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ABSTRACT 
Mutual awareness of visual attention is crucial for successful collab-
oration. Previous research has explored various ways to represent 
visual attention, such as feld-of-view visualizations and cursor 
visualizations based on eye-tracking, but these methods have limi-
tations. Verbal communication is often utilized as a complementary 
strategy to overcome such disadvantages. This paper proposes a 
novel method that combines verbal communication with the Cone 
of Vision to improve gaze inference and mutual awareness in VR. 
We conducted a within-group study with pairs of participants who 
performed a collaborative analysis of data visualizations in VR. We 
found that our proposed method provides a better approximation 
of eye gaze than the approximation provided by head direction. Fur-
thermore, we release the frst collaborative head, eyes, and verbal 
behaviour dataset. The results of this study provide a foundation 
for investigating the potential of verbal communication as a tool 
for enhancing visual cues for joint attention. 

CCS CONCEPTS 
• Human-centered computing → Natural language interfaces; 
Collaborative interaction; Virtual reality; Visual analytics. 

KEYWORDS 
Field of View, multi-modal visual attention cues, VR collaborative 
analytics, eye-tracking 
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1 INTRODUCTION 
Mutual awareness of visual attention–the ability to identify col-
laborators’ visual attention–is crucial for successful collaboration 
[22, 26, 77, 99, 111]. As such, prior studies have shown that intro-
ducing bi-directional visual attention cues in collaborative VR can 
improve mutual awareness [53]. Although they ofer improvements 
over having no visual attention cues in virtual collaborative envi-
ronments, correctly representing users’ attention remains an open 
challenge. Field-of-view-based visualisations only provide an es-
timate of visual attention [16], while pointer-based using natural 
pointing modalities, such as the eye gaze [44] and head [115], does 
not aford the dynamic visual representation of diferent types of 
attention (e.g. focused and distributed [103]). Moreover, there are in-
herent limitations to using natural pointing modalities to represent 
visual attention. For example, attention cues based on gaze input 
can be distracting for an observer due to natural looking behaviour 
[119], or ’confusing’ when there is a misalignment between a col-
laborator’s verbal references and the depicted eye-gaze location 
due to eye-tracker calibration issues [26]. 

In this paper, we explore how combining an existing feld-of-
view-based visual attention cue (‘Cone of Vision’ [16]) with verbal 
communication can improve gaze inference and mutual awareness 
for exploratory data analysis in VR. The Cone of Vision (CoV) visual 
attention cue is a novel technique developed by Bovo et al. [16] that 
leverages head behaviour to allow a more accurate representation 
of users’ attention within their feld of view (FoV). Existing FoV-
based techniques display the entire area within a user’s vision. 
Though the technique narrows the FoV (based on gaze probability 
within head coordinates), the visualisation can still contain high 
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Figure 1: CoV+Speech is a multi-modal visual attention cue that narrows the cone of visual attention around keywords uttered 
by participants during collaborative verbal communication. 

densities of information within the ‘cone’. By using speech to direct 
the CoV region towards the visual elements mentioned in verbal 
communication, we can create an adaptive multi-modal approach 
that continuously refnes the focus of visual attention towards such 
elements. Figure 1 shows how the combination of CoV+Speech 
can narrow down the CoV visual attention cue based on keywords 
uttered by a collaborator during exploratory data analysis. 

Our proposed approach of combining CoV and verbal commu-
nication mirrors how collaborators communicate in face-to-face 
settings. Research has shown that collaborators often leverage cues 
from multiple modalities to gauge the visual attention of collabora-
tors, including verbal cues [117]. In particular, they frst understand 
the general orientation of their collaborators (i.e., by evaluating 
the general direction of their head gaze) and then confrm or re-
fne the location of the visual context using verbal communica-
tion [26, 89]. Collaborative verbal communication is also used as 
a fallback method when visual cues are not accurate enough or 
when there are calibration errors [117]. Further, our approach is 
well-suited to cross-virtuality analytics (XVA) context because XR 
headsets typically have access to head and verbal behaviour, while 
they do not always have eye-tracking capabilities. This makes our 
approach widely applicable within the XR device ecosystem. Due to 
the potential benefts of our proposal technique, we aim to answer 
the following research question: How does speech in conjunction 
with head behaviour impact joint attention during collaboration 
and gaze inference? To address this question, we designed and con-
ducted a within-group study that compares three conditions: CoV, 
CoV+Speech, and Eye-Gaze Cursor. In the study, ten pairs of par-
ticipants performed collaborative exploratory data analysis tasks 
using three diferent dataset visualisations, testing each of the three 
conditions. In the CoV condition, we used a model to model a cone 
of vision using the statistical model of gaze probability, which was 
projected onto VR screens [16]. In the CoV+Speech condition, we 
processed the collaborative verbal communication using speech 
recognition as input to narrow the CoV around the enunciated 
elements of the visualisation. Lastly, we added the Eye-Gaze Cursor 
condition as it is a widely used method to represent visual attention, 
in which we mapped the raw eye-gaze position to a live cursor. 

Our results showed that speech recognition did not lead to better 
joint attention compared to CoV, due to lag and limited speech 
recognition accuracy. To further investigate the potential of ver-
bal communication to negotiate shared attention, we performed a 
follow-up analysis using a highly accurate speech-to-text model 
to transcribe the verbal communication data collected during our 
study. The transcription allowed us to analyse the types of ver-
bal references used by participants. This analysis validated our 
assumption that the most common form of communication relies 
on explicit keyword utterances rather than implicit verbal refer-
ences or pointing-based communication. In addition to allowing 
us to perform an ofine approximation of eye gaze using speech 
as an input, the transcription allowed us to analyse the types of 
verbal references used by participants. Our analysis demonstrated 
that our proposed method improves eye gaze approximation accu-
racy by 50 pixels when the CoV regions do not constrain the eye 
gaze. This suggests that speech has the potential to improve the 
shared context of visual attention. Therefore, we also present the 
collected data and accurate transcriptions as a dataset, which is 
the frst dataset of collaborative head, eyes and transcribed speech 
behaviour to the best of our knowledge. Our fndings and dataset 
contribute to a deeper understanding of verbal communication and 
gaze during collaboration. 

Furthermore, we were able to estimate the impact that CoV 
and CoV+speech have on individual visual attention by testing 
the statistical model of gaze on which the CoV cues are based. In 
the Eye-Gaze Cursor condition, the gaze distribution followed the 
earlier model ( 70% of gaze samples within the non-displayed CoV). 
In contrast, the CoV conditions showed that eye-gaze distribution 
was considerably narrower: more than 85% of gaze samples fell 
within the displayed CoV. When head-based visual attention cues 
are visible (i.e. CoV), the head gaze becomes a better predictor of 
eye gaze than when they are not used. Our study also enabled us 
to compare bidirectional head-gaze visual attention cues and eye-
tracking cues, fnding that CoV cues foster joint attention equally 
or better than eye-tracking cues. We measured joint attention as the 
fraction of concurrent gaze on the same area of interest (AOI), that is 
a method used in research to analyze attention to individual objects 
[84], we do so at two resolutions: the chart level and the screen 
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level. We discuss the implications of this fnding in the discussion 
and conclusion section. The contribution of this paper is threefold: 

(1) A novel visual FoV-based cue for collaboration that dynami-
cally changes size based on verbal communication to balance 
broad and narrow information. 

(2) The results of a study compared three visual cues for collabo-
ration during an exploratory data analysis task in VR. Results 
showed that our proposed approach better approximates the 
head gaze if compared to the approximation ofered by the 
head gaze alone. Moreover, head-based visual attention cues 
foster joint attention equally or better than eye-tracking 
visual attention cues. 

(3) A dataset 1 containing the verbal, head, and eye behaviour 
of ten pairs of participants collaborating in VR. 

