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Abstract

The magnetic fields of the giant planets, Jupiter and Saturn, deviate signifi-

cantly from a pure magnetic dipole and the cold plasma is mostly centrifugally

confined near the equator. The additional contribution of the azimuthal currents

leads to the stretching of the magnetic field and the formation of a characteris-

tic, disc-type structure known as a magnetodisc. We present here an updated

version of a numerical implementation of Caudal’s iterative scheme, used to

create models of the magnetosphere. In particular, we include newer equatorial

density, temperature and hot plasma profiles obtained from Galileo data. Fi-

nally, we describe and use an algorithm to update the angular velocity profile

after the end of the iterative process, using information from the magnetodisc.

We also present comparisons between the azimuthal current and plasma flow

predicted by our model and those derived from spacecraft observations.

Keywords: planetary magnetic fields, angular velocity,

magnetohydrodynamics (MHD), numerical methods

1. Introduction

The region of influence of a planetary magnetic field, commonly known as

the planetary magnetosphere, is a dynamic structure affected by both external

∗Corresponding author
Email address: dimitrios.millas@ucl.ac.uk (D. Millas)

Preprint submitted to Planetary and Space Science November 25, 2022



and internal drivers. To model the morphology of the magnetosphere, we first

need to describe the planetary magnetic field with sufficient accuracy. A good5

approximation of the global, large scale magnetic field for the Earth may be

obtained via a simple magnetic dipole, with a tilt between the magnetic and the

rotation axis of ∼ 11.5o. However, observations have shown that the magnetic

fields of the giant planets Jupiter and Saturn are much more complex.

The magnetosphere of Jupiter is a quite unique entity in our Solar System.10

It can extend up to ≃ 100RJ (Jovian radii) on the dayside in quiet solar condi-

tions, while an average value for the magnetopause location being ∼ 75RJ . Its

(equatorial) magnetic field magnitude (due to the internal dynamo) is close to

4 · 105 nT and it is rotating remarkably fast, with a period of slightly less than

10 hours. Another important element is the presence of the volcanic moon Io,15

which acts as the main source of plasma in the magnetosphere. A similar situa-

tion is observed at Saturn, where the plasma source is the icy moon Enceladus.

The solar wind, in contrast with the terrestrial case, is a minor contributor to

the plasma content of the magnetosphere.

A striking difference between the magnetosphere of the Earth and the mag-20

netospheres of Jupiter and Saturn is the presence of a strong equatorial current

sheet and a plasma disc, which modifies the magnetic field profile to a structure

known as a magnetodisc. The deviation of the magnetic field from a dipole

becomes evident as the equatorial distance from the planet increases (see Fig. 1

for a schematic representation of the Jovian magnetosphere and also Fig. 24.125

from Khurana et al. (2004) for a more general case). The transition between the

two different profiles is observed between the inner magnetosphere (equatorial

distances up to 10RJ , where the magnetic field is close to a dipole, and in the

middle magnetosphere (10 − 40RJ), where the stretching of the magnetic field

lines is clearly visible.30

Both giant planets are rapid rotators and the resulting source of energy

and angular momentum is a key driver of their magnetosphere. The magne-

todisc was proposed by Gledhill (1967) as a consequence of the centrifugal force

that acts on plasma and favours its accumulation close to the equator. This
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Figure 1: A simple sketch of a meridian cut of the dayside and nightside Jovian magnetosphere

(not to scale), assuming a spin-aligned planetary magnetic field. The volcanic moon Io is

located at a distance of roughly 6RJ , with the ejected material forming the characteristic

torus. The magnetic field lines resemble a magnetic dipole near the planet, but in the middle

magnetosphere (equatorial distances 10− 40RJ , show the characteristic elongated shape that

defines the magnetodisc. For the more general case of a misaligned magnetic field, see the

sketch in Fig. 24.1 from Khurana et al. (2004).
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structure, in the case of Jupiter, was later confirmed by various missions, e.g.35

Pioneer 10 (Simpson et al., 1974; Hill et al., 1974; Smith et al., 1975), Voyager

1 (Connerney et al., 1982) and Galileo Orbiter (Kivelson et al., 1997b).

The associated current sheet and its effects on the magnetospheres of Jupiter

and Saturn were examined in Connerney et al. (1981b,a, 1983). Later, a com-

bination of magnetohydrodynamics (MHD) equilibrium and observations was40

used by Caudal (1986) in order to construct a self-consistent model of the Jo-

vian magnetosphere based on the balance between centrifugal, magnetic and

plasma pressure forces. The presence of a hot plasma is important as it pro-

vides an additional pressure term in the force balance, with implications on the

size of the magnetosphere.45

Caudal’s model was extended and implemented in a numerical code (UCL/AGA)

able to calculate the magnetic field profile, using appropriate parameters for the

Jovian or Kronian magnetosphere by Achilleos et al. (2010). These models as-

sumed time independence (stationary magnetosphere); however, temporal vari-

ability was evident in Voyager or Galileo data and was also recently shown by50

Huscher et al. (2021) using Juno data. In particular, examination of the plasma

density from Juno data between 15-50RJ revealed small scale structures with

typical size < 1RJ and temporal variability in the scale of minutes. Small scale

structures in the magnetic field were also reported by Kivelson et al. (1997a)

and interchange structures by Thorne et al. (1997). All these scales can be ig-55

nored as a first approximation, since we examine the large scale structure of the

magnetosphere.

The availability of data from more recent space missions led to an update of

the above profiles regarding the current sheet (Khurana, 2001; Connerney et al.,

2020; Lorch et al., 2020), the plasma properties (density, temperature) on the60

equator (Bagenal and Delamere, 2011; Bagenal et al., 2016) and the presence

of energetic particles (Mauk et al., 2004; Huscher et al., 2021). We have imple-

mented the new equatorial profiles in the UCL/AGA code, which now includes

initial conditions appropriate for the Voyager and Galileo eras. The model can,

in principle, be further developed to make use of plasma moments from the Juno65
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mission in the upcoming future.

An important element in the model is the angular velocity of the plasma,

which also quantifies the centrifugal force. The magnetospheric plasma near

Jupiter is approximately corotating with the planet; at distances larger than

the orbit of Io (∼ 6RJ), the plasma shows a significant sub-corotation. For a70

magnetic dipole, magnetohydrodynamics and angular momentum conservation

dictate a specific profile for the angular velocity with equatorial distance (Hill,

1979). Since the magnetic field of giant planets is significantly modified due to

the magnetodisc, the angular velocity is, also modified compared to the “pure

dipole” case (Pontius, 1997). The issue of the angular velocity in the magne-75

tospheres of giant planets has been examined by various authors since Hill’s

initial study. Here we will review the key elements of Hill (1979) and Pontius

(1997); we also note that Nichols and Cowley (2003, 2004) investigated Pontius’

method for different formulations of ionospheric conductivity.

In this work, we introduce an updated numerical adaptation of Caudal’s80

iterative scheme which can be used to produce models of the Jovian magneto-

sphere. These models reproduce quite accurately the large scale structure of

the magnetosphere and their predictions can be compared with angular velocity

data and equatorial current profiles from empirical models. A secondary part

of the work is the numerical investigation of the algorithms used to update the85

angular velocity.

