
JAI: 100018 Model 5G pp. 1–10 (col. figs: 11)

Journal of Automation and Intelligence xxx (xxxx) xxx

(

Contents lists available at ScienceDirect

Journal of Automation and Intelligence

journal homepage: www.keaipublishing.com/en/journals/journal-of-automation-and-intelligence/

Sampled-data control through model-free reinforcement learning with
effective experience replay
Bo Xiao a,∗, H.K. Lam b, Xiaojie Su c, Ziwei Wang d, Frank P.-W. Lo e, Shihong Chen a,
Eric Yeatman a

a Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
b Department of Engineering, King’s College London, London WC2B 4BG, UK
c Department of Automation, Chongqing University, Shapingba District, Chong Qing, China
d School of Engineering, Lancaster University, LA1 4YW, UK
e Hamlyn Centre, Imperial College London, London SW7 2AZ, UK

A R T I C L E I N F O

Keywords:
Reinforcement learning
Neural networks
Sampled-data control
Model-free
Effective experience replay

A B S T R A C T

Reinforcement Learning (RL) based control algorithms can learn the control strategies for nonlinear and
uncertain environment during interacting with it. Guided by the rewards generated by environment, a RL
agent can learn the control strategy directly in a model-free way instead of investigating the dynamic model
of the environment. In the paper, we propose the sampled-data RL control strategy to reduce the computational
demand. In the sampled-data control strategy, the whole control system is of a hybrid structure, in which the
plant is of continuous structure while the controller (RL agent) adopts a discrete structure. Given that the
continuous states of the plant will be the input of the agent, the state–action value function is approximated
by the fully connected feed-forward neural networks (FCFFNN). Instead of learning the controller at every
step during the interaction with the environment, the learning and acting stages are decoupled to learn the
control strategy more effectively through experience replay. In the acting stage, the most effective experience
obtained during the interaction with the environment will be stored and during the learning stage, the stored
experience will be replayed to customized times, which helps enhance the experience replay process.

The effectiveness of proposed approach will be verified by simulation examples.
1. Introduction

Reinforcement learning (RL) algorithms generally contain three
components, namely, agents, environment and reward functions. The
environment of RL is generally represented by Markov decision pro-
cesses (MDPs) framework. Through interacting with the environment,
the agent can lean the optimal behaviour (action picking) which max-
imizes the obtained rewards from the environment [1]. RL can be also
treated as the semi-supervised learning approach since the agent learns
from delayed rewards without a supervisor to guide its behaviour at
every step [2]. Well-learned RL agent is expected to pick the best
action according to the value function at different observed states of the
environment. From the optimal control perceptive, RL agent picking the
best action during the interaction with environment can be regarded as
the controller generating input to control the plant optimally.

During the decades, RL has been successfully applied to solve the
control problems, but most of those works such as [3–11] adopted RL

∗ Corresponding author.
E-mail addresses: b.xiao@imperial.ac.uk (B. Xiao), hak-keung.lam@kcl.ac.uk (H.K. Lam), suxiaojie@cqu.edu.cn (X. Su), z.wang82@lancaster.ac.uk

Z. Wang), po.lo15@imperial.ac.uk (F.P.-W. Lo), shihong.chen19@imperial.ac.uk (S. Chen), e.yeatman@imperial.ac.uk (E. Yeatman).

techniques to regulate the control system by solving the Hamilton–
Jacobi–Bellman (HJB) equation, which demands theoretical under-
standing and investigation of the optimal control system. In contrast,
recently, the model-free reinforcement learning has been adopted in
intelligent control design by only interacting with the environment
without solving the HJB equation [1,12–16]. Besides, there are also
some work utilizing reinforcement learning for control design in real
world can be found in [17–20] and the references therein. Q-learning,
as one of the most widely applied off-policy RL algorithm, is able to
find the solution to the nonlinear and uncertain environment through
interacting with environment [1,14,21]. However, the basic structure
of Q-learning requires the finite discrete states and discrete control
inputs to develop the state–action value table (Q-table), which is the
exact value function of the states and actions. This requirement restricts
the applications of Q-learning to the infinite continuous state case
since it is not possible to calculate a Q-table with infinity dimensions
numerically. An alternative solution to this problem is to use the
Please cite this article as: B. Xiao, H.K. Lam, X. Su et al., Sampled-data control through model-
Intelligence (2023) 100018, https://doi.org/10.1016/j.jai.2023.100018.

https://doi.org/10.1016/j.jai.2023.100018
Received 19 December 2022; Received in revised form 20 January 2023; Accepted

2949-8554/© 2023 The Authors. Published by Elsevier B.V. on behalf of KeAi Com
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
free reinforcement learning with effective experience replay, Journal of Automation and

24 January 2023

munications Co. Ltd. This is an open access article under the CC BY-NC-ND

https://doi.org/10.1016/j.jai.2023.100018
https://www.keaipublishing.com/en/journals/journal-of-automation-and-intelligence/
http://www.keaipublishing.com/en/journals/journal-of-automation-and-intelligence/
mailto:b.xiao@imperial.ac.uk
mailto:hak-keung.lam@kcl.ac.uk
mailto:suxiaojie@cqu.edu.cn
mailto:z.wang82@lancaster.ac.uk
mailto:po.lo15@imperial.ac.uk
mailto:shihong.chen19@imperial.ac.uk
mailto:e.yeatman@imperial.ac.uk
https://doi.org/10.1016/j.jai.2023.100018
http://creativecommons.org/licenses/by-nc-nd/4.0/

JAI: 100018

B. Xiao, H.K. Lam, X. Su et al. Journal of Automation and Intelligence xxx (xxxx) xxx
function approximator to approximate the state–action values. In this
approach, the Q-table will be represented by the approximation func-
tion which can receive the continuous states as its input. One of the
most popular choices of the approximation function is neural network
(NN) thanks to its global approximation of continuous functions at
any accuracy [22,23]. When the state–action value function is approx-
imated by NN, the value function is represented by the Q-network and
RL will turn out to be approximate reinforcement learning (ARL). In
ARL, the states of the environment and control input will be the input of
the Q-network while the estimated state–action value will be the output
of the Q-network. During the control process, the Q-network is used to
guide the agent to pick the control input according to the approximated
state–action value function.

When the state–action values are approximated by a nonlinear
function like NN, the reinforcement learning process is usually unstable
and the Q-network is apt to blow out during the training process. The
techniques of target network and experience replay are generally used
to stabilize the training process of the NN [13,14,24]. It is well-known
that the state–action value will update itself by the current reward
and the largest state–action value of the next step. When the target
network is adopted, the largest state–action value of the next step is
calculated through the target network instead of the Q-network itself.
After a certain times of state–action value updates of Q-network, the
target network will be replaced by the Q-network. The replacement
can also be soft, in [14], the soft update of the target network was
reported, in which only partial of the target network is updated by Q-
network, which further smooths the training process. The technique of
experience replay was firstly reported in [25] for RL approximated by
NN. The main idea of experience replay technique is to store the state
transitions, control input and rewards as the experience in the expe-
rience buffer (EB). Through experience replay, the experience samples
will be randomly shuffled and re-sampled out as mini-batch to train
the nonlinear approximator, thus the correlations among the sequential
data can be removed and the sample efficiency can be improved. The
technique of experience replay is essential in the control of continuous
plant, where the sequential state transitions are highly related.

