the pipeline are performed in-order, while instruction issue (i.e. execution)

5.2. Thermal management on single-ISA heterogeneous
multiprocessing systems 83

is performed out-of-order on the big cluster (Cortex-A15). Once the instruction is

executed, the result is placed in a retirement buffer to eventually be retired from

the instruction queue in the original program order (i.e. in-order retirement). In

this architecture, the out-of-order execution is said to be speculative. The hardware

includes PMC to count retired instructions, as well as the number of instructions

speculatively executed [9].

In the general sense, assuming an identical instruction issue width, prefetch

unit (i.e. memory prefetching and branch predictor), and memory subsystem

characteristics (i.e. cache size, fetch latency, etc.) between different CPU micro-

architecture; when the number of retired instructions is equal to the number

of instructions speculatively executed, it could be assumed that the out-of-order

machinery has not been involved and an out-of-order pipeline has no benefit over

an in-order pipeline. Concretely, this is not exactly true because of the conditional

execution of the instruction block after a branch. It is possible that results of

speculated instructions could be discarded due to miss predicted branch, resulting

in more instructions being speculatively executed than retired. With an in-order

pipeline, the execution of the instruction block would have been stalled until the

result of the conditional branch has been computed. However, if the scheduler is

able to account for the number of discarded instructions speculatively executed, this

metric can be refined and used to better predict code flow execution performance

on an in-order pipeline that implements identical superscalar front-end and memory

fetching latency.

To discover the specific condition of PMC values to determine when the scheduler

can place applications on either the big or the LITTLE cluster efficiently considering

their current performance, a set of micro-benchmark tailored to stress the out-

of-order pipeline design has been developed. In particular, the set of micro-

benchmark exhaustively explores the memory fetch latency and the number of

independent instructions that could be performed in parallel while performing

memory operations.

84
Scheduling on single-ISA asymmetric multiprocessing systems for embedded

systems: when the temperature comes into play.

The micro-benchmark consists of memory operation (load and/or store) instruc-

tions with a succession of independent computing instructions. The set of computing

instructions is defined to stress superscalar pipelines. The CPU used in this study

(Cortex-A7 and Cortex-A15) can issue at most three instructions in one cycle,

comprising at most two integer instructions (Integer ALU and Shifter), one mul

or div. The A7 performs one NEON/SIMD instruction while the A15 can perform

two instructions of this kind. The A7 can execute two load instructions (without

store instruction in between, and only 32 bytes per load). The A15 can dispatch

one load at a time, but the out-of-order pipeline is capable of dispatching another

load at the next cycle, for a total of 11 memory readings in flight (data from an ldr

instruction, but also TLB intermediate table fetch).

The micro-benchmark principle is rather simple, it consists of two loops, with

the inner-loop as the main instruction executor and the outer-loop acting as a loop

execution multiplier. At runtime, the inner-loop iterator is set to run for one second

as to be easily multiplied for a determined execution time. The body of the inner-

loop is written in assembly to restrain compiler optimization, and unrolled to limit

loop overhead (i.e. increment upgrade and branching).

Figure 5.5 shows different instantiations of the micro-benchmark with different

blocks of instructions after a memory access that does a pointer chasing. The

pattern of the pointer chasing is fully random (i.e. non-prefetchable) over an

array big enough to force off-chip memory access for every loop iteration. The

x − axis represents the number of repetitions of the instruction block in the loop.

For example, code 1 to code 5 are instructions without memory access. Because

each of these codes can be retired directly without reordering, 100% of speculative

instructions are directly retired.

code 10 to code 50 represent the same code as above, but with a memory access

performing a pointer chasing. The memory pattern of the pointer chasing is setup

to be non-prefetchable, and forces off-chip memory access at each iteration. More

precisely, in code 10, the independent instruction from the memory access is a

5.2. Thermal management on single-ISA heterogeneous
multiprocessing systems 85

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14

p
e
rc

e
n
ta

g
e
 o

f
sp

e
cu

la
ti

v
e
 i
n
st

ru
ct

io
n
s

a
g

a
in

st
 r

e
ti

re
d

 i
n
st

ru
ct

io
n
s

nr repetition of code

code_1: add r0, r0, #1
code_2: add r0, r0, #1; add r1, r1, #1

code_3: mul r2, r2, r3
code_4: add r0, r0, #1; mul r2, r2, r3

code_5: add r0, r0, #1; add r1, r1, #1; mul r2, r2, r3
code_10: ldr r4, [r5, r4, lsl #2] + code_1
code_20: ldr r4, [r5, r4, lsl #2] + code_2
code_30: ldr r4, [r5, r4, lsl #2] + code_3
code_40: ldr r4, [r5, r4, lsl #2] + code_4
code_50: ldr r4, [r5, r4, lsl #2] + code_5

Figure 5.5: Percentage of instructions speculatively executed against instructions

retired. The code flow is a loop which consists of one memory access that does a

pointer chasing where each access must fetch data from off-chip memory, followed

by x several independent instructions from the memory access.

simple add r0, r0, #1 repeated x time. It can be seen that at 0 independent

instruction (only the memory access), because there is no possible speculation, the

percentage of speculative instructions against retired instructions is close to 0. With

1 independent instruction (one memory access followed by one add), this percentage

increases to 50%, this is because while the out-of-order pipeline is able to compute

all independent instructions while waiting for fetching memory for the memory

access, the retirement is still performed in order. Hence, 50% of the instruction

flow is executed speculatively. With 2 independent instructions, the percentage

increases to 66%. For this particular set of codes, the percentage of speculation

against retirement follows the law 100 − 100/(1 + dispatch slot used ∗ x) where

x is the number of independent instructions. It can be noted that the memory

access ldr instruction is not counted in the speculative instructions. This enables

discriminating actual work that is performed in parallel with fetching memory. As

such, the metric of the percentage of instructions speculatively executed against

86
Scheduling on single-ISA asymmetric multiprocessing systems for embedded

systems: when the temperature comes into play.

instructions retired help in discovering how useful the out-of-order pipeline is

compared to an in-order pipeline.

The higher the percentage of instruction that has already been executed at the

speculative stage, the less useful an out-of-order pipeline is compared to an in-order

pipeline. Hence, if one can determine the number of memory accesses with their

latencies, it is possible to derive cycle timing execution of the code flow if it would

have ran on an in-order pipeline. In practice, this becomes increasingly difficult to

determine precisely. One of the reasons lies in the study from the prior chapter 4

where the latency of a single memory access shows a non-linear behaviour depending

on the current hardware configuration. Another aspect to consider are differences

in other parts of the underlying hardware. For instance, the prefetcher unit present

in the different CPUs may implement a non-identical branch predictor and memory

prefetcher. Thus, the described metric in this section does not manage to determine

the exact performance between the two CPU designs. Nonetheless, this metric can

be used as a hint during task mapping decisions.

The new scheduler uses this information at runtime to determine programs

that benefit the most from the out-of-order pipeline with its speculative execution

capability. When the performance of the big cluster is degraded due to temperature,

the scheduler will use the LITTLE cluster to task map running applications that

benefit the less from the out-of-order pipeline.

5.2.2.3.2 Scheduler hint: application memory requirement

Furthermore, as CPU cache sizes could be different between the two CPU

types, to make a reasonable mapping decision the scheduler requires the memory

requirement of the running applications, which is defined as the Working Set Size

(WSS). To determine the WSS of a program, one could use the notion of reuse (or

stack) distance which is the number of distinct data accesses location between two

consecutive accesses to the same location [39, 42, 93]. If there are several distinct

5.2. Thermal management on single-ISA heterogeneous
multiprocessing systems 87

accesses between two same locations, the data may have been evicted from the

cache due to the limited capacity of the cache. With a reuse distance histogram, the

miss ratio can be estimated for a fully-associative cache with a least recently used

replacement policy for any cache size d by mr(d) =
∑M

i=d histogram[i]/N where

N is the total number of requests and M is the total number of unique requests.

The current implementation determines this information by prior execution of the

applications using a profiled version of the program.

To produce a profiled version of the program, a set of compiler passes using LLVM

has been written to insert instrumentation code in the source code and consists of

recording memory accesses that the program will perform at runtime. As a program

could make several millions of memory accesses, storing the memory location trace to

disk for further analysis is impractical, the instrumented code performs the analysis

during the instrumented code execution. The instrumented program produces an

analysis report at the end of the execution which includes memory location reuse

distance histogram and expected miss rate considering different hardware cache

sizes. figure 5.6 shows the result of this analysis on art from the SPEC CPU2000

benchmark suite with the test input size. If the WSS fits in the L2 cache of the

LITTLE cluster, the scheduler is informed that there will be no performance penalty

towards the memory requirements of the application. The current implementation

to compute reuse distance histogram uses PARDA [104].

The proposed scheduler considers the WSS as a metric to determine if the

workload and its memory requirements fit in the different cache size of either CPUs.

This metric does not capture the actual characteristic of the memory subsystem of

the CPU considering fetching latency and performance of the prefetcher. Moreover,

the direct definition of the reuse distance yields miss rate expectation for a fully-

associative cache using a least recently used replacement policy. The set of CPUs

considered in this work implements a set/way associative cache with different

replacement policies with the LITTLE cluster using a lower set/way associativity

than the big cluster at both levels of CPU data cache. Studies show that a reduced

88
Scheduling on single-ISA asymmetric multiprocessing systems for embedded

systems: when the temperature comes into play.

Figure 5.6: Miss ratio curve of art from SPEC CPU2000 benchmark suite

considering a fully-associative cache with a least recently used replacement policy

on 64-byte blocks.

cache associativity increases cache miss rate [29, 60, 59]. Nonetheless, this metric

helps in determining a relative penalty performance when deciding which process to

map on the LITTLE or big cluster.

Also, computing the WSS for a program is rather time-consuming as it requests

to track each memory access, and perform the reuse distance computation for each

memory access as it comes. A simple implementation suggested by Mattson [93] uses

a linked list to represent a memory location as a node and nodes are linked in order of

arrival. When a memory access is performed, the algorithm consists of traversing the

linked list until finding the node representing the same memory location, counting

the number of nodes from the head of the list, detachiing the node and finally

reattaching it in front of the list. The counter represents the reuse distance for

this memory access. If the node is not found, the reuse distance is infinite and

corresponds to a cold miss. This algorithm has a complexity of O(N ∗M) where N

is the total number of references and M is the unique number of references. Multiple

5.2. Thermal management on single-ISA heterogeneous
multiprocessing systems 89

strategies have been suggested to improve this algorithm [27] using hashmap and

tree data structures [14, 105, 104], or even to reduce accuracy for improving time

and space complexity [48, 15, 139]. When the program comprises linear memory

access over a regular data structure, advanced compiler techniques could be used to

determine the WSS at compile time [30, 51, 33].

Another possibility would be to have a new set of PMCs that suggests the actual

memory occupancy and reuse of cache lines in the CPU cache. While running on

the big cluster, if the hardware can give insight on the number of cache lines that

are regularly accessed, it could be possible to determine the actual working set size

of the workload. It is then possible to determine if the LITTLE cluster can meet the

memory requirements of the running program. These suggestions are not considered

in this study and are open for future work.

With these two concepts, the scheduler has knowledge to differentiate which

application would benefit the most from the big cluster. The next section presents

their use for schedule running applications.

5.2.2.4 Thermal Balance Aware Scheduler: algorithm

When the temperature of a CPU core exceeds the limit, a per-core flag is set

indicating that the core has overheated and a new mapping is searched using the

heuristic presented in section 5.1.3. If the new mapping remains the same, it is

assumed that it is the best mapping in respect of the heuristic. At this point,

the only chance to cool-down the device is to decrease its operating frequency by

following the step wise thermal governor from section 5.1.1.