2 RELATED WORK 

2.1 Cross-virtuality Analytics in Immersive 
Environments 

Cross-virtuality Analytics (XVA) can support users simultaneously 
via collaborative interfaces encompassing the reality–virtuality 
continuum [35] and has been adopted by a large set of works [20, 
21, 60, 70, 79, 91, 96, 97]. XVA has recently gained interest from 
researchers due to the COVID pandemic due to the increase in 
demand for remote working and collaboration. Within this scenario, 
VR enables portable personal bespoke working environments that 
can be used at home on the go or in hybrid modes with normal 
screens [14, 32, 83]. While some of the XVAs are tailored for specifc 
3D data applications [20, 21, 70], there is a growing trend to support 
2D content, which is cross-compatible with the standard multi-
purpose applications available on desktop PC [30, 46, 60, 71, 87, 
97]. Such an approach is also followed by commercial applications 
[5, 6, 27, 47, 74, 85], which either enable the display of standard 
2D documents (e.g. web pages, calendar layout, ofce documents) 
or capture arbitrary 2D windows from a desktop PC and display 
them as a 2D surface in the virtual environment. Such software 
allows users to set up their own layout of 2D windows in the 3D 
environment (Figure 2 a) and b)) which is a problem that previous 
XVA studies have explored (Figure 2 c) and d)). For example, Lee 
et al. [60] illustrates how users behave when solving an analysis 
task in a squared-room scenario with the freedom to position 2D 
surfaces. The experiment results show that 2D screens are often 
placed on the walls to present the content efciently to others. 

Qualitative analysis of Satriadi et al. [97] focused on determin-
ing the optimal shape of 2D screens around a VR user, exploring 
diferent layouts such as spherical, spherical cap, planar, and uncon-
strained (i.e. users are free to arrange in any form in the space). The 
results highlight how users prefer constrained layouts in curved 
topologies, such as spherical or cylindrical. Both studies suggest 
that such layouts guide users in setting up the panel confguration, 
constraining them to the edges of the virtual environment. Such 
fndings show convergence for VR 2D screen layouts toward a con-
vex and egocentric layout, as seen in commercial VR applications 
such as Meta Infnite Ofce [74] or XVA research ([71, 87]). 

1https://github.com/Collaborative-Immersive-Visual-Toolkit/Speech-Gaze-Head-
Datatset 

2.2 Mutual Awareness of Visual attention in 
Collaborative VR 

Awareness of other people’s visual attention is a crucial compo-
nent of collaboration. Several works have shown that visualising 
collaborators’ visual attention can be an efective tool to enhance 
collaboration by allowing users to predict others’ intentions and 
awareness [26, 29, 77, 99, 111] or desire to communicate [26, 99]. 
In AR and VR settings, such visualisations are commonly displayed 
through gaze cursors and have been extensively investigated and 
proven to improve collaboration [10, 53, 58, 61, 67]. However, mod-
ern VR equipment commonly does not incorporate eye-tracking. 
Therefore, several studies propose head orientation as an approxi-
mation of gaze [7, 24, 34, 45, 66, 90, 91] using FoV visualisations or 
exploiting attention models based on head movements [18]. These 
works have shown that FoV visualisations can help collaborators 
establish mutual awareness and attention [10, 24, 34, 45, 91, 91, 92]. 
Piumsomboon et al. [91] further propose that these visualisations 
could be displayed or hidden accordingly to the context of collabo-
ration to minimise visual clutter while maximising collaboration. 
Based on this insight, we introduce a visualisation technique that 
adapts to participants’ speech during collaboration. Because FoV-
based visualisations help maintain mutual awareness among collab-
orators, we adopt the same metrics used in previous CSCW studies 
to evaluate visual coordination [16, 26, 82, 99]. 

Moreover, we determine metrics based on head-tracked move-
ments embraced by previous work [15, 88, 115]. In many VR/AR 
studies, visual cues are not self-visible but only shown to collabora-
tors; as such, they are called uni-directional visual cues [44, 91, 116]. 
The justifcation for mono-directionality is that users already know 
where they are looking; therefore, they do need such redundant 
information. Nevertheless, recent HCI studies started to explore 
bi-directional cues, which can be seen by collaborators and the 
producer of eye and head behaviour [16, 54]. Such studies high-
light that the feedback loop of self-visible visual attention cues is 
benefcial for collaborative work, leading to less efort (i.e. drop 
in task physical demand [54] and increase in visual coordination 
[16]. However, previous studies have yet to compare bi-directional 
head-based and eye-based cues. In our work, we fll this gap to see 
which supports collaboration better and to understand whether 
eye-tracking-less VR headsets can support joint attention during 
collaboration. In line with the fndings described, we developed a 
layout for our experiment (Figure 2(e), Section 3.2.1), which consists 
of a convex egocentric layout of 2D VR screens. 

2.3 Verbal Communication and Mutual 
Awareness of Visual attention in CSCW 

Previous CSCW work by [17, 117, 118] investigated pointing tools 
used to negotiate visual attention during collaboration. These stud-
ies highlight the underlying relationship between pointing tools 
and the verbal channel (i.e. pointing-based communication). Such 
dynamics are also explored concerning eye-gaze visualizations by 
the work of D’Angelo and Begel [26] in remote pair programming 
tasks. Their study proposes a taxonomy for verbal and gestural 
spatial references describing diferent types: explicitly mentioning 
specifc keywords that are displayed on the screen, utterance plus 
hand pointing, referring directly to the gaze visualizations ("..where 

https://1https://github.com/Collaborative-Immersive-Visual-Toolkit/Speech-Gaze-Head
https://1https://github.com/Collaborative-Immersive-Visual-Toolkit/Speech-Gaze-Head
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Figure 2: This fgure shows on the left two collaborative environments: (a) Immersed [51], and (b) Spatial.io [5], which enable 
users to generate their confgurations of 2D VR screens layouts. Figure (c) highlights circular VR scenario in cross-virtual 
analytics studies of Satriadi et al. [97] and (d) a squared confguration from the work of Lee et al. [60]. Our immersed collaborative 
virtual environment is depicted in (e). It consists of 4 VR screens with HTML web pages displayed in a cylindrical layout. 

I am looking...") or interacting with the data (i.e. typing and select-
ing text). Further work by Pettersson et al. [89] explores how verbal 
communication is used to negotiate shared visual attention in the 
context of collaborative maps analysis on tabletop displays. Their 
analysis found three ways of referencing the visualized data: colour 
statements, size statements, and pointing gestures. Such studies 
highlight how verbal communication is used by uttering visualized 
labels or explicitly referring to the characteristics of the objects 
visualized. Thus, multiple strategies based on these diferent types 
of references can be used to improve visual cues through the verbal 
channel. In this study, we focus specifcally on the explicit naming 
of visualized labels as this solution is a simple and efcient method 
(by calculating word similarity [68] ) to refne visual attention. 

2.4 Speech in VR interaction 
Speech interfaces have been widely adopted in a wide variety of 
interactive contexts [13, 41, 52, 57, 64, 65, 69, 109, 114, 120]. Speech 
interface involves various challenges, such as speech recognition, 
phrase interpretation, and interaction. Speech interaction has been 
used in numerous works, and how the user interacts is highly 
dependent on the task and the functionalities of the various released 
systems [2, 37, 40, 42, 100]. Speech interaction and VR met decades 
ago [28, 72, 73, 76] with the implementation of multi-modal systems 
with two possible approaches: fully interactive speech or “command 
and control”. The frst type was speaker-dependent because the 
variety of words and sentences forced the user into a training phase 
called enrollment [81]. Before the recent revolution of the natural 
language process (NLP), researchers adopted the paradigm of the 
’Wizard of Oz’ [9, 36, 63] to avoid technical limitations of the free-
speech interfaces for both the recognition and the process phase. 

However, the command and control system was speaker-
independent as the limited number of words to be converted into 
commands did not require an enrolment stage. In particular, this 
approach presents advantages over keyboard input or gestures in-
put [104] as the last ones necessitate practice. Furthermore, the 
interaction style derived from these two approaches originate 
from studies illustrating that vocabulary size can impact interac-
tion [8, 105] as well as the awareness that a machine or human 
interprets speech [106]. Given these advantages, speech interaction 
was experimented with in medicine to treat social phobia [108], civil 
engineering to help with architectural design [25], and in dealing 
with the digital twin of complex machines such as airplanes [102]. 

With the advent of more powerful deep learning models for 
recognition and NLP, speaker-dependent systems became obsolete, 
as various services [4, 38, 39, 49, 75] can receive and process au-
dio streaming that provides transcription almost in real-time. We 
use these capabilities in VR to alter visual cues according to the 
semantics of spoken sentences during collaboration. To our knowl-
edge, such a multi-modal interface is applied and studied for the 
frst time in exploratory data analysis to understand the head and 
gaze behaviour. We present a novel method for visual cues that are 
modifed by collaborative verbal communication. 

