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Abstract

In pursuit of efficiency, we propose a new way to construct least squares estima-

tors, as the minimizers of an augmented objective function that takes into account

selected properties of the error term. In this paper we focus on heteroskedasticity.

We initially derive an infeasible estimator which we then approximate using residuals

from a first-step regression to obtain the feasible HOLS estimator. This estimator is

consistent and outperforms Ordinary Least Squares in terms of finite-sample Mean

Squared Error and asymptotic efficiency in the case of heteroskedasticity, uncondi-

tional or conditional on the regressors, but also under homoskedasticity. Theoretical

results are accompanied by simulations that support them.
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1 Introduction and motivation

In the context of linear regression and least squares (LS) estimation we face two unknown

entities: the coefficient vector and the error term. In order to proceed with estimation

and inference on them we make certain assumptions on the error term as regards its

statistical properties, like having a zero mean, or a constant or not variance, and maybe

a distributional assumption. Regarding the coefficient vector, sometimes we may impose

restrictions directly on its elements based on out-of-sample information, in which case we

execute Restricted or Inequality Restricted Least Squares.

Least-squares estimation of the coefficient vector may proceed without regard for

the properties of the other unknown, the error term, since least squares is a mathematical

approximation method that does not need a statistical foundation (for the occasional

conflicts this may create see Spanos 2010). After estimation, the statistical properties

of the error term co-determine the statistical properties of the LS estimator, and so of

statistical inference.

An important example where the properties of the error term enter the picture after

estimation of the coefficient vector, is "heteroskedasticity-robust" Ordinary Least Squares

(OLS). We can obtain OLS point estimates without factoring in heteroskedasticity, which

we can subsequently take into account only for estimating the variance of the estimator.

This is the approach initiated by White (1980), who, as Romano and Wolf (2017) put it,

"changed the game with one of the most influential and widely-cited papers in economet-

rics". MacKinnon (2013) offers a recent assessment of how critical was the influence of this

paper on theoretical advances in econometrics, while it is also true that White’s approach

has come to dominate empirical practice to the degree that in many cases practitioners

don’t even test for the existence of heteroskedasticity but use "heteroskedasticity-robust"

standard errors regardless. This has asymptotic justification because the White variance-

covariance matrix estimator is consistent and non-parametric, and it will converge to the

true matrix whether we have conditional homoskedasticity, unconditional heteroskedas-

ticity, or heteroskedasticity conditional on the regressors (subject to assumptions that

guarantee that the relevant limiting magnitudes exist and are finite).
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In contrast, and for the case of conditional heteroskedasticity, the Generalized LS

(GLS) and the Weighted LS (WLS) estimators are examples of estimators that attempt

to factor in heteroskedasticity and let it affect the point estimates themselves, and not

just the variance of the estimator. They have fallen relatively out of use, but Romano &

Wolf (2017), criticizing White’s approach due to its unsatisfactory performance in "small

to moderate samples" as they write, propose to combine WLS estimation with White’s

method as follows: first test for the presence of conditional heteroskedasticity. If the test

indicates that the phenomenon exist, use WLS together with "heteroskedasticity-robust"

standard errors (based on the WLS estimator).

In the present work we aim to obtain a consistent LS estimator that outperforms

OLS in terms of efficiency both in finite samples and asymptotically. To achieve that, we

take a new route that cross-breeds the two approaches mentioned but in a different way

than Romano & Wolf’s suggestion: we link the two unknown entities of the regression

setup by making the estimator of the coefficient vector "sensitive" to properties of the

error term, specifically to the possible existence of heteroskedasticity. We do this through

an augmented objective function that the estimator minimizes, without assuming any

particular level or form that heteroskedasticity may take, allowing also for the case of

homoskedasticity. In this way both the estimates and the variance of the estimator are

affected as in the GLS and WLS cases, but at the same time we treat heteroskedasticity

non-parametrically, as in White’s approach. Admittedly, we are guilty of the same sin

that one could accuse White’s approach for: that it treats heteroskedasticity conditional

on the regressors as a hurdle to be sidestepped, and not as a problem that at the same

time is an opportunity. Conditioning reduces the probability space, there is information

in conditioning that could improve our inference as regards prediction.

Our estimator is obtained in two steps: in the first step we use OLS residuals

to calculate both an efficiency-optimization parameter and to transform the dependent

variable, and in the second step the estimator is obtained as OLS applied on the trans-

formed sample. For this reason we will label it "HOLS". HOLS is a consistent estimator

under mild conditions, and it dominates OLS in terms of asymptotic efficiency and finite-
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sample Mean Squared Error (MSE). Importantly, the efficiency gains exist even under

homoskedasticity, making the HOLS estimator a general-purpose tool not confined to be

used only when heteroskedasticity is thought to be present.

The only partial precursor of our work that we were able to find in the literature

is Gourieroux, Monfort & Renault (1996). They focus on the case of heteroskedasticity

conditional on the regressors, and through a different route they obtain some results

that we also arrived at. But their estimator is confined to work with symmetric error

distributions, while the HOLS estimator can accomodate error skewness. Also, they

develop a very general framework of GMM and Instrumental Variables estimation that

produces a rather complicated environment not very friendly for wide empirical adoption.

In contrast, the HOLS estimator is very easily and transparently implemented. We will

discuss some literature connections and contrasts once we have presented our estimator

so that the reader has a more concrete picture of what we are attempting here.

The rest of the paper is structured as follows: in Section 2 we develop the model and

obtain the expression for the minimizer of the objective function. In Section 3 we derive

the general form and properties of the HOLS estimator. This is a preparatory section

to a degree, since specific results as regards efficiency depend on what the skedastic

assumption will be. Section 4 examines the case of homoskedasticity and hosts the first

efficiency battle of our estimator against OLS (HOLS wins). In Sections 5 and 6 we

examine the cases of unconditional and conditional heteroskedasticity respectively, and the

results remain favorable to our estimator. In Section 7 we determine how we can estimate

consistently the HOLS variance-covariance matrix, and we wrap-up by summarizing the

simple HOLS implementation routine. Section 8 concludes with a summary of the findings

and some suggestions for future research from the many topics one could explore. The

paper is accompanied by two supplementary files : Supplement I contains extensions and

generalizations of the HOLS estimator while Supplement II has the various mathematical

derivations and details on the Monte Carlo simulations.
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2 Model set up and optimization of the objective

function

We consider the model,

y = Xβ + u, or yi = x′iβ + ui, i = 1, ..., n

E (u) = 0, E (X′u) = 0, E
(
|ui|6+δ

)
<∞, δ > 0. (1)

The column vectors y and u are n × 1, X is a n × (K + 1) matrix of regressors

including a constant, traditionally in the first column, and β is a (K + 1) × 1 vector.

