Kiko: Programming Agents to Enact Interaction Protocols

Samuel H. Christie V
North Carolina State University
Raleigh, NC, USA
schrist@ncsu.edu

ABSTRACT

Realizing a multiagent system involves implementing member
agents who interact based on a protocol while making decisions in
a decentralized manner. Current programming models for agents
offer poor abstractions for decision making and fail to adequately
bridge an agent’s internal decision logic with its public decisions.

We present Kiko, a protocol-based programming model for agents.

To implement an agent, a programmer writes one or more decision
makers, each of which chooses from among a set of valid decisions
and makes mutually compatible decisions on what messages to send.
By completely abstracting away the underlying communication
service and by supporting practical decision-making patterns, Kiko
enables agent developers to focus on business logic. We provide an
operational semantics for Kiko and establish that Kiko agents are
protocol compliant and able to realize any protocol enactment.

ACM Reference Format:

Samuel H. Christie V, Munindar P. Singh, and Amit K. Chopra. 2023. Kiko:
Programming Agents to Enact Interaction Protocols. In Proc. of the 22nd
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2023), London, United Kingdom, May 29 — June 2, 2023, IFAAMAS,
10 pages.

1 INTRODUCTION

Enterprise and other applications, e.g., in business and healthcare,
involve interactions between social entities such as humans and
organizations [25] based on technical resources such as databases.
A sociotechnical system (STS) involves social and technical entities
[31, 37] and provides a useful abstraction for such applications.
Today, an STS is implemented using a conceptually central service
through which its entities interact. In contrast, we address the chal-
lenges of implementing a decentralized multiagent system (MAS)
to realize an STS. Here, each principal maps to an agent; the agents
interact with each other via asynchronous messaging.

The messages sent by an agent represent its public decisions. For
example, a Quote by SELLER for some item for some price represents
a decision by SELLER; an Accept (of some Quote) sent by BUYER
represents a decision of BUYER; and so on. To coordinate their
decisions, the agents rely on an interaction protocol. By specifying
the constraints on messaging, a protocol specifies the constraints
on decision making between the agents in a MAS. For example, a
Purchase protocol in the above-introduced e-business setting may
specify that the price is offered by the seller, and payment is required
for delivery.

A protocol is specified abstractly with reference to roles to be
adopted by agents in a multiagent system. Implementing an agent

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 — June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Munindar P. Singh
North Carolina State University
Raleigh, NC, USA
mpsingh@ncsu.edu

Amit K. Chopra

Lancaster University
Lancaster, UK
amit.chopra@lancaster.ac.uk

according to a role means fleshing out the role with private (inter-
nal) decision logic that results in messages being emitted, that is,
decisions being made [16]. For example, suppose agents Bob and
Sally play BUYER and SELLER, respectively, in Purchase. Sally’s
decision logic may be to send Quotes with lower prices to repeat
buyers. Bob’s decision logic may be to Accept a Quote if the price
fits within its budget. Such decision logic is the essence of an agent.

Supporting the common desire [28, 39] for programming models
that separate business logic from other components—and combat-
ing complexity in agent communication [10], in general—proves
challenging. Traditional protocol languages [3, 18, 24, 29, 42] spec-
ify message ordering, which limits flexibility [11]. JADE [5, 6], a
programming model for multiagent systems, is noteworthy for
its early support for FIPA protocols [19]; however, the FIPA ap-
proach is long outdated [34] and the FIPA protocols are limited to a
few patterns of interaction specified in terms of message ordering.
Agent-oriented programming models such as Jason [8] and JaCaMo
[7] provide cognitive abstractions for encoding an agent’s internal
reasoning but do not support protocols. Existing commitment-based
approaches [22, 41] either rely on centralized commitment stores
[2] or do not adequately address operationalizing asynchronous
communication [17]; some approaches map the problem to proto-
cols [26, 38]—and hence within the scope of this paper. Traditional
agent-oriented methodologies [9, 15, 30] emphasize and incorporate
protocols as design abstractions. However, the protocol specifica-
tions in these approaches are informal (usually UML interaction
diagrams), which rules out protocol-based software abstractions for
engineering agents. In a nutshell, today we lack a protocol-based
programming model for agents that supports flexible, decentralized
decision making via asynchronous messaging.

Our contribution, Kiko, addresses this gap. Specifically, Kiko
advances a novel decision-oriented programming model that en-
ables structuring and implementing agents based on the protocol
roles they play. Kiko’s fundamental abstraction is that of a decision
maker, a construct for capturing the decision logic that selects and
makes a set of decisions from those currently available. The agent
developer’s primary task is to write the set of decision makers.

Kiko guarantees an agent’s compliance with the roles its plays.
Kiko supports practical decision-making patterns that other ap-
proaches cannot easily accommodate, including correlation, cross-
enactment reasoning, emission sets, and multiprotocol reasoning.
Notably, in providing a decision-based interface for programming
agents, Kiko abstracts away the communication service that trans-
ports messages between agents. In particular, decision making in
Kiko avoids having to deal with the order in which messages are
received. Actual message emission is also handled transparently in
the programming model.

In addition, we contribute a formalization of the programming
model and prove its soundness and completeness with respect

https://orcid.org/0000-0003-1341-0087
https://orcid.org/0000-0003-3599-3893
https://orcid.org/0000-0003-4629-7594

AAMAS °23, May 29 - June 2, 2023, London, United Kingdom

to possible protocol enactments. We also present an optimized
compliance-checking method and establish its validity.

2 INFORMATION PROTOCOLS INTRODUCED

A protocol-based programming model for agents presumes a lan-
guage in which to specify protocols. We adopt BSPL [36], a declar-
ative protocol language that eschews the specification of message
ordering and instead specifies information constraints.

Listing 1: The Purchase protocol.

Purchase {
roles Buyer, Seller
parameters out ID key, out item, out price, out done

Buyer -> Seller: RFQ[out ID key, out item]

Seller -> Buyer: Quote[in ID key, in item, out price]

Buyer -> Seller: Buy[in ID key, in item, in price, out done]
Buyer -> Seller: Reject[in ID key, in price, out done]

An information protocol in BSPL specifies the roles, messages be-
tween roles, and information constraints that define which message
emissions are valid. Information causality captures information de-
pendencies: what information must or must not be known by an
agent playing a role to be able to send a message. Information in-
tegrity captures consistency in distributed settings: there cannot
be two messages sent with conflicting information in the same
protocol enactment. Given the local store of an agent (its history of
message observations), an agent can send any message that satisfies
the specified causality and integrity constraints.

Listing 1 illustrates the main ideas of information protocols.
It specifies a purchase protocol to be enacted by agents playing
roles BUYER and SELLER. Purchase composes message schemas, each
with its sender and receiver roles and information parameters. For
example, RFQ is from BUYER to SELLER and its parameters are ID and
item. A concrete message instance associates the parameter names
with value bindings, e.g., binding 1D to a UUID and item to “ball”

To support information integrity, some parameters in a message
schema are annotated key, e.g., ID in all the messages of Listing 1.
A tuple of bindings for the key parameters of a message schema
uniquely identifies both an instance of the schema and the enact-
ment to which it belongs, in which all nonkey parameters may have
at most one binding. For example, say RFQ occurs with bindings
[ID: 10, item: ball]. Then, a Quote with [ID: 10, item: hat, price: 10]
would violate integrity because for the same binding of ID there
are different bindings of item. Conversely, Quote with [ID: 11, item:
hat, price: 10] satisfies integrity despite the different binding for item
because it has a different binding of the key ID.