Within the collaborative scenario of 2D VR screens in cross-
virtually analytics (Section 2.1) and low-cost eye-tracker-less VR 
headsets, we address the problem of conveying visual attention to 
achieve mutual awareness and support collaboration. Such a task is 
challenging, as the most obvious way of conveying visual attention 
is to depict eye-tracking information, which is unavailable on low-
cost VR headsets. Therefore, we compare bi-directional head-based 
and eye-based cues eye-tracking-less VR headsets can support joint 
attention during collaboration. We explore an orthogonal approach 
to address the same problem by designing and implementing a novel 

https://Spatial.io
https://Spatial.io
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(a) CoV (b) Eye-tracking (c) CoV + speech 

Figure 3: Experiment one conditions: (a) CoV: participants can see the CoV [16] (c) Eye-tracking: a visual cursor is displayed 
for each participant in the raw gaze location of the eye-gaze. (c) CoV+Speech: when the participant enunciate a word which is 
displayed on the VR screen the application search within the HTML context and if the word is within the CoV it shrinks the 
cone to around the bounding box of the matching word 

multi-modal interface which leverages natural language processing 
(NLP) and head behaviour. NLP interprets natural collaborative 
verbal communication to improve gaze inference, thus conveying 
visual focus and supporting joint attention. Finally, we extend pre-
viously existing spatial verbal reference taxonomy by merging two 
diferent domain taxonomies, one from remote pair programming 
[26] and one from a collaborative analysis of Maps on tabletop 
displays [89] (Section 2.3). To our knowledge, no dataset merges 
information from the head, eye and verbal behaviour, so we fll this 
gap by creating a dataset that includes this information. 

3 STUDY 
We designed a within-group study that compares three conditions: 
Cone of Vision (CoV), Cone of Vision+Speech (CoV+Speech) and 
Eye-Gaze Cursor (Figure 3). Participants were embodied in an avatar 
ReadyPlayerMe2 and could also use a hand pointer to reference 
the observed dataset. We used a Latin Square approach with 3 
conditions. However, due to the number of participants, one order 
had one more pair of participants than the other3. 

3.1 Conditions 
3.1.1 Cone of Vision (CoV). Inspired by Bovo et al. [16], we use a 
diferent graphic element from the classic FoV frustum, called the 
Cone of Vision (CoV) (Figure 4). Geometrically, this visualisation is 
obtained by intersecting the cone that has the vertex in the centre 
of the head and the direction parallel to the head direction with 
the observed 2D surface. This depiction is designed to work with 
data displayed on 2D surfaces (such as panels or VR screens) but 
immersed in a 3D scenario (Figure 3). The main diference between 
the FoV frustum and the CoV is their spatial dimensionality, that 
is, 3D for the frst and 2D for the second. However, both convey 
probabilistic information about the gaze location since they are 
aligned with the head. The CoV is displayed using the contour 
2https://readyplayer.me/
3We performed additional statistical analysis to verify that no ordering or learning 
efects were present, detailed in Section 4. 

surrounding the area with the 70% probability of containing the 
users’ fxations, achieved using the dataset of Agtzidis et al. [1]. 

3.1.2 Cone of Vision+Speech (CoV+Speech). The second visual cue 
is a combination of CoV and the efects of the user’s verbal interac-
tion with the system. Although we use the same CoV calculation 
as in the CoV condition, we designed a novel algorithm that mod-
ifes the CoV after processing the user’s speech. We describe in 
Section 3.2.1 the dataset contained in the HTML pages rendered by 
the virtual screens in the 3D ofce. To extract the semantics of the 
speech, we frst capture the audio of the user talking to his collabo-
rator. Therefore, we stream this audio to an online speech service 
that transcribes the speech and returns a string to parse and pro-
cess with NLP algorithms. Such information is then searched in the 
HTML context for those elements that contain keywords isolated 
by NLP. Then, we return their bounding box coordinates within the 
browser page and convert the local coordinates into world coordi-
nates and add them to a list. The next phase is the modifcation of 
the current CoV. To reduce the CoV size, we determine the principal 
component of the coordinates by doing a linear regression. Then 
we calculate the standard deviation of the points along the principal 
component and along its orthogonal direction. Subsequently, we 
draw the ellipse using the coordinates of the centre of mass with the 
two standard deviations are the two radii of the ellipse. Ultimately, 
we interpolate between the CoV points and the ellipse points by a 
factor of 0.5 (Figure 5 (d)). The visual cue is displayed as shown in 
Figure 5 (e). Such a condition includes two diferent input channels: 
head-based position and orientation coming from the hardware of 
the HMD, and an analysis that converts the speech to a morphing 
function of the CoV. While the CoV calculation relies on internal 
code, a part of speech processing relies on an external service. 

3.1.3 Eye-Gaze Cursor. The Eye-gaze cursor condition displays a 
graphical cursor at the gaze location on the VR screen. The posi-
tion is calculated by calculating the intersection between the gaze 
direction and the VR screen. The cursor is visualised as a ring (Fig-
ure 3 (b)) and has a radius of 13 of the radius of the fovea region 

https://2https://readyplayer.me
https://2https://readyplayer.me
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70% CoV

Displayed Intersection
CoV/Screen

(a) Gaze 360 dataset AFM [1] (b) 70% PBC to CoV (c) Intersection CoV/Screens 

Figure 4: (a) shows the eye distribution in the longitudinal and latitude direction for the dataset of Agtzidis et al. [1] and the 
number of eye samples captured by the percentile base contours (PBC). (b) illustrates the cone of vision in VR with the contour 
that contains 70% of the dataset (Figure taken from [16]). (c) depicts how the intersection between 70% CoV with the VR screen 
is achieved in a VR environment indicating the area of visual attention of a user. 

determined by pilot testing to ensure that the cursor is noticeable. 
The eye-gaze cursor is subjected to noise from the eye-tracker. 

3.2 Apparatus 
For our study, we provide each participant with a PicoNeo 2 HMD 
with a resolution of 4K (3840 × 2160) at a refresh rate of 75Hz. The 
HMD has an embedded Tobii eye-tracker that works at 90Hz and 
a declared accuracy of 0.5 degrees. For verbal communication, we 
set up a Microsoft Teams connection using Bluetooth headphones 
and a microphone for the participants’ communication, while we 
used PicoNeo 2 microphone to capture the audio streaming for the 
transcription. We designed and implemented our collaborative VR 
application made with Unity2020.3.34.f1, where two users shared 
the same digital space, but not physical, with three diferent ways 
of exchanging visual cues during the exploratory data analysis task. 
The visual cues of each user are displayed in two diferent colours: 
red for the local visual cue and green for the remote visual cue. All 
cues are refreshed at each Unity loop with a fxed rate of 50Hz. 

3.2.1 VR Environment. We designed the 3D scene with the par-
ticipants positioned in two locations close to each other in front 
of four panels positioned as in Figure 2. We developed a convex 
egocentric layout in line with the fndings of [60, 97] described in 
Section 2.1; however, since we are not limited in space by physical 
constraints as [60], and we have more participants than [97] we set 
our environment to have a radius of 3m compared to the 2m setup 
in [97] (Figure 2). The participants were positioned in the initial 
locations for all the sessions without the possibility of translating 
their avatars to avoid obfuscating the other’s participant view. The 
avatar was created and imported from ReadyPlayerMe. We used the 
torso version of a custom avatar and implemented lip synchronisa-
tion and eye synchronisation. The four VR screens contain charts 
rendered by an internal browser embedded in such panels, decoding 

information from HTML/javascript fles where the datasets are con-
tained. The information related to the keywords’ position in such 
HTML is extracted to be used during the CoV+speech condition. 

3.2.2 Data Visualisations. The three datasets used during the ex-
periment are the "Hollywood movie gender bias" based on The 
Bechdel Test [12], the success of Hollywood movies with informa-
tion taken from IMDB [50], and the insurance risk for cars taken 
from the UCI machine learning repository [98]. These datasets are 
also used in collaborative analysis tasks by Bovo et al. [16]. Each 
test includes 38 views on seven screens, one of which contains 
instructions. The visualisations contain scatter plots, stacked bar 
plots, histograms, and box and whisker plots. The dataset is stored 
in the GitHub repository 4, and the charts at the following link 5. 

Speech to Text. Real-time captioning services provide transcrip-
tions for spoken information from audio streams. Google Speech-
To-Text[39], Microsoft Cognitive Services[75], Dialogfow [38], IBM 
Watson[49], Amazon Transcribe [4] are the most used services that 
allow integrating a real-time API transcription in a system. We 
choose Google Speech-To-Text as the one compatible with our re-
quirements of the platform (Android) and framework (Unity). The 
Google Speech-to-Text service can be confgured with diferent 
parameters such as language, sample rate, automatic punctuation, 
context adaptation, etc. We ran several pilots to optimise the accu-
racy and reduce the latency of the Google speech service. We used 
audio with a sample rate of 16000 Hz, determined the language as 
British English and consequentially hired participants that were 
native British speakers and fltered out punctuation. 