The paper is structured as follows: in Section 2 we describe the method used

to construct the global magnetosphere including a magnetodisc; in Section 3

we describe the implementation of new Galileo data in the equatorial initial

conditions. These include density, temperature and hot plasma content profiles,90

inferred from in situ observations plus a new algorithm to treat the plasma

angular velocity in a consistent way. In Section 5 we compare the output from

the magnetodisc model with observations of the plasma angular velocity and

models for the azimuthal current. Numerical tests are provided in an appendix.
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2. Caudal’s magnetodisc model95

First, we will give a brief overview of Caudal’s original model and discuss

the key equations, as presented in (Caudal, 1986). Then, we will present the

numerical implementation of the model in the UCL/AGA magnetodisc code by

(Achilleos et al., 2010). For a more detailed description of the model and the

code, we refer the reader to these two articles.100

2.1. Basic equations

Caudal examined a stationary, axisymmetric magnetosphere (imposing ax-

ial symmetry about the rotation/magnetic axis with ϕ denoting the azimuthal

direction in spherical or cylindrical coordinates). The spin-aligned dipole as-

sumption is justified due to the small dipole tilt (∼ 10o) with respect to the105

rotation axis. The small angle approximation was also justified in the analysis

of Cummings et al. (1980). Phipps and Bagenal (2021) explored the tilt of the

centrifugal equator due to the influence of the current sheet. The displacement

of the centrifugal equator (towards the magnetic equator) is expected to be small

up to distances of 30RJ and is therefore ignored in our study. We mention here110

again that we ignore any temporal or spatial fluctuation e.g. in the density, as

these are typically small in size < 1RJ or very short (few minutes). It is also

implied in the model that there is sufficient time to connect the magnetodisc to

the planet via currents.

Assuming a force balance in both (cylindrical) radial and meridional di-

rections between the magnetic force, the pressure gradient and the centrifugal

force:

J×B−∇P + nimiρω
2ρ̂ = 0 (1)

In the above expression, J,B are the current density and the magnetic field115

respectively, P is the total thermal plasma pressure, ni is the ion number density,

mi the mean ion mass, ρ is the cylindrical distance from the rotation axis, ρ̂

is the cylindrical radial unit vector, ω the angular velocity of the plasma. The

contribution of the gravitational force beyond a few Jovian radii is minimal
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and can be safely neglected. In addition, Caudal’s model assumes isotropic120

plasma; this effectively ignores the anisotropy force contribution; this, however,

is significant in the middle magnetosphere (Nichols et al., 2015).

Using the ∇ ·B = 0 condition, Caudal expressed the magnetic field via the

cross product of two “Euler potentials” Stern (1970):

B = ∇α×∇βE , (2)

where the scalar functions α and βE are the Euler potentials (using the sub-

script E to avoid confusion with the plasma β), in general functions of r, θ, ϕ

in spherical coordinates. Exploiting the axisymmetry of the system, the Euler

potentials can be simplified and be rewritten as follows:

α = α(r, θ) , (3)

βE = Rpϕ . (4)

where Rp is the radius of the planet. If we examine a meridional cut of the

magnetosphere, then βE is a constant and can be omitted from the rest of

the analysis. The magnetic field, again in spherical coordinates, can thus be

expressed via α only:

Br =
1

r2sinθ

∂α

∂θ
(5)

Bθ = − 1

rsinθ

∂α

∂r
(6)

where we also used the definition of the azimuthal current Jϕ =
1

µo
∇×B,125

which is a function of α as well.

Caudal showed that the total plasma pressure (calculated from the cold and

hot plasma populations) and the centrifugal force can also be expressed via α.

Consequently, the original problem of force equilibrium is then reduced to the

calculation of the Euler potential α only, which is in turn obtained by solving

the following differential equation (now in normalized units):

∂2α

∂r2
+

1− µ2

r2
∂2α

∂µ2
= −g(r, µ, α) , (7)
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where r is the radial distance in spherical coordinates, µ replaces the colatitude

θ (µ = cos θ) and g is the source function defined by the plasma pressure and its

angular velocity. This expression is physically equivalent to equation 1, replacing

all terms with alternative expressions involving α; it basically incorporates all130

the mechanical forces (centrifugal, pressure gradients) acting on the plasma.

The source function can be used to calculate the azimuthal current Jϕ, which

is a key element for the stretching of the field lines near the equator.

In the original method proposed by Caudal, the physical parameters along

the equator (e.g. density, temperature) were constrained from observations and

specifically, data from Voyager 1 (Bagenal and Sullivan, 1981) (although a cor-

rection was given later in Bagenal et al. (1985)). In addition, a hot plasma

population (plasma with thermal ion energy significantly higher than their ro-

tational kinetic energy) is added in the system, contributing to the total thermal

plasma pressure P . The distribution function of the hot plasma was examined

by Krimigis et al. (1981) using Voyager 1 and 2 data and it was reported that

the hot ions dominate the plasma pressure. The hot plasma content is modelled

via the product of the equatorial hot plasma pressure (Ph) and the flux tube

volume (Vh), defining the hot plasma index:

Kh = PhVh . (8)

Up to ∼ 8RJ , the Kh index is assumed to be constant with radial distance.

The equatorial angular velocity as a function of the equatorial distance is135

obtained from Hill’s theory (Hill, 1979), using the conservation of angular mo-

mentum and magnetic flux. Hill initially assumed that the viscosity of the at-

mosphere is large enough to transport the planetary angular momentum to the

ionosphere. The rate of transport itself depends on the ionospheric conductivity,

which must also be sufficiently large to enforce corotation of the magnetospheric140

plasma. However, beyond a critical radius the magnetic field may be too weak

to maintain the plasma in corotation; in addition, outward transport or sources

of plasma can limit corotation as well. An approximate distance where the

corotation breaks down can be calculated (also for Jupiter) using the height
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integrated-conductivity and the outward plasma flux. Hill’s theory provides an145

approximate solution for the profile of the angular velocity ω based on a mag-

netic dipole field. We will discuss in more detail the angular velocity treatment

in a following section.

2.2. Iterative process for the Euler potential α

Up to this point, all physical variables are expressed via the Euler poten-

tial α and the equatorial parameters (ion density ni, temperature T , angular

velocity ω) are inferred from observations. The final step in Caudal’s method

is to numerically solve equation 7 using an expansion of α in terms of Jacobi

polynomials (to satisfy the homogeneous part of the differential equation) via

an iterative process. As an initial condition, the magnetic field is assumed to

be a dipole, described using the previous notation as:

αinit ≡ αdip =
1− µ2

r
(9)

After every iteration, we calculate a “perturbed” magnetic field and the

associated source function g before proceeding to the next iteration. This pro-

cess provides a more accurate description of the magnetic field, capturing the

dipole-like behaviour at the near-planet regions and the magnetodisc structure

at larger equatorial distances. The iterative process for the calculation of α

includes an intermediate step, where we calculate a linear combination of the

“new” and the “old” solution, before proceeding to the next iteration:

α = νi−1 αi−1 + νi αi , (10)

where α is the initial value for the next iteration, νi, νi−1 are the fractions of the150

“old”, mixed solution αi−1 and the “pure” αi solution respectively. In principle,

any combination of νi, νi−1 in the interval [0,1] can be used (restricted only by

the requirement νi + νi−1 = 1). Caudal used an equal contribution from the

two solutions (thus νi = 0.5 = νi−1) before the next iteration. This “mixing” of

the solutions stabilizes the convergence towards the final solution. The iterative155

process stops when the relative difference (αi−αi−1)/αi becomes smaller than a
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user-defined threshold. This threshold is not entirely independent of the mixing

factors νi,i−1, as shown below.

A suitable convergence criterion for the calculation of the Euler potential α

can be defined as:

|(α− αi−1)/αi−1| = νi|(αi−1 − αi)/αi−1| < δ (11)

where δ is a prescribed convergence parameter, typically a number ∼ 10−3 and

is set as the threshold mentioned above. Rearranging the inequality terms, we

find:

|(αi − αi−1)/αi−1| < δ/νi (12)

This means that the pure solution from Caudal’s scheme and the value used

for the most recent iteration differ relatively no more than δ/ν. This fraction160

determines the final level of convergence. Different values of ν can be used de-

pending on the actual system and the stability of the process (which is a form

of numerical “relaxation”). Models with significant contribution from the hot

plasma population usually require smaller steps in the process, which translate

into smaller values of νi. This requires an adjustment of the convergence pa-165

rameter accordingly to maintain the same δ/νi. In the cases presented in this

paper, we set the ratio δ/νi to 10−2 and as such, the convergence parameter is

always δ ≤ 5 · 10−3.

A typical example of a magnetodisc field, obtained from the numerical im-

plementation of Caudal’s method, is shown in Fig. 2, via the magnetic potential170

α. The dipole approximation is valid near the planet; however, the difference

becomes prominent at larger distances. For comparison, see the solution (via

the magnetic field lines) in Figure 6 from (Caudal, 1986).

