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Abstract

The development of new treatments to aid patients who su�er from rare diseases is

a challenging area of medicine, particularly since the patient populations are limited.

Therefore, traditional clinical trial designs and their sample size calculations often

require a large proportion of the total patient population to be recruited into the

clinical trial. Due to this, many novel designs of clinical trials seek to increase the

bene�t to the patients recruited into the trials. This is a motivation for response adap-

tive randomisation designs and their extension, covariate adjusted response adaptive

(CARA) randomisation designs. These designs use previous patients' outcomes (and

the CARA design also uses the previous patients' covariates) from within the trial

to predict which treatment will be superior for future patients, and prioritise the

allocation of said predicted superior treatment.

In this thesis, two methods to maximise the bene�t to patients are explored. The

�rst method focuses on increasing the bene�t to patients within the trial. A CARA

trial design, which can be used for several di�erent types of covariates and patient

outcomes, is explored using two simulation studies; one includes a continuous covariate

and outcome, the other includes two binary covariates and a survival outcome. The

design is then extended to incorporate historical trial data. This extension is evaluated

using two simulations studies that incorporate a continuous covariate and outcome.

Di�erent versions of both trial designs are evaluated in simulations across a wide range

of scenarios.

The second method is an alternative sample size calculation for a randomised
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controlled trial, which optimises the trial sample size such that the bene�t to the

whole patient population is maximised. Two di�erent versions of the approach are

investigated and compared using a continuous patient outcome trial, for a range of

scenarios.
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Chapter 1

Introduction

Throughout history, the human race has been burdened by disease and as a race,

we have strived to investigate and uncover remedies to cure or alleviate people's

su�ering (Matthews, 2006). A noble cause and a desirable aim, I am sure most people

would agree. However, it is also prudent to know not only if a treatment works, but

additionally if it does not, and if one treatment is superior to another. The aim of this

thesis is to explore how to improve the drug development process, with the bene�t

to patients at the forefront of our investigations. Throughout this thesis we mostly

refer to treatments which we assign to patients to have a desirable outcome on their

disease or ailment. This treatment could be a drug, or a vaccine, or a contraption to

help deliver a drug, or even a medical instrument to help diagnose a disease or illness.

1.1 The Drug Development Process

The process of taking a new treatment from discovery to market is lengthy and ex-

pensive (Kaitin, 2010). Before a new treatment can be approved for marketing and

distributed to patients on a large scale, it must �rst undergo rigorous testing for both

e�cacy and safety (Turner, 2010). Wouters et al. (2020) reports that the cost of

developing a new drug could currently lie anywhere between $314 million and $2.8

1
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billion. Additionally, it is stated by Sun et al. (2022) that development can take

anywhere from 10 to 15 years. Here, the cost and length varies dependent on the

therapeutic area which the drug targets. Despite these challenges (and the challenges

of the COVID-19 pandemic), de la Torre and Albericio (2021) note that the number

of drugs being approved for marketing by regulatory authorities, such as the US Food

and Drug Administration (FDA) and the Medicines and Healthcare Products Regu-

latory Agency (MHRA) in the UK, has increased in recent years. There had been

a decrease in the number of drugs approved by the FDA during the 2000s, however,

since 2018 there have been at least 48 drug approvals by the FDA, each year. These

large numbers of approvals have not been seen since 1996 (Mullard, 2021). Despite

these positive steps, there is still much room for improvement in the drug development

journey.

Turner (2010) describes the drug development process to consist of three stages:

drug discovery, non-clinical development and clinical development. Even after a treat-

ment is approved for marketing by regulatory authorities, it can still undergo further

post-marketing appraisals.

Drug discovery involves identifying a therapeutic need in a speci�c disease area

and selecting the candidate which is thought most likely to �ll this need. Once a

treatment has been selected it will undergo non-clinical testing in animals, before

being tested in people, known as clinical development (Turner, 2010).

The drug development process is particularly arduous. So much so, that Gelijns

(2014) states that, of the 10,000 compounds synthesised only 1,000 will undergo non-

clinical development and only 10 of these will start clinical trials. Of those 10, Sun

et al. (2022) notes that 90% will fail and hence, only 1 in 10,000 compounds will make

it from discovery to market.

Throughout this thesis, we focus on the �nal segment of the drug development

process, clinical trials.
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1.2 Clinical Trials

Blass (2015) states that the earliest documented clinical trial was in 1747, when a

naval physician, Dr. James Lind, was attempting to uncover a treatment for scurvy.

He split twelve sailors with similar cases of scurvy into six groups, and each group

was given a di�erent potential treatment. He found that the two sailors who were

given oranges and lemons showed a reduction in their scurvy symptoms after a week,

whereas the symptoms of the other ten sailors remained unchanged. Furthermore, so

as to standardise the environment of the subjects in his experiment, all twelve sailors

were kept in the same area of the ship and they were all fed the same basic diet. Nearly

90 years later, Dr. Pierre Charles Alexander Louis suggested the foundation of modern

clinical trials. Louis (1836) argued the importance of utilising the average e�ect of

a potential treatment across a group of patients, instead of focusing on individual

patient outcomes.

Despite the actions of Dr. Lind and Dr. Louis, the US government only began

reviewing drug safety in the early 20th century. The 1906 pure food and drug act

was the �rst federal law to address the adulteration, production, distribution and

marketing of food and drugs for import and export (Barkan, 1985). It de�ned broad

acts of misconduct including misbranding and adulteration. The FDA was founded

in 1930 and Batta et al. (2020) notes that they have overseen the development of new

drugs ever since. It was in 1938, when proof of safety was �rst required before new

treatments could be distributed to patients (Heath and Colburn, 2000). Finally, in

1962 the Kefauver-Harris Drug amendment was �nalised, which stipulated that new

drugs had to not only be safe, but also e�cacious before being marketed to patients

(Batta et al., 2020). It was around this time when clinical research began to specialise

between small safety focused studies and larger e�cacy studies (Heath and Colburn,

2000). These specialisms can still be seen in the di�erent phases of clinical trials

today.

Other noteworthy amendments came in 1983 and 2004. In 1983 the orphan drug
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act was established to motivate more research and development of treatments for rare

diseases, in the form of �nancial incentives (Batta et al., 2020). Additionally, 2004

saw the FDA release the `Innovation or Stagnation: Challenge and Opportunity on

the Critical Path to New Medical Products' statement (U.S Food and Drug Adminis-

tration, 2004), which analysed the pipeline problem ((de la Torre and Albericio, 2021)

highlight the decline in drugs being approved between 1997 and 2002). It suggests

a new tool kit `containing methods such as biomarkers for safety and e�ectiveness,

and new clinical evaluation techniques' is needed to improve the e�ciency of the drug

development pathway. The 2004 statement was closely followed by the FDA's Critical

Path Opportunities List in 2006. It emphasises the importance of using biomarkers

and the streamlining of clinical trials, including the use of novel trial designs such

as: enrichment designs, adaptive designs and additional non-frequentist methods,

which `allow increased reliance on historical data' (U.S Food and Drug Administra-

tion, 2006). These themes run throughout this thesis.

In addition, 2019 saw guidance published on the appropriate use of adaptive de-

signs for clinical trials (U.S Food and Drug Administration, 2019). This report de�nes

an adaptive clinical trial as `a design that allows for prospectively planned modi�ca-

tions to one or more aspects of the design based on accumulating data from subjects

in the trial.' This covers a wide range of concepts, which are explored in further detail

in Section 1.5.

Sedgwick (2011) describes how, today, clinical trials are partitioned into four

phases. Phase I trials include small numbers of (normally) healthy subjects, they

require approximately a year to complete and are used to obtain indications of safety

and side e�ects of a treatment (Blass, 2015; Sedgwick, 2011). They often explore a

range of doses to �nd the maximum tolerated dose and investigate the pharmacokinet-

ics (`what the body does to the drug,' Derendorf et al. (2000)) and pharmacodynamics

(`what the drug does to the body,' Derendorf et al. (2000)) of the drug pro�le (Aarons

et al., 2001).
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Phase II trials investigate further the e�cacy of a �xed dose of the treatment found

to be safe in phase I (Turner, 2010). These trials usually recruit moderate numbers

of patients and can take up to 2 years until completion (Blass, 2015).

The �nal stage before a new treatment can be marketed to the public is phase III

trials. Blass (2015) explains these studies normally recruit large numbers of patients

and can take several years to complete. They are used to compare the safety and

e�cacy of the new drug to a control treatment (Sedgwick, 2011). This control treat-

ment can either be a placebo or the current standard of care (SoC) treatment. If a

treatment is found to be safe and e�cacious across the three phases of trials, then it

can be submitted to the regulatory authorities for approval. Once the new treatment

is approved it can be marketed to the public and distributed to the patient population

outside the trial.

However, the new treatment will sometimes still undergo further assessments, in

the form of phase IV trials. Here, the treatment is evaluated in very large numbers of

patients to investigate less common side-e�ects and the long term e�cacy and safety

of the treatment in `populations or doses similar to or di�erent from the original study

population' (Umscheid et al., 2011).

The current gold standard for evaluating e�cacy in clinical research is the ran-

domised controlled trial (RCT), as expressed by Spieth et al. (2016). This is a trial

where the study sample size is pre-calculated and the subjects of the trial (patients

with the respective diagnosis) are randomly assigned to the di�erent treatments within

the study. They are most often used in phase II-III designs when researchers wish to

compare the novel treatment with a control treatment. RCTs are discussed in more

detail in Section 1.3.

1.3 Randomised Controlled Trials

Blass (2015) states that the idea of randomisation was �rst recorded in 1915, when
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Greenwood and Yule were exploring potential treatments for typhoid and cholera.

However, Rajagopalan et al. (2013) states that Sir A. Bradford Hill is often credited

with recording the �rst RCT in 1948, (Crofton and Mitchison, 1948), which included

many features ofmodern clinical trials. It included properly randomised control groups

and fully blinded data analysis (Blass, 2015). This trial attempted to determine if the

mycobacterium tuberculosis infection could be treated with streptomycin.

The term blinded, in reference to clinical trials, indicates a group of people in-

volved in the clinical trial who are masked to (i.e unaware of) which treatment the

patients are assigned to (Miller and Stewart, 2011). Single-blinded trials are, tradi-

tionally, trials in which the patients are blinded to which treatment they are allocated

to. Double-blinded trials normally refer to trials where both the patients and the

doctors/nurses (whoever administers the treatment) are blinded to which treatment

they are receiving/administering. Finally, triple-blinding refers to trials where pa-

tients, treatment administers and data analysts are all blinded to which treatment

the patients are given. However, Miller and Stewart (2011) note that there is much

confusion and disagreement with these de�nitions, and their recommendation is to

purely list who is blinded rather than using the terms single, double or triple-blinded.

Blinding is needed within clinical trials in order to minimise bias (Rajagopalan

et al., 2013). Blinding the patients prevents their treatment assignment from in�u-

encing their outcomes. This is particularly important when it comes to self-reported

outcomes, as those who have been given the experimental treatment may be more

inclined to think they have been given the superior treatment and will tend to exag-

gerate their positive outcomes (Miller and Stewart, 2011). In addition, patients may

be less likely to drop out of the trial if they believe they have been given the exper-

imental treatment. Furthermore, blinding the treatment administer ensures that the

knowledge of which treatment they are administering to the patients does not change

their behaviour to the patients, or the level of care they perform. Finally, blinding

the data analysts ensures that they cannot pick which analysis to perform in order
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to produce the most favourable results. This would only be an issue if statistical

analyses were not pre-speci�ed (Miller and Stewart, 2011), which does not happen

often in practice.

RCTs have mostly remained unchanged since the mid 20th century. They are

de�ned as `an experiment performed on human subjects to assess the e�cacy of a

new treatment for some condition' (Matthews, 2006). Louis (1836) suggested that

the aim of clinical trials should be to compare the average treatment e�ect in a group

of patients, this is the primary focus of modern RCTs (Freidlin et al., 2010). They

have two key features:

• A group of patients are assigned the new experimental treatment (these patients

are often referred to as the `treated group') and another group of patients (`the

control group') receive a di�erent treatment, normally the one which is most

commonly used (the SoC). These two groups of patients receive their treatments

at similar times.

• The decision of which treatment a patient is allocated to, is done by randomi-

sation.

In an RCT the probability of a patient being allocated to each treatment remains

unchanged throughout the course of the trial, and this probability is often equal

among the treatments within the trial (Zabor et al., 2020). To equally randomise

patients between treatments, di�erent methods can be used. One could use the table

of random numbers, tossing an unbiased coin or using computer software (Saghaei,

2011).

It is noted by Rajagopalan et al. (2013) that randomisation contributes to avoiding

bias in treatment allocation. In addition, it decreases the probability of the treatment

groups being heterogeneous, in terms of their patient characteristics. It is important

that the treatment groups be homogeneous to each other, such that any di�erence

in outcome between the groups can be attributed to the treatment allocation, only.
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However, sometimes randomisation, by chance, can cause imbalances in the charac-

teristics of patients between groups and in the number of patients assigned to each

treatment. Hence, Umscheid et al. (2011) explains that randomisation can be im-

proved by adding a constraint on the number of patients allocated to each treatment

to ensure a balance in treatment groups. A block randomisation procedure can be

used, such that each block of, for example, two patients who arrive into the trial,

must be assigned di�ering treatments and therefore, equal numbers will be allocated

to both treatments (Umscheid et al., 2011). This can also be done where each block of

patients have similar characteristics, to further ensure that the patient characteristics

are split equally between treatment groups and hence, the treatment groups should

be homogeneous.

The design of the RCT is highly dependent on the scienti�c question needing

to be answered (Stefanos et al., 2020). This scienti�c question normally refers to a

null hypothesis within the patient population, H0, that needs to be disproved using

a sample of said patient population. However, not being able to disprove a null

hypothesis in the sample is not the same as proving it in the patient population, it

rather means there is not enough evidence in the sample to disprove it in the patient

population (Zhong, 2009). Each null hypothesis, H0, is coupled with the appropriate

(and opposite) alternative hypothesis, H1.

The most common form of RCT is the superiority trial. Here, the RCT is designed

to determine if the novel treatment is superior to the control treatment. Zhong (2009)

explains that the null hypothesis is: the novel treatment is not more e�cacious than

the control treatment, by some amount, δ0. This can be written as H0 : δ ≤ δ0, where

δ is the di�erence in mean treatment e�ect between the experimental and control

treatment, δ = µE−µC . Therefore, the alternative hypothesis is: the novel treatment

produces an outcome which is more e�cacious than the control treatment, by some

amount, H1 : δ > δ0. Here, a one-sided hypothesis test would be used, to asses this

null hypothesis. Throughout this thesis we focus on superiority trials, however other
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forms of RCTs exist, these include equivalence trials and non-inferiority trials. The

aim of equivalence trials is to ascertain if the treatments have identical e�ects on the

patients (Christensen, 2007). Whereas, non-inferiority trials intend to show if the

new treatment is not worse than the control treatment (Sackett, 2004). This would

be useful if the new treatment is advantageous in another way. For example, a new

treatment may produce equal results to the control (or non-inferior results to the

control), however, it may be cheaper or quicker to manufacture, or have fewer side

e�ects and, hence, be more desirable than the control treatment.

Pereira and Leslie (2009) state that a hypothesis test, such as the z-test or t-test,

can be used to investigate the null hypothesis. These tests aim to identify if the

treatment e�ect is statistically signi�cant and that the di�erence in the treatment

data is not merely down to chance. This is di�erent to clinical signi�cance, which

refers to an outcome being relevant clinically (Lieberman, 2001). These tests ensure

that the type I error is controlled at level α, for no di�erence in the treatment e�ect or

a negative treatment e�ect (i.e the control treatment is superior to the experimental

treatment). The type I error is de�ned by Akobeng (2016) as the probability that

the null hypothesis is rejected, when in fact there is no di�erence in treatment e�ect

or the di�erence in treatment e�ect is negative. Hence, it is the probability that the

null hypothesis is rejected incorrectly. It can also be thought of as, the probability

that the di�erence in the treatment data are due to chance alone (Lieberman, 2001).

It is usually picked to be α = 0.025 for a one-sided test. These tests further ensure

that a type II error, β, de�ned as the probability that the null hypothesis is not

rejected, when there is a positive di�erence in treatment e�ect (i.e the experimental

treatment is superior to the control treatment). Thus, it is the probability that the

null hypothesis is not rejected incorrectly (Akobeng, 2016). A common convention

is to choose the type II error to be β = 0.2 and hence, power, (1 − β), is commonly

chosen to be (1 − β) = 0.8. Akobeng (2016) explains that power is the probability

that the hypothesis test detects a true di�erence of exact size δCR and therefore, it
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is the probability that the null hypothesis is correctly rejected. Table 1.3.1 helps

demonstrate these terms for a one-sided hypothesis test, for a superiority trial.

PPPPPPPPPPPPPP
Truth

Test Result
Reject H0 Do not reject H0

δ > δ0 Power Type II Error

δ ≤ δ0 Type I Error Do not reject null correctly

Table 1.3.1: Possible Hypothesis Test Results

The design of an RCT also in�uences the method used to calculate the required

sample size for said RCT. Charles et al. (2009) states that the aim of the sample size

calculation is to obtain the number of patients needed in an RCT to observe a pre-

determined, clinically relevant treatment e�ect, δCR. They list the four parameters

needed: type I error, type II error, expected outcome in control treatment and the

expected treatment di�erence.

In order to test the superiority null hypothesis, H0 : δ ≤ δ0, an RCT with total

sample size n can be performed. Given the control treatment, C, and the experimental

treatment, E, produce outcomes, Yk, which are normally distributed, Yk ∼ N(µk, σ
2)

for k ∈ {C,E} with a common variance, σ2, equation (1.3.1) from Zhong (2009) can

be used to calculate an appropriate sample size,

n = 4σ2

(
Φ−1(1− α) + Φ−1(1− β)

δCR

)2

. (1.3.1)

The sample size n guarantees an RCT with power, (1−β), and one-sided type I error,

α, if a clinically relevant di�erence in means, δCR = (µE − µC), is truly present and

both treatments produce outcomes with a common standard deviation, σ.

Hariton and Locascio (2018) explain that despite a single study not being su�cient

evidence to prove the e�ectiveness of a treatment, due to the randomness and blinding

of an RCT reducing the risk of bias, RCTs do rigorously test the relationship between
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a treatment and outcome. Their sample sizes are also calculated in order to guarantee

a high power, and hence, they can reliably conclude if a novel treatment is likely to

be superior (or not). These statements are common reasons why RCTs are considered

the gold standard of trial design, particularly in phase II-III studies (see Bondemark

and Ruf, 2015; Grossman and Mackenzie, 2005).

The random allocation of patients between two treatments is ethical, provided

equipoise (the belief that either treatment could be superior) exists. Miller and Jo�e

(2011) explain that no patient in an RCT is knowingly given an inferior treatment,

if equipoise exists. However, by the time a novel treatment reaches a phase III trial,

researchers will have collected data and learnt about the e�ectiveness of this novel

treatment. They will have some prior knowledge of the treatment e�ect, before

the commencement of the trial. They will also understand much about the control

treatment in a trial, as it will have undertaken many trials previously, itself. There-

fore, before the trial even starts there will be much that can be predicted about the

di�erence in treatment e�ect, between both treatments. Furthermore, as the trial

progresses and patients receive their allocated treatment, more information can be

collected which could further decrease the belief of equipoise in a trial.

The main goal of a superiority RCT is to learn if a new treatment is more e�ca-

cious than the current SoC in order to treat future patients, outside the trial, most

e�ectively (Williamson et al., 2017). Here, the health of the patients outside the

trial, is prioritised. This is understandable when the trial population is only a small

proportion of the whole patient population or when the disease is not fatal.

However, the ethical issues which can arise within RCTs are of the highest impor-

tance in rare disease populations and in life threatening disease populations. Palmer

and Rosenberger (1999) indicate that the individual ethics should be prioritised in

these situations. Therefore, in these situations, the health of the patients within the

trial is just as important as the health of the patients outside the trial.

Due to the rigidity of an RCT and the fact that every aspect of it is pre-planned,
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it lacks the �exibility to incorporate the well-being of patients within the trial. For

example, if it becomes apparent during the trial which treatment is superior, then from

a patient's perspective they would much rather be allocated this superior treatment.

This is not possible for RCTs.

In order to increase the bene�t to patients, both inside and outside the trial,

alternative trial designs need to be explored. Patient bene�t is described in Section

1.4 and alternative trial designs are suggested in Section 1.5.

1.4 Optimising Patient Bene�t

There is a lot at stake when it comes to rare diseases, particularly those which are life

threatening. Wakap et al. (2020) notes that there is no universal de�nition of a rare

disease, the EU de�ne a rare disease as having a prevalence of not more than 1 per

2,000 (Regulation, Orphan Medicinal Product, 2000), which di�ers from the American

Orphan Drug Act in 1983, which de�ned them as a�ecting fewer than 200,000 people

in the USA (Pelentsov et al., 2016). Although, many rare diseases can a�ect much

fewer patients.

Abrahamyan et al. (2016) explains that the protocol requirements in clinical trials

are the same for both common and rare diseases, this includes the sample size calcu-

lation. As rare diseases have such small patient populations, the resulting sample size

from these calculations are often infeasible. Therefore, trials can fail to �nd a signi�-

cant di�erence due to inadequate sample size and hence, the treatment is abandoned.

Furthermore, some trials will not even be undertaken, due to the required sample size

being so large it makes the prospect of a positive result unlikely (Smith et al., 2014).

Further problems include the geographic spread of patients being large, therefore,

making a clinical trial organised through a single clinical research team/centre infea-

sible and thus, requiring the trial to be `multi-centred' needing much co-operation

from di�erent healthcare systems (Cottin et al., 2015).
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In these rare disease situations we need to prioritise the bene�t to patients. Patient

bene�t can be de�ned in many di�erent ways. Villar and Rosenberger (2018) de�ne

patient bene�t as the proportion of patients within the trial who produce successes.

They investigate a binary outcome `success/fail'. Conversely, Jeon and Hu (2010)

de�ne patient bene�t as minimising the number of treatment failures. Additionally,

patient bene�t could be de�ned as the mean gain in outcome from if the patients were

given the worst treatment, or it could be thought of as the mean gain in outcome,

from if the patients were not given a treatment at all. Throughout this thesis, we

de�ne patient bene�t as the proportion of patients who are allocated the superior

treatment. We do this, because this measure can be used, perfectly reasonably, for

any type of treatment outcome (binary, continuous, time to event).

Furthermore, patient bene�t can be split into average patient bene�t and individ-

ual patient bene�t. Average patient bene�t is de�ned as the proportion of patients

who receive the superior treatment on average-the superior treatment for an average

patient. However, people are not all homogeneous. We di�er in many aspects, age,

gender, race, genetics and weight, to name a few. It has been well documented (see

Isaacs and Ferraccioli, 2011; Senn, 2016; Dunn et al., 2013), that di�erent people can

react to the same treatment in di�erent ways. Sometimes this is random chance, but

often people can have certain characteristics, which means they produce a more ad-

vantageous outcome, if given a certain treatment. This can then mean, the treatment

that is superior on average, may not be the superior treatment for each individual

patient. Therefore, we de�ne individual patient bene�t as the proportion of patients

who are given their individual superior treatment.

Covariates are patient characteristics such as age, gender or environmental fac-

tors (e.g. diet or number of cigarettes smoked). These have the potential to cause

di�erent outcomes in di�erent patients even if they are given the same treatment.

Biomarkers are de�ned by the World Health Organisation (2001) as `any substance,

structure, or process that can be measured in the body or its products and in�uence
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or predict the incidence of outcome or disease'. Throughout this thesis we will use

the terms `biomarker' and `covariate' interchangeably. Biomarkers can be prognos-

tic, predictive or sometimes both. Mandrekar and Sargent (2009) de�ne prognostic

biomarkers as a marker which is associated with a particular outcome regardless of

treatment allocation. For example, Van't Veer et al. (2002) discusses which gene pro-

�les are prognostic of breast cancer, some genes were correlated with a good disease

outcome and others were correlated with a bad disease outcome. In addition, predic-

tive biomarkers are de�ned by Mandrekar and Sargent (2009) as a marker which is

associated with a particular response, only if given a certain treatment. For exam-

ple, Mandrekar and Sargent (2010) summarise that patients with colorectal cancer

with `wild-type KRAS genotype' reacted more positively to the drugs `cetuximab'

and `panitumumab'. Therefore, a biomarker which is both predictive and prognostic

implies a marker which is always associated with a certain outcome, but that outcome

is even more likely if given a certain treatment.

Personalised medicine is described by Superchi et al. (2022) as an evolving �eld,

which permits patients to be treated with a speci�c therapy, chosen based on their

covariate values. As healthcare moves towards a more personalised approach, clinical

trials must do the same. In recent years there have been many prognostic and pre-

dictive biomarkers identi�ed. These biomarkers can be utilised in clinical trials, to

improve the outcomes of patients and increase the patient bene�t within the trials.

This use of biomarkers within drug evaluation is exactly what the FDA recommended

and highlighted the importance of, in U.S Food and Drug Administration (2004) and

U.S Food and Drug Administration (2006). Conversely, this is actually the opposite

of what Louis (1836) recommended. Louis (1836) wanted to focus on the average ef-

fect of treatments, however we have come along way since then, the technological and

scienti�c advancements in the last 186 years are astounding. Since the 19th century,

we have discovered, developed and distributed mountains of treatments. The `low

hanging fruit has all been picked,' in order to move forward and advance the drug de-
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velopment process further, its time to `aim higher up the tree.' Tailoring therapies to

the individual patient is the next step in advancing the drug development procedure

(Harvey et al., 2012).

The purpose of this thesis is to explore di�erent ways to optimise the patient

bene�t for small patient populations. We wish to maximise the total patient bene�t,

taking into account both the patients inside and outside of the trial. We discuss

two methods to reach this aim. First we can maximise the patient bene�t within

the trial. We explore how to adaptively assign patients within the trial, prioritising

the allocation of the predicted superior treatment. This is one motivation behind

response adaptive randomisation (RAR) designs, see Section 1.5.1. A RAR approach

is explored further in Chapters 2 and 3. Alternatively, the sample size of an RCT

could be optimised, such that the total patient bene�t, for the whole patient population

is maximised. Here, whichever treatment is proved to be superior within the RCT,

would be assigned to all patients outside the RCT. This is discussed in Chapter 4.

1.5 E�cient Clinical Trial Designs

The issues discussed above all contribute to the di�culties in developing treatments to

combat rare diseases. This further means many rare diseases will not have a current

SoC and hence, in many clinical trials the control treatment will be a placebo. This

further increases the need to prioritise the health of the patients within the clinical

trial. Developing e�cient clinical trial designs is paramount to selecting the most

e�cacious treatment and distributing it to patients with minimal time delay.

Park et al. (2018) describes adaptive clinical trials as designs which allow certain

features of the trial to be modi�ed during said trial. The data collected throughout

the trial is what determines whether the modi�cation takes place, or not. There are

a multitude of features within a trial design which can be adapted during a trial in-

cluding: treatment allocation probability (TAP), sample size, addition/withdrawal of
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treatments, treatment dose, treatment duration, patient population and hypotheses

investigated (see Park et al., 2018; Bothwell et al., 2018, for a more in-depth summary

of adaptive designs and examples of where they have been used). There are many

di�erent types of adaptive clinical trial designs, examples of which include: response

adaptive, which update the TAP through the trial, based on data collected within the

trial, in order to allocate more patients to the best performing treatment (Rosenberger

et al., 2012); enrichment designs, these allow a clinical trial to investigate the treat-

ment e�ect in a speci�c sub-population of patients, this sub-population is normally

based on the patients' covariates and can be selected during the trial (Mandrekar and

Sargent, 2009); platform trials, which compare a single control treatment to multi-

ple di�erent experimental treatments that can be added to or withdrawn from the

trial based on the e�cacy or futility of the treatments demonstrated within the trial

(Renfro and Sargent, 2017); sequential designs, these allow a trial to be halted when

evidence has been collected that prove either the e�cacy or futility of a treatment,

to conventional levels of strength (Whitehead, 2002); and sample size reassessment,

which uses data within the trial to re-estimate the sample size required at speci�c

interim analyses (Proschan, 2009).

We mostly focus on the natural extension of RAR designs, covariate adjusted

response adaptive (CARA) randomisation clinical trial designs, which use data from

patients within the trial (both their outcomes and their covariates) to adapt the TAP

within the trial, to favour the treatment estimated to be superior given the patient's

covariate pro�le (Zhang et al., 2007). In addition, we extend our CARA design, which

is investigated in Chapter 2, to include historical data, which is explained in Chapter

3.

1.5.1 Response Adaptive Clinical Trials

The main aim of RAR designs is to adapt the TAP in order to assign more patients

to the superior treatment (Rosenberger et al., 2012). Ethically, these designs are very
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appealing, especially when the superior treatment can be identi�ed quickly and as

such, patients are more likely to be assigned said superior treatment early in the trial.

Due to their ethically appealing nature, these designs will often have a quicker and

larger recruitment rate (Tehranisa and Meurer, 2014), which is particularly important

in small patient populations.

Urn models

Urn models are a speci�c type of RAR trial design. These models randomise pa-

tients to each treatment based on the ball picked randomly from an urn (or sometimes

referred to as a hat or a box in the literature). Each ball within the urn refers to a

treatment within the trial, however the number of balls of each type vary between

urn models and can change throughout the trial based on responses of previous pa-

tients. When the urn is empty the patient is assigned to either treatment with equal

probability. For a thorough description and summary of urn models see Rosenberger

and Lachin (2015).

There have been many investigations into several di�erent urn models, including

the Play the winner rule (PWR) (Zelen, 1969), Modi�ed play the winner rule (Zelen,

1969), Randomised play the winner (RPW) (Wei and Durham, 1978) and Drop the

loser (Ivanova, 2003).

Wei and Durham (1978) extend the PWR, by replacing each ball that is picked

from the urn, to create the RPW. Here, they initially start with an urn containing

some pre-determined number of balls of each treatment type. When a patient enters

the trial, a ball is picked, the corresponding treatment, k, is allocated to the patient

and the ball is put back into the urn. This continues until a patient outcome is

observed and then the structure of the urn is updated. If treatment k produces a

success, then S balls marked k are added to the urn and F balls are added, marked

for the other treatment(s). If a failure is observed, F balls marked k are added to

the urn and S balls marked for the other treatment(s) are added. Here, the number

of balls to be added to the urn are chosen such that, S ≥ F ≥ 0. These amounts,
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S and F , are chosen based on the amount you wish to favour picking the treatment

which produces a success. This approach can become deterministic, especially if you

start the trial with no balls in the urn, only add S = 1 ball marked k for each success

(and F = 0 for the other treatment) and S = 1 ball marked for the other treatment if

treatment k produces a failure (and F = 0 for treatment k), if the outcome of patient

n is observed before patient n+1 enters the trial and if one treatment has a very high

probability of producing a successful patient outcome.

Unfortunately, Rosenberger et al. (2012) explains that this RPW design was used

in an actual clinical trial, comparing the extracorporeal membrane oxygenation ther-

apy with a conventional therapy (Bartlett et al., 1985). Of the 12 patients within

the study, the design assigned one patient to the control treatment and 11 to the

experimental treatment. Even though, all 11 patients on the experimental treatment

survived and the one patient on the control treatment died, due to the highly uneven

treatment allocation and small overall sample size, this trial failed to reject the null

hypothesis. Many investigators use this trial as an example when arguing against the

use of RAR designs in practice.

Robertson et al. (2020) explores the issues of urn designs, highlighting that they do

not optimise any criteria and purely aim to increase the proportion of patients on the

superior treatment. Furthermore, they all tend to produce low power (Rosenberger

et al., 2012).

Gittins index

The Gittins indices (GI) recovers the optimal solution to the multi-armed bandit

problem (MABP), with an in�nite horizon (Gittins, 1974). The MABP originally

involved allocating e�ort, to multiple competing projects, to maximise earning some

reward. In an adaptive clinical trial setting, the e�ort which must be allocated to

competing projects, are the patients which must be assigned competing treatments

and the reward is the proportion of positive patient outcomes.

The GI is a deterministic algorithm which assigns patients within the trial to treat-
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ments, based on the number of successes and failures each treatment has previously

produced. Each pair of `number of successes' and `number of failures' produced by

a single treatment is represented by a Gittins index, where the larger the number of

successes and the smaller the number of failures, the larger the GI for a treatment is.

Whichever treatment has the largest GI, is given to the next patient recruited into

the trial with probability 1 (Wang, 1991).

There have been a number of extensions to the GI, including the randomised

Gittins index (Glazebrook, 1980), constrained Gittins index (Wang, 1991), forward

looking Gittins index (FLGI) (Villar et al., 2015b) and controlled forward looking

Gittins index (Villar et al., 2015b). The FLGI includes randomisation, which causes

a small decrease in the optimality of patient successes produced, but makes the method

more applicable to clinical trials, by decreasing the deterministic nature of the GI. It

does this by allocating patients to treatments in blocks of size b. Villar et al. (2015b)

explains that if one treatment has a larger GI then the �rst patient in each block is still

allocated deterministically to the treatment with the highest GI. However the other

(b−1) patients are assigned a treatment randomly, however, the TAP for these patients

are skewed towards the best performing treatment. The TAPs are calculated using

the previous outcomes, the block size and the predicted probability of the treatment

chosen for the �rst patient in the block producing an outcome that would change

which treatment had the largest GI. Villar et al. (2015b) further extends this method

to give the CFLGI, which protects the allocation to the control treatment, such that

it never drops below 1
K
, where K is the total number of treatments within the trial

(including the control treatment).

The two broad areas of RAR (Urn models and GI) discussed above both focus

on the situation where the patient response is binary, where there has been much

theoretical research (Zhang and Rosenberger, 2006). For additional examples of RAR

designs for binary patient outcomes see the doubly adaptive biased coin design (Hu and

Zhang, 2004), an optimal adaptive rule (Rosenberger et al., 2001a) and its extension
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an optimal adaptive rule for multiple treatments (Jeon and Hu, 2010) to name a few.

However, many clinical trials include a continuous or time to event response variable,

for which, there has been less research.

Non-binary patient outcomes

Williamson and Villar (2020) extended the FLGI for normally distributed contin-

uous outcomes. Here, the GI for each treatment is calculated slightly di�erently to

allow for the continuous patient outcomes. However, the method is in essence the

same as for the FLGI (Villar et al., 2015b). The �rst patient in each block is still

given the treatment with the largest GI. In addition, the TAP of all (b − 1) other

patients within the block is again calculated using the previous patient outcomes, the

block size and the probability of the �rst patient in the block producing an outcome

that would change which treatment would have the largest GI.

Furthermore, there are a number of other RAR designs for continuous or time

to event outcomes, including the modi�ed Zhang and Rosenberger design (Zhang and

Rosenberger, 2006), an adaptive randomisation strategy (Trippa et al., 2012) and the

optimal biased coin design (Gwise et al., 2011). See Hu and Rosenberger (2006) for a

detailed monograph on RAR clinical trial designs.

1.5.2 Covariate Adjusted Response Adaptive Clinical Trials

As has been discussed previously in this Chapter, di�erent patients can react di�er-

ently to the same treatment based on their covariate values (Senn, 2016). Therefore,

including patients' covariates into the RAR design is an obvious extension. CARA

designs use a patient's covariate(s), in addition to previous patients' covariate(s) and

their outcomes to adapt the TAP. A patient's covariates are an extra tool which can

be used to aid in the identi�cation of the superior treatment for the next patient who

enters the trial (Zhang et al., 2007). See Sverdlov (2015) for a summary on CARA

designs.

Urn models
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The urn models described above can be extended to include covariates. Bandy-

opadhyay and Bhattacharya (2012) describe a CARA urn model, which consists of

an urn for each categorical covariate value. If a treatment, produces a success in

a patient, a number of balls marked for said treatment are added to each urn. The

number added to the urn corresponding to said patient's covariate value, is dependent

on the `severity' of their covariate value. Hence, the covariate values which are less

likely to produce a success (those which are most sever), will be given more balls in

their urn for a treatment which does produce a success. Here, prior clinical knowledge

must be utilised to rank the severity of the patient's covariate values before the trial

begins.