In the works in most of the literatures such as [13,14], the learning
and acting are integrated together, the update of state–action values
takes place at every step and all the recent transitions are recorded in
the EB. However, for the episodic cases, it might not be the best idea
to train the nonlinear approximator once a step. It helps improve the
training process by customized times of experience replay since more
freedom has been introduced. On the other hand, the dynamic model
of environment for the RL agent sometimes is valid only for the specific
operation domain. However, due to the exploration of Q-learning and
non-optimal actions from under-learnt agent, it is unavoidable for the
controller to drive the system into some undesired states. In this case,
it is not efficient to store all the transitions during simulation as ex-
perience. Furthermore, the states far away from the operation domain
generally do not make sense in the real applications. When NN is used
to approximate the value function, those outliers rise the unnecessary
computational cost and make the approximating NN even more difficult
to converge through gradient descend. To address the aforementioned
issues, we separate the acting and learning into two independent stages
for every control episode. In the acting stage, the agent is only to drive
the transitions in system to experience different states, when the states
are too far away from the valid operation domain, the experience will
be discarded and will not be stored in the EB. During the acting stage,
the current state, next state, control input and reward will be recorded
into the EB. During the learning stage, the Q-network will be updated
through the experience recorded during the acting process. Given that
the learning and acting stages are decoupled, the number of experience
replay times for one episode can be chosen freely, which helps improve
the training efficiency. This claim will be verified by the simulation
examples.

When the digital controller is considered to be applied to control

the continuous plant, the whole closed-loop control system turns out to

2

be a hybrid system, where the plant is continuous while the controller
is discrete. In this case, sampled-data control strategy can be a good
candidate to reduce the control cost and make the digital control
possible [26]. Due to zero-order-hold (ZOH) process, the control input
from the sampled-data controller is of the form of staircase signal. To
deal with the hybrid dynamics in the sampled-data control systems,
in the context of intelligent control, the input-delay approach [27],
equivalent jump system [28], discretization approach [29], digital re-
design [30,31] and the exact discrete-time design approach [32] can be
used for stability analysis and control design. In addition, as mentioned
above, the RL agent based on Q-learning needs to check the state–
action values for all the possible actions for the current state before
it can pick out the action. In the sampled-data control strategy, the
control input generated by the RL agent will be held for a period of
time, thus the frequency of action picking can be reduced during the
control process. Therefore, the computational demand of the controller
application can be reduced significantly especially when the size of Q-
network and action set are huge. In this paper, the sampled-data control
problem will be reformed into MDPs and the RL agent will be trained
to fulfil the control objectives by solving the MDPs through interacting
with the environment. The contribution and novelty of the paper can
be summarized as follows:

1. The control problem of continuous plant is formed as MDPs and
RL algorithm is proposed and improved to train the RL con-
troller purely from interactions with the environment without
investigating system dynamic.

2. Acting and learning stages in reinforcement learning are de-
coupled in the proposed algorithm to have more freedom to
the experience replay and help enhance the experience replay
process.

3. The most effective experience is stored in the EB, which saves
the buffer memory and facilitates the learning process.

4. Sampled-data control strategy is proposed to control the contin-
uous plant using discrete controller, which benefits the digital
application and helps reduce the computational demand of the
control applications.

The rest of the paper is organized as follows: In Section 2, the pre-
liminaries of MDPs, sampled-data control system, Q-learning, adaptive
𝜖-greedy policy, ARL will be introduced. In Section 3, the RL algorithm
of the sampled-data control strategy will be discussed in details. In
Section 4, two simulation examples are presented to verify the proposed
control strategy. In Section 5, a conclusion is drawn.

2. Preliminaries

In this section, the MDPs, sampled-data control system, Q-learning,
adaptive 𝜖-greedy policy, ARL will be introduced.

2.1. Markov decision processes

An MDP is a mathematical framework based on the state set 
and the related finite action set  . If and only if the state 𝐱(𝑡) in
 captures all the relative information from history, the state 𝐱(𝑡) is
Markov. The transition function between two Markov states can be
defined as: 𝑓 ∶  ×  →  . In addition, an Markov reward process
(MRP) is defined as the tuple ⟨ , 𝑓 , 𝑟, 𝛾⟩, where 𝑟 is the scalar reward
function and 𝛾 is the discount factor. The reward function is defined as
𝑟 ∶ × × → R. 𝛾 ∈ [0, 1] determines how we value the importance of
current rewards and future rewards. 𝛾 also stabilizes the total return in
infinite timestep cases. The MRP with control input/action is defined as
an MDP: ⟨ , , 𝑓 , 𝑟, 𝛾⟩. The objective of RL agent is to find the optimal
control policy which maximizes the accumulated rewards (return) 𝑅.
Considering the observed states 𝐱(𝑡) ∈  and admissible control input
𝐮(𝑡) ∈  , the following sampled-data control system can be formed into
MDPs. To evaluate the value function, the RL agent will try to solve the
MDP. When the value function is obtained, the RL agent can pick the

control input according to it, thus to fulfil the control objective.

JAI: 100018

B. Xiao, H.K. Lam, X. Su et al. Journal of Automation and Intelligence xxx (xxxx) xxx

𝐮

Fig. 1. Diagram of the sampled-data based control system.
2.2. Sampled-data control system

A sampled-data control system is generally formed by four compo-
nents, namely the continuous nonlinear plant, RL agent (controller),
ZOH and the sampling part. The structure of sampled-data control
system can be viewed in Fig. 1. In the figure, the sampled-data control
design is combined the RL algorithm to better elaborate the mechanism
of the control system.

It is noteworthy that only the sampled states of the nonlinear plant
are observed by the RL controller to generate the sampled control input
and the sampled control input will be held by the ZOH to control the
continuous nonlinear plant. The dynamics of the sampled-data control
system can be described as following:
{

𝐱̇(𝑡) = 𝐀(𝐱(𝑡))𝐱(𝑡) + 𝐁(𝐱(𝑡))𝐮(𝑡)
𝐮(𝑡) = 𝐮(𝑡𝜔), ∀𝑡, 𝑡𝜔 < 𝑡 ≤ 𝑡𝜔+1,

(1)

where 𝐱(𝑡) ∈  ⊂ R𝑛 is the state variable of the nonlinear plant,
(𝑡) ∈  ⊂ R𝑚 is the sampled control input. 𝐀(𝐱(𝑡)) ∈ R𝑛×𝑛 is the

nonlinear system matrix while 𝐁(𝐱(𝑡)) ∈ R𝑛×𝑚 is the nonlinear input
matrix. The sampled-data RL controller is adopted to fulfil the control
objective, which takes the sampled state of the nonlinear plant 𝐱(𝑡𝜔)
as input, and outputs 𝐮(𝑡𝜔) as the control input. 𝑡𝜔 = 𝑡 − 𝜏(𝑡), for
𝑡𝜔 < 𝑡 ≤ 𝑡𝜔+1, 0 < 𝜏(𝑡) < ℎ𝑠, where ℎ𝑠 is the sampling interval.