To justify the connection between the planet and the magnetodisc, we per-

formed the following simple calculations. Using a typical magnetodisc model175

with Rmp = 80RJ andKh = 3·107 Pa m T−1, we found that ∼ 80% of the mass

in a flux tube is confined to latitudes < 6o at a distance of ∼ 40RJ . The Alfvén

travel time in that case is ∼3.1h. Repeating the calculations for larger distances

(70RJ), we found that 80% of the mass is now confined to latitudes < 30o and

10



Figure 2: Typical example of a magnetodisc using Caudal’s theory. Top: the magnetic

potential α (in colour, log scale, dimensionless) in the northern hemisphere (θ = 0−90 degrees),

the total magnetic potential (solid contours) and the magnetic dipole (dashed contours).

Isocontours of α are equivalent to shells of magnetic field lines. The contours overlap near

the planet but differ as we examine larger radii. Bottom: Magnetic (Euler) potential α ,

removing the contribution from the dipole, visualising the magnetodisc.
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the Alfvén travel time is ∼ 7.6h. In both cases there is most likely sufficient time180

for the magnetodisc to communicate with the inner boundary. Since the bulk of

the mass is confined near the equator (even for large equatorial distances), the

Alfvén velocity is only reduced at this region. In Delamere and Bagenal (2010),

the “lifetime” (loss of plasma) is less than 1 day, which should be enough to

preserve the connection.185

3. Additions in the UCL/AGA code: Equatorial conditions

As we mentioned in the previous section, Caudal originally used data from

Voyager 1 to set the equatorial plasma conditions (temperature, density and

flux tube content) and the hot plasma pressure via the Kh index. We will now

present the incorporation of newer data for the equatorial plasma conditions and190

hot plasma pressure in our numerical implementation of Caudal’s model. We

note that Nichols et al. (2015) also produced models of the magnetodisc using

Galileo input.

The first element is the use of Galileo data, obtained from the empirical fits

of (Bagenal and Delamere, 2011; Bagenal et al., 2016), in order to determine the195

initial conditions on the equator (temperature, density and flux tube content).

Then, the hot plasma pressure is introduced in tabulated form, using the data

from (Mauk et al., 1996, 2004). The final element is the introduction of an

angular velocity updating algorithm according to the model of (Pontius, 1997),

using the full magnetodisc field.200

3.1. Equatorial plasma conditions and flux tube content

We begin by giving an overview of the equatorial plasma parameters, as

presented in detail by (Bagenal and Delamere, 2011) and (Bagenal et al., 2016).

Using data from the Plasma Science Instrument (PLS) of Galileo, the authors

provided estimates for the number density of the equatorial plasma (n in cm−3),205

its temperature (T in eV) and the flux tube content (NL2 in ions/Wb).
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Their empirical fit of the data for the equatorial distribution of the electron

density was:

neq(ρ) = 1987 (ρ/6)−8.2 + 14 (ρ/6)−3.2 + 0.05 (ρ/6)−0.65 , (13)

where ρ is again the equatorial distance expressed in Jovian radii. This expres-

sion can also be used for the ions, assuming their charge state. However, this

fit is not valid for radii smaller than approximately 6 Jovian radii (see figure 9

in (Bagenal et al., 2016)). To amend this, we replace this fit with a piecewise210

function:

neq(ρ) = 1987 (ρ/6)−8.2 + 14 (ρ/6)−3.2 + 0.05 (ρ/6)−0.65 , ρ ≥ 6, (14)

neq(ρ) = n
∣∣
ρ=6

(ρ/6)8 , ρ < 6. (15)

Although the part of the density profile for small distances does not originate

from actual observations, it is continuous at ρ = 6 and satisfies the physical

requirement of a rapid decrease in density inside the orbit of Io.

For vertical distances close to the equator, assuming a single species plasma,

the number density at a height z from the centrifugal (the rotational) equator

can be approximated with an exponential decrease, as suggested by (Hill and Michel,

1976) for a magnetic dipole aligned with the rotational axis:

n(ρ, z) = n(ρ, z)
∣∣
z=0

e−(z/H)2 (16)

where H is the scale height, defined via the temperature and the angular veloc-

ity:

H =

√
2kT

3mω2
. (17)

An empirical fit for the scale height is given again by Bagenal and Delamere215

(2011) (using plasma sheet crossings), which can then be used to calculate the

equatorial temperature distribution as well.

The fits for the scale height and the temperature presented above reproduce

quite well the data for distances between 6 and 30 Jovian radii (see once more
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figure 9 in (Bagenal et al., 2016)). However, as seen in the density, the fit is not220

valid for small distances (up to 6 Jovian radii). To amend this, we modified the

profiles using now a linear increase in temperature in the interval [1, 6)RJ (in

tandem with the sharp increase in the equatorial density shown before), in the

same distance range. The scale height for small distances can be calculated from

the linear temperature profile using Eq. 17. The final temperature, density and225

scale height profiles are always continuous at r = 6RJ . The Galileo instruments

were able to detect higher energies, leading to higher temperatures, as shown in

Fig. 3.See also Figure 4 from Nichols et al. (2015), showing a similar profile for

the cold plasma temperatures, used in their own magnetodisc code.

Finally, we also need to specify the flux tube content (i.e. the total amount230

of ions in a flux shell or the number of ions per unit magnetic flux). Since the

initial magnetic field profile is assumed to be a dipole, we may use the formula

of Siscoe (1978) as a meaningful approximation. According to Siscoe (1978);

Bagenal et al. (2016), this can be expressed as follows:

NL2 = 2πR2
JL

3

∫
n
BJ

B
ds (18)

≃ 4 · 1030 L3 n
∣∣
z=0

H (19)

where L is the equatorial crossing distance in Jovian radii (RJ), BJ is the235

equatorial magnetic field of Jupiter and ds is the line element along a magnetic

field line.

3.2. Hot plasma pressure

Using Energetic Particle Detector (EPD) data from Galileo, Mauk et al.

(1996, 2004) provided hot plasma spectra and velocity moments for various240

energetic ions (H, He, O, S). The suggested profiles were obtained for distances

from 6 to 46RJ , near the equatorial plane and covered ion energies from 50 keV

to roughly 50 MeV (depending on the equatorial distance and the ion species).
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Figure 3: Top: Comparison between the equatorial density profiles provided by Caudal

Caudal (1986) and Bagenal et al. (2016) (modified for small distances). Bottom: The tem-

perature profile provided by Caudal for the cold plasma (a linear piecewise function) and the

smooth, continuous profile obtained from the modified Galileo fits. The higher temperatures

obtained using Galileo data are due to the fact that Galileo could measure higher energies.

See also Figure 4 from Nichols et al. (2015).
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As mentioned in Section 2.1, the hot plasma pressure is parametrized via the

hot plasma index Kh, the product of the hot plasma pressure Ph and the flux245

tube volume Vh. For the Voyager conditions, we usually assume values of Kh ∼

1−3 ·107 Pa m T−1 (temperature of hot plasma given by Krimigis et al. (1981)

and used by Caudal (1986) as an input for his iterative method). In contrast with

the previous initial conditions, here it is necessary to use an appropriate value for

the flux tube volume, consistent with the magnetodisc structure (rather than a250

dipole approximation). This is obtained numerically from a typical magnetodisc

model where, as a first approximation, we used the initial conditions suggested

by Caudal. If the hot plasma index in a Caudal-type model is of the order

of 2 · 107 Pa m T−1, then the model represents well an average state of the

Jovian magnetosphere and thus the approximation in the flux tube volume is255

sufficient (Caudal, 1986). The difference between the flux tube content and the

hot plasma pressure using Galileo and Voyager data is shown in Fig. 4. For

the original hot plasma pressure profile from EPD data, we refer the reader to

figure 4 of (Mauk et al., 2004).