Gittins index

The GI can be extended, as shown by Villar and Rosenberger (2018), to become

a CARA design. Here, each treatment is split into an option for each categorical

covariate value and each option will have their assigned GI based on how many suc-

cesses and failures they have produced through the trial so far. Hence, if the trial

contains two treatments and a binary covariate is being used to determine the TAP,

there will be four treatment options (one for each treatment/covariate combination),

but only two will be a viable option for each patient who enters the trial, depending

on their covariate value. The treatment allocation of the �rst patient in the block is

still deterministic, if one of their viable treatments has a maximum GI assignment.

The TAP for the other patients within the block will rely on their covariate values,

the previous outcomes, the block size and the predicted probability of the �rst patient

in the block changing which viable treatment option has the maximum GI.

Many CARA designs are only applicable for categorical covariates. They are

not e�cient, nor will they be feasible for covariates with many categories, multiple

covariates or continuous covariate values.

Bayesian adaptive randomisation

Rosenberger et al. (2012) explains that the Bayesian adaptive randomisation (BA-
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R) design determines the TAP based on some criterion that favours the treatment

group found to be most successful in the trial. They can take into account the

covariates of the patients within the trial and accommodate a distribution on the

parameters.

Bayesian statistics is explained by Thall and Wathen (2007). They begin by

considering parameters to be random. Hence, a Bayesian model for a parameter, ϑ,

starts with a prior distribution, prior(ϑ), which encapsulates what one knows about

the parameter, ϑ, before any data is observed. For example, this could be expert

opinion from a doctor that a certain treatment will produce a speci�c outcome when

given to the majority of patients. This prior can then be updated using the likelihood

of the observed data, given the parameter, ϑ, lik(data|ϑ), which is a probability

distribution. This likelihood and prior are combined, using the equation below, to

produce a posterior distribution for the parameter, ϑ. Here, prob(data) is the average

of the likelihood function multiplied by the prior distribution of ϑ.

posterior(ϑ|data) =
lik(data|ϑ) · prior(ϑ)

prob(data)
(1.5.1)

BAR can be used for several patient outcomes including when it is binary (Lee

et al., 2010) or when it is continuous (Biswas and Angers, 2002). Bayesian statistics

can be used to produce a posterior distribution on the parameters of the patient out-

comes, using a prior distribution updated by current data. These posterior distribu-

tions for the patient outcome parameters can then be used to change the TAP. When

the patient outcome is binary assume each treatment k ∈ {C,E} has a probability

pk of producing a success in a patient. This probability could depend on a patient's

covariate(s). The posterior distribution of pk can be calculated by combining a beta

prior distribution with the data from the current trial (the number of successes and

failures treatment k produces). Lee et al. (2010) then uses P (pE>pC)λ

P (pE>pC)λ+P (pC>pE)λ
to

assign the next patient to the experimental treatment, k = E. Here, λ is a tuning pa-

rameter, which indicates how much the TAP should be skewed toward the estimated
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superior treatment. If λ = 0 then the trial would use equal allocation and if λ = ∞

then the trial would have the PWR design. These posterior probabilities are updated

each time a patient response is recorded.

Alternatively, the patient outcomes could be normally distributed, such that the

outcome, Yk, of each treatment k ∈ {C,E} is modelled as Yk ∼ N(µk, σ
2). In this

case, Biswas and Angers (2002) utilises the function Φ

(
µE−µC√

V ar(µE−µC)

)
to produce

the probability of the next patient being assigned treatment k = E. Again, this is

updated whenever a patient response is recorded.

One can utilise Bayesian statistics if there is strong opinion (or historical data

available) that one treatment will produce a superior outcome, by adapting the prior

distribution for the patient outcome parameters. If no such opinion is warranted, or

it is decided such an opinion should not be taken into account, the prior distribution

on the outcome parameters can be non-informative, as such the initial TAP would be

equal between all treatments.

Biswas and Bhattacharya (2016) gives an overview of several CARA designs for

continuous patient outcomes, where the covariates can be of many di�erent types.

We are particularly interested in CARA designs which can be utilised for various

di�erent covariate types, binary, categorical, continuous, or multiple covariates at

once and for various patient responses, binary, categorical, continuous or time to

event. Yang and Zhu (2002) describes one such method.

Assume a clinical trial is investigating K treatments (including a control treat-

ment) and has a total sample size n. The outcome, Yi, of each patient, i ∈ {1, 2, ..., n}

with baseline covariate(s), xi, who are each given treatment ki, is modelled as a func-

tion of their covariate(s) in addition to a random error term, Yki,i = fki(xi) + εi,ki .

Their RAR algorithm is stated below.

Algorithm 1: Yang's RAR Algorithm

1. Initial burn-in period: Give each treatment to a small number of patients. Yang
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and Zhu (2002) propose the �rst K patients are assigned treatments, such that

each treatment is given to one patient: k1 = 1, k2 = 2, ..., kK = K.

2. Estimate each function fk for all treatments, k ∈ {1, 2, ..., K}, based on the

current data.

3. For the next patient i = K + 1 with covariate(s) xi, estimate their outcome f̂k,i

for each treatment k ∈ {1, ..., K}, using the chosen regression method.

4. Select the estimated superior treatment with probability 1−(K−1)πi and select

the other treatment(s) with probability πi.

5. Use the outcome of patient i to updated the function estimate, f̂ki , for the

selected treatment, ki.

6. Repeat steps 3-5 when the next patients (i+ 1), (i+ 2), ..., n enter the trial.

Yang and Zhu (2002) do not pursue an automated choice for the sequence, πi.

They do however, note that it is a probability which should decrease to 0 as more

patients enter the trial and more data is collected. They also state, that the speed in

which the sequence πi approaches 0, should indicate the con�dence in the accuracy

of the predicted functions f̂k.

Here, as long as the regression method can account for covariates of di�erent types

and outcomes of di�erent types, this method can be used for binary, categorical or

continuous covariates, or even multiple covariates at once and for various patient

responses such as, binary, categorical, continuous or time to event. Furthermore,

you could even investigate di�erent regression methods and then make an informed

decision on which one would be most appropriate for your particular situation.

This method is explored in more detail in Chapter 2. Two simulation studies are

used to demonstrate the use of this method for a continuous patient outcome and one
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continuous patient covariate, and for a time to event patient response with two binary

patient covariates.

One must be careful when planning a RAR or CARA clinical trial. There are

certain therapeutic areas and disease populations where RAR (or CARA) is a viable

clinical trial design and those where it is not. For instance, RAR and CARA designs

update the TAP throughout the trial, using information collected within the trial.

Many of these designs, therefore, rely on the assumption that patients enter the trial

sequentially and that the outcome of patient i is known before patient (i + 1) enters

the trial. This assumption is not always applicable if the outcome takes a long time to

present itself, for example, change in forced expiratory volume (FEV) 12 weeks from

baseline or time taken for a tumour to decrease in size by 5cm. However, Rosenberger

et al. (2012) states that as long as some responses become available within the trial,

the TAP can just be updated as and when patient outcomes are recorded, therefore,

incorporating a delayed response would be feasible in many RAR and CARA designs.

1.5.3 Utilising Historical Data in a Clinical Trial Design

In an RCT the novel treatment is often compared to a control treatment. This control

treatment will have undergone many trials previously to make sure it is safe and its

e�ect on patients will be widely understood and reported. It has been previously

discussed by Griggs et al. (2009) that this historical data could be used as a comparison

to the experimental treatment, such that none or fewer current patients need to be

assigned the control treatment. Thus, the main aim when incorporating historical

control trial data into a current clinical trial, is to utilise this previous data on the

control treatment, as well as current patients on the control treatment, to allow fewer

current patients to be recruited into the clinical trial. This then has the potential to

minimise the risks and costs of the trial and can accelerate the time frame of the trial

(Hall et al., 2021).

There are a number of issues with the additional use of historical data, the main
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one being the potential heterogeneity between current and historical trial data. Peto

et al. (1976) explains that di�erences between historical data and current data can

be caused not only by di�erences in trial set up, but also, changes in how a disease

is diagnosed, how patient referrals are carried out and even the skill level of the

doctors and nurses. Medical practice has changed a lot over recent years, and hence,

the patient population from a historical trial which was carried out a few years ago,

might di�er greatly from the same patient population at the time of the current trial.

All these factors can cause di�ering outcomes, in patients given the same control

treatment, at di�erent time points (Byar et al., 1976).

There is also, still much confusion and disagreement on the best statistical method

to incorporate historical controls into power calculations and the controlling of type

I error (van Rosmalen et al., 2018). They further suggest that these calculations will

depend on the heterogeneity between the historical and current trial, however, how

they depend on the heterogeneity, is not yet known.

When contemplating the additional use of historical data within a current trial,

Pocock (1976) states that a list of criteria should be met, to ensure su�cient compa-

rability between the historical and current trials. This includes:

• both historical and current controls receiving the exact same treatment and

dosage,

• both trials using the same patient eligibility criteria,

• the historical trial being `recent',

• the same method of treatment evaluation must be used in both trials,

• distributions of patient characteristics, which are considered important, must

be similar in both trials,

• the historical trial should have been performed by the same organization with

mostly similar clinical investigators as the current trial,
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• and there should be no other reason why one would expect the trials to produce

di�ering results.

There are many di�erent methods to include historical control data within a clin-

ical trial. Viele et al. (2014) gives an overview on methods which dynamically borrow

information from the historical trial, to include in the analysis of the current trial.

These methods need to determine if the current data is inconsistent with the his-

torical data and adapt the amount of information they borrow accordingly. Some

methods which dynamically borrow information include test-then-pool (Chu and Yi,

2021), power priors (Ibrahim and Chen, 2000), hierarchical modelling (Spiegelhalter

et al., 2004) and meta-analytic-priors (Neuenschwander et al., 2010). The historical

data utilised in these methods are typically used in the analysis of the trial and the

historical data does not a�ect the current trial set up. However, these methods can

also be included in an adaptive trial set up.

Bennett et al. (2021) describe an adaptive design which incorporates historical

control data, using power priors, for a binary patient outcome. They start with

an equal allocation RCT, then at the interim analysis they assess the homogeneity

between the historical and current control data using probability weighting. If the two

datasets are similar, then they reassess the sample size needed and increase the TAP

for the experimental arm. If the two datasets are not similar then the equal probability

RCT is continued. At the end of the trial, the power priors are used to combine the

historical and current control data, and test them against the experimental treatment,

using a hypothesis test.

Ghadessi et al. (2020) and Lim et al. (2018) give a detailed overview for the

inclusion of historical data in clinical trials.

In Chapter 3, the RAR method described by Yang and Zhu (2002), is extended

to include historical patient data. Here, the historical data is used to adapt the TAP

within the current clinical trial.

As has been explained above, the drug development process is long and expensive
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(Turner, 2010). Furthermore, it has largely remained unchanged for the past 50 years

(Heath and Colburn, 2000) and the RCT is still the gold standard (Backmann, 2017).

Throughout Section 1.5 we have noted much theoretical research into response

adaptive clinical trials and stated their advantage of assigning more patients to the

superior treatment within a trial. However, there has only been a small number

of adaptive designs used in practice (see Barker et al., 2009; Kaplan et al., 2013;

Papadimitrakopoulou et al., 2016, for some examples). We hope this thesis represents

a stepping stone on the journey towards a more e�cient drug development process

in practice, in order to distribute more e�cacious treatments, to more patients with

minimum time delay.

1.6 Outline of Thesis

This thesis includes work on two separate topics which aim to maximise the bene�t

to patients within the total patient population. These are written as three separate

academic papers. Chapter 2 describes a CARA clinical trial design, which uses a

patient's biomarker to adapt the TAP, in order to assign more patients to their esti-

mated superior treatment. Chapter 3 extends the CARA design explained in Chapter

2, by including historical data at the start of the trial. This CARA design incorpo-

rates patients' biomarkers in addition to the historical data to assign more patients to

their estimated superior treatment from the very start of the clinical trial. These two

Chapters involve maximising the patient bene�t within the trial. Chapter 4 describes

an alternative method to calculate the sample size of a superiority RCT. This method

aims to maximise the patient bene�t in the total patient population, by optimising

the sample size of a superiority RCT. A summary of each Chapter follows below.

Chapter 2: Using biomarkers to allocate patients in a response adaptive

clinical trial. We discuss a response adaptive randomisation method, and why it

should be used in clinical trials for rare diseases compared to a randomised controlled
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trial with equal �xed randomisation. The developed method uses a patient's biomark-

ers to alter the allocation probability to each treatment, in order to emphasise the

bene�t to the trial population. The method starts with an initial burn-in period of a

small number of patients, who with equal probability, are allocated to each treatment.

We then use a regression method to predict the best outcome of the next patient, us-

ing their biomarkers and the information from the previous patients. This estimated

superior treatment is assigned to the next patient with high probability. A completed

clinical trial for the e�ect of catumaxomab on the survival of cancer patients is used as

an example to demonstrate the use of the method and the di�erences to a randomised

controlled trial with equal allocation. Di�erent regression methods are investigated

and compared to a randomised controlled trial, using e�cacy and ethical measures.

Chapter 3: Using biomarkers and historical data to allocate patients

in a response adaptive clinical trial. This Chapter explores a response adap-

tive randomisation method, which uses historical clinical trial data to help in�uence

the treatment allocation from the �rst patient enrolled into the clinical trial. The

method is demonstrated in several scenarios and the situations it is best suited for,

are discussed. We explore the use of historical data to in�uence the treatment allo-

cation probability from the start of the trial and further investigate when a burn-in

period is advantageous. As concurrent patients enter the trial, the treatment alloca-

tion probability can be adapted to suit the further accumulation of information on

how the patients' biomarkers in�uence their potential outcome on each treatment.

Di�erent regression methods are inspected and compared to a randomised controlled

trial with equal allocation, using ethical measures. A completed clinical trial for the

e�ect of mepolizumab on the rate of exacerbations in asthma patients is utilised to il-

lustrate the method in practice and how it di�ers from an equal allocation randomised

controlled trial.

Chapter 4: An alternative to traditional sample size determination for

small patient populations. The majority of phase III clinical trials use a two-arm
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randomised controlled trial with 50% allocation between the control treatment and

experimental treatment. The sample size calculated for these clinical trials normally

guarantee a power of at least 80% for a certain type I error, usually 5%. However,

these sample size calculations, do not typically take into account the total patient

population that may bene�t from the treatment investigated. In this Chapter, we

discuss two methods, which optimise the sample size of phase III clinical trial designs,

to maximise the bene�t to patients for the total patient population. We do this

for trials that use a continuous endpoint, when the total patient population is small

(i.e. for rare diseases). One approach uses a point estimate for the standardised

treatment e�ect to optimise the sample size and the second uses a distribution on the

standardised treatment e�ect in order to account for the uncertainty in the estimated

standardised treatment e�ect. Both one-stage and two-stage clinical trials, using three

di�erent stopping boundaries are investigated and compared, using e�cacy and ethical

measures. A completed clinical trial in patients with anti-neutrophil cytoplasmic

antibody (ANCA)-associated vasculitis is used to demonstrate the use of the method.

Chapter 5: Conclusions, Limitations and Further Work. This �nal Chap-

ter concludes the thesis by summarising the main contributions and limitations of this

work and it proposes future directions to explore and advance this work further.



Chapter 2

Using biomarkers to allocate patients

in a response adaptive clinical trial

2.1 Introduction

Randomised controlled trials (RCTs) are the approach most often used in Phase II-III

clinical trials. In RCTs the probability of being assigned the experimental treatment

and the control (placebo or standard of care, SoC) is typically �xed throughout the

trial and often equal between each treatment arm. Hence, each intervention is given to

a similar number of patients (Villar et al., 2015a). This leads to the trial having large

power. However, if it emerges before the end of the trial that one treatment is more

e�ective, it would be sensible, from a patient's perspective, to allocate the remaining

patients to the estimated superior treatment, a feature not included in traditional

RCTs.

Using equal allocation makes sense in situations, where only a small proportion of

the patient population will enter the clinical trial as many patients outside the trial

will bene�t from it's results and the high power ensures that this happens quickly.

However, performing an RCT in a rare disease trial could mean that a large pro-

portion of the general patient population is entered into the clinical trial, stated by

31
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Williamson et al. (2017). Under these circumstances, there should be a larger em-

phasis on the bene�t to the trial population than on the general population. For

this reason, response adaptive randomisation (RAR) is a design that is particularly

suitable for clinical trials in rare diseases.

RAR trials use information from previous patients within the study, to decide

which treatment is allocated to the next patient or next group of patients. The treat-

ment allocation probability is varied to favour the estimated superior treatment. This

increases the number of successful outcomes in patients, as explained by Cheung et al.

(2006). RAR designs intend to balance learning (identifying the superior treatment,

if there is one) and earning (treating as many patients as e�ectively as possible).

They often include an initial `burn-in' period where a small number of patients are

allocated to each treatment with a �xed ratio (normally 1:1) (Thorlund et al., 2018).

This ensures that enough data is initially accumulated to allow an accurate initial

estimation of which treatment is superior.

RAR designs have been used in multiple clinical trials including a phase II trial

comparing Z-102 with placebo in patients with rheumatoid arthritis (NCT01369745).

There are, however, a few reasons why some medical professionals do not wish to use

a RAR design.

Common draw backs of using RAR designs include su�ering from low power and

not handling time trends well (Proschan and Evans, 2020). However, it is important to

remember the large variety of RAR designs and their vast subclasses. It is very hard to

generalise these issues for all RAR designs. In certain cases, Robertson et al. (2020)

shows that some RAR designs have higher power than equal allocation RCTs. In

addition, it has been noted that certain RAR designs, particularly those which protect

the allocation of patients to the control treatment, are not largely a�ected by time

trends (Robertson et al., 2020). Another assumption of many RAR designs, including

the Gittins index (Chakravorty and Mahajan, 2014), forward-looking Gittins index

(Villar et al., 2015b), and randomised play-the-winner (Rosenberger, 1999), is they
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assume each patient in the trial will react in the same way if given the same treatment.

In an era of personalised medicine, we know that this is not always the case. Some

people have certain characteristics which can cause them to react di�erently to the

same treatment.

We can use these patient characteristics (also known as covariates or biomarkers)

in order to allocate patients to a certain treatment in a RAR clinical trial (Villar

and Rosenberger, 2018). If one treatment is identi�ed to work better on a patient

with certain biomarkers, then the probability of allocating that treatment to the

next patient can be adjusted depending on their biomarkers. This leads to improved

outcomes for patients within the trial. A couple of di�erent such covariate adjusted

response adaptive (CARA) designs have been proposed, see Villar and Rosenberger

(2018) and Rosenberger et al. (2001b), who focus on methods for binary patient

outcomes. In particular, Thall and Wathen (2005) describe a multi-stage adaptive

design, which uses a Bayesian framework to adaptively randomise patients to two

treatments using their covariates, and includes rules for stopping the trial early at an

interim analysis. They use a probability model which accounts for the multi-stage

treatment and baseline covariates. This method focuses on binary covariates and

categorical patient responses only. Qiao et al. (2019) use a Bayesian logistic regression

model to assess the association between the patients' outcome and their covariates.

They then calculate the assignment probabilities, using the predicted probability of

each treatment producing a success in the next patient. This design is only applicable

when the patient's outcome is binary. Sverdlov et al. (2013) investigate two CARA

designs. One method focuses on obtaining the optimal allocation to minimise the

total expected hazard in a trial and the other approach looks at a design to optimise

a utility function which combines inferential and ethical criteria in a weighted fashion.

These designs are used in the survival setting only. A CARA design was used in the

phase II, multicentre trial, I-SPY 2, to screen experimental designs for breast cancer

(Rugo et al., 2016). This trial, among others, has shown RAR trials should not be
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banished to theory and are feasible in application.

The rest of the Chapter is organised as follows. We describe a clinical trial,

where the RAR proposal could be used in Section 2.2. In Section 2.3, we explain

our proposal and the regression methods investigated are described in Section 2.4.

The main contribution of this Chapter is in Sections 2.5 and 2.6, where we evaluate

the proposal in two simulation studies. The simulation study in Section 2.5 includes a

single, continuous biomarker and in Section 2.6, the simulation study is evaluated for

the case study described in Section 2.2. Finally, we note our conclusions and explore

further work in Section 2.7.

2.2 Case Study

The e�ect of catumaxomab in the treatment of malignant ascites was investigated by

Heiss et al. (2010), in a phase II/III study (NCT00836654). This study comprised

a population of 245 patients, but screening data was only available for 233 patients.

nC = 83 patients were given the control treatment and nE = 150 patients were given

catumaxomab (the experimental treatment). It showed the treatment of malignant

ascites due to di�erent epithelial cancers was improved by the use of catumaxomab

plus paracentesis. This treatment prolonged puncture-free survival (PuFS) when com-

pared with paracentesis alone (median, 46 vs 11 days, P < 0.0001; HR = 0.254). In

the original study PuFS was the primary endpoint and overall survival (OS) was

a secondary endpoint. The treatment catumaxomab versus paracentesis alone also

showed an improvement in OS (median, 72 vs 68 days, P = 0.0846; HR = 0.723),

although this was not found to be statistically signi�cant.

Catumaxomab was further investigated by Heiss et al. (2014) in regards to the

e�ect of biomarkers on the patient's outcomes. An exploratory post hoc analysis

was performed on the impact of several biomarkers. The two biomarkers: relative

lymphocyte count (RLC) and Karnofsky Index (KI) were shown to have a signi�cant
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impact on the OS of the patients given catumaxomab.

In a subgroup analysis the trial population was split into two subgroups depending

on their RLC value. In the subgroup of patients with an RLC > 13%, 100 were

given catumaxomab and 59 were given the control. In this subgroup, catumaxomab

was associated with a longer median OS when compared with the control, 109 days

compared with 68 days, respectively (P = 0.0072; HR = 0.518; 95% CI = 0.318 −

0.844). In patients with an RLC ≤ 13%, 50 patients were given catumaxomab and 24

patients were given the control. In this subgroup, there was no signi�cant di�erence in

the median OS between the two treatment groups (53 days in the catumaxomab group

vs 49 days in the control group, P = 0.2561; HR = 0.695; 95% CI = 0.368− 1.311)

(Heiss et al., 2014).

In another subgroup analysis the trial population was also split into two subgroups

depending on their KI value. In the subgroup of patients with a KI ≥ 70%, 129 were

given catumaxomab and 71 were given the control. In this subgroup, catumaxomab

was associated with a longer median OS when compared with the control, 84 days

compared with 62 days, respectively (P = 0.0053; HR = 0.567). In patients with

a KI < 70%, 21 patients were given catumaxomab and 12 patients were given the

control. There was no signi�cant di�erence in median OS between the two treatments

in this subgroup. The e�ects of the biomarkers on the treatment were calculated using

Cox proportional hazards models (Heiss et al., 2014).

The ability to predict the response to cancer therapy is an important area of clinical

research, and there have been many attempts to identify biomarkers which correlate

with a positive outcome in a patient (Heiss et al., 2014). Therefore, these biomarkers

could be used to choose the patients who will bene�t most from the treatment and

hence, can guide treatment decision making for personalised medicine.
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2.3 A Response Adaptive Design with Biomarkers

In a clinical trial, assume we haveK ≥ 2 treatments and a total of n patients. Patients

arrive into the trial sequentially, such that the outcome of patient i is known before

patient i + 1 enters the trial. For each patient i ∈ {1, 2, ..., n} assume further that a

biomarker xi is observed at baseline. In general, any covariate could be used, but in

our application we will use the terms biomarker and covariate interchangeably. In the

proposal, this biomarker, xi along with information from previous patients, is used to

determine which treatment that patient should be allocated to.

For each treatment k ∈ {1, 2, ..., K} we model the random outcome Yi,k of patient

i as a function of each patient's biomarker, thus, Yi,k = fk(xi). No assumption on the

form of the function is made. This outcome could be binary, such as the treatment

curing the patient or not, integer valued, such as the number of epileptic �ts in six

months, continuous, such as the percent change in bone mineral density at the lumbar

spine of a patient, or it could be the survival time of a patient (Yang and Zhu, 2002).

We assume only one treatment is given to each patient and the observed outcome

denoted by yi,k for patient i who is given treatment k, is known immediately.

An allocation rule, A, must be found such that k1, k2, ..., kn represents the treat-

ments allocated to patients 1, 2, ..., n, in order to maximise the number of patients

producing a successful outcome. The mean outcome in patient i, with given bio-

marker xi is fki(xi) for i ≥ 1 (Yang and Zhu, 2002).

The most favourable allocation policy, A∗, is when the treatments that are chosen

match the optimal choice of treatment k∗1, ..., k
∗
n. Here, k

∗
i is the treatment which pro-

duces the best outcome for patient i. This policy A∗ yields the optimal total outcome∑n
i=1 fk∗i (xi) (Yang and Zhu, 2002). Thus, the random variable, RV , measures the

performance of the allocation rule A relative to the ideal allocation rule A∗,

RV (A) =

∑n
i=1 fki(xi)∑n
i=1 fk∗i (xi)

.

If we knew these functions fk(x), when a new patient i arrives into the trial

we could �nd the assumed outcome of that patient for each treatment (given their
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biomarker), Yi,k = fk(xi) and assign patient i to the treatment, k∗, with the best

assumed outcome, max1≤k≤K(Yi,k).

In practice, we do not know fk(xi) nor do we know it's functional form. Conse-

quently, we will use a �exible regression method and the biomarkers and outcomes of

all previous patients who were given treatment k, x1:(i−1),k and y1:(i−1),k, to estimate

it with, f̂k(xi). We use the same regression method to estimate each function, f̂k(xi),

for each treatment k ∈ {1, 2, ..., K}.

Putting this together, there are two main parts of our proposal:

• Non-parametric estimation of each function, fk.

• Allocation rule to balance learning which treatment is superior and choosing

the estimated superior treatment.

The full algorithm (altered from what was proposed by Yang and Zhu (2002)) for

the biomarker adjusted RAR procedure is stated below.

Algorithm 2: RAR Algorithm

1. Allocate each of the �rst L×K patients who enter the trial to the K treatments

with equal probability, such that L patients are allocated to each treatment.

2. Given we know the biomarker xi of the next patient i, use the regression method

and information from previous patients to �nd the treatment with the best

estimated outcome (max1≤k≤K{f̂k(xi)}).

3. Select the estimated superior treatment with probability 1−(K−1)πi and select

the other treatment(s) with probability πi.

4. Use the observed outcome of patient i, yi,k, and their biomarker, xi, to update

the estimate f̂ki(x).

5. Repeat steps 2-4 for the next patients i+ 1, i+ 2, ..., n.
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The �rst step is the `burn-in' period, where L patients are assigned to each of the

K treatments (Lewis et al., 2013). After the burn-in period, the regression method

is used to estimate the superior treatment for the next patient. They initially have

L points to use to �rst estimate each treatment's outcome in patient (L × K) + 1,

f̂k(x(L×K)+1) ∀ k ∈ {1, 2, ..., K}. As more patients enter the trial, the regression

method has more information and their estimate of the superior treatment should

become more accurate. The sequence πi allows us to control the probability of each

patient receiving their estimated superior treatment. A full description of the regres-

sion methods investigated in this work are detailed in Section 2.4.

2.4 Regression Methods

A large number of potential regression methods can be used to estimate the functions

fk(x) ∀ k ∈ {1, 2, ..., K}. In this work we will explore a selection of these which are

subsequently described. Consider our patient outcome model, Yi,k = fk(xi). All of

the following regression procedures can be used when the biomarkers x1, ..., xi are

continuous or when they are binary or categorical.

2.4.1 Nearest neighbour Method

Let d(x1, x2) be a distance measure between the biomarkers of patients one and two,

x1 and x2. This distance measure is chosen based on the number of biomarkers being

investigated and their type. Let Jk(i) be the set of patients who have been allocated

to treatment k and are closest to patient i as de�ned by the distance measure, d (Yang

and Zhu, 2002).

For each treatment k calculate the mean of the observed outcomes for the |Jk(i)|

closest neighbouring points to xi (most similar patients to patient i),

1
|Jk(i)|

∑
j∈Jk(i) yj,k. If the biomarkers are categorical, they are transformed into dummy
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variables in order for the regression method to work.

The tuning parameters for this method are the distance measure, d(x1, x2) and the

number of neighbours, |Jk(i)|. The more nearest neighbours are used, the smoother

the estimated treatment outcome function is, f̂k(xi). However, the estimate will

struggle to detect small changes and it will not be as accurate in the tails. If too few

nearest neighbours are used, the estimated treatment outcome function, f̂k(xi), will

not be smooth, as it will react to small changes. The number of nearest neighbours

used should vary depending on how many patients ni,k have been assigned to treatment

k, when patient i enters the trial. The more patients on treatment arm k the more

information we have and the more nearest neighbours can be used.

2.4.2 Polynomial Regression

These models �t an M th order polynomial relationship between independent vari-

able(s) and a dependent variable described by Montgomery et al. (2012) in the equa-

tion: a0,k + a1,kxi + a2,kx
2
i + · · · aM,kx

M
i + εi,k, where εi,k is the error term, which is

assumed to be normally distributed with zero mean and �nite variance, σ2
i,k. If the

biomarkers are categorical, they are transformed into dummy variables in order for

the regression method to work.

The tuning parameter for this method is the order of the polynomial we �t to the

data. The higher the degree of the polynomial, the more likely it is to over-�t to

the data and the estimated treatment outcome function, f̂k(xi), will not be smooth

as higher orders will start to take into account the random error term. At the same

time, if the degree of the polynomial is too small, the estimated treatment outcome

function,f̂k(xi), will under-�t the data and the regression line will be smooth, but will

not detect the small changes.
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2.4.3 Spline Regression

Spline Regression is described as piecewise polynomial regression, by Huang (2003).

The data is split into S + 1 subsets (Friedman, 1991), and a polynomial function is

�tted to each subset. These polynomial functions can be of di�erent orders but they

must be constrained such that they are continuous where the subsets of the data meet,

as stated by Durrleman and Simon (1989).

The entire interval of biomarker values x is split into S + 1 separate subsets by

`knots', hence, S + 1 polynomial functions are estimated. We label the knots as x∗s ∀

s ∈ {1, 2, ..., S}. The polynomials hs,k ∀ s ∈ {1, 2, ..., S + 1} are then �tted together

into one continuous curve, f̂k(xi), for each treatment k ∈ {1, 2, ..., K}. Such that when

a patient's biomarker is smaller than the �rst knot, xi ≤ x∗1 then f̂k(xi) = h1,k(xi)

and when a patient's biomarker lies between the �rst and second knots, x∗1 ≤ xi ≤ x∗2

then f̂k(xi) = h2,k(xi), e.t.c. Thus, at each knot s ∈ {1, 2, ..., S}, where polynomial

functions hs,k and hs+1,k meet, the value hs,k(x∗s) must be equal to hs+1,k(x
∗
s) and the

�rst M − 1 derivatives of f̂k(xi) (where M is the order of the polynomials hs,k) must

be continuous (Friedman, 1991).

The three tuning parameters for this method are the number of knots and their

positions and the degree of the polynomial which is �tted between each pair of knots.

2.4.4 Random Forests

24.0882  19.625  14.375

33.3056      29

x2 < 3085.5   

x1 < 89   x1 < 115   

x2 < 2162   

  x2 >= 3085.5

  x1 >= 89   x1 >= 115

  x2 >= 2162

Figure 2.4.1: Example Regression Tree

Random Forests are the aggregate of a �nite

number of regression trees.

A regression tree is a method to create

a set of rules on independent variable(s), in

order to partition the data into separate sub-

groups. These subgroups should contain a

dependent variable of similar value to each

other but di�erent to the value of the depen-



CHAPTER 2. USING BIOMARKERS IN A RAR CLINICAL TRIAL 41

dent variable of other subgroups. Segal (1988) explains the regression tree chooses

the best independent variable to introduce a rule on, using goodness-of-split criterion,

in order to split the data into consecutively smaller groups. Each rule focuses on only

one independent variable and each rule has a binary outcome, as stated by Prasad

et al. (2006). This is seen in Figure 2.4.1, where each rule has a binary outcome, e.g.

x1 < 89 or x1 ≥ 89 and produces two subgroups. This splitting procedure is repeated

until a termination criterion is met, at which point the resulting subgroup of the data

(called a terminal node) will not be split further. The number of ways in which a

variable can produce a split depends on the type of variable.

Termination criteria include: have a maximum number of outcomes in each ter-

minal node or have a minimum improvement in the least squares criterion, resulting

from the best split. However, if these thresholds are too small then over-�tting can

occur, but if these thresholds are too large, under-�tting could occur (Segal, 1988).

Random forests can be used to combat the issues of under-�tting and over-�tting

in regression trees, as stated by Prasad et al. (2006). Instead of using the data to

create just one regression tree, in the random forest method bootstrap samples are

drawn from the data to construct multiple trees. Each bootstrapped sample produces

a regression tree, however, each `best' split in a tree is chosen from a randomised

subset of all independent variables. The trees are grown to maximum size and then

averaged. It is recommended by Oshiro et al. (2012) to use between 64 and 128 trees

in a random forest. The number of trees in a forest is the tuning parameter for this

method.

2.4.5 Gaussian Processes

Gaussian Processes are described by Williams and Rasmussen (2006) as a general-

isation of the Gaussian probability distribution. Multiple functions are drawn at

random from the prior distribution speci�ed by a particular Gaussian process. This

prior distribution represents our beliefs about the treatment outcome function, which
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we will observe. This Gaussian process prior is combined with a Gaussian likelihood

to calculate a posterior Gaussian process.

As patients enter the trial and are given treatment k, we collect their data (xi, yi,k)

and only consider sample functions which pass through these data points. Gaussian

processes calculate the mean values of all these sample functions. As more patients are

given treatment k, more data points can be used to estimate the treatment outcome

function, and hence, the number of sample functions which pass through these data

points will decrease.

Choosing the prior distribution can reduce the number of possible sample functions

that are considered. Other characteristics of the treatment outcome function such as

smoothness and it's stationarity can also be controlled via the covariance function in

order to reduce the number of possible sample functions. Here a covariance function

C(x1, x2) describes the relationship between two points (x1, fk(x1)) and (x2, fk(x2)), as

stated by Schulz et al. (2016). In most situations, we assume that, when the distance

between two points x1 and x2 is small, the two points are closely correlated, whereas,

when the distance between the two points is large, they are not closely correlated.

The covariance function must represent this.

We collect data points (xi,k, yi,k) for i ∈ {1, 2, ..., ni,k}, where ni,k is the number

of patients in the trial given treatment k, when patient i enters the trial. These

data points are collated into the matrix D1:(i−1),k = [x1:(i−1),k,y1:(i−1),k], the �rst

column of which consists of the biomarkers of all the patients assigned to treatment

k, when patient i enters the trial and the second column consists of all their observed

outcomes. The covariance function, C, is found for all combinations of the biomarkers

for these ni,k data points and stored in the square matrix C (Ebden, 2015).

When the next patient with biomarker xi arrives, the covariance function between

xi and all biomarkers of the ni,k data points already collected is foundC∗ = [C(xi, x1),

· · · , C(xi, xni,k)], and between xi and itself, C = C(xi, xi).

The joint multivariate Gaussian distribution of the vector of observed outcomes,
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y1:(i−1),k and the estimated function is then shown by Williams and Rasmussen (2006)

to be,

y1:(i−1),k

f̂k(xi)

 ∼ N

(
0,

C + σ2
i,kI C∗T

C∗ C

).
Here, σ2

i,k is the variance of the noise included in the observed patient outcomes and

I is the identity matrix, with 1's on the diagonal and 0 elsewhere.

From this we �nd the conditional estimate of the outcome for patient i, given

the data from previous patients, f̂k(xi) ≡ f̂k(xi) | y1:(i−1),k, for all treatments k

∈ {1, 2, ..., K} as, f̂k(xi) | y1:(i−1),k ∼ N(C∗(C + σ2
i,kI)−1y1:(i−1),k, C − C∗(C +

σ2
i,kI)−1C∗T ). If the biomarkers are categorical, they are transformed into dummy

variables in order for the regression method to work.

2.5 Simulation

We compare the proposal, using di�erent regression methods (described in Section

2.4) with an equal allocation RCT, in a number of two-treatment trial scenarios via

simulations. The detailed implementation, such as tuning parameters, for each re-

gression method are described in Section 2.5.1. A uniformly distributed biomarker xi

∈ [−100, 100], e.g. weight change measured in pounds and a continuous outcome, e.g.

percent change in bone mineral density, are used.

