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Symbol-Level GRAND for High-Order Modulation
over Block Fading Channels
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Abstract—Guessing random additive noise decoding (GRAND)
is a noise-centric decoding method, which is suitable for low-
latency communications, as it supports error correction codes
that generate short codewords. GRAND estimates transmitted
codewords by guessing the error patterns that altered them
during transmission. The guessing process requires the testing of
error patterns that are arranged in increasing order of Hamming
weight. This approach is fitting for binary transmission over
additive white Gaussian noise channels. This letter considers
transmission of coded and modulated data over block fading
channels and proposes a more computationally efficient variant
of GRAND, which leverages information on the modulation
scheme and the fading channel. In the core of the proposed
variant, referred to as symbol-level GRAND, is an expression
that approximately computes the probability of occurrence of
an error pattern and determines the order with which error
patterns are tested. Analysis and simulation results demonstrate
that symbol-level GRAND produces estimates of the transmitted
codewords faster than the original GRAND at the cost of a small
increase in memory requirements.

Index Terms—Random linear codes, GRAND, hard detection,
block fading, QAM, short-packet communication, URLLC.

I. INTRODUCTION

THE requirement for ultra-reliable low latency commu-
nication (URLLC) was introduced in fifth generation

(5G) networks in order to support services that have stringent
requirements for extremely low latency (e.g., 1 ms) and high
reliability (e.g., 99.999%). Examples of applications that rely
on URLLC include machine-type communications for the
industrial internet of things (IIoT), virtual reality and driverless
vehicles [1], [2]. The low latency goal implies the use of
error correction codes with short codewords [3]. However, in
an effort to achieve Shannon’s capacity, emphasis in pre-5G
systems was placed on the construction of codes that map
information words onto long codewords. Codes that were
invented in the 1960s, e.g., BCH codes and Reed-Solomon
codes, have sparked renewed interest [4] for URLLC. This is
because they can have short codewords, although they support
a limited number of code rates. In contrast, random linear
codes (RLCs) can support any code rate but decoding RLCs
is NP-hard [5] and is therefore considered impractical.

The recently proposed guessing random additive noise de-
coding (GRAND) [6] enables universal decoding, i.e., decod-
ing of any binary or nonbinary linear code, including RLCs.
GRAND leverages the fact that noise entropy decreases as the
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channel conditions improve; thus, the list of all possible error
patterns that could alter a transmitted codeword reduces in
size. Attempting to guess the most likely error pattern becomes
more efficient than searching for the most likely transmitted
codeword in the code-book, and yields maximum-likelihood
performance. A code-book membership test is required to
verify whether the combination of a likely error pattern with
the received word corresponds to a valid codeword. GRAND
considers error patterns in descending order of likelihood and
returns the first error pattern that passes the test.

Error correction codes are combined with high-order mod-
ulation in wireless systems to improve spectral efficiency. At
the receiver, a demodulator converts the sequence of received
modulated symbols into a stream of bits. GRAND attempts to
estimate the transmitted codeword from the input stream of bits
but knowledge of the modulation type is not exploited in the
search for error patterns that satisfy the conditions for code-
book membership. Although the exploitation of knowledge
at the symbol level was envisaged in [6], a mechanism to
use this knowledge in the generation of error patterns was
not developed. The objective of this letter is to develop a
more computationally efficient variant of GRAND that treats
the input stream of bits as an equivalent sequence of hard-
detected modulated symbols corrupted by block fading and
additive noise. We refer to the proposed decoder as symbol-
level GRAND. The modulation scheme considered in this
work is M -ary quadrature phase modulation (M -QAM).

A modification of GRAND that leverages information on
the adopted modulation scheme was recently proposed by
An et al. [3]. Their paper considers the position of M -QAM
symbols on the constellation, obtains the probability of a
symbol transitioning to one of its nearest neighbors in the
special case of channels with memory, and identifies rules
that place constraints on the generation of error patterns. In
contrast to [3], we derive a closed-form expression for the
probability that the input stream of bits is a sequence of a
particular combination of binary strings that correspond to
different constellation symbols. These symbols have, thus,
different numbers of nearest and next-nearest neighbors. This
probability expression is used in the generation of error pat-
terns in order of likelihood, when transmission is over a block
fading channel. In essence, both our letter and [3] consider the
modulation scheme in the decoding process but the estimation
and ordering of the error patterns follow different rules because
they have been tailored to different channel models. Abbas et
al. [7] also look into GRAND for flat fading channels but do
not consider high-order modulation; their work focuses on the
design of a variant of GRAND that exploits receive diversity.
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II. SYSTEM MODEL

Consider a coding and modulation scheme that employs an
[n, k] binary linear block code followed by square Gray-coded
M -QAM. The [n, k] block code uses a k×n generator matrix
G to encode a k-bit input information word, represented by
u ∈ {0, 1}k, into an n-bit codeword x = uG for n > k.
The set of all 2k valid codewords is known as the code-book
C ⊆ {0, 1}n of the [n, k] code. The n bits of codeword x are
divided into L strings of log2M bits, i.e., L = n/ log2M . If
Eb denotes the energy per information bit, then (k/n)Eb is the
energy per codeword bit, and (log2M)(k/n)Eb is the energy
per string of log2M bits. M -QAM maps the L strings onto L
symbols of a complex set S ⊂ C, which has cardinality M and
average energy per symbol (log2M)(k/n)Eb. The sequence of
L symbols, denoted by s ∈ SL, is transmitted to a receiver
over a single-input single-output (SISO) channel.