A comparison between the cold and hot equatorial plasma pressure for the260

Voyager and Galileo “eras” is shown in Fig. 5. The dependence of the hot

plasma pressure on the Kh index for the Galileo profiles is treated as a vertical

shift of the whole pressure profile, according to the ratio Kh/Kho, where Kho =

3.5 · 107 Pa m T−1, obtained from the implementation of hot plasma pressure

from (Mauk et al., 2004) as explained above.265

Using either Voyager or Galileo conditions, the maximum value of plasma

β in our runs is approximately β ≃ 12, with the hot plasma contributing sig-

nificantly more, in agreement with (Achilleos et al., 2010). Moreover, the hot

plasma beta βh is larger than the cold plasma beta. This is consistent with the

hot plasma pressure dominating the plasma pressure (Krimigis et al., 1981) and270

this is not affected when we consider the higher cold plasma beta values reported

by Frank and Paterson (2002 and Frank et al. (2002) found specifically on the

G07 and G08 orbits (studying thermal plasmas in the magnetotail). The values

of plasma β indicate that the plasma pressure has a significant contribution to
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Figure 4: Top: Flux tube content comparison between Caudal’s model and the obtained

profile from the modified fit of Galileo data. Bottom: Same for the hot plasma pressure

profiles.
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Figure 5: Pressure profiles according to Voyager (VGR) Caudal (1986) and Galileo data

(GAL) Bagenal et al. (2016). Left: Cold plasma pressure. Its profile is independent of the

value Kh and depends only on the equatorial initial conditions. Right: Hot plasma pressure

for different Kh values. The profiles obtained from Galileo are always lower that the Voyager

profiles for the same value of the hot plasma index.

the force balance.275

Similar results for the equatorial number density were reported by Nichols

(2011); Nichols et al. (2015), using Galileo data from Frank et al. (2002). A dif-

ference in that case is the assumption of a piecewise constant flux tube content in

different regions of the magnetosphere, with a constant value for equatorial dis-

tances larger than 8RJ . Last, we also acknowledge a report from Nichols et al.280

(2020) that used Juno data to derive the plasma and magnetic field conditions

along the equator.

4. Additions in the UCL/AGA code: Angular velocity

In order to determine the angular velocity profile of the magnetospheric

plasma, we need to calculate ω as a function of the magnetic field line equato-285

rial crossing distance L. Then, using Ferraro’s isorotation law (Ferraro, 1937)

and the magnetic potential α we can obtain the angular velocity for the en-

tire domain. We note here that the potential α is related to the integrated

magnetic flux, as shown in Achilleos et al. (2010) (page 2353). The angular
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velocity profile, in general, cannot be obtained analytically. We will present290

here two methods (Hill’s and Pontius’) to calculate ω(L) from the equatorial

magnetic field, each using a different approach. A second method to update the

angular velocity, provided by Nichols and Cowley (2003); Nichols et al. (2015)

is discussed in the appendix.

4.0.1. Hill’s method295

We will first briefly describe Hill’s method (see Hill (1979) for a detailed

description), an easy way to obtain an analytical solution for the angular ve-

locity ω(L), using a simple magnetic dipole and the conservation of angular

momentum and magnetic flux. This method was used by Caudal in his original

magnetosphere force balance model in order to determine the angular velocity300

along the rotational equator (as an initial condition).

First, consider a spin-aligned dipole in spherical coordinates (r, θ, ϕ). As-

sume now that ions have a rotational drift velocity δv = rδω sin θ (ω being the

azimuthal velocity) relative to the neutral atmosphere. If we focus on a steady-

state system, the net force per unit volume Fϕ due to collisions between ions305

and neutral species is equal to the Lorentz force: Fϕ = σ B2
r δv, where σ is the

Pedersen conductivity.

For the simple case discussed here, the torque T per unit of equatorial cross-

ing distance L can be written as:

dT

dL
= 4πΣδωR4

JB
2
p

(
1− 1/L2)1/2/L3 , (20)

where RJ is the planetary radius, Bp the equatorial magnetic field.

The angular momentum per unit equatorial crossing distance is:

dL
dL

= ṀωJR
2
p

d

dL
[L2(1− δω/ωp)] , (21)

where ωJ is the planetary rotation frequency and Ṁ the outward flux of plasma

(in this case, due to Io).310

The next step is to combine the conservation of angular momentum with

equations 20, 21. In place of the angular velocity, we will introduce here the
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corotation lag f , which is the relative difference of the local angular velocity

compared to the planetary rotation. To obtain the profile of the corotation lag

along the equator, we must solve the following differential equation:315

L5 df

dL
+
[
2L4 + 4L4

o

(
1− 1/L

)1/2]
f − 2L4 = 0 , (22)

where f = 1−ω/ωJ is the corotation lag (ωJ the rotation velocity of Jupiter) and

L is the equatorial crossing distance. The dimensionless scaling parameter Lo,

depends on the planetary radius Rp, the equatorial magnetic field Bp, the total

outward plasma mass flux Ṁ and the (height-integrated) Pedersen conductivity

ΣP as:

L4
o = πΣPR

2
pB

2
p/Ṁ . (23)

An analysis of the coupling currents between the ionosphere and the mag-

netosphere can be found in Cowley and Bunce (2001) (see their Figure 1 for

a schematic representation). There is a connection between the Pedersen cur-

rents in the ionosphere and a J × B pointing opposite to the planetary rota-

tion. These currents depend on the value of ΣP , which is also important for320

Lo. Huang and Hill (1989) suggested a corrected value of ΣP (called the effec-

tive Pedersen conductivity), which accounts for the deviation (or “slippage”)

of the neutral atmosphere from rigid corotation. This was later implemented

by Nichols and Cowley (2003) in his angular velocity update algorithm (see

Appendix A for additional information ).325

A solution obtained with Hill’s method is shown in Fig. 6, where we present

the corotation lag f and the angular velocity ω, using Lo = 20, which is a

meaningful choice for Jupiter if we assume Ṁ ∼ 1000 kg/s and Σ ∼ 0.05mho.

This value also produces a good agreement with the data as a function of radial

distance (Hill, 1980). Analysing Hill’s solution, we can identify two regions: A330

near corotation region (close to the planet) and the asymptotic region for large

distances. In the first region, expanding up to L ≃ 6− 7RJ , the magnetosphere

is corotating with the planet (f ≃ 0); this distance is approximately equal to the

orbit of Io (≃ 5.9RJ). At a distance of ≃ 11.5RJ , we can notice the effects of the
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corotation lag; the angular velocity at this distance is ≃ 0.95 of the planetary335

value. For distances larger than ≃ 70RJ , we retrieve the asymptotic behaviour

f ≃ 1 − π1/2
(Lo

L

)2
(consistent with the conservation of angular momentum).

This asymptotic behaviour can be justified as follows: the magnetic field at

large distances is quite weak and the system will then follow a configuration

leading to the conservation of angular momentum. When the field weakens, the340

J×B force becomes far less effective at changing the angular momentum of the

plasma. Thus, it tends towards a morphology where the field approaches weak

values as the flow becomes closer to the case of angular momentum conservation.

4.1. Pontius’s method

Following the application of Caudal’s iterative method, we obtain a magnetic345

field morphology which includes now the magnetodisc structure. The angular

velocity, however, is not anymore consistent with the new magnetic field mor-

phology, as Hill’s solution is only valid for a magnetic dipole.

We present here a method that can provide a corrected angular velocity

profile using information from the magnetodisc itself (in an iterative method350

similar to the work of Nichols (2011)).We need to solve the “modified” Hill or

Pontius’ equation, as described in Pontius (1997):

L5 df

dL
+
[
2L4 + 4L4

oµB cos θ(r)
]
f − 2L4 = 0 , (24)

where the difference between a more realistic magnetic field morphology (e.g.

the model obtained from Caudal’s method or an equivalent method producing

an elongated structure) and the magnetic dipole is quantified by the term µB .355

The term cos θ(r), called the “mapping function”, connects a point on the mag-

netodisc - along the equator - with a footpoint on the ionosphere, following a

magnetic field line of constant Euler potential α.