In the following scenarios we model each patient's outcome as a function of the

patient's biomarker plus a random error term, Yi,k = fk(xi) + εi,k. The function

used changes for each of the treatments, in each of the scenarios we investigate. In

addition, we assume the random error term, εi,k, has a zero mean and �nite variance,

σ2
i,k, which is dependent on the outcome, where a larger outcome, gives an increase

in variability. We investigated a constant random error term as well, however, it

produced qualitatively similar results and thus, we omit it from our comparisons.

Here, we are using simulations with only one biomarker. All the regression methods
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investigated can be adapted, to use multiple biomarkers to predict which treatment

will be superior for the patients who enter the trial. Random forests in particular can

handle more complex cases. However, as all methods should work in this simple one

biomarker simulation we use it as a starting point.

We use a simulation of size 10 000 for all regression methods except random forest,

where 1 000 simulations are used due to computational constraints. We use trial sizes

of n = 40, n = 80 and n = 120 to re�ect that we are considering the context of rare

disease trials.

The trial begins with the burn-in period, where the �rst 10 patients are randomised

to the two treatments in a 1:1 ratio. From the 11th patient onwards, each patient i

is assigned to their estimated superior treatment with probability 1 − πi. We de�ne

πi as a linearly decreasing sequence from π10 = 0.5 to πn = 0.1. In this way, as we

learn more about the treatments and get more con�dent in our estimation of which

treatment is `superior', we are more likely to choose the next patient's `superior'

treatment. However, there will always be at least a 0.1 probability of allocating a

`lesser' treatment to the next patient.

This simulation is performed in MATLAB (2016).

2.5.1 Speci�cations for Regression Methods

In the nearest neighbour method, we use the Euclidean distance to measure the sim-

ilarity between patients. We also use |Jk(i)| = 3 neighbours when the number of

patients given treatment k, when patient i arrives into the trial is ni,k ≤ 20. As there

are only a small number of patients in the trial at this time using 3 neighbours will

still allow a moderately good estimate, f̂k(xi) to be calculated. We use |Jk(i)| = 4

when the number of patients given treatment k, when patient i arrives into the trial

is 20 < ni,k ≤ 40 and we use |Jk(i)| = 6 when the number of patients given treat-

ment k, when patient i arrives into the trial is ni,k > 40. This keeps the estimate

f̂k(xi) smooth when we have a large number of patients in the trial. We used cross-
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validation to select how many neighbours we would use for our simulation. However,

in a di�erent application the best number of nearest neighbours could change.

For polynomial regression, we use the function `poly�t' in MATLAB with a poly-

nomial of degree 3 for practical reasons. In application, the relationship between a

biomarker and the e�ectiveness of a treatment will not normally be of a degree above

a cubic. However, it is still of a high enough degree that it can track a non-parametric

relationship.

In our proposal we use the interpolating cubic spline function `csapi' in MATLAB,

where each polynomial h is of order 3. For interpolating splines the M th (3rd) deriva-

tive of the function f̂k(xi) must be continuous at the �rst and last knots. We choose

S = 3 knots. The �rst knot is placed at the smallest recorded biomarker value for

each treatment k, when patient i enters the trial. The second knot is placed at the

biomarker which is 1 +
ni,k

3
(rounded up) next largest and the third knot is placed at

the biomarker which is 1 +
2ni,k

3
(rounded up) next largest. For our scenarios, S = 3

knots is best, however, this may not be the case for other scenarios.

We use the Gaussian process function `�trgp' in MATLAB, using the default set-

tings in our Gaussian processes.

We use the random forest function `TreeBagger' in MATLAB with 100 aggregated

regression trees, as it seems appropriate from the literature.

2.5.2 Scenarios

The performance of the proposed approach has been investigated under a range of

di�erent scenarios. Figure 2.5.1 displays the relationships between the patient's bio-

marker and their outcome for both treatments and the underlying functions are given

in Table 2.5.1.

In addition, Figure 2.5.1 shows the variability of the random error term, εi,k, is

dependent on the mean outcome of patient i, fk(xi). If the outcome changes due

to the patient's biomarker, then when the outcome is small, the random error term
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is small and when the outcome is large, the random error term is also large. If the

outcome of one treatment is independent of the biomarker, the error term for this

treatment is equal to the error size of the other treatment where the two treatment

outcomes cross.

Scenario Control Treatment Experimental Treatment

One 0 0

Two 20
(

1
exp(0.002x)+1

)
-10 20

(
1

exp(0.002x)+1

)
-4

Three 0 20
(

1
exp(0.02(x+8))+1

)
-10

Four 20
(

1
exp(0.02(x+5.2))+1

)
-10 20

(
1

exp(0.011x)+1

)
-10

Five 20
(

1
exp(0.01(x+16))+1

)
-10 20

(
1

exp(−0.01x)+1

)
-10

Six -5
8 for xi < −8

-8 for xi ≥ −8

Table 2.5.1: Simulation Scenario Summary

Biomarker, xi

O
ut

co
m

e

-10

-5

0

5

10
Scenario 1 Scenario 2 Scenario 3

-100 -50 0 50 100
-10

-5

0

5

Scenario 4

-50 0 50

Scenario 5

-100 -50 0 50 100

Scenario 6

Control data
Experimental data
Control function
Experimental function

Figure 2.5.1: Simulation scenarios

In scenario one, both treatments produce the same mean outcome for every patient,
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regardless of their biomarker. Scenario two investigates the presence of a prognos-

tic marker. A prognostic marker is a clinical or biological characteristic that gives

information on a patient outcome irrespective of which treatment they are given, ex-

plained by Sechidis et al. (2018). If a biomarker is prognostic then, the outcome of

both treatments increases (by a similar amount) as a patient's biomarker changes.

Scenario three investigates the presence of a predictive marker. A predictive

marker is de�ned by Sechidis et al. (2018) as a clinical or biological characteristic

that suggests the bene�t to the patient from the treatment, in comparison to their

state at baseline. If a biomarker is predictive then, the outcome from a treatment

is better if a patient has a certain biomarker. In scenario three, which treatment is

superior changes at a biomarker value of X = −8.

Scenario four investigates the presence of a marker that is both predictive and

prognostic. If a biomarker is predictive and prognostic then, the outcome of both

treatments will increase as the patient's biomarker changes, however, the rate at

which the outcome changes will di�er for di�erent treatments. In scenario four, the

two treatments cross at X = −11.

The last two scenarios also investigate the presence of a predictive marker. The

two treatments cross at a biomarker value of X = −8 in both scenario �ve and six.

In scenario six, the control treatment is not a�ected by the biomarker of the patient

and the experimental treatment is a step function. There is no gradual decrease in

the outcome as the patient's biomarker increases.

2.5.3 Performance Measures

In order to compare the di�erent regression methods we use the ethical performance

of each design, as well as their type I error and power, calculated using the t-test.

• Proportion of patients who are allocated to the superior treatment,

(here `superior' is interpreted as the treatment with the highest outcome in each

individual patient). This is an ethical measure which we want to maximise.
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In an equal allocation RCT we know this value will be roughly 0.5. In our RAR

proposal this measure should always be above 0.5, as long as the estimation of

which treatment is superior is accurate.

• Type I error

� Overall one-sided type I error, α1, is the probability you incorrectly identify

the experimental treatment produces a larger outcome than the control

treatment over the whole biomarker range, when it does not. Here, we

include all patients in the trial, in this calculation. We choose α1 = 0.025.

� Overall two-sided type I error, α2, is the probability you incorrectly identify

a di�erence between the two treatments over the whole biomarker range,

when a di�erence does not exist. Here, we include all patients in the trial,

in this calculation. We choose α2 = 0.05.

� Due to a patient's biomarker a�ecting which treatment is superior for them,

we will also investigate both the one-sided and two-sided type I error for

speci�c biomarker subsets of the data. We will investigate type I error

for patients with biomarkers xi ≥ 0, thus, we only include the patients in

the trial who have biomarkers xi ≥ 0, in this calculation. Additionally,

we investigate type I error for patients with biomarkers xi < 0, hence,

we only include the patients in the trial who have biomarkers xi < 0, in

this calculation. This re�ects the situation where we have prior knowledge

suggesting that the superior treatment changes at biomarker value x = 0.

We also investigate the type I error for patients with biomarkers xi ≥ X

and xi < X, where, X is the actual biomarker value where the superior

treatment changes, to provide a bench mark for the performance. We do

not investigate the type I error, with an estimated crossing point, X̂, as it

would not give a good approximation of the type I error, due to selection

bias, (Bauer et al., 2010). The one-sided type I error in these subgroups
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is chosen to be 0.0125 and the two-sided type I error in these subgroups is

0.025.

• Power

� Overall one-sided power, (1− β1), is the probability you correctly identify

the experimental treatment produces a larger outcome than the control

treatment over the whole biomarker range, when it does. Here, we include

all patients in the trial, in this calculation.

� Overall two-sided power, (1− β2), is the probability you correctly identify

a di�erence between the two treatments over the whole biomarker range,

when a di�erence does exist. Here, we include all patients in the trial, in

this calculation.

� Due to a patient's biomarker a�ecting which treatment is superior for them,

we will also investigate both the one-sided and two-sided power for speci�c

biomarker subsets of the data. We will explore power for patients with

biomarkers xi ≥ 0, xi < 0, xi ≥ X and xi < X. For each of these

calculations we only include patients in the trial who have biomarkers,

xi ≥ 0, xi < 0, xi ≥ X and xi < X. Here, X is the actual biomarker value

where the superior treatment changes.

2.5.4 Results

Ethical Measure:

The proportion of patients who receive the superior treatment for them as an individ-

ual, for each scenario with a sample size of n = 80 is shown in Figure 2.5.2. The left

plot shows the proportion of patients who are given their superior treatment, when

the sequence, πi, is used. The right plot gives the results for the proportion of patients

assigned to their superior treatment when the sequence is equal to zero, πi = 0 ∀ i ∈
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{1, 2, ..., n}, and the estimated superior treatment is allocated to the next patient with

a probability of 1, after the burn-in period. It is apparent that all regression methods

assign a higher proportion of patients to their superior treatment, than the 50% we

see using an RCT. The plots in Figure 2.5.2 also highlight that both the scenario and

the regression method used, a�ects the proportion of patients who are allocated to

their superior treatment. The regression methods are best at detecting which treat-

ment is superior in scenario two, due to the superior treatment not being a�ected by

the patient's biomarkers and the large di�erence in average outcome between the two

treatments, for all patient biomarkers. Other than scenario one, scenario four has

the smallest proportion of patients given to their superior treatment. This is due to

the small di�erence between the treatment outcomes for all patient biomarkers. For

the majority of scenarios three regression methods perform best: Gaussian processes,

polynomial regression and the nearest neighbour method. These methods assign a

maximum proportion of 0.6774 patients to their superior treatment, in scenario two,

when the linearly decreasing πi sequence is utilised. Splines tend to produce the

smallest proportion of patients assigned to their superior treatment.
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Figure 2.5.2: Simulated proportion of patients on their superior treatment, when the

sequence, πi, is a linear decrease and when the sequence, πi, is equal to zero for six

scenarios with a sample size of n = 80.
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When the sequence is kept equal to zero, πi = 0, there is no randomisation after the

burn-in period and the patients always receive the treatment which is estimated to be

superior for them. If we use this πi sequence within our proposal we can actually assign

many more patients to their superior treatment. We see in scenario two an increase

of roughly 0.2 in proportion of patients who are assigned their superior treatment,

between the left and right hand plots of Figure 2.5.2. The other scenarios do not

yield such an extreme increase, but all scenarios and all regression methods (with the

exception of the random forest in scenarios three and four) do produce an increase

in proportion of patients allocated to their superior treatment, when the sequence is

equal to zero, πi = 0 ∀ i ∈ {1, 2, ..., n}.

As sample size increases, we see in Figure 2.5.3 that the proportion of patients

assigned to their superior treatment also increases. When there are more patients

in the trial there is more information and hence, the regression methods should be

better at detecting which treatment is superior, supported by Jenkins and Quintana-

Ascencio (2020).
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Figure 2.5.3: Simulated proportion of patients on their superior treatment, when the

trial size is n = 40 , n = 80 and n = 120 for 6 scenarios.
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One-sided Type I error and Power:

An RCT, with equal allocation, has always been thought to give large power, as it

assigns equal numbers of patients to each treatment. However, this is not always

the case. Figure 2.5.4 represents the overall type I error for scenario one and overall

one-sided power for scenarios two-six.

For scenario two, the experimental treatment is superior for all biomarkers, hence,

the power for all methods is high. For scenario three, due to the crossing point being

at X = −8, the control treatment is superior for the majority of biomarkers. Our

proposal adjusts for this and still allocates most patients to their superior treatment,

leading to a better ability to detect a di�erence between the treatment arms. For

scenarios four and �ve, due to the crossing point being negative, for a small majority

(55%) of biomarkers the experimental treatment is superior. In scenario four the

di�erence is very small, hence, the power of all methods is low. The RCT has power

of roughly 0.2 for scenario �ve for a sample size of n = 80, as the di�erence between

the two treatments is slightly larger. All the regression methods produce a very similar

power to the RCT method for scenario �ve. In scenario six all the regression methods

produce slightly higher power than the RCT.
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Figure 2.5.4: Simulated one-sided type I error and overall power, when the trial size

is n = 40, n = 80 and n = 120 for 6 scenarios.

As expected, with increasing sample size the power for all methods increase, al-



CHAPTER 2. USING BIOMARKERS IN A RAR CLINICAL TRIAL 53

though the order of performance remains the same (see Figure 2.5.4).

In scenario three and scenario six the regression methods produce a higher power

than an RCT in Figure 2.5.4. This is due to the majority of patients who are assigned

to the experimental treatment in the regression methods, being biomarker negative

and thus, increasing the overall average outcome. Whereas, the patients assigned to

the experimental treatment by the RCT are a mixture of patients with high and low

biomarkers. Therefore, the mean outcome of patients on the experimental treatment

will be closer to the mean outcome on the control treatment for the RCT, when com-

pared with the regression methods. This is why the one-sided power of the adaptive

designs is higher than the one-sided power of the RCT for scenario three. A similar

outcome is observed for scenario six.

However, we cannot only look at the overall power, as many of the scenarios

have a crossing point, X, where the superior treatment changes. In the scenarios

investigated, splitting the data at xi = 0 produced a similar power to that produced

when the data was split at the actual crossing point (see Figure 2.5.5 compared to

2.5.6). Thus, estimating the crossing point at xi = 0 is a good approximation to the

actual crossing point. However, if the actual crossing point is further away from zero

at for example, X = −55, then splitting the data at zero will not give a good estimate

of the power produced when the data is split at the actual crossing point.

The one-sided power produced for biomarker positive patients was slightly higher

for the RCT than the regression methods for scenario four. This power increased

as the sample size increased, here the extra patients make a di�erence to the power

as the experimental treatment produces outcomes which are only larger than those

produced by the control treatment by a small amount. However, the power produced

by the regression methods were very similar to that produced by the RCT for all

other scenarios. This power did not increase as sample size increased. This was either

due to the power already being very large due to the di�erence in outcome of the

two treatments being large (seen in scenarios two and �ve) or it was because the
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experimental treatment did not produce a larger outcome in these biomarker positive

patients and, hence, the extra patients had no e�ect on the power produced (seen in

scenarios three and six). This can be seen in Figures 2.5.5 and 2.5.6.
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Figure 2.5.5: Simulated one-sided type I error and power for biomarkers xi ≥ 0, when

the trial size is n = 40, n = 80 and n = 120 for 6 scenarios.
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Figure 2.5.6: Simulated one-sided power for biomarkers xi ≥ X, when the trial size is

n = 40, n = 80 and n = 120 for 6 scenarios.

The one-sided power produced in patients who are biomarker negative, is shown

below, in Figure 2.5.7, which is a good approximation for the one-sided power pro-

duced when the data was split at the actual crossing point, Figure 2.5.8. Here, the

increase in sample size saw a small increase in power for scenario three and the power

for all other scenarios stayed fairly constant.
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Figure 2.5.7: Simulated one-sided type I error and power for biomarkers xi < 0, when

the trial size is n = 40, n = 80 and n = 120 for 6 scenarios.
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Figure 2.5.8: Simulated one-sided power for biomarkers xi < X, when the trial size is

n = 40, n = 80 and n = 120 for 6 scenarios.

Two-sided Type I error and Power:

When we investigate the overall two-sided type I error and power, Figure 2.5.9 shows

more of a di�erence between the methods. It shows the RCT and the regression meth-

ods produce a similar power for scenarios two and �ve. However, in scenarios three,

four and six, the regression methods all produce a higher power than the RCT. The

di�erence between the regression methods vary for each sample size, n, investigated.

The increase in sample size causes an increase in power for scenarios three-six. This
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increase is particularly large for scenario four. The increase in sample size has little

e�ect on the power for scenario two. For scenarios three, four and six Gaussian pro-

cesses, polynomial regression and the nearest neighbour method produce the largest

power.
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Figure 2.5.9: Simulated two-sided type I error and overall power, when the trial size

is n = 40, n = 80 and n = 120 for 6 scenarios.

If we only take into account patients who are biomarker positive, Figure 2.5.10

shows a dip in power for scenario four. This is due to scenario four having the

smallest di�erence between the two treatments for biomarker positive patients. The

power produced by the RCT is 0.2 larger than the power produced by the regression

methods, for this scenario, when the sample size is n = 80. As the sample size

increases the power of scenarios three-�ve also increases.
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Figure 2.5.10: Simulated two-sided type I error and power for biomarkers xi ≥ 0,

when the trial size is n = 40, n = 80 and n = 120 for 6 scenarios.

Figure 2.5.11 shows the power of the trial for only biomarker negative patients,

where the RCT produces the smallest power for scenario four. As discussed previously

this is due to the regression methods assigning more people to their better treatments

and hence, producing a larger di�erence in the mean outcome of the two treatments.

Similarly to above, as the sample size increases the power of scenarios three-�ve also

increases. The power of scenarios two and six is consistently high for all sample sizes

investigated.
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Figure 2.5.11: Simulated two-sided type I error and power for biomarkers xi < 0,

when the trial size is n = 40, n = 80 and n = 120 for 6 scenarios.

In the scenarios investigated, splitting the data at xi = 0 produced a similar power
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to that produced when the data was split at the actual crossing point (see Figures

2.5.10 and 2.5.11 compared to Figures 2.5.12 and 2.5.13). Additionally, a similar

increase in power is observed as the sample size increases.
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Figure 2.5.12: Simulated two-sided power for biomarkers xi ≥ X, when the trial size

is n = 40, n = 80 and n = 120 for 6 scenarios.
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Figure 2.5.13: Simulated two-sided power for biomarkers xi < X, when the trial size

is n = 40, n = 80 and n = 120 for 6 scenarios.

2.6 Case Study Simulation

To highlight the versatility of the proposal, we now also illustrate its utility on the basis

of our motivating example described in Section 2.2. Here, the outcome is time to death
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and we investigate two binary biomarkers. Four di�erent scenarios are considered

and, as in the simulation above, a simulation size of 10 000 is used for all regression

methods except for splines and Gaussian processes, where 1 000 runs are used due to

their computational burden.

The following simulations, focus on a trial size of n = 233 as in the study

(NCT00836654) and we further investigate the case study using sample sizes n = 40

and n = 80 to determine how a smaller trial size would a�ect the proposal. We will

compare the average outcome of the two treatments, the control and the experimental

treatment (catumaxomab), using the logrank test to �nd the two-sided power for the

di�erent regression methods.

We assume that the two biomarkers are binary, such that if a patient's RLC ≤

13%, their �rst biomarker value is xi,1 = 1 and if their RLC > 13%, their �rst

biomarker value is xi,1 = 2. If a patient's KI < 70%, their second biomarker value

is xi,2 = 1 and if their KI ≥ 70%, their second biomarker value is xi,2 = 2. We

assume that the two biomarkers are independent and, using the results from Heiss

et al. (2014), the probability of a patient's RLC > 13% = 0.6824, and the probability

of a patient's KI ≥ 70% = 0.8584.

Here, the outcome variable is overall survival (OS), thus, our assumption of know-

ing the outcome of patient i before patient i + 1 arrives no longer holds. Hence, we

incorporate censored data into our simulation and the regression methods are adjusted

to handle censored data. We include censoring due to drop out and not knowing the

survival time of patient i before patient i+ 1 arrives into the trial. The speci�cations

for each regression method are described in Section 2.6.1. We do not investigate the

random forest regression method here, due to us predicting the outcome of patients

based on two binary biomarkers. This restricts the size and possible variety of the

trees produced.

The study lasted roughly 1250 days (Heiss et al., 2014), it included 233 patients,

so on average the patients arrived every 1250
233

= 5.36 ≈ 5 days. In the simulation,
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we assume the time between each patient's arrival time is taken from the Poisson

distribution with mean �ve. After the last patient is allocated a treatment, each

patient is followed up for an extra six months. At this time if their death has not

been recorded they are assumed censored. We also included censoring due to drop

out in the simulation. The rate at which patients drop out of the trial varies between

scenarios and is detailed below. If patient i was assigned to be censored due to drop

out, the censored time was chosen from a uniform distribution between 1 and their

previously assigned OS outcome. The censored and OS times are integer values, to

represent in application deaths are normally recorded per day, rather than per hour

or minute.

This simulation study is performed in RStudio (2019) for the nearest neighbour

method, polynomial regression method and spline method and MATLAB (2016) for

the Gaussian processes method.

2.6.1 Speci�cations for Regression Methods

The nearest neighbour method is adapted to take account of the two binary biomarkers

and the censored data. We use the Euclidean distance to measure the similarity

between patients. If two patients are an equal distance from a third patient, the one

with the least common combination of biomarkers is taken to be `closer'. Here we

used cross validation to �nd the number of nearest neighbours which produces the

most patients on their superior treatment. We used |Jk(i)| = 3 neighbours when

there were 25 patients or less assigned to a treatment k, when patient i enters the

trial (ni,k ≤ 25), |Jk(i)| = 5 when 25 < ni,k ≤ 50, |Jk(i)| = 7 when 50 < ni,k ≤ 75,

|Jk(i)| = 9 when 75 < ni,k ≤ 100, |Jk(i)| = 11 when 100 < ni,k ≤ 125, |Jk(i)| = 13

when 125 < ni,k ≤ 150 and |Jk(i)| = 15 when 150 < ni,k. A Cox proportional hazards

regression model (we used the function `coxph,' Therneau and Grambsch (2000), in

R) is then �tted to each treatment using only the |Jk(i)| nearest neighbours. This

model and the next patient's biomarkers are used to calculate the median outcome



CHAPTER 2. USING BIOMARKERS IN A RAR CLINICAL TRIAL 61

of the next patient for both treatments. If the median cannot be found for either

treatment then, the 95% lower con�dence bound is used for both treatments instead.

In polynomial regression, the two binary biomarkers are used (if the function

`coxph,' Therneau and Grambsch (2000), in R deems them to be signi�cant in the

model) to produce a Cox proportional hazards regression model, for each treatment.

This model and the next patient's biomarkers are used to calculate the median out-

come of the next patient for both treatments. If the median cannot be found for either

treatment then, the 95% lower con�dence bound is used for both treatments instead.

The spline method uses the `sshzd' (Chong, 2014) function in R to produce

ANOVA models to estimate the Cox proportional hazards regression model for each

treatment. The two biomarkers are used in the method if the function deems them

to be signi�cant in the model. The splines produced are linear and the number of

knots in the model are chosen as max(30, 10n
2/9
i,k ) and are equally spaced. The hazard

function of each treatment is calculated using the next patient's biomarkers. The

treatment with the higher predicted hazard ratio is estimated to be worse.

The Gaussian processes method uses the Gaussian processes package which does

not adjust for censored data, `�trgp' in MATLAB. We only used the data which was

uncensored in the regression method, at the time each patient arrived into the study,

to predict their superior treatment. We used the default settings for this function.

2.6.2 Scenarios

The four scenarios we investigate are:

1. No treatment e�ect for all patients. Neither RLC nor KI are signi�cant biomark-

ers. We simulate the outcome of all patients from an exponential distribution

with mean 98 days for both treatments, as the median OS for the control treat-

ment is reported as 68 days by Heiss et al. (2014). 20% of the patients assigned

to the control treatment and 20% of the patients assigned to the catumaxomab

treatment were censored due to drop out.
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2. No treatment e�ect for all patients. We simulate the outcome of all patients

from an exponential distribution with mean 98 days for both treatments, as

the median OS for the control treatment is reported as 68 days by Heiss et al.

(2014). 20% of patients assigned to the control treatment and 8% of the patients

assigned to the catumaxomab treatment were censored due to drop out. This

was estimated from the reported censoring rates and hazard ratios (HR) (Heiss

et al., 2014).

3. Treatment increases OS for all patients, where the RLC is a predictive bio-

marker. The KI is not a predictive biomarker. We simulate the outcomes

of the control treatment from an exponential distribution with mean 98 days.

However, catumaxomab OS times are generated using an exponential distri-

bution with mean 141 days when a patient has RLC ≤ 13% and with mean

189 days when a patient has RLC > 13%. These means are calculated us-

ing the reported hazard ratios (HR=0.695 for RLC ≤ 13% and HR=0.518 for

RLC > 13% ) (Heiss et al., 2014). 20% of patients assigned to the control

treatment and 8% of the patients assigned to the catumaxomab treatment were

censored due to drop out.

4. Both the RLC and KI are predictive biomarkers. We simulate outcomes from

the control treatment from an exponential distribution with mean 98 days.

Whereas, the experimental treatment gives outcomes from an exponential dis-

tribution with mean 90 days when a patient has RLC ≤ 13% and KI < 70,

with mean 160 days when a patient has RLC ≤ 13% and KI ≥ 70, with mean

170 days when a patient has RLC > 13% and KI < 70 and with mean 200 days

when a patient has RLC > 13% and KI ≥ 70. These means are based on the

reported hazard ratios (HR=0.695 for RLC ≤ 13%, HR=0.518 for RLC > 13%,

HR=0.567 for KI > 70% and HR=0.582 for overall treatment e�ect), shown by

Heiss et al. (2014). 20% of patients assigned to the control treatment and 8%
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of the patients assigned to the catumaxomab treatment were censored due to

drop out.

2.6.3 Results

Figure 2.6.1 displays the three di�erent performance characteristics, for our three

di�erent sample sizes. Here, the �rst column shows the results of our simulation

when the sample size is n = 40, the second column displays the results when the

sample size is n = 80 and the �nal column has a sample size of n = 233. The top

row displays the proportion of patients given their superior treatment, the middle

row shows the proportion of patients allocated to catumaxomab and the bottom row

indicates the type I error and power of each scenario for each of the three sample sizes

investigated.

The �rst row in Figure 2.6.1 shows all the regression methods produce a higher

proportion of patients assigned to their superior treatment than the equal allocation

RCT, and each regression method tends to assign more patients to their superior

treatment as the sample size increases. The proportion of patients on their superior

treatment is at most 0.554 when using the spline regression method and the sample

size is n = 233. The methods which perform best are splines, Gaussian processes and

polynomial regression. Interestingly, Gaussian processes and polynomial regression

also performed best in the simpler scenarios investigated in Section 2.5 and hence, are

a robust choice to use.

The second row in Figure 2.6.1 indicates the maximum proportion of patients on

catumaxomab to be 68.2% for scenarios three and four, when the sample size is n =

233. Catumaxomab is on average the superior treatment for all patients in scenario

three and for three out of four subgroups of the trial population in scenario four.

However, when we look at the �rst row, less than 55% of patients are assigned their

superior treatment by splines in scenario three and four. This di�erence is caused by

the variation within the data produced. Even though, in scenario three catumaxomab
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was the superior treatment on average, due to simulating the patient's outcomes from

exponential distributions, sometimes the control treatment was actually better for

individual patients. This can be thought of as the patients possessing other biomarkers

(which we have not accounted for in the study) which cause them to produce a better

outcome on the control treatment. The second row indicates, as the sample size

increases, all regression methods assign more patients to the catumaxomab treatment

for scenarios three and four, with Gaussian processes having the largest increase.

Even though scenario two has treatments which produce the same outcomes on

average, most regression methods do not assign patients to both treatments equally.

Splines assign many more patients to catumaxomab in scenario two than in scenario

one. Whereas, polynomial regression assign fewer patients to catumaxomab in sce-

nario two than in scenario one. This di�erence is due to the di�erent censoring rates

for each treatment (20% on the control and 8% on catumaxumab) in scenario two.

As the sample size increases, the more unbalanced the treatment allocation becomes

for all regression methods. However, splines produce the value furthest from 50% and

Gaussian processes produce the value closest to 50%.

The bottom right plot of Figure 2.6.1 indicates all methods result in large power in

scenarios three and four, when the sample size is large. The smallest power, produced

by polynomial regression, is still above 0.8. Traditionally, trial designs should have a

theoretical minimum power of 0.8 for them to be considered a feasible design for an

actual clinical trial. Hence, all methods produce a large enough power to be a feasible

trial design when the sample size is n = 233. As the sample size decreases, the power

of all regression methods decrease. Gaussian processes in particular, lose the most

power.
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Figure 2.6.1: Simulated proportion of patients on their superior treatment, on catu-

maxomab and type I error and power of the trial for four scenarios with a sample size

of n = 40, 80 & 233.

One challenge of CARA designs is the selection of biomarkers, i.e. including extra

biomarkers that are non-informative. In the four scenarios above, both biomarkers,

RLC and KI, were assumed to be predictive and were used to assign patients to their

superior treatment. This assumption was met in Scenario four where both RLC and

KI were truly predictive. In Scenario three, however, only RLC was predictive and

including KI in the model to allocate patients was unnecessary. When comparing the

results of these two scenarios, however, we �nd that there is not a large di�erence in
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patient bene�t or power. This suggests that our method still performs well even if

non-informative biomarkers are included.

2.7 Conclusions and Further Work

Thus far, RAR designs have not been used often in clinical trials, due to their lack

of ability to produce a high power. However, rare diseases appear to be the most

promising application area where RAR designs can be used. In this work we have

introduced a personalised RAR approach that can be utilised with a large range of

outcome types (including binary, categorical, continuous or survival) and biomarker

types (including binary, categorical and continuous).

A key component of the proposal is the regression methods used. We found that

Gaussian processes performed well for all situations investigated. It produced the best

performance in the simulation in Section 2.5, when a single continuous biomarker was

used. Although, it did require a larger sample size to perform well in more complex

settings (shown in Section 2.6, when two binary biomarkers were used to predict a

survival outcome). In the more complex setting, when the sample size was small,

polynomial regression performed better. Polynomial regression also performed well

when a single continuous biomarker was used. Therefore, we recommend Gaussian

processes as the regression method of choice in simple situations or when the sample

size is large, otherwise we recommend polynomial regression.

A key challenge of CARA designs is the selection of informative biomarkers. While

there is some suggestion that our proposal still performs well when non-informative

biomarkers are included, a more parismonious approach might be preferred due, for

example, to cost or invasiveness of measurement. The main challenge is that control

of error rates is di�cult when selection is based on the same data. Therefore, either

two-stage procedures (similar to that suggested by Freidlin and Simon (2005)) are

used or an exploratory framework (i.e. without strict error control), as in Chen et al.
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(2012), is utilised (see also the review by Ondra et al. (2016)).

Besides the regression method used, the proposed RAR design depends on the

chosen sequence, πi, which is a linear decrease from π10 = 1
K

to πi = 1
10
. Future

investigations will explore other sequences of πi, such as an exponentially decreas-

ing sequence, to evaluate if we can assign more patients to their superior treatment

without decreasing the power of the design.

The proposal could be extended to include biomarkers of di�erent types. For

example, we could include several continuous, categorical and binary biomarkers with

complex non-parametric relationships with the outcome variable, and explore how this

would a�ect the proposal. However, even though each regression method explored in

the above simulations has the potential to model more complex relationships, this is

not necessarily useful in practice. In application the number of known markers for

a disease will be small. Therefore, if the proposal were to be used in a clinical trial,

only a small number of biomarkers would be included in the regression methods.

Finally, in all scenarios investigated, we consider a continuous outcome and a sur-

vival outcome. This proposal could be extended to include a surrogate endpoint. A

surrogate endpoint is de�ned by Aronson (2005), as `a biomarker intended to sub-

stitute for a clinical endpoint'. These surrogate endpoints are used, because they

are more practical to measure. They occur earlier in time than the actual primary

endpoint, and they give you an idea of what the primary outcome will actually be in

that patient.



Chapter 3

Using biomarkers and historical data

to allocate patients in a response

adaptive clinical trial

3.1 Introduction

The current gold standard for phase II-III clinical trials is the randomised controlled

trial (RCT), Yndigegn et al. (2018). RCTs are prospective studies, which examine

relationships between an intervention and an outcome (Hariton and Locascio, 2018).

They often compare a control treatment (placebo or standard of care, SoC) with

a new experimental treatment and allocate patients to both treatments with a �xed

probability, normally equal (Cipriani and Geddes, 2009). However, this is only ethical

if equipoise is assumed (Miller and Jo�e, 2011).

If it becomes apparent during the study, that one treatment is more e�ective, it

would be bene�cial, from a patient's perspective, to assign the remaining patients to

the predicted superior treatment. In rare diseases, where many of the total patient

population might be recruited into the trial, there should be a larger emphasis on the

bene�t to the trial population.

68
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This is a motivation behind response adaptive randomisation (RAR) designs.

Atkinson and Biswas (2019) suggest that it is most ethical to ensure as many pa-

tients as possible receive the treatment which is thought to be superior. Many RAR

designs start with an initial burn-in period, where patients are assigned to all treat-

ments equally (Thorlund et al., 2018). Then, as more patients enter the trial and

more information is accumulated, the allocation probabilities are skewed in favour of

the estimated superior treatment based on this new information. For an example of

a RAR design being used in a clinical trial, see the I-SPY 2 trial (Harrington and

Parmigiani, 2016).

There are a number of limitations associated with RAR designs. Chow (2014)

indicates that bias can be introduced through adaptive designs, which can adversely

a�ect decision making during the trial. Korn and Freidlin (2011) explain the prob-

lems with study interpretation if there are time trends in the patients entering the

trial, while Proschan and Evans (2020) advise that many RAR designs su�er from

low power. However, it is important to note the varying design of RAR trials and

their many subclasses. Although, these are limitations of certain RAR designs, there

are other RAR designs which combat these issues and we should be careful not to

generalise these issues to all RAR designs, as highlighted by Villar et al. (2021). For

example, the RAR designs which are power orientated, such as the controlled forward

looking Gittins index (CFLGI) (see Villar et al., 2015b) do not tend to su�er from

time trends (see Villar et al., 2018) and there are instances of RAR designs producing

a larger power than equal allocation RCTs (see Schultz et al., 2019). For an in-depth

summary of common `established limitations' of RAR designs and which RAR designs

combat these limitations see Robertson et al. (2020).

As the pharmaceutical industry moves further towards personalised medicine, clin-

ical trials must do the same (Harvey et al., 2012). Many RAR designs can be extended

to include covariates and are called covariate adjusted response adaptive (CARA) ran-

domisation designs. A number of CARA designs have been proposed, by Villar and
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Rosenberger (2018), Zhang et al. (2007) and Jackson et al. (2021), to list a few.

Not only can we use the patient data within the study to reduce the number of

patients in a clinical trial allocated to a lesser treatment, but we can also use infor-

mation from previous studies to help inform the calculation of treatment allocation

probabilities (TAP). Often historical data sets for control treatments (SoC or placebo)

are available from previous studies. Additionally, if a new experimental treatment has

reached phase II or III, then there are data available from previous phase I (and phase

II) studies. These data are often used to inform the power and sample size calcula-

tions (see Li et al., 2020). Additionally, we can use these historical data as extra

information, to inform the adaptive TAP from the start of the trial.

There has been much research into the use of historical control data within clinical

trials. Hobbs et al. (2013) propose an adaptive trial design aimed to balance total

information among study treatments. The TAPs are adapted as a function of the

e�ective historical sample size. They use interim analyses to assess the heterogeneity

of the historical and current controls and then use a permuted block randomisation

procedure, which favours the experimental treatment, if both sets of control data are

deemed to be homogeneous. This is done for time to event endpoints and incorporates

patients' covariates. Kim et al. (2018) also suggest an adaptive design, which uses the

e�ective historical sample size to quantify the borrowed information on the control

treatment. They modify the TAPs using the doubly adaptive biased coin design (see

Hu et al., 2008) and only prioritise allocation to the experimental treatment if it is

superior. This is done for time to event endpoints and incorporates binary patient

covariates. For a broad overview of incorporating historical data in clinical trials see

Viele et al. (2014) and Ghadessi et al. (2020).