Later we will consider also a centered regression setup, in which case the same symbols

will denote variables centered on their sample means, the regressor matrix will not in-

clude a constant, and the coefficient vector will be a K × 1 column vector. Lowercase

symbols represent either a vector or a single variable, which should be clear from con-

text. The regressors satisfy the Grenander conditions and are i.i.d. The error terms are

independently distributed, and they may be either identically distributed or not, allowing

for heteroskedasticity. The condition related to the 6th absolute error moment (needed

to secure the existence of the asymptotic variance of the estimators we will consider),

restricts somewhat the error distributions that can be accomodated since for example, if

we want to allow for Student’s-t errors we must assume integer degrees of freedom no less

than seven under this assumption. Still, most of the distributions usually assumed for the

error term satisfy this assumption, so we do not consider it as problematic.

We want to construct a general-purpose least-squares estimator that will take into

account the possible existence of heteroskedasticity, in a direct way and not only as regards

the estimator’s variance-covariance matrix. We achieve that by augmenting the objective

function that the LS estimator optimizes by a measure of heteroskedasticity. One way to

reflect the “degree” or the “intensity” of heteroskedasticity is by the sample variance of
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u2i :

Hu ≡
1

n

n∑
i=1

(
u2i −

1

n

n∑
i=1

u2i

)2

=
1

n

n∑
i=1

u4i −

(
1

n

n∑
i=1

u2i

)2

.

This choice is inspired by the Breusch-Pagan (1979) test for conditional heteroskedasticity.

The vector containing the elements {u2i − n−1
∑n

i=1 u
2
i , i = 1, ..., n} (estimated from OLS

residuals) is the component of the LM statistic of that test that measures the variability

of the error term, and the higher it is (in the vector sense) the more likely it is that

the null hypothesis of homoskedasticity will be rejected. Returning to Hu , if in reality

the error term is homoskedastic, we have Hu
p−→ m4 − σ4

u (where m4 is the 4th raw

moment of the error term and σ4
u is the square of its variance), an expression that equals

the variance of the limiting distribution of
√
n (σ̂2

u − σ2
u), i.e. of the sample variance from

an i.i.d. sample. So if homoskedasticity is what actually holds in the data, the quantity

Hu reflects the uncertainty surrounding the common but unknown error variance.

If the error term is unconditionally heteroskedastic, we will assume that average raw

moments have a finite limit. Then, we have Hu
p−→ m̄4 − σ̄4,

m̄4 = plim

(
n−1

n∑
i=1

u4i

)
<∞, σ̄4 = plim

(
n−1

n∑
i=1

u2i

)2

=
(
σ̄2
)2
<∞,

Turning to our optimization problem, perhaps the first thought would be to for-

mulate a constrained minimization task imposing some upper bound on the degree of

heteroskedasticity, in an attempt to force the least-squares estimator to smooth the het-

eroskedasticity effect. This would move our approach near the universe of Tikhonov reg-

ularization and its various incarnations in statistics. But such an approach would ignore

the fact that heteroskedasticity, if it exists, is a property of the data generating mecha-

nism and imposing an upper bound would be artificial. To avoid this we just allow for its

existence and at an unknown level (possibly zero) and we formulate a constrained mini-

mization problem with an equality constraint. We construct therefore our LS estimator

as the minimizer in the following problem:

min
β

1

2n

n∑
i=1

u2i s.t.
1

4n

n∑
i=1

(
u2i − n−1

n∑
i=1

u2i

)2

=
1

4
H̄u , (2)
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for some fixed unknown value H̄u. This leads to the Lagrangian, in canonical form,

Λ =
1

2n

n∑
i=1

u2i + λ

1

4
H̄u −

1

4n

n∑
i=1

(
u2i − n−1

n∑
i=1

u2i

)2
 , λ ∈ R,

where the Lagrange multiplier λ is not constrained to be non-negative (and we will see

that there are cases where its optimal value is negative). With this objective function we

quantify the possibility of heteroskedasticity and of changes in it. This is why we call the

estimator "heteroskedasticity-conscious": it estimates the coefficient vector by taking into

account the possible existence of heteroskedasticity of an unknown form and degree. What

is impotant to keep in mind is that our goal is statistical, not mathematical: we want

to obtain a consistent estimator with as low variance as possible: therefore, even though

we will go through the motions of function minimization, we will eventually choose the

optimal value for λ so as to minimize the (asymptotic) variance of the estimator (given

consistency). This means that the actual and unknown value of H̄u plays no role here.

The above formulation of the objective function leads to an estimator that is in

a category of its own: it is not “Restricted Least Squares” as the term is used in the

literature because the constraint is not related to the unknown parameters directly. It

is not “Regularized Least Squares” (Ridge regression, LASSO) because we neither tweak

the inverse regressor moment matrix nor do we impose an inequality constraint on the

coefficient vector. Also, it cannot be meaningfully formulated as Generalized Method

of Moments, because the constraint we impose does not have a pre-assigned value: H̄u

remains an unknown quantity, and since it enters additively in a single constraint, it

would not affect any “estimating equations” solution even if we treated it as an unkown

to be optimally determined. Our approach can be generalized to take into account other

possibe properties of the error term, and we provide such a generalization in Supplement

I as a springboard for furhter research.

One could question whether such an estimator is conceptually more valid than OLS,

or even if it is somehow misleading in a fundamental way. In what sense should we allow

the point estimates to be affected because heteroskedasticity may exist? Why should we
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factor into the estimates the possible changes in the degree of heteroskedasticity? And,

in the homoskedastic case, why should the point estimates be affected because the error

variance is unknown and estimated with uncertainty?

The answer is that in this way we allow the estimator to take into account simulta-

neously the neighborhood of data-generating mechanisms surrounding the homoskedastic

case. We don’t really know whether heteroskedasticity exists, and if it exists, we don’t

really know its form or its intensity. The HOLS estimator takes these uncertainties into

account, although without estimating heteroskedasticity per se. In the homoskedastic

case, the estimator is forced to recognize the uncertainty in the estimation, something

that makes it an inherently statistical tool rather than a mathematical approximation

method that is coated with statistical properties.