When the thermal pressure is strong enough to decrease to about the same

performance between the two clusters considering the current workload, the

scheduler takes a chance of not using the set of cores that has the overheated flag

set by migrating some tasks to the LITTLE cluster. The analysis in section 5.2.2.1

suggests a difference of about 5 ◦C between the hottest core and the coolest core. As

such, when the scheduler starts migrating tasks from the big cluster to the LITTLE

90
Scheduling on single-ISA asymmetric multiprocessing systems for embedded

systems: when the temperature comes into play.

cluster due to thermal pressure, the scheduler will not migrate back directly from the

LITTLE cluster to the big cluster until the thermal sensor has reset the overheat flag.

The overheat flag is reset when the core temperature reaches a temperature below

the coolest core temperature of the cluster in the offline analysis shown in figure 5.4.

This low-level threshold has been chosen by empirical evaluation. Refinement of the

threshold to reset the per-core overheat flag will be explored in future work.

When a core is not available due to thermal pressure, a new mapping is then

searched that tries to mix the use of both clusters. To do so, the scheduler organizes

applications regarding a criterion of the out-of-order pipeline’s effectiveness using

knowledge from both code flow (see paragraph 5.2.2.3.1) and memory requirements

(see paragraph 5.2.2.3.2) of tasks.

The mapping decision considers a multi-level criterion for each running task and

is as follows. The first level considered is the area after the L2 data cache size

of the big cluster of the MRC curve and the second level is the area after the L2

data cache size of the LITTLE cluster of the MRC curve. The third and last level

is the percentage of instruction speculatively executed against instruction retired.

The rationale of this criterion is that the latency penalty of fetching data from the

off-chip memory to CPU registers has the most impact towards performance. On

the evaluation machine, a penalty from a memory fetch is in the range of a few

nanoseconds to 1.4 µs depending on whether the requested memory already resides

in the CPU cache at high CPU and RAM frequencies, or incurs a memory page fault

where a translation of virtual to physical address involves a full traversal during page

walk at a low CPU and RAM frequencies. Moreover, stalling on an in-order pipeline

is generally due to the access of off-chip memory. As such, favouring applications

that require memory the most to run on the big cluster is considered a good choice.

When off-line memory analysis has not been supplied to the scheduler, or the

MRC curve area at both levels of the cache hierarchy are similar, the scheduler uses

instantaneous memory requirement information using PMU counters considering

the last level cache miss rate. This criterion is then weighted with the effective

5.3. Evaluation 91

execution time of the task during the current scheduling window. Also, to adapt to

fast processes phase change and outliers of PMU counters sampling, the scheduler

uses a moving average of the last samples to compute the criterion [13]. Finally, if

this per-task criterion is not able to establish an order between tasks, a total order

is imposed considering the time creation of the process.

Once this criterion is computed for each process, tasks benefiting the most from

the out-of-order pipeline (i.e. the big cluster) have the highest criterion value. Using

this criterion, the scheduler will then map in descending order tasks from the coldest

to the hottest core, following the heuristic presented in subsection 5.1.3. CPU cores

which have their overheat flag set are kept idle.

This approach has multiple benefits; it enables achieving higher performance in

the short term, and also it helps cool down the set of hot CPU cores by keeping

them idle. When CPU cores are cold enough, the frequency can be increased. The

scheduler will eventually migrate tasks assigned to the LITTLE cluster onto the

big cluster when the situation is deemed more favourable considering the thermal

situation and workload requirement.

5.3 Evaluation

To demonstrate the effectiveness of the proposed solution to maximize performance

under thermal pressure on an asymmetric multiprocessor, this section compares

TBASS against the state of the art of the Linux kernel, using a set of multithreaded

workloads discussed in the following section.

TBASS is compared against two strategies. The first strategy is the default Linux

scheduler and frequency scaler (CFS-CAS-EAS) which is chosen when the CPU

frequency scaling governor is set to schedutil4 with the default thermal policy

step wise.

4When the cpufreq governor is set to other policies, the EAS scheduler extension is deactivated

and default to CFS-CAS only.

92
Scheduling on single-ISA asymmetric multiprocessing systems for embedded

systems: when the temperature comes into play.

As step wise thermal governor does not enforce a strict thermal limit, the

system may stay at a high temperature after a workload burst. The non-strict

respect of the thermal limit may be critical in harsh thermal environments with a

passive cooling device such as in smartphones and other small form factor devices

and decrease reliability and limit the lifetime of the machine. In [121, 137],

Viswanath noted that “small differences in operating temperature (order of 10-

15◦C) can result in a 2X difference in the lifespan of the devices”. Thus, TBASS

does respect a strict thermal policy against the thermal limit. As such, to have a

fair comparison, this section evaluates a modified step wise that enforces thermal

action using a strict respect of the thermal limit as described in section 5.1.1 with

the ENFORCE STRICTNESS option. This thermal policy is named step wise strict

in this section.

This evaluation reports both percentage improvement of TBASS on execution time

and energy consumption of each benchmark against both comparison points; each

benchmark is executed five times and the average (using a geometric mean [52])

of execution time and energy are taken to normalize noise and reduce the effect of

outliers. Finally, the absolute value of the sum per core of the Root Mean Square

Error (RMSE) over the thermal limit is reported to exhibit efficacy on the strictness

of the thermal limit for all strategies.

All experiments are conducted under Debian 11 with a Linux kernel v5.15. All

benchmarks are compiled with gcc 11.2.0. To simulate a smartphone environment,

the FAN has been disabled, with a thermal limit set to 75◦C. Experimentation is

performed with devices placed in a thermal chamber with an ambient temperature

of 25◦C. This study explores strategies to maximize performance under thermal

pressure. As such, the device is warmed before the execution of the benchmark

by using a stress test that saturates the execution unit of the CPU by using only

integer and floating-point instructions for one minute before the execution of the

benchmark.

5.3. Evaluation 93

5.3.1 Benchmark selection

The work has been evaluated on a set of 18 multithreaded benchmarks from the

PARSEC-3.0 [21] and Splash-3 [119] benchmark suite. PARSEC offers state-of-the-

art computationally-intensive algorithms and very diverse workloads from different

application domains. Splash-3 (an upgrade of the Splash-2 benchmark suite [149]

that is shipped in PARSEC source tree) is composed of workloads targeting high-

performance computing domains. In these two benchmark suites, parallelism is

written using pthread library and features different parallel models (data-parallel

and pipeline).

Some benchmarks have been discarded because they cannot be compiled for Arm

architecture (PARSEC raytrace benchmark contains SSE specific instructions),

or fail at runtime (facesim, ferret, vips and canneal from PARSEC). Finally,

benchmarks that have a short execution time are omitted (cholesky, fft and radix

kernels from Splash-3). All benchmarks are executed to completion using native

datasets. Splash-3 benchmarks input sizes have been slightly reduced to fit in the

RAM to avoid generating SEGFAULT errors.

Each benchmark is setup to run with four threads using the standard benchmark

configuration. However, some benchmarks spawn more threads than requested [127].

5.3.2 Results

As shown in figure 5.4, four different instances of the same Hardkernel Odroid-

XU3 board present different thermal characteristics. While other results in this

chapter used four different devices, this section uses only three of those devices as

the fourth was unavailable. All evaluation results are shown in figure 5.7 (figure 5.8

and figure 5.9 respectively) for the XU3-1 board (XU3-2 and XU3-3 respectively).

The percentage difference in the execution time of TBASS against both compar-

ison points is shown in figure 5.7a (figure 5.8a and figure 5.9a respectively), while

the percentage difference in energy consumption is shown in figure 5.7b (figure 5.8b

and figure 5.9b respectively). A positive value on these two metrics is a speedup

94
Scheduling on single-ISA asymmetric multiprocessing systems for embedded

systems: when the temperature comes into play.

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 20

streamcluster

dedup
bodytrack

fluidanimate

freqmine

swaptions

blackscholes

x264
radiosity

voldrend

barnes
fmm ocean_cp

ocean_ncp

water_nsquared

water_spatial

lu_cb
lu_ncb

avg

T
B
A
S
S

p
e
r
f
o
r
m
a
n
c
e

i
m
p
r
o
v
e
m
e
n
t

(
%
)

schedutil + step_wise
schedutil + step_wise_strict

(a) Improvement in performance of TBASS.

-140

-120

-100

-80

-60

-40

-20

 0

 20

 40

streamcluster

dedup
bodytrack

fluidanimate

freqmine

swaptions

blackscholes

x264
radiosity

volrend
barnes

fmm ocean_cp

ocean_ncp

water_nsquared

water_spatial

lu_cb
lu_ncb

avg

T
B
A
S
S

e
n
e
r
g
y

r
e
d
u
c
t
i
o
n

(
%
)

schedutil + step_wise
schedutil + step_wise_strict

(b) Energy consumption reduction of TBASS.

 0

 2

 4

 6

 8

 10

 12

 14

streamcluster

dedup
bodytrack

fluidanimate

freqmine

swaptions

blackscholes

x264
radiosity

volrend
barnes

fmm ocean_cp

ocean_ncp

water_nsquared

water_spatial

lu_cb
lu_ncb

avg

c
u
m
u
l
a
t
i
v
e

C
P
U

c
o
r
e

R
M
S
E

o
v
e
r

t
h
e
r
m
a
l

l
i
m
i
t

schedutil+step_wise
schedutil+step_wise_strict

TBASS

(c) Absolute cumulative RMSE over the thermal limit of each strategies.

Figure 5.7: Results on XU3 1 device.

5.3. Evaluation 95

-160

-140

-120

-100

-80

-60

-40

-20

 0

 20

 40

streamcluster

dedup
bodytrack

fluidanimate

freqmine

swaptions

blackscholes

x264
radiosity

volrend
barnes

fmm ocean_cp

ocean_ncp

water_nsquared

water_spatial

lu_cb
lu_ncb

avg

T
B
A
S
S

p
e
r
f
o
r
m
a
n
c
e

i
m
p
r
o
v
e
m
e
n
t

(
%
)

schedutil + step_wise
schedutil + step_wise_strict

(a) Improvement in performance of TBASS.

-250

-200

-150

-100

-50

 0

 50

streamcluster

dedup
bodytrack

fluidanimate

freqmine

swaptions

blackscholes

x264
radiosity

volrend
barnes

fmm ocean_cp

ocean_ncp

water_nsquared

water_spatial

lu_cb
lu_ncb

avg

T
B
A
S
S

e
n
e
r
g
y

r
e
d
u
c
t
i
o
n

(
%
)

schedutil + step_wise
schedutil + step_wise_strict

(b) Energy consumption reduction of TBASS.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

streamcluster

dedup
bodytrack

fluidanimate

freqmine

swaptions

blackscholes

x264
radiosity

volrend
barnes

fmm ocean_cp

ocean_ncp

water_nsquared

water_spatial

lu_cb
lu_ncb

avg

c
u
m
u
l
a
t
i
v
e

C
P
U

c
o
r
e

R
M
S
E

o
v
e
r

t
h
e
r
m
a
l

l
i
m
i
t

schedutil+step_wise
schedutil+step_wise_strict

TBASS

(c) Absolute cumulative RMSE over the thermal limit of each strategies.

Figure 5.8: Results on XU3 2 device.

96
Scheduling on single-ISA asymmetric multiprocessing systems for embedded

systems: when the temperature comes into play.

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 20

streamcluster

dedup
bodytrack

fluidanimate

freqmine

swaptions

blackscholes

x264
radiosity

volrend
barnes

fmm ocean_cp

ocean_ncp

water_nsquared

water_spatial

lu_cb
lu_ncb

avg

T
B
A
S
S

p
e
r
f
o
r
m
a
n
c
e

i
m
p
r
o
v
e
m
e
n
t

(
%
)

schedutil + step_wise
schedutil + step_wise_strict

(a) Improvement in performance of TBASS.