In theory, the use of historical trial data could negate the need of an initial burn-in

period for RAR or CARA designs and increase the proportion of patients receiving

the superior treatment. However, we must proceed with caution. The historical data

may not be completely representative of the current patients' characteristics or their
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outcomes, due to time trends in patient characteristics and in patient responses to

SoC treatments, see Sheikh et al. (2020). If the historical data are not representative

of the current patient data, the allocation could be skewed in favour of the wrong

treatment and in extreme scenarios the majority of patients could be assigned to the

lesser treatment.

In this Chapter, we expand on the CARA randomisation design described in Chap-

ter 2, by including historical trial data. This leads to an increase in the maximum

potential patient bene�t, over not using historical trial data, for certain situations.

The proposal described in Section 3.3 can be adapted and used to incorporate histor-

ical data on the control treatment, the experimental treatment or both treatments.

3.2 Case Study

The Dose Ranging E�cacy And safety with Mepolizumab in severe asthma (DREAM)

trial (NCT01000506) investigated the e�ect of mepolizumab on asthma patients (Pa-

vord et al., 2012). They assessed how three doses of intravenous mepolizumab a�ected

the frequency of asthma exacerbations in the 52 weeks following the �rst infusion of

treatment and concluded that mepolizumab reduced their risk. They further explored

the e�ects of a number of baseline covariates on the treatment and found that an in-

crease in the blood eosinophil count at baseline was associated with a decrease in

frequency of asthma exacerbations in the treatment groups, but it was associated

with an increase in their frequency in the placebo group.

The DREAM study recruited and analysed a total of n = 621 patients within the

intention to treat (ITT) population. This trial allocated patients equally between the

placebo (nC = 155) and the experimental treatment groups: nE,1 = 153 on 75mg

of mepolizumab, nE,2 = 152 on 250mg of mepolizumab and nE,3 = 156 on 750mg

of mepolizumab. The placebo group experienced a rate of 2.4 clinically signi�cant

exacerbations per patient per year, whereas the three mepolizumab doses (75mg,
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250mg, 750mg) experienced rates of 1.24, 1.46 and 1.15, respectively. This study was

a multicentre, double-blinded, phase IIb/III study (Yancey et al., 2017) which was

conducted from November 2009 through to December 2011.

The key �ndings and characteristics from the DREAM study were utilised by

Ortega et al. (2014) in their MENSA study (Mepolizumab as Adjunctive Therapy in

Patients with Severe Asthma, NCT01691521), which compared the subcutaneous and

intravenous administration of mepolizumab. They evaluated the frequency of asthma

exacerbations in the 32 weeks following the �rst treatment dose was administered

and they expressed this frequency as the rate of exacerbations per patient per year.

They concluded administering mepolizumab to asthma patients decreased their rate

of exacerbations. Furthermore, Ortega et al. (2014) found an enhanced response to

mepolizumab in patients with a larger blood eosinophil count at screening.

Ortega et al. (2014) recruited n = 576 patients, as the ITT population. Of these

patients, nC = 191 patients were allocated the placebo dose, nE,1 = 191 were allo-

cated to the 75mg intravenous dose of mepolizumab and nE,2 = 194 were assigned

a 100mg subcutaneous dose of mepolizumab. The estimated rate of clinically signif-

icant exacerbations was 1.74 per patient per year in the placebo group, whereas the

two doses of mepolizumab, 75 mg and 100mg, gave estimated rates of 0.93 and 0.83

per patient per year, respectively. This multicenter, double-blind, phase III trial took

place between October 2012 and January 2014.

These two studies had similar eligibility criteria, similar patient characteristics,

both were placebo controlled double-blind studies and used similar doses of mepo-

lizumab. These two trials ful�ll the criteria set out by Pocock (1976), to ensure

su�cient comparability to reduce the bias when analysing the two data sets together.

Due to their similarities, Ortega et al. (2014) could have formally included the data

from (Pavord et al., 2012) as historical data in their MENSA study. Therefore, we will

use these studies to demonstrate our proposal in Section 3.6, as they are likely to yield

similar results and hence, will give representative historical data. We use the DREAM
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trial as our historical data set and demonstrate how our CARA design would allocate

patients in the MENSA study based on their biomarker, blood eosinophil count.

3.3 A Response Adaptive Design with Biomarkers

using Historical Data

Assume a clinical trial has K = 2 treatments, including a control treatment, and a

total sample size of n patients. Additionally, assume each patient, i ∈ {1, 2, ..., n},

arrives into the trial sequentially, and their biomarker, xi ∀ i ∈ {1, 2, ..., n}, is recorded

at baseline. In this proposal, any covariate could be used, but we will use the terms

covariate and biomarker interchangeably. We focus on a continuous biomarker, for

example, one could use a patients' blood eosinophil count. Furthermore, assume nH,k

historical patients were given treatment k in a previous trial. There is a baseline

biomarker, x′i′ ∀ i′ ∈ {1, 2, ..., nH,k}, and outcome, y′i′,k ∀ i′ ∈ {1, 2, ..., nH,k}, available

for each historical patient at the start of the current clinical trial.

The outcome, Yi,k, of each current patient, i ∈ {1, 2, ..., n}, on their assigned

treatment, k ∈ {C,E}, is modelled as a function of the patient's biomarker summed

with a random error term,

Yi,k = fk(xi) + εi,k. (3.3.1)

This is due to the heterogeneity of each patient within the trial and how patients will

not react to the same treatment in exactly the same way. The random error term is

assumed to be normally distributed, εi,k ∼ N(0, σ2
i,k) with zero mean and variance,

σ2
i,k. No assumption is made on the form of the functions, fk ∀ k ∈ {C,E}. We

focus on a continuous outcome, for example the annual rate of clinically signi�cant

exacerbations. Assume the outcome, yi,k, of patient i, assigned to treatment k is

observed before patient i+ 1 arrives into the trial.

We seek to determine an allocation rule, such that all patients within the trial are
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assigned to one treatment, and in a way that the bene�t to all the patients within

the study is maximised. Patient bene�t is de�ned as the proportion of patients in

the study who are given the superior treatment on average. We seek to �nd an al-

location rule in order to maximise, max
∑n

i=1 gi/n, where gi = 1 if the treatment

given to patient i, ki, is superior on average and gi = 0 if it is not superior on av-

erage. The treatment, ki, is superior on average if: fki(xi) ≥ fj(xi) ∀j ∈ {C,E}.

This would be easier if the outcome function, fk(x), for each treatment, k ∈ {C,E},

were known. In practice we do not know these functions nor do we know their func-

tional forms. Therefore, we must estimate these functions f̂k(x), using a regression

method, biomarkers, x1:(i−1),k, and outcomes, y1:(i−1),k, of all patients previously

given treatment k within the trial, when patient i enters the trial. Additionally, the

historical patients' biomarkers, x′1:nH,k,k
, and their outcomes, y′1:nH,k,k

, can also be

used, if available.

We investigate four di�erent regression methods: Bayesian linear modelling, Gaus-

sian processes, weighted polynomial regression and weighted random forests.

The Bayesian linear model creates a linear regression model for each treatment

k ∈ {C,E}, using Bayesian inference. Following Chen and Martin (2009), the linear

model can be written as a0,k+a1,kxi+εi,k, where xi is the biomarker of patient i, a1,k is

the prediction coe�cient, a0,k is the intercept value and εi,k is the random error term

with zero mean and variance σ2
i,k for patient i. Bayesian inference treats the model

coe�cients, a0,k and a1,k, and the random error variance, σ2
i,k as random variables,

thus, each parameter can be modelled by a probability distribution (Ellison, 2004).

This Bayesian method involves combining the prior distribution of the model param-

eters with the likelihood of the data collected, to calculate a posterior distribution

for the model parameters. The Bayesian linear model is discussed in more detail in

Section 3.4.1.

Gaussian processes are described by MacKay (1998) as `the generalization of a

Gaussian distribution over a �nite vector space to a function space of in�nite dimen-
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sion... a Gaussian process is speci�ed by a mean and a covariance function.' The

mean, m(xi), models the expected value of the outcome at biomarker, xi (Schulz

et al., 2016). The covariance function, C(x1, x2), describes the expected covariance

between fk(x1) and fk(x2) (MacKay, 1998). The choice of C(x1, x2) incorporates our

assumptions on the pattern expected in the data. A sensible assumption on C(x1, x2),

is that as the distance between x1 and x2 increases, the distance between fk(x1) and

fk(x2) also increases (Schulz et al., 2016). Gaussian processes are described further

in Section 3.4.2.

Weighted polynomial regression is an extension to polynomial regression. The

polynomial regression model for one biomarker for each treatment k ∈ {C,E} can

be written as a0,k + a1,kxi + a2,kx
2
i + · · · + aM,kx

M
i + εi,k, where xi is the biomarker

of patient i, M is the degree of the polynomial, each am,k ∀ m = 0, 1, ...,M is the

regression coe�cient for each degree m, of the biomarker and εi,k is the random error

component for patient i (Ostertagová, 2012). This can be extended by assigning an

individual weight to each data point, such that certain points can have a larger e�ect

on the polynomial produced than others. Weighted polynomial regression is described

in more detail in Section 3.4.3.

Weighted random forest is an extension to random forests, which are the aggrega-

tion of several regression trees (Liaw and Wiener, 2002). A regression tree is described

by Morgan (2014) as an approach to partition the data into smaller sections condi-

tioning on a particular biomarker. The average of the trees is taken to produce a

random forest. Each data point in the random forest can be assigned a weight, such

that certain data points can in�uence how each tree is partitioned more than others.

This then allows data points to in�uence the random forest model to di�ering degrees.

Weighted random forests are discussed further in Section 3.4.4.

The way we incorporate the historical data di�ers depending on the regression

method used. We utilise two di�erent strategies to predict the outcome of patients in

our proposal. The �rst strategy uses a Bayesian framework and incorporates historical



CHAPTER 3. USING HISTORICAL DATA IN A CARA CLINICAL TRIAL 76

data via a prior model, which is then updated as current patients enter the trial. The

second strategy involves weighting the historical and concurrent information using a

weighted regression framework.

In the two Bayesian methods (Bayesian linear modelling and Gaussian processes),

the historical data are used to develop a prior model. This prior model is updated

with each current patient who enters the trial and who is assigned the treatment, to

create a posterior model (Bolstad and Curran, 2016). This posterior model is then

used to predict the outcome of the treatment. If there are no historical data available

for a treatment, k, a neutral estimate, ŷ1,k, can be used. In the Bayesian linear model,

this neutral estimate, ŷ1,k, is used as a prior and is updated with each current patient

who enters the trial and who is assigned treatment k, to create a posterior model.

When using Gaussian processes, the neutral estimate, ŷ1,k, is discarded as soon as a

patient is allocated to treatment k, which has no historical data available.

In the two weighted regression methods (weighted polynomial regression and weighted

random forests), a distance measure is used to measure the homogeneity between the

historical data and the current data for treatment k. The distance measure, dk, is

then used to de�ne a weight, wH,k, to each historical data point and a weight, wk,

to each current data point, where each current data point is weighted higher than or

equal to each historical data point, 0 ≤ wH,k ≤ wk. The calculations that we use for

these weights are described in Section 3.4.5. The more similar the historical data are

to the current data, the more the historical data contribute to the estimated function

for the outcome of the treatment, f̂k(x).

The two sets of data contribute to the regression method, and create a prediction

model to estimate the function, fk(x). If there is no historical data available for

treatment k, a neutral estimate, ŷ1,k, can be used. As soon as a patient is assigned

treatment k, which has no historical data available, this neutral estimate is discarded

and the regression method estimates the function fk(x), assigning equal weight to all

current data points. Three distance measures are used to de�ne the weights explored
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in this proposal: Euclidean (De Maesschalck et al., 2000), Frechet (Eiter and Mannila,

1994) and Mahalanobis (McLachlan, 1999) which are discussed in Section 3.4.5.

The full algorithm, extended from Jackson et al. (2021), for this biomarker ad-

justed RAR, using historical trial data is stated below.

Algorithm 3: RAR Algorithm incorporating historical trial data

1. Use only the historical data to predict the outcome of patient 1 for each treat-

ment. If there is no historical data available, use a neutral estimate, ŷ1,k, for all

biomarker values.

2. Given the next patient's, i, biomarker, xi, use the regression method, the histor-

ical data (if available) and information from previous patients to estimate the

superior treatment outcome for patient i, (maxk∈{C,E}{f̂k(xi)}).

3. Select the predicted superior treatment with probability 1 − πi and select the

other treatment with probability πi.

4. Once the outcome of patient i, has been observed, use yi,k and biomarker xi to

update the estimate, f̂ki(x).

5. Repeat steps 2-4 for the next patients i+ 1, i+ 2, ..., n.

The sequence πi can be varied to account for the uncertainty in the predictions of

which treatment is estimated to be superior. Here, a smaller value for πi, indicates a

larger con�dence in the prediction of which treatment is superior. Hence, the sequence

πi can be adapted to allow the proposal to balance learning which treatment is superior

and choosing the estimated superior treatment for the next patient.
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3.4 Regression Methods

A large number of regression methods could be used to estimate the outcome of each

patient allocated to each treatment within the trial. In this Chapter we investigate

four of them, which are described below.

3.4.1 Bayesian Linear Model

Bayesian linear modelling utilises a linear regression model, a0,k + a1,kxi + εi,k, using

Bayesian inference. Here the model parameters: a0,k, a1,k, and σ2
i,k are treated as

random variables, thus, each parameter can be modelled by a probability distribution

(Ellison, 2004). This method can be extended for multiple biomarkers and hence,

the equation can be written as a0,k + aT1,kxiaT1,kxiaT1,kxi + εi,k, where a1,ka1,ka1,k is a vector of prediction

coe�cients for each biomarker within the vector xixixi.

For each current patient who enters the trial, i ∈ {1, 2, ..., n}, we can use the data

from previous patients within the trial, D1:(i−1),kD1:(i−1),kD1:(i−1),k, to predict their outcome on both

treatments k ∈ {C,E}. Here, the matrix D1:(i−1),kD1:(i−1),kD1:(i−1),k = [x1:(i−1),kx1:(i−1),kx1:(i−1),k, y1:(i−1),ky1:(i−1),ky1:(i−1),k], includes

a column of all current patients' biomarkers who have been assigned treatment k,

who are in the trial when patient i enters and a column of all their outcomes after

being given treatment k. Furthermore, we have the added information from the nH,k

historical patients, D′1:nH,k,k
D′1:nH,k,k
D′1:nH,k,k

= [x′1:nH,k,k
x′1:nH,k,k
x′1:nH,k,k

, y′1:nH,k,k
y′1:nH,k,k
y′1:nH,k,k

].

Chen and Martin (2009) describe the Bayesian modelling approach in two steps.

Firstly, the posterior distribution of the model parameters given the information col-

lected on the current patients allocated to treatment k, p(a0,k, a1,k, σ
2
i,k|D1:(i−1),kD1:(i−1),kD1:(i−1),k),

is proportional to the prior distribution of the parameters, p(a0,k, a1,k, σ
2
i,k) (found

using the historical data), multiplied by the likelihood of the current patient data,

p(D1:(i−1),kD1:(i−1),kD1:(i−1),k|a0,k, a1,k, σ
2
i,k), thus,

p(a0,k, a1,k, σ
2
i,k|D1:(i−1),kD1:(i−1),kD1:(i−1),k) ∝ p(a0,k, a1,k, σ

2
i,k) · p(D1:(i−1),kD1:(i−1),kD1:(i−1),k|a0,k, a1,k, σ

2
i,k). A common

choice of prior is the normal-inverse-gamma conjugate model, where the model co-
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e�cients, a0,k and a1,k, depend on the random error variance, σ2
i,k, such that the

prior p(a0,k, a1,k, σ
2
i,k) ≡ p(a0,k, a1,k|σ2

i,k) · p(σ2
i,k) (bayeslm, 2016). Given there are

nH,k historical patients, each with a biomarker x′ and an outcome y′, we can use

this information to determine a prior distribution for the parameters, p(a0,k, a1,k|σ2
i,k)

and p(σ2
i,k), for each treatment k ∈ {C,E}. We then calculate the likelihood func-

tion, p(D1:(i−1),kD1:(i−1),kD1:(i−1),k|a0,k, a1,k, σ
2
i,k), using all the current patients who have been assigned

treatment k when patient i enters the trial. Secondly, the predictive distribution of

f̂k(xi), given the next patient's biomarker, xi, can be calculated by integrating over

the posterior distribution of the model parameters, a0,k, a1,k and σ2
i,k, as shown below,

p(f̂k(xi)|xi,D1:(i−1),kD1:(i−1),kD1:(i−1),k) =∫
p(f̂k(xi)|xi, a0,k, a1,k, σ

2
i,k) · p(a0,k, a1,k, σ

2
i,k|D1:(i−1),kD1:(i−1),kD1:(i−1),k) da0,k da1,k dσ

2
i,k.

The tuning parameter for this method is the weighting on the prior distribution.

The higher the weight on the prior distribution, the less of an e�ect the information

from the current patients will have on the model. This is controlled by the prior

random error variance, p(σ2
i,k). Here, a larger variance will assign a smaller weight

to the priors on the model coe�cients a0,k and a1,k and hence, a larger weight to

the current patient data (bayeslm, 2016). The priors themselves can additionally

contain parameters, called hyperparameters. These hyperparameters are also tuning

parameters for this method.

3.4.2 Gaussian Processes

Gaussian processes are depicted by a mean, m(xi), which states the expected value

of the outcome at biomarker, xi (Schulz et al., 2016), and a covariance function,

C(x1, x2), which describes the expected covariance between fk(x1) and fk(x2) (MacKay,

1998). One sensible example for C(x1, x2), stated by Ulapane et al. (2020), is the

squared exponential function, C(x1, x2) = σ2
f · exp

(
||x1−x2||2

2λ2

)
, where σf is the signal

standard deviation and λ is the length scale. The mean and covariance function are
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a form of prior and must be selected using the historical data. The prior mean and

covariance function are then updated as more current patients enter the trial.

Schulz et al. (2016) states that if we have current data,D1:(i−1),kD1:(i−1),kD1:(i−1),k = [x1:(i−1),kx1:(i−1),kx1:(i−1),k, y1:(i−1),ky1:(i−1),ky1:(i−1),k],

(which is a matrix where the �rst column is the biomarker of all current patients who

are in the trial when patient i enters and who have been given treatment k and the

second column is their outcome) in order to predict the outcome of current patient

i with biomarker xi, f̂k(xi), we must sample f̂k(xi) from the posterior distribution

p(f̂k|D1:(i−1),kD1:(i−1),kD1:(i−1),k). If the prior mean is assumed zero, m(x) = 0, then the previous

current outcomes, y1:(i−1),ky1:(i−1),ky1:(i−1),k, and predicted function,f̂k(xi), follow a joint multivariate

normal distribution, as shown below,y1:(i−1),ky1:(i−1),ky1:(i−1),k

f̂k(xi)

 ∼ N

0,

CCC + σ2
i,kIII C∗C∗C∗T

C∗C∗C∗ C


Here, CCC = CCC(x1:(i−1),kx1:(i−1),kx1:(i−1),k,x1:(i−1),kx1:(i−1),kx1:(i−1),k) is a square matrix of the covariance function

between all current patients' (who have been assigned treatment k) biomarkers, C∗C∗C∗ =

CCC(xi,x1:(i−1),kx1:(i−1),kx1:(i−1),k) is a vector of the covariance function between the biomarker of the next

patient, xi, and all current patients' (who have been assigned treatment k) biomarkers

and C = C(xi, xi) is the covariance function of the next patient's biomarker with itself.

Finally σ2
i,k is the assumed variance of the error term εi,k in equation (3.3.1). The

conditional distribution of the estimated function at the next patient's biomarker is

p(f̂k(xi)|x1:(i−1),kx1:(i−1),kx1:(i−1),k, y1:(i−1),ky1:(i−1),ky1:(i−1),k, xi) ∼ N
(
C∗C∗C∗[CCC +σ2

i,kIII]−1y1:(i−1),ky1:(i−1),ky1:(i−1),k, C −C∗C∗C∗[CCC +σ2
i,kIII]−1C∗C∗C∗T

)
.

Alternately, we need not assume that the Gaussian process has a zero mean func-

tion. Instead, we can introduce basis functions where the historical data is used to

determine the basis coe�cients, akakak, as stated by Williams and Rasmussen (2006). The

treatment prediction function, f̂k(xi) can be split into a Gaussian process with zero

mean, uk(xi) ∼ GP (0, C(xi, xi)), (which is calculated using data from the current

patients, D1:(i−1),kD1:(i−1),kD1:(i−1),k = [x1:(i−1),kx1:(i−1),kx1:(i−1),k, y1:(i−1),ky1:(i−1),ky1:(i−1),k]) and a set of basis functions, vkvkvk(xi), (which is

calculated using data from the historical patients, D′1:nH,k,k
D′1:nH,k,k
D′1:nH,k,k

= [x′1:nH,k,k
x′1:nH,k,k
x′1:nH,k,k

, y′1:nH,k,k
y′1:nH,k,k
y′1:nH,k,k

]) such

that f̂k(xi) = uk(xi) + vkvkvk(xi)
Takakak (�trgp, 2016).
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Again the tuning parameter for this method is the weighting on the prior distri-

bution. This is controlled by the initial noise standard deviation, σi,k of the Gaussian

processes model (�trgp, 2016). The smaller the noise, the more likely the model will

over-�t to the current data points and the more it will take into account the random

error term. However, the larger the noise, the more likely the model will over-�t to

the prior distribution.

3.4.3 Weighted Polynomial Regression

The polynomial regression model for one biomarker is depicted as a0,k + a1,kxi +

a2,kx
2
i + · · ·+ aM,kx

M
i + εi,k. This equation can be extended for multiple biomarkers.

The coe�cients am,k ∀ m ∈ {0, ...,M} can be found using the least squared approach

in matrix form. First rewrite this equation into matrix form as below,

y1:(i−1),ky1:(i−1),ky1:(i−1),k = X1:(i−1),kX1:(i−1),kX1:(i−1),kakakak + ε1:(i−1),kε1:(i−1),kε1:(i−1),k, (3.4.1)

where y1:(i−1),ky1:(i−1),ky1:(i−1),k is a column vector of outcomes for all patients 1, ..., (i− 1) who have

been assigned treatment k, when patient i arrives into the trial, X1:(i−1),kX1:(i−1),kX1:(i−1),k is an ni,k

by (M + 1) matrix where each row represents each patient's biomarker raised to

each power 0, ...,M (and ni,k is the number of current patients previously assigned

treatment k, when patient i enters the trial), ε1:(i−1),kε1:(i−1),kε1:(i−1),k is a column vector of each

patient's error and akakak is a column vector of length (M+1) which includes all coe�cients

for each power 0, ...,M of the patient's biomarker.

In order to calculate the coe�cients of the model, the sum of the squared errors

must be minimised. This is found using the equation

âk̂ak̂ak = (X1:(i−1),kX1:(i−1),kX1:(i−1),k
TX1:(i−1),kX1:(i−1),kX1:(i−1),k)

−1X1:(i−1),kX1:(i−1),kX1:(i−1),k
Ty1:(i−1),ky1:(i−1),ky1:(i−1),k. Here, the vector âk̂ak̂ak is an unbiased

estimator of akakak (Ostertagová, 2012).

We can add a weight to each individual data point for both the historical and

current patients. We assign a weight wH,k to each patient from the historical data

set assigned to treatment k, and a weight of wk to each current patient assigned to
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treatment k, where 0 ≤ wH,k ≤ wk. The higher the weight assigned to each data

point, the more they in�uence the coe�cients within the polynomial model.

In order to include the historical data points and their weights, we must incor-

porate them into equation (3.4.1). The outcomes of both the historical and current

patients who have been given treatment k are combined into a single column vector,

YkYkYk, the biomarkers of the historical and current patients who have been given treat-

ment k are combined into a single matrix, XkXkXk and the patient errors of the historical

and current patients who have been given treatment k are combined into a single

column vector, εkεkεk. This is done for each treatment k ∈ {C,E}. The weights assigned

to each data point are collected into a diagonal square matrix,WkWkWk, of size ni,k + nH,k

by ni,k + nH,k. The equation WkWkWkYkYkYk = WkWkWkXkXkXkakakak + εkεkεk is written in matrix form below,



wk 0 0 0 0 · · ·

0 wk 0 0 · · · ...
... . . . . . . . . . . . . ...
... 0 0 wH,k 0 · · ·
... . . . . . . . . . . . . ...
... · · · 0 0 0 wH,k





y1,k

y2,k

...

y′1,k
...

y′nH ,k


=



wk 0 0 0 0 · · ·

0 wk 0 0 · · · ...
... . . . . . . . . . . . . ...
... 0 0 wH,k 0 · · ·
... . . . . . . . . . . . . ...
... · · · 0 0 0 wH,k





x0
1,k x1

1,k · · · xM1,k

x0
2,k x1

2,k · · · xM2,k
... · · · · · · · · ·

x′01,k x′11,k · · · x′M1,k
... · · · · · · · · ·

x′0nH,k,k x′1nH,k,k · · · x′MnH,k,k




a0,k

a1,k

...

aM,k


+



ε1,k

ε2,k
...

ε′1,k
...

ε′nH,k,k


.

(3.4.2)

To determine the coe�cients of the model, the sum of the squared errors must be

minimised, however, the weights of each data point need to be incorporated. This is

found using the equation âk̂ak̂ak = (XkXkXk
TWkWkWkXkXkXk)

−1XkXkXk
TWkWkWkYkYkYk (Moore et al., 1997).
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The tuning parameter for polynomial regression is the degree of the polynomial

produced. The larger the degree of polynomial the more it over-�ts to the data and

will account for the random error term. The smaller the degree of polynomial used,

the model is likely to under-�t the data and may not accurately depict any small

changes within the data sets.

The weight wH,k is calculated using one of the three distance measures: Euclidean

distance, Frechet distance and Mahalanobis distance. These are described in Section

3.4.5.

3.4.4 Weighted Random Forests

A random forest is the aggregation of several regression trees (Liaw and Wiener, 2002).

A regression tree repeatedly partitions data into smaller and more homogeneous nodes

conditioning on a particular biomarker (Morgan, 2014). An example regression tree

is shown in Figure (3.4.1).

Figure 3.4.1: Example Regression Tree

Regression trees start with a root

node which contains all available pa-

tients' biomarkers and their outcomes.

The root node is split into two child

nodes by creating a partition on one

of the biomarkers. This biomarker and

splitting point is chosen to maximise the

homogeneity between patients within a

child node and maximise the heterogene-

ity between patients in separate nodes. The two child nodes are then labelled as

`parent nodes' and split again into two further child nodes, each. The process con-

tinues, as these nodes are recursively partitioned. When a termination criterion is

met, the node is not split further and it becomes a terminal node (see Henrard et al.,

2015).
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Termination criteria include: have a maximum number of data points assigned

to each terminal node or have a minimum improvement in the homogeneity within

further child nodes. If these thresholds are very small then over-�tting can occur,

however, if they are too large then under-�tting can occur (Segal, 1988).

A regression tree chooses the splitting point, which yields the largest decrease in

heterogeneity (Ishwaran, 2015), for each treatment k ∈ {C,E}. Consider splitting a

parent node, labelled t, using the biomarker variable at some split point, xSP . Here,

each patient with a biomarker less than this value, xi,k < xSP , will be in child node

tL, and each patient with a biomarker equal to or larger than this splitting point,

xi,k ≥ xSP , will be in child node tR. The heterogeneity (or impurity) of each child

node is

4 (tL) =
1

nL

∑
i∈tL

(yi,k − ȳtL,k)2, 4(tR) =
1

nR

∑
i∈tR

(yi,k − ȳtR,k)2. (3.4.3)

In the equations above, ȳtL,k denotes the mean outcome of all patients within child

node tL, for treatment k, and nL is de�ned as the total number of patients within

child node tL (the same de�nitions apply for child node tR). Therefore, the decrease

in heterogeneity at the splitting point SP is calculated as

4 (t, SP ) = 4(t)−
(
p(tL)4 (tL) + p(tR)4 (tR)

)
, (3.4.4)

where 4(t) is the heterogeneity of the parent node, t and p(tL) is the probability of a

patient being assigned to child node tL, p(tL) = nL
nt
. Here, nt is the number of patients

within parent node t.

For a random forest, Liaw and Wiener (2002) explain that a bootstrap sample is

taken from the data (each patient's biomarkers and outcome) to form each regression

tree. Each tree is grown by choosing the `best split' from a random sample of the

biomarker values. The average of the trees is taken to produce a random forest for

each treatment k ∈ {C,E}.
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When incorporating the historical data, we assign a weight to each data point

for both the historical and current patients. A weight, wH,k, is allocated to each

patient from the historical data set, and a weight, wk is allocated to each current

patient, where 0 ≤ wH,k ≤ wk. The higher the weight assigned to each data point, the

more they in�uence the splitting point within the random forest model. The weight

wH,k is calculated using one of the three distance measures: Euclidean, Frechet or

Mahalanobis distance, described in Section 3.4.5.

The equations (3.4.3) and (3.4.4) above, can incorporate the weight of each data

point as shown in �trtree (2016). For the heterogeneity of each child node, the weight

of each patient is taken within the sum, as shown below,

4 (tL) =
∑
i∈tL

wi,k∑
i∈tL wi,k

(yi,k− ȳtL,k)2, 4(tR) =
∑
i∈tR

wi,k∑
i∈tR wi,k

(yi,k− ȳtR,k)2. (3.4.5)

Here, the weight assigned to each current patient is wi,k ∀ i ∈ {1, 2, ..., n} and the

weight assigned to each historical patient is wi,k = wi′,k = wH,k ∀ i′ ∈ {1, 2, ..., nH,k}.

Equations (3.4.5) incorporate all patients both historical and current who have

been assigned treatment k when patient i arrives into the trial. The mean value ȳtL,k is

a weighted average of the outcome of all patients (both historical and current patients

allocated treatment k, when patient i arrives into the trial) within child node tL,

ȳtL,k =
∑

i∈tL wi,k · yi,k/
∑

i∈tL wi,k. When all patients are weighted equally, equations

(3.4.5) can be re-written as equations (3.4.3). Similarly, the patients' weights can be

incorporated into the probability of a patient being assigned to the child node tL, and

hence, p(tL) =
∑

i∈tL wi,k/
∑

i∈twi,k. This term would be p(tL) = nL
nt
, if all patients

were weighted 1. A similar de�nition exists for child node tR.

The tuning parameters for this method is the minimum leaf size (MLS) of each

terminal node and the number of regression trees in the random forest. If the MLS

is small, the regression tree will keep splitting the data until each terminal node has

very few patients left. This can produce a model which is over-�t to the data. If the

MLS is too large the model can under-�t to the data. It is stated by Biau and Scornet
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(2016) that random forests should not over-�t as the number of trees included grows,

merely more accurate predictions are produced. However, the more trees are �tted

the slower the algorithm will become.

3.4.5 Distance Measures used in Weighted Regression

The weight, wH,k, used in the two weighted regression methods, is calculated using a

distance measure. We examined three distance measures: Euclidean distance, Frechet

distance and Mahalanobis distance, which are described below.

The distance measure is used to measure the homogeneity between the historical

data and the current data for treatment k. We then use the distance measure, dk,

to de�ne a weight, wH,k, for each historical data point using equation (3.4.6), where

0 ≤ wH,k ≤ 1
nH,k

, and we weight each current data point as wk = 1,

wH,k =
1

nH,k

(
1− dk

dmax

)γ
. (3.4.6)

Here, the distance measure found between the historical and current data from treat-

ment k is labelled as dk. This is replaced by one of dE,k, dF,k or dM,k, depending on

which distance measure (Euclidean, Frechet or Mahalanobis) is being used. The max-

imum distance between the two data sets is labelled as dmax. Again, this is replaced

by one of dE,max, dF,max or dM,max, depending on which distance measure (Euclidean,

Frechet or Mahalanobis) is being used. Additionally, the power γ is used to force the

weight, wH,k to be smaller when the distance measure, dk is too large. This value,

γ, varies depending on the distance metric used and it was selected using empirical

evaluation. Furthermore, we down weight the historical data by the number of his-

torical patients present in the data set, nH,k. This is to ensure that when the number

of historical patients is large and the number of current patients is small, the current

data still dominates the weighted regression function.

Hence, a weight of wH,k = 1/nH,k, would indicate a distance of 0 between the

historical and current data and a historical weight of wH,k = 0 would imply a large
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distance between the two sets of data. Therefore, the more similar the historical data

are to the current data, the more the historical data contribute to the estimated func-

tion for the outcome of the treatment, f̂k(x). The distance measures we investigated

are discussed below.

Euclidean Distance

De Maesschalck et al. (2000) states that the Euclidean distance, d, between two data

points `ppp' and `qqq', each with Z variables recorded is,

d(ppp,qqq) =

√√√√ Z∑
z=1

(pz − qz)2. (3.4.7)

This distance measure treats all variables equally and does not take into account any

possibility of correlation between variables (De Maesschalck et al., 2000).

Within the proposal, the Euclidean distance between the historical patients and

current patients can be used to weight the historical data points. Firstly, for each

historical patient i′ ∈ {1, 2, ..., nH,k} given treatment k, �nd the current patient, ν(i′),

whose biomarker, xν(i′),k, is closest to their biomarker, x′i′,k, using the Euclidean dis-

tance, ν(i′) = arg mini∈{1,2,...,n}{d(xi,k, x
′
i′,k)}. Here, multiple historical patients can

be paired with the same current patient. The absolute di�erence in outcomes, do,i′ =

|y′i′,k−yν(i′),k|, is found for each each pair of patients, {ν(i′), i′}. Then the largest abso-

lute di�erence in outcomes between all paired patients {ν(i′), i′}, is taken to be the Eu-

clidean distance between the two sets of data, dE,k = max{ν(i′),i′}∀i′∈{1,2,...,nH,k}(do,i′) =

max{ν(i′),i′}∀i′∈{1,2,...,nH,k}(|y′i′,k − yν(i′),k|). The maximum distance, dE,max, which can

be found from the two sets of data points would be the di�erence between the maxi-

mum and minimum outcomes, which could possibly be observed. For the simulation

described in Section 3.5, the maximum Euclidean distance is, dE,max = 20. We then

weight the historical data points as wH,k = 1
nH,k

(1− dE,k/dE,max)2.



CHAPTER 3. USING HISTORICAL DATA IN A CARA CLINICAL TRIAL 88

Frechet Distance

Buchin and Ryvkin (2018) state that the Frechet distance, dF , between two curves,

`P ' and `Q' on [0, 1]→ [1, 0] is mathematically written as,

dF (P,Q) = infσmaxt∈[0,1]‖P (t)−Q(σ(t))‖. (3.4.8)

Here, the re-parametrisations σ : [0, 1]→ [1, 0] range over all homeomorphisms which

preserve orientation, t is non-decreasing and ‖ · ‖ denotes the Euclidean norm.

This expression can be thought of as the length of the shortest leash that would

allow a person and their dog to traverse two separate paths (curves), without back-

tracking (Eiter and Mannila, 1994). It is stated by Eiter and Mannila (1994), this

distance measure accounts for both the location and order of both sets of points along

said curves.

Within the proposal, the Frechet distance between the historical and current pa-

tients can be used to weight the historical data. The Frechet distance is thought of

as the distance between curves, whereas in our situation, we have two sets of data

points. First, the biomarker and outcome of each current and historical patient must

be standardised, such that they are bound by the same values, for example [a, b].

These points are then ordered by biomarker, such that the biomarker values are non-

decreasing, for each dataset. Then these points are joined by their Euclidean distance,

thus, forming a separate curve for each set of patient data (current and historical).

This would allow us to have two sets of scaled data, DD1:(i−1),kDD1:(i−1),kDD1:(i−1),k, DD′1:nH,k,k
DD′1:nH,k,k
DD′1:nH,k,k

. For the

simulation described in Section 3.5, we bound the scaled data sets between [−1, 1].