4https://github.com/Collaborative-Immersive-Visual-Toolkit/ConeOfVision 
5https://graphs-for-collaborative-vr.web.app/ 

https://4https://github.com/Collaborative-Immersive-Visual-Toolkit/ConeOfVision
https://Unity2020.3.34.f1
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crime
movies have
the higher
average
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Crime

Metascore

Crime

Principal
component

σ₁
σ₂

resized contour
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Linear
Interpolation

Figure 5: This sequence of fgures shows the algorithm’s steps to produce the visual cue from the combined action of CoV 
and speech inputs. From the left (a), CoV is visible on the VR screen, and the user speaks to the collaborator. After speech 
recognition, (b) the keywords present on the VR screen are found and fltered according to their positions. We accept the 
keywords inside the CoV and discard the others, and we ft an ellipse of such keywords distribution with the axis corresponding 
to the standard deviation of their components, X and Y (c). In (d), we interpolate the CoV with such an ellipse with a balanced 
ratio of 0.5. In (e), the resulting visual cue is proposed to the users. 

3.3 Participants 
We recruited 20 participants in two weeks(13 women, 7 men, MAge 
= 29.4, SDAge = 9.1) through an online platform managed by Univer-
sity College London 6. We applied several inclusion criteria when 
performing a screening: being a native English speaker, having nor-
mal vision, and having a minimum education degree in high school. 
In particular, the latter criterion was to ensure that participants had 
sufcient knowledge to interpret the graphs of the visualization. In 
addition, we required participants to be confdent in interpreting 
the charts we included in the study. Such charts consisted of bar 
or candlestick plots, histograms, and scatter plots. Each partici-
pant was self-assessed with a questionnaire, and we summarised 
the characteristics of such plots during the task presentation. One 
participant declared to be an expert VR user, fve with average 
experience, six as occasional users, eleven with low experience and 
four with no experience. Participants received compensation of £15 
each for a 90 min study. We incentivised participants to perform at 
their best by introducing of an additional reward of £15 each if they 
reported the highest number of valid insights among all the pairs. 
We recommended participants to collaborate instead of splitting 
their attention into diferent visualisation areas. 

3.4 Procedure 
Upon arrival, participants were asked to read the information sheet 
and sign the consent form. We carried out the experiment in the 
lab using two separate ofces, one for each participant. Next, we 
explained the duration of the task and the three experimental con-
ditions, allowing participants to test each for 1 min. We then asked 
participants to perform an exploratory data analysis task, extracting 
insights from the displayed visualisations. We provided participants 
with examples of valid insights. In our context, we describe a valid 
insight as a recorded speech where is conveyed a precise and deep 

6https://uclpsychology.sona-systems.com/ 

understanding of two or more measures displayed on a graph or 
a series of graphs [80]. Next, we explained how to record insights 
and use the hand pointer. Once instructions were clear, participants 
were asked to wear the Pico Neo eye 2, perform an eye-tracking cal-
ibration process, connect to the virtual environment, and start the 
collaborative task. After all VR trials (i.e. experimental conditions), 
we asked participants to complete the questionnaire (Section 4.3). 

At the end of the experiment, we conducted semi-structured 
interviews with each participant individually. Participants were 
asked to report cases in which each experimental condition helped 
with the assigned task and cases that did not. The study lasted 
between 75–90 minutes (M = 80, S.D. = 12.7), and the duration of 
the trial lasted approximately 10 min (M = 13 m, SD = 3m). The 
stop condition was reached when the time was up (13 minutes). 

3.5 Ofline Analysis Methods 
To understand the role of verbal communication concerning nego-
tiating shared visual attention, we transcribed the recorded audio 
to achieve high-accuracy transcriptions (Section 3.2.2). We anal-
ysed the transcribed data to quantify how much participants utter 
displayed keywords to reference the data and how much they use al-
ternative methods to reference (Section 3.5.2). Furthermore, we eval-
uated whether participants’ utterances can be used in conjunction 
with the head direction to refne eye-gaze inference (Section 3.5.3). 

3.5.1 Speech to Text. We used an ofine speech recognition sys-
tem to analyse the audio recordings with higher accuracy than the 
real-time system used in the study. This framework, released in the 
second part of September 2022, is the open-source project Whis-
per [93], developed by OpenAI. Such a system is trained with many 
hours of multilingual spoken language. Its end-to-end architecture 
is based on an encoder-decoder transformer [110] and produces 
very accurate text captions. We used Whisper with Python 3.8.3 and 
PyTorch 1.12.3 [86]. The manual analysis described in the following 
Section 3.5.2 ensured the transcription quality. 

https://6https://uclpsychology.sona-systems.com
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Table 1: The summary of the verbal communication taxonomy we developed to analyse the video recordings. 

(1)  Keyword When a participant explicitly references an element by naming a specifc word or name displayed in the data visualization. For 
example, “I would say that a movie’s budget is ...”. 

(2) Sequential When a participant references an element by naming a number representing the element, for example, "shall we move to the third 
panel" or "look at the second element". An alternative expression might consist of the participant suggesting moving the focus of the 
collaboration to the next or previous graph/element/page, for example: "the one next to it". 

(3) Color When a participant references an element by naming its colour: "..the green one.." 
(4) Context reference When a participant references to an element based on its location within the page, for example, saying "..top left corner..“ or "..the 

graph below ... ". Such references can also be related to data o data, for example:" but the actual value is much lower". 
(5) Pointer When a participant performs an implicit verbal reference by using the laser pointer to highlight an element directly and utter words 

like "..this..", "...over here...", ".. the graph we are looking at.. " or directly mentioning "...where I’m pointing..." 
(6) User relative When a participant reference an element in relation to the frame of reference of the other user, such as: on your right/left/side, close 

to/far from you, above/below you ... for example, "..the graph on your right...". 
(7) Temporal When a participant reference an element previously envisioned, such as before, after, or earlier... for example, "Let me check if I can 

see something else from the previous one" 
(8) Visual cue When a participant uses a deictic reference such as this, that or here "..this graph over here.." or when a participant directly refers to 

the gaze visualization, for example, "Right where I am looking." 

3.5.2 Classification of verbal references. We quantify how much 
participants utter displayed keywords to reference the data and 
how much they use alternative methods such as pointing gestures 
or implicitly referring to visual cues. We start by merging verbal 
reference taxonomies from D’Angelo and Begel [26] (i.e., remote 
pair programming; Table 1 (1,3,8)) and Pettersson et al. [89] (i.e., 
collaboration over tabletop maps visualizations; Table 1 (3, 5)) to 
include both text and visual element classes in the same context. 
We expand the resulting taxonomy by considering novel verbal 
references such as sequential statements (Table 1 (2)) that rely on 
implicit directional bias left-to-right (LTR) [33]. Furthermore, we 
add Context/User relative references (Table 1 (4, 6)), and temporal 
references (Table 1 (7)). The transcripts were analysed alongside 
video and audio recordings to gather the context of non-verbal 
communication (i.e., pairs being mutually aligned or orientated 
in opposite directions, performing pointing gestures with a laser 
pointer, etc.). Three coders performed the analysis: each transcribed 
trial was analysed by one coder and then reviewed by a second one; 
the third coder resolved any disparity between the frst and second 
coders. The roles between coders rotate for each trial. For each 
transcribed sentence, we identify if it contains a verbal element 
aimed at identifying or changing the focus of the collaborative 
exploratory data analysis task concerning the visualized data. If the 
sentence contains a visual context negotiation, it is classifed (i.e. 
using the aforementioned classes), and we identify which areas of 
interest the verbal communication was aiming for (i.e., data, chart, 
page). After classifying all transcriptions, we counted the number 
of occurrences each pair of participants performed in each experi-
mental condition. The diference between the “Keyword” class and 
all other classes was immediately apparent, as the Keyword class 
was more prevalent than all other classes combined. 