In a message schema, every message parameter is adorned "in7,
Tout™, or "nil™. Adornments capture information causality con-
straints for the emission of an instance of a schema; "in™ parame-
ters must be known from prior communications (they are causal
dependencies); "out™ parameters and "nil " parameters must not
be known, but "out™ parameters are bound in the emission. For
example, in Listing 1, SELLER must know item before it can send
Quote, and in doing so produces a binding for price.

Knowledge of a parameter exists in the context of some binding
for the associated key. After receiving an RFQ with bindings [ID: 10,
item: ball], SELLER knows that in the enactment ID=10 item is bound
to ball, and can produce a binding of price by sending Quote.

Samuel H. Christie V, Munindar P. Singh, and Amit K. Chopra

Integrity and causality apply to protocols generally. In Purchase
in Listing 1, all protocol parameters are adorned "out™ in the pro-
tocol parameter line, meaning that each enactment of Purchase as
identified by the ID generates bindings for all of them. Further, the
parameter line enables composition with other protocols.

3 THE KIKO PROGRAMMING MODEL

We introduce the architectural basis for the programming model,
followed by examples that illustrate its features.

MAS Info Decision Makers

Attempts‘ Forms

Config
L——— Protocol Adapter

Instances [

Communication
Service

Figure 1: The Kiko agent architecture.

Figure 1 shows the main components of the agent architecture as
focused on enacting protocols. The MAS Info and Decision Makers
are components provided by the agent programmer (indicated by
the border). The Protocol Adapter is a generic component provided
by Kiko that understands information protocols and provides an
API for plugging in Decision Makers. The adapters of all agents
collectively achieve a coordination service and assimilate informa-
tion received from messages [35]. The Communication Service is
anything that provides asynchronous messaging between agents.
Our implementation uses UDP, which is unordered and unreliable
(lossy).

An information protocol constrains only the emission of mes-
sages by agents, based on its causal dependencies. This means that
ordered delivery, as provided by TCP or a message queue, is not
required for correctly enacting a protocol. Further, message recep-
tion is idempotent, so messages can be retransmitted to enact a
protocol reliably despite message loss [12, 14]. Thus an unordered,
lossy transport like UDP is sufficient for enacting BSPL protocols.

MAS Info (Configuration). A protocol specifies a MAS abstractly
via reference to roles. A concrete MAS for a protocol is identified by
a UUID and assigns roles to the agents that will play them. MAS
identifiers are essential since an agent may play a role in several
MAS. The properties of a (concrete) MAS and the mailboxes of the
agents in the MAS are common knowledge to the agents in the MAS.
Kiko requires each agent to be configured with such knowledge;
Listing 2 gives such a configuration for agent Bob.

Listing 2: Bob’s MAS Info Configuration.

self = "Bob"
systems = {
"5feceb66 ": {
"protocol ": Purchase,
"roles": {Buyer: self, Seller: "Sally "}}}
agents = {
self: [("192.168.1.100", 1111)]
"Sally ": [("192.168.1.102", 1111), ("152.1.27.202", 1111)]}

Kiko: Programming Agents to Enact Interaction Protocols

In Listing 2, 5feceb66 is an identifier for a MAS that enacts
Purchase with Bob and Sally as BUYER and SELLER, respectively.
Bop’s and SALLY’s mailboxes are given as (IP, port) tuples. An agent
may have several mailboxes for receiving messages; in Listing 2,
SALLy has two. Our focus is not on how a MAS is constituted, but
on programming abstractions that enable decentralized decision-
making. Listing 2 shows the kind of information needed to configure
a MAS, and it could be constructed dynamically at runtime.

Formally, we model an agent using a tuple {(a, Hy, I, Oq), where
the components are the name of the agent, its history, input channel
(its mailbox), and output channel respectively. Channels I, and
Og are simply sets of message instances being sent and received,
respectively, by agent a. Definition 1 defines a MAS.

DEFINITION 1 (MAS). A multiagent system yu is a tuple (P, A),
where P is a protocol, and A is a map from roles of P to agents.

Decision Makers. To write an agent, programmers supply the con-
figuration and write one or more decision makers. A decision maker
is invoked upon the occurrence of specified events. When invoked,
the adapter supplies it with prototypes of message instances that
the agent is enabled to send given the agent’s current history of
message observations. We refer to these prototypes as forms, after
documents with fields that need to be filled. A form of a message
schema has bindings for the parameters that are adorned "in™ in
the schema, reflecting that its causal dependencies are satisfied,
leaving only the parameters adorned "out™ to be bound. The pur-
pose of a decision maker is to flesh out some message instances
from the forms by supplying bindings for their "out™ parameters;
the adapter collects this set of completed instances as an emission
attempt. The adapter verifies whether the attempt as a whole is
consistent with the agent’s history and if so, emits the instances in
the attempt; else it rejects the attempt.

Suppose Bob’s history is empty (it has observed no messages).
Then the only form available to Bob is Bob -> Sally: RFQ[5feceb66,
(D), (item)], with unfilled parameters in parentheses. Since proto-
col enactments occur within the context of a MAS, each form and
any instance produced from it contains a MAS identifier (here,
5feceb66)—conceptually like the value for an implicit parame-
ter system in every message. Bob’s programmer may have written
a decision maker that fleshes out the above form into instances
such as Bob -> Sally: RFQ[5feceb66, 1, bat] and Bob -> Sally:
RFQ[5feceb66, 2, ball] based on some decision logic. These in-
stances are passed on to the adapter for emission. Listing 3 shows a
decision maker (in Python) called start that is invoked at system
initialization, upon InitEvent. The argument enabled contains
the available forms when start is invoked and the body of start
contains code to send two instances of the form, one each for bat
and ball. The instruction to the adapter to emit the instances is
implicit—after the decision maker returns, the adapter goes through
all forms to see which ones have been fleshed out into instances
and emits them (conditional to validation).

Listing 3: Bob’s initial decision to send RFQs.

@adapter. decision (event=InitEvent)
def start(enabled):
for item in ["ball", "bat"]:
ID = str(uuid.uuid4())
for m in enabled.messages (RFQ) :
m. bind (ID=ID, item=item)

AAMAS °23, May 29 - June 2, 2023, London, United Kingdom

Consider another example. Suppose Bob’s history contains the
above two RFQ instances and Sally -> Bob: Quote[5feceb66, 1, bat,
5]. Then, in addition to the RFQ form specified above, the following
forms would also be available to Bob: Bob -> Sally: Buy[5feceb66,
1, bat, 5, (done)] and Bob -> Sally: Reject[5feceb66, 1, bat, (done)].
Bob’s programmer may have implemented a decision maker (as
illustrated in Listing 4) that chooses from one of these two available
forms based on how acceptable the price is, fleshes it out by binding
done, and instructs the adapter to emit the resulting instance.

Listing 4: A simple Buy or Reject decision maker for Bob.

@adapter. decision
def start(enabled):
for m in enabled.messages(Buy):
if (m["price"] < 20)
m. bind (done="cool ")
else
reject = next(enabled. messages(Reject, ID=m["ID"]))
reject.bind (done="rejected ")

We now give an example where a decision maker’s emission
attempt fails because it erroneously contains incompatible instances.
Specifically, Listing 5 is erroneous because Bob creates instances for
both Buy and Reject in the same enactment. This emission attempt
fails because Buy and Reject are mutually exclusive according to
Listing 1 (because both bind "out™ done); neither will be emitted.

Listing 5: Decision maker attempting to send Buy and Reject.