The Frechet distance, dF,k = dF (DD′1:nH,k,k
DD′1:nH,k,k
DD′1:nH,k,k

,DD1:(i−1),kDD1:(i−1),kDD1:(i−1),k), is then found between the

scaled historical data points and scaled current data points. The maximum Frechet

distance, dF,max, which can be found from the two sets of scaled data points, would

depend on the chosen scaled boundaries i.e. dF,max =
√

((b− a)2 + (b− a)2). For the

simulation described in Section 3.5, the maximum Frechet distance is, dF,max =
√

8.

We then weight the historical data points as wH,k = 1
nH,k

(1− dF,k/dF,max)3.
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This distance measure was examined, however, it did not always produce a larger

weight on historical data points when they were closer to current data points. It

is an inappropriate distance measure to use in this situation, as it is sensitive to

outliers. This distance measure takes into account how close the current data point

is to all historical data points. Hence, the two data sets could be modelled on the

same underlying distribution, but when we include several historical patients and only

one current patient with an extreme biomarker value, it is unlikely to be close to all

historical patients. Thus, it would produce a large distance and, therefore, a small

weight on the historical data set, despite the current patient being simulated from the

same underlying distribution as the historical data set.

Mahalanobis Distance

McLachlan (1999) states that the Mahalanobis distance, dM , between two samples

`PPP ' and `QQQ' can be found using the following equation,

dM(PPP ,QQQ) =
√

(µPµPµP − µQµQµQ)TΣΣΣ−1(µPµPµP − µQµQµQ). (3.4.9)

Here, the vectors µPµPµP and µQµQµQ represent the mean of each variable recorded within

samplesPPP andQQQ, respectively. Additionally,ΣΣΣ denotes the common covariance matrix

for each variable recorded within samples PPP and QQQ.

The Mahalanobis distance uses relevant variables to measure the distance between

two samples (or data sets). Due to this distance measure accounting for correlations

and unequal variances between variables, it can assign di�erent weights to variables

based on their importance. Thus, it evaluates the distance between populations based

on their most important variables (Xiang et al., 2008).

Within the proposal, the Mahalanobis distance between the historical patients

and current patients, can be used to weight the historical data points. Firstly the

biomarker and outcome of each current and historical patient must be standardised,

such that they are bound by the same values, for example [a, b], allowing us to have two
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sets of scaled data,DD1:(i−1),kDD1:(i−1),kDD1:(i−1),k,DD′1:nH,k,k
DD′1:nH,k,k
DD′1:nH,k,k

. For the simulation described in Section 3.5,

we bound the scaled data sets between [−1, 1]. Here, we take the current patients to

be the reference group and the Mahalanobis distance is found between each historical

patient and the whole current patient data set. Therefore, in the equation above,

µPµPµP represents a historical data point DD′i′,kDD′i′,kDD′i′,k, µQµQµQ represents the mean of each variable

(biomarker and outcome) from the current data set, DD1:(i−1),kDD1:(i−1),kDD1:(i−1),k and Σ represents the

covariance from the current data set, DD1:(i−1),kDD1:(i−1),kDD1:(i−1),k.

The largest Mahalanobis distance between each scaled historical data point and the

data set of scaled current patients given treatment k when patient i enters, is taken to

be the Mahalanobis distance between the two sets of data, dM,k = maxi′∈{1,2,...,nH,k}{dM

(DD′i′,kDD′i′,kDD′i′,k,DD1:(i−1),kDD1:(i−1),kDD1:(i−1),k)}. We then weight the historical data points as wH,k = 1
nH,k

(1 −

dM,k/dM,max)
12. Here, the maximum Mahalanobis distance, dM,max, is di�cult to cal-

culate, when there is high correlation between variables (the biomarker and outcome)

within the reference data set (current patient data). When there is a high corre-

lation between variables within the reference sample, the inverse of the covariance

matrix can be in�nitely large. Therefore, we investigated the Mahalanobis distance

between several data sets which were not similar and chose the largest value we found.

For the simulation described in Section 3.5, the maximum Mahalanobis distance is,

dM,max = 1000.

3.5 Simulation

The proposal is investigated using four regression methods, which are described in Sec-

tion 3.4, and compared with an RCT with equal allocation in multiple two-treatment

clinical trial scenarios. Each regression method has at least one tuning parameter,

which must be selected before the trial can be carried out. The parameters that we

implement are described in Section 3.5.1. We investigated three di�erent distance

measures for the weighted regression methods (Section 3.4.5) but focus on the results
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for the Euclidean distance for the majority of section 3.5.4, as it performed well in

all considered scenarios. A comparison of the di�erent distance metrics is provided in

Figure 3.5.3. In the simulations we assume that the biomarker, xi is uniformly dis-

tributed between [−100, 100] and the outcome is continuous, yi,k ∈ [−10, 10], where

we assume a larger outcome is better.

The relationship between the patient's biomarker xi and their outcome yi,k on each

treatment, k ∈ {C,E} for each scenario is displayed in Figure 3.5.1. The underlying

functions for these scenarios are provided in Table 3.5.1. Additionally, in the following

simulations, the random error term is normally distributed, εi,k ∼ N(0, σ2
i,k), with

zero mean and a variance, σ2
i,k, which is dependent on the outcome of the underlying

function, where a larger outcome will result in an increase in variability. This is again

shown by the plots in Figure 3.5.1. The random error term is generated independently

for each patient.

A simulation size of 1, 000 is used for all regression methods. A trial sample size

n = 40, is explored to re�ect the context of a rare disease trial. Additional results

for a sample size of n = 80 and n = 120 are provided in in Section 3.5.4, when there

is only representative historical data available on the control treatment. However,

they produce qualitatively similar results to those found when n = 40. Five di�erent

sample sizes, nH,k, for the historical clinical trial are investigated, where the underlying

function and variance match the current trial exactly. For each current trial of size n,

we compare a historical clinical trial of size nH,k, which is 10%, 25%, 50% and 100%

of the current trial sample size n, as well as comparing them to having no additional

historical trial data.

When historical data are available on a treatment they are used to predict the

outcome of patient 1. If historical data are not available for a treatment, the outcome

of patient 1 is neutrally estimated to be zero for all biomarker values, ŷ1,k = 0 ∀

xi. For the weighted regression methods and the Gaussian processes, once a patient

has been allocated the treatment which has no historical data, the neutral estimate,
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ŷ1,k = 0, is ignored and only the patients who have been assigned this treatment

are used to predict the outcome of said treatment. For Bayesian linear modelling,

the neutral estimate prior, ŷ1,k, centred at 0 is used for treatment k, which has no

historical data available and updated to produce a posterior prediction, as patients

enter the trial and are assigned treatment k.

Throughout this simulation study, we assume we have a good approximation of

which treatment is superior for which patients and therefore, initially, we do not

include a burn-in period and each current patient is given their estimated superior

treatment with 100% probability, thus, πi = 0, ∀ i ∈ {1, 2, ..., n}. This is unlikely to

happen in practice as this does not incorporate any randomness into the calculation

of the TAP, it is purely deterministic. It is important to incorporate randomness

into calculating the TAP in order to reduce bias. However, we wish to perform this

analysis to explore the potential maximum bene�t to the patients this proposal could

produce. We then later consider a burn-in period of one to seven patients and we

explore three other sequences of TAPs, which are more likely to be used in practice.

All simulations throughout this Chapter are carried out in MATLAB (2016).

3.5.1 Simulation Speci�cations for Regression Methods

In the Bayesian linear model, we use two di�erent approaches. The �rst approach

(labelled as `BLM: NI') uses a non-informative (NI) prior distribution, which in this

simulation study is based on a neutral estimate of 0 for all biomarkers. This is created

using the function `bayeslm' in MATLAB. This NI prior is �rst updated using the

historical data to produce a posterior distribution, using the function `estimate' in

MATLAB. This posterior distribution is then treated as a prior and updated with

the data from the current patients to produce a posterior distribution. This second

updated posterior distribution is used to predict the outcome of the next patient on

the treatment.

The second approach (labelled as `BLM: Var') uses the historical data to initially
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produce a prior distribution. The function `�tlm' in MATLAB is used to �t a linear

model to the historical data. The coe�cients from this linear model are used as

the mean hyperparameters of the conjugate prior on the coe�cients in the Bayesian

linear model, using the function `bayeslm' in MATLAB. Furthermore, the conditional

covariance matrix hyperparameter, V , of the conjugate prior on the coe�cients in the

Bayesian linear model, is the identity matrix. Therefore, β|σ2 ∼ N(µ, V σ2), where

µ is a vector of coe�cients calculated from the historical data and V is the identity

matrix. In addition, σ2 ∼ IG(A,B), where A and B are the default shape parameters,

3 and 1, respectively.

If a treatment, k, does not have any historical data available, then the neutral

estimate, ŷ1,k = 0, is used as a prior and updated using the current patients for both

Bayesian linear modelling methods.

In the Gaussian processes methods we use the MATLAB function `�trgp', with

a linear basis function regardless of if there are historical data available or not. In

addition, if there is at least one current patient assigned to treatment k and there

are historical data available on treatment k we use the historical data to �nd the

model coe�cients for the linear basis function and use them as the parameter values

by selecting the `FitMethod' to be `none', also, the `PredictMethod' is selected to be

`exact'. If no historical data are available, then the current patient data are used,

with the default `FitMethod' and `PredictMethod' options. If there are no historical

data available and no current patient has been assigned treatment k, then we use the

neutral estimate, ŷ1,k = 0, with the default `FitMethod' and `PredictMethod' options.

The tuning parameter for Gaussian processes is the weighting on the prior distribution,

controlled by the noise standard deviation of the model. For one method (labelled

as `GP: noise=def') we do not specify said initial noise variable and hence, use the

default value selected by the MATLAB function `�trgp'. In addition, we investigated

and compared a number of di�erent initial noise values, where an initial noise variable

of 0.25 was chosen (labelled as `GP: noise=0.25'), as it seemed to perform best across
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the scenarios. As this value is small, it assigns a larger weight to the patients in

the current clinical trial and less weight to the model coe�cients calculated from the

historical data.

For weighted polynomial regression, the function `�tlm' in MATLAB is used, for

two approaches. We investigate a polynomial of degree 1 (linear regression), labelled

as `WPR: Poly 1'. In addition, we initially start with a polynomial of degree 1, and

then, when we have a total of 7 patients (both current and historical) assigned to a

treatment, we use a polynomial of degree 3 (cubic regression), labelled as `WPR: Poly

1-3'. The reason we start with a linear regression when we have 6 data points or fewer,

is due to us having less information and therefore, a cubic regression with only 4 data

points would not be robust to the random error term. We investigated introducing

a cubic regression at a number of di�erent points within the simulation. Introducing

it at patient 7 seems to give the largest patient bene�t when the historical data are

representative of the current data. The advantage of using a cubic regression, is it is

of a high enough degree to track a non-linear relationship, but it is not so high that

it will take into account the random error term. However, as many of the scenarios

investigated above have a linear relationship between the patient biomarker and their

outcome, we thought it was prudent to also include weighted linear regression.

When using weighted random forests we use the function `TreeBagger' in MAT-

LAB starting with a MLS of 1, which increases to a MLS of 2 when there are 4 patients

in total (both current and historical) assigned to a treatment. However, we investi-

gate increasing this leaf size in two di�erent ways as more current patients enter the

trial. One approach increases the MLS from 2 to 5 when a total of 30 patients (both

current and historical) are assigned to a treatment (labelled as `WRF: MLS 2-5'). The

second approach increases the MLS from 2 to 5 to 10 to 15, when a total of 20, 40

and 60 patients (both current and historical) are assigned to a treatment, respectively

(labelled as `WRF: MLS 2-15'). When we have fewer data points on a treatment we

want to use a smaller MLS so as to accurately model the small changes in the data.
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However, as more patients enter the trial and we accumulate more information on a

treatment, we can increase the MLS, as it will now be able to model the small changes

and will be less likely to take into account the random error term. We investigated a

number of di�erent MLSs and a number of di�erent points at which to increase the

MLS. These parameters seemed to give the largest patient bene�t when the historical

data are representative of the current data. In addition, we use 100 regression trees

in our weighted random forest model. This is large enough that accurate predictions

should be calculated, but small enough that the method is not too computationally

intensive.

3.5.2 Scenarios

The underlying function between a patient's biomarker and their outcome is presented

in Table 3.5.1 for each treatment and in each scenario. These functions are also

displayed in Figure 3.5.1.

Scenario Control Treatment Experimental Treatment

One 0 0

Two 20
(

1
exp(0.005x)+1

)
− 10 20

(
1

exp(0.005x)+1

)
− 9

Three 0 20
(

1
exp(0.0011(x+8))+1

)
− 9.35

Four 20
(

1
exp(0.02(x+5.2))+1

)
− 10 20

(
1

exp(0.005(x+8))+1

)
− 10

Five 20
(

1
exp(0.02(x+5.2))+1

)
− 10 20

(
1

exp(0.011x)+1

)
− 10

Six 20
(

1
exp(0.005(x+16))+1

)
− 10 20

(
1

exp(−0.005x)+1

)
− 10

Seven 0
3 for xi < −8

−1 for xi ≥ −8

Eight 0 5
(

1
exp(0.06(x+30))+1

)
− 1

Table 3.5.1: Simulation Scenario Summary

Scenario one represents our null scenario, where all current patients, i ∈ {1, 2, ...,
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n}, will produce the same mean outcome for both treatments, for all biomarkers, xi.

Scenario two represents the presence of a prognostic biomarker. Oldenhuis et al. (2008)

states that a prognostic biomarker gives information about the patient's outcome,

regardless of which treatment they are assigned. In scenario two, patients with lower

biomarkers produce a larger outcome than patients with higher biomarkers, who are

given the same treatment.

Biomarker, xn
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Figure 3.5.1: Simulation scenarios

Scenarios three and four display a predictive biomarker. Oldenhuis et al. (2008)

explains that a predictive biomarker gives information on a particular treatment in

certain patients. In scenarios three and four, patients with smaller biomarkers are

likely to produce larger outcomes than those patients with higher biomarkers, but

only if given the experimental treatment. Here, the control treatment is likely to
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produce the same mean outcome in all patients, no matter their biomarker value.

In scenario four the superior treatment for patients changes at the biomarker value

X = −8.

Scenario �ve represents a biomarker which is both prognostic and predictive. A

biomarker which is both, implies it gives information about a patient's outcome re-

gardless of which treatment they are given, however, certain treatments will give larger

outcomes in patients with certain biomarkers. For example, in scenario �ve patients

with small biomarkers give a larger outcome than patients with large biomarkers,

who are given the same treatment. However, the di�erence in the outcome of patients

who have small biomarkers compared to those with large biomarkers is much larger

if they are given the control treatment, than the di�erence produced by the experi-

mental treatment. The superior treatment for patients in this scenario changes at the

biomarker value X = −11.56.

Scenarios six, seven and eight all show predictive biomarkers. The biomarker value

at which the superior treatment for patients changes, is X = −8 for scenarios six and

seven and X = −7 for scenario eight. In scenario seven, the experimental treatment

has an underlying step function, thus, there is no continuous decrease in the outcome

as the patient's biomarker increases.

3.5.3 Performance Measures

To compare the di�erent regression methods, we use an ethical measure, proportion

of patients assigned to the superior treatment, which is de�ned as the treatment

which results in the superior outcome in the average patient with biomarker xi. Hence,

it is the treatment k which yields the better outcome in a patient, i, with biomarker

xi, when ignoring the random error term, arg max k ∈{C,E}fk(xi).

We further investigated the proportion of patients assigned to their superior treat-

ment as an individual, however, both measures gave very similar results due to the

symmetric random error. Therefore, we focus on the mean proportion of patients
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given the superior treatment on average, throughout this Chapter.

3.5.4 Results

Historical Data Available for the Control Treatment Only

The proposal is �rstly investigated for the scenarios described above, when only the

control treatment has historical data available, the most likely situation in practice.

Sample Size Exploration

We initially explore how the proportion of patients assigned to the superior treat-

ment changes as the trial sample size changes. Sample sizes n = 40, n = 80 and

n = 120 are investigated. This is shown in Figure 3.5.2.

In scenario one we label the control treatment as `superior on average'. Here, we

can track how many patients actually get each treatment in Figure 3.5.2. When only

one treatment has historical data available, that treatment (whichever treatment that

may be) is assigned to more current patients. The proportion of patients assigned to

this treatment increases, as more historical data is available. This is not a large issue

for the individual patients, as both treatments produce the same outcome on average,

hence, it does not matter to them which treatment they are allocated. The proportion

of patients given their individual superior treatment is always roughly 50%. However,

we would also ideally like roughly 50% of patients to be assigned to each treatment.

For scenario one, when there is historical data available on the control treatment,

it will initially produce a prediction close to 0, and there is a neutral estimate of

ŷ1,E = 0 for the experimental treatment. However, if the historical data on the control

treatment produces an estimate slightly above 0, it can take several current patients

to then bring this prediction down below 0, and even then, there is only a 50% chance

the current patient who is assigned the control treatment will produce an outcome

slightly below 0. Then due to the random error in the outcome of the experimental

treatment, if a patient is assigned the experimental treatment, that patient could still

produce an outcome below 0. Here, the proposal can get stuck continually assigning
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the majority of patients to the control treatment.
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Figure 3.5.2: Simulated proportion of patients on the superior treatment on average,

for four scenarios with a sample size of n = 40, 80 & 120 for multiple regression

methods, when the historical data is available on the control treatment only.
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Figure 3.5.2: Simulated proportion of patients on the superior treatment on average,

for four scenarios with a sample size of n = 40, 80 & 120 for multiple regression

methods, when the historical data is available on the control treatment only.
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Conversely, if the historical data on the control treatment produces an estimate

slightly below 0, the experimental treatment is assigned to the �rst patient in the

trial. However, again due to the random error in the outcome of the experimental

treatment, that patient is equally likely to produce an outcome above or below 0.

If they produce an outcome below the historical data on the control treatment then

again the proposal could get stuck assigning more patients to the control treatment.

The proposal is more likely to get stuck continually assigning patients to the control

treatment than continually assigning patients to the experimental treatment, although

this could still happen.

Additionally, the larger the weight assigned to the historical data, the larger the

probability the patients will get stuck, particularly on the control treatment. For

many regression methods the mean proportion of patients assigned to the control

treatment is between 50% and 56% (see Figure 3.5.2). However, using a NI prior

(which is updated using the historical data, before being updated using the current

data) in the Bayesian linear model assigns a much larger weight to the historical data

than any of the other regression methods. This is why it assigns a much larger mean

proportion of patients to the control treatment, roughly 70%, when the number of

historical data points is equal to the total number of patients in the current trial.

In scenarios two-eight, Figure 3.5.2 indicates this adaptive proposal always assigns

more patients to the superior treatment than the RCT design, regardless of how much

historical data is available. Even when there is no historical data available, all methods

assign a large proportion of patients to the superior treatment. Hence, over the

course of the 40 patients within the trial the methods are learning which treatment is

superior for which patients. Here, scenario three appears to be the hardest scenario to

determine the superior treatment for, with only a maximum of 72% of patients being

assigned the superior treatment, when there is no historical data available. This is

likely due to the small di�erence between the two treatments on average, particularly

when a patient's biomarker is large. Conversely, scenario six seems to be the easiest
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scenario to note which treatment is superior for which patients, with a maximum of

89% of patients being allocated the superior treatment, when there is no historical

data utilised. This is probably due to the large di�erences between the treatments in

the tails and the symmetric nature of the scenario.

For scenario two, when the historical data is only available on the control treat-

ment, Figure 3.5.2 indicates a fairly constant proportion of patients given the superior

treatment as the proportion of historical data increases, for the majority of the re-

gression methods. The weighted random forest produces a decrease in the mean

proportion of patients given the superior treatment, as the proportion of historical

data increases. In this situation the neutral estimate, ŷ1,E = 0, on the experimental

treatment, initially assigns patients with biomarkers xi < 0 incorrectly to the control

treatment, which will produce outcomes larger than 0, on average. And thus, more

patients who arrive into the trial with small biomarkers, are likely to continue to be

allocated the control treatment, incorrectly. Furthermore, when patients with positive

biomarkers enter the trial they are likely to be correctly allocated the experimental

treatment, however, they are also likely to produce outcomes which are smaller than

those produced by the patients with small biomarkers who are given the control treat-

ment. In this way the proposal can get stuck allocating patients, at least initially, to

the control treatment. In this situation having more historical data available on the

control treatment is not helpful.

Similarly to scenario two, having historical data available only on the control treat-

ment in scenario three, does not increase the performance of the proposal. It actually

causes a decrease in the proportion of patients given the superior treatment, as the

proportion of historical data increases. This is likely due to the neutral estimate,

ŷ1,E = 0, not being a good approximation to the outcome produced by the experi-

mental treatment. As the control treatment is centred at 0, there should be a fairly

even chance of being assigned either treatment. However, similarly to scenario one,

the proposal can occasionally get stuck on the control treatment. However, we do still
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see more patients being assigned the superior treatment than in the RCT design.

In scenarios four-eight, having historical data only on the control treatment causes

an increase in the proportion of patients given the superior treatment, as the propor-

tion of historical data also increases. In scenarios four, seven and eight, the control

treatment is centred at 0 and the experimental treatment will have a neutral esti-

mate of ŷ1,E = 0. Therefore, initially there is an equal probability of getting either

treatment. Once a patient with a negative biomarker enters the trial and is randomly

assigned the experimental treatment, they are likely to give a positive outcome, and

the proposal will explore the experimental treatment more. In scenario �ve when

the historical data is on the control treatment a neutral estimate of ŷ1,E = 0, al-

though incorrect for the experimental treatment, still mirrors the truth. Patients

with small biomarkers will be given the control treatment correctly, and patients with

large biomarkers will be given the experimental treatment correctly. It does not mat-

ter that the treatment outcome is not predicted correctly, only that the crossing point

and which treatment is superior for which patients are modelled correctly. The same

applies for scenario six.

As the sample size of the trial increases (see Figure 3.5.2), the proportion of

patients given the superior treatment also increases. However, the shape of the plots

and the order of which regression method is best is mirrored for all three sample sizes

investigated, n = 40, 80, 120, therefore, we only investigate one sample size further,

n = 40.

The plots above show how the scenario can a�ect the performance of each of the

regression methods. The scenarios where each method tends to perform best (scenar-

ios �ve and six) have neutral estimates, ŷ1,E, which mirror the true mean outcome

produced by the experimental treatment. Here, as the proportion of historical data

available initially increases, the proportion of patients assigned the superior treat-

ment also increases. However, when the proportion of historical data increases past

roughly 25%, the proportion of patients assigned the superior treatment tends to
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plateau and this additional historical data is not actually useful. In the scenarios

where the methods do not perform well (scenarios two and three), the more historical

data are utilised, the proportion of patients assigned the superior treatment either

plateaus or decreases. Here, the additional historical data are not useful. In Figure

3.5.2, weighted polynomial regression of degree 1 and the Gaussian process with a

noise value of 0.25 seem to perform best, particularly when the amount of historical

data is 25% of the size of the trial.

E�ect of Di�erent Distance Measures

We initially explored three distance measures (Euclidean, ED, Mahalanobis, MD

and Frechet, FD) for the two weighted regression methods.

We found that the Frechet distance performed worst, for the majority of scenarios

(four, �ve, six, seven and eight). However, it performed best for scenarios one (as

on average it assigned the proportion of patients on the superior treatment closest to

0.5), two and three. The Mahalanobis distance allocated a slightly higher proportion

of patients to the superior treatment in scenario �ve. Whereas, the Euclidean distance

assigned more patients the superior treatment for scenarios four, six, seven and eight.

As demonstrated by the weighted polynomial regression method in Figure 3.5.3. This

was the case for both linear regression, `Poly 1' and starting with a linear regression

and then switching to cubic after data became available for at least seven patients on

a treatment (both current and historical), `Poly 1-3'.

Furthermore, the weight assigned to the historical data as each individual patient

entered the trial, was investigated. The Frechet distance consistently assigned the

lowest weight to the historical data, when they were representative of the current

trial. In addition, for some scenarios, when there were a large proportion of historical

data, the Frechet distance assigned a larger weight to the historical data when they

were unrepresentative of the current trial, than when they were representative.
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Figure 3.5.3: Simulated proportion of patients on the superior treatment on average,

for eight scenarios with a sample size of n = 40 for weighted polynomial regression,

when the representative historical data was available for the control treatment only,

investigating the distance measures.

The Mahalanobis distance assigned a large weight to the historical data, even when

they were unrepresentative of the current trial (although not as high as when they

were representative). This weight also changed a lot throughout the trial. It initially

assigned a fairly low weight to the historical data and then as more current patients

entered the trial, the weight assigned to the historical data increased. This increase

was larger, when there were more historical data available. This was not the case for

the Euclidean distance measure, it produced a weight which was much more stable

throughout the trial.
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Due to the Euclidean distance always calculating a substantially higher weight

for the historical data, when they were representative versus unrepresentative of the

current trial, and it calculating a fairly constant weight for all patients i = 2, 3, ..., n,

we focus on this distance measure throughout the rest of this Chapter.

However, Figure 3.5.3 shows a very small di�erence in the proportion of patients

assigned to the superior treatment, between the three distance measures investigated.

The largest di�erence in the proportion of patients assigned to the superior treatment,

was only 0.02. Therefore, we conclude, the decision of which distance measure to use,

should not have a large impact on the results of this method.

Volatility of proposal

What the plots above do not show, is that this proposal is volatile. Figure 3.5.4

displays the boxplots for the proportion of patients assigned to the superior treatment

across all 1,000 simulations, when using a Gaussian process with a noise value of 0.25

for all eight scenarios. The minimum and maximum proportion of patients assigned to

the superior treatment are noted by the whiskers and the inter-quartile range (IQR)

is represented by the blue box, with the median value shown by the red line through

the box.

In many scenarios, the range of the proportion of patients who are assigned the

superior treatment across the 1,000 simulations is very wide, ranging from 0 to 1.

In scenario one, there are simulations when all the patients are assigned the control

treatment and there are some simulations where all the patients are assigned the

experimental treatment. Figure 3.5.4 indicates the proposal is particularly volatile

for scenario one, which has a much larger IQR than the other scenarios.

Although, the majority of simulations prioritise the allocation of the superior treat-

ment, there are still instances where many patients are assigned the lesser treatment.

Scenarios two, three and eight have a large median proportion of patients assigned to

the superior treatment (ranging between 0.7 and 0.9), however, they still have very
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low minimum values, which range from 0 to 0.15.

% of Historical Data

P
ro

po
rt

io
n 

on
 th

e 
S

up
er

io
r 

T
re

at
m

en
t, 

on
 A

ve
ra

ge

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Scenario 1 Scenario 2 Scenario 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Scenario 4 Scenario 5

0 10 25 50 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Scenario 7

0 10 25 50 100

Scenario 8
0 10 25 50 100

Scenario 6

Range
IQR
Median

Figure 3.5.4: Boxplots showing the simulated proportion of patients on the superior

treatment on average, for eight scenarios with a sample size of n = 40 for a Gaussian

process with noise=0.25, when the representative historical data was available for the

control treatment only.

Furthermore, scenarios four-seven display smaller ranges between the minimum

and maximum proportion of patients assigned to the superior treatment. In particular,

scenarios four-six, where the proposal performs very well displays the IQR boxes



CHAPTER 3. USING HISTORICAL DATA IN A CARA CLINICAL TRIAL 109

shifting upwards and shrinking as the proportion of historical data increases. It is

scenario six, which has the smallest IQR, which also has the largest median of all the

scenarios as well. Although the proposal is volatile, Figure 3.5.4 shows the IQRs are

above 0.5, hence, the proposal performs better than the RCT in scenarios two-eight

at least 75% of the time.

Although Figure 3.5.4 only shows the volatility of the Gaussian processes method,

the other regression methods also yielded similarly volatile results.

Historical Data on Experimental Treatment Only

Figure 3.5.5 shows the proportion of patients given the superior treatment in all eight

scenarios, when historical data are only available on the experimental treatment. This

is shown for a trial sample size n = 40.

In scenario one as more historical data is utilised, the proportion of patients given

the control treatment (labelled as best on average in this scenario) decreases. This is

the opposite of what was seen in scenario one when historical data was only available

on the control treatment. The proposal is likely to get stuck assigning patients to

whichever treatment has historical data available and this probability increases as the

amount of historical data increases.

The addition of more historical data in scenario two causes an initial increase

and then plateau in the proportion of patients given the superior treatment, which

di�ers from what we saw when the historical data were only available on the control

treatment. This is due to the neutral estimate of ŷ1,C = 0 on the control arm, allowing

patients with biormakers roughly xi < 40 to be correctly assigned to the experimental

treatment. These patients will also produce larger outcomes than the patients initially

incorrectly given the control treatment when their biomarkers are xi > 40. This larger

biomarker (xi = 40) allows more patients to initially be allocated correctly (compared

to when there were historical data available on the control treatment only) and hence,

we see this increase in the proportion of patients assigned to the superior treatment.
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Figure 3.5.5: Simulated proportion of patients on the superior treatment on average,

for eight scenarios with a sample size of n = 40 for several regression methods, when

the representative historical data was available for the experimental treatment only.

In scenario three, four, seven and eight, having historical data on the experimental

treatment only, increases the proportion of patients assigned to the superior treatment

for all methods as proportion of historical data increases, see Figure 3.5.5. As the

neutral estimate on the control treatment, ŷ1,C = 0, is the true underlying function on

the control treatment, the initial patient is always allocated the correct treatment and

the correct treatment for all biomarkers will be explored from the start. This causes a

much larger increase in the proportion of patients given the superior treatment when

compared with historical data only being available on the control treatment.

In scenario �ve when the historical data are on the experimental arm, a neutral
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estimate of ŷ1,C = 0, is completely incorrect for the control treatment. Here, the �rst

patient in the trial will always be assigned the worst treatment. This causes the drop

in the proportion of patients assigned to the superior treatment from when historical

data are available on the control treatment, only. However, this initial exploration of

the incorrect treatment for patients with large biomarkers should quickly show which

treatment is superior and change the prediction of the outcome on the control arm.

In scenario six when the historical data are on the experimental arm, a neutral

estimate of ŷ1,C = 0, although incorrect for the control treatment still mirrors the

truth. The methods will still allocate patients to the correct treatment from the very

start. It does not matter that the treatment outcome is not predicted correctly, only

that the crossing point and which treatment is best for which patients is modelled

correctly.

When we compare Figure 3.5.2 with Figure 3.5.5, we see that the proposal can

perform well, when the neutral estimate, ŷ1,k, on the treatment without historical

data, k, mirrors the truth. In this situation, the more historical data are available,

the more patients are assigned the superior treatment. However, these Figures also

demonstrate when the neutral estimate, ŷ1,k, is incorrect, the proposal can get stuck on

the incorrect treatment and actually, increasing the amount of historical data available

will hinder the proposal. These Figures show the importance of the neutral estimate

being `representative' (or close to it) when we have no historical data available for a

treatment.

Historical Data Available for Both Treatments

Figure 3.5.6 indicates the results when historical data is available for both treatments.

In scenario one, we expect to and we see roughly half the trial patients assigned to

each treatment. As there is no di�erence between them on average, the methods tend

to split the patients equally between the treatments as they cannot �nd a di�erence

between them. Having equal proportions of historical data on each treatment allows
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this to happen from the start of the trial.
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Figure 3.5.6: Simulated proportion of patients on the superior treatment on average,

for eight scenarios with a sample size of n = 40 for several regression methods, when

the representative historical data was available for both treatments.

In scenarios two-eight, as the amount of historical data initially increases we also

see an increase in the proportion of patients assigned to the superior treatment. How-

ever, as the amount of historical data continues to increase the proportion of patients

assigned to the superior treatment tends to plateau. The point which this plateau

starts varies between methods and scenarios. This shows that some historical data

is advantageous, however, there is a point where increasing the amount of historical

data further will not a�ect how well the regression methods perform.

Figure 3.5.6 demonstrates the importance of the initial prediction on each treat-
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ment being representative. Now there is historical data for both treatments, the initial

prediction for which treatment is superior is much more likely to be correct. The pro-

posal will still struggle for a patient with a biomarker close to the crossing point where

the superior treatment changes, however, the additional historical data does not hin-

der the proposal in these scenarios. When we compare Figure 3.5.6 with Figure 3.5.2,

the increase in patient bene�t, particularly for scenarios two and three is huge. The

potential gain in patient bene�t can be as large as, 0.35 for the Bayesian linear model

using a NI prior. This really indicates the importance of the initial prediction on each

treatment, and the damaging e�ect using an arbitrary neutral estimate, not based on

any data, can have on the patient bene�t within the trial.

Throughout the rest of this text we focus on only having historical data available on

the control treatment. As the Gaussian process with a noise value of 0.25, performed

very well in this situation and it is a method which deals well with non-linear rela-

tionships between a patient's biomarker and outcome, as well as linear relationships,

we choose to focus on this regression method throughout the rest of this Chapter.

Historical Data Unrepresentative for the Control Treatment Only

Next, we determine how well the proposal performs when the historical data is un-

representative (see Figure 3.5.8). We assume the historical control data is shifted

upwards by a value of four, on average and shifted downwards by four, on average

(these unrepresentative historical data are shown for each scenario in Figure 3.5.7).

When the historical data is shifted upwards, in scenario one, more patients are

now assigned the control treatment. Here, the historical data will initially cause the

proposal to assign current patients to the control treatment, however, as more current

patients enter the trial and bring the control treatment prediction down, eventually

the proposal will start exploring the experimental treatment too. Conversely, when

the historical control data is shifted down, in scenario one, patients will initially be

allocated the experimental treatment. As the experimental treatment will produce
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outcomes above the historical control data, on average, the proposal is likely to get

stuck assigning patients to the experimental treatment. As shown by the blue line in

Figure 3.5.8.
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Figure 3.5.7: Simulation scenarios, when the historical data on the control treatment

is unrepresentative.

For scenarios two and three, when the historical control data is larger than the

true value, it causes a decrease in the proportion of patients assigned to the superior

treatment. Here, the historical data will cause the control treatment to be assigned to

patients initially and (similarly to scenario one) it will take time for these current pa-

tients to produce lower outcomes, which bring the control treatment prediction down.

Once this happens, the proposal will assign patients to the experimental treatment,

and more than in an equal randomisation RCT. Contrarily, when the historical control
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data is shifted downwards, the current patients are assigned the experimental treat-

ment from the start and as the average experimental treatment outcome is above this

historical data, the proposal is likely to keep assigning patients to the experimental

treatment, correctly.
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Figure 3.5.8: Simulated proportion of patients on the superior treatment on average,

for eight scenarios with a sample size of n = 40 for a Gaussian process with noise=0.25,

comparing when the representative vs unrepresentative historical data was available

for the control treatment only.

Figure 3.5.8 exhibits a decrease of roughly 0.1 in scenario two and 0.14 in scenario

three, when we compare the use of representative historical data vs historical data

shifted upwards. Alternatively, Figure 3.5.8 exhibits a 0.2 increase in scenario two and
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0.28 increase in scenario three, when we compare the use of representative historical

data vs historical data shifted downwards.

Scenarios four-eight in Figure 3.5.8 show very small decreases (roughly 0.04) in

the proportions of patients assigned to the superior treatment when the historical

control data is shifted upwards, and a large decrease (between 0.2 and 0.3) when

the historical data is shifted downwards. When the historical control treatment is

shifted up, patients will be assigned the control treatment from the start. This gives

the opportunity to have current patients on the control treatment, which will bring

its prediction down in the `correct' biomarker ranges and therefore, the experimental

treatment will eventually be explored for the `correct' biomarkers. However, when the

historical control data is shifted down, the experimental treatment will be assigned

to the current patients from the start. For scenarios four, seven and eight the average

outcome on the experimental treatment is larger than the historical control data for

all biomarkers and thus, the proposal is likely to get stuck assigning patients only

to the experimental treatment. Due to the set-up of these scenarios, this is likely to

give roughly half the patients the superior treatment (the patients whose biomark-

ers are negative will receive the superior treatment). In scenarios �ve and six, the

historical control data will be smaller than the average outcome on the experimental

treatment for the majority of the biomarker range. However, for the patients with

small biomarkers, their outcomes on the experimental treatment will be similar to the

historical control data in the same biomarker range. In this instance the proposal will

eventually assign some patients correctly to the control treatment and thus, this in-

creases the proportion of patients assigned to the superior treatment when compared

with scenarios four, seven and eight.