From (1), the next sampled state 𝐱(𝑡𝜔+1) of the continuous system
can be calculated as:

𝐱(𝑡𝜔+1) = ∫

𝑡𝜔+1

𝑡𝜔
𝐀(𝐱(𝑡))𝐱(𝑡) + 𝐁(𝐱(𝑡))𝐮(𝑡𝜔)𝑑𝑡. (2)

In (2), it can be found that 𝐱(𝑡𝜔+1) depends only on the sampled
state 𝐱(𝑡𝜔) and 𝐮(𝑡𝜔) instead of the full history of 𝐱(𝑡), which makes
𝐱(𝑡𝜔) Markov. Associated with proper designed discount factor 𝛾 and
reward function 𝑟, the sampled-data control problem can be built as
MDPs problem.

Remark 1. The dynamic model is used as the environment and only
used to generate the state transitions and rewards. The agent learns
to control the nonlinear plant directly through interactions with the
dynamic model instead of investigating the dynamic model.

Notation. To make concise of notations, in those cases without ambi-
guity, the sampled states and control input 𝐱(𝑡𝜔), 𝐱(𝑡𝜔+1) and 𝐮(𝑡𝜔) will
be written as 𝐱𝜔, 𝐱𝜔+1 and 𝐮𝜔, respectively.

2.3. Q-learning

In RL, the behaviour of the RL agent is determined by the control
policy defined as 𝜋(𝐮|𝐱) = 𝑃 (𝐮 = 𝐮|𝐱 = 𝐱). The policy 𝜋(𝐮|𝐱)
𝜔 𝜔

3

represents the probability distribution of the control input 𝐮𝜔 according
to the observed system state 𝐱𝜔. 𝑟𝜔 is the reward obtained after yielding
the control input during the 𝜔-th timestep. As shown in Fig. 1, the RL
agent takes the observed state 𝐱𝜔 as input and gives out the control
input 𝐮𝜔, in the same time, receives the reward 𝑟𝜔 at timestep 𝜔.
With the reward function, the state–action value 𝑄(𝐱𝜔,𝐮𝜔) in RL is
defined as the expectation of return 𝑅𝜔 which starting with state 𝐱𝜔
and control input 𝐮𝜔. The state–action value function under policy 𝜋
can be calculated as following:

𝑄𝜋 (𝐱,𝐮) = E𝜋 [𝑅𝜔|𝐱𝜔 = 𝐱,𝐮𝜔 = 𝐮]
= E𝜋 [𝑟𝜔 + 𝛾𝑟𝜔+1 + 𝛾2𝑟𝜔+2 +⋯ |𝐱𝜔 = 𝐱,𝐮𝜔 = 𝐮]

= E𝜋 [
∞
∑

𝑘=0
𝛾𝑘𝑟𝜔+𝑘|𝐱𝜔 = 𝐱,𝐮𝜔 = 𝐮] (3)

and the state–action value function can be also rewritten as the Bellman
equation (BE):

𝑄𝜋 (𝐱𝜔,𝐮𝜔) = E𝜋 [𝑟𝜔 + 𝛾E𝜋 [𝑄𝜋 (𝐱𝜔+1,𝐮𝜔+1)]]. (4)

The goal of Q-learning is to find the optimal control policy 𝜋, which
maximizes the state–action value function. The optimal state–action
value function can be viewed as following:

𝑄∗(𝐱,𝐮) = max
𝜋

E𝜋 [𝑟𝜔 + 𝛾𝑟𝜔+1 + 𝛾2𝑟𝜔+2

+ … |𝐱𝜔 = 𝐱,𝐮𝜔 = 𝐮]. (5)

To maximize the return obtained by the RL agent, the Q-learning
algorithm updates the state–action values according to the reward
function in an off-policy style as:

𝑄(𝐱𝜔,𝐮𝜔) ← (1 − 𝛼)𝑄(𝐱𝜔,𝐮𝜔)

+ 𝛼(𝑟𝜔 + 𝛾 max
𝐮𝑘

{𝑄(𝐱𝜔+1,𝐮𝑘)}), (6)

where 𝛼 ∈ (0, 1] is the learning rate, which determines the learning
speed of Q-learning.

To ensure the Q-learning explores enough along without loss of
convergence, the adaptive 𝜖-greedy policy is adopted in this paper.
To adaptively change the value of the exploration rate 𝜖, we start
from large value of 𝜖 and then reduce it gradually after episodes being
completed.

𝐮𝜔 =

{

arg max
𝐮𝑘

{𝑄(𝐱𝜔,𝐮𝑘)}, with probability: 1 − 𝜖,

random 𝐮𝑘, with probability: 𝜖.
(7)

The Q-learning algorithm is summarized in Algorithm 1.

JAI: 100018

B. Xiao, H.K. Lam, X. Su et al. Journal of Automation and Intelligence xxx (xxxx) xxx

3

i
a
t
c
i
t
1
l
t
d
e
t
t
a

w
a
c
g
𝜃
b
w

Algorithm 1 Algorithm for Q-learning
1: Set the state-action values randomly
2: for Every episode do
3: Initialise state 𝐱0
4: for Current timestep 𝜔 do
5: Pick action 𝐮𝜔 through 𝜖-greedy policy and observe the next

state 𝐱𝜔+1
6: Update 𝑄(𝐱𝜔,𝐮𝜔) ← (1 − 𝛼)𝑄(𝐱𝜔,𝐮𝜔) + 𝛼(𝑟𝜔 +

𝛾 max
𝐮𝑘

{𝑄(𝐱𝜔+1,𝐮𝑘)})
7: 𝐱𝜔 ← 𝐱𝜔+1
8: end for
9: end for

2.4. Approximate reinforcement learning

When the state set  and action set  are too large, calculation
of the exact state–action value function 𝑄(𝐱,𝐮) is difficult and might
be impossible in many cases. One alternative is using function approx-
imator to approximate the exact state–action value function. As an
universal approximator, a 3-layer fully connected feed-forward neural
network (FCFFNN) can be used with nonlinear activation functions for
the Q-network to approximate 𝑄(𝐱,𝐮) [23]. When the value function
is approximated, RL will become ARL. The structure of the 3-layer
NN used to represent the state–action value function can be viewed
in Fig. 2.

In Fig. 2, the state 𝐱 = [𝑥1, 𝑥2,… , 𝑥𝑛]𝑇 and action 𝐮 = [𝑢1, 𝑢2,… , 𝑢𝑚]𝑇
are the input of the NN while the estimated state–action value function
𝑄̂(𝐱,𝐮) is the output of the NN. 𝑎𝑓1(.) is the activation function for
the hidden layer, which is generally a nonlinear function to grant
nonlinear approximation ability. 𝑎𝑓2(.) is the activation function for the
output layer, which can be a linear function. 𝑤(1)

11 ,… , 𝑤(1)
ℎ,𝑛+𝑚, 𝑏

(1)
1 ,… , 𝑏(1)ℎ

are the weights and biases between the input and hidden layers. The
number of parameters between the input and hidden layers is easy to
calculate and it is ℎ×(𝑛+𝑚+1). In the same way, 𝑤(2)

11 ,… , 𝑤(2)
1ℎ , 𝑏

(2) are the
weights and bias between the hidden and output layers. The number of
parameters between the hidden layer and output layers is ℎ+1 and the
total number of parameters in the whole network is ℎ × (𝑛+𝑚+ 2) + 1.