@adapter. decision
def indecisive (enabled):
buy = next(enabled.messages(Buy))
reject = next(enabled.messages(Reject, system=buy.system,
ID=buy["ID"]))
buy.bind (done="accepted ")
reject.bind(done="rejected ")

Listing 5’s error brings out a remarkable aspect of Kiko. Kiko
enables decision makers (programmers) to choose sets of instances
to emit. Whereas each of the instances in the set (e.g., Buy) would
be individually consistent and compatible with the history when
the decision maker was invoked and therefore could be emitted by
the adapter, collectively, the set of instances chosen by the deci-
sion maker could be internally incompatible (Buy and Reject) and
therefore fail emission by the adapter. By rejecting incompatible
emission sets, the adapter guarantees that an agent will not make
noncompliant emissions.

An alternative would be to limit a decision maker to work on at
most one form at a time. Then, its emission by the adapter would
be guaranteed. Such a decision maker is a special case for Kiko.

A specific triggering event may be specified for a decision maker
(e.g., InitEvent in Listing 3). If such a triggering event is not spec-
ified (e.g., as in Listing 4), the adapter automatically invokes the
decision maker whenever a communication event occurs. Event-
based invocation enables some optimizations: First, the agent need
not poll to wait for enough information to make a decision; not
polling may be seen as an extension of the pub/sub pattern be-
cause a decision can depend on multiple pieces of information
from multiple sources. Second, because all constraints are relative
to an enactment, and communication events contain keys identi-
fying their enactment, the enactment can be directly looked up,
thus avoiding linear scans or joins across an entire database for
validation.

AAMAS °23, May 29 - June 2, 2023, London, United Kingdom

However, there are cases where an agent may want to emit
messages outside of reacting to a message observation (whether
sent or received). For example, if the agent needs to make business
decisions only once per day, then waiting and making them all as
a batch could be more efficient and accurate. To support a wider
variety of behavioral patterns, Kiko uses an internal event queue on
which the developer can signal custom events, and decision makers
can be registered with custom filters to select which events should
trigger them.

We now formalize the concepts introduced in the above section.

An association binds values to some subset of the parameters of
a message schema.

DEFINITION 2 (ASSOCIATION). Ifm is a schema in protocol P, then
M is a relation with attributes payload(m) = {1, dm, ¥m, Tm Om),
and M is the union of all such relations. The parameter name i refers
to a multiagent system. A tuple m is an association of schema m if
and only if it is a tuple of parameter bindings (bp|p € payload(m)])
in M.

We use m[...] for projecting parameters to their bindings in the
message instance; e.g., m[3,] is the sender of m, and m [k,] is the
projection of m’s key parameters.

A message instance is an association where all parameters are
bound.

DEFINITION 3 (MESSAGE INSTANCE). An association m € My,
is a message instance and instance(m) holds if and only if all of its
parameters are bound: p € payload(m), m[p] # @.

I c M is the set of all instances.

A form is an association where the "out™ parameters are un-
bound.

DEFINITION 4 (FORM). An association m € My, is a form (refer-
ring to a document with empty fields that need to be filled) if some
Tout™ parameter has a null value. That is, Vp € payload(m) \ o, :
p#@and3Ip €om: mM[p] =0

F C M is the set of all forms.

We introduce the notion of context to capture enactments within
a specific MAS.

DEFINITION 5 (CONTEXT). The context of an association is its
MAS and its keys: m[p, km].

Associations share context if their MAS and any of their keys
have the same bindings. A form is enabled when all of its "in™
parameter bindings match those from observed instances that share
context (consistency), and its "out™ and "nil " parameters do not
conflict with any observed instances (compatibility), as given by
Definitions 6—10.

DEFINITION 6 (CONSISTENT). Let M, N C M be sets of associa-
tions; then N is consistent with M (and consistent(N, M) holds) if
and only if the "in" bindings in N are the same as bindings from
associations that share context in M: -

Vin e M, € N: [km O knl = 1l km N kn] =
[payload(m) N i,] =] payload(m) N iy].

DEFINITION 7 (OUT-COMPATIBLE). Let M, N C M be sets of asso-
ciations; then N is out-compatible with M (and compatiblez(N, M)

Samuel H. Christie V, Munindar P. Singh, and Amit K. Chopra

holds) if and only if no "out™ bindings in N are in payloads of asso-
ciations that share context in M: .

Vm e M,n € N: m[p, kmNky] = 0y, kmNk,] = payload(m)n
5ﬁ =0

DEFINITION 8 (N1L-COMPATIBLE). Let M, N C M be sets of asso-
ciations; then N is nil-compatible with M (and compatible; (N, M)
holds) if and only if no "nil™ bindings in N are in payloads of associ-
ations that share context in M: R

Vi€ M, € N: i, kmOkn] = il kmNkn] = payload(m)n

ng =0

DEFINITION 9 (DERIVED). Let H, be an agent history and m be a
form whose sender is a; then m is derived from Hy (and derived(m, Hy)
holds) if and only if all of m’s "in™ parameters are drawn from in-
stances that share context in the history:

Vp € i, 31 € Hy: tilpt, km N knl = Ml km O kn] Ap € in A
m[p] =n[p]

DEFINITION 10 (ENABLED). A message form m is enabled and
enabled(m, a, Hy) holds if and only if:

(1) m is sent by a: m[3m] = a

(2) consistent({m}, Hy)

(3) compatiblez({m}, Hg) A compatible;({m}, Hy)

(4) derived(m, Hy)

We also say that enabled(a, Hy) C F is the set of message forms
that a is enabled to send.

Definition 11 says a decision maker constructs only instances
that preserve the bindings from message forms.

DEFINITION 11 (DECISION MAKER). Let Q be a set of message
forms; a decision maker is a function d: P(F) — P(Z) such that
m e d(Q) = instance(m’) A 3m € Q: M’ [dm tm,im] =
[, #ms im].

3.1 Decision-Making Challenges and Solutions
We highlight select decision making patterns supported by Kiko.

3.1.1 Correlation. An agent may simultaneously be involved in
several enactments of a protocol. For example, BUYER may be con-
currently engaged with SELLER in several distinct enactments, each
for some item at some price. The programming model should enable
correlating communications by enactment.

Kiko supports correlation through the automatic derivation of
correlated forms by the adapter (as described above). The adapter
computes forms based on all information available, potentially from
the observation of multiple correlated instances. Kiko also makes
it convenient to find correlated forms where the decision logic
requires it. For example, in Listing 4, correlated Reject forms are
found by the ID of the Buy forms.

3.1.2 Cross-Enactment Decisions. Agents should be able to use
information across enactments in their decision making.

Kiko enables cross-enactment reasoning by providing forms from
all currently active contexts, that is, enactments in all systems, to the
decision makers together. Thus, the decision maker can select forms
from multiple contexts and flesh them out for emission. For example,
Bob could participate in multiple systems, all enacting Purchase, to

Kiko: Programming Agents to Enact Interaction Protocols

request quotes for the same item from multiple sellers. Then, Bob
can send a Buy for the Quote with the lowest price (Listing 6).

Listing 6: Selecting cheapest Buy across multiple contexts.

@adapter. decision

def cheapest(enabled):
buys = enabled.messages(Buy)
cheapest = min(buys, key=lambda b: b["price"])
cheapest.bind (done=True)

3.1.3 Multiple Protocols. An agent will often play roles in multiple
unrelated protocols, using information from one to make decisions
in another.