Simplifying the Lagrangian from terms that do not affect the first-order conditions,

this least squares estimator can be derived as

β̂ = arg min

1

2

n∑
i=1

u2i −
λ

4

n∑
i=1

(
u2i − n−1

n∑
i=1

u2i

)2
 . (3)

From a mathematical point of view, this minimization problem has a convex objective

function but its equality constraint is not affine and so this is not a standard convex opti-

mization problem. It appears, then, that we should also look at the general second-order

conditions for a minimum, namely that the principal minors of the bordered Hessian are

all negative. But, again given our statistical interests, it is really of no interest or conse-

quence whether the stationary point of the above problem actually minimizes the objective

function, as long as our goal of consistency and minimum variance is accomplished.

Calculating the first-order condition, we obtain (Supplement II-A.1),

β̂ = (X′X)
−1

X′y − λ

[
1 + λ

(
n−1

n∑
i=1

u2i

)]−1
(X′X)

−1
X′u(3),

where u(3) denotes the Hadamard matrix product (element-by-element multiplica-

tion), i.e. it is a vector that holds the 3d power of each element of u. Moreover, we set
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for compactness

λ

[
1 + λ

(
n−1

n∑
i=1

u2i

)]−1
≡ αn

p−→ α <∞.

The limit α exists because if the error term is homokedastic it becomes i.i.d. and

hence ergodic, while if it is unconditionally heteroskedastic we have already assumed that

the limits of average moments exist and are finite. We will henceforth occupy ourselves

with the efficiency parameter αn and α rather than with λ, since this is more pertinent

to our statistical aims here. Then,

β̂ = (X′X)
−1

X′y − αn (X′X)
−1

X′u(3). (4)

The right-hand side expression cannot be computed since it includes the unknown

error term. So eq.(4) describes an infeasible estimator, the Platonic ideal of HOLS, which

plays the same role that the infeasible GLS estimator plays to the Feasible GLS. We call

this ideal estimator PHLS and for completeness we study it in Supplement I, while for

contrasting purposes we mention some results related to it in the main text.

One way to arrive at a feasible estimator is to treat the error components of the

right-hand side as functions of the coefficient vector which, again under a mathematical

point of view, would be the anticipated way to proceed. This estimator is also explored

in Suppementary File I, but in the next section we present a simpler method that proved

to perform better in statistical terms.

3 The HOLS Estimator and its properties

To arrive at the HOLS estimator we estimate an OLS regression and plug the OLS resid-

uals in the right-hand-side of eq.(4) as an approximation to the true errors. We will also

use the OLS residuals to estimate the (asymptotically) optimal efficiency parameter α,

α̂∗, so the HOLS estimator is defined as

β̂HOLS = (X′X)
−1

X′y − α̂∗ (X′X)
−1

X′ û
(3)
OLS . (5)
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Note that X′ û
(3)
OLS 6= 0, so the estimator is meaningful to compute. The optimal value

of the efficiency parameter depends on the assumption made on the skedasticity of the

error term and we will derive it in the relevant Sections. We turn to examine the main

properties of the estimator.

Unbiasedness. This estimator is biased since for unbiasedness we would need, in

addition to the main assumptions in (1),

E
[
β̂HOLS

]
− β = E

[
(X′X)

−1
X′u − α̂∗ (X′X)

−1
X′û

(3)
OLS

]
= 0

⇒ (X′X)
−1

X′E
(
u− α̂∗û(3)OLS |X

)
= 0 ⇒ E (u |X) = E

(
α̂∗û

(3)
OLS |X

)
= 0.

Even if we strengthen our initial assumptions to full independence of the error term

from the regressors, and even if we assume a symmetric error term, the expected value

E
(
α̂∗û

(3)
OLS |X

)
won’t generally be zero, due to its non-linearity. The above result means

that we must assess the performance of the HOLS estimator in finite samples in terms of

Mean Squared Error (MSE) also.

Consistency. Set [E (xix
′
i)]
−1 ≡ Q−1. Given the assumptions of model (1), for

consistency of the estimator we require in addition,

β̂HOLS − β =
(

1
n
X
′
X
)−1 (

1
n
X
′
u
)
− α̂∗

(
1
n
X
′
X
)−1 (

1
n
X′û

(3)
OLS

)
p−→ 0

⇒ −α∗Q−1plim
(

1
n
X′û

(3)
OLS

)
= 0⇒ E

(
xiu

3
i

)
= 0.

The last expression follows from the assumptions of the model that make the OLS

residuals consistent estimators of the error term, and by the continuity of the power

function. Apart from the trivial case where α∗ = 0 ⇒ λ = 0 (which would make the

estimator asymptotically identical to OLS), we have the following two alternative ways

to obtain consistency:

A. Assume E (u3i |X) = 0, which implies that E (xiu
3
i ) = 0 and guarantees con-

sistency. But E (u3i |X) = 0 =⇒ E (u3i ) = 0. While there is an infinite number of
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distributions that have zero third moment but are not symmetric (one can easily con-

struct one using a mixture model), admitedly such a condition would almost reflexively

signal a symmetric error distribution, and this is not a negligible restriction: skewed

residual/error distributions are not an infrequent phenomenon in applied practice, even

though a lot of theoretical work is based on symmetric distributions. The necessity of this

assumption, especially under conditional heteroskedasticity, comes from the fact that if

the 2nd conditional moment of the error is a function of the regressors, so will in general

be the conditional 3d moment, except if it is zero. We note that under conditional het-

eroskedasticity, the skewness coefficient (standardized 3d moment) can be independent

of the regressors. An example is given by the Skew-normal distribution, where the skew-

ness coefficient depends solely on the "slant" parameter that regulates skewness. So if we

specify that regressors affect only the scale parameter of the distribution, we obtain condi-

tional heteroskedasticity together with a skewness coefficient that does not depend on the

regressors (see Azzalini & Capitanio 2014, pp.30-31). But again, this does not make the

3d moment itself independent of the regressors. This restriction to a zero third moment

for the case of conditional heteroskedasticity is also present in Gourieroux, Monfort &

Renault (1996), and Romano & Wolf (2017) make a critical note about it, indicating that

it is almost unavoidably interpreted as an error symmetry assumption. In case we require

a model that allows for a skewed error term, there is another way to obtain consistency

of the estimator, as follows:

B. Assume E (X|u) = 0. This condition is not equivalent to (and so it does not

necessarily imply) the usual “mean-independence” assumption E (u |X) = 0, although

it is one of those cases where non-equivalence is mostly a theoretical curiosity. By the

Law of Iterated Expectations, this assumption implies E (X) = 0. But this does not

require that the regressors are “inherently” zero-mean: we can achieve that simply by

centering the sample (the regressors and the dependent variable -we center also the latter

in order to have available the results for centered regression of the Frisch-Waugh-Lovell

theorem). Given centered regressors, the condition postulates that there is no information

in the error term about deviations of the regressors from their mean values. In practice,
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the assumption leads to E (xih(ui)) = 0 for any measurable function of the error term,

providing thus the desired consistency property (where in our case we have h(ui) = u3i ).