The output of the NN is calculated in a feed-forward way. The
output of the 𝑗th hidden node, 𝑗 = 1,… , ℎ, can be calculated as:

𝑔𝑗 = 𝑎𝑓1(
𝑛
∑

𝑖=1
𝑥𝑖𝑤

(1)
𝑗𝑖 +

𝑚
∑

𝑖=1
𝑢𝑖𝑤

(1)
𝑗,𝑛+𝑖 + 𝑏(1)𝑗), (8)

and the estimated state–action value, which is the final output of the
NN after is calculated as:

𝑄̂(𝐱,𝐮) = 𝑎𝑓2(
ℎ
∑

𝑖=1
𝑔𝑖𝑤

(2)
1𝑖 + 𝑏(2)). (9)

Along with the Q-network approximating the value function, the
target network in the same structure with the Q-network. To lighten
the notation burden, the set of whole parameters of the Q-network will
be written as 𝜃𝑄 and the set of whole parameters of the target network
will be as 𝜃𝑄′ in the following context. The updated approximation of
the state–action value for the current state 𝐱𝜔 and control input 𝐮𝜔
is written as 𝑄̂(𝐱𝜔,𝐮𝜔|𝜃𝑄). The Q-network implicitly determines the
control policy, in which the control input 𝐮𝑘 is generated according
to the observation 𝐱𝜔. The sampled control input will be held for a
period of the sample interval and drives the current sampled state 𝐱𝜔
to the next sampled state 𝐱𝜔+1, also reward 𝑟𝜔 will be received from
the environment according to the reward function. Then the target
network takes the state 𝐱𝜔+1 and the control input set  as the input
to calculate the output max𝐮𝑘{𝑄̂(𝐱𝜔+1,𝐮𝜔|𝜃𝑄

′)} to estimate largest state–
action value for the next state 𝐱𝜔+1. When max𝐮𝑘{𝑄̂(𝐱𝜔+1,𝐮𝜔|𝜃𝑄

′)} and
𝑟𝜔 are available, the state–action value 𝑄̂(𝐱𝜔,𝐮𝜔|𝜃𝑄) of the current
state–action pair can be updated according to the target network and
obtained reward. The algorithm for updating of the weights of the NN
is presented in detail in the next section.
 u

4

Fig. 2. Structure of the 3-layer fully connected feed-forward neural network.

. Control strategy learning algorithm

The update of weights of the target network and Q-network through
nteraction with the environment is summarized in Algorithm 2 and the
lgorithm is divided into two parts. The first part of the algorithm is
he acting stage. In the acting stage, the agent will follow the current
ontrol policy indicated by the current Q-network to generate control
nput. The control input drives the current sample state 𝐱𝜔 to transit
o the next sample state 𝐱𝜔+1. Unlike the traditional way in [12–
4], in which the agent learns after every state transition, there is no
earning process takes place in the acting stage. In the acting stage,
he requirements on current and next states will be established to
etermine whether the state transition will be stored as part of the
xperience. When the dynamic model of the environment is available,
he state transition along with the control input and reward given by
he environment will be recorded into the EB only if the current state
nd the next state both satisfy the requirements.

In the learning stage, the weights of target network and Q-network
ill be updated through the effective experience replay. Since the
cting and learning phases are decoupled, it is possible to perform a
ustomized number of experience replay at the learning stage. The tar-
et network is helpful to adaptively update and stabilized the weights
𝑄 in the Q-network . The weights set 𝜃𝑄′ of the target network will
e frozen to constants for 𝑇𝑄 times of updating of the Q-network. The
eights set 𝜃𝑄′ will be updated by 𝜃𝑄′ and 𝜃𝑄 softly after 𝑇𝑄 times
pdating of 𝜃𝑄.

JAI: 100018

B. Xiao, H.K. Lam, X. Su et al. Journal of Automation and Intelligence xxx (xxxx) xxx

2

t

w

d
d
e
t
s

𝐽

w
n
t
t
t
m

n

𝜃

w
t

4

p

4

t
l

𝑚

w
i
i

r

s
s
p

t

b

I

𝐀

Algorithm 2 Algorithm for the effective experience replay
1: Choose the same structure for the target network and Q-network
2: Randomly initialize the weights of target network and Q-network by the

same parameters 𝜃𝑄0 :
𝜃𝑄′

← 𝜃𝑄0 , 𝜃𝑄 ← 𝜃𝑄0

3: Initialize the experience buffer (EB)
4: Initialize the control input set 𝐮
5: Choose the constants: Max_Episode, Max_Time_Step, Max_Replay_Times,

𝑇𝑄, 𝑁 , 𝜏
6: Initialize the counter 𝐶𝑄 = 0
7: for Episode = 1:Max_Episode do
8: Initialize 𝜖 for the 𝜖-greedy exploration
9: Initialize 𝛼𝑄 for adaptive learning

10: Generate control input through the 𝜖-greedy policy determined by the
current Q-network

11: Acting Stage:
12: for t = 1:Max_Time_Step do
13: Generate control input 𝐮𝑡 through the 𝜖-greedy policy determined

by the current Q-network
14: Hold control input for a period of time to observe the reward 𝑟𝑡

and new state 𝐱𝑡+1
15: if 𝐱𝑡 and 𝐱𝑡+1 both satisfy the requirements then
16: Store transition (𝐱𝑡,𝐮𝑡, 𝑟𝑡, 𝐱𝑡+1) in the EB
17: end if
18: end for
19: Learning Stage:
20: for Experience_Replay_Times = 1:Max_Replay_Times do
21: Randomly sample a mini-batch of 𝑁 transitions (𝐱𝑖,𝐮𝑖, 𝑟𝑖, 𝐱𝑖+1) from

the EB
22: calculate the Q-target as:

𝑄̄𝑖 = 𝑟𝑖 + 𝛾 max
𝐮𝑘

{𝑄̂(𝐱𝑖+1,𝐮𝑘|𝜃𝑄
′)}

23: Calculate the cost function:

𝐽 (𝜃𝑄) = 1
2𝑁

𝑁
∑

𝑖=1
(𝑄̄𝑖 − 𝑄̂(𝐱𝑖,𝐮𝑖)|𝜃𝑄)2

24: Calculate the mini-batch gradient:

∇𝜃𝑄𝐽 (𝜃𝑄) = − 1
𝑁

𝑁
∑

𝑖=1
(𝑄̄𝑖 − 𝑄̂(𝐱𝑖,𝐮𝑖)|𝜃𝑄)

𝜕𝑄̂(𝐱𝑖,𝐮𝑖|𝜃𝑄)
𝜕𝜃𝑄

5: Update the weights of the Q-network:

𝜃𝑄 ← 𝜃𝑄 − 𝛼𝑄∇𝜃𝑄𝐽 (𝜃𝑄)

,
𝐶𝑄 ⟵ 𝐶𝑄 + 1

26: if 𝐶𝑄 ÷ 𝑇𝑄 = 0 then
27: Update the weights of the target network:

𝜃𝑄′
← (1 − 𝜏)𝜃𝑄′ + 𝜏𝜃𝑄

28: end if
29: end for
30: end for

In the update of weights 𝜃𝑄, the target value for the 𝜔-th sample in
he supervised learning of neural network 𝑄̄𝜔 is defined as

𝑄̄𝜔 = 𝑟𝜔 + 𝛾 max
𝐮𝑘

{𝑄̂(𝐱𝜔+1,𝐮𝑘|𝜃𝑄
′
)}, (10)

here 𝜃𝑄′ is the weights of the target neural network.
To obtain more accurate estimated gradient, the mini-batch gradient

ecent approach can be applied instead of the stochastic gradient
escent (SGD) approach. In the mini-batch gradient descend, 𝑁 experi-
nce samples from the EB are taken to calculate the estimated gradient
o minimize the cost function. The cost function is chosen as the mean
quare error (MSE). The definition of MSE can be viewed as following:

(𝜃𝑄) = 1
𝑁
∑

(𝑄̄𝑖 − 𝑄̂(𝐱𝑖,𝐮𝑖)|𝜃𝑄)2. (11)

2𝑁 𝑖=1

5

Fig. 3. Mass–spring–damping system.

To minimize the cost function, the mini-batch gradient of weights in
cost function 𝐽 (𝜃𝑄) is calculated as:

∇𝜃𝑄𝐽 (𝜃
𝑄) = − 1

𝑁

𝑁
∑

𝑖=1
(𝑄̄𝑖 − 𝑄̂(𝐱𝑖,𝐮𝑖)|𝜃𝑄)

𝜕𝑄̂(𝐱𝑖,𝐮𝑖|𝜃𝑄)
𝜕𝜃𝑄

. (12)

Then, the weights 𝜃𝑄 in the NN can be updated according to the
obtained mini-batch gradient:

𝜃𝑄 ← 𝜃𝑄 − 𝛼𝑄∇𝜃𝑄𝐽 (𝜃
𝑄), (13)

here 𝛼𝑄 is a small real number working as the learning rate of the
eural network. 𝛼𝑄 does not have to be a constant during the whole
raining process. Using gradually reduced value of 𝛼𝑄 help accelerate
he training process in the early episodes and stabilize the network in
he late episodes. It is also worth mentioning that when 𝑁 = 1, the
ini-batch gradient descent will be reduced to SGD.

After every 𝑇𝑄 times updating of 𝜃𝑄, the weights of the target
etwork 𝜃𝑄′ will be updated by 𝜃𝑄 softly [14] as follows:
𝑄′

← (1 − 𝜏)𝜃𝑄
′
+ 𝜏𝜃𝑄, (14)

here 𝜏 ∈ (0, 1] is a constant determining the updating speed of the
arget network.

. Simulation examples

In the simulation example section, there are two practical examples
rovided to verify the effectiveness of the proposed approach.

.1. Mass–spring–damping system

Considering the mass–spring–damping system as shown in Fig. 3,
he dynamic is given in the following equation according to Newton’s
aw of motion [33]:

𝑥̈ + 𝐹𝑓 + 𝐹𝑠 = 𝑢(𝑡), (15)

here 𝐹𝑓 = 𝑐𝑥̇ is the resistive force due to friction and 𝐹𝑠 = 𝑘(1+𝑎2𝑥2)𝑥
s the restoring force of the spring, in which 𝑘 and 𝑎 are constants. 𝑢(𝑡)
s the external force to control the mass–spring damping system.

In the mass–spring damping system simulation, the parameters
epresentation and setting can be viewed in Table 1.

Then operation domain of the mass–spring damping system is con-
idered for 𝑥1(𝑡) in [−3, 3] and 𝑥2(𝑡) in [−5, 5] and the state transitions
atisfy 𝑥1(𝑡) in [−3, 3] and 𝑥2(𝑡) in [−10, 10] will be stored in the EB as
art of experience.

The control objective in this example is to drive the position and
he velocity of the system both to 0, i.e., 𝐱0 = 𝟎.

Considering 𝐱(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡)]𝑇 = [𝑥, 𝑥̇]𝑇 , the dynamics in (15) can
e rewritten in the state space form:

⎧

⎪

⎨

⎪

⎩

𝐱̇(𝑡) = 𝐀(𝐱(𝑡))𝐱(𝑡) + 𝐁𝑢(𝑡𝜔),
𝑢(𝑡) = 𝑢(𝑡𝜔), ∀𝑡, 𝑡𝜔 < 𝑡 ≤ 𝑡𝜔+1,
𝐱(𝑡𝜔+1) = ∫ 𝑡𝜔+1

𝑡𝜔
𝐀(𝐱(𝑡))𝐱(𝑡) + 𝐁𝑢(𝑡𝜔)𝑑𝑡.

(16)

n (16):

(𝐱(𝑡)) =
[

0 1
− 𝑘 (1 + 𝑎2𝑥 (𝑡)2) − 𝑐

]

,

𝑚 1 𝑚

JAI: 100018

B. Xiao, H.K. Lam, X. Su et al. Journal of Automation and Intelligence xxx (xxxx) xxx

𝐁

a
s

𝑟

a
p

i
o
r

Table 1
Table of parameters and their values.

Parameter Symbol Value

Mass 𝑚 1 kg
Harding spring constant 1 𝑘 6
Harding spring constant 2 𝑎 0.3
Friction constant c 2
Discount factor 𝛾 0.99
Sampling interval ℎ𝑠 0.1s
Activation function 1 𝑎𝑓1 logsig
Activation function 2 𝑎𝑓2 linear
Number of weights in NN |𝜃| 50
Mini-batch number 𝑁 12
Range of action space [min{ },max{ }] [−20, 20]
Size of action set | | 10
Number of episodes Max_Episodes 500
Number of time-steps Max_Time_Step 500
Experience replay times Max_Replay_Times 500
Network update threshold 𝑇𝑄 200
Soft update parameter 𝜏 0.5
Learning rate of NN 𝛼𝑄 min(max(0.005, 1

episode), 0.05)
Exploration rate 𝜖 min(0.5, 50

episode)
t
I
t
s

a
[
t
s

R
i
u
b
w
e
a
n
a

i
v
m
v

Fig. 4. Learning performance of the mass–spring damping system.

=

[

0
1
𝑚

]

.

To form the control problem into MDPs, the discount factor 𝛾 is set
s 0.99 and reward function for the 𝜔-th action at the 𝜔-th sampled
tate 𝐱(𝑡𝜔) is set as:

𝜔 =

{

1, if ‖𝑥1(𝑡𝜔+1) − 𝑥𝑜1‖2 ≤ 0.1

0, if ‖𝑥1(𝑡𝜔+1) − 𝑥𝑜1‖2 > 0.1
. (17)

The reward function is defined to guide the learning of sampled-data
RL controller. The reward function is equivalent to require the sampled-
data RL controller to drive state of the control system to the target as
fast as possible.

To guarantee that the RL agent explores the state space as much
as possible, the initial state of the mass–spring damping system is
chosen randomly for every episode: 𝐱1(0) is chosen randomly from
[−3, 3] and 𝐱2(0) is chosen randomly from [−5, 5]. Since the initial states
are randomly picked, the simulations have been conducted 10 times
nd the average reward obtained in episodes is treated as the learning
erformance. The learning performance can be viewed in Fig. 4.