Figure 3.5.8 again highlights the importance of the initial treatment outcome pre-

dictions (regardless of whether it is a neutral estimate or if it is calculated using

historical data). Scenarios two and three in particular, demonstrate how the perfor-

mance of the proposal can increase or decrease depending on how the historical data is
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unrepresentative. Interestingly, for scenarios two-eight the proposal always produced

a larger (or similar) proportion of patients allocated to the superior treatment as the

RCT, no matter how the historical data was unrepresentative.

πi Sequence Exploration

Furthermore, we investigated the e�ect of varying the probability of each patient being

assigned their predicted superior treatment (i.e. varied the πi sequence). Instead

of always assigning a patient their predicted superior treatment, we �rst looked at

allocating them their predicted superior treatment with 80% probability throughout

the trial, thus, πi = 0.2 ∀ i ∈ {1, 2, ..., n}. We further investigated two decreasing

sequences from π1 = 0.3 to πi = 0, where the �rst sequence decreased linearly and

the second sequence decreased exponentially. In this way, as more patients enter the

trial and we collect more information on both treatments, patients are more likely to

be assigned their predicted superior treatment.

In scenario one these additional sequences have a positive impact on the proposal.

Figure 3.5.9 shows the proposal is closer to allocating 50% of patients in the trial to

each treatment, when the sequence πi = 0.2 and when it linearly decreases. Whereas,

the exponentially decreasing sequence assigns more patients to the control treatment

than using πi = 0 throughout the trial.

When each patient is no longer guaranteed their predicted superior treatment, the

proportion of patients assigned to the superior treatment decreases. This is partic-

ularly apparent in the scenarios where the proposal previously performed well, for

example see scenarios �ve-seven in Figure 3.5.9.

Scenarios two and three show the exponentially decreasing function performs

slightly better than always assigning patients their estimated superior treatment with

100% probability. In scenarios four and eight the exponentially decreasing function

performs very similarly to using πi = 0 throughout the trial. For all scenarios the

linearly decreasing sequence performs better than using πi = 0.2 throughout the trial.
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However, the drop between using πi = 0 and πi = 0.2 for the whole trial is only

between 0.1 and 0.15, depending on the scenarios.
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Figure 3.5.9: Simulated proportion of patients on the superior treatment on average,

for eight scenarios with a sample size of n = 40 for a Gaussian process with noise=0.25,

comparing four di�erent sequences for πi.

The Addition of a Burn-in Period

Finally, we investigated how introducing a burn-in period would a�ect the proposal.

We explored a burn-in period of one to seven patients, where these patients were

split equally (or as close to) between the two treatments and compared to no burn-in,

represented by the green 5-point stars in Figure 3.5.10.
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Figure 3.5.10: Simulated proportion of patients on the superior treatment on average,

for eight scenarios with a sample size of n = 40 for a Gaussian process with noise=0.25,

comparing di�erent burn-in periods when historical data was available for the control

treatment only.

For scenario one, a burn-in period of �ve patients performed best. It caused

roughly 50% of patients to be allocated to the control treatment for all amounts of

historical data explored. Figure 3.5.10 shows as the burn-in period initially increases

from zero to two the proportion of patients assigned to the superior treatment gets

further from the optimal 0.5, by increasing. As burn-in increases further from three

to �ve, the proportion of patients assigned to the superior treatment decreases and

gets closer to the optimal 0.5. However, additional burn-in decreases the proportion
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of patients assigned to the superior treatment further, such that the proportion of

patients assigned to the superior treatment seems to approach 0.48.

In scenarios two and three, when the historical data was available on the control

treatment, a burn-in period of six and seven patients, respectively, were most advan-

tageous. Here, we see that on average as the burn-in period increases, so does the

proportion of patients assigned to the superior treatment. However, this increase is

very small.

In scenarios four, seven and eight a burn-in period of one is optimal. When the

burn-in period increases past one, the proportion of patients assigned to the superior

treatment decreases. Scenarios �ve and six produce the largest proportion of patients

assigned to the superior treatment when a burn-in period is not used. Here, as the

burn-in period increases, the proportion of patients assigned to the superior treatment

decreases.

We conclude a burn-in period is only advantageous, when the neutral estimate

on the experimental treatment, ŷ1,E, does not mirror the truth and the proposal

performs poorly (for example scenarios two and three). However, the burn-in must

be large enough, such that enough data is available on the experimental treatment

to accurately estimate the underlying function of the outcome. When the proposal

performs well (for example scenarios �ve and six) introducing a burn-in period only

hinders the proposal and decreases the proportion of patients assigned to the superior

treatment.

3.6 Case Study Analysis

To demonstrate the utility of our proposal in a real trial setting, we use the motivating

example described in Section 3.2. The DREAM study is our historical study and we

wish to use the CARA proposal described in Section 3.3 to produce an allocation rule

for the current MENSA trial. We use the baseline blood eosinophil count as our con-
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tinuous biomarker. We model this biomarker with a skewed Beta distribution, using

the MATLAB function `pearsrnd', with a mean of 0.25 109/L, standard deviation of

0.2, skewness of 1.6 and kurtosis of 6.5. The mean was chosen based on the results of

Benson et al. (2022) and the other parameters were chosen such that the biomarkers

would be bound roughly by 0 and 2 109/L, which is the range of biomarkers observed

in the DREAM and MENSA trials (see Pavord et al., 2012; Ortega et al., 2014). The

biomarker distribution for this patient population is displayed in Figure 3.6.1.

Figure 3.6.1: Distribution of asthma pa-

tients' blood eosinophil count.

The rate of exacerbations is the con-

tinuous outcome in this demonstration,

where lower rates of exacerbations are

superior for the patients. We focus on

a current trial with K = 2 treatments,

placebo and mepolizumab, with a sam-

ple size of n = 382, as in the MENSA

study. In addition, our historical trial is

of size nH,C = 155 and nH,E = 153, which

mirrors the DREAM study and we com-

pare it to having no historical data on either treatment, nH,C = nH,E = 0. For each

scenario, we explore a historical trial which matches the current trial exactly and a

historical trial based on the DREAM study. In addition, we investigate two instances

of having no historical data available on either treatment. In the �rst instance the

neutral estimate, ŷ1,k, for both treatments, k ∈ {C,E}, is based on our prior belief

of the outcome on the control treatment from the MENSA trial, which will match

the control treatment in the current trial exactly. In the second instance the neutral

estimate, ŷ1,k, for both treatments, k ∈ {C,E}, is based on our prior belief of the

outcome on the control treatment from the DREAM trial. In both situations we use

the median value of this hypothetical historical control data as our neutral estimate,

ŷ1,k. As above, we assign each patient their estimated superior treatment with 100%
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probability, and thus, keep the sequence πi = 0 ∀ i ∈ {1, 2, ..., n}. Furthermore,

we compare the proportion of patients assigned to the superior treatment for the

Gaussian process with a noise value of 0.25 with an equal allocation RCT, for each

scenario. Three di�erent scenarios are considered based on the motivating example,

which are described in Section 3.6.1. Finally, we perform this analysis only once, as

would happen in practice.

3.6.1 Scenarios

The underlying functions for the three scenarios we investigate are listed in Table 3.6.1.

The function for the DREAM trial was chosen to mirror the `3 previous exacerbations

subgroup' in Figure 4 from Pavord et al. (2012). The functions for the MENSA

trial were based on the estimated rates of exacerbations per patient per year, in

the placebo (scenario 1) and 75mg intravenous mepolizumab groups (scenario 2) and

the `3 previous exacerbations subgroup' (scenario 3) in Figure S7 from Ortega et al.

(2014).

Scenario
DREAM

Cont Treat

DREAM

Exp Treat

MENSA

Cont Treat

MENSA

Exp Treat

One 0.3 ln(5x) + 2.55 1
exp(2x)

+ 0.7 1.74 1.74

Two 0.3 ln(5x) + 2.55 1
exp(2x)

+ 0.7 1.74 0.93

Three 0.3 ln(5x) + 2.55 1
exp(2x)

+ 0.7 0.05 ln(5x) + 1.9 1.8
exp(5x)

+ 0.47

Table 3.6.1: Case Study Scenario Summary

These scenarios are shown in Figure 3.6.2. We look at these three scenarios when

there is no historical data available, when the historical data matches the current trial

exactly and when the historical data comes from the DREAM trial. The historical

data is shown in the plots for both treatments, based on the DREAM trial. The

random error term, εi,k, is normally distributed with zero mean and variance, σ2
i,k.
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This variance increases as the mean patient outcome, fk(xi), also increases, for both

treatments.
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Figure 3.6.2: Case study scenarios

Scenario one is the null scenario, where both treatments produce the same out-

come, for all patients' biomarkers. The mean outcome in this scenario is based on

the mean rate of exacerbations produced by the control treatment in the MENSA

trial, 1.74. In scenario two, the experimental treatment produces a smaller outcome

than the control treatment, however, the patient's biomarker does not impact their

outcome. The mean outcome of the control and experimental treatments in this sce-

nario are based on the mean rate of exacerbations produced by the control treatment

and the 75mg dose of mepolizumab stated in the MENSA trial, 1.74 and 0.93, respec-

tively. Finally, scenario three is based on the results from the MENSA trial. Here,

the patients with larger biomarkers produce a larger outcome if they are given the

control treatment and a smaller outcome if they are given the experimental treat-

ment. The superior treatment for a patient on average, changes at the biomarker

value, X = 0.055 109/L.



CHAPTER 3. USING HISTORICAL DATA IN A CARA CLINICAL TRIAL 124

3.6.2 Results

Figure 3.6.3 shows the proportion of patients assigned to the superior treatment, when

the historical data are utilised for both treatments. For the null scenario, we assume

the control treatment is superior on average. In the simulation below, we only run

it once, and all scenarios for all amounts of historical data are run with the same

randomisation seed. Therefore, when there is no historical data available and the �rst

patient is randomised between the two treatments with equal probability, they are

given the same treatment for each scenario and each amount of historical data (in

this simulation, it is the control treatment).
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Figure 3.6.3: Proportion of patients assigned to the superior treatment on average,

for three scenarios based on the MENSA study with a sample size of n = 392, for a

Gaussian process with noise=0.25.

In scenario one, none of the four amounts of historical data produce the desired

equal allocation between the treatments. When no historical data are used, it is

random chance to which treatment the �rst patient will be assigned, as both initial

predictions will be based on the same neutral estimate, ŷ1,C = ŷ1,E. When the neutral

estimate comes from the historical control data in the MENSA trial, there should still

be a high probability that the current patients will produce outcomes similar to said

neutral estimate and the proposal is less likely to get stuck on one treatment or the

other. In this situation the proposal is very volatile and it could produce di�erent

results for di�erent simulations. Here, Figure 3.6.3 shows that even though the �rst
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patient was allocated the control treatment, the proposal gets stuck allocating patients

the experimental treatment. Whereas, when the neutral estimate is based on the

DREAM study, the proposal is likely to get stuck on which ever treatment is assigned

to the �rst patient in the trial, as the neutral estimate is larger then the average

outcome for both treatments in the current trial in this scenario. Figure 3.6.3, shows

that all patients are assigned the control treatment. When the representative historical

data are used, which mirrors the current trial exactly, more patients are assigned the

experimental treatment, even though both treatments have very similar historical data

available. In this situation the proposal is rather volatile and it could produce di�erent

results for di�erent simulations, due to slight changes in the historical data. When

the historical data from the DREAM trial are used, then this proposal will assign

patients to the experimental treatment from the start. As the trial progresses, even

though the current patients will cause the prediction for the experimental treatment

to increase, it will not increase enough to take the prediction above the historical

data on the control treatment. Hence, the proposal is highly likely to assign a large

number of patients to the experimental treatment, as expressed in Figure 3.6.3.

For scenario two, in Figure 3.6.3, the Gaussian process assigns a large proportion

of patients to the experimental treatment correctly, in three out of four historical data

situations. When there are no historical data available, but the priors are calculated

from the MENSA study, if the �rst patient into the trial is randomly assigned the

experimental treatment, the proposal is likely to continue to assign patients to the

experimental treatment. This is due to the experimental treatment producing a much

lower outcome than the neutral estimate on the control treatment. However, when

the �rst patient into the trial is randomly assigned the control treatment, due to the

random error term, there is a 50% chance that patient will produce an outcome above

the neutral estimate and the next patient will be assigned the experimental treatment

and thus, further patients will be assigned the experimental treatment. Here, it

may take several patients but the proposal is likely to assign many more patients
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to the experimental treatment, as soon as one patient is assigned the experimental

treatment, the rest will follow. When the neutral estimates come from the DREAM

trial, the proposal is likely to get stuck on which ever treatment is assigned to the

�rst patient in the trial. Figure 3.6.3 shows the proposal gets stuck on the control

treatment, incorrectly. When there is historical data available (regardless of whether

it is from the MENSA or DREAM trial), the �rst patient into the trial will be assigned

the experimental treatment from the start of the trial. Further patients will also be

assigned the experimental treatment, as it produces such a low outcome in the current

trial.

Finally, what we have discussed above for scenario two is mirrored in Figure 3.6.3

for scenario three. When there is no historical data available and the neutral estimates

are produced using the MENSA trial, the proposal is likely to get stuck assigning

patients to the experimental treatment. When the neutral estimate is calculated

using the DREAM trial, the proposal is likely to get stuck assigning patients to

the treatment picked by random chance for the �rst patient. However, here, even

though the �rst patient is assigned the control treatment, the majority of patients

are given the experimental treatment. In scenario three, there is the possibility that

the prediction for the control treatment has a positive slope and would produce the

larger predicted outcome for the larger patient biomarkers. In this case, the proposal

would assign patients with large biomarkers to the experimental treatment, and as

soon as the experimental treatment starts to be explored, the proposal is likely to

continue to assign patients to the experimental treatment, as it will produce much

smaller outcomes (for the majority of patient biomarker values). When historical data

is available, the proposal is likely to get stuck assigning patients to the experimental

treatment. However, here, the underlying functions of the outcomes in the current trial

cross, such that, the control treatment is superior on average for those patients with

a baseline blood eosinophil count below 0.055 109/L. Due to the skewed distribution

of the biomarker, roughly 10% of the trial population will have a baseline blood
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eosinophil count below 0.055 109/L. So, even if all the patients are assigned the

experimental treatment, those with a very small biomarker will actually be assigned

the wrong treatment for them. This explains why scenario 3 in Figure 3.6.3 only

shows between 90% and 95% of patients assigned to the superior treatment.

3.7 Conclusions and Further Work

Many clinical trials use historical data to predict the likely di�erence in treatment

e�ect between a control treatment and novel experimental treatment. In addition,

utilising historical control data is starting to become more common practice in rare

disease RCTs, due to the small patient populations and thus, small recruitment rates

into RCTs (see Lim et al., 2018, for a list of successful trials which used historical

control groups). However, there have been few instances where historical trial data

have been used to in�uence the TAP in a current trial, in order to increase the

bene�t to patients. This is likely due to the issues associated with using historical

data in a current clinical trial, which are stated by Hall et al. (2021), due to the

heterogeneity in trial design, patient characteristics and outcome measures, to name

a few. Furthermore, Robertson et al. (2020) notes that there is much disagreement

in the medical �eld over the use of RAR and CARA designs, which further decreases

their use in practice.

Above, we have demonstrated how historical trial data can be used in a CARA

framework and the potential problems it may cause. We have shown that when his-

torical data is available on both treatments, the CARA proposal discussed in Section

3.3, can lead to a large increase in the proportion of patients given the superior

treatment. In this instance, using the Bayesian linear model with a NI prior or the

Gaussian process with the default noise value seemed to perform best in the simula-

tion study discussed in Section 3.5. Whereas, the Gaussian process with noise=0.25

and weighted linear regression performed best when there were only historical trial
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data available on the control treatment. In addition, the case study demonstrated

how the proposal, using a Gaussian process with noise=0.25 would work in practice

and it showed the potential gain in patient bene�t, compared to an RCT with equal

allocation. Thus, if historical information were available for both treatments in the

trial, this proposal would be useful.

However, the key challenge with the proposal is when historical data is only avail-

able for one treatment. When designing clinical trials there is likely to be a substantial

amount of information available on the control treatment, as it will have undergone

many clinical trials previously to make sure it is safe (and a current SoC treatment

would have undergone a number of clinical trials to make sure it was e�cacious as

well). However, the novel experimental treatment will have much less information

available. Therefore, the most common example will be having historical data on the

control treatment and not on the experimental treatment. This is when the proposal

runs into issues. The biggest one being, `how to estimate the outcome of the �rst

patient on the experimental treatment, when there is no prior knowledge available?'

In the simulation in Section 3.5, an arbitrary outcome value was picked as our

neutral estimate (ŷ1,k = 0), which was in the middle of the possible outcome range

[−10, 10]. This worked well in the scenarios where this value mirrored the truth or

it allowed exploration of the experimental treatment. However, in certain situations

it hindered the proposal, and using no historical data was actually preferred in these

scenarios. In the case study, in Section 3.6, the potential historical data on the control

treatment was utilised to produce a constant value, to be used as our neutral estimate,

ŷ1,k, when no historical data were available in the proposal. This performed well in the

situations explored. Although, in both examples the proposal often failed to allocate

patients equally between the treatments for the null scenario. From this issue, stems

an important avenue of further work, how to choose the best value for the neutral

estimate if there is no historical trial data available.

In addition to the choice of the neutral estimate, there are a number of other ex-
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tensions which could be made to the proposal. The simulations above have all focused

on using one continuous biomarker, however the proposal could be adapted to include

multiple biomarkers of di�erent types. All the regression methods explored, should in

theory be able to model more complex relationships, particularly the weighted ran-

dom forest method, including multiple binary, categorical and continuous biomarkers.

Although, including more biomarkers in the regression methods will increase the dif-

�culty of determining which treatment is superior for which patients. Hence, further

simulations would be needed to explore how the proposal would cope with more com-

plex relationships. Also, the current biomarker research available can be limited,

depending on the therapeutic area. Often, there is only a small number of known

biomarkers for a disease and hence, if the proposal were to be used in practice, only

a small number of biomarkers would likely be included in the regression methods.

A further extension to the proposal is how to handle patient outcomes which do

not present themselves quickly. In the case study investigated the annual rate of

exacerbations is not an ideal example outcome for our CARA design in practice, due

to our assumption of knowing the outcome of patient i before patient i+ 1 enters the

trial. This is a limitation of many RAR and CARA designs. An interesting extension

to the method would be to include some form of censoring in order to allow a patient

outcome to be used which cannot be recorded before the next patient enters the trial.

Alternatively, one could use a surrogate endpoint, for example the increase in forced

expiratory volume in 1 second from baseline could be used for the case study above,

to predict the outcome of interest that each treatment would eventually yield.

An area of additional research that has been touched on in Section 3.5.4 is the TAP

and how it changes through the trial. The two examples discussed, utilised πi = 0 for

all patients. In addition, other values were explored for the simulation study in Section

3.5.4, however, these were arbitrary values and sequences that were not dependent

on the observed data. The πi sequence could be adapted such that it depends on

the certainty of the proposal, that one treatment will produce a superior outcome
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to the other. It could be adapted, such that the larger the di�erence between the

predicted treatment outcomes, produce a larger probability of the patient receiving

that estimated superior treatment. Alternatively, all the regression methods above

can calculate credible intervals for their predictions. These intervals could be utilised

to produce a πi probability which is smaller, when there is little overlap in the credible

intervals of the two treatments and a probability closer to 0.5, when there is a large

overlap in the two credible intervals.

The �nal area of exploration, which would need signi�cant work if this proposal

were ever to be used in practice, is how to calculate the power of the trial. A frequentist

approach could be used, such as the t-test, where the historical data is ignored and

only the current data is used to calculate the type I error and power. Alternatively, a

Bayesian method, as described by Psioda and Ibrahim (2019) might work well. This

method controls a weighted-average type I error, where the weights are selected using

the historical data. In this way, both the current and historical data are included in

the power calculation.

In conclusion, the problems with this proposal far outweigh the advantages. We

would advise against using the proposal in its current form, when there is only his-

torical data available for one treatment. Conversely, the proposal works incredibly

well in all scenarios when no historical trial data is included (or historical trial data

is included on both treatments), all regression methods are able to �nd the superior

treatment during the trial and allocate a majority of patients to it. The CARA de-

sign without the addition of historical data (or with historical trial data included on

both treatments) works perfectly well and a πi sequence could be selected in order to

produce a proposal which would be appealing in practice.



Chapter 4

An alternative to traditional sample

size determination for small patient

populations

4.1 Introduction

The design most often used in Phase III superiority clinical trials is a two-arm ran-

domised controlled trial (RCT) with equal allocation between treatment arms (Sibbald

and Roland, 1998). This method assigns each patient to the experimental treatment

or the control treatment (placebo or standard of care, SoC) with a �xed probability

of 50%. At the end of said superiority trial the outcomes of the two treatments are

compared using a one-sided two sample hypothesis test, with a pre-speci�ed type I

error, α, (usually α = 5%). If the p-value calculated from the test is smaller than α

then the null hypothesis of `the experimental treatment is not superior to the con-

trol treatment' is rejected, (see Lieberman, 2001). Then, the experimental treatment

will either under go further testing, or an application to a regulatory agency (e.g.

the FDA) will be made, so that the treatment can be given to future patients, (see

Tonkens, 2005). If the p-value is larger than or equal to α the null hypothesis cannot

131



CHAPTER 4. SAMPLE SIZE CALCULATION IN SMALL POPULATIONS 132

be rejected and therefore, the testing on the experimental treatment is likely to stop

and the SoC treatment will carry on being given to patients.

If the primary outcome of the RCT is normally distributed, Yk ∼ N(µk, σ
2) for

both the control treatment, k = C and the experimental treatment, k = E, then the

equation below,

n =
4 · σ2

(
Φ−1(1− α) + Φ−1(1− β)

)2

δ2
, (4.1.1)

can be used to determine the sample size, n, of the RCT. The sample size calculated

using equation (4.1.1) will ensure a trial with power (1−β), if a di�erence in treatment

means (δ = µE − µC) and common standard deviation (σ) is present, for a speci�ed

type I error (α) (Charan and Biswas, 2013). This sample size determination does

not take into account the total patient population, that is all patients that could

potentially bene�t from the treatment.

For some rare diseases, equation (4.1.1) may produce a trial size which is a large

proportion of the total patient population. For example, for a type I error, α, of 5%, a

type II error, β, of 20%, a standard deviation, σ, of 1.5 and a di�erence in treatment

means, δ, of 0.4, results in a sample size of 348. The anti-neutrophil cytoplasmic

antibody (ANCA)-associated vasculitis (AAV) are rare multisystem autoimmune dis-

eases, thought to have a prevalence of 46− 184 per million (Yates and Watts, 2017).

If we assume a prevalence of 100 per million, this would give a patient population

of roughly 6, 680 in the UK. Hence, in a rare disease trial where the total patient

population might only be N = 6680, a trial size of n = 348 would result in a high

proportion (5.2%) of patients in the trial.

There are a number of reasons why having a large proportion of the patient popu-

lation in the clinical trial is not desirable. Firstly, there will only be a relatively small

proportion of patients outside the trial, who will actually bene�t from the results of

the trial. Furthermore, the larger the trial, the more patients are allocated to the

lesser treatment (Faber and Fonseca, 2014), due to half the trial population receiving
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the inferior treatment by design.

These issues highlight the di�culty associated with determining the sample size

for a clinical trial, particularly in a small patient population. It must be large enough

to provide a reliable decision on which treatment is superior. However, it should

not be too large, so that extra patients are being given a non-e�ective treatment

unnecessarily. In small patient populations this di�culty only increases.

The e�ect of the total patient population, N , on the sample size of a trial, n,

has been explored by Stallard et al. (2017). They look to maximise a gain function

that captures any kind of cost, loss or bene�t associated with the treatment, using

a decision theoretic approach. Furthermore, Colton (1963) investigates a minimax

procedure to minimise an expected loss function and a maximin procedure to maximise

an expected net gain function, where each of these functions is proportional to the true

di�erence in treatment means, δ, and incorporates the total patient population, N .

Additionally, Cheng et al. (2003) explores a decision-analytic approach to determine a

trial's sample size. They assume the total patient horizon is treated in a �xed number

of stages and they choose the size of each stage in order to maximise the number of

patient successes. This paper focuses on binary patient outcomes, when the success

probability of one arm is known and when the success probabilities of both arms are

unknown.

Similarly to Kaptein (2019), we aim to optimise the sample size of a phase III

superiority clinical trial in order to maximise the patient bene�t for the whole patient

population, N , and we assume that N is �nite and �xed. Kaptein (2019) uses a point

estimate method for a given treatment di�erence δ, to �nd the optimal sample size, n∗,

for a total patient population, N . They focus on a one-stage RCT where all patients in

the trial are recruited and the primary outcome observed prior to selecting a treatment

to be given to all patients outside the trial. They further investigate the e�ect on the

total patient bene�t, when the assumption on the total patient population, N , is

incorrect. In our work we show the lack of robustness in this method, investigate
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introducing a distribution on the standardised treatment e�ect, θ = δ/σ, instead and

also consider a two-stage extension, where an interim analysis is performed.

Patient bene�t can be de�ned in two di�erent ways. The average patient bene�t

can be de�ned as the proportion of patients who receive the treatment that is proved

to be superior for the majority of patients (i.e. the superior treatment within the

trial on average). The individual patient bene�t can be described as the proportion

of patients who receive the superior treatment for them, as an individual. These two

de�nitions are not the same, as highlighted by Senn (2016), since patients' character-

istics, such as age, gender and genetics, can cause patients to react di�erently if given

the same treatment. In addition, the total patient bene�t is de�ned as the proportion

of patients in the whole patient population, N (both inside and outside the trial) who

are allocated to the superior treatment.

Both the total average and total individual patient bene�t can be maximised in

two di�erent ways. The proportion of patients given the superior treatment can be

maximised within the trial. This would involve �nding the superior treatment during

the trial and allocating more patients within the study to this superior treatment. This

is the basis of response adaptive randomisation (RAR) trials (Hu and Rosenberger,

2006). However, in order to maximise the total patient bene�t using this method,

the clinical trial must still reliably identify the superior treatment to ensure that

all the patients outside the clinical trial are also allocated to the superior treatment.

Unfortunately, many RAR trials need a large sample size, in order to keep the power of

the clinical trial high (Williamson et al., 2017), though recent work seeks to overcome

this challenge (see Barnett et al., 2021). This then decreases the patient population

outside the trial who would bene�t from the results of the study and increases the

number of patients inside the study who could be assigned the lesser treatment.

The second method to maximise the total patient bene�t is to optimise the sample

size of the superiority RCT, such that the patient bene�t taken across the whole

population of patients is maximised. A balance in sample size must be found, such
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that the sample size is large enough to identify the superior treatment with a high

probability, but small enough such that a high proportion of patients are outside the

trial to bene�t from the results of the study. Below we investigate this method further.

4.2 Case Study

The e�ect of two doses of avacopan in the treatment of patients with AAV was in-

vestigated by Merkel et al. (2020) in a phase II study (NCT02222155). This study

comprised nC = 13 patients who were given the control treatment (placebo + SoC),

nE = 12 patients who were assigned to the �rst dose of experimental treatment (10mg

avacopan+SoC) and nE2 = 15 patients who were assigned to the second dose of exper-

imental treatment (30mg avacopan+SoC). It showed the addition of 10mg of avacopan

improved several vasculitis endpoints (Merkel et al., 2020). One key outcome in the

trial, was the percent decrease of the Birmingham Vasculitis Activity Score (BVAS) at

week 12 from baseline. Throughout this Chapter we use only the �rst two treatments,

placebo and 10mg avacopan, to demonstrate our sample size calculation method.

It is indicated by Merkel et al. (2020), that neither the safety nor e�cacy outcomes

within the trial were powered statistically. However, given a total sample size of

n = 25, one-sided type I error of α = 2.5%, power of (1−β) = 80%, and the standard

deviation found within the trial, σ̃ = 18%, we can �nd the di�erence in means which

this trial could have detected. Estimating the standard deviation of the decrease in

BVAS from baseline, from a �gure in Merkel et al. (2020), that shows the change in

BVAS over time, yields an estimate of σ̃ = 18% in the trial. Hence, the di�erence in

means which could have been detected is,

δ∗ =

√
4·σ2
(

Φ−1(1−α)+Φ−1(1−β)
)2

n
=

√
4·182

(
1.96+0.84

)2
25

= 20.2%.

The mean decrease in BVAS at week 12 was 82% on the placebo arm and 96%

on the avacopan arm. Hence, the estimated di�erence in means found in this trial is
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δ̃ = 96 − 82 = 14% (Merkel et al., 2020), but no formal statistical test was used in

the reported analysis, due to its small sample size.

In our work we will consider how one could have arrived at a suitable sample size

for this trial taking the total patient population into account. Since AAV are rare

multisystem autoimmune diseases we assume for our calculations a patient popula-

tion of roughly 6, 680 in the UK on the basis of an estimated prevalence of 100 per

1,000,000.

4.3 Bayesian Decision Theoretic Approach for Sam-

ple Size Calculation to Maximise Total Patient

Bene�t

For a rare disease, assume a total constant patient population of N . We aim to design

a superiority RCT with K = 2 treatments (including control) and a total sample size

of n patients, to maximise the patient bene�t for the total patient population, N .

Here, we focus on the acute treatment setting as opposed to the chronic setting. We

assume each patient within the total population, N , receives only one treatment and

patients within the trial will not switch to the superior treatment after the clinical

trial is completed.

Similar to Kaptein (2019), we use a decision theoretic approach where the total

expected average patient bene�t (TEAVPB, E[ABN ]) is the proportion of patients in

the total population, N , who are assigned the superior treatment on average, k = k∗,

as shown below,

E[ABN ] =
ΣN
i=1gi
N

. (4.3.1)

Here, gi is a gain function where gi = 1, if the treatment given to patient i is superior

on average, ki = k∗, and gi = 0 if the treatment given to patient i is not superior on
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average, ki 6= k∗. Kaptein (2019) explains that this sum can be split into the number

of patients within the RCT who are given the superior treatment and the number

of patients outside the trial who are given the superior treatment. The treatment

assigned to the patients outside the trial is chosen based on some decision procedure,

we use a hypothesis test which depends on the outcome of each patient within the

trial.

Kaptein (2019) goes on to explore the robustness in this method when the total

patient population, N , is incorrect and introduces software to compute these sample

sizes. We focus on the robustness of this method when our prior assumptions on

the standardised treatment e�ect are incorrect and also extend this approach for two

stage clinical trials.

Equation (4.3.1) can be re-written by using the following assumptions to replace

the gain function. A phase III superiority RCT with equal allocation, will assign n/2

patients in the trial to the superior treatment, by design. We then assume there will

be (N − n) patients outside the trial who will either be allocated to the experimental

treatment, if it is found to be superior in the trial using the one-sided two sample Z-

test, or the control treatment, if the experimental treatment is not found to be superior

using the one-sided two sample Z-test. This is the conventional approach and as it is

used most often in practice, our method also follows this approach. However, other

decision metrics could be used instead.

The treatment with the highest average standardised e�ect, µk/σ, will be allocated

to the (N−n) patients outside the trial with probability (1−β). Hence, the TEAVPB,

E[ABN |n, β], for a given sample size, n, and type II error, β, is

E[ABN |n, β] =
1

N

(
n

2
+ (N − n)(1− β)

)
. (4.3.2)

We assume that the primary outcome for each treatment, k ∈ {C,E} is normally

distributed, Yk ∼ N(µk, σ
2), with common variance. Then we can rearrange equation

(4.1.1) to �nd the power, (1− β), in terms of the sample size, n, pre-speci�ed type I
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error, α, the di�erence in means, δ, and the variance of outcome, σ, as follows,

1− β = Φ

(√
n · δ2

4 · σ2
− Φ−1(1− α)

)
. (4.3.3)

Using this equation, we can rewrite equation (4.3.2), such that the TEAVPB is

E[ABN |n, δ, σ, α] =
1

N

(
n

2
+ (N − n) · Φ

(√
n · δ2

4 · σ2
− Φ−1(1− α)

))
. (4.3.4)

For the total expected individual patient bene�t (TEIPB, E[IBN ]), we have the

added complication that the superior treatment on average, may not be an individual

patient's superior treatment. Thus, equation (4.3.4) changes to incorporate this, as

shown below,

E[IBN |n, δ, σ, α] =
1

N

(
n

2

+ (N − n)

[
Φ

(√
n · δ2

4 · σ2
− Φ−1(1− α)

)
· P (Superior treatment on average is best for patient)

+

(
1− Φ

(√
n · δ2

4 · σ2
− Φ−1(1− α)

))
· (1− P (Superior treatment on average is best for patient))

])
.

(4.3.5)

In the absence of additional factors the probability, P (Superior treatment on

average is best for patient), can be calculated using the distributions of the outcomes

of each treatment. Generalisations accounting for predictive factors are discussed

in Section 4.5. When the experimental treatment is chosen as superior on average,

P (Superior treatment on average is best for patient) = P (YE > YC) and when the

experimental treatment is not chosen, P (Superior treatment on average is best for

patient) = P (YC > YE). Here, both the outcome of the control treatment, YC , and

the outcome of the experimental treatment, YE, are normally distributed. To �nd the
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probability that the outcome of the experimental treatment is larger than the outcome

of the control treatment, P (YE > YC) ≡ P (YE − YC > 0), the following equation can

be used,

P (YE > YC) = 1− P
(
YE − YC <

−(µE − µC)√
2σ2

)
. (4.3.6)

This expression for TEIPB takes into account, that each individual patient will

not react to a treatment in exactly the same way. Furthermore, some patients will

react di�erently to the same treatment due to their speci�c covariate(s). We extend

the TEIPB in Section 4.5 to explore the covariate total expected individual patient

bene�t (CTEIPB).

All analysis in this Chapter are performed in MATLAB (MATLAB, 2016).

4.3.1 Point Estimate Method

The total expected patient bene�t is calculated using the equations (4.3.4) and (4.3.5)

and (4.3.6), for di�erent two-treatment trial scenarios. A continuous outcome, e.g.

percent decrease of the BVAS 12 weeks after baseline in patients with AAV is used.

We compare two treatment arms, a control and an experimental treatment. The

average response from the two treatment arms will be compared using the one-sided

two sample Z-test, where the variance is assumed to be known and equal between

groups. The one-sided type I error value is chosen to be α = 0.025 in order to compare

the scenarios accurately. The patient population size is assumed to be N = 500 to

re�ect that we are considering the context of rare disease trials.

Figure 4.3.1, shows the TEAVPB and TEIPB in four scenarios, for a range of

sample sizes n ∈ {10, 20, 30, 50, 75, 100, 150, 200, 250, 300}. This Figure also displays

vertical lines which represent the sample size, n, needed for a trial to have 80% power,

for each scenario.
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Trial sample size, n
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Figure 4.3.1: Comparing the total expected average and individual patient bene�t, in

four scenarios for total patient population N = 500.

Figure 4.3.1 demonstrates for all scenarios with a non-zero standardised treat-

ment e�ect, θ = (µE − µC)/σ 6= 0, as sample size increases initially, a larger total

expected patient bene�t is produced. This is due to the trials having more patients

and hence, more data, enabling them to correctly reject the null hypothesis with

higher probability. However, this increase in total expected patient bene�t will peak

and then decrease as the sample size continues to increase. This is due to the trial

over recruiting patients and having more data than needed to correctly reject the null

hypothesis.

In the null scenario, where there is no di�erence in means for the two treatments,

we label the control treatment as `superior'. Even though the two treatments result

in equal outcomes on average, in this rare disease setting there is unlikely to be an

active SoC treatment and, hence, no side e�ects from the control treatment. If the

patients were to receive an active treatment with no better e�ect, they would have

an increase in risk of side e�ects and the cost of treatment would increase, with no

bene�t to the patient.

As the null scenario has no di�erence in treatment means, it only needs a small

sample size to (correctly) fail to reject the null hypothesis and allocate all patients
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outside the trial to the control treatment. Thus, as the sample size, n increases

the TEAVPB in the null scenario decreases. Due to both treatments having a nor-

mally distributed outcome, the individual variation between patients is symmetric,

this along with the mean outcomes being equal implies the TEIPB should always be

0.5 for the null scenario. No matter which treatment a patient is assigned, there will

always be a 50% chance it will be their individual `superior' treatment.