Given this assumption, consistency is achieved under homoskedasticity, unconditional

heteroskedasticity, and heteroskedasticity conditional on the regressors, since we can have

E (u2i |X) = v (X) together with E (xiu
2
i ) = 0 which is implied by E (X|u) = 0. In

the same manner, consistency will here be preserved also under non-zero conditional

skewness, and even under E (u3i ) 6= E
(
u3j
)
, i 6= j, i.e. when we have an unconditionally

heteroclitic error. In all, if we set up a centered regression and we make the assumption

E (X|u) = 0, the estimator will be consistent under any skedastic assumption and any

skewness assumption for the error term, providing high flexibility in accomodating real-

world data samples. Certainly, by centering the sample we cannot estimate a constant

term. But we can always use the OLS estimate for it on the uncentered sample, so the

only price we pay for consistency of the HOLS estimator will be the non-reduced variance

of the estimate of the constant term, hardly a heavy one.

To cover all cases, for the theoretical results we henceforth make the assumption

E (X|u) = 0 and treat the sample {y,X} as being centered already. Related to simula-

tions, we will need to center the sample only when the error term is skewed.

Asymptotic distribution and variance. Define the limiting “White matrices”

W2 ≡ plim

(
1

n

n∑
i=1

u2ixix
′
i

)
, W4 ≡ plim

(
1

n

n∑
i=1

u4ixix
′
i

)
, W6 ≡ plim

(
1

n

n∑
i=1

u6ixix
′
i

)
.

Next, note that although û
(3)
OLS

p−→ u(3), we show in Supplement II (A.2.2 and A.3) that

the vector n−1/2X′ û
(3)
OLS does not tend to n−1/2X′ u(3) . The asymptotic vector here is (for

non-optimized efficiency parameter)

√
n
(
β̂HOLS − β

)
−→ Q−1

[(
IK + 3αW2Q

−1) (n−1/2X′u)− α (n−1/2X′u(3))] (6)

wher IK is the K×K identity matrix. In Supplement II A.3 we obtain the asympt-
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potic variance of this vector as

Avar
(
β̂HOLS

)
= Q−1 [W2 − 2α (W4 − 3W2Q

−1W2)

+ α2 (W6 − 6W4Q
−1W2 + 9W2Q

−1W2Q
−1W2)] Q−1 .

(7)

where we wrote for economy Avar
(
β̂HOLS

)
≡ Avar

[√
n
(
β̂HOLS − β

)]
, a notational

convention that we will follow throughout. As with the efficiency paramater α, the whole

variance expression will take more specific forms depending on the skedastic assumption.

Note that the corresponding variance of the OLS estimator is Avar
(
β̂OLS

)
= Q−1W2Q

−1.

Therefore, the HOLS estimator nests OLS if the efficiency parameter α is zero, which is

a desirable property for the cases where HOLS does not outperform OLS (and there is

a single such case as we will see), and the best it can do is to become OLS. Then the

optimal α is zero and we expect that given sufficient sample size, the OLS estimate of α

that will be used will indeed be very close to zero.

The Grenander conditions guarantee the existence of the probability limit of the

inverse regressor moment matrix. The assumptions for consistency imply that the limiting

random vector has zero mean, while the assumption that the possibly non-identical error

moments have a finite average at the limit allows for a limiting distribution in any case.

Finally, the assumption that the 6th error moment exists guarantees that the asymptotic

variance exists and is finite. The vector then satisfies a classical multivariate Central

Limit Theorem, converging to a mutlivariate Normal distribution.

This concludes the general derivation and presentation of the HOLS estimator.

In summary, the estimator satisfies an approximated stationary point of an augmented

“least-sqaures” objective function,and it is then optimized with respect to an efficiency pa-

rameter in order to have minimum possibe variance. It is consistent and can accomodate

skewness in the error distribution.

We turn now to examine different skedastic asumptions, and the performance of the

HOLS estimator compared to OLS.
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4 The case of homoskedasticity

Here we assume that the error term is conditionally homoskedastic, and so also uncon-

ditionally, and in general identically distributed symmetrically around zero: the classical

model. We can also extend the model by allowing for non-zero error skewness, adjust-

ing the estimation procedure to maintain consistency as described previously. Studying

the homoskedasticity case is important from a practical perspective: we want to know

whether we can use the HOLS estimator regardless of whether heteroskedasticity exists

in the sample, obtaining efficiency gains even if heterokedasticity is in reality absent.

The asymptotic vector to which the HOLS estimator converges here becomes

√
n
(
β̂HOLS − β

)
−→ Q−1

[(
1 + 3ασ2

u

) (
n−1/2X′u

)
− α

(
n−1/2X′u(3)

)]
.

Its variance is (Supplement II-A.4.2)

Avar
(
β̂HOLS

)
=
[
σ2
u − 2σ4

uγ2α +
(
m6 − 3σ6

u (2γ2 + 3)
)
α2
]

Q−1. (8)

where γ2 = m4/σ
4
u − 3 is the excess kurtosis coefficient of the error term. Minimizing the

expression with respect to α we obtain

α∗ =
σ4
uγ2

m6 − 3σ6
u (2γ2 + 3)

. (9)

We see immediately that if excess kurtosis of the error term is zero then the optimal

efficiency factor is also zero and the best HOLS can do in such a case is to become OLS.

But the central member of the system of distributions we use is the Normal, which has zero

excess kurtosis (after all, "excess" kurtosis has been defined with respect to the kurtosis of

the Normal distribution). So under Homoskedastic Normality the HOLS estimator does

not outperform OLS in terms of efficiency, athough it has the wisdom to realize that and

to become OLS. This is a result arrived at also by Gourieroux, Monfort & Renault (1996),

see their section 4.3. Still, the case of zero excess kurtosis is the only exception to the

rule of efficiency gains. Inserting eq.(9) into eq.(8), the optimized asymptotic variance is
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(Supplement II-A.4.2)

Avar∗
(
β̂HOLS

)
=

(
1 − σ6

uγ
2
2

m6 − 3σ6
u (2γ2 + 3)

)
σ2
uQ
−1. (10)

By the Cauchy-Schwarz inequality we have,

[
E
(
uu3
)]2

< E
(
u2
)
E
[(
u3
)2]⇒ [

E
(
u4
)]2

< E
(
u2
)
E
(
u6
)
⇒ m2

4 < σ2
um6.