Since the maximum number of time step in one episode as shown
n Table 1 is 500, therefore, the theoretical maximum reward can be
btained in one episode is 500. From Fig. 4, it can be found that the
eward obtained in one episode is approaching the optimum in 500

episodes, which is an indicator that the sampled-data RL controller is
optimized during the learning.

To have a better understanding of state-time relationship, the state
response of the mass–spring damping system can be viewed in Figs. 5
 a

6

Fig. 5. State response of 𝑥1(𝑡) and 𝑥2(𝑡) for the mass–spring damping system. In the
op sub-figures, the time responses of 𝑥1(𝑡) are demonstrated under different time scale.
n the below sub-figures, the time-responses of 𝑥2(𝑡) are demonstrated under different
ime scale. The dashed lines in the top left sub-figure are the reward threshold in this
imulation.

nd 6. In the state response simulation, the initial state is chosen as
𝑥1(𝑡), 𝑥2(𝑡)]𝑇 = [2.5, 1]𝑇 with sampling interval as 0.1s. It can be found
hat the RL agent is able to stabilize the system quickly (within 1 sec)
ubject to reasonable control input (within ±20 N).

emark 2. For the purpose of comparison, the learning algorithm
n [12–14] with integrated acting and learning processes is conducted
nder the same parameters setting as in Table 1. The simulations have
een conducted 10 times as before. As shown in Fig. 7, both algorithms
orked well in this example. Although, the learning speed for the first
pisodes is slightly higher for the proposed algorithm, no significant
dvantage of the proposed algorithm is observed. Nevertheless, in the
ext example, we will show the learning advantage of the proposed
lgorithm.

In addition, the sampled-data RL controller under different sampling
ntervals is investigated to show the effect of different sampling inter-
als on control performance. The phase portraits of the dynamics of
ass–spring damping system can be viewed in Fig. 8. It can be clearly

iewed that in the figure, all points in vector field (represented by blue
rrows) swirl into the target state. Also, when the sampling interval

JAI: 100018

B. Xiao, H.K. Lam, X. Su et al. Journal of Automation and Intelligence xxx (xxxx) xxx
Table 2
Table of parameters and their values.

Parameter Symbol Value

Gravitational acceleration 𝑔 9.8 m/s2

Mass of the pendulum 𝑚𝑝 1 kg
Mass of the cart 𝑚𝐶 18 kg
Length of the pendulum 2𝑆 1 m
Discount factor 𝛾 0.99
Sampling interval ℎ𝑠 0.05s
Activation function 1 𝑎𝑓1 logsig
Activation function 2 𝑎𝑓2 linear
Number of weights in NN |𝜃| 98
Mini-batch number 𝑁 12
Range of action space [min{ },max{ }] [−100, 100]
Size of action set | | 10
Number of episodes Max_Episodes 500
Number of time-steps Max_Time_Step 2400
Experience replay times Max_Replay_Times 1500
Network update threshold 𝑇𝑄 200
Soft update parameter 𝜏 0.5
Learning rate of NN 𝛼𝑄 min(max(0.005, 1

episode), 0.05)
Exploration rate 𝜖 min(0.5, 50

episode)
𝑥

w

d
o
𝑢
s
c
s

a

Fig. 6. Control input for the sampling interval 0.1 s. In the bottom sub-figure, the
control input will be held as constant for 0.1s.

Fig. 7. Learning performance comparison for the decoupled method and the integrated
method. The blue curve represents the learning performance of mass–spring damping
system under decoupled learning algorithm. The red curve represents the learning
performance of mass–spring damping system under integrated learning algorithm.

is small (0.02 s), the phase flow (represented by red curves) follows
the vector field smoothly and swirls into the target state from different
initial start state quickly. The simulation in phase space has been shown
7

in the top left sub-figure. In the case that sampling interval is large
(0.2 s), the phase flow fluctuates more in the vector field and detours a
little to the target state from different initial states. The simulation in
phase space has been shown in the bottom right sub-figure.

4.2. Inverted pendulum

In this section, we will consider the inverted pendulum on the cart
as shown in Fig. 9. The dynamic of the inverted pendulum control
system can be viewed in (18).

1̈(𝑡) =
𝑔 sin(𝑥1(𝑡)) − 𝑎𝑚𝑝𝑆𝑥̇1(𝑡)2 sin(2𝑥1(𝑡))∕2

4𝑆∕3 − 𝑎𝑚𝑝𝑆cos2(𝑥1(𝑡))

−
𝑎cos(𝑥1(𝑡))𝑢(𝑡)

4𝑆∕3 − 𝑎𝑚𝑝𝑆cos2(𝑥1(𝑡))
(18)

here 𝑎 = 1
𝑚𝑝+𝑀𝑐

, 𝑚𝑝 is the mass of the pendulum, 𝑀𝑐 is the mass of
the cart, the length of the pendulum is 2𝑆, and 𝑢(𝑡) is the force applied
on the cart. The parameter definitions and values in (18) can be viewed
in Table 2.

In this example, the inverted pendulum system is controlled through
the state feedback approach with the control objective that to drive the
all states to 0, i.e. 𝐱𝑜 = 𝟎. Instead of learning the exact control input
irectly, the RL agent in this example is to learn the feedback gain 𝑘(𝑡𝜔)
f the inverted pendulum system and the control input is defined as
(𝑡𝜔) = 𝑘(𝑡𝜔) ⋅ (𝑥𝑜1−𝑥1(𝑡𝜔)). To explore more in the state space, the initial
tate 𝑥1(𝑡) of the inverted pendulum for every episode is randomly
hosen from [− 5𝜋

12 ,
5𝜋
12]. The operation domain of the inverted pendulum

ystem is considered for 𝑥1(𝑡) in [− 5𝜋
12 ,

5𝜋
12] and 𝑥2(𝑡) in [−10, 10]. The

states satisfy 𝑥1(𝑡) in [− 6𝜋
12 ,

6𝜋
12] and 𝑥2(𝑡) in [−10, 10] will be stored in

the EB as part of experience.
let 𝐱(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡)]𝑇 and the dynamic equation can be rewritten

s the state-space form:

⎧

⎪

⎨

⎪

⎩

𝐱̇(𝑡) = 𝐀(𝐱(𝑡))𝐱(𝑡) + 𝐁(𝐱(𝑡))𝑢(𝑡),
𝑢(𝑡) = 𝑢(𝑡𝜔), ∀𝑡, 𝑡𝜔 < 𝑡 ≤ 𝑡𝜔+1,
𝐱(𝑡𝜔+1) = ∫ 𝑡𝜔+1

𝑡𝜔
𝐀(𝐱(𝑡))𝐱(𝑡) + 𝐁(𝐱(𝑡))𝑢(𝑡𝜔)𝑑𝑡.

(19)

where

𝐀(𝐱(𝑡)) =
[

0 1
𝑓1(𝐱(𝑡)) 0

]

,

𝐁(𝐱(𝑡)) =
[

0
𝑓2(𝐱(𝑡))

]

.