-120

-100

-80

-60

-40

-20

 0

 20

 40

streamcluster

dedup
bodytrack

fluidanimate

freqmine

swaptions

blackscholes

x264
radiosity

volrend
barnes

fmm ocean_cp

ocean_ncp

water_nsquared

water_spatial

lu_cb
lu_ncb

avg

T
B
A
S
S

e
n
e
r
g
y

r
e
d
u
c
t
i
o
n

(
%
)

schedutil + step_wise
schedutil + step_wise_strict

(b) Energy consumption reduction of TBASS.

 0

 2

 4

 6

 8

 10

 12

 14

 16

streamcluster

dedup
bodytrack

fluidanimate

freqmine

swaptions

blackscholes

x264
radiosity

volrend
barnes

fmm ocean_cp

ocean_ncp

water_nsquared

water_spatial

lu_cb
lu_ncb

avg

c
u
m
u
l
a
t
i
v
e

C
P
U

c
o
r
e

R
M
S
E

o
v
e
r

t
h
e
r
m
a
l

l
i
m
i
t

schedutil+step_wise
schedutil+step_wise_strict

TBASS

(c) Absolute cumulative RMSE over the thermal limit of each strategies.

Figure 5.9: Results on XU3 3 device.

5.3. Evaluation 97

or an energy reduction in favour of TBASS. figure 5.7c (figure 5.8c and figure 5.9c

respectively) shows the absolute RMSE over the thermal limit of each strategy.

First of all, schedutil+step wise does not respect the thermal limit strictly and

is largely visible in the error over the thermal limit (visible in figure 5.7c, figure 5.8c

and figure 5.7c). As such, TBASS shows a large slowdown in performance against this

strategy proposed as default in the Linux kernel. On the contrary, when enforcing a

strict thermal limit to default strategy with schedutil+step wise strict, TBASS

shows quite some improvement in both performance and energy reduction.

This behaviour is consistent across all three tested devices, with an average

slowdown ranging from 15 to 20 % when comparing TBASS against schedu-

til+step wise, with an absolute RMSE ranging from 7 to 9 ◦C. When comparing

TBASS against schedutil+step wise strict that employs a strict thermal limit,

TBASS shows speedups between 8 to 10 % across all devices. When enforcing a strict

thermal limit, the RMSE ranges from 1 to 2 ◦C for schedutil+step wise strict

while TBASS has an RMSE of less than 1 ◦C.

More particularly, on some benchmarks, TBASS that imposes a strict thermal

limit faces a high slowdown compared to schedutil+step wise which is less

restrictive on the thermal limit.

For instance, considering streamcluster from PARSEC, TBASS shows between

80% to 140% slowdown depending on the board compared to schedutil+step wise.

The reason behind this is two-fold. First, this multithreaded application has

a relatively high working set size and second, threads are working on shared

memory and experience high traffic in terms of bytes per instruction [21]. While

schedutil+step wise tends to place more threads on the big cluster, TBASS

tends to spread threads over both clusters while the heuristic deems that both

clusters have similar computing performance. Thus, TBASS may increase latency

on thread communication and could impact the performance of the application.

However, when a strict policy on thermal limit is applied with the strategy

schedutil+step wise strict, TBASS shows performance improvement. This is

98
Scheduling on single-ISA asymmetric multiprocessing systems for embedded

systems: when the temperature comes into play.

because, even if TBASS may increase latency, this strategy can increase the raw

performance of some CPUs by favouring colder cores, leaving hotter cores idle.

In the case of water-nsquared and water-spatial, these two benchmarks

solve the same problem, but with a different algorithm. The implementation of

water-nsquared has a bigger WSS and higher thread communication than that

of water-spatial [149]. Like for streamcluster, the communications latency of

threads is reflected in the performance of TBASS against schedutil+step wise with

a slowdown ranging from 25 to 31 % when considering water-nsquared benchmark.

However, schedutil+step wise shows an RMSE over the thermal limit ranging

from 3 to 9 ◦C, while TBASS is less than 1 ◦C.

On the other hand, with the water-spatial implementation that has less thread

communication than water-nsquared implementation, TBASS shows a nice speedup

ranging from 10 to 23 % over both alternatives amongst all devices.

TBASS currently does not capture thread communication traffic, and as such,

does not try to pack threads of the same application on the same cluster. This

aspect will be explored in future work.

Generally, the XU3-2 board shows higher improvement in performance than the

two other boards. This is expected as the difference between the two hottest cores

and the two coldest cores are larger on this board (see figure 5.4). In the same

manner, performance improvement on the XU3-3 is generally lower, as this difference

is smaller. When the difference between the hottest and coldest cores is large, by

avoiding the hottest cores, TBASS allows the big cluster to run at a higher frequency.

On the other hand, energy improvement follows the same trend as performance

improvement. This is due to finishing the workload earlier.

5.4 Summary

This chapter presented different approaches for thermal management employing

techniques such as frequency scaling and scheduling. The particularity of the device

5.4. Summary 99

in consideration is heterogeneity in computing performance between CPU cores,

with cores implementing either an in-order or an out-of-order pipeline.

The current standard approach of Linux for thermal management is the use of

frequency scaling to limit the temperature of the device when it reaches a thermal

limit. Alongside this procedure, the scheduler place tasks using two algorithms.

When tasks are not considered computationally intensive (load metric lower than

80%), it uses an energy and computing capacity model to select a CPU core for

execution (EAS variant). When the system is considered over-utilized, the scheduler

considers only the computing capacity model to do task placement. In the current

implementation, both decisions of frequency scaling (for thermal management) and

scheduling are isolated and target different purposes to manage the system.

On the board model under study, it appears that each board and each core have

their own thermal characteristics, showing a steady-state temperature with more

than 5 ◦C difference between the hottest and the coldest core. If the operating

system is unaware of device thermal characteristics and CPU core raw performance

capability, suboptimal scheduling and frequency scaling decisions could severely

impact both thermal situation and performance.

This situation led to the development of the Thermal-Balance Aware System

Scheduler (TBASS), a holistic approach for scheduling and frequency scaling

to maximize performance under thermal pressure for single-ISA heterogeneous

multicore processor architecture such as the Arm big.LITTLE architecture. To do so,

TBASS considers the thermal characteristics of CPU cores, CPU cores performance

hardware design and workload knowledge. The workload knowledge consists of static

and dynamic information using performance monitoring counters at runtime and an

offline analysis identifying the memory requirements of the workload.

The experimental results confirm the benefits of TBASS with average speedups

between 8 to 10 % when compared to the default Linux kernel scheduler employing a

strict thermal limit. When compared to the default Linux kernel scheduler without

employing a strict thermal limit, TBASS shows an average slowdown ranging from 15

100
Scheduling on single-ISA asymmetric multiprocessing systems for embedded

systems: when the temperature comes into play.

to 20 %. However, TBASS reduces the temperature of the device by 10 ◦C on average

which may improve the lifespan of the devices [137].

One of the atypical approaches of TBASS is to avoid thermal imbalance of the

device by avoiding the use of CPU cores that are likely to favour this imbalance and

favour the LITTLE cluster when performance is deemed to be similar in performance

considering the running workload. By doing so, the CPU can run at a higher

frequency for the workload that could benefit the most of the big cluster. Moreover,

this strategy helps in limiting snooping latency effect shown in chapter 4.

Chapter 6

Conclusion

This final chapter concludes the thesis with a summary and reviews the research

undertaken and its findings. Then an examination of future research possibilities

that could be pursued to expand upon and overcome the thesis’s limitations will be

presented. Finally, this thesis ends with some final remarks.

6.1 Thesis summary and contributions

This thesis began with a brief history of computing systems and exposed the moti-

vation to follow the path of asymmetric multicore and multiprocessor architecture

design to progress post Dennard scaling era while pursuing Moore’s law.

The background chapter presented some aspects of micro-architectural design

that make computing possible, and different ways to organize this computation

capability around memory.

A meticulous literature review in chapter 3 regarding scheduling, frequency

scaling and thermal management for single-ISA AMP, draws the inference that the

current state-of-the-art does not consider low-level micro-architectural detail. This

situation can lead to energy waste and suboptimal performance.

This thesis is an attempt to exploit low-level hardware knowledge to optimize

frequency scaling and scheduling decisions for single-ISA AMP targeting small form

102 Conclusion

factor devices such as smartphones and tablets.

Considering frequency scaling optimization technique, the thesis aimed to answer

these two research questions:

RQ 1 To what extent frequency scaling could improve the energy efficiency of a

computing device?

RQ 2 To what extent frequency scaling affects the system in terms of performance on

multiprocessors-equipped devices where data-coherency is implemented using

a bus-snoop protocol?

These research question has been addressed in chapter 4. In this chapter, a

thorough exploration of the memory subsystem and data-coherency mechanism

(which implements a bus-snoop protocol) has been carried out with the use

of microbenchmarks tailored to precisely stress the memory subsystem. This

exploration exposed a non-linear latency of the data-coherency mechanism when

frequency scaling techniques are used to reduce the energy consumption of the

system. In particular, this non-linear latency makes it particularly difficult to derive

a precise performance model if not taken into account. However, the in-depth

analysis enables the extraction of a simple model in the form of a decision tree

which can be efficiently incorporated into any frequency scaling driver. Evaluation

of the proposed solution shows an increase in application performance of up to 40%

and reduces energy consumption by up to 70% compared to the default frequency

scaling policy.

On the scheduling front, a goal of the thesis was to answer these two research

questions:

RQ 3 How to schedule workloads for performance while minimizing energy consump-

tion on systems that use asymmetric multicore multiprocessors?

RQ 4 How can thermal effects be effectively mitigated using software-based tech-

niques, for small-form factor computing devices where active cooling (e.g. fan,

liquid cooling) can not be employed?

6.2. Future research directions 103

To answer these research questions, in chapter 5, a set of microbenchmarks

designed to comprehend low-level micro-architectural designs of processing elements

that help in delivering computing performance and energy efficiency are presented.

In addition to understanding the full potential of a workload, a thorough analysis

of the workload memory requirement (i.e. WSS) using a profiled version of the

workload has been carried out. The profiled version of the workload uses LLVM

to monitor every memory accesses that the workload will perform at runtime. The

output of this profile is the working set size of the workload. This knowledge is then

used at runtime to guide workload scheduling, specifically with the device under

thermal pressure, which is common to small form factor devices that rely on passive

cooling. The evaluation shows an increase in application performance by 10% on

average and reduces energy consumption by 12% on average compared to the default

scheduling strategy that uses a strict thermal policy.

6.2 Future research directions

This section presents some limitations and possible research directions to improve

the work conducted in this thesis.

To determine the overall memory requirement of a process, the current strategy

employs an offline analysis that executes a profiled version of the workload. Though

this step needs to be run only once with the analysis reusable for further execution,

this strategy remains inefficient. Moreover, the current analysis considers the entire

execution of the process without considering the workload phases. Some work in

the compiler community studied reuse distance to guide code optimization [30, 51,

33]. These works could be reused to extract the memory profile of the workload

faster than by executing a profiled version of the binary. Another approach would

be to introduce a new set of PMU counters to identify memory portions that are

frequently used by the workload. This would allow the refinement and speed up the

computation of memory requirements of the workload during its different execution

104 Conclusion

phases.

The proposed scheduler does not consider point-to-point memory communication

in the case of a multithreaded application. As such, the solution may map two

threads, one on a LITTLE core, and another one on a big core. If these two

threads are working on shared memory and are working back-to-back on the same

memory location, the proposed scheduler may increase memory latency and degrade

performance. Note that the Linux scheduler is currently unaware of the notion

of threads’ point-to-point memory communication. It is the responsibility of the

developer to group tasks in some sort of task pool via cgroup or numactl in the

case of a NUMA topology. In the same manner, knowing the memory requirement

and point-to-point communication between threads could help the scheduler avoid

cache thrashing.