Strict inequality applies because u and u3 are not related by an affine function. With this

result and a little algebra one can verify that

m6 − 3σ6
u (2γ2 + 3) > σ6

uγ
2
2 > 0 .

From this, we have that the parenthesis in eq.(10) is strictly positive, and so we

have a proper variance expression. But also, that the denominator in eq. (9) is always

positive and so that if excess kurtosis is negative (platykurtic distributions) the optimal

efficiency parameter will be negative too. Looking back at the original minimization prob-

lem and its Lagrangian (eqs (2) and (3)), this means that with platykurtic distributions

the statistically optimal Lagrange multiplier will be negative (in comparison, the optimal

efficiency parameter for the infeasible PHLS estimator is always positive as we show in

Supplementary File I). Examples of well-known platykurtic distributions in econometrics

are the Uniform, and the Bernoulli/Binomial for a large interval of the values for the

probability parameter, roughly for p ∈ (0.21, 0.79). Although these distributions are not

usually assumed in regression models, what matters is whether they do represent occur-

rences of error terms in the data. As regards implementation of the HOLS estimator, we

can consistently estimate α̂∗ using the OLS residuals through the more direct expression

that propagates less uncertainty,

α̂∗ =
m̂4 − 3σ̂4

u

m̂6 + 9σ̂6
u − 6σ̂2

um̂4

. (11)

15



4.1 Efficiency gains.

4.1.1 Asymptotic gains.

We present in Table 1 the asymptotic efficiency gains of the HOLS estimator for four

symmetric error distributions, a zero-mean Uniform, the Normal, the Logistic and the

Laplace (calculations are in Supplement II-A.4.3). We have included the Uniform as an

example of a platykurtic distribution, and to also reveal more clearly the link between

efficiency gains and excess kurtosis.

Table 1: Asymptotic variance of the HOLS estimator as a fraction of OLS variance, for
homoskedastic error distributions.

Error Distribution
Variance

σ2
u

Excess

Kurtosis
HOLS

Uniform U (−c, c) c2/3 −1.2 0.30

Normal N (0, σ2) σ2 0 1

Logistic Λ (0, ω) π2ω2/3 1.2 0.94

Laplace L (0, ω) 2ω2 3 0.86

The efficiency gains of the HOLS estimator increase with the absolute value of excess

kurtosis, and are much higher for platykurtic error distributions than for leptokurtic ones

that have the same excess kurtosis in absolute terms. While leptokurtic distributions are

admittedly what interests us more, note that these efficiency gains exist for the case of

homoskedasticity : heteroskedasticity is absent here, but the HOLS estimator still performs

better than OLS in terms of the asymptotic variance, outside of Homoskedastic Normality

(or more accurately, homoskedastic zero-excess kurtosis). As we show in Supplementary

File I the efficiency gains of the infeasibe PHLS estimator are much higher than HOLS (a

dejavu from the case of GLS and Feasible GLS estimators), and they greatly outperform

OLS even in the case of Normality: the PHLS achieves a reduction of 60% in asymptotic

variance compared to OLS if the error term is Normal. Since the HOLS estimator is

an approximation to PHLS, the impressive efficiency gains of the latter provide strong

motivation to search for other methods to approximate PHLS in order to realize a larger
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part of the efficiency gains it promises.

We stress again the fact that we do not have a GMM-like over-identified system here,

where the additional restrictions are known to lead to efficiency gains. The constraint

that we incorporated in the initial objective function does not impose any restriction on

the estimator because the actual value of Hu remains free to vary. Then, since asymptot-

ically the HOLS estimator is unbiased, an obvious question arises: how can an unbiased

estimator outperform asymptotically OLS (Gauss-Markov) in terms of efficiency in this

classical setting?

The answer is that the HOLS estimator in reality estimates the same unknown vector

but based on a sample from a different population. The typical member of the initial

population is {xi, ui} and we are given a (possibly centered) sample {X, y; y = Xβ + u}

from it. This is what the OLS estimator works with. But for the HOLS estimator,

the population has members {xi, ũi; ũi ≡ ui − αu3i } which we approximate using OLS

residuals to obtain the sample
{

X, yHOLS; yHOLS = Xβ + u− α̂∗û(3)OLS
}

. From another

angle, what we are doing here is to perturb the initial "dependent variable" by keeping the

same conditional expectation w.r.t regressors while changing the error term. In contrast,

approaches like Cragg (1983, 1992) and Gourieroux, Monfort & Renault (1996) consider

the use of instruments and additional orthogonality conditions to increase efficiency in the

presence of conditional heteroskedastcity. Viewed from the perspective of our method,

they perturb the conditional expectation of the model instead.

This way of viewing the situation also helps to clarify that the HOLS estimator is not

some variant of shrinkage estimators, which where introduced by Stein (1958) and James

& Stein (1961), and were the first to successfully challenge OLS in terms of estimation

Risk and MSE. Initially the idea was to "shrink" the estimated coefficient vector towards

zero in order to improve efficiency, but they have been extended towards other shrinkage

directions, and they also host estimators that are weighted averages of other estimators.

In this variant they appear closer to our work here. One such example can be found

in Judge & Mittelhammer (2004), where they examine an optimal convex combination

of OLS and another biased estimator, the shrinkage being towards the latter. In that
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work too, there exists an efficiency factor that is to be optimized in order to obtain MSE

lower than that of OLS. But their composite estimator is designed in such a way so as

to become OLS at the limit, making it a useful tool only for rather small samples. In

contrast, HOLS maintains efficiency gains also at the limit. Another example is Hansen

(2016), who constructed shrinkage estimators as a convex combination of the maximum

likelihood estimator and one among various restricted estimators, where the shrinkage

is towards a restricted parameter space. The common theme is the imposition of some

kind of direct or indirect restriction on the unknown coeffiicent vector, which perhaps

unsurprsiginly provides efficiency gains since it reduces the search area for the estimator.

In contrast, our approach expands the view of the estimator, not as regards the unknown

coefficient vector, but by forcing it to consider alternative data generating mechanisms.

Since the property we examine, heteroskedasticity, hurts efficiency, informally we force

the estimator to "hedge" against its possible existence, obtaining efficiency gains in the

process.

4.1.2 Simulated Mean-Squared Error performance.

Since the HOLS estimator is biased in finite samples, of importance is its performance in

terms of finite-sample MSE that takes into account also the bias. We present here our

first simulated results (more details are to be found in Supplement II-B). The set up is

as follows: we consider the model

yi = β0 + β1x1i + β2x2i + ui, i = 1, ..., n .