We use numerical optimisation methods such as the function `fminbnd' in MAT-

LAB to �nd the optimal sample size, n∗, which maximises the TEAVPB, E[ABN |n, δ,

σ, α], and the TEIPB, E[IBN |n, δ, σ, α], for six scenarios shown in Table 4.3.1.

Scenario n∗ for n∗ for TEAVPB TEIPB Power

µE µC σ θ TEAVPB TEIPB for n∗ for n∗ for n∗

5 5 0.75 0 1 - 0.9750 0.5000 -

5.5 5.25 0.75 1
3

283 283 0.6305 0.5243 0.8006

5.75 5.25 1 1
2

183 183 0.7679 0.5740 0.9225

5.75 5.25 0.75 2
3

125 125 0.8460 0.6255 0.9614

6 5 1 1 68 68 0.9188 0.7179 0.9847

6 5 0.75 4
3

43 43 0.9497 0.7942 0.9921

Table 4.3.1: Optimal sample sizes and the total expected patient bene�t and power

they produce in six scenarios for patient population N = 500.

In Table 4.3.1, the individual optimal sample size is left blank for scenario 1, as

the sample size does not make a di�erence to the TEIPB in this scenario. For the

di�erent scenarios above, the optimal sample size varies. However, Table 4.3.1 does

show the same optimal sample sizes for both TEAVPB and TEIPB for all scenarios

and, Figure 4.3.1 shows that the TEAVPB and TEIPB follow the same pattern. This

is due to the normally distributed outcome which implies that the individual variation

between patients is symmetric about the average response of each treatment. Hence,
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the de�nition of patient bene�t does not make a di�erence to the optimal sample

size. This is true for all trial designs investigated. However, this may not be the case

when a non-symmetric outcome is considered or when patient's covariate(s) a�ect the

outcome of the treatments (see Section 4.5).

We also �nd that the clinical trials that use these optimal sample sizes have high

power (often well over 80%) in addition to resulting in the maximum patient bene�t

overall.

4.3.2 Point Estimate Method: Deviation from Assumptions

The method above �nds the TEAVPB and TEIPB for all scenarios when our initial

assumptions of µ∗C = µC , µ∗E = µE, and σ∗ = σ are correct. As this will rarely be

the case we also explore the TEAVPB when our initial assumptions (or priors) of the

treatment mean outcomes, µ∗C , µ
∗
E and standard deviation, σ∗, are incorrect.

We investigate the TEAVPB for di�erent scenarios with various initial priors on

the treatment outcome parameters, µ∗C , µ
∗
E and σ∗. We substitute these priors into

equation (4.3.4) to �nd the optimal sample size, n∗, and then use these optimal sample

sizes to �nd the TEAVPB for the actual treatment outcome parameters, µC , µE and

σ in each scenario. The results are displayed in Figure 4.3.2. They are also shown

by the dotted lines in Figure 4.3.6 in Section 4.3.3 and compared to a second method

which is described in Section 4.3.3. The black 5 pointed stars show the maximum

TEAVPB, when the correct values are used as priors: µ∗E = µE, µ∗C = µC and σ∗ = σ.
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Figure 4.3.2: Total expected average patient bene�t for six scenarios, when using the

point estimate method and the prior treatment outcome parameters are incorrect for

total patient population N = 500.

In the null scenario, the largest di�erence in prior means, δ∗ = µ∗E − µ∗C , coupled

with the smallest prior standard deviation, σ∗, produces the largest TEAVPB. This is

because it produces the smallest optimal sample size and the null scenario only needs

a small sample size to fail to reject the null hypothesis and thus, give all patients

outside the trial the control treatment. When the true standardised treatment e�ect

is non-zero, θ = (µE − µC)/σ 6= 0, Figure 4.3.2 shows the TEAVPB is more robust

for the scenarios with a larger true standardised treatment e�ect. Figure 4.3.2 also

shows, as the prior standard deviation increases, the prior di�erence in means which

produces the largest patient bene�t, also increases. Therefore, if the prior standard

deviation, σ∗, is too high, a large patient bene�t can still be produced if an optimistic

prior di�erence in means, µ∗E−µ∗C , is also assumed. The added bonus of using a large

prior standard deviation is it produces a trial of large power, shown in Figure 4.3.3.
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Figure 4.3.3: Power for �ve scenarios, when using the point estimate method and

the prior treatment outcome parameters are incorrect for total patient population

N = 500.

If the initial assumptions on the treatment outcome parameters: µ∗C , µ
∗
E and σ∗

are incorrect, we soon start to see a rapid decrease in TEAVPB highlighting the lack

of robustness of the point estimate method.

4.3.3 Adding Uncertainty in the Standardised Treatment Ef-

fect

To extend the ideas described by Kaptein (2019) and in order to combat the lack

of robustness in the point estimate method, we introduce a distribution on the prior

standardised treatment e�ect, θ∗ = δ∗/σ∗, instead of using a single prior value on

each treatment parameter: µ∗C , µ
∗
E and σ∗. The fraction, δ/σ in equations (4.3.4) and

(4.3.5) is replaced with the single term θ, and the TEAVPB and TEIPB are found

by taking the expectation over the random variable θ, which is shown in equations

(4.3.7) and (4.3.8),
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E[ABN |n, θ, α] = Eθ[E[ABN |n, θ, α]] =

1

N

(∫ ∞
−∞

(
1

θσ
√

2π
exp
(
−(θ − θµ)2

2θ2
σ

))
·

(
n

2
+ (N − n)Φ

(√
nθ2

4
− Φ−1(1− α)

))
dθ

)
,

(4.3.7)

E[IBN |n, θ, α] = Eθ[E[IBN |n, θ, α]] =

1

N

(∫ ∞
−∞

(
1

θσ
√

2π
exp
(
−(θ − θµ)2

2θ2
σ

))
·

(
n

2
+ (N − n)

[
Φ

(√
nθ2

4
− Φ−1(1− α)

)
· P (Superior treatment on average is best for patient)

+

(
1− Φ

(√
nθ2

4
− Φ−1(1− α)

))

· (1− P (Superior treatment on average is best for patient))
])
dθ

)
.

(4.3.8)

The TEAVPB and power of the one-stage design are investigated for six scenarios.

The �rst three scenarios are investigated using the assumption that the standardised

treatment e�ect is normally distributed with prior means θ∗µ = {0.1, 0.25, 0.333, 0.5,

0.666, 1} and the last three scenarios are investigated using the assumption that

the standardised treatment e�ect is normally distributed with prior means θ∗µ =

{0.5, 0.666, 1, 1.333, 1.5, 1.666} and prior standard deviations θ∗σ = {0.05, 0.2, 0.5, 0.75}.

We further investigate a uniform distribution on the prior standardised treatment ef-

fect between 0 and 1, for the �rst three scenarios (reported by the horizontal line in

Figure 4.3.4) and between 0.5 and 1.5, for the last three scenarios (reported by the

horizontal dash-dotted line in Figure 4.3.4), where the normal probability distribu-

tion, (1/(θσ
√

2π)) · exp(−(θ − θµ)2/2θ2
σ), is replaced with 1 in equations 4.3.7 and

4.3.8. These assumptions are used to �nd the optimal sample size, n∗, and then the

optimal sample size is used to �nd the TEAVPB for the actual treatment outcomes

in each scenario. The results are shown in Figure 4.3.4. The black 5 pointed stars

plotted show the maximum TEAVPB produced, where the correct prior standardised
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treatment e�ect, θ∗µ = θ, is used.
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Figure 4.3.4: Total expected average patient bene�t for six scenarios, when using the

a distribution on the prior standardised treatment e�ect for total patient population

N = 500.

In Figure 4.3.4, when the prior mean of θ is smaller than the true standardised

treatment e�ect, the value of θ∗σ does not have a large e�ect on the TEAVPB produced.

As the prior standardised treatment e�ect mean, θ∗µ, increases past the true mean,

it is the smaller prior standardised treatment e�ect standard deviations which cause

a quicker decrease in TEAVPB. The prior uniform distributions perform very well

in Figure 4.3.4, producing a TEAVPB close to the maximum value. Furthermore,

Figure 4.3.5 shows the power is largest for the larger values of θ∗σ and the uniform

distributions also give a large power.
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Figure 4.3.5: Power for �ve scenarios, when using a distribution on the prior stan-

dardised treatment e�ect for total patient population N = 500.

We further investigate the di�erence in TEAVPB for this method and the point

estimate method above (represented by the dotted lines, labelled PE, in Figure 4.3.6)

for three scenarios with various prior standardised treatment e�ects. A normal dis-

tribution with means, θ∗µ = {0.1, 0.25, 0.333, 0.5, 0.666, 1}, and standard deviations,

θ∗σ = {0.2, 0.5} are utilised, shown by the dashed lines in Figure 4.3.6. We further

investigate a uniform distribution on the prior standardised treatment e�ect between

0 and 1 (reported by the horizontal line in Figure 4.3.6). These priors are used to

�nd the optimal sample size, n∗, and then the optimal sample size is used to �nd

the TEAVPB for the actual treatment outcome parameters: µC , µE and σ in each

scenario.
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Figure 4.3.6: Total expected average patient bene�t for three scenarios, when using

a point estimate (dotted lines) and a distribution (normal-dashed lines, uniform-

horizontal line) on the prior standardised treatment e�ect for total patient population

N = 500.

In the null scenario, the largest prior standardised treatment e�ect mean, θ∗µ,

coupled with the smallest prior standardised treatment e�ect standard deviation,

θ∗σ, produces the larger TEAVPB. Here, using the point estimate prior on each

outcome parameter, performs better than using a normal distribution on the prior

standardised treatment e�ect. Speci�cally, when the point estimate method is used

with the priors: µ∗E = 5.75, µ∗C = 5.25 and σ∗ = 0.5, the TEAVPB=0.9104 is

found when the standardised treatment e�ect is actually µE = µC = 5. How-

ever, when we use a normal distribution on the prior standardised treatment e�ect:

θ∗µ = (µ∗E − µ∗C)/σ∗ = (5.75 − 5.25)/0.5 = 1 with standardised treatment e�ect stan-

dard deviation θ∗σ = 0.5, the TEAVPB=0.8800. Thus, the point estimate prior results

in a TEAVPB, which is larger than using a normal distribution prior on the stan-

dardised treatment e�ect by 0.0304. However, this gain in the null scenario comes at

a loss when the standardised treatment e�ect is non-zero, shown in Figure 4.3.6.

When the true standardised treatment e�ect is non-zero, Figure 4.3.6 shows when

the standardised treatment e�ect prior mean, θ∗µ, is smaller than the true standardised
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treatment e�ect, θ, the value of its prior standard deviation, θ∗σ, does not have a large

e�ect on the TEAVPB produced and both methods produce similar patient bene�t.

As the prior, θ∗µ, increases past the true mean, it is the smaller prior standardised

treatment e�ect standard deviations, θ∗σ, which cause a quicker decrease in TEAVPB.

Here, using a normal distribution on the prior standardised treatment e�ect is more

robust than the point estimate prior. Speci�cally, when a normal distribution with

prior mean θ∗µ = (µ∗E − µ∗C)/σ∗ = (5.75− 5.25)/0.5 = 1 and prior standard deviation

θ∗σ = 0.5 are used, the TEAVPB=0.6643, when the true standardised treatment e�ect

is θ = (µE−µC)/σ = (5.75−5.25)/1 = 0.5. However, when the point estimate method

is used with priors: µ∗E = 5.75, µ∗C = 5.25 and σ∗ = 0.5, the TEAVPB=0.5350.

Hence, the prior point estimate method results in a TEAVPB, which is smaller than

using a normal distribution on the prior standardised treatment e�ect by 0.1293.

Introducing a uniform distribution on the prior standardised treatment e�ect performs

well in Figure 4.3.6, giving a TEAVPB close to the maximum value when the true

standardised treatment e�ect is non-zero. However, using a uniform distribution on

the prior standardised treatment e�ect will struggle in the null scenario. Furthermore,

using a distribution on the prior standardised treatment e�ect produces a larger power

than using the prior point estimate method.

4.3.4 Case Study Results

Equation (4.3.4) can further be used to �nd the optimal sample size n∗ to produce the

maximum TEAVPB for the case study described in Section 4.2, using the prior point

estimate method. We assume a di�erence in means of δ∗ = 20.2% and a prior standard

deviation of σ∗ = 18% to give an optimal sample size of n∗ = 84, TEAVPB= 0.9930

and power= 0.9993. This sample size would actually result in a TEAVPB= 0.9401

and power= 0.9457, due to the actual di�erence between the means in the trial being

δ̃ = 14%. When the true di�erence in means from the trial, δ∗ = δ̃ = 14%, and

standard deviation, σ∗ = σ̃ = 18%, are used as the point estimate priors, the resulting
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optimal sample size of n∗ = 160, gives TEAVPB= 0.9865 and power= 0.9985.

In addition, equation (4.3.7) is used to �nd the optimal sample size n∗ to produce

the maximum TEAVPB using a distribution on the prior standardised treatment

e�ect, θ∗. We assume a standardised treatment e�ect which is normally distributed

with prior means θ∗µ = {0.5, 0.78, 1, 1.12, 1.25, 1.5} and prior standard deviations of

θ∗σ = {0.05, 0.2, 0.5, 0.75} and investigate the actual TEAVPB and power produced in

the trial with standardised treatment e�ect θ̃ = (96− 82)/18 = 0.778 (Figure 4.3.7).
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Figure 4.3.7: Total expected average patient bene�t and power for trial in case study,

when using a distribution on the prior standardised treatment e�ect for total patient

population N = 6680.

As seen before, when the prior mean of θ is smaller than the trial standardised

treatment e�ect, θ∗µ < θ̃, the value of its prior standard deviation, θ∗σ, does not have a

large e�ect on the TEAVPB produced. As θ∗µ increases past the true mean, it is the

smaller prior standard deviations, θ∗σ, which cause a quicker decrease in TEAVPB.

When we use our prior standardised treatment e�ect mean, θ∗µ = 20.2/18 = 1.12,

and moderate prior standard deviation, θ∗σ = 0.2, we get n∗ = 122, TEAVPB=0.9813

and power=0.9902, (incidentally, these are larger than using the incorrect standard-

ised treatment e�ect in the point estimate method). Whereas, using the standardised
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treatment e�ect from the trial as the prior mean, θ∗µ = θ̃ = 0.78, and small prior stan-

dard deviation, θ∗σ = 0.05, gives n∗ = 166, TEAVPB=0.9865 and power=0.9989. The

di�erence here is not large and therefore, we can still produce a large TEAVPB even

when our initial assumptions about the standardised treatment e�ect are incorrect.

4.3.5 The E�ect of the Total Patient Population

If the total patient population N decreases, the sample size which maximises the total

patient bene�t also decreases. If N is decreased enough, the optimal sample size n∗,

will no longer produce a trial with power larger than 80%. When the standardised

treatment e�ect is small and the whole patient population is N = 80, it is actually

most bene�cial to have everyone in the trial. This can be seen from Figure 4.3.8.

Here, we use the prior point estimate method with the correct treatment outcome

parameters: µ∗C = µC , µ∗E = µE and σ∗ = σ for each scenario. Figure 4.3.8, also

displays vertical lines which represent the sample size n needed for a trial to have

80% power, for each scenario.

Trial sample size, n
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patient population size.
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Scenario n∗

µE µC σ θ N = 500 N = 300 N = 150 N = 80

5 5 0.75 0 1 1 1 1

5.5 5.25 0.75 1/3 283 212 144 80

5.75 5.25 1 1/2 183 147 101 71

5.75 5.25 0.75 2/3 125 105 78 55

6 5 1 1 68 61 49 38

6 5 0.75 4/3 43 39 33 27

Table 4.3.2: Optimal sample sizes in six scenarios for varying patient population size.

4.4 Sequential Designs

A sequential design for a clinical trial is described by Whitehead (2002) as an approach

which performs a series of analyses throughout the trial, where there is the potential

to stop the trial at each analysis. These designs are e�cient due to their ability to

stop the trial early for either e�cacy or futility (Pallmann et al., 2018).

We now seek to optimise a two-stage sequential design (which includes a single

interim analysis) using techniques similar to those shown above. We focus on the two-

stage design as these are commonly used in clinical trials (Jovic and Whitehead, 2010).

We investigate the Pocock boundaries (Pocock, 1976), O'Brien Fleming boundaries

(O'Brien and Fleming, 1979) and triangular boundaries (Whitehead and Stratton,

1983).

In a two-stage design, the trial is stopped after the �rst stage for e�cacy, if the

test statistic, Z1, is larger than the �rst stage upper boundary, B1,u. The trial is

stopped for futility after the �rst stage, if the test statistic, Z1, is smaller than the

�rst stage lower boundary, B1,l. And, hence, the trial reaches the second stage if the

test statistic, Z1, is between B1,l and B1,u.
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If the trial is stopped after stage one for e�cacy, then all patients outside stage

one, N−n1, will receive the experimental treatment. If the trial is stopped after stage

one for futility then all patients outside stage one, N − n1, will receive the control

treatment.

After the second stage has been completed, the Z-test is used to determine if the

null hypothesis should be rejected. This time the null hypothesis is rejected if the

test statistic, Z2, is larger than the second stage boundary, B2, and thus, all patients

outside stage one and stage two, N−n1−n2, will receive the experimental treatment.

If the null hypothesis is not rejected after the second stage, all patients outside stage

one and stage two, N − n1 − n2, will receive the control treatment.

Thus, given we know the distributions of the patient outcomes, the TEAVPB is

E[ABN |n1, n2, δ, σ, α] =
1

N

(
n1

2
+ (N − n1)P (B1,u ≤ Z1) +

n2

2
P (B1,l ≤ Z1 < B1,u)

+ (N − n1 − n2)P (B1,l ≤ Z1 < B1,u, B2 ≤ Z2)

)
.

(4.4.1)

Here, Z1 and Z2 represent the Z-test statistics calculated from the trial after the

�rst and second stage of the trial has been completed. Hence, Z1 = δ/
√

2σ2/n1

2
and

Z2 = δ/
√

2σ2/n1+n2

2
, where δ is the di�erence between the two treatment means and σ

is the common standard deviation of the outcome for both treatments. Furthermore,

B1,l and B1,u represent the lower and upper boundaries for stage 1 and B2 represents

the boundary for stage 2.

For the TEIPB, we have the added issue that the superior treatment on average,

may not be an individual's superior treatment. Thus, equation (4.4.1) changes to

incorporate this, as shown in equation (4.4.2),
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E[IBN |n1, n2, δ, σ, α] =
1

N

(
n1

2

+ (N − n1)
[
P (B1,u ≤ Z1)P (Superior treatment on average is best for patient)

+ P (B1,l > Z1)
(
1− P (Superior treatment on average is best for patient)

)]
+
n2

2
P (B1,l ≤ Z1 < B1,u)

+ (N − n1 − n2)
[
P (B1,l ≤ Z1 < B1,u, B2 ≤ Z2)

· P (Superior treatment on average is best for patient)

+ P (B1,l ≤ Z1 < B1,u, B2 > Z2)

·
(
1− P (Superior treatment on average is best for patient)

)])
.

(4.4.2)

The probabilities from equations (4.4.1) and (4.4.2) are de�ned below,

P (B1,u ≤ Z1) = Φ
(δ√n1

2σ
−B1,u

)
,

P (B1,l ≤ Z1 < B1,u) = Φ
(δ√n1

2σ
−B1,l

)
− Φ

(δ√n1

2σ
−B1,u

)
,

P (B1,l ≤ Z1 < B1,u, B2 ≤ Z2) = Φ2

(δ√n1

2σ
−B1,l,

δ
√
n1 + n2

2σ
−B2,Σ

)
− Φ2

(δ√n1

2σ
−B1,u,

δ
√
n1 + n2

2σ
−B2,Σ

)
,

Σ =

 1
√

n1

n1+n2√
n1

n1+n2
1

 .
Here, Φ(x1) is the normal cumulative distribution, P (x1 ≤ X1) and Φ2(x1, x2,Σ) is

the bivariate normal cumulative distribution, P (x1 ≤ X1, x2 ≤ X2) and Σ is the

covariance matrix for X1 and X2. The boundaries B1,l, B1,u and B2, vary depending

on the shape of the boundary and the chosen type I error, α.
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4.4.1 Point Estimate Method

We investigate the total expected patient bene�t produced using equations (4.4.1) and

(4.4.2) and (4.3.6) in a two-stage design. The average response from two treatment

arms, a control and an experimental treatment, are compared using a Z-test where

the variance is assumed equal. Additionally, the type I error is chosen to be α =

0.05 and the patient population is N = 500, to re�ect the context of rare disease

trials. We initially explore a number of sample sizes which are equal for both stages,

n∗1 = n∗2. Here the Pocock boundaries are B1,l = −2.178 and B1,u = B2 = 2.178, the

O'Brien Fleming boundaries are B1,l = −2.797, B1,u = 2.797 and B2 = 1.978 and the

triangular boundaries are B1,l = 0.7405, B1,u = 2.2215 and B2 = 2.094. The plots

in Figure 4.4.1 show the di�erence in total expected patient bene�t for the one and

two-stage designs for all three boundaries, with the total trial population, n, along

the x-axis.

Total trial sample size, n
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Figure 4.4.1: Comparing total expected average and individual patient bene�t in

four scenarios for one-stage and two-stage designs with Pocock, O'Brien Fleming and

Triangular boundaries for total patient population N = 500.

In Figure 4.4.1, the null scenario is highly unlikely to stop early for both the Pocock

and O'Brien Fleming boundaries, as their �rst stage lower boundaries are very small.
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Therefore, they produce the same total expected patient bene�t as the one-stage

design. However, the triangular boundaries have an early stopping probability of

0.7837 for all sample sizes and hence, they produce a larger TEAVPB.

For the other scenarios, when the sample size is small, the O'Brien Fleming bound-

aries produce a very similar total expected patient bene�t to the one-stage design,

however, the Pocock and triangular boundaries give a slightly smaller total expected

patient bene�t. This is because the Pocock and triangular boundaries are more likely

to stop the trial early for e�cacy than the O'Brien Fleming boundaries, regardless of

sample size. However, for smaller sample sizes, even though the Pocock and triangular

boundaries are more likely to reject the null hypothesis after stage one, the O'Brien

Fleming boundaries are more likely to reject the null hypothesis after stage two. The

probability of stopping early for e�cacy, multiplied by the patients outside stage one

(for the Pocock and triangular boundaries) is smaller than, the probability of rejecting

the null hypothesis after stage two, multiplied by the patients outside both stage one

and two (for the O'Brien Fleming boundaries), for small sample sizes. It is at these

small sample sizes that the O'Brien Fleming boundaries are more bene�cial. How-

ever, as the �rst stage sample size increases, more data is accumulated and therefore,

the two-stage design is more likely to stop early for e�cacy, particularly the Pocock

and the triangular boundaries. When the sample size of both stages are large, it is

bene�cial to stop early, then the whole of the second stage of the trial can be given

the superior treatment. Therefore, for larger sample sizes the Pocock and triangular

boundaries give a larger total expected patient bene�t.

The optimal sample sizes n∗1 = n∗2, which maximise the TEAVPB, E[ABN |n1, n2, δ,

σ, α], and the TEIPB, E[IBN |n1, n2, δ, σ, α], for each scenario are listed in Table

4.4.1. These are calculated using the numerical optimisation method, `fminbnd' in

MATLAB. We can also calculate the expected overall trial size if we were to have a

two-stage sequential design using the optimal sample sizes, n∗1 and n
∗
2. The expected

total trial size, E[n∗], is calculated using, E[n∗] = P (stop after �rst stage) · n∗1 + (1−
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P (stop after �rst stage)) · (n∗1 + n∗2).

Boundary
Scenario

n∗1 TEAVPB
P (stop after

E[n∗]
Power

µE µC σ θ �rst stage) for n∗1

Pocock

5 5 0.75 0 1 0.9731 0.0294 2 -

5.5 5.25 0.75 1
3

186 0.6932 0.5377 272 0.8642

5.75 5.25 1 1
2

122 0.8246 0.7201 156 0.9624

5.75 5.25 0.75 2
3

82 0.8907 0.7996 98 0.9838

6 5 1 1 43 0.9461 0.8644 49 0.9939

6 5 0.75 4
3

27 0.9678 0.9007 30 0.9971

O'Brien

Fleming

5 5 0.75 0 1 0.9731 0.0052 2 -

5.5 5.25 0.75 1
3

160 0.6631 0.2456 281 0.8438

5.75 5.25 1 1
2

108 0.8043 0.4214 170 0.9556

5.75 5.25 0.75 2
3

75 0.8780 0.536 110 0.9826

6 5 1 1 41 0.9405 0.6573 55 0.9947

6 5 0.75 4
3

25 0.9649 0.7043 32 0.9969

Triangular

5 5 0.75 0 1 0.9739 0.7837 1 -

5.5 5.25 0.75 1
3

192 0.6765 0.5932 270 0.8663

5.75 5.25 1 1
2

126 0.8169 0.7399 159 0.9608

5.75 5.25 0.75 2
3

85 0.8856 0.8125 101 0.9821

6 5 1 1 45 0.9431 0.8757 51 0.9928

6 5 0.75 4
3

28 0.9657 0.9068 31 0.9961

Table 4.4.1: Optimal sample sizes, total expected average patient bene�t, expected

sample sizes and power they produce in six scenarios for a two-stage design with

Pocock, O'Brien Fleming and triangular boundaries for total patient population N =

500.

These optimal sample sizes for the �rst stage, n∗1, are over half of the optimal
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sample sizes, n∗, found for the one-stage design, listed in Table 4.3.1. In addition,

these two-stage designs produce larger maximum TEAVPB and TEIPB, than the one-

stage design. The smallest optimal sample sizes are given by the O'Brien Fleming

boundaries and the largest optimal sample sizes are produced from the triangular

boundaries. Even though the O'Brien Fleming boundaries have the smaller optimal

sample sizes, because they are less likely to stop after the �rst stage, the O'Brien

Fleming boundaries give the larger expected sample size and therefore, they produce

a smaller TEAVPB. The largest TEAVPB is produced by the Pocock boundaries.

As the true standardised treatment e�ect increases, the probability of the trial

stopping early increases and thus, the di�erence between the optimal �rst stage sample

size, n∗1, and expected total sample size, E[n∗], decreases. Table 4.4.1 also shows the

high power produced in each scenario for these optimal sample sizes, n∗1 = n∗2, for all

boundaries.

The assumption that the sample sizes of both the �rst and second stage of the

trial must be equal, can be relaxed. The TEAVPB is calculated using equation (4.4.1)

in each scenario, for a two-stage clinical trial for sample sizes n1 ∈ [1, 200] and n2 ∈

[1, 200]. This is shown in Figures 4.4.2, 4.4.3 and 4.4.4 for the Pocock, O'Brien Fleming

and Triangular boundaries, respectively, in section 4.4.2.

The numerical optimisation method `fmincon' in MATLAB is used to �nd the

optimal sample sizes when n∗1 does not have to equal n
∗
2. These sample sizes maximise

the TEAVPB, E[ABN |n1, n2, δ, σ, α], and the TEIPB, E[IBN |n1, n2, δ, σ, α], for each

scenario. They are displayed in Tables 4.4.2, 4.4.3 and 4.4.4 for the Pocock, O'Brien

Fleming and Triangular boundaries, respectively, in section 4.4.2.

4.4.2 Comparison of the Three Boundaries

Pocock Boundaries

We estimate the TEAVPB in each scenario, for a two-stage clinical trial with Pocock

boundaries. The plots in Figure 4.4.2 show the TEAVPB for the two-stage design,
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with sample sizes n1 ∈ [1, 200] and n2 ∈ [1, 200], where n1 does not have to equal n2.

Figure 4.4.2: Total expected average patient bene�t in six scenarios for varying �rst

and second stage sample sizes using the Pocock boundaries for total patient population

N = 500.

Figure 4.4.2 shows how the TEAVPB varies for di�erent sample sizes for the two-

stage design. In addition, the vertical blue lines represent the optimal sample sizes.

In the null scenario as the total sample size increases, the TEAVPB decreases linearly.

The size of each stage of the trial does not make a di�erence, it is only the total sample

size that a�ects the TEAVPB, due to the very low probability for early stopping.

In the scenarios with non-zero standardised treatment e�ect, there is a range of

sample sizes which are close to optimal. In Figure 4.4.2, this range is wider in the

second stage sample size direction and thus, it is more important to get the �rst stage

sample size correct to produce the largest patient bene�t. This importance increases

as the standardised treatment e�ect increases. The width of the range of optimal �rst

stage sample sizes, decreases as the standardised treatment e�ect increases.

The optimal sample sizes, when n∗1 does not have to equal n
∗
2, which maximise the

TEAVPB, E[ABN |n1, n2, δ, σ, α], and TEIPB, E[IBN |n1, n2, δ, σ, α], for each scenario,
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using the Pocock boundaries, are listed in the Table below. Additionally, it shows the

expected overall trial sample size if we were to have a two-stage sequential design

using these optimal sample sizes, n∗1 and n
∗
2.

Scenario
n∗1 n∗2 TEAVPB

P (stop after
E[n∗]

Power

µE µC σ θ �rst stage) for n∗1

5 5 0.75 0 1 1 0.9731 0.0294 2 -

5.5 5.25 0.75 1/3 184 190 0.6933 0.5298 273 0.8656

5.75 5.25 1 1/2 111 142 0.8261 0.6723 158 0.9663

5.75 5.25 0.75 2/3 71 103 0.8933 0.7312 99 0.9876

6 5 1 1 35 59 0.9489 0.7767 48 0.9964

6 5 0.75 4/3 21 37 0.9702 0.8042 28 0.9984

Table 4.4.2: Optimal sample sizes and the total expected average patient bene�t,

expected sample sizes and power they produce in six scenarios for a two-stage design

with Pocock boundaries for total patient population N = 500.

Tables 4.4.1 & 4.4.2 show that relaxing the constraint n1 = n2, causes the optimal

sample sizes for both stages, n∗1 and n∗2, to change. However, this change does not

cause a large di�erence in the TEAVPB produced. We also see the second stage sample

size is larger than the �rst stage sample size for each scenario where the standardised

treatment e�ect is non-zero. As the Pocock second stage boundary is quite large, the

trial needs a large amount of data to accurately reject the null hypothesis after the

second stage (if it has failed to cross a boundary at the �rst stage). Trials with these

optimal sample sizes have a high power.

O'Brien Fleming Boundaries

We estimate the TEAVPB in each scenario, for a two-stage clinical trial with O'Brien

Fleming boundaries. The plots in Figure 4.4.3 show the TEAVPB for the two-stage
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designs, with sample sizes n1 ∈ [1, 200] and n2 ∈ [1, 200], where n1 does not have to

equal n2.

Figure 4.4.3: Total expected average patient bene�t in six scenarios for varying �rst

and second stage sample sizes using the O'Brien Fleming boundaries for total patient

population N = 500.

Figure 4.4.3 shows how the TEAVPB varies for di�erent sample sizes for the

two-stage design. In addition, the vertical blue lines represent the optimal sample

sizes for each scenario. The plots in Figure 4.4.3 are very similar to those produced

by the Pocock boundaries. In the null scenario as the total sample size increases,

the TEAVPB decreases linearly. It is only the total sample size which a�ects the

TEAVPB, not the sample size of each individual stage, due to the very low probability

for early stopping.

In Figure 4.4.3 when the true standardised treatment e�ect is non-zero, we ini-

tially see a linear increase in TEAVPB as total sample size increases. As the total

sample size increases, the probability of early stopping increases and the plots show

the importance of both the �rst and second stage sample sizes. When the Pocock

boundaries were used, the TEAVPB peaks for n2 > n1. However, for the O'Brien
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Fleming boundaries, it is now the opposite. The O'Brien Fleming boundaries need a

larger �rst stage sample size to enable them to stop early. But, due to the low second

stage boundary, the second stage sample size does not need to be as big. As the

standardised treatment e�ect increases, the less e�ect the sample size for the second

stage, n2, has on the TEAVPB.

The optimal sample sizes, n∗1 and n
∗
2, which maximise the TEAVPB, E[ABN |n1, n2,

δ, σ, α] and the TEIPB, E[IBN |n1, n2, δ, σ, α] for each scenario using the O'Brien Flem-

ing boundaries are listed in Table 4.4.3. It also shows the expected overall trial sample

size if we were to have a two-stage sequential design using the optimal sample sizes,

n∗1 and n
∗
2, and the power of the trial.

Scenario
n∗1 n∗2 TEAVPB

P (stop after
E[n∗]

Power

µE µC σ θ �rst stage) for n∗1

5 5 0.75 0 1 1 0.9731 0.0052 2 -

5.5 5.25 0.75 1/3 214 115 0.6756 0.4833 273 0.8508

5.75 5.25 1 1/2 131 85 0.8109 0.6166 164 0.9548

5.75 5.25 0.75 2/3 86 62 0.8811 0.6850 106 0.9810

6 5 1 1 44 36 0.9413 0.7392 53 0.9937

6 5 0.75 4/3 27 23 0.9651 0.7780 32 0.9969

Table 4.4.3: Optimal sample sizes and the total expected average patient bene�t,

expected sample sizes and power they produce in six scenarios for a two-stage design

with O'Brien Fleming boundaries for total patient population N = 500.

The optimal �rst stage sample size, n∗1, using the O'Brien Fleming boundaries is

larger than the optimal �rst stage sample sizes using either the Pocock or triangular

boundaries for the scenarios investigated. However, the optimal second stage sample

size, n∗2, using the O'Brien Fleming boundaries is much smaller. Again trials with

these sample sizes have large power.
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Triangular Boundaries

Figure 4.4.4 shows how the TEAVPB varies for di�erent sample sizes for the two-stage

design with triangular boundaries. Also, the vertical blue lines represent the optimal

sample sizes in each scenario. As we have seen previously, the larger the standardised

treatment e�ect, the less n2 has an e�ect on the TEAVPB. The null scenario in Figure

4.4.4 no longer shows a linear decrease in TEAVPB, as the total sample size increases.

We now see this circular pattern. For a given �rst stage sample size, the TEAVPB

produced is fairly constant for small second stage sample sizes. However, when the

�rst stage sample size increases past a certain point, roughly n1 ≈ n2, the TEAVPB

starts to decrease much quicker. The null scenario highlights the advantage of the

harsh stopping rule for futility, present in the triangular boundaries.

Figure 4.4.4: Total expected average patient bene�t in six scenarios for varying �rst

and second stage sample sizes using the triangular boundaries for total patient pop-

ulation N = 500.

The optimal sample sizes, n∗1 and n
∗
2, which maximise the TEAVPB, E[ABN |n1, n2,

δ, σ, α], and TEIPB,E[IBN |n1, n2, δ, σ, α], for each scenario using the triangular bound-

aries are listed in Table 4.4.4. It also shows the expected overall trial sample size if
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we were to have a two-stage sequential design using the optimal sample sizes, n∗1 and

n∗2.

Scenario
n∗1 n∗2 TEAVPB

P (stop after
E[n∗]

Power

µE µC σ θ �rst stage) for n∗1

5 5 0.75 0 1 1 0.9739 0.7837 1 -

5.5 5.25 0.75 1/3 194 190 0.6765 0.6002 270 0.8662

5.75 5.25 1 1/2 117 138 0.8178 0.6916 160 0.9632

5.75 5.25 0.75 2/3 76 99 0.8875 0.7449 101 0.9846

6 5 1 1 38 57 0.9454 0.7853 50 0.9950

6 5 0.75 4/3 23 37 0.9678 0.8117 30 0.9976

Table 4.4.4: Optimal sample sizes and the total expected average patient bene�t,

expected sample sizes and power they produce in six scenarios for a two-stage design

with triangular boundaries for total patient population N = 500.

Relaxing the constraint n1 = n2, causes only a small change to the optimal sample

sizes for both stages, n∗1 and n
∗
2. This small change only causes a small increase in the

TEAVPB produced. Trials with these optimal sample sizes have a high power.