3.5.3 Head+Speech Gaze inference . We evaluated whether the ut-
terances of keywords by the participants can be used in conjunction 
with the head direction to refne eye-gaze inference. We consider the 
data segments in which verbal communication is used to perform 
a fairer analysis. As shown in Figure 9b, we describe the steps we 
used to calculate the accuracy of Head/Gaze and Head/Gaze+Speech 
methods in our analysis with respect to the ground truth, the gaze 

information. Firstly, our model focuses on bi-grams, the last two 
spoken words by the user at any point in time. Such a number of 
words is optimal among the other n-grams. Secondly, we ran the 
well-established text similarity metric Recall-Oriented Understudy 
for Gisting Evaluation Lin [68] for longest common subsequences 
(ROUGE-L) through all the possible keywords located inside the 
CoV. Such similarity metrics range between 0 to 1, and we kept only 
positive scores. We determined the bounding boxes of the accepted 
keywords and evaluated which box is closest by calculating its 
Euclidean distance with the Head/Gaze. Finally, we calculate the 
RMSE for Head-Gaze and Head/Gaze+Speech with the eye gaze. 

4 RESULTS 
We structured the results into three sections. Section 4.1 reports our 
analysis of how the diferent visual cues afected concurrent (Sec-
tion 4.1.1) and individual (Section 4.1.2) visual attention. Section 4.2 
reports our analysis of how participants use verbal communication 
to negotiate the shared context of visual attention (Section 4.2.1) 
and how efective speech is an input to infer gaze during collabo-
ration (Section 4.2.2). Section 4.3 reports our analysis to evaluate 
participants’ experience using diferent visual attention cues. Unless 
otherwise stated, the analysis was performed with a one-way re-
peated measures (RM) ANOVA (�=.05) with Condition (���, ���-
����������,��� +�����ℎ) as an independent variable. When the 
assumption of sphericity was violated, as tested with Mauchly’s 
test, Greenhouse-Geisser corrected values were used in the anal-
ysis. QQ-plots were used to validate the assumption of normality. 
Holm-corrected post-hoc tests were used when applicable. 

As mentioned in Section 3, our Latin square was not fully bal-
anced: due to the number of participants, three participant pairs 
started with the CoV condition, three with the CoV+Speech condi-
tion, and four with the Eye-Gaze Cursor condition. To understand 
whether our confguration led to potential biases and confounding 
factors, we performed a statistical analysis to see if there were any 
ordering or learning efects. We searched for an ordering efect in 
our joint attention analysis, "concurrent AOI", and individual visual 
attention, "gaze on own cone", by running an ANOVA analysis 
and found no evidence of such an efect. Furthermore, we checked 



             

         

                        
                      

                   
                   

                   

          
          

            
         

         
        

         
    

   
          
        
         

         
         

           
          

          
         

   

         
          

          

        
              

             
            

           
            
        

         
          
            

            
             

          
            

          
           
     

         
      

          
           

          
          

Speech-Augmented Cone-of-Vision for Exploratory Data Analysis CHI ’23, April 23–28, 2023, Hamburg, Germany 

Co
V

Co
V

+S
pe

ec
h

Ey
e-

ga
ze

Cu
rs

or

Experiment Conditions

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Co

nc
ur

re
nt

 G
az

e 
in

 A
OI

 G
ra

ph
 (u

ni
t s

ca
le

)

Co
V

Co
V

+S
pe

ec
h

Ey
e-

ga
ze

Cu
rs

or
Experiment Conditions

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Co
nc

ur
re

nt
 G

az
e 

in
 A

OI
 S

cr
ee

n 
(u

ni
t s

ca
le

)

p=<.014*

eye gaze p2

eye gaze p1

eye gaze p1

eye gaze p2

concurrent  eye
gaze on Chart AOI

concurrent
eye gaze
on Screen AOI

(a) Chart AOI (b) Screen AOI (c) AOI depiction 

Figure 6: (a) on the y-axis the percentage of time in unit scale that users spent concurrently looking at a graph together (b) on 
the y-axis the percentage of time that users spent concurrently looking at the same page together. (a)(b) On the x-axis of both 
graphs, there are the experimental conditions. The error bars displayed represents 95% of the confdence interval. (c) show the 
granularity with which we measured the joint attention. On the top (c), the screen granularity, when collaborators are focused 
on the same screen. On the bottom (c), the chart granularity when collaborators are focused on the same chart. 

whether there was any learning efect by performing an ANOVA 
analysis on the number of insights generated across the conditions, 
and we found no learning efect. This suggests that the order in 
which the conditions were presented did not signifcantly impact 
the participants’ behaviour or performance in the task, thus sug-
gesting that the approach efectively improves collaboration and 
communication in data analysis. All statistical analyses are included 
in the supplementary materials. 

4.1 Visual Attention 
We segmented the recorded visual attention data by dividing it 
for each reported insight. Concurrent (Section 4.1.1) and individ-
ual (Section 4.1.2) visual attention behaviour were averaged for 
each insight segment. Participants reported 179 insights. Each pair 
reported a mean number of 17.6 insights (SD=5.25). Statistical anal-
ysis did not show signifcant diferences in the number of insights. 
We then investigated the duration of the insight by segmenting 
each trial into the time between each insight. Participants spent, 
on average, 127.24s (SD=63.57s). We found no statistical diference 
between the conditions. 

4.1.1 Concurrent Visual Atention in Areas Of Interest. We mea-
sured the amount of concurrent visual attention within pairs using 
a semantic segmentation of the visualization. This was achieved by 

calculating the percentage of time participants spent concurrently 
looking at the same AOI for each insight. We did this for two AOI 
levels: ������� and �ℎ���� . The screen AOI is defned as a full page, 
981px wide, and 551px high (Figure 6c top). The chart AOI is de-
fned as an individual chart, varying between 300px and 500px wide 
and 250px high (Figure 6c bottom). For the screen AOI level, the 
RM ANOVA analysis revealed a statistically signifcant diference 
(� (2, 116)=4.191, �=.017). Post-hoc comparisons only revealed a sig-
nifcant diference between CoV (� = 0.703, �� = 0.211) and Eye-
tracking (� = 0.583, �� = 0.238) conditions (� = 2.895, � = .014). 
The efect size test (��ℎ�� ′ �� = 0.377) indicated a small to medium-
sized efect. The results showed that the presence of the CoV led to 
an increase in the time participants spent concurrently looking at 
the same screen by 20%. For the chart AOI level, ANOVA analysis 
showed no signifcance. The participants spent on average 13% of 
each insight looking at the same graph, but no diferences emerged 
from the diferent experimental conditions. 

4.1.2 Individual visual atention behaviour. We measured how the 
experimental conditions afected the participants’ eye-gaze be-
haviour by calculating the percentage of gaze samples that were 
within the visual cone (Figure 7a). This measure gives us an un-
derstanding of how much the gaze diverges from the head’s direc-
tion. RM ANOVA showed a signifcant diference (� (1, 106)=29.007, 



          

                

                       
                    

                   
                    

       
          

            
         

          
            

         
          

            
        

           
          

          
          

         
          

         
            

         
            

  

     
        

           
          

          
           

       
          
        

        
             
        

        
          

       
           

        
       
          

        
       

         
         

          
         

           

         
             

         
          

            
             

           
        

         
          

            
        

         
         

          
         
       

CHI ’23, April 23–28, 2023, Hamburg, Germany Bovo, et al. 

0.4

0.6

0.8

1.0

Pe
rc

e
n
ta

g
e
 o

f 
e
ye

-g
a
ze

in
 C

o
V
 (

u
n
it

sc
a
le

)

experiment conditions

CoV CoV+
Speech

Eye-gaze
cursor

p<.001***

p<.001***

Longitude (°)
La

ti
tu

d
e
 (

°)
0 25

25

0

25

25

Longitude (°)

25 0 25

Longitude (°)

25 0 25

(a) Eye-gaze inside CoV (b) Gaze in CoV (c) Gaze in CoV+Speech (d) Gaze in eye-cursor 

Figure 7: (a) Eye-gaze within the projected cone: on the y-axis the percentage of time in unit scale that the eye-gaze was within 
the projected cone of vision, on the x-axis the experimental conditions. (b) (c) (d) Gaze sample distributions in head angular 
coordinates of respectively the experimental condition of (b) CoV (c) the CoV+speech and (d) eye-cursor. On the x-axis, the 
longitude in degrees; on the y-axis, the latitude in degrees. In each of (a)(b)(c), the CoV is depicted in white. 