To solve the Pontius equation, we need first to calculate the “Pontius” term

µB from the magnetodisc model:360

21



Figure 6: Top: Corotation lag (f = 1 − ω/ωJ ) as a function of the equatorial distance

for different values of Lo. Bottom: Angular velocity in terms of the planetary value, as

a function of the equatorial distance for the same values of Lo. The dashed lines show the

asymptotic behaviour of Hill’s solution obtained using the conservation of angular momentum:

(f ≃ 1− π1/2(Lo/L)2). The shaded box represents the corotation region, extending roughly

up to the orbit of Io at 6RJ .
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µB =
Bi

r(θ)

Bi
r,dip

· B
eq
z (ρ)

Beq
z,dip

ρ sin2 θ , (25)

where the dipolar magnetic field components Br,dip/,Bz,dip are also a function of

θ and ρ respectively (with a known analytical expression). The first factor
Bi

r(θ)

Bi
r,dip

represents the deviation of the radial magnetic field component from a magnetic

dipole. This factor can be approximated with unity, since near the high-latitude

ionosphere the magnetic field is predominantly radial and closely follows a dipole365

profile. In contrast with the radial component, the perpendicular (z) component

deviates from the dipole approximation for large equatorial distances, as the

magnetodisc profile suggests (see Fig. 2). We can directly calculate this term,

using the UCL magnetodisc code.

At this point, it is useful to mention that Hill’s equation can be retrieved370

from Pontius’ if we set µB = 1 (i.e. no deviation from a magnetic dipole) and use

the analytical expression of the mapping function shown above. By extension,

for regions near Jupiter, where the magnetic dipole approximation is justified,

Hill’s prediction for ω is still valid.

Last, we need to connect every point on the magnetodisc (along the equator)375

with its “magnetic conjugate” at the inner boundary of the solution grid (i.e.

the ionosphere) along the same magnetic field line; this is achieved via the

“mapping function”. Going back to equation 22, we can see that the mapping

function has an analytical expression for a simple magnetic dipole: cos θi(r) =

(1 − 1/L)1/2. However, due to the expansion of the magnetic potential α, an380

analytical expression is not always possible. Using the UCL magnetodisc code,

we use the magnetic field profile to retrieve numerically the mapping function,

following a contour of constant α.

The last assumption we need before applying Pontius’ algorithm is to set

an upper limit on the corotation distance. Typically, the corotation region is385

believed to extend up to the orbit of Io (∼ 6RJ). In our case, in order to improve

the behaviour of the numerical solution and achieve a smoother angular velocity

profile, we set as initial condition f = 0 at L = 5.0RJ .
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4.1.1. Update process for ω

Now we can proceed to the update of the angular velocity for a given mag-390

netodisc model. First, we follow Caudal’s method (with an initial profile for

ω) to obtain a numerical solution for α. Then, we start a second iterative loop

where we calculate the Pontius term µB and the mapping function. The new

profile of ω is then used again to update α. This two-loop process is described

by Fig. 7. For simplicity, we will present here results using only the equatorial395

parameters given by (Caudal, 1986).

An example of an updated angular velocity is shown in Fig. 8 where we plot

Hill’s and Pontius’ solutions for two different cases of hot plasma content. The

corotation for both solutions (Hill’s or Pontius’) is only valid up to r ≲ 10RJ

and then the angular velocity decreases; the difference is evident after 40RJ .400

Applying Ferraro’s law, we can also create a 2-dimensional map of the angular

velocity, shown in Fig. 9.

Although the addition of µB captures the deviation of the computed mag-

netic field from the dipole case, it does not strictly originate from first principles;

it is an empirical method to incorporate the magnetodisc in the analysis. As a405

consequence, Pontius’ equation does not - in general - lead to a conservation law

for the angular momentum for the length scales we examine here (Fig. 10). The

exact behaviour of the angular momentum profile changes significantly with Kh,

but it can be seen on every comparison between models with different Rmp ,Kh

using the two angular velocity methods (Hill’s and Pontius’).410

The numerical process for the calculation of ω follows exactly the same

pattern as the one used in the original Caudal’s method for α:

ω = λi−1ωi−1 + λiωi , (26)

where ω is the initial condition used in the next iteration (i+1) and λi−1,λi are

the fractions of the “old” (ωi−1) and “new” (ωi) solution respectively. Similar

to the previous case (calculation of α), the coefficients λi,i−1 can be in principle

any number in [0, 1], subject only to the restriction λi−1 + λi = 1.

Each relaxation process stops when the relative difference between (ωi −415
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Figure 7: A simple flowchart of the two iterative procedures in an “inner-outer” loop scheme.

First, we set up the initial conditions; then Caudal’s scheme (treating separately the cold and

hot plasma) is used to calculate a new profile for α (inner loop), which is halted when an

effective tolerance of 10−2 between iterations is achieved. The final state of the inner loop

serves as an initial condition for the update of the angular velocity (outer loop). The outer

loop uses Pontius’ method to produce a relaxed profile of ω. The outer loop ends when a

certain accuracy is achieved. For completeness, see also Figure 4 from Caudal (1986), which

describes the inner loop of the flowchart.
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Figure 8: Comparison between Hill’s and Pontius’ solutions for the angular velocity ω

(dashed and solid lines respectively), for models with Kh = 106 Pa m T−1 (top) and

Kh = 2 · 107 Pa m T−1 (bottom), using Voyager-like conditions. The updated solution

(Pontius’) deviates from Hill’s prediction for distances roughly larger than 40RJ , whereas

for smaller distances the difference |δω| ≲ 4 · 10−2. For distances smaller than 40RJ , the

magnetodisc field is weaker, which leads to smaller values of ω compared to Hill’s prediction.
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Figure 9: Angular velocity map according to Hill’s solution (left) and Pontius’ method (mid-

dle), using Ferraro’s isorotation law. The difference between the two profiles is shown on the

right panel.

ωi−1)/ωi (same for α) becomes smaller than a user-defined threshold. We re-

mind that this threshold depends on (or better, is not independent of) the

mixing factor λi; similarly to the calculation of α, we set the effective tolerance

to 10−2.

Choosing a higher fraction of the new solution (λi, νi) leads to a faster420

relaxation (fewer repetitions of the “inner” and/or the “outer” loop), although

again in some cases it is advisable to start with a smaller λi, νi value (at the

expense of more iterations).

An additional constraint here is that the mixing factors for the Euler poten-

tial α (νi) and the angular velocity ω (λi) must not be significantly different,425

especially in models with large hot plasma content. In other words, it is nec-

essary to use a similar number of iterations for α and ω to ensure numerical

stability.

4.2. Effects on the force balance

As mentioned earlier, one of the key assumptions of Caudal’s scheme is the430

total force equilibrium between the magnetic force, the (total) thermal pressure

gradient and the centrifugal force. The choice of a specific profile for the angu-

lar velocity (e.g. Hill’s) as an initial condition also determines the centrifugal
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Figure 10: Dimensionless angular momentum for the models of Fig. 8. Hill’s angular velocity

profile (black, dashed) assumes a constant angular momentum at distances far from the planet;

this is confirmed as the solution gradually reaches a plateau after L ∼ 60RJ . This is not the

case, however, for Pontius’ solution (blue, solid).
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force and consequently the total force equilibrium. If the angular velocity does

not follow Hill’s profile, then the ratio between these three forces is modified435

during the iterative process to ensure equilibrium. Nichols (2011) discussed the

implications of the presence of the magnetodisc on the angular velocity and thus

the centrifugal force. For a description of Nichols’ angular velocity update, see

Appendix A.

We present in Fig. 11 the centrifugal force after the angular velocity is up-440

dated using Kh = 106 Pa m T−1 and Kh = 2 · 107 Pa m T−1. Using the nu-

merical solutions obtained from Pontius’ differential equations, the centrifugal

force increases by at least a factor of two in the middle and outer magneto-

sphere compared to the profile corresponding to Hill’s dipole solution. Thus,

the magnetic force and the thermal pressure are modified accordingly.445
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Figure 11: Centrifugal force per unit volume, for Hill and Pontius solutions for ω. Showing

cases with Kh = 106 (top) and 2 · 107Pa m T−1 (bottom). The updated angular velocity

profile leads to a larger centrifugal force compared to the dipole prediction.
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Figure 12: GalileoPLS data divided in two regions. The black marks represent the complete

data set, the red and blue marks the data points at a distance 5− 20RJ and > 60RJ respec-

tively. The data points in the middle magnetosphere are ignored, since there are very few to

obtain an accurate fit.