𝑓1(𝐱(𝑡)) and 𝑓2(𝐱(𝑡)) in 𝐀(𝐱(𝑡)) and 𝐁(𝐱(𝑡)) are defined as:

𝑓1(𝐱(𝑡)) =
𝑔 − 𝑎𝑚𝑝𝑆𝑥2(𝑡)2cos(𝑥1(𝑡))

2

(sin(𝑥1(𝑡)))

4𝑆∕3 − 𝑎𝑚𝑝𝑆cos (𝑥1(𝑡)) 𝑥1(𝑡)

JAI: 100018

B. Xiao, H.K. Lam, X. Su et al. Journal of Automation and Intelligence xxx (xxxx) xxx

a
a

𝑟

Fig. 8. Phase portrait of 𝑥1(𝑡) and 𝑥2(𝑡) for the mass–spring damping system from different initial states. The blue arrows represent the direction and magnitude of the vector
field. The red curves represent the phase flow. The initial states of trajectories are denoted by black circles. The sampling intervals for the sub-figure on the top left, top right,
bottom left, bottom right are 0.02 s, 0.05 s, 0.1 s and 0.2 s, respectively.
Fig. 9. Inverted pendulum system.

Fig. 10. Learning performance of the inverted pendulum system.

and

𝑓2(𝐱(𝑡)) =
−𝑎cos(𝑥1(𝑡))

4𝑆∕3 − 𝑎𝑚𝑝𝑆cos2(𝑥1(𝑡))
.

To form the control problem into MDPs, the discount factor 𝛾 is set
s 0.99 and the reward function for the 𝜔-th action at state 𝐱𝑡𝜔 is set
s:

𝜔 =

⎧

⎪

⎨

⎪

1, if ‖𝑥1(𝑡𝜔+1) − 𝑥𝑜1‖2 ≤
1
36

𝜋

0, if ‖𝑥 (𝑡) − 𝑥𝑜‖ > 1 𝜋
, (20)
⎩

1 𝜔+1 1 2 36

8

Fig. 11. State response of 𝑥1(𝑡) and 𝑥2(𝑡) for the inverted pendulum system. In the top
sub-figures, the time responses of 𝑥1(𝑡) are demonstrated under different time scale.
In the below sub-figures, the time-responses of 𝑥2(𝑡) are demonstrated under different
time scale. The dashed lines in the top left sub-figure are the reward threshold in this
simulation.

which demonstrates that only the states very close to target state will
receive the reward while others will not, thus the sampled-data RL
controller will drive the state of control system to the target as fast
as possible.

Since the initial position of the inverted pendulum is randomly
picked, which could affect the learning process. The learning of the
sampled-data control strategy is conducted 10 times and the average
learning curve can be viewed in Fig. 10.

In Fig. 10, the blue curve represents the rewards obtained in one
episode while the dashed black line represents the possible maximum
rewards could be obtained in one episode. Since the maximum number
of time step in one episode as shown in Table 2 is 2400, therefore, the
theoretical maximum rewards can be obtained in one episode is 2400.
From Fig. 10, it can be found that the reward obtained in one episode
is approximating the optimum in 500 episodes, which is an indicator
that the sampled-data controller is optimized during the learning.

As in the first example, to show the state-time relationship, the time
response and the control input of the inverted pendulum system can be

JAI: 100018

B. Xiao, H.K. Lam, X. Su et al. Journal of Automation and Intelligence xxx (xxxx) xxx

r

i
a
(
t
t
o
e

f

Fig. 12. Control input for the sampling interval 0.05 s. In the bottom sub-figure, the
control input will be held as constant for 0.05s.

viewed in Figs. 11 and 12. In the time response simulation, the initial
state is chosen as [𝑥1(𝑡), 𝑥2(𝑡)] = [− 5𝜋

12 , 0] with sampling interval 0.05s.
From the figures, it can be found that the RL agent is able to fulfil
the control objective within 1 second and the control input is within
easonable range ([−150N, 50N]).

Remark 3. Along the same way to compare in the first example, the
learning algorithm in [12–14] with integrated acting and the learning
processes is conducted under the same parameters setting as in Table 2.
The simulations have been conducted 10 times as before. From the
learning performance comparison shown in Fig. 14, it can be found
that the RL agent only starts to improve after 1000 episodes for the
ntegrated algorithm (represented by red curve) while the RL agent
pproaches the optimum in 500 episodes for the de-coupled algorithm
represented by blue curve). This comparison demonstrates the effec-
iveness of the proposed approach. Since one episode means conducting
he experiment once in real-life applications, to reduce the number
f episodes can reduce the cost of experiments especially when the
xperiments are expensive to conduct.

As in the first example, the sampled-data RL controller under dif-

erent sampling intervals is investigated to show the effect of different

9

sampling intervals the control performance. The phase portraits of the
inverted pendulum can be viewed in Fig. 13, it can be found that the
control system can be stabilized from different initial states since all
the phase flow (represented by red curves) swirls into the target state.
It can be also found that when the sampling interval is small (0.01s), the
phase flow goes to the target state with little fluctuation from different
initial start states. The simulation in phase space has been shown in the
top left sub-figure. In the case that sampling interval is large (0.05s),
the phase flow fluctuates more in the vector field (represented by blue
arrows) and detours a little into the target state from initial states.
The simulation in phase space has been shown in the bottom right
sub-figure.

Remark 4. The phase portraits for both examples demonstrate the
effect of sampling intervals on control performance. In the case that the
sampling interval is small, the RL agent is able to control the system
more smoothly while in the case that sampling interval is large, the
control process is chattering more and under the danger of failure.
However, for the sampled-data RL controller with small sampling inter-
vals, the computational demand is higher since the RL controller will
yield control input at every short sampling interval. The computational
cost can be reduced by applying larger sampling intervals, but the
control performance will be reduced. Therefore, compromise has to be
made on the control performance and computational cost for different
requirements. Properly designed sampling interval should guarantee
the decent control performance with acceptable computational cost.

5. Conclusions

In this paper, the sampled-data control strategy through model-free
reinforcement learning with effective experience replay is proposed.
In the proposed strategy, the sampled-data control problem has been
formed as the MDP problem. An intelligent RL agent is to learn the
optimal control strategy through interacting with the environment. In
the proposed RL algorithm, the acting and learning stages are decou-
pled to allow the customized experience replay, which enhanced the
effectiveness of experience replay in terms of both the number of expe-
rience replay times and the most effective experience. In addition, the
sampled-data control strategy is applied to reduce the computational
demand of the RL agent as well as make the digital application possible.
The effect of sampling control input has been discussed in detail.
Through the simulation examples, the effectiveness of the proposed

approach is verified.
Fig. 13. Phase plot of 𝑥1(𝑡) and 𝑥2(𝑡) for the inverted pendulum system from different initial states. The initial states of trajectories are denoted by black circles. The blue arrows
represent the direction and magnitude of the vector field. The red curves represent the phase flow. The sampling intervals for the sub-figure on the top left, top right, bottom left,
bottom right are 0.01s, 0.02s, 0.03s and 0.05s, respectively.