�<.001). Post hoc comparisons showed signifcant diferences 
between the CoV (� = 0.929, �� = 0.151) and Eye-tracking 
(� = 0.541, �� = 0.383) conditions (� = 7.337, � < .001); and 
CoV+Speech (� = 0.829, �� = 0.232) and Eye-tracking conditions 
(� = 5.441, � < 0.001). All signifcant pairwise diferences showed 
Cohen’s � > 0.8. These results show that when the CoV’s cone 
intersection is visualized, the participant’s gaze is signifcantly less 
likely to be outside the depicted region. Therefore, the region vi-
sualization acts as a container. This efect is also present in the 
CoV+speech condition, where the region is dynamically modifed 
by voice input. To further explore how these changes afect gaze 
behaviour, we plot gaze distributions for each of the conditions 
(Figure 7b, Figure 7c, Figure 7d). By comparing each distribution, 
two insights become apparent. First, the gaze distribution in the 
Eye-tracking condition is more sparse than in other conditions. 
Second, the Eye-tracking gaze distribution is most spread in the 
downward direction. This indicates that users moved their gaze fur-
ther away from the head in the downward direction than in other 
directions, as previously reported [101] and that other conditions 
may lead to more head movement as the gaze remains within a 
smaller area. 

4.2 Speech and Visual Attention 
4.2.1 Classification of Verbal References. We performed a classif-
cation aiming to quantify the types (Section 4.2.1) and the targets 
(Section 4.2.1) of verbal references used to negotiate the shared con-
text of visual attention (Section 3.5.2). This classifcation helps us 
calculate the frequency of use of various verbal references (Table 1) 
during collaboration. Also, understanding what targets require 
more frequent referencing (Section 4.2.1) or if the typologies of 
verbal references frequency change when the target changes. 

Verbal References Types. We performed an RM ANOVA analy-
sis to see if there is any signifcant diference in the type of ver-
bal reference ("(1) keywords" and "cumulative (2-8)") under ex-
perimental conditions (Figure 8a). There was a signifcant difer-
ence in the number of verbal references consisting of participants 
enunciating visualization keywords compared to the cumulative 
sum of all other types of verbal references (� (1, 8)=50.190, �<.001). 
These results highlight that our proposed approach, which inter-
sects meanings extracted from verbal communication with key-
words on the VR display, improves visual attention inference. RM 
ANOVA analysis showed no signifcant diferences between the 
experimental conditions (� (2, 16)=0.211, �=0.812) nor any interac-
tions between the reference type and the experimental conditions 
(� (2, 16)=0.013, �=.987). These results imply that participants did 
not change their verbal communication depending on the type of 
visual attention cue, and suggest that using verbal communication 
as an input does not impact the verbal behaviour of users. 

Verbal References Targets. We performed an RM ANOVA to com-
pare the efect of the experimental condition on the target AOI of the 
verbal reference performed (Figure 8b) and found a signifcant difer-
ence (� (2, 14)=30.368, �<.001). Post hoc tests showed a signifcant 
diference (� < .001) between the data (� = 25.333, �� = 11.313) 
and screen (� = 2.125, �� = 2.853) targets, as well as a signifcant 
diference (� < .001) between chart (� = 20.875, �� = 15.376) 
and screen. These diferences showed that participants equally ne-
gotiated visual attention via verbal communication for both the 
"chart" and "data" levels, while for the "screen" level such negotia-
tion is less necessary. The analysis did not show any main efect 
on experimental conditions (� (2, 14)=0.211, �=.934), nor an inter-
action between the target factors and the experimental conditions 
(� (4, 14)=0.211, �=0.696) meaning that participants did not change 
the way they verbally communicated depending on the type of 
visual attention cue displayed. These results imply that the experi-
mental conditions did not alter verbal communication. 
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Figure 8: Analysis of verbal references to the dataset. (a) Bar charts representing the mean count of verbal reference occurrence 
per trial grouped by type (types description can be seen in Table 1). In the x-axis, the classes representing the diferent types 
of verbal communication references to the visualized data, and on the y-axis, the number of occurrences that each pair of 
participants did during a single 15 min trial. Error bars represent unbiased standard error of the mean Normalized by N-1. (b) 
Bar charts representing the mean count of verbal reference occurrence per trial grouped by a target area. On the x-axis, the 
classes representing the diferent AOI targets of the verbal communication references the visualized data, and on the y-axis, the 
number of occurrences that each pair of participants did during a single 15 min trial. Error bars represent unbiased standard 
error of the mean Normalized by N-1. (c) Verbal communication pairwise (type/AOI) frequencies, each cell shows the mean 
count per trial of each verbal references combination type/AOI. The Colour bar shows a logarithmic scale palette. 

Pairwise comparison of Types and Targets of verbal references. We 
further explored the relationship between the target AOI and the 
verbal reference method by generating a pairwise frequency matrix 
(Figure 8c) to further characterise the references. For example, it 
is clear that when participants refer to the chart AOI they tend to 
use a larger array of methods, which is visible by comparing the 
chart row and data row. This efect is even stronger for the page 
AOI where (1) keywords are no longer the most frequent method, 
as in data and chart AOIs. 

4.2.2 Speech and Head-Gaze as Approximation of Eye Gaze. To 
evaluate whether speech helps to approximate eye gaze, we con-
ducted an ofine simulation across the three experimental condi-
tions using the method described in Figure 9b. As the results of 
Questionnaire Q10 (Figure 10) highlighted that the implementa-
tion of speech-to-text used during the experiment had accuracy 
and latency problems, we transcribed the recorded audio of the 
experiment with a novel speech-to-text algorithm as described 
in Section 3.2.2. As we aim to evaluate verbal communication as 
a supplementary input for gaze inference, we performed such a 
comparison only for the time segments where participants were 
speaking. We calculated the Euclidean distance of head-gaze and 
our method (Figure 9b) from the eye gaze (ground truth) and 
the root-mean-square error (RMSE) of the distances. The RMSE 
was calculated in screen space; therefore, the results are pixels. 
The RM ANOVA results (Figure 9a) showed a main efect for the 

gaze approximation method (� (1, 45)=7.065, �=.011) and an interac-
tion between the study condition and gaze approximation method 
(� (1.501, 63.210)=8.420, �=.002). Post hoc comparisons highlighted 
a diference between Head+Speech (� = 178.327, �� = 142.517) 
and Head (� = 174.407, �� = 40.401) in the Eye-tracking condition 
(� = 4.703, � < .001). This diference highlights how our method 
outperforms the head gaze as an approximation of eye gaze in the 
eye-tracking condition. An interesting insight is that this diference 
is only present in the eye-tracking condition where the CoV is not 
present; in the CoV and CoV+Speech conditions, the presence of 
the contours keeps the vision closer to the head-gaze, therefore, 
hindering the eye-gaze from spreading wider. 

4.3 Questionnaire results 
As part of the evaluation, we conducted a series of questionnaires 
with 11 questions answered on fve-point Likert scales (Figure 10). 
The frst two questions (Q1 and Q2) come from the System Usability 
Scale (SUS) questionnaire [11], and the second pair of questions (Q3 
and Q4) come from the NASA Task Load Index (NASA TLX) ques-
tionnaire [43]. Q5 and Q6 aim to understand how visual attention 
cues afect attention allocation. Q5 question comes from an atten-
tion allocation questionnaire and is intended to measure how visual 
cues attract attention [55] and Q6 is intended to measure how much 
visual cues act as distraction [55]. We also introduced two ques-
tions (Q7 and Q8) related to communication to understand if, across 
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Figure 9: (a) Comparison between the RMSE of the head-gaze and head-gaze + speech using eye-gaze as ground truth: on the 
y-axis, the RMSE in pixels (b) (1) We frst create a queue of the last 2 grams (2) we then run the ROUGE-L metric Lin [68] 
for each keyword within the CoV (which is a score from 0 to 1, indicating how similar two sequences are), we keep only the 
keywords which score above 0. (3) We calculate the euclidean distance between the head gaze and each of the bounding box, 
and we determine the closest. (4) How we measure the RMSE. 

conditions, participants altered their verbal communication be-
haviour (Q8) or the pointing-based communication behaviour (Q9). 
Q10 is specifcally related to how accurately participants perceived 
the underlying technologies (i.e., eye-tracking, head-tracking, and 
speech-to-text). Finally, Q11 relates to how users actively alter their 
natural behaviour to improve feedback passed to collaborators via 
the visual attention cue. 