5. Comparison with selected spacecraft observations

5.1. Angular velocity profile

In order to determine the validity of the updated angular velocity profile,

we compare the numerical solution with plasma moments obtained from the

Galileo Plasma Science Experiment (PLS) data. In particular, we focus on the450

data used in (Bagenal et al., 2016).

The original data set was given in “jovigraphic” spherical coordinates, so

initially we performed a transformation to magnetic coordinates. We also filter

out any data obtained at distances z > 5RJ from the magnetic equator and use

only data from the dayside (facing the Sun). This results in a data set with455

roughly 1600 points. Since there are very few data points in the middle magne-

tosphere, we focus only on two regions where the measurements are clustered:

between 5-25RJ and 60 − 90RJ . The distribution of the data points along the

magnetic equator is shown in Fig. 12.

These regions are divided in uniform bins of the same size (for each region).460

We then compare the numerical solution with the median of each bin, taking
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into account that there is no realistic comparison in the middle magnetosphere.

This choice results in an uneven number of points in each bin; however, the

general behaviour of the median does not change much for the inner magneto-

sphere (except close to 25RJ). The data points for the outer magnetosphere465

are relatively few and in order to keep the same number of points per bin, they

would have to be treated as one bin.

In Fig. 13 we present the data points and the comparison with the numerical

solutions. At first, we notice that both Hill’s and Pontius’ solutions do not agree

well with the observed values of the angular velocity. However, the trend of the470

measured values does not agree with the corotation assumption near the orbit

of Io, leading to a systematic error. One possible solution would be to rerun

the magnetodisc code, using as an initial condition ωo = 0.9 at the orbit of

Io, the value obtained via interpolation from the data. However, the numerical

solution is driven by the corotation assumption, which will finally result in the475

same disagreement; experiments with ωo < 1 showed that the angular velocity

quickly returns to 1 near Io. Unless a very small value of ωo is used as an initial

condition (which is not a physical assumption), the radial currents will tend to

accelerate the plasma in this region towards corotation.

Another source of uncertainty, especially for large distances is the true value480

of Lo. In Caudal’s theory and our numerical implementation it is treated as

a constant (Lo=20) but, as shown in the discussion of Hill’s theory, there is a

significant effect on the final angular velocity profile (Fig. 6). Different values

of Lo could potentially lead to better agreement. The limitations in energy

resolution of Galileo also introduce an error since different ion species are not485

always effectively separated (Bagenal et al., 2016).

Note that the work of Bagenal et al. (2016) only provides plots and fits for

plasma parameters from Galileo PLS data out to 30RJ . However, the Galileo

PLS database referenced in our paper and plotted in Figure 13 both extend

to ∼ 90RJ . These plasma parameters are derived assuming an average mass-490

to-charge ratio of heavy ions, based on physical chemistry modeling of the Io

plasma torus. While this assumption is probably valid in the plasma sheet out
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Figure 13: Comparison between Hill (red) and Pontius’ (blue) solutions (for different Kh

values) and Galileo PLS data. The median of each bin is given with a black cross, using

N1, N2=(10,4]) bins (top) and N1, N2=(15,6) bins (bottom) for the first and second data

group respectively. The shaded region represents the 1st and 3rd quantile.
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to ∼ 40RJ , the ions between 60− 90RJ likely have a significant contribution of

protons and the heavy ions may be above the energy range of the instrument.

The azimuthal flow speeds in this region are likely underestimated, therefore,495

by a factor of a few (personal communication Fran Bagenal and Rob Wilson).

A re-analysis of the Voyager 1 and 2 data by Bagenal et al. (2017), using a

mean mass-per-charge based on chemistry models, provided more accurate infor-

mation on the ion composition. The results where then used by Dougherty et al.

(2017) to derive the plasma properties. Of particular interest for our study are500

the profiles of the azimuthal velocity, given in Figure 3 (Dougherty et al., 2017).

The authors compare the Voyager data with a existing theoretical predictions

for the angular velocity, up to 40 RJ . For the same range, the profiles of ω

obtained from our models are in good agreement with the predictions of Hill

(1980); Nichols and Cowley (2004) show over the Voyager data. We emphasise505

that due to the dependence of the solution for ω on Lo, small differences are

expected.

Last, we compare the azimuthal velocity, shown in Fig. 14, with the profiles

provided by the numerical simulations of (Chané et al., 2013). These simu-

lations used different parameters (e.g. Io torus mass loading rate, Pedersen510

conductivity) to create models of the Jovian magnetosphere. Although a direct

comparison is not possible, as in our case the mass loading rate and the conduc-

tivity are expressed via the Lo parameter, the order of magnitude and the trend

is in good agreement with models A and B shown in Fig. 7 of (Chané et al.,

2013).515
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Figure 14: Azimuthal velocity up to an equatorial crossing distance of 40RJ . The profile and

the order of magnitude are close to the solutions obtained by the simulations of (Chané et al.,

2013)

.

5.2. Equatorial current density

We now compare the equatorial, azimuthal current density obtained from

the magnetodisc code, using both Caudal-like (or Voyager-like) and Galileo-like

initial conditions, with profiles obtained from various missions. We will focus

on models with Hill’s profile for the angular velocity, as the update does not520

significantly modify the equatorial current.

We remind that (Connerney et al., 1981a) proposed that Jϕ ∼ ρ−1 (us-

ing Voyager data) and Caudal’s model predicts Jϕ ∼ ρ−1.2. Furthermore,

(Alexeev and Belenkaya, 2005) used a faster decreasing function, Jϕ ≃ ρ−2.

One of the most recent profiles for Jϕ was provided by (Connerney et al., 2020),525

using parameters obtained from Juno data. We compare the output from the

numerical model with these profiles in Fig. 15.

Some differences do exist between these profiles, while the order of magnitude

is captured sufficiently. Both the Voyager and Galileo models show a fast de-

crease in the azimuthal current, more consistent with (Alexeev and Belenkaya,530

2005). In Figure 8g from Nichols et al. (2015), we can see a qualitative agree-

ment with our Galileo runs, in terms of the maximum current density value
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Figure 15: Comparison between the azimuthal current density profile along the equator from

the magnetodisc models (solid lines) - using Voyager (top) or Galileo (bottom) initial condi-

tions, with various scaling profiles from (Connerney et al., 1981a) (Jϕ ≃ ρ−1), (Caudal, 1986)

(Jϕ ≃ ρ−1.2) and (Alexeev and Belenkaya, 2005) (Jϕ ≃ ρ−2). These are scaled to the value

of Jϕ at a distance where the profile begins to be smooth (∼ 7.5RJ and ∼ 11RJ for Voyager

or Galileo models respectively. Last, we show the profile of (Connerney et al., 2020) based on

Juno data. The values from the Galileo model are in qualitative agreement with Figure 8g

from Nichols et al. (2015)

.
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(∼ 0.1 nA m−2); in the same figure, the authors provide a the relative contri-

bution from each component. A direct, quantitative comparison is not possible

since our model does not include pressure anisotropy.535

(Khurana, 2001) and (Lorch et al., 2020) calculated the height integrated

azimuthal current using the formula:

J ′
ϕ =

1

µo

(
2
∂Bρ

∂z
− 2w

∂Bz

∂ρ

)
(27)

where w is the half-thickness of the current disk. The first term was estimated

from Brho components in the lobes adjacent to a current sheet crossing while the

second term was estimated by fitting the following function to measurements of

Bz at the centre of the current sheet and differentiating.