The two stochastic regressors are correlated and independent of the error term, and the

observations in each sample are i.i.d. For each sample size and each error specification

we run 2.000 simulations. We report the MSE of the HOLS estimator as a fraction of the

MSE of the OLS estimator. The MSE is obtained as the sum of variances plus the sum of

squared biases of all the coefficient estimates. Note that the variances and means used are

the sample moments of the empirical distributions of the estimates. Namely, from each

simulation we use only the point estimates. The finite-sample estimation of the HOLS
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variance-covariance matrix is examined in a later section.

Table 2 contains results for the four symmetric distributions of Table 1. In all cases,

the error term has zero mean and unitary variance.

Table 2: Sample MSE of HOLS estimator as a fraction of OLS-MSE for symmetric ho-
moskedastic error distributions. Uncentered regressions.

n U N Λ L

50 0.55 1.08 0.98 0.84

100 0.43 1.04 0.96 0.80

200 0.36 1.02 0.93 0.83

500 0.31 1.01 0.93 0.80

1000 0.31 1.00 0.94 0.81

2500 0.32 1.00 0.94 0.84

5000 0.31 1.00 0.95 0.83

Since by design the error term here is symmetric, we do not need to center the

sample in the second estimation stage. The table verifies the theoretical results as regards

the MSE/variance improvements anticipated from Table 1. We also see that the HOLS

estimator recognizes rather quickly that the error term has zero excess kurtosis when this

is the case, and the loss of efficiency is small and virtually disappears for sample sizes

higher than 200.

In Table 3 we present simulation results when the error term is homoskedastic but

skewed. We examine two distributional choices, the Skew-normal and the Asymmetric

Laplace (as defined in Kotz, Kozubowski & Podgorski 2012, Proposition 3.1.2, p.137).

Here too the distributions are centered and scaled to have zero mean and unitary variance.

In the Skew-normal case, the skewness coefficient is γ1 ≈ 0.40, while the excess kurtosis

coefficient is γ2 ≈ 0.26. In the Asymmetric Laplace case, we have γ1 ≈ 1.97, γ2 ≈ 5.9.
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Table 3: Sample MSE / Variance of HOLS estimator as a fraction of OLS for skewed
homoskedastic error distributions.

SKEW NORMAL Asymmetric LAPLACE

n Uncentered regr.

MSE

Uncentered regr.

MSE

Uncentered regr.

Variance only

Centered regr.

MSE

50 1.05 0.79 0.76 0.78

100 1.02 0.82 0.76 0.78

200 1.01 0.87 0.77 0.76

500 1.00 0.96 0.79 0.78

1000 1.00 1.13 0.83 0.80

2500 1.01 1.44 0.85 0.79

5000 1.03 1.98 0.88 0.83

For the Skew-normal specification, we run only uncentered regressions, and so the

existence of skewness creates inconsistency and bias, even asymptotically. But we see

that the behavior of MSE closely resembles the Normal case. The reason is that the

excess kurtosis is small and so the distribution resembles the Normal, and this dominates

the skewness which creates the bias. In the case of the Asymmetric Laplace distribu-

tion where both skewness and kurtosis are high, we run both centered and uncentered

regressions, and in the second case we report also comparisons as regards the variance,

where we ignore the bias. We see that in the uncentered regression eventually the bias

dominates MSE, even though the HOLS estimator has lower variance than OLS. We

note that the bias eventually comes from the constant term alone. This is anticipated

from the theory, as long as the error term has constant skew, because the bias relates

to the term α
(
1
n
X′X

)−1 ( 1
n
X′u(3)

)
. With non-zero constant error skew and indepen-

dence betwen the error term and the regressors, as is the simulation scenario, we have

α
(
1
n
X′X

)−1 ( 1
n
X′u(3)

) p−→ α [E (xix
′
i)]
−1E (xi) ·m3 = αm3 (1, 0K)

′
, the last equality hold-

ing as long as we have a constant in the regressor matrix. Finally, note that the variance
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in the uncentered regression is higher than in the centered regression (where it is equal to

the MSE). This is due to the fact that, with non-zero-mean regressors, the existence of

skewness affects also the variance since the matrix n−1X′u(3)u(3)
′
X that is present in the

asymptotic variance-covariance matrix will not converge to the White matrix W6.

5 Unconditional heteroskedasticity

Under unconditional heteroskedasticity (i.e. independent of the regressors), the OLS

asymptotic variance is

Avar
(
β̂OLS

)
= σ̄2Q−1 ,

where as before σ̄2 is the limit of the average of the variances, assumed finite. For the

HOLS estimator we obtained (see Supplement II-A.5)

Avar
(
β̂HOLS

)
=
[
σ̄2 − 2

(
m̄4 − 3σ̄4

)
α +

(
m̄6 + 9σ̄6 − 6σ̄2m̄4

)
α2
]

Q−1 ,

with m̄j denoting the limit of average moment j. Optimizing for α we get

α∗HOLS =
m̄4 − 3σ̄4

m̄6 + 9σ̄6 − 6σ̄2m̄4

,

and

Avar∗
(
β̂HOLS

)
=

[
1 − σ̄6 (m̄4/σ̄

4 − 3)
2

m̄6 + 9σ̄6 − 6σ̄2m̄4

]
σ̄2Q−1 .

Essentially, due to the assumption of identically distributed regressors, we obtain again a

version of the White matrices asymptotically, with the average moments in place of the

common moments of the homoskedastic case.

As long as m̄4/σ̄
4 − 3 6= 0 the HOLS estimator will have lower asymptotic variance

than OLS. In fact, this will hold also for the case of a Normal heteroskedastic error term.

We have

m̄4 − 3σ̄4 = lim
1

n

n∑
i=1

m4,i − 3 lim

(
1

n

n∑
i=1

σ2
i

)2
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= lim
1

n

n∑
i=1

m4,i − 3 lim

(
1

n2

n∑
i=1

σ4
i +

1

n2

∑∑
σ2
i σ

2
j

i 6=j

)

= lim
1

n

n∑
i=1

m4,i − 3 lim
1

n2

∑∑
σ2
i σ

2
j

i 6=j

.

Even if the error term is Normal and so we have m4,i = 3σ4
i ∀i, the above expression won’t

be equal to zero in general. So we conclude that under unconditional heteroskedasticity

HOLS will outperform OLS in terms of asymptotic variance, even in the case of Normality.