4.4.3 Adding Uncertainty in the Standardised Treatment Ef-

fect

Additionally, we can explore this two-stage design using a distribution on the prior

standardised treatment e�ect. We investigate a normal distribution on θ with several

di�erent prior means and prior standard deviations and a prior uniform distribution

as well. The optimal sample sizes of both stages, n∗1 and n∗2, are found for all three

boundaries. These optimal sample sizes are then substituted into equation (4.4.1) to

�nd the TEAVPB for all six scenarios. This is shown in Figures 4.4.5, 4.4.7 and 4.4.9

and the power is shown in Figures 4.4.6, 4.4.8 and 4.4.10 for Pocock, O'Brien Fleming
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and Triangular boundaries, respectively.

Pocock Boundary

The TEAVPB and power of the two-stage design using the Pocock boundaries, where

we assume a prior distribution on the standardised treatment e�ect, is explored using

the six scenarios below. We investigate a normal distribution on θ with prior means

θ∗µ = {0.1, 0.25, 0.333, 0.5, 0.666, 1} and prior standard deviations θ∗σ = {0.05, 0.2, 0.5,

0.75} and a prior uniform distribution between 0 and 1 for the �rst three scenarios. We

investigate a normal distribution on θ with prior means θ∗µ = {0.5, 0.666, 1, 1.333, 1.5,

1.666} and prior standard deviations θ∗σ = {0.05, 0.2, 0.5, 0.75} and a prior uniform

distribution between 0.5 and 1.5 for the last three scenarios. Figure 4.4.5 includes

black 5 pointed stars, which represents the maximum patient bene�t produced when

the true standardised treatment e�ect is used as the prior standardised treatment

e�ect mean, θ∗µ = θ.

For the null scenario Figure 4.4.5 shows, as the prior mean of θ increases from

θ∗µ = 0.1, the TEAVPB increases. The larger the prior mean of θ, the closer the

sample sizes get to the true optimal sample sizes n∗1 = n∗2 = 1. Also, the smaller

the prior standardised treatment e�ect standard deviation, θ∗σ, again the smaller the

sample sizes and the larger the TEAVPB. In the null scenario the uniform distribution

does not perform well and often produces a lower patient bene�t than the normal

distributions investigated. This highlights the main issue with using the uniform

distribution. Even though it is robust and gives large patient bene�t for scenarios

with a non-zero standardised treatment e�ect, the risk of using this distribution is too

great. In application many clinical trials �nd no di�erence between the two treatments

and therefore, the null scenario is most important in regards to the application. In

the null scenario, the potential loss in patient bene�t is very large.
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Figure 4.4.5: Total expected average patient bene�t for six scenarios, when using a

distribution on the prior standardised treatment e�ect with Pocock boundaries for

total patient population N = 500.

Figure 4.4.5 shows, when the prior mean of θ is small, the patient bene�t tends

to be fairly large. Then as the prior mean of θ increases, the patient bene�t starts to

decrease. This decrease starts at smaller values of the prior mean, θ∗µ, for the smaller

values of the prior standardised treatment e�ect standard deviation, θ∗σ. When the

true standardised treatment e�ect is large, all values of θ∗σ produce a large TEAVPB

for all prior mean values, θ∗µ, investigated. Hence, as the true standardised treatment

e�ect increases, the less the prior values, θ∗µ and θ∗σ a�ect the TEAVPB produced.

Furthermore, the TEAVPB is fairly robust when θ∗σ is large, for all scenarios except

the null scenario. The prior uniform distribution also produces a large TEAVPB for

all �ve scenarios with a true non-zero standardised treatment e�ect.

Figure 4.4.6 shows the power of the trial decreases as the prior mean of θ increases

and as the standard deviation decreases. The uniform distribution gives large power

for all scenarios.
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Figure 4.4.6: Power for �ve scenarios, when using a distribution on the prior standard-

ised treatment e�ect with Pocock boundaries for total patient population N = 500.

O'Brien Fleming Boundary

We further investigate a prior normal distribution on θ and a prior uniform distribu-

tion on θ for the O'Brien Fleming boundaries. Figure 4.4.7 includes black 5 pointed

stars, which represents the maximum patient bene�t produced when the true stan-

dardised treatment e�ect is used as the prior mean, θ∗µ = θ.

In the null scenario, where the true standardised treatment e�ect is θ = 0, the

O'Brien Fleming boundaries produce results a similar shape to the Pocock boundaries,

however, the O'Brien Fleming boundaries produce a TEAVPB that starts to increase

for smaller values of the prior standardised treatment e�ect mean, θ∗µ, for equivalent

prior standard deviations, θ∗σ. Furthermore, the O'Brien Fleming boundary produces

a larger TEAVPB using the uniform distribution on the prior standardised treatment

e�ect than the Pocock boundary, although it is smaller than that produced by the

triangular boundary.



CHAPTER 4. SAMPLE SIZE CALCULATION IN SMALL POPULATIONS 168

P
at

ie
nt

 B
en

ef
it

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
C

=5, 
E
=5, =0.75

0 0.2 0.4 0.6 0.8 1

C
=5.5, 

E
=5.25, =0.75

0 0.2 0.4 0.6 0.8 1

C
=5.75, 

E
=5.25, =1

0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1
C

=5.75, 
E
=5.25, =0.75

0.4 0.6 0.8 1 1.2 1.4 1.6

C
=5, 

E
=6, =1

0.4 0.6 0.8 1 1.2 1.4 1.6

C
=5, 

E
=6, =0.75

~N( , 0.052)

~N( , 0.22)

~N( , 0.52)

~N( , 0.752)

~U(0, 1)
~U(0.5, 1.5)

Figure 4.4.7: Total expected average patient bene�t for six scenarios, when using a

distribution on the prior standardised treatment e�ect with O'Brien Fleming bound-

aries for total patient population N = 500.

When the true standardised treatment e�ect is non-zero, the O'Brien Fleming

boundaries again produce similar shaped plots to the Pocock boundaries. Although,

in these scenarios, the Pocock boundaries produce the larger TEAVPB when using

the normal distribution on the prior standardised treatment e�ect. For the �rst three

scenarios, the O'Brien Fleming boundary produces a larger TEAVPB when using the

uniform distribution on the prior standardised treatment e�ect, however in the last

three scenarios the Pocock boundary produces the larger TEAVPB.

Figure 4.4.8 shows the power of the trial decreases as the assumed mean of θ

increases and as the assumed standard deviation decreases. The uniform distribution

gives large power for all scenarios.
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Figure 4.4.8: Power for �ve scenarios when using a distribution on the prior standard-

ised treatment e�ect, with O'Brien Fleming boundaries for total patient population

N = 500.

Triangular Boundary

Furthermore, we investigate a normal distribution and a uniform distribution on the

prior standardised treatment e�ect, θ∗ for the triangular boundaries. Figure 4.4.9,

again, includes black 5 pointed stars, which represents the maximum patient bene�t

produced when the true standardised treatment e�ect is used as the prior standardised

treatment e�ect mean, θ∗µ = θ.

The null scenario in Figure 4.4.9, shows the TEAVPB increases, as the prior mean

of θ increases from θ∗µ = 0.1. Also, the smaller the prior standardised treatment e�ect

standard deviation, θ∗σ, the larger the TEAVPB. The triangular boundaries produce

a larger TEAVPB than the Pocock and O'Brien Fleming boundaries for the corre-

sponding prior means and prior standard deviations of θ for the normal distribution

and for the prior uniform distribution. It makes sense that the triangular boundaries

come out on top for the null scenario, as these boundaries have the most aggressive
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stopping probability when there is little di�erence between the two treatments.
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Figure 4.4.9: Total expected average patient bene�t for six scenarios, when using a

distribution on the prior standardised treatment e�ect with triangular boundaries for

total patient population N = 500.

When the true standardised treatment e�ect is non-zero, the triangular boundaries

produce similar shaped plots to the other boundaries investigated and never produce

the largest TEAVPB when compared with the other two boundaries.

Figure 4.4.10 indicates the power of the trial decreases as the prior mean of θ

increases and as the prior standard deviation, θ∗σ, decreases. Modelling the prior

standardised treatment e�ect using the uniform distribution gives large power for all

scenarios.
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Figure 4.4.10: Power for �ve scenarios, when using a distribution on the prior stan-

dardised treatment e�ect with triangular boundaries for total patient population

N = 500.

To �nd out which method (using a point estimate prior, PE, on µ∗E, µ
∗
C and σ∗,

uniform distribution for prior standardised treatment e�ect θ∗ or normal distribution

for prior standardised treatment e�ect θ∗) and which prior values for the standardised

treatment e�ect performed best, the TEAVPB and power were averaged across all six

scenarios, for all three boundaries. The results for TEAVPB are shown in Figure

4.4.11 and the results for power are shown in Figure 4.4.12.



CHAPTER 4. SAMPLE SIZE CALCULATION IN SMALL POPULATIONS 172

P
at

ie
nt

 B
en

ef
it

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.65

0.7

0.75

0.8

0.85
Pocock

PE, =0.5
PE, =1

~N( , 0.22)

~N( , 0.52)

~U(0,1)
~U(0,1.5)

0.2 0.4 0.6 0.8 1 1.2 1.4

O'Brien Fleming

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Triangular

Figure 4.4.11: Total expected average patient bene�t averaged across all six scenarios,

when using a point estimate (dotted lines) and a distribution (normal-dashed lines,

uniform-horizontal lines) on the prior standardised treatment e�ect, with Pocock,

O'Brien Fleming and triangular boundaries, for total patient population N = 500.
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Figure 4.4.12: Power averaged across all six scenarios, when using a point estimate

(dotted lines) and a distribution (normal-dashed lines, uniform-horizontal lines) on

the prior standardised treatment e�ect, with Pocock, O'Brien Fleming and triangular

boundaries, for total patient population N = 500.

The plots above show that the boundary that comes out on top across the majority

of methods and standardised treatment e�ect assumptions, is triangular. This is
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due to its superiority in the null scenario, outweighing its slight inferiority in the

other scenarios. The assumed distribution on the prior standardised treatment e�ect

θ∗ ∼ N(2/3, 0.22) produces the largest TEAVPB averaged across all scenarios. This

distribution also gives an average power of 0.9244, which is very high. Traditionally,

clinical trial designs should guarantee a power of at least 0.8. Our best method which

maximises TEAVPB, also gives an average power above 0.8.

4.4.4 Case Study Results

The prior point estimate method is used with equation (4.4.1) to �nd the optimal sam-

ple sizes, n∗1 = n∗2, to produce the maximum TEAVPB for the case study described in

Section 4.2. We use Pocock boundaries in this two-stage design and a prior di�erence

in means of δ∗ = 20.2% and prior standard deviation of σ∗ = 18% to generate optimal

sample sizes n∗1 = n∗2 = 49, TEAVPB= 0.9959 and power= 0.9997. These sample

sizes would actually give TEAVPB= 0.9537 and power= 0.9578, due to the actual

di�erence between the means in the trial being δ̃ = 14%. The trial would really need

optimal sample sizes n∗1 = n∗2 = 95, which would result in TEAVPB= 0.9919 and

power= 0.9994.

The assumption that n1 = n2 can be relaxed, and equation (4.4.1) used again to

�nd the optimal sample sizes, n∗1 and n
∗
2, which give the maximum TEAVPB for the

case study, again with Pocock boundaries. A prior δ∗ = 20.2% di�erence in means

and prior standard deviation of σ∗ = 18% gives optimal sample sizes n∗1 = 34 and

n∗2 = 76, TEAVPB= 0.9965 and power= 0.9999. These sample sizes would actually

generate TEAVPB= 0.9672 and power= 0.9720, due to the actual di�erence between

the means in the trial being δ̃ = 14%. The trial would need optimal sample sizes

n∗1 = 68 and n∗2 = 143, which would generate TEAVPB= 0.9930 and power= 0.9997.

The optimal sample sizes n∗1 and n
∗
2 can further be determined using a distribution

on the prior standardised treatment e�ect to �nd the maximum TEAVPB for the

case study. We assume a standardised treatment e�ect which is normally distributed
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with prior means θ∗µ = {0.5, 0.78, 1, 1.12, 1.25, 1.5} and prior standard deviations of

θ∗σ = {0.05, 0.2, 0.5, 0.75}. We use Pocock boundaries in this two-stage design and

investigate the actual TEAVPB and power produced in the trial, with standardised

treatment e�ect from the trial θ̃ = (96− 82)/18 = 0.78 (Figure 4.4.13).
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Figure 4.4.13: Total expected average patient bene�t and power for trial in case study,

when using Pocock boundaries and a distribution on the prior standardised treatment

e�ect for total patient population N = 6680.

As seen previously, when the prior mean of θ is small, the TEAVPB produced

is large for all values of θ∗σ. As θ∗µ increases past the true mean, it is the smaller

standard deviations which cause a quicker decrease in TEAVPB. When we use our

prior standardised treatment e�ect mean, θ∗µ = 20.2/18 = 1.12, and moderate prior

standard deviation, θ∗σ = 0.2, we get n∗1 = 45 and n∗2 = 162, with TEAVPB=0.9921

and power=0.9997. This is larger than the TEAVPB and power produced using the

same standardised treatment e�ect assumption in the prior point estimate method.

Whereas, using the true standardised treatment e�ect from the trial as the mean,

θ∗µ = θ̃ = 0.78, and small prior standard deviation, θ∗σ = 0.05, gives n∗1 = 70 and

n∗2 = 155, and TEAVPB=0.9929 and power=0.9999. The di�erence here is very small

and thus, we still produce a very large TEAVPB even when our initial assumptions
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about the prior standardised treatment e�ect are incorrect.

4.5 Covariate Expected Total Expected Individual

Patient Bene�t

Following the de�nition of the TEIPB in Section 4.3 we now seek to extend it to

include a patient's covariate(s). We explore the situation, where the RCT indicates

the superior treatment on average and this treatment is distributed to all patients

outside the trial, but each individual patient's i ∈ {1, 2, ..., N} superior treatment

will depend on their covariate(s), xi (this could in theory be a vector of covariates).

Hence, we extend the TEIPB to calculate the covariate total expected individual

patient bene�t (CTEIPB). To calculate the CTEIPB, we �nd the expectation of the

TEIPB over the patients' covariate(s) distribution.

Ex[E[IBN |n, δ, σ, α, x]] = Ex

[
1

N

(
n

2

+ (N − n)

[
Φ

(√
n · δ2

4 · σ2
− Φ−1(1− α)

)
· P (Superior treatment on average is best for patient|x)

+

(
1− Φ

(√
n · δ2

4 · σ2
− Φ−1(1− α)

))
· (1− P (Superior treatment on average is best for patient|x))

])]
.

(4.5.1)

The RCT will always allocate n/2 patients to their superior treatment by design,

no matter if a patient's covariate a�ects their superior treatment or not. In addition,

as the RCT will �nd the superior treatment on average, we assume that a patient's

covariate does not a�ect the overall di�erence in treatment means within the trial,

δ, nor the standard deviation of either treatment outcome, σ. Therefore, equation

(4.5.1) can be re-written as,
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Ex[E[IBN |n, δ, σ, α, x]] =
1

N

(
n

2

+ (N − n)

[
Φ

(√
n · δ2

4 · σ2
− Φ−1(1− α)

)
· Ex

[
P (Superior treatment on average is best for patient|x)

]
+

(
1− Φ

(√
n · δ2

4 · σ2
− Φ−1(1− α)

))
· (1− Ex

[
P (Superior treatment on average is best for patient|x)

]
)

])
.

If the patient's covariate is bounded between [a, b], has a probability distribution

function fX(x) and we assume the experimental treatment produces the superior

outcome on average, then the probability the superior treatment on average is superior

for a patient is,

Ex[P (Superior treatment on average is best for patient|x)]

=

∫ b

a

P (YE > YC) · fX(x)dx

=

∫ b

a

(
1− P

(
YE − YC <

−E[YE − YC ]√
V ar(YE − YC)

))
· fX(x)dx.

(4.5.2)

For example, using the case study described in Section 4.2 we assume there is a

binary covariate, e.g. ANCA type (anti-MPO or anti-PR3), which a�ects the outcome

of a patient who is given the experimental treatment (which we assume to be the

superior treatment on average), 10mg avacopan, such that:

YE,i ∼


N(µE,0, σ

2) when xi = 0, (anti-MPO)

N(µE,1, σ
2) when xi = 1, (anti-PR3),

and the control (lesser treatment on average) is not a�ected by the covariate such

that, YC ∼ N(µC , σ
2) ∀ xi. Therefore, equation (4.5.2) can be used to calculate the

probability of the superior treatment on average being the superior treatment for a

patient, as shown below,
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Ex[P (Superior treatment on average is best for patient|x)]

=
1∑
b=0

P (YE > YC) · P (x = b)

=
1∑
b=0

(
1− P

(
YE − YC <

−(µE,b − µC)√
2σ2

))
· P (x = b).

This CTEIPB could be further extended to include a clinical trial which indicates

the superior treatment for each subgroup of patients, depending on their covariate(s).

This would imply the power of the trial would depend on each patient's covariate(s),

xi. This form of individualisation would be of particular bene�t if a phase II or

previous phase III trial indicated the e�ect of the covariate on the treatment outcome,

and we needed to perform a further phase III trial in order to prove said covariate

e�ect. We leave this as an extension to the work.

4.6 Conclusions and Further Work

In many clinical trial designs, the calculation of the sample size for the trial is found

to be the minimum number of patients which guarantee a power of 80%, to prove a

predicted clinically relevant standardised treatment e�ect, θ∗ = (µ∗E − µ∗C)/σ∗. Many

designs do not even factor in the total patient population. However, the small patient

population we have investigated shows a larger trial with larger power may be more

bene�cial to the population as a whole.

In the scenarios explored above, we have shown this method is applicable in small

patient populations for a continuous outcome. In addition, we have shown this method

can be used in both a one-stage and two-stage clinical trial. Furthermore, the method

could be adapted to include a sample size re-estimation at an interim analysis.

In many scenarios above, the proposed optimal sample size found using our method

often also has large power. These two factors are normally talked about as competing

in the literature, but here, we have shown in these situations, when the total expected
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average patient bene�t is maximised, the power for the trial is also large. However,

this method can still be extended in several di�erent ways.

Firstly, our proposed method only looks at a continuous outcome, which is nor-

mally distributed. We could explore non-normally distributed continuous outcomes,

binary outcomes and survival outcomes. We could further investigate how our method

would perform, if the treatment outcomes were a�ected by the covariates of patients.

We could inspect multiple covariates of di�erent types (continuous, binary, categori-

cal) and also, look into covariate selection methods.

Additionally, our proposed method only looks into RCTs, with equal allocation

between the treatments. This is most applicable to clinical trials, as the RCT is the

gold standard and most often used in practice, (Sibbald and Roland, 1998). However,

many adaptive clinical trials have proven to increase patient bene�t within a trial

(Korn and Freidlin, 2011). Therefore, we could further investigate our sample size

calculation above for a response adaptive trial design, rather than an RCT.

Finally, we currently assume the total patient population, N , is constant through-

out the trial. This is not applicable in real life. The patient population is always

changing due to birth, death and migration rates. If we investigate a life threatening

disease, then the death rate within the trial could be di�erent dependent on which

treatment a patient is given. Or if we were to investigate a disease, which can be easily

passed between susceptible patients (such as in�uenza), the total patient population

would increase due to susceptible patients contracting the disease and decrease due to

patients recovering or dying from the disease. Also, whether a patient who recovers

from the disease becomes immune or susceptible to the disease again, would alter how

you account for the changing population. If we were to investigate a changing patient

population, it could alter the optimal sample size of the clinical trial.

Limitations of our method include the assumptions we make on simplifying the

drug development process. Firstly, we only take into account patients within an equal

allocation phase III RCT and those patients outside the trial, who will be allocated
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the treatment chosen as superior within the trial. However, there are many stages

between a treatment being created and �nally making it to market. Some of these

early phase trials will have small sample sizes. In our application of investigating

small patient populations, however, these trials could still have a large impact on our

method and the actual TEAVPB produced.

Furthermore, we use the one-sided two sample Z-test at level α to determine which

treatment will be allocated to the (N−n) patients outside the trial. Although, this is a

conventional approach there are other decision rules which could be used to determine

which treatment is given to patients outside the trial. Day et al. (2018), for example,

suggests using a larger type I error α, in the context of small populations. A future

direction of this work considers optimising the choice of α used in the one-sided two

sample Z-test, in order to increase the TEAVPB.

In this work, we assume each patient within the total population will only be

assigned one treatment (i.e. we focus on acute treatments). For many diseases (par-

ticularly those more chronic in nature) after a clinical trial has taken place, any patient

within the trial has the opportunity to switch to the superior treatment. This set-up

would translate to a three state version of the problem discussed above. Patients

would not only be assigned to either the superior treatment or not, they would also

have a third option of initially being given the non-superior treatment within the trial,

but changing to the superior treatment after the trial was completed. This would not

be as advantageous to the patient as being allocated the superior treatment from the

start, but would be more advantageous than being assigned the non-superior treat-

ment only. Accounting for this will increase the TEAVPB in each of the scenarios

discussed above, but is also likely to result in di�erent optimal sample sizes.

Another assumption which limits our approach is how we think about patient

bene�t in equation (4.3.1). Throughout this thesis we assume patient bene�t is the

proportion of patients assigned their superior treatment. However, we explore con-

tinuous outcomes and, hence, it may be more appropriate to think about maximising
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patient bene�t in terms of minimising the mean loss in a patient's outcome, for the

whole population, N . For example,

E[ABN ] =
ΣN
i=1(yi(k

∗)− yi(ki))
N

. (4.6.1)

Where, yi(ki) is the actual outcome of patient i given treatment ki and yi(k∗) is the

potential outcome of patient i if they were assigned the superior treatment, k∗.

Again, this sum can be split into the di�erence in outcomes of patients within the

trial and outside it. This set up would be of particular importance when thinking

about the TEIPB, especially if the clinical trial not only determined the superior

treatment on average, but also if the trial looked at which patients within the trial,

each treatment was superior for.



Chapter 5

Conclusions, Limitations and Further

Work

This thesis has covered two separate topics, covariate adjusted response adaptive

randomisation designs and sample size calculations, in order to increase the bene�t

to patients both within clinical trials and the patient population as a whole. In this

Chapter we brie�y outline the conclusions and limitations of each method explored

above and suggest some possible avenues of further work.

5.1 Conclusions

Chapter 2 introduces a CARA randomisation design, which prioritises the allocation

of patients to their estimated superior treatment, using previous patient covariate

and outcome data. The method starts with a burn-in period, and each patient there

after is assigned their estimated superior treatment with a high probability. This

superior treatment is estimated using a regression method. The proposal was ex-

plored using two simulation studies, one included a single continuous biomarker and

continuous outcome, the other was based on a published trial which included two bi-

nary biomarkers and a survival outcome. The proposal was evaluated using multiple

181
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performance measures. It was found that: (i) the proposal always assigned a larger

proportion of patients their superior treatment in comparison to an equal allocation

RCT, (ii) the proposal produced a similar power to the equal allocation RCT and in

some scenarios it produced a larger power than the equal allocation RCT. Several re-

gression methods were investigated and Gaussian processes and polynomial regression

performed well in both simulation studies.

The CARA randomisation design from Chapter 2, was extended to utilise his-

torical trial data in Chapter 3. Due to the availability of the historical data, we

investigated the method without using a burn-in period and allocated patients their

estimated superior treatment with 100% probability. The proposal was explored using

a simulation study with one continuous biomarker and a continuous outcome and its

use was demonstrated using two published trials. The proposal performed very well

when historical data was available for both treatments and it always assigned more

patients to the superior treatment than the equal allocation RCT. Furthermore, the

addition of extra historical data showed an improvement in proportion of patients

assigned the superior treatment. However, the main outcome of the simulation study

when historical data was only available on one treatment, was that the selection of

the neutral estimate on the other treatment was crucial. If the neutral estimate was

not selected wisely, the proposal would soon run into problems and the addition of

extra historical trial data actually became a hindrance to the proposal. Again, sev-

eral regression methods were explored and compared and we found that weighted

linear regression and Gaussian processes seemed to perform best in the majority of

the scenarios investigated.

Finally, Chapter 4 suggests an alternative way to calculate the sample size of a

phase III clinical trial. This Chapter compared two procedures to optimise the sample

size of a phase III trial, in order to maximise the patient bene�t for the whole patient

population. The �rst method used a point estimate approach for each treatment

parameter and the second approach utilised a distribution on the overall standardised
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treatment e�ect of the trial. These procedures were explored in the context of rare

disease patient populations, for a number of scenarios, one of which was based on

a published trial. We found that: (i) utilising a prior distribution on the treatment

e�ect was more robust than using incorrect initial priors on the treatment parameters,

(ii) the method always produced a sample size which produced a large power and large

total patient bene�t.

5.2 Limitations

As is true with many new methodologies, the procedures discussed above have a

number of limitations, both in their assumptions and how they can be used in practice.

The general issue with the CARA design, and indeed many RAR designs in gen-

eral, is the assumption of knowing a patient's outcome before the next patient arrives

into the trial. We demonstrated in Chapter 2 how a survival outcome could be used

and hence, a censored outcome due to time could be incorporated, as all regression

methods investigated could be adapted for this situation. However, this proposal

would not be applicable in a setting where one must wait a long time for an outcome

to present itself, e.g. number of anxiety attacks su�ered in a year. One way to combat

such an issue would be to use a surrogate endpoint which could be recorded sooner

and included in the regression method instead of the true outcome of interest. Alter-

natively, one could use equal allocation until the appropriate outcome was recorded

and then include it in the regression method, but one would not have a lot of data to

work with and, as such, the prediction of the superior treatment would be unlikely to

be accurate.

Another limitation of the CARA design discussed in Chapters 2 and 3 is the need

to know which biomarker to include in the regression method, before the trial begins.

In order to use the biomarker to predict which treatment will be superior for each

patient, said biomarker needs to be recorded at baseline and we need to know to use
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said biomarker in the regression method over a di�erent, less predictive biomarker.

There has been much research into personalised medicine and many diseases have well

known biomarkers which a�ect how e�cacious a treatment can be. However, this is

not the case in all therapeutic areas and hence, this method would only be applicable

in certain disease populations. Alternatively, this method could be extended to include

a biomarker selection process during the trial.

The main limitation of the sample size calculation, described in Chapter 4, is

its result. For many populations explored, the optimal sample size is large, larger

than what would be needed to produce the conventional 80% power. In rare disease

populations, often the issue with the traditional sample size calculation is, it selects a

sample size so large, it is infeasible to recruit due to the small patient population. The

sample sizes chosen as optimal using this method will be even larger and therefore,

even more infeasible to recruit in practice. It is only for very small patient populations,

for example N = 80, when the optimal sample size is actually smaller than what would

be needed to ensure 80% power. Although it is an interesting result, a sample size

which produces a power larger than 80% will produce a larger bene�t to the patient

population as a whole, it is unlikely to be used in practice due to its low feasibility.

5.3 Future work

Both topics in this thesis focus on maximising the proportion of patients who are

given the superior treatment, utilising an e�cacy endpoint. There are of course other

measures of patient bene�t that these topics could be extended to. Furthermore, the

e�cacy of a treatment is not the only measure one investigates within a clinical trial.

A new treatment must also have few side e�ects and should be cost e�ective. For

example, it is no good to roll out a drug to patients which is really e�cacious, if

it also causes many horrible side e�ects. In a clinical trial the advantages (e�cacy)

and disadvantages (side e�ects or cost) of a new treatment must all be taken into
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account when deciding whether to distribute it to the wider patient population. Lei

et al. (2011) describes how to combine a time to event e�cacy endpoint and a binary

toxicity endpoint in a RAR trial design. They produce a trade-o� index by dividing

the probability of a patient surviving at time τ , by their probability of having a toxic

side e�ect, per treatment. Lei et al. (2011) then calculates the probability of assigning

the next patient treatment k, by dividing the trade-o� index of treatment k by the

sum of all treatments' trade-o� indices. We could extend our CARA design above in

a similar way, by producing a trade-o� index. We could divide the probability of the

experimental treatment producing the superior e�cacy outcome, by the probability

the experimental treatment produces a more severe side e�ect than the control treat-

ment. In this way we could incorporate continuous e�cacy and side e�ect endpoints.

The probability of the experimental treatment producing the superior e�cacy end-

point could be calculated by dividing the di�erence in the predicted outcome of the

two treatments by the largest possible di�erence in outcome. Or it could be estimated

by 1−0.5(the proportion of the credibility intervals for the two treatment predictions

that overlap). These ideas could be repeated for the side e�ects.

Furthermore, the sample size calculation could also be extended to include these

disadvantages. There are a number of ways in which the gain function could be

adjusted to include these disadvantages. For example, the gain function could be

de�ned as,

E[ABN ] =
1

N

( N∑
i=1

(gE,i − gSE,i)− CE · nE − CC · nC
)
, (5.3.1)

where gE,i = 1 if the treatment given to patient i produces the superior e�cacy

outcome on average, ki = k∗E, gE,i = 0 if the treatment given to patient i does not

produce the superior e�cacy outcome on average, ki 6= k∗E, gSE,i = 1 if the treatment

given to patient i produces the more severe side e�ects on average, ki 6= k∗SE, gSE,i = 0

if the treatment given to patient i does not produce the more severe side e�ects on

average, ki = k∗SE, Ck is the cost of producing treatment k per patient, which is known
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before the trial starts and nk is the number of patients given treatment k (both inside

and outside of the trial). Again, this equation can be split for the patients within the

trial and those outside it who are given the treatment which is selected as `superior'

in the trial, using a hypothesis test. This hypothesis test could either, determine the

treatment which is most e�cacious or alternatively, it could also take into account

the side e�ects that the treatments produce.

The set-up above would work for many outcome types (binary, continuous, cat-

egorical etc.), however, if the outcome and/or side e�ects were continuous variables

it would also be useful to take into account by how much each treatment was more

e�cacious/toxic. Therefore, equation 5.3.1 could be adapted such that,

E[ABN ] =
1

N

( N∑
i=1

((yki,i− yk∗E ,i)− (SEki,i−SEk∗SE ,i))−CE · nE −CC · nC
)
, (5.3.2)

where yk,i is the e�cacious outcome of patient i, who is given treatment ki and yk∗E ,i

is the potential e�cacious outcome of patient i, who is allocated to the treatment

which produces the superior e�cacy outcome, ki = k∗E. Similarly, SEk,i is the side

e�ect outcome of patient i, who is given treatment ki and SEk∗SE ,i is the potential

side e�ect outcome of patient i, who is assigned to the treatment with the least severe

side e�ects, ki = k∗SE. The issue with equation 5.3.2, is that when patient i is not

given the most e�cacious treatment, ki 6= k∗E, we do not know what their potential

e�cacious outcome would have been, had they been given the most e�cacious treat-

ment. This would have to be estimated using the data available. The same thinking

holds for the side e�ects. Furthermore, the gain/loss of being assigned the most e�-

cacious/toxic treatment in equations 5.3.1 and 5.3.2, could be weighted depending on

which endpoint is most important to take into account.

Another extension which could be added to both methods is the addition or drop-

ping of treatments. See Saville and Berry (2016) for an example of a RAR design

which adds/drops a treatment. This is normally done at an interim analysis (Saville

and Berry, 2016). Whether an interim analysis would need to be introduced into this
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CARA design to facilitate this change is an area to be explored. The sample size cal-

culation has already been investigated in a two-stage set-up. This could be extended

to include a sample size re-estimation at the interim analysis, whether it could also

include the addition or dropping of a treatment at the same time is an open problem.

Our CARA design has only been investigated for a continuous outcome which is

known instantaneously and a survival outcome, which is a censored variable due to

time until the event (death) has been observed. The regression methods can handle

censored continuous data due to an outcome not being observed in the allotted time

period. However, could this method be extended for data which is missing? Little

et al. (2012) lists several possible ways one can handle missing outcome data in clinical

trials including:

• ignoring all participants which have their outcome missing and excluding them

from any analysis,

• each missing outcome is �lled in using simple imputation methods such as `the

last observation carried forward' or `the baseline observation carried forward,'

• complete cases are weighted higher than incomplete cases,

• impute missing outcome data using a statistical model, for example, a maximum

likelihood model or a Bayesian model.

However, there are a number of reasons why data is missing, e.g missing completely at

random (missing outcome data is unrelated to patient characteristics or study results,

as such the outcomes of those patients who drop out will be similar to the outcomes

of patients who did not), missing at random (patient characteristics can account

for di�erences in the missing outcome data, such that patients who drop out will

have similar outcomes to patients who did not drop out, if they have similar patient

characteristics and similar intermediate outcomes) or missing not at random (where

missing outcome data can not be explained by any recorded values and therefore,
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an event which was not observed, e.g. a severe side e�ect, may in�uence a patient's

decision to drop out of the trial and hence, a treatment that did not perform well in

many patients may have many missing outcomes) (Little et al., 2012). The reason

why the outcome data is missing could massively in�uence the feasibility of imputing

the missing outcome data accurately and ultimately, how our CARA method would

have to be adapted in order to function when missing outcome data is included. See

Williamson and Villar (2020) for an example of a RAR design which incorporates

missing data.

The natural extension to the topics explored above is to combine them, to obtain

a sample size calculation which optimises a CARA randomisation clinical trial, in

order to maximise the patient bene�t to the whole patient population. This must

be done with great care, as initial preliminary explorations resulted in a CARA trial

of size N , such that the whole patient population was included in the trial. This is

understandable, as once you have enough information within the trial, it is highly

likely to assign all patients here after their superior treatment, and as such, a valid

conclusion is to recruit all patients into the trial. In order to produce a sample size

smaller than the total patient population, one would have to include a discount factor,

such that patients assigned the superior treatment outside the trial are weighted higher

and produce a larger bene�t than those patients assigned the superior treatment

within the trial. However, how this method should be set-up and planned and the

form of the objective function, including said discount factor, is an area of future

research.

A second natural extension to the sample size calculation is the inclusion of a

CARA trial design after the interim analysis of a two stage trial. For example, the

sample size could be calculated for a two stage equal allocation clinical trial in a similar

way to Chapter 4, however, at the interim analysis we could re-estimate the second

stage sample size and introduce a CARA design for the second stage of the trial, if the

patient data collected indicated that one treatment may be superior. If the trial does
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not stop for e�cacy or futility and must proceed to stage two, but it does indicate

one treatment is likely to be superior (by introducing a new boundary) then a CARA

design could be added to the second stage of the trial. How this new boundary would

be calculated, and included in the sample size re-estimation computation would be

an interesting avenue of further work.

Our �nal area of future work expands on using the sample size calculation in a

chronic disease area. Above, we assume that when a patient is assigned a treatment

within the trial, they are not allowed to switch if it later transpires that they were

given the non-superior treatment. In the chronic disease setting, patients would be

switched to the superior treatment once the trial has ended. One way to incorporate

this into our calculation is to have a third group, such that patients can either be:

assigned the lesser treatment during the trial and carry on taking said lesser treatment

after the trial ends, assigned the lesser treatment during the trial and then moved to

the superior treatment when the trial �nishes, or assigned the superior treatment

during the trial and never change. However, some trials particularly in the chronic

disease setting will allow patients to switch between treatments mid trial (Lavori et al.,

2000). The reason behind the switch usually comes down to the initial treatment not

having a positive e�ect on the patient, and hence the patients can either switch to

the other treatment or be given both treatments simultaneously. The point that this

switch happens and the criteria that must be met to allow this switch varies depending

on the trial set-up and is normally determined before the trial begins. This would

add an extra dimension to our sample size calculation, as the switch would not only

be possible at the end of the trial but at any point through the trial as well. This

switch in treatments during the trial would add extra di�culties when estimating the

di�erence in true treatment e�ect, as the intent to treat population would produce a

conservative estimate. How this method would account for the continuous nature of

when a patient could switch between treatments, is a further area of research which

could be investigated.
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This thesis raises ideas on a very small area of e�cient clinical trial designs. We

have explored a single CARA design and its extension to include historical trial data

and a single sample size calculation. There are a plethora of di�erent RAR/CARA

designs available, many of which could be extended in the ways listed in this Chapter.

Similarly, there are other sample size calculations which could also be extended using

the ideas above. The topic of e�cient clinical trial designs is large and we have focused

on a tiny part of it, there is still much to investigate and explore in this interesting

research topic. We hope this thesis will aid in the journey towards a more e�cient

drug development process and it is hoped that the designs proposed above will provide

a foundation for further work in this complex research area.
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