The experiment in figure 3.1 demonstrates that any power model will have errors

by considering only PMU counters. However, the experiment is a rather peculiar

use case as it stresses only one particular instruction. In the general case of a

real workload, there will most probably be a mixture of several instruction types.

In [140], the authors propose a strong power model technique considering PMU

counters and thermal contributions to power leakage. The power model accuracy

is as good as 3.8% and 2.8% on average to predict power consumption on an ARM

Cortex-A7 and ARMCortex-A15 respectively. A refined power model using compiler

hints would help discriminate PMU counters aggregation to micro-architectural

block. This strategy will help in better power and thermal predictions.

On a smartphone or tablet, the GPU is in constant use. However, the work

of this thesis does not consider workloads that use this processing element type.

Consideration of real-time tasks for media-processing applications incorporating

GPU would be a great research direction.

6.3. Concluding Remarks 105

6.3 Concluding Remarks

In summary, this thesis presented novel approaches to frequency scaling and

scheduling decisions for asymmetric multiprocessing systems. By utilizing tailored

microbenchmarks to discover micro-architectural specificities, multiple models were

derived to find the best match of CPUs frequencies setting and workload scheduling

on real-world applications.

Additionally, the work in chapter 4 and chapter 5 gave some strategies to alleviate

memory-related issues regarding latency induced by hardware data-coherency

protocol and the memory footprint of a workload. Several directions have been

suggested to improve memory footprint computation and reach the full potential of

this thesis. These works can be applied at a bigger scale for the server and warehouse

market to cover the full spectrum of computing systems.

Furthermore, the work in chapter 5 explored scheduling strategies that encom-

pass workload characteristics and effective use of the CPU core micro-architectural

specificities. In particular, the scheduling decision was applied for thermal

management on small form factor devices. However, knowledge acquired during this

work can be generalized for regular load-balancing procedures. While the single-ISA

asymmetric multiprocessing devices become more common, the work of this thesis

enables better use of the underlying micro-architectural specificities for workload

scheduling.

References

[1] Agarwal, A. “Leakage Power Analysis and Reduction for Nanoscale Circuits”.

In: IEEE Micro 26.2 (Mar. 2006), pp. 68–80. issn: 0272-1732. doi: 10.1109/

MM.2006.39.

[2] Allyn, S. Jellyfish video. 2020. url: http://jell.yfish.us/media/jellyf

ish-3-mbps-hd-h264.mkv (visited on 04/01/2020).

[3] Apple Inc. Tuning Your Code’s Performance for Apple Silicon. 2022. url:

https://developer.apple.com/documentation/apple-silicon/tuning-

your-code-s-performance-for-apple-silicon (visited on 04/01/2022).

[4] Apple WebKit Team, Speedometer2.0. 2018. url: https://browserbench.

org/Speedometer2.0/ (visited on 04/01/2020).

[5] Archibald, J., Baer, J.-L., “Cache coherence protocols: evaluation using

a multiprocessor simulation model”. In: ACM Transactions on Computer

Systems 4 (4 Sept. 1986), pp. 273–298. issn: 0734-2071. doi: 10.1145/6513.

6514.

[6] Arm Holdings, White paper: big.LITTLE Technology: The Future of Mobile.

2013.

[7] Arm Holdings, Arm NEON. 2020. url: https://developer.arm.com/

documentation/102474/latest (visited on 04/01/2020).

[8] Arm Holdings, CCI-400. 2020. url: https://developer.arm.com/docume

ntation/ddi0470/latest (visited on 04/01/2020).

https://doi.org/10.1109/MM.2006.39
https://doi.org/10.1109/MM.2006.39
http://jell.yfish.us/media/jellyfish-3-mbps-hd-h264.mkv
http://jell.yfish.us/media/jellyfish-3-mbps-hd-h264.mkv
https://developer.apple.com/documentation/apple-silicon/tuning-your-code-s-performance-for-apple-silicon
https://developer.apple.com/documentation/apple-silicon/tuning-your-code-s-performance-for-apple-silicon
https://browserbench.org/Speedometer2.0/
https://browserbench.org/Speedometer2.0/
https://doi.org/10.1145/6513.6514
https://doi.org/10.1145/6513.6514
https://developer.arm.com/documentation/102474/latest
https://developer.arm.com/documentation/102474/latest
https://developer.arm.com/documentation/ddi0470/latest
https://developer.arm.com/documentation/ddi0470/latest

References 107

[9] Arm Holdings, Cortex-A15. 2020. url: https : / / developer . arm . com /

documentation/ddi0438/latest (visited on 04/01/2020).

[10] Arm Holdings, Cortex-A7. 2020. url: https://developer.arm.com/docum

entation/ddi0464/latest (visited on 04/01/2020).

[11] Arm Holdings, Introduction to SVE. 2020. url: https://developer.arm.

com/documentation/102476/latest/ (visited on 04/01/2020).

[12] Arm Holdings, Intelligent Power Allocation. 2021. url: https://developer.

arm.com/tools-and-software/open-source-software/linux-kernel/

intelligent-power-allocation (visited on 04/11/2021).

[13] Becchi, M., Crowley, P., “Dynamic thread assignment on heterogeneous

multiprocessor architectures”. In: Proceedings of the 3rd conference on

Computing frontiers - CF ’06. New York, New York, USA: ACM Press, 2006,

p. 29. isbn: 1595933026. doi: 10.1145/1128022.1128029.

[14] Bennett, B. T., Kruskal, V. J., “LRU Stack Processing”. In: IBM Journal of

Research and Development 19 (4 July 1975), pp. 353–357. issn: 0018-8646.

doi: 10.1147/rd.194.0353.

[15] Berg, E., Hagersten, E., “StatCache: A probabilistic approach to efficient

and accurate data locality analysis”. In: IEEE International Symposium on

- ISPASS Performance Analysis of Systems and Software, 2004. IEEE, 2004,

pp. 20–27. isbn: 0-7803-8385-0. doi: 10.1109/ISPASS.2004.1291352.

[16] Bernstein, K. “High-performance CMOS variability in the 65-nm regime and

beyond”. In: IBM Journal of Research and Development 50.4.5 (July 2006),

pp. 433–449. issn: 0018-8646. doi: 10.1147/rd.504.0433.

[17] Bhat, G., Gumussoy, S., Ogras, U. Y., “Power-Temperature Stability and

Safety Analysis for Multiprocessor Systems”. In: ACM Transactions on

Embedded Computing Systems 16.5s (Oct. 2017), pp. 1–19. issn: 1539-9087.

doi: 10.1145/3126567.

https://developer.arm.com/documentation/ddi0438/latest
https://developer.arm.com/documentation/ddi0438/latest
https://developer.arm.com/documentation/ddi0464/latest
https://developer.arm.com/documentation/ddi0464/latest
https://developer.arm.com/documentation/102476/latest/
https://developer.arm.com/documentation/102476/latest/
https://developer.arm.com/tools-and-software/open-source-software/linux-kernel/intelligent-power-allocation
https://developer.arm.com/tools-and-software/open-source-software/linux-kernel/intelligent-power-allocation
https://developer.arm.com/tools-and-software/open-source-software/linux-kernel/intelligent-power-allocation
https://doi.org/10.1145/1128022.1128029
https://doi.org/10.1147/rd.194.0353
https://doi.org/10.1109/ISPASS.2004.1291352
https://doi.org/10.1147/rd.504.0433
https://doi.org/10.1145/3126567

108 References

[18] Bhat, G., Gumussoy, S., Ogras, U. Y., “Power and Thermal Analysis of

Commercial Mobile Platforms: Experiments and Case Studies”. In: 2019

Design, Automation & Test in Europe Conference & Exhibition (DATE).

IEEE, Mar. 2019, pp. 144–149. isbn: 978-3-9819263-2-3. doi: 10.23919/

DATE.2019.8714831.

[19] Bhat, G., Gumussoy, S., Ogras, U. Y., “Analysis and Control of Power–Temperature

Dynamics in Heterogeneous Multiprocessors”. In: IEEE Transactions on

Control Systems Technology 29.1 (Jan. 2020), pp. 329–341. issn: 1063-6536.

doi: 10.1109/TCST.2020.2974421.

[20] Bhat, G. “Algorithmic Optimization of Thermal and Power Management

for Heterogeneous Mobile Platforms”. In: IEEE Transactions on Very Large

Scale Integration (VLSI) Systems 26.3 (Mar. 2018), pp. 544–557. issn: 1063-

8210. doi: 10.1109/TVLSI.2017.2770163.

[21] Bienia, C. “The PARSEC benchmark suite: Characterization and architec-

tural implications”. In: Proceedings of the 17th international conference on

Parallel architectures and compilation techniques - PACT ’08. New York,

New York, USA: ACM Press, 2008, pp. 72–81. isbn: 9781605582825. doi:

10.1145/1454115.1454128.

[22] Bohr, M. “A 30 Year Retrospective on Dennard’s MOSFET Scaling Paper”.

In: IEEE Solid-State Circuits Newsletter 12.1 (2007), pp. 11–13. issn: 1098-

4232. doi: 10.1109/N-SSC.2007.4785534.

[23] Bose, P. “Power Wall”. In: Encyclopedia of Parallel Computing. Ed. by David

Padua. Boston, MA: Springer US, 2011, pp. 1593–1608. isbn: 978-0-387-

09766-4. doi: 10.1007/978-0-387-09766-4_499.

[24] Bower, F. A., Sorin, D. J., Cox, L. P., “The Impact of Dynamically

Heterogeneous Multicore Processors on Thread Scheduling”. In: IEEE Micro

28.3 (May 2008), pp. 17–25. issn: 0272-1732. doi: 10.1109/MM.2008.46.

https://doi.org/10.23919/DATE.2019.8714831
https://doi.org/10.23919/DATE.2019.8714831
https://doi.org/10.1109/TCST.2020.2974421
https://doi.org/10.1109/TVLSI.2017.2770163
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1109/N-SSC.2007.4785534
https://doi.org/10.1007/978-0-387-09766-4_499
https://doi.org/10.1109/MM.2008.46

References 109

[25] Butts, J. A., Sohi, G. S., “A static power model for architects”. In: Proceedings

of the 33rd annual ACM/IEEE international symposium on Microarchitecture

- MICRO 33. New York, New York, USA: ACM Press, 2000, pp. 191–201.

isbn: 1581131968. doi: 10.1145/360128.360148.

[26] Butzen, P. F., Ribas, R. P., Leakage Current in Sub-Micrometer CMOS

Gates. 2008. url: https://www.inf.ufrgs.br/logics/docman/book_

emicro_butzen.pdf (visited on 04/01/2020).

[27] Byrne, D. A Survey of Miss-Ratio Curve Construction Techniques. Apr. 2018.

url: http://arxiv.org/abs/1804.01972 (visited on 03/19/2021).

[28] Cameron, K. W., Pyla, H. K., Varadarajan, S., “Tempest: A portable tool

to identify hot spots in parallel code”. In: 2007 International Conference on

Parallel Processing (ICPP 2007). IEEE, Aug. 2007, pp. 37–37. isbn: 0-7695-

2933-X. doi: 10.1109/ICPP.2007.77.

[29] Cantin, J. F., Hill, M. D., “Cache performance for selected SPEC CPU2000

benchmarks”. In: ACM SIGARCH Computer Architecture News 29 (4 Sept.

2001), pp. 13–18. issn: 0163-5964. doi: 10.1145/563519.563522.

[30] Cascaval, C. “Compile-Time Based Performance Prediction”. In: Languages

and Compilers for Parallel Computing. Ed. by Larry Carter and Jeanne

Ferrante. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 365–379.

isbn: 978-3-540-44905-8. doi: 10.1007/3-540-44905-1_23.

[31] Celio, C. Characterizing Multi-Core Processors Using Micro-benchmarks.

2009. url: https://github.com/ucb- bar/ccbench/wiki (visited on

04/01/2020).