Kiko enables implementing agents that play roles in multiple
unrelated protocols. For example, we specify Approval in Listing 7.
By enacting Approval concurrently with Purchase, Bob can seek
Alice’s approval on any purchases. To do so, Bob must map be-
tween the protocols inside its decision makers, which is supported
by the enabled set containing forms from all the protocols Bob is
enacting.

Listing 7: The Approval protocol.

Approval {
roles Requester, Approver
parameters out alD key, out request, out approved

Requester -> Approver: Ask[out alD key, out request]

Approver -> Requester: Approve[in alD, in request, out approved]
}

Listing 8 shows Bob’s decision maker for constructing an Ask
(approval) for each Buy as it becomes available as a form, copying
Buy’s payload into request.

Listing 8: Requesting approval for a purchase across proto-
cols.

@adapter.enabled (Buy)

def request_approval (buy):
ask = next(adapter.enabled_messages. messages(Ask), None)
return ask.bind (ID=str (uuid.uuid4()), request=buy.payload)

3.1.4 Emission sets. For additional flexibility, Kiko enables a deci-
sion maker to emit multiple instances atomically: if the instances
are mutually compatible, then they are all emitted, else none are
emitted. Thus, e.g., if an emission set contained Buy and Reject
instances for the same enactment, no instance in the set would be
emitted. Such atomicity of emission ensures correctness and gives
full authority to the decision maker to choose its intended messages;
multiple attempts can be made if needed. Selecting some consis-
tent subset of the emission set for emission, by contrast, would be
arbitrary and could lead to unintended enactments.

Listing 9 shows a decision maker, where Bob figures out the best
combination of items it can buy (as computed by some optimization,
whose details are not relevant for our purposes), sending Buys for
all those items and Rejects for the others.

Listing 9: A decision maker that sends Buy in some contexts
and Rejects in the others.

1 @adapter. decision

2 def select_gifts(enabled):

3 best, rest = best_combo(enabled)

for b in best: # buy the best items
b.bind (done=True)

for r in rest: # reject the rest
r.bind (done=True)

ESTEC NS IS

AAMAS °23, May 29 - June 2, 2023, London, United Kingdom

Another variety of decision logic where emission sets are valu-
able is a combination of “front-end” and “back-end” reasoning. For
example, imagine Sally has a supplier with whom it engages via
some protocol. Suppose Sally wants to order an item from its sup-
plier whenever it delivers an item to a buyer. To accomplish this, it
may have a decision maker which puts Deliver (to the buyer) and
Reorder (from supplier) in the same emission set.

3.1.5 Reception-Order Freedom. Requiring agents to receive mes-
sages in a particular order can only delay the reception of infor-
mation, which in turn would limit the agent’s ability to respond
flexibly to events.

Kiko takes advantage of the fact that BSPL doesn’t rely on mes-
sage ordering for correctness, and abstracts away message reception
entirely from decision making. An agent’s adapter receives mes-
sages as they arrive and depending on the information in them,
makes forms available to decision makers. By doing so, Kiko enables
agents to respond flexibly to events.

Listing 10: Rescind Quote.

Seller -> Buyer: Rescind[in ID key, in item, in price, out
rescinded]

Buyer -> Seller: Buy[in ID key, nil rescinded]

For example, Listing 10 extends Purchase by allowing SELLER
to Rescind a quote. Because it depends on price, Rescind must be
sent after Quote, but could reach Bob first. Because reception is not
constrained except by integrity (inconsistent messages are rejected),
Rescind will be received, checked, and added to the history when it
arrives. As such, the matching Buy will be disabled, and Bob need
not waste any effort considering it (e.g., by requesting approval).

Note that by programming in terms of enabled forms, a decision
maker such as the one in Listing 4 that emits Buys need not change
at all; the disabled Buys are simply not provided to the decision
maker for consideration.

3.1.6 Loose Coupling. Clearly, protocols support the independent
development of agents by capturing the constraints relevant to
interoperation between them. In general, if a protocol changes, then
one would expect that the agents’ decision making would have to
change as well. Because Kiko is based on information though, it is
not necessarily the case that protocol changes lead to changes in
an agent’s decision making, thus supporting loose coupling even
better.

For example, suppose (as illustrated in Listing 11) Purchase in-
cluded a Deliver message from SELLER that depended on payment
provided by Buy:

Listing 11: Delivery.
Buyer -> Seller: Buy[in ID key, in item, in price, out payment]
Seller -> Buyer: Deliver[in ID key, in payment, out delivery]

Then, suppose Purchase were extended so that BUYER could pay
indirectly via bank transfer (as illustrated in Listing 12) . Because
the messages in Listing 12 do not change the messages emitted by
SELLER, only how it receives the necessary information, SELLER’S
decision logic need not be changed to support indirect payment.
SELLER’s adapter will automatically derive the Deliver form when
the indirect payment has been received, demonstrating loose cou-
pling between the agents.

AAMAS °23, May 29 - June 2, 2023, London, United Kingdom

Listing 12: Bank Transfer.

Buyer -> Seller: Accept[in ID key, in price, out acceptance]
Buyer -> Bank: RequestTransfer[in ID key, in price, out txinfo]
Bank -> Seller: Transfer[in ID key, in txinfo, out payment]

3.1.7 Single Form Decision Makers. The general decision making
pattern of supporting the emission of sets of instances is highly
flexible, but for cases in which an agent need emit only instance
at a time, Kiko supports the convenient abstraction of single form
decision makers.

Such decision makers are functions invoked with a single mes-
sage form; its return value is either a message instance for emission
(binding its "out™ parameters), or a null value canceling the emis-
sion. Listing 13 shows an example where an enabled form of Quote
is fleshed out.

Listing 13: Single Form Decision Maker for Quote.

@adapter. enabled (Quote)

def send_quote(msg):
msg["price"] = random.randint (20, 100)
return msg

3.2 Adapter Implementation

Figure 2 blows up the adapter from Figure 1 to highlight its internal
components (highlighted in green).

Enactments Forms
Local Store ‘ Enablement Decision Makers
In:/tzl:i? +—— History Attempts —
| Checker |
T Receptions Instances l
| Receiver | | Emitter |

Figure 2: Adapter implementation.

The Emitter and Receiver interface with the communication
service, putting messages on and receiving them from the wire, re-
spectively. The Local Store records the agent’s history of emissions
and receptions. The Checker validates (checking for satisfaction of
causality and integrity constraints in the protocol specifications)
any attempt (by a decision maker) to emit a set of messages (Def-
inition 12). If an attempt is validated, then the instances in it are
added to the Local Store and passed on the Emitter for emission;
else, the attempt is discarded.

DEFINITION 12 (SEND-CHECK). IfH, € M is a history for agent
a, and T C M is a set of message instances, checks(T,Hg) holds if
and only if:
(1) a is enabled to send every m in T:
Vm € T, enabled(m, a, Hy)
(2) T is out-, and nil-compatible with T:
compatiblez(T, T) A compatible; (T, T)
If checks(T, Hg) holds, then T is a valid set of emissions for a and
thus a valid extension of Hy.

Samuel H. Christie V, Munindar P. Singh, and Amit K. Chopra

The Checker also validates received messages for integrity; if
they pass, they are added to the Local Store, else they are discarded
(Definition 13).

DEFINITION 13 (RECEIVE-CHECK). If H, € M is a history for
agent a, and m € M is a message instance, check,(m, Hg) holds if
and only if:

(1) m is receivable by a: a = m[+n,]

(2) m is consistent and out-compatible with the history:

consistent({m}, Hg) A compatiblez({m}, Hg)

If check, (T, Hy) holds, it is valid for a to receive every instance in T
and T is a valid extension of Hg.