To analyse Likert items, we used the Wilcoxon test, with a 
Kruskal–Wallis pairwise comparison for post-hoc testing where rel-
evant. We only report the statistical results where signifcant difer-
ences were found. Tests revealed statistically signifcant diferences 
for Q2 (� = 5.0, � = 0.002). A pairwise comparison revealed difer-
ences (� = 9.26, � = .0097) between CoV + speech (� = 2.40, �� = 
1.02) and Eye-tracking conditions (� = 3.35, �� = 0.57). We also 
found a signifcant Wilcoxon test for Q10 (� = 0.0, � < 0.001). Pair-
wise comparisons revealed diferences between the CoV+speech 
(� = 1.65, �� = 1.11) and Eye-tracking (� = 3.15, �� = 0.73) con-
ditions (� = 24.08, � < 0.001), and between CoV+speech and CoV 
(� = 3.30, �� = 0.78) conditions (� = 3.0, � < 0.001). Responses 
to these questions highlight well-known problems when dealing 
with speech recognition technologies of latency during real-time 
use and difculty in accent recognition [95]. We found no signif-
icant diferences for Nasa TLX, attention, allocation, distraction, 
verbal communication behaviour, pointing-based communication 
behaviour, and active engagement questions. 

5 QUALITATIVE ANALYSIS 
Post-experiment semi-structured interviews were audio-recorded, 
fully transcribed and analysed through thematic analysis [19]. Our 
research questions focused on verbal communication as input for 
visual attention cues and, more broadly, the role of verbal communi-
cation in collaborative exploratory data analysis. The codes for the 
analysis were initially based on our research questions. Therefore, 
we focused on capturing aspects relative to the perception of the 

cues, comments about verbal communication, and the impact of 
the CoV. However, we also included codes from the interviews, 
such as lag and accuracy issues with speech-to-text technology, 
workarounds when the visual attention cues lacked precision, or 
CoV helping individuals to focus. The resulting 30 codes were 
grouped into three themes reported in the following subsections. 

5.1 Comparing the diferent visual cues 
Although most participants reported the eye-tracking condition 
as their favourite due to its precision, some noted that it did not 
allow them to focus on the charts and, for this reason, preferred 
the larger contoured region of the cones. For example, we heard: 

“Eye-tracking was helpful If I was trying to say something specifc. 
But then if either of us were talking about something broader then it 
would not be helpful because you missed the bigger picture. [P12]", 
or: “...so sometimes during a discussion you are not talking about the 
specifc data point but more about the broader and the specifc cursor 
led me to focus on one thing at the detriment of other facts. [P16]" 

Some participants reported that gaze movements were hectic 
and distracting. For example, P13 mentioned: "...it was like really 
distracting as I have ADHD, so it’s hard to focus its hard to concentrate 
on the task, so I could not focus on my collaborator’s visual cue because 
it was very confusing". Similar P3 said: "...the eye-tracking visual cue 
it felt like he’s pulling me away from the where I need to focus...". 

Most participants reported the CoV to be most useful during the 
initial phase of mutual alignment. For example: “it was very helpful 
to get aligned initially and so just for the moment what he needs to 
align and maybe the moment when the other one goes away [P4]" or: 
“it was helpful when the person I was collaborating with was talking 
about something, but I didn’t know where she was looking for pictures 
so I could see the diferent colour area and turns towards it [P7]". P15 
said that the CoV was useful to confrm the two participants were 
looking at the same thing: “I found it helpful because I knew where 
she was looking, so we were able to basically be on the same page". 
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Figure 10: Questionnaire results 

Several participants reported that the CoV contours allowed 
them to focus on the encircled data: "...the good part of the cone was 
that it helped me focus on where I was looking at, so I won’t look 
in under directions. [P9]". P17 explicitly stated that they ‘liked’ the 
circle produced by the cones: "We were both focussing on the same 
things. Like having a line around, you know what you are focussing 
your attention on, that kind of helps the kind of block out everything 
else". Similarly, P2 stated: "The cone was helpful as it just helps me 
concentrate. I don’t really feel like it was getting on the way" 

Participants commented that the bidirectional visual attention 
cues made them feel more coupled and accountable and not wan-
dering around but staying on the same page. For example, P13 
reported: “The cone was helpful in that it kind of kept me in the room 
so I need to look at the same thing that she was describing, so she 
would see that I was looking at it was very helpful". 

Participants complained that in the CoV + speech condition, the 
cue lagged considerably due to lag in recognition: “I feel the speech 
was picking it up like in 10 seconds I did not fnd it to be reliable as 
when it was shirking down it would do so unreliable not in the specifc 
area. [P13]". Similarly, P12 stated: “it felt like it was slow". 

5.2 Verbal communication as a fallback. 
Most participants reported that the CoV worked well for keeping 
them on the same page, however, it was not very precise. So they 
reported using verbal communication as the default method to 
refne the accuracy of the CoV. For example: “I think it was helpful 
seeing in general where the other person is looking at and then also 
aligning myself with that we did without yeah but it wasn’t like with 
the specifcs obviously it wasn’t as helpful so I think we used more like 
verbal things to see like which chart each person’s actual we read [P4]". 
P6 explicitly compared the CoV to the eye-tracking cues: “with the 
fxed cone compared to the eye-tracker there is a lot more to verbalise 
so you had to fnd out like oh yeah, I have a look over there and get 
more details to say to the other collaborator". 

Some participants reported feeling that the eye-tracking was 
sometimes not perfectly calibrated. Although initially they tried to 
compensate for the error by moving their eyes, they ended up using 
verbal communication to specify the location of the data they were 
discussing: “the eye-tracking did get in the way a little bit because I 
feel like it was sometimes it wasn’t calibrated that well, so I’m trying 
to fx my attention on the specifc part of the chart and then the cursor 
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was slightly of in another place so at frst I was trying to compensate 
with my eyes but that wasn’t working so I just had to ignore it and 
communicate the region of interest verbally [P2]". 

5.3 CoV + Speech condition. 
The CoV narrowing down on the region of interest was reported 
as a welcome confrmation of the shared visual attention: “[it] was 
nice to have a confrmation of the cone shrinking as it increases the 
confdence that we were both looking at something [P5]". Participants 
commented that it rarely focused on the wrong area: “I felt it rarely 
narrows down on the wrong area, but there was delay [P19]". 

Sometimes participants went beyond explicitly looking for labels 
to refer to, and they attempted to direct the CoV narrowing with 
spatial voice commands (e.g., top left, bottom right, etc.). The posi-
tions were expected to be understood concerning the virtual screen 
at which the participant was looking. For example, P13 reported 
feeling disappointed that such a strategy did not work: “I found also 
that was limited in the functionality as it would not recognise top 
left bottom right corners". P2 mentioned that the other participant 
instead quickly reacted to such spatial references: “There were few 
charts in which some of the information on the y and x axis were 
the same; however, with them, I was mentioning top left or top right, 
and she would very quickly look there". Therefore, the future system 
which uses speech as inputs for visual attention could integrate 
recognizing this type of verbal, spatial references to inform the 
visual cue contours without the semantic knowledge of the context. 

6 DISCUSSIONS 
In this section, we discuss the results subdividing the fndings in 
Joint Attention (in Section 6.1) and Individual Visual Attention (in 
Section 6.2). The fnal Section (Section 6.3) highlights the outcomes 
of the speech and semantic analysis. 

6.1 Comparing Joint attention 
Quantitative results indicate that concurrent joint attention on VR 
screens (Figure 6b) was signifcantly better (increment of 20%) in the 
CoV condition than in the eye-tracking conditions of Section 4.1.1. 
Despite the fact that the qualitative results showed that the par-
ticipants preferred the eye-tracking method, the interviews also 
revealed the reasons for the success of the CoV method in joint 
attention on screen AOI. Participants mentioned that the cone was 
helpful to mutually orient and that they found the wider head-based 
cone contour much easier to fnd than the eye-tracking cursor. The 
size of the contour was not the only reason it was easier to fnd, 
it also moved less. Mutual alignment (i.e., orienting themselves 
along the general direction of collaborators) has been defned by 
[118] as an essential phase in negotiating a shared visual attention 
context and is signifcant for joint attention. Such results extend 
previous work related to uni-directional visual attention cues of 
[91], showing that in the context of 2D VR screens, bi-directional 
visual attention cues based on head direction outperform the overall 
mutual alignment when compared to eye-tracking cues. 