Bz =
a

ρ
+

b

ρ2
+

c

ρ3
(28)

where a,b,c are constants obtained from fitting the magnetic field data; in par-

ticular, (Khurana, 2001) used data from Galileo while (Lorch et al., 2020) used

data from all available missions up to July 2018.

In Fig. 16 we compare the fits for the differenced Bz (obtained by subtracting

the internal potential field) with the output from the magnetodisc code (plot540

on top) and the azimuthal current density as predicted from the code and the

fits (plot in bottom). We notice that there is a difference between the fitted Bz

function and the profile from magnetodisc code which, in turn, appears also in

the azimuthal current density profiles. Instead of the height integrated current

density, we calculate numerically the quantity Jϕ =
1

µo

(
∂Bρ

∂z
− ∂Bz

∂ρ

)
, using545

Voyager or Galileo based models. Since the functions provided by Khurana

(2001); Lorch et al. (2020) take into account measurements from different local

time sectors, we also compare these fits with a magnetodisc model using a

magnetopause distance of Rmp = 150RJ (appropriate for the dusk side). This

provides a better agreement with the fitted functions.550
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Figure 16: Top: Comparison of the differenced Bz , using magnetodisc models with Voyager

(blue) or Galileo (red) conditions. The fits of (Khurana, 2001), (Lorch et al., 2020) are shown

with dashed and dot-dashed lines. The yellow line represents the differenced Bz from a model

using Voyager conditions but setting the magnetopause distance at 150 RJ . Bottom: Similar

to Fig. 15, comparing now the magnetodisc output with (Khurana, 2001; Lorch et al., 2020).
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6. Conclusions

We report on an updated version of the UCL/AGA code, a numerical im-

plementation of Caudal’s theory (Caudal, 1986) for the construction of models

of the Jovian magnetosphere. The assumptions of the Caudalian scheme in-

clude axisymmetry, isotropic plasma and force balance between the magnetic555

force, the pressure gradient (including contribution from hot plasma) and the

centrifugal force. All physical quantities are derived from the calculation of the

Euler potential α. In Caudal’s original work, the equatorial initial conditions

necessary for the numerical iterations are obtained from Voyager data.

In this work, we investigated the following topics:560

• Implement newer Galileo profiles (Bagenal and Delamere, 2011; Bagenal et al.,

2016) for the equatorial plasma conditions: density, temperature and flux

tube content. Include new profiles for the energetic particle pressure

(Mauk et al., 2004).

• Include an angular velocity correction algorithm based on Pontius’ method565

Pontius (1997), which accounts for the presence of the magnetodisc.

• Compare the corrected angular velocity with Galileo data.

• Compare the output from Voyager or Galileo based models with different

current profiles.

• Numerical tests in terms of grid and step size.570

A summary of each topic is given in the following paragraphs.

The equatorial number density distribution and the temperature are ob-

tained from empirical fits and are now smooth functions, in contrast with the

step functions originally used by Caudal from Voyager data. The number den-

sity behaviour is quite similar in both Voyager and Galileo data, but with a575

difference of approximately one order of magnitude for large equatorial radii.

The equatorial temperature (or equivalently, the scale height) is systematically

larger in the Galileo data (due to the ability to detect higher energies), reaching
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an asymptotic value of ∼ 103 eV around 20RJ ; the profile used by Caudal shows

a continuous increase in temperature. Regarding the hot plasma pressure, the580

Galileo data indicate a smaller hot plasma content compared to the Voyager

profiles.

The second addition is a numerical implementation of Pontius’ method to our

existing numerical scheme to calculate the angular velocity profile in a consistent

way i.e. taking into account the magnetodisc. First, we construct the dayside585

magnetosphere, including the magnetodisc based on Caudal’s theory. Up to

this point the angular velocity is described by Hill’s solution, consistent with a

dipole. Using the resulting relaxed state, we then update the equatorial angular

velocity, solving numerically Pontius’ differential equation for the corotation lag.

Our results show that initially Hill’s and Pontius’ solutions coincide; this590

is consistent with the magnetic field profile, which is approximately a dipole

for small distances. The rigid corotation breaks down roughly at 10RJ for

both solutions, with small differences between them visible up to 40RJ . A

significant increase in the “updated” angular velocity compared to Hill’s dipole

solution is evident after 40RJ . We tested the angular velocity profiles for both595

methods against plasma moments from Galileo and found that in the inner

magnetosphere, both methods produce sufficiently accurate results. The results

are less clear, however, in the outer magnetosphere due to a combination of lack

of data and uncertainties in the physical properties of the plasma itself (e.g. the

Lo parameter, which acts as a proxy for certain physical parameters).600

The angular velocity profile obtained from Pontius’ equation leads to an

increase in the centrifugal force experienced by the plasma on the equator,

which may have implications for the total behaviour of the system and the

compressibility of the Jovian magnetosphere. This particluar application will

be examined in future work.605

Comparing the azimuthal current density along the equator, we found that

both choices of initial conditions lead to a fast decrease with equatorial dis-

tance, close to ρ−2, similar to the case of (Alexeev and Belenkaya, 2005). The

azimuthal current density profiles calculated by Khurana (2001); Lorch et al.
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(2020) seem to be a better match for our Galileo models. This can also be seen610

in the profiles of the differenced Bz, as the order of magnitude predicted by our

models (again, especially when using Galileo conditions) is in good agreement

with the third order fits shown in Khurana (2001); Lorch et al. (2020).

We also tested the code for grids of different resolution and for different

number of iterations in the calculation of α and ω. We found that for a typical615

magnetopause radius of Rmp ≃ 80RJ , even small grids (e.g. with (ρ, cos θ)

grid size of (200x201) points, or a resolution of 0.4 Jovian radii) can provide a

satisfactory model if Hill’s solution is used. Models with significant hot plasma

population and/or an update in angular velocity may require a finer grid. The

numerical tests can be found in the appendix.620

We aim to further update the code, implementing newer profiles from Juno

data. This will enable us to produce realistic models of the Jovian magneto-

sphere for different eras and examine different characteristics, such as its com-

pressibility and the motion of charged particles in the modified magnetic field.

The algorithm used to update the angular velocity may also be adapted for the625

magnetosphere of Saturn.

Data availability

The authors are willing to share the models of the Jovian magnetosphere if

a reasonable request is made. Specific models will be uploaded in a repository

over the next months.630
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Appendix A. Nichols’ method for angular velocity update645

An alternative (and similar) method to update the angular velocity was

provided by (Nichols and Cowley, 2004; Nichols et al., 2015). The equation that

now determines the angular velocity profile is:

dω

dL
=

2

L

(4πΣ∗
PB

2
oR

2
JFeBze(1− ω)

Ṁ
− ω

)
(A.1)

where again Ṁ is the mass outflow rate, Σ∗
P is the effective Pedersen conduc-

tance and Fe, Bze are the equatorial magnetic flux and equatorial magnetic field650

respectively.

There are some subtle differences between the equations 22,24 and A.1 that

we should highlight in advance: the polar magnetic field strength is assumed to

be equal to 2BJ in Nichols and Cowley (2003, 2004). Fiducial profiles for the

equatorial magnetic field and the flux function are given in Nichols and Cowley655

(2004):

Bze = −

{
Bo

(
RJ

ρ
)3exp

[
− ρ

ρo

5/2
]
+A

(
RJ

ρ

)m}
(A.2)

Fe = F∞ +
BJR

3
J

2.5ρ
Γ

[
− 2/5,

(
ρ

ρo

)5/2]
+

A

m− 2

(
RJ

ρ

)m−2

(A.3)

where Bo = 3.335 · 105nT, ρo = 14.501RJ ,A = 5.4 · 104nT,m = 2.71,Fe

is the flux function, F∞ is the value of the flux function at infinity, Γ(x, y)
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is the incomplete Gamma function and m = 2.71 (obtained from the equato-

rial magnetic field profile). This profile reproduces the CAN model values for660

the equatorial magnetic field and the flux function at a cylindrical equatorial

distance ρ = 5RJ .