From a practical point of view, computing the optimal efficiency factor α proceeds in

exactly the same way as in the homoskedastic case (see eq. (11)), by using sample averages

of the OLS residuals: whether there exists a single common value for each moment, or

we have different values and the average moments converge, under the imposed regularity

conditions a Law of Large Numbers applies.

This implies that as with the OLS case, the homoskedastic and unconditionally

heteroskedastic cases cannot be distinguished. The upside is that with the same estimator

we can perform valid inference on the unknown coefficient vector irrespective of which of

the two situations holds in the data.

5.1 Simulated MSE performance.

We apply a group-wise heteroskedasticity scheme with six different standard deviations

with unequal proportional representation in the data, having as weighted average standard

deviation 0.9996 ' 1. We present the results in Table 4, for the same four distributions of

Table 2. The first row of the table shows the resulting theoretical “sample average” excess

kurtosis coefficient for each case. Heteroskedasticity increases the collective variability of

the sample of heterogeneous random variables, resulting in higher average excess kurtosis

than in the i.i.d. case (sign included). In this setup the efficiency gains of the HOLS

estimator reduce for the platykurtic distributions and are increased for the leptokyrtic

ones, veryfing once more that the absolute distance from zero excess kurtosis is what

matters for this estimator. We also obtain efficiency gains when the error term is Normal

but heteroskedastic.
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Table 4: Sample MSE of HOLS estimator as a fraction of OLS-MSE for symmetric un-
conditionally heteroskedastic error distributions.

(m̄4/σ̄
4)−3 = −0.66 0.90 2.46 4.80

n U N Λ L

50 0.96 1.00 0.92 0.80

100 0.91 0.96 0.88 0.74

200 0.89 0.95 0.86 0.76

500 0.86 0.96 0.85 0.78

1000 0.85 0.95 0.86 0.80

2500 0.84 0.95 0.88 0.81

5000 0.83 0.94 0.88 0.81

6 Conditional heteroskedasticity

The final case we will consider is heteroskedasticity of the error term conditional on the

regressors. Here, the form of the variance matrix of the HOLS estimator is the one derived

initially in Section 3 (eq. 7) since no simplification occurs in the White matrices. To obtain

direct comparability with the OLS variance, we can make the following transformations,

Q−1W2Q
−1 = Avar

(
β̂OLS

)
≡ V2 , Q−1W4Q

−1 ≡ V4, Q−1W6Q
−1 ≡ V6 ,

and obtain (see Supplement II-A.6)

Avar
(
β̂HOLS

)
= V2 − 2α (V4 − 3V2QV2) + α2 (V6 + 9V2QV2QV2 − 6V2QV4) . (12)

Since the variance-covariance matrix does not simplify to a matrix proportional to the

OLS variance as in the previous cases, we will obtain the optimal efficiency factor using
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the matrix trace operator. We get

α∗ =
tr {V4 − 3V2 QV2}

tr {V6 + 9V2QV2QV2 − 6V2QV4}
, (13)

and

tr
{

Avar∗
(
β̂HOLS

)}
= tr {V2} −

tr2 {V4 − 3 V2QV2}
tr {V6 + 9V2QV2QV2 − 6V2QV4}

.

This is the matrix analogue of the expressions obtained in the homoskedastic and uncon-

ditional heteroskedastic cases, and it will revert to them under the respective skedastic

situations. This trace is smaller than tr {V2}, the trace of the OLS asymptotic variance-

covariance matrix, and again we have efficiency gains, since comparing the trace of the

variance matrices is an established and intuitive way to assess relative efficiency in the

multivariate case.

Conditional heteroskedasticity was the focus in Gourieroux, Monfort & Renault

(1996). But in order to apply the overidentified GMM logic, they assumed E (u3i |X) = 0,

from which they obtained the orthogonality condition E (xiu
3
i ) = 0, that they turned

into an “approximate” relation E
(
xiû

2
i,OLSui

)
= 0 (equivalent at the limit), and then

implemented a two-stage IV-GMM approach using as instrument the series xiû
2
i,OLS.

Table 5 contains the simulation results for the case of conditional heteroskedasticity.

The first four columns relate to symmetric error distributions, while the last one to a

zero-mean Asymmetric Laplace. Following partly MacKinnon (2013), the conditional

heteroskedasticity scheme is

E
(
u2i |xi

)
= γ · (x′iβ)

2
, γ = 0.1

For the symmetric error cases, we used the same systematic part for the regression as

before (consant term, two correlated non-zero mean regressors). For the asymmetric case,

to mimic the conditions under which the HOLS estimator remains consistent, we gen-

erated independent and symmetric regressors, while using the location parameter of the
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Asymmetric Laplace to obtain mean-independence alongside conditional heteroskedastic-

ity (see Supplement II-B for more details).

Table 5: Sample MSE of HOLS estimator as a fraction of OLS-MSE for conditionally
heteroskedastic error distributions.

n U N Λ L AsymL

50 1.18 1.22 1.18 1.01 0.77

100 1.27 1.09 0.95 0.83 0.69

200 1.06 0.90 0.77 0.68 0.71

500 0.95 0.78 0.69 0.66 0.71

1000 0.92 0.76 0.73 0.65 0.75

2500 0.92 0.77 0.75 0.71 0.77

5000 0.92 0.82 0.77 0.73 0.79

We see that for the smallest samples the HOLS estimator performs worse in some

cases than OLS, although this is quickly reversed. As in the case with unconditional

group-wise heteroskedasticity, “on average” heteroskedasticity increases excess kurtosis

(sign included), so for example the draws from the Uniform distribution end up having

a small positive excess kurtosis. Compared with the unconditional heteroskedasticity

simulation results, HOLS performs even better here, for the leptokurtic distributions

and sample sizes n = 200 and higher. The reason for the bad relative performance of

HOLS in small samples is likely due to the fact that we use the estimated asymptotic

optimal efficiency factor α∗. This was true also in the previous setups, but here α∗ is

computed using traces of matrix expressions, not sample means of residual powers. For

the asymmetric error case, the HOLS estimator outperforms OLS throughout.

This concludes the examination of the HOLS estimator in comparison to the OLS

estimator regarding efficiency under different skedastic and skewness assumptions. The

theoretical results and the simulation evidence suggest that the HOLS estimator should
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be preferred to the OLS in most of the cases encountered in applied studies.

7 The VCV matrix of the HOLS estimator, and its

estimation routine.