[32] Chandrakasan, A., Sheng, S., Brodersen, R., “Low-power CMOS digital de-

sign”. In: IEEE Journal of Solid-State Circuits 27.4 (Apr. 1992), pp. 473–484.

issn: 00189200. doi: 10.1109/4.126534.

https://doi.org/10.1145/360128.360148
https://www.inf.ufrgs.br/logics/docman/book_emicro_butzen.pdf
https://www.inf.ufrgs.br/logics/docman/book_emicro_butzen.pdf
http://arxiv.org/abs/1804.01972
https://doi.org/10.1109/ICPP.2007.77
https://doi.org/10.1145/563519.563522
https://doi.org/10.1007/3-540-44905-1_23
https://github.com/ucb-bar/ccbench/wiki
https://doi.org/10.1109/4.126534

110 References

[33] Chauhan, A., Shei, C.-Y., “Static reuse distances for locality-based opti-

mizations in MATLAB”. In: Proceedings of the 24th ACM International

Conference on Supercomputing - ICS ’10. New York, New York, USA: ACM

Press, 2010, p. 295. isbn: 9781450300186. doi: 10.1145/1810085.1810125.

[34] Chen, T.-C. “Where CMOS is Going: Trendy Hype vs. Real Technology”.

In: IEEE Solid-State Circuits Society Newsletter 11.3 (Sept. 2006), pp. 5–9.

issn: 1098-4232. doi: 10.1109/N-SSC.2006.4785853.

[35] Chrome DevTools Team, puppeteer. 2020. url: https://pptr.dev/ (visited

on 04/01/2020).

[36] Cuesta, D., Risco-Martin, J. L., Ayala, J. L., “3D thermal-aware floorplanner

using a MILP approximation”. In: Microprocessors and Microsystems 36.5

(July 2012), pp. 344–354. issn: 01419331. doi: 10.1016/j.micpro.2012.

02.012.

[37] De, V., Borkar, S., “Technology and design challenges for low power and

high performance [microprocessors]”. In: Proceedings. 1999 International

Symposium on Low Power Electronics and Design (Cat. No.99TH8477).

IEEE, 1999, pp. 163–168. isbn: 1-58113-133-X. doi: 10.1109/LPE.1999.

799433.

[38] Dennard, R. “Design of ion-implanted MOSFET’s with very small physical

dimensions”. In: IEEE Journal of Solid-State Circuits 9.5 (Oct. 1974),

pp. 256–268. issn: 0018-9200. doi: 10.1109/JSSC.1974.1050511.

[39] Denning, P. J. “The working set model for program behavior”. In: Commu-

nications of the ACM 11 (5 May 1968), pp. 323–333. issn: 0001-0782. doi:

10.1145/363095.363141.

[40] Denning, P. J. “On modeling program behavior”. In: Proceedings of the

November 16-18, 1971, fall joint computer conference on - AFIPS ’71 (Fall).

New York, New York, USA: ACM Press, 1971, p. 937. doi: 10 . 1145 /

1478873.1478998.

https://doi.org/10.1145/1810085.1810125
https://doi.org/10.1109/N-SSC.2006.4785853
https://pptr.dev/
https://doi.org/10.1016/j.micpro.2012.02.012
https://doi.org/10.1016/j.micpro.2012.02.012
https://doi.org/10.1109/LPE.1999.799433
https://doi.org/10.1109/LPE.1999.799433
https://doi.org/10.1109/JSSC.1974.1050511
https://doi.org/10.1145/363095.363141
https://doi.org/10.1145/1478873.1478998
https://doi.org/10.1145/1478873.1478998

References 111

[41] Denning, P. J., Kahn, K. C., “A study of program locality and lifetime

functions”. In: Proceedings of the fifth symposium on Operating systems

principles - SOSP ’75. New York, New York, USA: ACM Press, 1975,

pp. 207–216. doi: 10.1145/800213.806539.

[42] Denning, P. J., Schwartz, S. C., “Properties of the working-set model”. In:

Communications of the ACM 15 (3 Mar. 1972), pp. 191–198. issn: 0001-0782.

doi: 10.1145/361268.361281.

[43] Dev, K. Implications of Integrated CPU-GPU Processors on Thermal and

Power Management Techniques. Aug. 2018. url: http://arxiv.org/abs/

1808.09651 (visited on 04/01/2020).

[44] Dhodapkar, A. “TEM2P2EST: A Thermal Enabled Multi-model Pow-

er/Performance ESTimator”. In: Power-Aware Computer Systems. Ed. by

Babak Falsafi and T. N. Vijaykumar. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2001, pp. 112–125. isbn: 978-3-540-44572-2. doi: 10.1007/3-

540-44572-2_9.

[45] Dong Li, “System-level, thermal-aware, fully-loaded process scheduling”. In:

2008 IEEE International Symposium on Parallel and Distributed Processing.

IEEE, Apr. 2008, pp. 1–7. isbn: 978-1-4244-1693-6. doi: 10.1109/IPDPS.

2008.4536225.

[46] Drennan, P., McAndrew, C., “Understanding MOSFET mismatch for analog

design”. In: IEEE Journal of Solid-State Circuits 38.3 (Mar. 2003), pp. 450–

456. issn: 0018-9200. doi: 10.1109/JSSC.2002.808305.

[47] EAS overview and integration guide (r1p6). 2018. url: https://developer.

arm.com/-/media/Arm%20Developer%20Community/PDF/Open%20Source/

energy- aware- scheduling/eas_overview_and_integration_guide_

r1p6.pdf (visited on 04/11/2021).

https://doi.org/10.1145/800213.806539
https://doi.org/10.1145/361268.361281
http://arxiv.org/abs/1808.09651
http://arxiv.org/abs/1808.09651
https://doi.org/10.1007/3-540-44572-2_9
https://doi.org/10.1007/3-540-44572-2_9
https://doi.org/10.1109/IPDPS.2008.4536225
https://doi.org/10.1109/IPDPS.2008.4536225
https://doi.org/10.1109/JSSC.2002.808305
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Open%20Source/energy-aware-scheduling/eas_overview_and_integration_guide_r1p6.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Open%20Source/energy-aware-scheduling/eas_overview_and_integration_guide_r1p6.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Open%20Source/energy-aware-scheduling/eas_overview_and_integration_guide_r1p6.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Open%20Source/energy-aware-scheduling/eas_overview_and_integration_guide_r1p6.pdf

112 References

[48] Eklov, D., Hagersten, E., “StatStack: Efficient modeling of LRU caches”. In:

2010 IEEE International Symposium on Performance Analysis of Systems &

Software (ISPASS). IEEE, Mar. 2010, pp. 55–65. isbn: 978-1-4244-6023-6.

doi: 10.1109/ISPASS.2010.5452069.

[49] Esmaeilzadeh, H. “Dark silicon and the end of multicore scaling”. In: Pro-

ceeding of the 38th annual international symposium on Computer architecture

- ISCA ’11. New York, New York, USA: ACM Press, 2011, p. 365. isbn:

9781450304726. doi: 10.1145/2000064.2000108.

[50] Farkas, K., Jouppi, N. P., Ranganathan, P., “Heterogeneous processor core

systems for improved throughput”. U.S. pat. 7996839B2. Hewlett Packard

Development Co LP. July 2011. url: https : / / patents . google . com /

patent/US7996839.

[51] Fauzia, N. “Beyond reuse distance analysis: Dynamic Analysis for Character-

ization of Data Locality Potential”. In: ACM Transactions on Architecture

and Code Optimization 10 (4 Dec. 2013), pp. 1–29. issn: 15443566. doi:

10.1145/2555289.2555309.

[52] Fleming, P. J., Wallace, J. J., “How not to lie with statistics: the correct way

to summarize benchmark results”. In: Communications of the ACM 29.3

(Mar. 1986), pp. 218–221. issn: 0001-0782. doi: 10.1145/5666.5673. url:

https://dl.acm.org/doi/10.1145/5666.5673.

[53] Flynn, M. “Very high-speed computing systems”. In: Proceedings of the IEEE

54 (12 1966), pp. 1901–1909. doi: 10.1109/PROC.1966.5273.

[54] Frantzis, A., Barker, J., GLmark2. 2010. url: https://github.com/glmar

k2/glmark2 (visited on 04/01/2020).

[55] Greenhalgh, P. big.LITTLE Processing with ARM Cortex™-A15 & Cortex-

A7. 2011.

https://doi.org/10.1109/ISPASS.2010.5452069
https://doi.org/10.1145/2000064.2000108
https://patents.google.com/patent/US7996839
https://patents.google.com/patent/US7996839
https://doi.org/10.1145/2555289.2555309
https://doi.org/10.1145/5666.5673
https://dl.acm.org/doi/10.1145/5666.5673
https://doi.org/10.1109/PROC.1966.5273
https://github.com/glmark2/glmark2
https://github.com/glmark2/glmark2

References 113

[56] Gupta, U. “DyPO: Dynamic Pareto-Optimal Configuration Selection for

Heterogeneous MpSoCs”. In: ACM Transactions on Embedded Computing

Systems 16.5s (Oct. 2017), pp. 1–20. issn: 1539-9087. doi: 10.1145/3126530.

[57] Gutierrez, A. “Full-system analysis and characterization of interactive smart-

phone applications”. In: 2011 IEEE International Symposium on Workload

Characterization (IISWC). IEEE, 2011, pp. 81–90. doi: 10.1109/IISWC.

2011.6114205.

[58] HardKernel, Odroid-XU3. 2014. url: http : / / www . hardkernel . com/

(visited on 04/01/2020).

[59] Harris, S. L., Harris, D. M., “8 - Memory Systems”. In: Digital Design and

Computer Architecture. Ed. by Sarah L. Harris and David Money Harris.

Boston: Morgan Kaufmann, 2016, pp. 486–529. isbn: 978-0-12-800056-4. doi:

https://doi.org/10.1016/B978-0-12-800056-4.00008-X.

[60] Hartstein, A. “Cache miss behavior: Is It sqrt(2)?” In: Proceedings of the

3rd conference on Computing frontiers - CF ’06. New York, New York,

USA: ACM Press, 2006, p. 313. isbn: 1595933026. doi: 10.1145/1128022.

1128064.

[61] Hennessy, J. L., Patterson, D. A., Computer Architecture: A Quantitative

Approach. Morgan Kaufmann Publishers Inc., 2019. isbn: 978-0-12-811905-

1.

[62] Henning, J. L. “SPEC CPU2006 benchmark descriptions”. In: ACM SIGARCH

Computer Architecture News 34.4 (2006), pp. 1–17. doi: 10.1145/1186736.

1186737.

[63] Heo, S., Barr, K., Asanović, K., “Reducing power density through activity

migration”. In: Proceedings of the 2003 international symposium on Low

power electronics and design - ISLPED ’03. New York, New York, USA:

ACM Press, 2003, p. 217. isbn: 158113682X. doi: 10.1145/871506.871561.

https://doi.org/10.1145/3126530
https://doi.org/10.1109/IISWC.2011.6114205
https://doi.org/10.1109/IISWC.2011.6114205
http://www.hardkernel.com/
https://doi.org/https://doi.org/10.1016/B978-0-12-800056-4.00008-X
https://doi.org/10.1145/1128022.1128064
https://doi.org/10.1145/1128022.1128064
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/871506.871561

114 References

[64] Horowitz, M. “Scaling, power, and the future of CMOS”. In: IEEE Interna-

tionalElectron Devices Meeting, 2005. IEDM Technical Digest. IEEE, 2008,

pp. 9–15. isbn: 0-7803-9268-X. doi: 10.1109/IEDM.2005.1609253.

[65] Humenay, E., Tarjan, D., Skadron, K., “Impact of Process Variations on

Multicore Performance Symmetry”. In: 2007 Design, Automation & Test in

Europe Conference & Exhibition. IEEE, Apr. 2007, pp. 1–6. isbn: 978-3-

9810801-2-4. doi: 10.1109/DATE.2007.364539.