The flux function can then be found via the formula:

sin θi =

√
Fe

BJR2
J

(A.4)

In addition, the effective Pedersen conductance, defined as Σ∗
P = (1 − k)Σ,

corrects the true value (Σ) due to the slippage from the (neutral) atmosphere

from rigid corotation using the parameter k. For simplicity, we can choose,665

following (Nichols and Cowley, 2003, 2004) k = 0.5, meaning that the true

value is halved. This is not the case for Pontius’ method, where the Pedersen

conductance is included in the calculation of Lo and is thus obtained from the

magnetodisc model output.

A comparison between the equatorial magnetic field and the mapping func-670

tions for Hill’s, Pontius’ and Nichols’ fiducial profiles (equations A.2,A.3, as in

Nichols and Cowley (2004)) is shown in Fig. A.17.

In the following analysis, we used for simplicity the initial conditions given

in (Caudal, 1986) (Voyager conditions). For completeness, compare with Figure

2 from (Nichols and Cowley, 2004), showing details on the CAN model.675

Overall, there are some (usually minor) differences to be expected for the

angular velocity profile obtained with Pontius’ and Nichols’ algorithms, depend-

ing (as we will show) on the value of Kh. We present the solutions for various

models (shown in Table B.1) in Fig. A.18.

Notice that in Figure 6a of Nichols et al. (2020), the equatorial magnetic680

field from the output of a magnetodisc model is shown, which is very similar to

the profiles from the cases we discuss here. See also Figure 7 of Nichols et al.

(2020) where models of the magnetosphere with and without enhancement of

hot plasma pressure are discussed; the updated angular velocity profiles are very

similar to the ones obtained from our models. Figure 11 from Nichols et al.685

(2015) is showing similar behaviour for ω as well.
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Figure A.17: Top: Equatorial magnetic field in log scale, normalized to the planetary value

in models using Hill’s, Pontius’ and Nichols’ methods respectively, for the update of angular

velocity. Bottom: Comparison between the mapping function for the same models. The

Nichols’ cases refer to the fiducial models from Nichols and Cowley (2004).
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Figure A.18: Angular velocity profiles for every model in Table B.1. Left to right: Models

with larger Kh values. Top to bottom: Models with larger magnetopause radius Rmp
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We opted to use Pontius’ algorithm in our code since it provides a convenient

method to calculate the difference between the dipole and magnetodisc fields.

Although it is beyond the scope of this work, we note that Nichols’ algorithm has

been successfully used in models with plasma pressure anisotropy Nichols et al.690

(2015).

Appendix B. Numerical tests

In this section, we present some basic numerical tests we performed to de-

termine the robustness of the updated code and the angular velocity update

algorithm in particular. These tests focus on the grid resolution and provide695

more details about the “mixing” procedure used in the update routine.

A description of the models used in the following analysis are shown in

B.1. Each model is characterized by the magnetopause distance Rmp, the hot

plasma content index Kh and the solver used for the angular velocity update.

We provide also the necessary number of iterations that were performed in order700

to obtain a solution with a desired accuracy, which is linked to the factor νi used

for the “intermediate” solution.

Appendix B.1. Grid size

First we will examine the behaviour of the algorithms for different choices

of grid size. In order to avoid extremely large hot plasma populations and705

represent an average state of the Jovian magnetosphere, we select model H8

from Table B.1, thus Kh = 2 · 107Pa m T−1 and Rmp = 80RJ .

We create different versions of the model, using a Cartesian box with dimen-

sions (r, cos θ) from 200x201 to 600x601. These choices provide a sufficient level

of detail for the general characteristics of the magnetosphere. The relative error710

in the equatorial α for each grid size (with respect to the finest grid) is always

smaller than 10−2, as shown in Fig. B.19.
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Table B.1: Key parameters for every model used to test the angular velocity update algo-

rithms. For the “Hill” models, there is no actual solver involved for the angular velocity, as it

corresponds to the value obtained for a dipole. For models using the Pontius’ method, more

steps are required as we examine systems with larger Kh. All cases use the Voyager profiles

for the equatorial initial conditions.

Name Solver type Rmp (RJ ) KhPa m T−1 Grid size νi λi # iterations (ω)

H1 Hill 60 105 500X501 0.25 0.25 -

H2 Hill 60 105 500X501 0.25 0.25 -

H3 Hill 60 105 500X501 0.25 0.25 -

H4 Hill 60 105 500X501 0.25 0.25 -

H5 Hill 80 105 500X501 0.25 0.25 -

H6 Hill 80 106 500X501 0.25 0.25 -

H7 Hill 80 107 500X501 0.25 0.25 -

H8 Hill 80 2 · 107 500X501 0.25 0.25 -

H9 Hill 90 105 500X501 0.25 0.25 -

H10 Hill 90 106 500X501 0.25 0.25 -

H11 Hill 90 107 500X501 0.25 0.25 -

H12 Hill 90 2 · 107 500X501 0.25 0.25 -

P1 Pontius 60 105 500X501 0.25 0.25 13

P2 Pontius 60 105 500X501 0.25 0.25 13

P3 Pontius 60 105 500X501 0.25 0.25 14

P4 Pontius 60 105 500X501 0.25 0.25 15

P5 Pontius 80 105 500X501 0.25 0.25 13

P6 Pontius 80 106 500X501 0.25 0.25 13

P7 Pontius 80 107 500X501 0.25 0.25 15

P8 Pontius 80 2 · 107 500X501 0.25 0.25 15

P9 Pontius 90 105 500X501 0.25 0.25 13

P10 Pontius 90 106 500X501 0.25 0.25 13

P11 Pontius 90 107 500X501 0.25 0.25 15

P12 Pontius 90 2 · 107 500X501 0.25 0.25 15

N1 Nichols 60 105 500X501 0.25 0.25 17

N2 Nichols 60 105 500X501 0.25 0.25 17

N3 Nichols 60 105 500X501 0.25 0.25 17

N4 Nichols 60 105 500X501 0.25 0.25 17

N5 Nichols 80 105 500X501 0.25 0.25 17

N6 Nichols 80 106 500X501 0.25 0.25 17

N7 Nichols 80 1 · 107 500X501 0.25 0.25 17

N8 Nichols 80 2 · 107 500X501 0.25 0.25 17

N9 Nichols 90 105 500X501 0.25 0.25 17

N10 Nichols 90 106 500X501 0.25 0.25 17

N11 Nichols 90 1 · 107 500X501 0.25 0.25 17

N12 Nichols 90 2 · 107 500X501 0.25 0.25 17
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Figure B.19: Relative error in the equatorial potential α, calculated with respect to a grid

with size 600× 601.

Appendix B.2. Effects of “mixing” coefficients (number of iterations)

We will now investigate the differences in the updated solution of ω us-

ing a different number of iterations (i.e. λi). We select model P8 (Kh =715

2 ·107Pa m T−1 and Rmp = 80RJ), exploring three choices of the mixing coeffi-

cient: λi = 0.25, λ = 0.3 and λi = 0.5. A visualization of the relaxation process

is shown in Fig. B.20. The final ω profile is approximately the same, with an

absolute relative error between the choices between λi = 0.5 and λi = 0.25 being

smaller than 6 · 10−4.720

The difference between the two choices is quite small and thus justifies the

use of a “large” fraction (e.g. λi = 0.5) of the new solution when updating the

angular velocity. However, special attention is required when the grid resolu-

tion is small (e.g. 200x201) and/or the fractions λi and λi−1 are considerably

different with the corresponding fractions (νi,i−1) for the update of α. Since ω725

and α are not updated simultaneously, different choices of λ may result in steep

gradients, which make the numerical schemes unstable.
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Figure B.20: Updating the angular velocity using Pontius’ method with different step sizes,

for a model with Rmp = 80RJ ,Kh = 2 · 107 Pa m T−1. Showing here values of λi =0.5,0.3

and 0.25 seen from left to right. The choice of the mixing coefficient λi determines the number

of iterations, which are 7,13 and 15 respectively. In all cases, the iteration stops when the

desired threshold is achieved. The difference in the final solution between the smaller and the

larger step size cases is δω < 6 · 10−4.
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