The Local Store is used by Enablement to compute the forms
that the agent is enabled to send. Algorithm 1 describes how en-
abled forms are computed for each context. We use an incremental
method, so that only those contexts that have new information
are updated. First, on Line 1, every context that shares key bind-
ings with the observed instance 0 is checked to see if it enables
any instances of m. Lines 2 and 3 check that the "out™ and "nil™
parameters of the schema, respectively, are not already bound in
the context. Line 4 copies the bindings of the "in™ parameters from
the context, Line 6 copies the system ID, and Line 7 adds the form
to the result set for processing by decision makers.

Input:Message schema m, Message instance 0
Q—{k

1 foreach ¢ € matching_contexts(0) do

2 0« Bp: p € 0m A p € c.bindings;

3 n« Ap: p € i A p € c.bindings;

4 i—Vp:pe Tm = p € c.bindings;
if o Ai A n then

5 ilim] < c.bindings[?m];

6 mlp] < olul;

7 Q«—QuUm;
end
return Q;

end

Algorithm 1: Derive instance of schema from observation.

4 OPERATIONAL SEMANTICS

Protocols are formalized in an online Appendix. Here, we formalize
an agent and MAS computations via a transition semantics.

Figure 3 gives the transition semantics.

The Recv rule specifies how messages are received. For agent a
to receive a message instance m there are three conditions: (1) m
must be in the agent’s input channel I,, (2) m must not already be
in the agent’s history Hg, and (3) m must be a valid extension of
H,. If these three conditions are met, then m is added to H,.

The Tx rule models message delivery by copying messages from
an output channel to the appropriate input channel; unreliability is
modeled by not exercising the rule.

Finally, DECIDE specifies how messages are instantiated for emis-
sion: First, a set Q of message forms is computed based on the

Kiko: Programming Agents to Enact Interaction Protocols

Message Schema m € Sp

Message Instance me M

History HeHcoM

Input IcM

Output ocM

Agent a:=(HyI;,0,) € A

Check check, € M xH — {T,F}
checks € P(M) xH — {T,F}

Enabled enabled € AXxH — P(F)

Decision maker d e P(F) > P(M)
Consistent consistent € P(M) — {T,F}
mel, mé¢ H, check,(m, Hy)

Recv —
a(Hg, I, 04) — a(H, U {m},I;,04)

m € Oy mlr]=y
Iy — Iy U {m}
Q := enabled(a, Hy) T:=d(Q) checks (T, Hy)

a(Hg, Io, 0q) —> a(Hg U T, 10,04 UT)

Tx

Decipe

Figure 3: Notation and core semantics.

Q :=enabled(a,H,) T :=d(Q)
compatiblez(T,T) compatible;(T,T)

a(Hg,I,0q) — a{Ha U T, 13,0, U T)

DEcCIDE;

Figure 4: Optimized decision that checks for internal consis-
tency instead of full validity.

agent’s history. Next, a set of instances are derived from the mes-
sage forms by applying a decision maker d to the enabled form set.
If this set of instances is valid, then it is added to both the agent’s
history and output channel. Otherwise, the rule cannot be applied
and no messages are sent.

No rules are required for cases where the messages fail a validity
check; there is simply no transition in those cases. A transition for
a MAS is simply a transition for one of its agents.

Figure 4 shows an alternative version of the DECIDE rule, DECIDE;.
Because transitions are atomic, the forms will not be disabled before
the transition completes, so they do not need to be rechecked for
validity; checking internal compatibility is sufficient (e.g., not se-
lecting both an Accept and Reject in the same enactment). Checking
only internal compatibility of a small set of emissions should be
faster than a full send-check, which requires both internal compati-
bility and that the instance is consistent and compatible with the
rest of the agent’s history.

Our goal is to show that a MAS developed using our operational
semantics to implement a protocol will be both correct (that is, reach
only valid states) and complete (it is possible to implement a system
that can reach any valid state). As such, we formalize the state of
a MAS, which states are reachable according to the operational
semantics, and which states match a protocol enactment.

AAMAS °23, May 29 - June 2, 2023, London, United Kingdom

DEFINITION 14 (MAS STATE). The state of a MAS u is the set of
its agent histories: {Hgla € A}

DEFINITION 15 (REACHABLE STATE). Given MAS p and transition
semantics T, state s of MAS yu is reachable and an element of S, 1 if
and only if there is a sequence of transitions t; € N — T that results
in state s.

Ep (formally defined in the Appendix) is the set of reachable
enactments of protocol P, where a reachable enactment E € £p is a
set of role histories each constructed by a sequence of viable events
according to P’s specification.

DEFINITION 16 (MATCHING STATE). If it is a MAS implementing
protocol P, then state s of p matches E € Ep, written s = E, if and
only if, for every agent history H, in s and instance m € Hy:

(1) if a plays 3, in pu then m is sent in the corresponding role
history Hy,, € E (that is, a = m[3,] = (sent,m) € Hy,,)

(2) if a plays the receiver of m in u then m is received in the
corresponding role history Hy, € E (that is, a = m[+p] =
(received,m) € Hy.,)

Simulation is the idea that transitions in the MAS should match
the reachable enactments in its protocol; each transition may be
equivalent to a set of multiple viable extensions because the DECIDE
rule can produce a set of message instances, where viable extensions
cover only one instance at a time.

DEFINITION 17 (SIMULATION). If i is a MAS implementing proto-
col P, then state s € S” simulates E € Ep, written s ~ E, if and only
if, for every agent history H, in s and instance m € Hy:

(1) s matches E

t

(2) for every transition t, the states’: s — s’ matches some en-
actment E’ reachable from E in a finite number of viable ex-
tensions.

We can now state the following theorems, whose proofs are in
the Appendix.

THEOREM 1. Given a MAS yi implementing protocol P, every reach-
able state s € S, simulates some enactment E € Ep.

Theorem 1 gives the correctness of our operational semantics
by showing that compliant MAS can only reach states that match
reachable enactments of a protocol. Even though the states reached
by the MAS will depend on the decision makers, they can only
select subsets of the enabled forms, and therefore cannot reach an
invalid state (that is, one that does not match an enactment that is
reachable under the protocol semantics).

THEOREM 2. DECIDE; is equivalent to DECIDE.

Theorem 2 shows that the conditions for DECIDE are redundant,
given that the forms are drawn from enabled(a, H,) and decision
makers preserve their bindings (and thus consistency and compat-
ibility with history); all that needs to be checked for the selected
emissions T is that they are compatible with each other.

THEOREM 3. Given a MAS yi implementing protocol P, there is some
set of decision makers D that can simulate any reachable enactment
in Ep, assuming that all sent message instances are received.

AAMAS °23, May 29 - June 2, 2023, London, United Kingdom

Theorem 3 shows completeness for our operational semantics:
the operational semantics do not restrict a MAS from simulating
any reachable enactment of the protocol. Or, given a reachable
enactment of a protocol, it is possible to construct decision makers
for the agents that would reach that enactment. This is not to
say that every implementation is complete; proving completeness
for a given implementation would require formalizing its decision
makers as transition rules.

5 DISCUSSION

Kiko bridges business logic and communications: an agent provides
business decisions and the underlying adapter applies the protocol
semantics to determine which messages are viable. The underlying
causal information semantics captures the information flow and
avoids having to generate guards [33]. An agent makes and commu-
nicates a set of decisions (as reflected in the forms provided by the
adapter) based on some evaluation of the state of the world. The de-
cision making is conceptualized declaratively and suits rule-based
programming languages such as Jason.