[66] Hwang, K. Advanced Computer Architecture: Parallelism, Scalability, Pro-

grammability. McGraw-Hill Higher Education, 1992. isbn: 978-0070316225.

[67] Intel Corporation, Intel® 64 and IA-32 Architectures Software Developer’s

Manual. 2021. url: https://cdrdv2.intel.com/v1/dl/getContent/

671200 (visited on 01/01/2022).

[68] Jagannathan, S. “Temperature dependence of soft error rate in flip-flop

designs”. In: 2012 IEEE International Reliability Physics Symposium (IRPS).

IEEE, Apr. 2012, SE.2.1–SE.2.6. isbn: 978-1-4577-1680-5. doi: 10.1109/

IRPS.2012.6241927.

[69] Jaleel, A. Memory characterization of workloads using instrumentation-

driven simulation. 2010. url: http : / / www . jaleels . org / ajaleel /

workload/SPECanalysis.pdf (visited on 04/01/2020).

[70] Keshavarzi, A., Roy, K., Hawkins, C., “Intrinsic leakage in low power deep

submicron CMOS ICs”. In: Proceedings International Test Conference 1997.

Int. Test Conference, 1997, pp. 146–155. isbn: 0-7803-4209-7. doi: 10.1109/

TEST.1997.639607.

[71] Khushu, S., Gomes, W., “Lakefield: Hybrid cores in 3D Package”. In: 2019

IEEE Hot Chips 31 Symposium (HCS). IEEE, Aug. 2019, pp. 1–20. isbn:

978-1-7281-2089-8. doi: 10.1109/HOTCHIPS.2019.8875641.

https://doi.org/10.1109/IEDM.2005.1609253
https://doi.org/10.1109/DATE.2007.364539
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://cdrdv2.intel.com/v1/dl/getContent/671200
https://doi.org/10.1109/IRPS.2012.6241927
https://doi.org/10.1109/IRPS.2012.6241927
http://www.jaleels.org/ajaleel/workload/SPECanalysis.pdf
http://www.jaleels.org/ajaleel/workload/SPECanalysis.pdf
https://doi.org/10.1109/TEST.1997.639607
https://doi.org/10.1109/TEST.1997.639607
https://doi.org/10.1109/HOTCHIPS.2019.8875641

References 115

[72] Kim, Y. G. “M-DTM: Migration-based Dynamic Thermal Management for

Heterogeneous Mobile Multi-core Processors”. In: 2015 Design, Automation

Test in Europe Conference Exhibition (DATE). 2015, pp. 1533–1538. url:

https://ieeexplore.ieee.org/document/7092632.

[73] Kim, Y. G. “An Adaptive Thermal Management Framework for Heteroge-

neous Multi-Core Processors”. In: IEEE Transactions on Computers 69.6

(June 2020), pp. 894–906. issn: 0018-9340. doi: 10.1109/TC.2020.2970062.

[74] Koufaty, D., Reddy, D., Hahn, S., “Bias scheduling in heterogeneous multi-

core architectures”. In: Proceedings of the 5th European conference on

Computer systems - EuroSys ’10. New York, New York, USA: ACM Press,

2010, p. 125. isbn: 9781605585772. doi: 10.1145/1755913.1755928.

[75] Kumar, A. “HybDTM: a coordinated hardware-software approach for dy-

namic thermal management”. In: 2006 43rd ACM/IEEE Design Automation

Conference. IEEE, 2006, pp. 548–553. isbn: 1-59593-381-6. doi: 10.1109/

DAC.2006.229219.

[76] Kumar, A. “System-Level Dynamic Thermal Management for High-Performance

Microprocessors”. In: IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems 27.1 (Jan. 2008), pp. 96–108. issn: 0278-

0070. doi: 10.1109/TCAD.2007.907062.

[77] Kumar, R. “Processor Power Reduction Via Single-ISA Heterogeneous Multi-

Core Architectures”. In: IEEE Computer Architecture Letters 2.1 (Jan. 2003),

pp. 2–2. issn: 1556-6056. doi: 10.1109/L-CA.2003.6.

[78] Kumar, R. “Single-ISA Heterogeneous Multi-Core Architectures for Multi-

threaded Workload Performance”. In: ACM SIGARCH Computer Architec-

ture News 32.2 (Mar. 2004), p. 64. issn: 0163-5964. doi: 10.1145/1028176.

1006707.

[79] Kumar, R. “Heterogeneous chip multiprocessors”. In: Computer 38.11 (Nov.

2005), pp. 32–38. issn: 0018-9162. doi: 10.1109/MC.2005.379.

https://ieeexplore.ieee.org/document/7092632
https://doi.org/10.1109/TC.2020.2970062
https://doi.org/10.1145/1755913.1755928
https://doi.org/10.1109/DAC.2006.229219
https://doi.org/10.1109/DAC.2006.229219
https://doi.org/10.1109/TCAD.2007.907062
https://doi.org/10.1109/L-CA.2003.6
https://doi.org/10.1145/1028176.1006707
https://doi.org/10.1145/1028176.1006707
https://doi.org/10.1109/MC.2005.379

116 References

[80] Kursun, E., Chen-Yong Cher, “Variation-aware thermal characterization

and management of multi-core architectures”. In: 2008 IEEE International

Conference on Computer Design. IEEE, Oct. 2008, pp. 280–285. isbn: 978-

1-4244-2657-7. doi: 10.1109/ICCD.2008.4751874.

[81] Lakshminarayana, N. B., Lee, J., Kim, H., “Age based scheduling for

asymmetric multiprocessors”. In: Proceedings of the Conference on High

Performance Computing Networking, Storage and Analysis - SC ’09. New

York, New York, USA: ACM Press, 2009, p. 1. isbn: 9781605587448. doi:

10.1145/1654059.1654085.

[82] Lall, P., Pecht, M. G., Hakim, E. B., Influence of Tempemture on Microelec-

tronics and System Reliability. CRC Press, July 2020. isbn: 9780138750879.

doi: 10.1201/9780138750879.

[83] Lee, Y., Shin, K. G., Chwa, H. S., “Thermal-Aware Scheduling for Integrated

CPUs–GPU Platforms”. In: ACM Transactions on Embedded Computing

Systems 18.5s (Oct. 2019), pp. 1–25. issn: 1539-9087. doi: 10.1145/3358235.

[84] Li, T. “Efficient operating system scheduling for performance-asymmetric

multi-core architectures”. In: Proceedings of the 2007 ACM/IEEE conference

on Supercomputing - SC ’07. New York, New York, USA: ACM Press, 2007,

p. 1. isbn: 9781595937643. doi: 10.1145/1362622.1362694.

[85] Linux documentation: CAS. 2021. url: https://www.kernel.org/doc/

html/latest/scheduler/sched-capacity.html (visited on 04/11/2021).

[86] Linux documentation: CFS. 2021. url: https://www.kernel.org/doc/htm

l/latest/scheduler/sched-design-CFS.html (visited on 04/11/2021).

[87] Linux documentation: EAS. 2021. url: https://www.kernel.org/doc/

html/latest/scheduler/sched-energy.html (visited on 04/11/2021).

[88] Lozi, J.-P. “The Linux scheduler”. In: Proceedings of the Eleventh European

Conference on Computer Systems. New York, NY, USA: ACM, Apr. 2016,

pp. 1–16. isbn: 9781450342407. doi: 10.1145/2901318.2901326.

https://doi.org/10.1109/ICCD.2008.4751874
https://doi.org/10.1145/1654059.1654085
https://doi.org/10.1201/9780138750879
https://doi.org/10.1145/3358235
https://doi.org/10.1145/1362622.1362694
https://www.kernel.org/doc/html/latest/scheduler/sched-capacity.html
https://www.kernel.org/doc/html/latest/scheduler/sched-capacity.html
https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://www.kernel.org/doc/html/latest/scheduler/sched-energy.html
https://www.kernel.org/doc/html/latest/scheduler/sched-energy.html
https://doi.org/10.1145/2901318.2901326

References 117

[89] Luba, L. memory: samsung: exynos5422-dmc: Add module param to control

IRQ mode. 2020. url: https://git.kernel.org/pub/scm/linux/kernel/

git/stable/linux.git/commit/?id=4fc9a0470d2dc370289e9d883feb41e

5dd2c6303.

[90] Luba, L. memory: samsung: exynos5422-dmc: Adjust polling interval and

uptreshold. 2020. url: https://git.kernel.org/pub/scm/linux/kernel/

git/stable/linux.git/commit/?id=74ca9e46107879551e2625bfbfbfd

71da1881b82.

[91] Mandal, S. K. “Dynamic Resource Management of Heterogeneous Mobile

Platforms via Imitation Learning”. In: IEEE Transactions on Very Large

Scale Integration (VLSI) Systems 27.12 (Dec. 2019), pp. 2842–2854. issn:

1063-8210. doi: 10.1109/TVLSI.2019.2926106.

[92] Markoff, J. Intel’s Big Shift After Hitting Technical Wall. 2004. url: https:

//www.nytimes.com/2004/05/17/business/technology-intel-s-big-

shift-after-hitting-technical-wall.html (visited on 03/19/2021).

[93] Mattson, R. “Evaluation techniques for storage hierarchies”. In: IBM Systems

Journal 9 (2 1970), pp. 78–117. issn: 0018-8670. doi: 10.1147/sj.92.0078.

[94] McVoy, L., Staelin, C., “Lmbench: Portable Tools for Performance Analysis”.

In: Proceedings of the 1996 Annual Conference on USENIX Annual Technical

Conference. ATEC ’96. San Diego, CA: USENIX Association, 1996, p. 23.

[95] Mead, C. A. “Scaling of MOS technology to submicrometer feature sizes”. In:

Analog Integrated Circuits and Signal Processing 6.1 (July 1994), pp. 9–25.

issn: 0925-1030. doi: 10.1007/BF01250732.

[96] Mednick, E. H., McLellan, E., “Instruction subset implementation for low

power operation”. U.S. pat. 10698472B2. Advanced Micro Devices Inc. June

2020. url: https://patents.google.com/patent/US10698472B2/.

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=4fc9a0470d2dc370289e9d883feb41e5dd2c6303
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=4fc9a0470d2dc370289e9d883feb41e5dd2c6303
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=4fc9a0470d2dc370289e9d883feb41e5dd2c6303
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=74ca9e46107879551e2625bfbfbfd71da1881b82
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=74ca9e46107879551e2625bfbfbfd71da1881b82
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=74ca9e46107879551e2625bfbfbfd71da1881b82
https://doi.org/10.1109/TVLSI.2019.2926106
https://www.nytimes.com/2004/05/17/business/technology-intel-s-big-shift-after-hitting-technical-wall.html
https://www.nytimes.com/2004/05/17/business/technology-intel-s-big-shift-after-hitting-technical-wall.html
https://www.nytimes.com/2004/05/17/business/technology-intel-s-big-shift-after-hitting-technical-wall.html
https://doi.org/10.1147/sj.92.0078
https://doi.org/10.1007/BF01250732
https://patents.google.com/patent/US10698472B2/

118 References

[97] Meza, J. “A Large-Scale Study of Flash Memory Failures in the Field”.

In: ACM SIGMETRICS Performance Evaluation Review 43.1 (June 2015),

pp. 177–190. issn: 0163-5999. doi: 10.1145/2796314.2745848.

[98] Mihailescu, M. ARM: dts: exynos: Add CPU perf counters to Exynos54xx

boards. 2017. url: https://git.kernel.org/pub/scm/linux/kernel/

git/stable/linux.git/commit/?id=c4f2fc00defc65950dfabce7a4c70cd

2a289111d.

[99] Monchiero, M., Canal, R., González, A., “Design space exploration for

multicore architectures”. In: Proceedings of the 20th annual international

conference on Supercomputing - ICS ’06. New York, New York, USA: ACM

Press, 2006, p. 177. isbn: 1595932828. doi: 10.1145/1183401.1183428.