JAI: 100018

B. Xiao, H.K. Lam, X. Su et al. Journal of Automation and Intelligence xxx (xxxx) xxx

g
d
l

D

c
i

D

A

K
C

R

Fig. 14. Learning performance comparison for the decoupled method and the inte-
rated method. The red curve represents the learning performance of mass–spring
amping system under de-coupled learning algorithm. The blue curve represents the
earning performance of inverted pendulum system under integrated learning algorithm.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

No data was used for the research described in the article.

cknowledgments

This work was partially supported by Imperial College London,
ing’s College London and Engineering and Physical Sciences Research
ouncil (EPSRC).

eferences

[1] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, vol. 1, (1) MIT
press Cambridge, 1998.

[2] C.J.C.H. Watkins, Learning from delayed rewards (Ph.D. thesis), King’s College,
Cambridge, 1989.

[3] K. Doya, Reinforcement learning in continuous time and space, Neural Comput.
12 (1) (2000) 219–245.

[4] M. Abu-Khalaf, F.L. Lewis, Nearly optimal control laws for nonlinear systems
with saturating actuators using a neural network HJB approach, Automatica 41
(5) (2005) 779–791.

[5] D. Vrabie, F. Lewis, Neural network approach to continuous-time direct adaptive
optimal control for partially unknown nonlinear systems, Neural Netw. 22 (3)
(2009) 237–246.

[6] J. Fu, H. He, X. Zhou, Adaptive learning and control for MIMO system based on
adaptive dynamic programming, IEEE Trans. Neural Netw. Learn. Syst. 22 (7)
(2011) 1133–1148.

[7] S. Bhasin, R. Kamalapurkar, M. Johnson, K.G. Vamvoudakis, F.L. Lewis, W.E.
Dixon, A novel actor-critic-identifier architecture for approximate optimal control
of uncertain nonlinear systems, Automatica 49 (1) (2013) 82–92.
10
[8] B. Kiumarsi, F.L. Lewis, H. Modares, A. Karimpour, M.-B. Naghibi-Sistani,
Reinforcement Q-learning for optimal tracking control of linear discrete-time
systems with unknown dynamics, Automatica 50 (4) (2014) 1167–1175.

[9] D. Liu, X. Yang, D. Wang, Q. Wei, Reinforcement-learning-based robust con-
troller design for continuous-time uncertain nonlinear systems subject to input
constraints, IEEE Trans. Cybern. 45 (7) (2015) 1372–1385.

[10] B. Kiumarsi, K.G. Vamvoudakis, H. Modares, F.L. Lewis, Optimal and autonomous
control using reinforcement learning: A survey, IEEE Trans. Neural Netw. Learn.
Syst. (2017).

[11] D. Wang, D. Liu, Y. Zhang, H. Li, Neural network robust tracking control with
adaptive critic framework for uncertain nonlinear systems, Neural Netw. 97
(2018) 11–18.

[12] S. Adam, L. Busoniu, R. Babuska, Experience replay for real-time reinforcement
learning control, IEEE Trans. Syst., Man, Cybern. C, Appl. Rev. 42 (2) (2012)
201–212.

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A.
Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, et al., Human-level control
through deep reinforcement learning, Nature 518 (7540) (2015) 529.

[14] T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D.
Wierstra, Continuous control with deep reinforcement learning, 2015, arXiv
preprint arXiv:1509.02971.

[15] B. Luo, D. Liu, T. Huang, D. Wang, Model-free optimal tracking control via
critic-only Q-learning, IEEE Trans. Neural Netw. Learn. Syst. 27 (10) (2016)
2134–2144.

[16] B. Xiao, H.K. Lam, C. Xuan, Z. Wang, E.M. Yeatman, Optimization for interval
type-2 polynomial fuzzy systems: A deep reinforcement learning approach, IEEE
Trans. Artif. Intell. (2022).

[17] P. Abbeel, A. Coates, M. Quigley, A. Ng, An application of reinforcement learning
to aerobatic helicopter flight, Adv. Neural Inf. Process. Syst. 19 (2006).

[18] J. Kober, J.A. Bagnell, J. Peters, Reinforcement learning in robotics: A survey,
Int. J. Robot. Res. 32 (11) (2013) 1238–1274.

[19] S.C. Bacha, W. Bai, Z. Wang, B. Xiao, E.M. Yeatman, Deep reinforcement
learning-based control framework for multilateral telesurgery, IEEE Trans. Med.
Robot. Bionics 4 (2) (2022) 352–355.

[20] Z. Wang, W. Bai, Z. Chen, B. Xiao, B. Liang, E.M. Yeatman, Multiple-pilot
collaboration for advanced remote intervention using reinforcement learning, in:
IECON 2021–47th Annual Conference of the IEEE Industrial Electronics Society,
IEEE, 2021, pp. 1–6.

[21] C.J. Watkins, P. Dayan, Q-learning, Mach. Learn. 8 (3–4) (1992) 279–292.
[22] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are

universal approximators, Neural Netw. 2 (5) (1989) 359–366.
[23] K. Hornik, M. Stinchcombe, H. White, Universal approximation of an unknown

mapping and its derivatives using multilayer feedforward networks, Neural Netw.
3 (5) (1990) 551–560.

[24] P. WawrzyńSki, A.K. Tanwani, Autonomous reinforcement learning with
experience replay, Neural Netw. 41 (2013) 156–167.

[25] L.-J. Lin, Self-improving reactive agents based on reinforcement learning,
planning and teaching, Mach. Learn. 8 (3–4) (1992) 293–321.

[26] T. Chen, B.A. Francis, Optimal Sampled-Data Control Systems, Springer Science
& Business Media, 2012.

[27] H.K. Lam, F.H. Leung, Design and stabilization of sampled-data neural-network-
based control systems, IEEE Trans. Syst., Man Cybern. B, Cybern. 36 (5) (2006)
995–1005.

[28] H. Katayama, A. Ichikawa, 𝐻∞ control for sampled-data nonlinear systems
described by Takagi-Sugeno fuzzy systems, Fuzzy Sets and Systems 148 (3)
(2004) 431–452.

[29] X. Jiang, On sampled-data fuzzy control design approach for T-S model-based
fuzzy systems by using discretization approach, Inform. Sci. 296 (2015) 307–314.

[30] H.J. Lee, D. Wan Kim, Intelligent digital redesign revisited: Approximate dis-
cretization and stability limitation, Fuzzy Sets and Systems 159 (23) (2008)
3221–3231.

[31] H.C. Sung, D.W. Kim, J.B. Park, Y.H. Joo, Robust digital control of fuzzy systems
with parametric uncertainties: LMI-based digital redesign approach, Fuzzy Sets
and Systems 161 (6) (2010) 919–933.

[32] D.W. Kim, H.J. Lee, Sampled-data observer-based output-feedback fuzzy stabi-
lization of nonlinear systems: exact discrete-time design approach, Fuzzy Sets
and Systems 201 (2012) 20–39.

[33] H.K. Khalil, Noninear systems, Prentice-Hall, New Jersey 2 (5) (1996) 5–1.

http://arxiv.org/abs/1509.02971

	Sampled-data control through model-free reinforcement learning with effective experience replay
	Introduction
	Preliminaries
	Markov Decision Processes
	Sampled-data Control System
	Q-learning
	Approximate Reinforcement Learning

	Control Strategy Learning Algorithm
	Simulation Examples
	Mass–spring–damping system
	Inverted pendulum

	Conclusions
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