An interesting direction is to extend Kiko’s notion of forms to
support norms-based decision making. For example, the discharge
of a commitment by an agent could be made available as a form to
be picked and instantiated by the agent. Baldoni et al. [4] present a
model for accountability that is implemented in JaCaMo via obli-
gations and relates to both (the giving of) accounts and recovery
strategies when things go wrong. Kiko’s adapter could incorporate
standard protocols for demanding accounts from other agents when
norm violations occur and incorporate them into further decision
making, e.g., to decide from which agent to buy items.

Variants of programming models based on information protocols
have been proposed in recent years. The idea of enabled message
forms was first introduced in Stellar [21]; however, Stellar lacked
support for emission sets and relied on the abstraction of message
handlers as opposed to decision makers. Thus, Bob’s implemen-
tation in Stellar would be a set of message handlers, one for each
type of message it could observe. Within a message handler, one
could retrieve a form and instantiate it. Message handling-based
abstractions are lower level compared to Kiko’s decision makers,
which are information-based. To see this, suppose an agent needed
information from two instances, say i; and iy, which it may receive
in any order, to be able to send a third instance i3 (e.g., a shipper may
need the address from the buyer and the item from the seller to be
able to deliver). Then, in the message handling approach of Stellar,
one would write separate message handlers for i; and i and in each
one check whether the form for i3 is available. By contrast, in Kiko,
one would simply write a single decision maker that completes
the form for i3. The Mandrake [13] and PoT [14] programming
models share Stellar’s limitations; however, they both also address
application-level fault tolerance, a theme that is a direction for Kiko.

Like Stellar (and Mandrake and PoT), Kiko enables building ap-
plications directly over an unordered, unreliable communication
service such as UDP for message transport. Kiko is therefore compat-
ible with the influential end-to-end argument [32], which advocates
building applications over simple communication services, both for
reasons of enabling application-level flexibility and performance.
By contrast, message ordering-based protocol approaches would be

Samuel H. Christie V, Munindar P. Singh, and Amit K. Chopra

incompatible with the end-to-end argument. Establishing the per-
formance of Kiko-based agents and MAS compared to traditional
application architectures that rely on complex communication ser-
vices and middleware is a crucial direction. Preliminary evidence
from Mandrake and PoT indicates high performance.

Kiko’s features such as support for correlation, cross-enactment
reasoning, and multiple protocols are not readily supported in pro-
gramming models for message ordering-based protocol approaches.
This is because all of the above features have to do with querying
information, which is inadequately represented in ordering-based
protocols. Emission sets are unique to Kiko and are a powerful
feature that enables emitting a set of message instances (possibly
from different protocols and to different agents) atomically.

In the current semantics, decision makers execute atomically
with respect to the history. This makes possible the optimization
of simply checking the internal compatibility of the emission set
before emitting all its instances. However, an alternative semantics
is possible where decision makers execute concurrently from the
same history. Concurrent execution would enable taking advantage
of multicore and cloud architectures. Implementation-wise, decision
makers could be spawned off as actors [1, 23]. The tradeoff is that
the emission sets produced by concurrent decision makers may
be in conflict with each other (e.g., one set contains Buy whereas
another contains Reject for the same enactment) and therefore an
internal compatibility check would no longer suffice. Each emission
set would have to be checked for validity against the history, which
could be more expensive.

IoT-based paradigms such as edge and fog computing and the
industry paradigm of realizing applications via microservices are
conceptually decentralized. In the case of microservices especially,
decentralization is driven by the scalability afforded by the con-
tainerization of application components. Current microservices
development approaches tend to avoid distributed database trans-
actions in favor of loose coupling [27]. However, this raises the
question: On what basis should microservices coordinate their com-
putations? Information protocols could be thought of as a model
for business transactions. Therefore, approaches like Kiko, suitably
adapted to microservices, can help.

SARL [20] is an agent programming language that supports
communication using events in spaces that are akin to environ-
ments [40]. SARL would benefit from a protocol-based program-
ming model. Kiko would benefit from a more general treatment of
events. Currently, in Kiko, messages model events. However, some
domain events don’t map to messages. For example, while a Quote
may reasonably be modeled as a message, Shipment may actually
correspond to a package traveling in the back of a truck. Receiving
a shipment, therefore, requires sensing the arrival of the package.
Extending Kiko’s adapter to incorporate observation of events from
the environment would be valuable.

Supplementary Material. The online Appendix and the Kiko soft-
ware are available at: https://gitlab.com/masr/bspl/-/tree/kiko.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments. We thank
the EPSRC (grant EP/N027965/1) and the US National Science Foun-
dation (grant IIS-1908374) for partial support.

https://gitlab.com/masr/bspl/-/tree/kiko

Kiko: Programming Agents to Enact Interaction Protocols

REFERENCES

(1]

[2

—

(6

=

[7

[

o
&

[9

=

[10]

[11]

[12]

[13

[14

[15

[16

[17

[18

Gul A. Agha. 1986. Actors. MIT Press, Cambridge, Massachusetts.
//doi.org/10.7551/mitpress/1086.001.0001

Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio.
2019. Process Coordination with Business Artifacts and Multiagent Technologies.
Journal on Data Semantics 8, 2 (June 2019), 99-112. https://doi.org/10.1007/s13740-
019-00100-8

Matteo Baldoni, Cristina Baroglio, Amit K. Chopra, Nirmit Desai, Viviana Patti,
and Munindar P. Singh. 2009. Choice, Interoperability, and Conformance in
Interaction Protocols and Service Choreographies. In Proceedings of the 8th In-
ternational Conference on Autonomous Agents and MultiAgent Systems (AAMAS).
IFAAMAS, Budapest, 843-850. https://doi.org/10.5555/1558109.1558129

Matteo Baldoni, Cristina Baroglio, Roberto Micalizio, and Stefano Tedeschi. 2021.
Robustness Based on Accountability in Multiagent Organizations. In Proceedings
of the 20th International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS). IFAAMAS, Online, 142-150. https://doi.org/10.5555/3461017.3461040
Fabio Bellifemine, Giovanni Caire, and Dominic Greenwood. 2007. Developing
Multi-Agent Systems with JADE. Wiley, Chichester, UK. https://doi.org/10.1002/
9780470058411

Federico Bergenti, Giovanni Caire, Stefania Monica, and Agostino Poggi. 2020.
The First Twenty Years of Agent-Based Software Development with JADE. Jour-
nal of Autonomous Agents and Multi-Agent Systems (JAAMAS) 34, 2 (2020), 36.
https://doi.org/10.1007/510458-020-09460-z

Olivier Boissier, Rafael H. Bordini, Jomi Fred Hiibner, Alessandro Ricci, and
Andrea Santi. 2013. Multi-agent oriented programming with JaCaMo. Science
of Computer Programming 78, 6 (June 2013), 747-761. https://doi.org/10.1016/j.
5¢ic0.2011.10.004

Rafael H. Bordini and Jomi Fred Hiibner. 2010. Semantics for the Jason Variant
of AgentSpeak (Plan Failure and some Internal Actions). In Proceedings of the
19th European Conference on Artificial Intelligence (ECAI) (Frontiers in Artificial
Intelligence and Applications, Vol. 215). I0S Press, Lisbon, 635-640. https://doi.
org/10.3233/978-1-60750-606-5-635