[100] Moore, G. E. “Cramming more components onto integrated circuits, Reprinted

from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff.” In: IEEE

Solid-State Circuits Society Newsletter 11.3 (Sept. 2006), pp. 33–35. issn:

1098-4232. doi: 10.1109/N-SSC.2006.4785860.

[101] Moore, G. E. “Progress in digital integrated electronics [Technical literai-

ture, Copyright 1975 IEEE. Reprinted, with permission. Technical Digest.

International Electron Devices Meeting, IEEE, 1975, pp. 11-13.]” In: IEEE

Solid-State Circuits Society Newsletter 11.3 (Sept. 2006), pp. 36–37. issn:

1098-4232. doi: 10.1109/N-SSC.2006.4804410.

[102] Muthukaruppan, T. S. “Hierarchical power management for asymmetric

multi-core in dark silicon era”. In: Proceedings of the 50th Annual Design

Automation Conference on - DAC ’13. New York, New York, USA: ACM

Press, 2013, p. 1. isbn: 9781450320719. doi: 10.1145/2463209.2488949.

[103] Nagarajan, V. “A Primer on Memory Consistency and Cache Coherence”.

In: Synthesis Lectures on Computer Architecture 15 (1 Feb. 2020), pp. 1–294.

issn: 1935-3235. doi: 10.2200/S00962ED2V01Y201910CAC049.

https://doi.org/10.1145/2796314.2745848
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=c4f2fc00defc65950dfabce7a4c70cd2a289111d
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=c4f2fc00defc65950dfabce7a4c70cd2a289111d
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=c4f2fc00defc65950dfabce7a4c70cd2a289111d
https://doi.org/10.1145/1183401.1183428
https://doi.org/10.1109/N-SSC.2006.4785860
https://doi.org/10.1109/N-SSC.2006.4804410
https://doi.org/10.1145/2463209.2488949
https://doi.org/10.2200/S00962ED2V01Y201910CAC049

References 119

[104] Niu, Q. “PARDA: A Fast Parallel Reuse Distance Analysis Algorithm”. In:

2012 IEEE 26th International Parallel and Distributed Processing Sympo-

sium. IEEE, May 2012, pp. 1284–1294. isbn: 978-1-4673-0975-2. doi: 10.

1109/IPDPS.2012.117.

[105] Olken, F. “Efficient methods for calculating the success function of fixed-

space replacement policies”. MA thesis. Berkeley, CA (United States):

Lawrence Berkeley National Laboratory (LBNL), May 1981. doi: 10.2172/

6051879.

[106] Pallipadi, V., Starikovskiy, A., “The ondemand governor: past, present and

future”. In: Proceedings of the Linux Symposium. 2006, pp. 215–230. url:

https://www.kernel.org/doc/ols/2006/ols2006v2-pages-223-238.pdf

(visited on 04/01/2020).

[107] Pallister, J. “Data Dependent Energy Modeling for Worst Case Energy

Consumption Analysis”. In: Proceedings of the 20th International Workshop

on Software and Compilers for Embedded Systems. New York, NY, USA:

ACM, June 2017, pp. 51–59. isbn: 9781450350396. doi: 10.1145/3078659.

3078666.

[108] Pedregosa, F. “Scikit-learn: Machine Learning in Python”. In: Journal of

Machine Learning Research 12 (2011), pp. 2825–2830. doi: 10.48550/arXiv.

1201.0490.

[109] Pricopi, M. “Power-performance modeling on asymmetric multi-cores”. In:

2013 International Conference on Compilers, Architecture and Synthesis for

Embedded Systems (CASES). IEEE, Sept. 2013, pp. 1–10. isbn: 978-1-4799-

1400-5. doi: 10.1109/CASES.2013.6662519.

[110] Reddy, B. K. “Inter-Cluster Thread-to-Core Mapping and DVFS on Het-

erogeneous Multi-Cores”. In: IEEE Transactions on Multi-Scale Computing

Systems 4.3 (July 2018), pp. 369–382. issn: 2332-7766. doi: 10.1109/TMSCS.

2017.2755619.

https://doi.org/10.1109/IPDPS.2012.117
https://doi.org/10.1109/IPDPS.2012.117
https://doi.org/10.2172/6051879
https://doi.org/10.2172/6051879
https://www.kernel.org/doc/ols/2006/ols2006v2-pages-223-238.pdf
https://doi.org/10.1145/3078659.3078666
https://doi.org/10.1145/3078659.3078666
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.1109/CASES.2013.6662519
https://doi.org/10.1109/TMSCS.2017.2755619
https://doi.org/10.1109/TMSCS.2017.2755619

120 References

[111] Reddy, B. K. “AdaMD: Adaptive Mapping and DVFS for Energy-Efficient

Heterogeneous Multicores”. In: IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems 39.10 (Oct. 2020), pp. 2206–2217.

issn: 0278-0070. doi: 10.1109/TCAD.2019.2935065.

[112] Roy, K., Mukhopadhyay, S., Mahmoodi-Meimand, H., “Leakage current

mechanisms and leakage reduction techniques in deep-submicrometer CMOS

circuits”. In: Proceedings of the IEEE 91.2 (Feb. 2003), pp. 305–327. issn:

0018-9219. doi: 10.1109/JPROC.2002.808156.

[113] Saez, J. C. “Leveraging workload diversity through OS scheduling to

maximize performance on single-ISA heterogeneous multicore systems”. In:

Journal of Parallel and Distributed Computing 71.1 (Jan. 2011), pp. 114–131.

issn: 07437315. doi: 10.1016/j.jpdc.2010.08.020.

[114] Saez, J. C. “Leveraging Core Specialization via OS Scheduling to Improve

Performance on Asymmetric Multicore Systems”. In: ACM Transactions on

Computer Systems 30.2 (Apr. 2012), pp. 1–38. issn: 0734-2071. doi: 10.

1145/2166879.2166880.

[115] Sahin, O., Coskun, A. K., “On the Impacts of Greedy Thermal Management

in Mobile Devices”. In: IEEE Embedded Systems Letters 7.2 (June 2015),

pp. 55–58. issn: 1943-0663. doi: 10.1109/LES.2015.2420664.

[116] Sahin, O., Coskun, A. K., “QScale: Thermally-Efficient QoS Management on

Heterogeneous Mobile Platforms”. In: Proceedings of the 35th International

Conference on Computer-Aided Design. New York, NY, USA: ACM, Nov.

2016, pp. 1–8. isbn: 9781450344661. doi: 10.1145/2966986.2967066.

[117] Sahin, O., Thiele, L., Coskun, A. K., “Maestro: Autonomous QoS Man-

agement for Mobile Applications Under Thermal Constraints”. In: IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

38.8 (Aug. 2019), pp. 1557–1570. issn: 0278-0070. doi: 10.1109/TCAD.2018.

2855180.

https://doi.org/10.1109/TCAD.2019.2935065
https://doi.org/10.1109/JPROC.2002.808156
https://doi.org/10.1016/j.jpdc.2010.08.020
https://doi.org/10.1145/2166879.2166880
https://doi.org/10.1145/2166879.2166880
https://doi.org/10.1109/LES.2015.2420664
https://doi.org/10.1145/2966986.2967066
https://doi.org/10.1109/TCAD.2018.2855180
https://doi.org/10.1109/TCAD.2018.2855180

References 121

[118] Sahin, O., Varghese, P. T., Coskun, A. K., “Just enough is more: Achiev-

ing sustainable performance in mobile devices under thermal limitations”.

In: 2015 IEEE/ACM International Conference on Computer-Aided Design

(ICCAD). IEEE, Nov. 2015, pp. 839–846. isbn: 978-1-4673-8388-2. doi: 10.

1109/ICCAD.2015.7372658.

[119] Sakalis, C. “Splash-3: A properly synchronized benchmark suite for contem-

porary research”. In: 2016 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS). IEEE, Apr. 2016, pp. 101–111.

isbn: 978-1-5090-1953-3. doi: 10.1109/ISPASS.2016.7482078.

[120] Samsung, Exynos 5 Octa (5422). 2014. url: https://www.samsung.com/

semiconductor/minisite/exynos/products/mobileprocessor/exynos-

5-octa-5422/ (visited on 04/01/2020).

[121] Sergent, J. E., Krum, A., Thermal Management Handbook: For Electronic

Assemblies. Electronic packaging and interconnection series. McGraw-Hill

Education, June 1998. isbn: 9780070266995. url: https://books.google.

fr/books?id=J3nty7eHkhcC.

[122] Shelepov, D., Fedorova, A., “Scheduling on Heterogeneous Multicore Pro-

cessors Using Architectural Signatures”. In: Proceedings of the Workshop on

the Interaction between Operating Systems and Computer Architecture. 2008,

pp. 21–25. url: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

10.1.1.217.4834.

[123] Shelepov, D. “HASS: A Scheduler for Heterogeneous Multicore Systems”. In:

ACM SIGOPS Operating Systems Review 43.2 (Apr. 2009), pp. 66–75. issn:

0163-5980. doi: 10.1145/1531793.1531804.

[124] Shen, J. P., Lipasti, M. H., Modern processor design: Fundamentals of

superscalar processors. 2013. isbn: 978-1-4786-0783-0.

https://doi.org/10.1109/ICCAD.2015.7372658
https://doi.org/10.1109/ICCAD.2015.7372658
https://doi.org/10.1109/ISPASS.2016.7482078
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
https://www.samsung.com/semiconductor/minisite/exynos/products/mobileprocessor/exynos-5-octa-5422/
https://books.google.fr/books?id=J3nty7eHkhcC
https://books.google.fr/books?id=J3nty7eHkhcC
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.217.4834
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.217.4834
https://doi.org/10.1145/1531793.1531804

122 References

[125] Singla, G. “Predictive Dynamic Thermal and Power Management for Het-

erogeneous Mobile Platforms”. In: Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2015. New Jersey: IEEE Conference

Publications, 2015, pp. 960–965. isbn: 9783981537048. doi: 10.7873/DATE.

2015.1036.

[126] Skadron, K., Abdelzaher, T., Stan, M., “Control-theoretic techniques and

thermal-RC modeling for accurate and localized dynamic thermal manage-

ment”. In: Proceedings Eighth International Symposium on High Performance

Computer Architecture. IEEE Computer. Soc, 2002, pp. 17–28. isbn: 0-7695-

1525-8. doi: 10.1109/HPCA.2002.995695.

[127] Southern, G., Renau, J., “Analysis of PARSEC workload scalability”. In:

2016 IEEE International Symposium on Performance Analysis of Systems

and Software (ISPASS). IEEE, Apr. 2016, pp. 133–142. isbn: 978-1-5090-

1953-3. doi: 10.1109/ISPASS.2016.7482081.

[128] Srinivasan, J. “Exploiting Structural Duplication for Lifetime Reliability

Enhancement”. In: 32nd International Symposium on Computer Architecture

(ISCA’05). IEEE, 2005, pp. 520–531. isbn: 0-7695-2270-X. doi: 10.1109/

ISCA.2005.28.

[129] Stephens, N. “The ARM Scalable Vector Extension”. In: IEEE Micro 37.2

(Mar. 2017), pp. 26–39. issn: 0272-1732. doi: 10.1109/MM.2017.35.

[130] Stevens, A.White paper: Introduction to AMBA® 4 ACE™ and big.LITTLE™

Processing Technology. 2013.