To proceed with inference, we need to estimate the variance-covariance matrix of the

HOLS estimator. We show in Supplement II-A.7 that under homoskedasticity,

(
plim

1

n

n∑
i=1

û2i,HOLS

)(
n−1X′X

)−1
=
(
σ2
u − 2α∗m4 + (α∗)2m6

)
Q−1.

The expression has the form of the variance of the infeasible PHLS estimator (see

Supplement I). This happens because the additional terms that increase the variance of

HOLS compared to the PHLS estimator are Op (
√
n) but also op (n), so they disappear

asymptotically when we examine sample means. We show in Supplement II-A.7 that

use of this expression overestimates the HOLS variance when γ2 < 0 (platykurtic error

term) while when γ2 > 0 it is inconsistent in general (while simulations not reported here

show that it tends to underestimate the HOLS variance). Therefore we turn once more

to the OLS residuals, and use them to estimate the HOLS variance. Which expressions

we will use depends on the skedastic assumption made, athough the results suggest that

for sample sizes larger than n = 200 we can use the more general expressions, eqs (12)

and (13), that cover conditional heterosedasticity but also the cases of unconditional

heteroskedasticity and homoskedasticity. Nevertheless this is not obligatory and if the

researcher is confident that the error term is homoskedastic for example, they can use the

simpler expressions, eqs (8) and (11).

We conclude the presentation of the HOLS estimator by detailing its estimation

routine:

1) Run OLS estimation on the uncentered sample. By the Frisch-Waugh-Lovell

theorem the OLS residuals are identical whether we operate on a centered or on an
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uncentered sample. Obtain the residual series and its powers. If the evidence points to

a symmetric error distribution, the next estimation stage can be performed using the

uncentered sample. Otherwise, the sample should be centered for the second phase, while

we keep the OLS estimate for the constant term and its variance, as well as the estimate

for the error variance, if it is of autonomous interest.

2) Estimate the optimal α̂∗ depending on the skedastic assumption (see previous

sections).

3) Transform the dependent variable by yHOLS = y − α̂∗û
(3)
OLS, where y is uncen-

tered or centered depending on the case.

4) Run OLS on the {X, yHOLS} (centered or uncentered) sample,

β̂HOLS = (X′X)
−1

X′ yHOLS . (14)

5) Use the regressors and the OLS residuals in order to compute consistently the

variance of the HOLS etimator using the relevant formulas depending on the skedastic

assumption, and proceed with statistical inference.

8 Conclusions and directions for further research

In this paper we have presented a new method to construct least squres estimators,

augmenting the objective function that such estimators minimize by a component that

represents a property of the unknown error term. We focused on heteroskedasticity. The

resulting estimator, which we have called HOLS, takes into account the possibility of a

heteroskedastic error term already in the coefficient estimation stage, and not only for the

calculation of its variance-covariance matrix. The estimator is easily implemented in two

stages and is based on OLS residuals. The HOLS estimator is consistent and, in terms of

finite-sample MSE and asymptotic efficiency, it outperforms OLS under conditional and

unconditional heteroskedasticity, but also under homoskedasticity, both asymptotically

but also in finite samples, in almost all cases. Therefore it is a serious contender for all-

purpose use in applied studies, as an alternative to the “heteroskedasticity-robust” OLS
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approach that is the predominant applied method.

This being a new endeavor, obviously a lot of work remains to be done: perhaps first

in order would be an extended simulation study around the estimation of the VCV matrix

of the HOLS estimator and its behavior in tests of statistical significance. The adjustments

examined in the literature as regards the improved estimation in finite samples of White’s

heteroskedasticity-robust VCV matrix could and should be examined for the case of the

HOLS estimator also. Comparing the OLS and HOLS performance related to statistical

tests in general, is also important. Extensions to deal with regressor endogeneity and an

“Instrumental Variables” variant of the HOLS estimator would also be useful and widely

applicable.

Moreover, since the HOLS estimator is an imperfect incarnation of an ideal infeasible

estimator, other approximations to the latter could prove to achieve even larger efficiency

gains. Finally, the method is not confined to dealing with possible heteroskedasticity,

but can be used to accomodate other statistical aspects of the error term, skewness and

autocorrelation being the first two that come to mind.

References

Azzalini, A. and A. Capitanio (2014): The skew-normal and related families. Cambridge

U.K.: Cambridge University Press.

Breusch, T. S., and A.R. Pagan (1979). A simple test for heteroscedasticity and

random coefficient variation. Econometrica, 47(5), 1287-1294.

Cragg, J. G. (1983): More efficient estimation in the presence of heteroscedasticity

of unknown form, Econometrica, 51(3), 751-763.

Cragg, J. G. (1992): Quasi-Aitken estimation for heteroskedasticity of unknown

form, Journal of Econometrics, 54, 179-201.

Gourieroux, C., A. Monfort, and E. Renault (1996): Two-stage generalized moment

method with applications to regressions with heteroscedasticity of unknown form, Journal

of Statistical Planning and Inference, 50, 37-63.

James, W., and C. Stein (1961): Estimation with quadratic loss. In Proceedings of

28



the fourth Berkeley symposium on mathematical statistics and probability vol. 1, 361-379.

Judge, G.G., and R.C. Mittelhammer (2004): A Semiparametric Basis for Com-

bining Estimation Problems Under Quadratic Loss, Journal of the American Statistical

Association, 99:466, 479-487.

Hansen, B. E. (2016): Efficient shrinkage in parametric models. Journal of Econo-

metrics, 190, 115-132.

Hausman, J. A. (1978): Specification tests in econometrics, Econometrica, 46,1251-

1271.

Kotz, S., T. Kozubowski, and K. Podgorski (2012): The Laplace distribution and

generalizations: a revisit with applications to communications, economics, engineering,

and finance. New York: Springer Science & Business Media.

MacKinnon, J. G. (2013): Thirty years of heteroskedasticity-robust inference. In

Chen, X. and N.R. Swanson N.R., eds., Recent advances and future directions in causality,

prediction, and specification analysis ( 437-461). New York: Springer.

Romano, J. P., & M. Wolf (2017): Resurrecting weighted least squares, Journal of

Econometrics, 197, 1-19.

Spanos, A. (2010): Akaike-type criteria and the reliability of inference: Model se-

lection versus statistical model specification, Journal of Econometrics, 158, 204-220.

Stein, C. (1956): Inadmissibility of the usual estimator for the mean of a multivariate

normal distribution. In Proceedings of the third Berkeley symposium on mathematical

statistics and probability.

White, H. (1980): A heteroskedasticity-consistent covariance matrix estimator and

a direct test for heteroskedasticity, Econometrica, 48, 817-838.

–

29