Luca Cernuzzi, Thomas Juan, Leon Sterling, and Franco Zambonelli. 2004. The
Gaia Methodology. In Methodologies and Software Engineering for Agent Systems:
The Agent-Oriented Software Engineering Handbook, Federico Bergenti, Marie-
Pierre Gleizes, and Franco Zambonelli (Eds.). Multiagent Systems, Artificial
Societies, and Simulated Organizations, Vol. 11. Kluwer, Dordrecht, Netherlands,
Chapter 4, 69-88. https://doi.org/10.1007/1-4020-8058-1_6

Amit K. Chopra, Alexander Artikis, Jamal Bentahar, Marco Colombetti, Frank
Dignum, Nicoletta Fornara, Andrew J. I. Jones, Munindar P. Singh, and Pinar
Yolum. 2013. Research Directions in Agent Communication. ACM Transactions on
Intelligent Systems and Technology (TIST) 42, 2, Article 20 (March 2013), 23 pages.
https://doi.org/10.1145/2438653.2438655

Amit K. Chopra, Samuel H. Christie V, and Munindar P. Singh. 2020. An Evalu-
ation of Communication Protocol Languages for Engineering Multiagent Sys-
tems. Journal of Artificial Intelligence Research (JAIR) 69 (Dec. 2020), 1351-1393.
https://doi.org/10.1613/jair.1.12212

Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh. 2021. Bungie:
Improving Fault Tolerance via Extensible Application-Level Protocols. IEEE
Computer 54, 5 (May 2021), 44-53. https://doi.org/10.1109/MC.2021.3052147
Samuel H. Christie V, Amit K. Chopra, and Munindar P. Singh. 2022. Mandrake:
Multiagent Systems as a Basis for Programming Fault-Tolerant Decentralized
Applications. Journal of Autonomous Agents and Multi-Agent Systems (JAAMAS)
36, 1, Article 16 (April 2022), 30 pages. https://doi.org/10.1007/s10458-021-09540-
8

Samuel H. Christie V, Daria Smirnova, Amit K. Chopra, and Munindar P. Singh.
2020. Protocols Over Things: A Decentralized Programming Model for the
Internet of Things. IEEE Computer 53, 12 (Dec. 2020), 60-68. https://doi.org/10.
1109/MC.2020.3023887

Massimo Cossentino, Nicolas Gaud, Vincent Hilaire, Stéphane Galland, and
Abderrafiaa Koukam. 2010. ASPECS: An Agent-Oriented Software Process for
Engineering Complex Systems. Journal of Autonomous Agents and Multi-Agent
Systems (JAAMAS) 20, 2 (March 2010), 260-304. https://doi.org/10.1007/s10458-
009-9099-4

Nirmit Desai, Ashok U. Mallya, Amit K. Chopra, and Munindar P. Singh. 2005.
Interaction Protocols as Design Abstractions for Business Processes. IEEE
Transactions on Software Engineering 31, 12 (Dec. 2005), 1015-1027. https:
//doi.org/10.1109/TSE.2005.140

Nirmit Desai and Munindar P. Singh. 2008. On the Enactability of Business
Protocols. In Proceedings of the 23rd Conference on Artificial Intelligence (AAAI).
AAAI Press, Chicago, 1126-1131. http://www.aaai.org/Library/AAAI/2008/
aaai08-178.php

Angelo Ferrando, Michael Winikoff, Stephen Cranefield, Frank Dignum, and
Viviana Mascardi. 2019. On Enactability of Agent Interaction Protocols: Towards
a Unified Approach. In Proceedings of the 7th International Workshop on Engineer-
ing Multi-Agent Systems (EMAS) (Lecture Notes in Computer Science, Vol. 12058).
Springer, Montréal, 43-64. https://doi.org/10.1007/978-3-030-51417-4_3

https:

[19

[20

[21]

~
&,

[23

[24

I
i

[26

[27

[28

[30

(31

[33

[34

[35

[36

(37

AAMAS °23, May 29 - June 2, 2023, London, United Kingdom

FIPA. 2003. FIPA Interaction Protocol Specifications. http://www.fipa.org/
repository/ips.html FIPA: The Foundation for Intelligent Physical Agents. Ac-
cessed 2023-02-27.

Stéphane Galland, Sebastian Rodriguez, and Nicolas Gaud. 2020. Run-time En-
vironment for the SARL Agent-Programming Language: The Example of the
Janus platform. Future Generation Computer Systems 107 (June 2020), 1105-1115.
https://doi.org/10.1016/j.future.2017.10.020

Akin Giinay and Amit K. Chopra. 2018. Stellar: A Programming Model for
Developing Protocol-Compliant Agents. In Proceedings of the 6th International
Workshop on Engineering Multi-Agent Systems (EMAS) (Lecture Notes in Computer
Science, Vol. 11375). Springer, Stockholm, 117-136. https://doi.org/10.1007/978-3-
030-25693-7_7

Akin Giinay, Michael Winikoff, and Pinar Yolum. 2015. Dynamically Generated
Commitment Protocols in Open Systems. Journal of Autonomous Agents and
Multi-Agent Systems (JAAMAS) 29, 2 (March 2015), 192-229. https://doi.org/10.
1007/s10458-014-9251-7

Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. A Universal Modular Actor
Formalism for Artificial Intelligence. In Proceedings of the 3rd International Joint
Conference on Artificial Intelligence (IJCAI). William Kaufmann, Stanford, 235-245.
http://ijcai.org/Proceedings/73/Papers/027B.pdf

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty Asynchro-
nous Session Types. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL). ACM, San Francisco, 273-284.
https://doi.org/10.1145/1328438.1328472

Michael N. Huhns, Nigel Jacobs, Tomasz Ksiezyk, Wei-Min Shen, Munindar P.
Singh, and Philip E. Cannata. 1992. Enterprise Information Modeling and Model
Integration in Carnot. In Enterprise Integration Modeling: Proceedings of the First
International Conference, Charles J. Petrie, Jr. (Ed.). MIT Press, Hilton Head, South
Carolina, 290-299. https://doi.org/10.7551/mitpress/2768.003.0036

Thomas Christopher King, Akin Giinay, Amit K. Chopra, and Munindar P. Singh.
2017. Tosca: Operationalizing Commitments over Information Protocols. In
Proceedings of the 26th International Joint Conference on Artificial Intelligence
(IJCAI). JJCAL Melbourne, 256-264. https://doi.org/10.24963/ijcai.2017/37
Rodrigo N. Laigner, Yongluan Zhou, Marcos Antonio Vaz Salles, Yijian Liu, and
Marcos Kalinowski. 2021. Data Management in Microservices: State of the Prac-
tice, Challenges, and Research Directions. Proceedings of the VLDB Endowment
14, 13 (Sept. 2021), 3348-3361. https://doi.org/10.14778/3484224.3484232

Mark Little. 2017. Virtual Panel: Microservices in Practice. https://www.infoq.
com/articles/microservices-in-practice/. Accessed: 1 Mar 2023.