[131] Szyprowski, M., Kozlowski, K., Wolff, W., ARM: dts: exynos: Disable

frequency scaling for FSYS bus on Odroid XU3 family. 2020. url: https:

//git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/

commit/?id=9ff416cf45a08f28167b75045222c762a0347930.

https://doi.org/10.7873/DATE.2015.1036
https://doi.org/10.7873/DATE.2015.1036
https://doi.org/10.1109/HPCA.2002.995695
https://doi.org/10.1109/ISPASS.2016.7482081
https://doi.org/10.1109/ISCA.2005.28
https://doi.org/10.1109/ISCA.2005.28
https://doi.org/10.1109/MM.2017.35
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9ff416cf45a08f28167b75045222c762a0347930
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9ff416cf45a08f28167b75045222c762a0347930
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9ff416cf45a08f28167b75045222c762a0347930

References 123

[132] Szyprowski, M., Wolff, W., Kozlowski, K., ARM: dts: exynos: Disable

frequency scaling for FSYS bus on Odroid XU3 family. 2020. url: https:

//git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/

commit/?id=9ff416cf45a08f28167b75045222c762a0347930.

[133] Taylor, B. “Adaptive deep learning model selection on embedded systems”.

In: Proceedings of the 19th ACM SIGPLAN/SIGBED International Con-

ference on Languages, Compilers, and Tools for Embedded Systems. New

York, NY, USA: ACM, June 2018, pp. 31–43. isbn: 9781450358033. doi:

10.1145/3211332.3211336.

[134] Taylor, M. B. “Is dark silicon useful? Harnessing the Four Horsemen of the

Coming Dark Silicon Apocalypse”. In: Proceedings of the 49th Annual Design

Automation Conference on - DAC ’12. New York, New York, USA: ACM

Press, 2012, p. 1131. isbn: 9781450311991. doi: 10.1145/2228360.2228567.

[135] Torvalds, L. test-tlb. 2017. url: https://github.com/torvalds/test-tlb

(visited on 04/01/2020).

[136] Van Craeynest, K. “Scheduling heterogeneous multi-cores through perfor-

mance impact estimation (PIE)”. In: 2012 39th Annual International Sym-

posium on Computer Architecture (ISCA). IEEE, June 2012, pp. 213–224.

isbn: 978-1-4673-0476-4. doi: 10.1109/ISCA.2012.6237019.

[137] Viswanath, R. “Thermal Performance Challenges from Silicon to Systems”.

In: Intel Technology Journal 4.3 (2000), pp. 1–16. url: http://citeseerx.

ist.psu.edu/viewdoc/summary?doi=10.1.1.14.8322.

[138] Wachter, E. W. “Predictive Thermal Management for Energy-Efficient

Execution of Concurrent Applications on Heterogeneous Multicores”. In:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems 27.6

(June 2019), pp. 1404–1415. issn: 1063-8210. doi: 10.1109/TVLSI.2019.

2896776.

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9ff416cf45a08f28167b75045222c762a0347930
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9ff416cf45a08f28167b75045222c762a0347930
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=9ff416cf45a08f28167b75045222c762a0347930
https://doi.org/10.1145/3211332.3211336
https://doi.org/10.1145/2228360.2228567
https://github.com/torvalds/test-tlb
https://doi.org/10.1109/ISCA.2012.6237019
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.8322
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.8322
https://doi.org/10.1109/TVLSI.2019.2896776
https://doi.org/10.1109/TVLSI.2019.2896776

124 References

[139] Waldspurger, C. A. “Efficient MRC Construction with SHARDS”. In:

Proceedings of the 13th USENIX Conference on File and Storage Technolo-

gies. FAST’15. Santa Clara, CA: USENIX Association, 2015, pp. 95–110.

isbn: 9781931971201. url: https : / / www . usenix . org / conference /

fast15 / technical - sessions / presentation / waldspurger (visited on

03/19/2021).

[140] Walker, M. J. “Accurate and Stable Run-Time Power Modeling for Mobile

and Embedded CPUs”. In: IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems 36.1 (Jan. 2017), pp. 106–119. issn: 0278-

0070. doi: 10.1109/TCAD.2016.2562920.

[141] Weiss, A. R. Dhrystone Benchmark: History, analysis, scores and rec-

ommendations. Tech. rep. EEMBC Certification Laboratories, LLC, Nov.

2002. url: https : / / www . johnloomis . org / NiosII / dhrystone /

ECLDhrystoneWhitePaper.pdf (visited on 03/19/2021).

[142] Wolff, W. ARM: dts: exynos: add CCI-400 PMU nodes support to Exynos542x

SoCs. Under review. 2019. url: https://lore.kernel.org/patchwork/

patch/1061141/.

[143] Wolff, W., Kozlowski, K., Zolnierkiewicz, B., ARM: dts: exynos: fix incom-

plete Odroid-XU3/4 thermal-zones definition. 2017. url: https : / / git .

kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/

?id=e740731dae9470f7fb86efa643ec881a66d4e4c0.

[144] Wolff, W., Lezcano, D., Kumar, V., thermal/drivers/cpufreq cooling: Fix

return of cpufreq set cur state. 2020. url: https : / / git . kernel . org /

pub / scm / linux / kernel / git / stable / linux . git / commit / ?id =

ff44f672d74178b3be19d41a169b98b3e391d4ce.

[145] Wolff, W., Porter, B., “Performance Optimization on big.LITTLE Archi-

tectures: A Memory-latency Aware Approach”. In: The 21st ACM SIG-

PLAN/SIGBED Conference on Languages, Compilers, and Tools for Em-

https://www.usenix.org/conference/fast15/technical-sessions/presentation/waldspurger
https://www.usenix.org/conference/fast15/technical-sessions/presentation/waldspurger
https://doi.org/10.1109/TCAD.2016.2562920
https://www.johnloomis.org/NiosII/dhrystone/ECLDhrystoneWhitePaper.pdf
https://www.johnloomis.org/NiosII/dhrystone/ECLDhrystoneWhitePaper.pdf
https://lore.kernel.org/patchwork/patch/1061141/
https://lore.kernel.org/patchwork/patch/1061141/
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=e740731dae9470f7fb86efa643ec881a66d4e4c0
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=e740731dae9470f7fb86efa643ec881a66d4e4c0
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=e740731dae9470f7fb86efa643ec881a66d4e4c0
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=ff44f672d74178b3be19d41a169b98b3e391d4ce
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=ff44f672d74178b3be19d41a169b98b3e391d4ce
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=ff44f672d74178b3be19d41a169b98b3e391d4ce

References 125

bedded Systems. New York, NY, USA: ACM, June 2020, pp. 51–61. isbn:

9781450370943. doi: 10.1145/3372799.3394370.

[146] Wolff, W., Porter, B., What am I waiting for? Energy and Performance Opti-

mization on big.LITTLE Architectures: A Memory-latency Aware Approach.

Dec. 2020.

[147] Wolff, W., Rui, Z., thermal: fix source code documentation for parameters.

2017. url: https://git.kernel.org/pub/scm/linux/kernel/git/stable

/linux.git/commit/?id=0d76d6e1eede5f2aa13695cb4c9d763bb3555e3e.

[148] Wolff, W. gem5: config, arm: memoryMode test. 2019. url: https://gem5.

googlesource.com/public/gem5/+/ea088f5150d03d4481555ecbbfa2afba

3a87468a.

[149] Woo, S. “The SPLASH-2 programs: characterization and methodological

considerations”. In: Proceedings 22nd Annual International Symposium on

Computer Architecture. ACM, 1995, pp. 24–36. isbn: 0-89791-698-0. doi:

10.1109/ISCA.1995.524546.

[150] Wu, C.-J. “Machine Learning at Facebook: Understanding Inference at

the Edge”. In: 2019 IEEE International Symposium on High Performance

Computer Architecture (HPCA). IEEE, 2019, pp. 331–344. doi: 10.1109/

HPCA.2019.00048.

[151] Ye, G. “A Video-based Attack for Android Pattern Lock”. In: ACM

Transactions on Privacy and Security 21.4 (Nov. 2018), pp. 1–31. issn: 2471-

2566. doi: 10.1145/3230740.

[152] Yeo, I., Liu, C. C., Kim, E. J., “Predictive dynamic thermal management for

multicore systems”. In: Proceedings of the 45th annual conference on Design

automation - DAC ’08. New York, New York, USA: ACM Press, 2008, p. 734.

isbn: 9781605581156. doi: 10.1145/1391469.1391658.

https://doi.org/10.1145/3372799.3394370
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=0d76d6e1eede5f2aa13695cb4c9d763bb3555e3e
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=0d76d6e1eede5f2aa13695cb4c9d763bb3555e3e
https://gem5.googlesource.com/public/gem5/+/ea088f5150d03d4481555ecbbfa2afba3a87468a
https://gem5.googlesource.com/public/gem5/+/ea088f5150d03d4481555ecbbfa2afba3a87468a
https://gem5.googlesource.com/public/gem5/+/ea088f5150d03d4481555ecbbfa2afba3a87468a
https://doi.org/10.1109/ISCA.1995.524546
https://doi.org/10.1109/HPCA.2019.00048
https://doi.org/10.1109/HPCA.2019.00048
https://doi.org/10.1145/3230740
https://doi.org/10.1145/1391469.1391658

126 References

[153] Zhang, H. “Temperature dependence of soft-error rates for FF designs

in 20-nm bulk planar and 16-nm bulk FinFET technologies”. In: 2016

IEEE International Reliability Physics Symposium (IRPS). IEEE, Apr. 2016,

pp. 5C–3–1–5C–3–5. isbn: 978-1-4673-9137-5. doi: 10.1109/IRPS.2016.

7574554.

[154] Zhou, X. “Performance-aware thermal management via task scheduling”. In:

ACM Transactions on Architecture and Code Optimization TACO 7.1 (2010),

pp. 1–31. issn: 15443566. doi: 10.1145/1746065.1736070.

[155] Zhou, Z., Gu, J., Qu, G., “Scheduling for Multi-core Processor under Process

and Temperature Variation”. In: 2012 IEEE 6th International Symposium on

Embedded Multicore SoCs. IEEE, Sept. 2012, pp. 113–120. isbn: 978-1-4673-

2535-6. doi: 10.1109/MCSoC.2012.9.

https://doi.org/10.1109/IRPS.2016.7574554
https://doi.org/10.1109/IRPS.2016.7574554
https://doi.org/10.1145/1746065.1736070
https://doi.org/10.1109/MCSoC.2012.9

	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Goals and research questions
	Contributions
	Thesis Overview

	Background
	Power and temperature basics
	Processing Element Architecture
	Multiprocessing
	Memory Architecture
	Memory hierarchy
	Data coherency

	Summary and putting all together

	Related work
	Scheduling on single-isa amp
	Thermal management
	RC-network thermal model
	Thermal management on uni-processor and smp
	Thermal management on single-isa amp

	Summary

	Multiprocessing and frequency scaling: when data takes its time.
	Memory architecture background
	Modeling snooping latency
	Memory latency exploration
	Detection of snooping latency

	A snoop-aware frequency governor
	Linux DVFS governor
	DVFS ondemand-anti-snoop governor
	Implementation details

	Evaluation
	Benchmark selection
	Results
	Discussion

	Summary

	Scheduling on single-ISA asymmetric multiprocessing systems for embedded systems: when the temperature comes into play.
	Approach to reduce chip temperature
	A simple approach for frequency scaling
	A simple approach to reduce core activity with SIGSTOP & SIGCONT
	A simple approach to reduce core activity with task migration

	Thermal management on single-ISA heterogeneous multiprocessing systems
	Capacity-Aware Scheduling and Energy-Aware Scheduling; Linux CFS on heterogeneous platform
	Thermal Balance Aware System Scheduler
	Imbalanced thermal behaviour
	Thermal Balance Aware System Scheduler: overview
	Thermal Balance Aware System Scheduler: deeper details
	Scheduler hint: application code flow
	Scheduler hint: application memory requirement

	Thermal Balance Aware Scheduler: algorithm

	Evaluation
	Benchmark selection
	Results

	Summary

	Conclusion
	Thesis summary and contributions
	Future research directions
	Concluding Remarks

	References