Moreover, such a result extends the work of [54], which focuses 
on bi-directional eye behaviour-based attention cues, as well as the 
work of [16], which focuses on bi-directional head behaviour-based 
attention cues; by comparing bidirectional eye-based to head-based 
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visual attention cues. Moreover, quantitative results indicate that, 
for concurrent joint attention, the charts area of interest (Figure 6a) 
all tree conditions perform equally well. This result is consistent 
with the Q6 question of the questionnaire, which indicates no sta-
tistical diference across the experimental conditions. Qualitative 
analysis of interviews suggests that this result could be due to the 
efectiveness of verbal communication in refning and specifying 
the location of the area of interest (see Section 5.2). While eye-
tracking seems to be the favourite visual attention cue, not all VR 
headsets have eye-tracking capabilities, and perhaps future cheap 
VR headsets will never incorporate such capabilities. Our results 
show that in the context of exploratory data analysis tasks on VR 
screens, cheap VR headsets using bi-directional CoV can still lead 
to the same amount of joint attention, therefore, being efective. 

6.2 How visual cues contours afect Individual 
visual attention 

Quantitative results indicate that contour-based visual cues sig-
nifcantly alter individual visual attention by focussing it within 
the depicted visual cone with an increase of 20% of gaze sample 
within the contour when the contour is displayed compared to 
a condition in which the contour is not displayed (Section 4.1.2). 
Furthermore, qualitative results highlight that people perceive such 
a change and focus more on the area within the depicted region 
(Section 5.1). These results are consistent with the data [1] used to 
generate the CoV (Figure 4) and validated by [16] with two separate 
datasets [48, 59]. While the eye-tracking condition gaze samples are 
comparable in percentage with the sample of the original dataset, 
the CoV conditions sample shows the reported 20% increase. This 
could be because the participants were aware (consciously or uncon-
sciously) that the CoV was a signal of their visual attention to the 
other person. In other words, they kept their visual attention within 
the highlighted region, where the other person would expect it to 
be. An alternative explanation is that the contour generates an at-
tention tunnelling efect similar to the one in the small feld of view 
AR/VR devices [56]. Such results could be interesting in relation to 
managing the attention of participants who have trouble concen-
trating, for example, because they are afected by ADHD [62]. A key 
implication of such an efect is that displaying the CoV can be useful 
when eye-tracking is not available. For example, metrics about the 
success of collaboration based on eye-tracking [112, 113] could be 
more accurately approximated using head-tracking. Furthermore, it 
might be possible to more efectively adapt interaction techniques 
that support eye-tracking [107] to only rely on head-tracking. 

6.3 Speech as input for collaboration support 
Our results indicate that participants utter keywords present in 
visualization was the primary way to perform verbal references 
(Section 4.2.1, Figure 8a), independently of verbal communication 
being used as input for visual attention cues (Figure 8b). Such results 
indicate that there is potential for speech recognition to be used 
to refne gaze inference in two ways: frst, searching the spoken 
keywords in the users’ visual feld (i.e. CoV) and exploiting their 
location to refne the region of the visual cue is the best strategy 
for interpreting verbal attention if compared to the other strategies 
aimed at interpreting diferent verbal references (Table 1) because 
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its frequency of usage (Table 1). Second, such verbal exchange 
occurs naturally, so our method does not require users to commu-
nicate diferently. This suggests that when correctly implemented, 
such a method could lead to no learning/usage costs for the users. 
Such results are also consistent with the outcomes of the qualitative 
analysis Section 5.2: participants reported using verbal communi-
cation during collaboration as a method to overcome the lack of 
precision of the CoV (due to headset slippage [78]). 

However, our results indicate that further technological advances 
in automatic speech recognition are needed for this approach to be-
come viable since real-time state-of-the-art speech-to-text services 
(Section 3.2.2) still sufer from accuracy and lag issues. Such prob-
lems emerged from our qualitative analysis (Section 5.1) and the 
questionnaire responses (Section 4.3, Figure 10). Nevertheless, we 
obtained a high-accuracy transcription using the audio recording 
from the experiment with an ofine state-of-the-art speech-to-text 
model (Section 3.5.1). We use such accurate transcription for an 
additional analysis where we test speech as an input for gaze infer-
ence across all conditions (Section 4.2.2, Figure 9a). These results 
illustrate that our method better approximates eye-gaze than the 
head gaze alone when the CoV is not pres(Section Section 4.2.2, 
Figure 9a). We show that in the eye-gaze cursor condition, speech 
improves the accuracy of the head gaze by about 50px on average 
(with statistical signifcance). Results from the same analysis also 
show that in the conditions in which the CoV or CoV+Speech is 
used, our method does not show improvements, most probably 
because the gaze is constrained by the visual cues (as discussed 
in Section 6.2). We release the dataset related to head, gaze and 
accurate transcript speech behaviour, hoping that this will foster 
research in this direction. Gaze inference models alternative to 
eye-tracking can be benefcial for those low-cost eye-tracker-less 
headsets or for ofine analysis which lacks gaze data but has speech 
and head direction information. 

7 FUTURE WORK AND LIMITATIONS 
We recognise several limitations of our work. First, subjective re-
sponses highlighted voice detection issues during the CoV+Speech 
condition. The post hoc analysis addressed this issue with a diferent 
speech recognition engine, but it is possible that speech behaviour 
during the study was afected. Second, our qualitative analysis (Sec-
tion 5.3) showed that participants often made spatial references 
(that is, "on my left" or "top right corner"). These references were 
not used by our technique. Further work could explore spatial ref-
erences as explicit control of visual cues. In addition, other verbal 
references could be exploited to infer areas with specifc colours, 
shapes, images, or synonyms of visible keywords (Section 3.5.2). 
Third, our current speech-based system is limited to HTML-based 
VR screens that must contain tags useful for verbal referencing. 
This aspect could be expanded to be viable in other environments, 
for example, by leveraging meta-information of 3D environments 
or the real-time segmentation of videos to provide a layer of meta-
information to be queried for collaborative communication [94]. 

We also envision several avenues for future work. First, our 
analysis highlighted how individual visual attention is afected by 
the CoV; in future work, we could explore how CoV size afects 
this phenomenon. Second, the qualitative analysis showed diferent 
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qualities of head-based and eye-tracking visual cues. The CoV is 
easier to fnd because it is wider and more stable, and the partici-
pants found it to be the best for mutual alignment. However, it lacks 
precision once mutual alignment is performed (Section 5.1). Mean-
while, the eye-tracker is precise but moves erratically, distracting 
users, and the cursor can be difcult to fnd. Future work could in-
vestigate a hybrid version that combines CoV and eye-tracking cues 
to gather their advantages. Finally, our dataset of human behaviour 
can be used for multiple purposes, such as evaluating leadership [3], 
competence skill [23, 31]), the success of collaboration [112, 113], 
and other behavioural analyses. However, the dataset is limited 
to 2-dimensional data, and future work can explore 3D data. Fu-
ture challenges for 3D data include occlusions, illumination, and 
diferent approaches to generating visual cues. 

8 CONCLUSIONS 
In this paper, we investigate how using verbal communication with 
the Cone of Vision (CoV) can improve gaze inference and mutual 
awareness for exploratory data analysis in VR. We proposed a novel 
method named Speech-Augmented Cone-of-Vision which aims to 
dynamically balance the broadness of the cone of vision with the 
pinpoint abilities of verbal communication. We conducted a within-
group study where ten pairs of participants performed collaborative 
data analysis tasks under three conditions. We used quantitative and 
qualitative methods, including participants’ head and eye gaze be-
haviour, post-task questionnaires, and semi-structured interviews. 
Our fndings suggest that visual attention cues based on head gaze 
(i.e. CoV and CoV + speech) are equally, if not more efective, in fos-
tering joint attention than those based on eye-tracking. This leads 
to an increase of about 20% in concurrent gaze on the same VR 
screen. The questionnaire results and the analysis of the interviews 
suggest that the CoV+Speech condition was afected by the lag and 
limited accuracy of the real-time speech recognition implementa-
tion we used. To overcome this limitation, we used recorded audio 
to transcribe verbal communication using an ofine high-accuracy 
speech-to-text model. Accurate transcription allowed us to clas-
sify the type of verbal references and validate our assumption that 
participants used keywords to negotiate shared visual attention. 
This approach allowed us to perform a non-real-time approxima-
tion of eye gaze using speech as input. The results of this analysis 
show that our proposed method improved the accuracy of gaze 
by 50px when it was not constrained by CoV regions. Therefore, 
we demonstrate that speech has the potential to be used as input 
to dynamically alter CoV cues by narrowing the focus of visual 
attention. To support further research in this area, we release the 
data collected in our study as a public research dataset. To the best 
of our knowledge, this is the frst dataset on collaborative head, eye, 
and transcribed speech behaviour made publicly available. 
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