James Odell, H. Van Dyke Parunak, and Bernhard Bauer. 2001. Representing Agent
Interaction Protocols in UML. In Proceedings of the 1st International Workshop
on Agent-Oriented Software Engineering (AOSE 2000) (Lecture Notes in Computer
Science, Vol. 1957). Springer, Toronto, 121-140. https://doi.org/10.1007/3-540-
44564-1_8

Lin Padgham and Michael Winikoff. 2005. Prometheus: A Practical Agent-
Oriented Methodology. In Agent-Oriented Methodologies, Brian Henderson-Sellers
and Paolo Giorgini (Eds.). Idea Group, Hershey, Pennsylvania, Chapter 5, 107-135.
https://doi.org/10.4018/978-1-59140-581-8.ch005

Jeremy Pitt, Julia Schaumeier, and Alexander Artikis. 2012. Axiomatization of
Socio-Economic Principles for Self-Organizing Institutions: Concepts, Experi-
ments and Challenges. ACM Transactions on Autonomous and Adaptive Systems
(TAAS) 7, 4, Article 39 (Dec. 2012), 39 pages. https://doi.org/10.1145/2382570.
2382575

Jerome H. Saltzer, David P. Reed, and David D. Clark. 1984. End-To-End Argu-
ments in System Design. ACM Transactions on Computer Systems 2, 4 (Nov. 1984),
277-288. https://doi.org/10.1145/357401.357402

Munindar P. Singh. 1996. Synthesizing Distributed Constrained Events from
Transactional Workflow Specifications. In Proceedings of the 12th International
Conference on Data Engineering (ICDE). IEEE, New Orleans, 616-623. https:
//doi.org/10.1109/ICDE.1996.492212

Munindar P. Singh. 1998. Agent Communication Languages: Rethinking the
Principles. IEEE Computer 31, 12 (Dec. 1998), 40-47. https://doi.org/10.1109/2.
735849

Munindar P. Singh. 1998. A Customizable Coordination Service for Autonomous
Agents. In Intelligent Agents IV: Proceedings of the 4th International Workshop on
Agent Theories, Architectures, and Languages (ATAL-97) (Lecture Notes in Computer
Science, 1365). Springer, Providence, Rhode Island, 93-106. https://doi.org/10.
1007/BFb0026752

Munindar P. Singh. 2011. Information-Driven Interaction-Oriented Program-
ming: BSPL, the Blindingly Simple Protocol Language. In Proceedings of the 10th
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS).
IFAAMAS, Taipei, 491-498. https://doi.org/10.5555/2031678.2031687

Munindar P. Singh. 2013. Norms as a Basis for Governing Sociotechnical Systems.
ACM Transactions on Intelligent Systems and Technology (TIST) 5, 1, Article 21
(Dec. 2013), 23 pages. https://doi.org/10.1145/2542182.2542203

Munindar P. Singh and Amit K. Chopra. 2020. Clouseau: Generating Commu-
nication Protocols from Commitments. In Proceedings of the 34th Conference
on Artificial Intelligence (AAAI). AAAI Press, New York, 7244-7252. https:

https://doi.org/10.7551/mitpress/1086.001.0001
https://doi.org/10.7551/mitpress/1086.001.0001
https://doi.org/10.1007/s13740-019-00100-8
https://doi.org/10.1007/s13740-019-00100-8
https://doi.org/10.5555/1558109.1558129
https://doi.org/10.5555/3461017.3461040
https://doi.org/10.1002/9780470058411
https://doi.org/10.1002/9780470058411
https://doi.org/10.1007/s10458-020-09460-z
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.3233/978-1-60750-606-5-635
https://doi.org/10.3233/978-1-60750-606-5-635
https://doi.org/10.1007/1-4020-8058-1_6
https://doi.org/10.1145/2438653.2438655
https://doi.org/10.1613/jair.1.12212
https://doi.org/10.1109/MC.2021.3052147
https://doi.org/10.1007/s10458-021-09540-8
https://doi.org/10.1007/s10458-021-09540-8
https://doi.org/10.1109/MC.2020.3023887
https://doi.org/10.1109/MC.2020.3023887
https://doi.org/10.1007/s10458-009-9099-4
https://doi.org/10.1007/s10458-009-9099-4
https://doi.org/10.1109/TSE.2005.140
https://doi.org/10.1109/TSE.2005.140
http://www.aaai.org/Library/AAAI/2008/aaai08-178.php
http://www.aaai.org/Library/AAAI/2008/aaai08-178.php
https://doi.org/10.1007/978-3-030-51417-4_3
http://www.fipa.org/repository/ips.html
http://www.fipa.org/repository/ips.html
https://doi.org/10.1016/j.future.2017.10.020
https://doi.org/10.1007/978-3-030-25693-7_7
https://doi.org/10.1007/978-3-030-25693-7_7
https://doi.org/10.1007/s10458-014-9251-7
https://doi.org/10.1007/s10458-014-9251-7
http://ijcai.org/Proceedings/73/Papers/027B.pdf
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.7551/mitpress/2768.003.0036
https://doi.org/10.24963/ijcai.2017/37
https://doi.org/10.14778/3484224.3484232
https://www.infoq.com/articles/microservices-in-practice/
https://www.infoq.com/articles/microservices-in-practice/
https://doi.org/10.1007/3-540-44564-1_8
https://doi.org/10.1007/3-540-44564-1_8
https://doi.org/10.4018/978-1-59140-581-8.ch005
https://doi.org/10.1145/2382570.2382575
https://doi.org/10.1145/2382570.2382575
https://doi.org/10.1145/357401.357402
https://doi.org/10.1109/ICDE.1996.492212
https://doi.org/10.1109/ICDE.1996.492212
https://doi.org/10.1109/2.735849
https://doi.org/10.1109/2.735849
https://doi.org/10.1007/BFb0026752
https://doi.org/10.1007/BFb0026752
https://doi.org/10.5555/2031678.2031687
https://doi.org/10.1145/2542182.2542203
https://doi.org/10.1609/aaai.v34i05.6215
https://doi.org/10.1609/aaai.v34i05.6215

AAMAS °23, May 29 - June 2, 2023, London, United Kingdom

[39

[40

]

//doi.org/10.1609/aaai.v34i05.6215

Benjamin Smith. 2021. Getting started with serverless for developers: Part 2 - The
business logic. https://aws.amazon.com/blogs/compute/getting-started-with-
serverless-for-developers-part-2-the-business-logic/. Accessed: 1 Mar 2023.
Danny Weyns, Andrea Omicini, and James Odell. 2007. Environment as a First
Class Abstraction in Multiagent Systems. Journal of Autonomous Agents and Multi-
Agent Systems (JAAMAS) 14, 1 (Feb. 2007), 5-30. https://doi.org/10.1007/s10458-
006-0012-0

Samuel H. Christie V, Munindar P. Singh, and Amit K. Chopra

[41] Michael Winikoff. 2007. Implementing Commitment-Based Interactions. In
Proceedings of the 6th International Joint Conference on Autonomous Agents and
MultiAgent Systems (AAMAS). IFAAMAS, Honolulu, 868-875. https://doi.org/10.
1145/1329125.1329283

[42] Michael Winikoff, Nitin Yadav, and Lin Padgham. 2018. A New Hierarchical
Agent Protocol Notation. Journal of Autonomous Agents and Multi-Agent Systems
(JAAMAS) 32, 1 (Jan. 2018), 59-133. https://doi.org/10.1007/510458-017-9373-9

https://doi.org/10.1609/aaai.v34i05.6215
https://aws.amazon.com/blogs/compute/getting-started-with-serverless-for-developers-part-2-the-business-logic/
https://aws.amazon.com/blogs/compute/getting-started-with-serverless-for-developers-part-2-the-business-logic/
https://doi.org/10.1007/s10458-006-0012-0
https://doi.org/10.1007/s10458-006-0012-0
https://doi.org/10.1145/1329125.1329283
https://doi.org/10.1145/1329125.1329283
https://doi.org/10.1007/s10458-017-9373-9

	Abstract
	1 Introduction
	2 Information Protocols Introduced
	3 The Kiko Programming Model
	3.1 Decision-Making Challenges and Solutions
	3.2 Adapter Implementation

	4 Operational Semantics
	5 Discussion
	References