The channel is impaired by additive white Gaussian noise
(AWGN) and block fading. The relationship between the input
and output of the discrete-time equivalent channel is [8], [9]

r = hs+ z, (1)

where r ∈ CL is the sequence of noisy M -QAM symbols
at the output of the channel, and z ∈ CL is a sequence
of L zero-mean complex Gaussian random variables with
variance N0. The fading coefficient h is a zero-mean complex
random variable with variance E

[
|h|2
]
= 1. The value of

h remains constant during the transmission of sequence s
but changes independently from one sequence to the next. If
γ,(log2M)(k/n)(Eb/N0), the instantaneous signal-to-noise
ratio (SNR) at the receiver is given by SNR = |h|2γ, while the
average SNR takes the form E

[
SNR
]
= E

[
|h|2
]
γ = γ.

We assume that channel state information is available at
the receiver, i.e., the value of h is known for every received
sequence, and coherent detection is possible. The received
sequence r is multiplied by h−1 , h∗/|h|2, where h∗ and |h|
denote the complex conjugate and magnitude, respectively, of
h. The product h−1 r is input to a hard-detection demodulator,
which maps each received symbol to the nearest symbol of the
M -QAM constellation and generates ŝ ∈ SL. Given that every
symbol in ŝ conveys log2M bits, the output of the demodulator
is a sequence of n = L log2M bits, denoted by y ∈ {0, 1}n.

The n-bit sequence y is a potentially erroneous copy of
codeword x, and can be expressed as y = x ⊕ e, where ⊕
denotes modulo-2 addition and e ∈ {0, 1}n, referred to as the
error vector, represents additive noise. GRAND attempts to
determine x by estimating e [6]. Prospective error vectors, also
known as error patterns, are ordered in increasing Hamming
weight. Each error pattern is subtracted from sequence y and
the result is the estimated codeword if it belongs to code-book
C. In other words, if ê is the first error pattern in the ordered
list of error patterns that satisfies y⊕ ê ∈ C, then x̂ = y⊕ ê.
The (n−k)×n parity-check matrix H of the [n, k] block code
can be used to verify membership of y ⊕ ê in C. Given that
GHT = 0, where HT is the transpose of H, the sequence
y ⊕ ê is a codeword in C if and only if

(
y ⊕ ê

)
HT = 0

[10]. To curtail computational complexity without inordinately
compromising the error correction capability of GRAND, the
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Fig. 1. Constellation diagram of 16-QAM. Representatives of corner, side and
inner points are shown in black. The nearest neighbors of 1101 are shown in
dark red (neighborhood 1), while the next-nearest neighbor of 1101 is shown
in dark cyan (neighborhood 2). The same color-coding scheme has been used
to depict the error strings between 1101 and each neighboring point.

Hamming weight of the error patterns in the ordered list could
be constrained by an upper limit, termed the abandonment
threshold wth [6]. If wth is set to no more than half the
minimum Hamming distance of the [n, k] block code, the error
correction capability of GRAND will be similar to or better
than that of existing code-specific decoders [11].

The concatenation of M -QAM demodulation and GRAND
leads to a hard detection and decoding scheme that operates at
the bit level; GRAND, in its current form, neither exploits the
structure of the M -QAM constellation nor leverages channel
state information. Ordering of the error patterns should be
guided by the Euclidean and Hamming distances of the hard-
detected symbols to neighboring symbols in the constellation,
the channel noise and fading. In the remainder of the letter,
knowledge of the constellation and channel state information
are integrated in the ordering process of error patterns, and
symbol-level GRAND is developed and contrasted to the orig-
inal GRAND [6], henceforth referred to as bit-level GRAND.

III. SYMBOL-LEVEL GRAND
The n-bit codeword x defined in Section II can be expressed

as x = (xi)
L
i=1, where xi is the i-th string of log2M bits

mapped onto symbol si ∈ S of M -QAM. The correspondence
between all possible values of xi and the symbols of M -QAM,
when Gray coding is used, is depicted in Fig. 1. The M
symbols compose a two-dimensional constellation of equally
spaced points, labeled by the mapped values from {0, 1}log2M .
The Euclidean distance between two adjacent points along one
dimension is 2d, where d is given by [12], [13]

d =

√
3(log2M)(k/n)Eb

2(M − 1)
. (2)

This distance ensures that the average squared distance of a
point from the origin or, equivalently, the average energy per
M -QAM symbol is (log2M)(k/n)Eb, as stated in Section II.

Let xi be mapped onto a point of the constellation diagram.
We define two neighborhoods around the point with label xi;
neighborhood 1 encloses points located at Euclidean distance
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TABLE I
EXPRESSIONS FOR THE PROBABILITY TERMS IN (3).

FUNCTION Q(z) , (1/
√
2π)

∫∞
z exp(−t2/2) dt IS THE TAIL

DISTRIBUTION OF THE STANDARD NORMAL DISTRIBUTION.
VARIABLE d′ IS GIVEN BY d′ =

√
3 SNR/(M − 1).

pc,0 = (1/M)(1−Q(d′))2

ps,0 = (1/M)(1−Q(d′))(1− 2Q(d′))

pi,0 = (1/M)(1− 2Q(d′))2

pc,e1 = 2(1/M)(1−Q(d′))Q(d′)

ps,e1 ≈ (1/M)[2(1−Q(d′))Q(d′) + (1− 2Q(d′))Q(d′)]

pi,e1 ≈ 4(1/M)(1− 2Q(d′))Q(d′)

pc,e2 = (1/M)Q2(d′)

ps,e2 ≈ 2(1/M)Q2(d′)

pi,e2 ≈ 4(1/M)Q2(d′)

2d from xi, while neighborhood 2 includes points located
at Euclidean distance 2

√
2d from xi. We denote by E1(xi)

and E2(xi) the sets of all error strings obtained by modulo-2
addition of xi with the members of neighborhoods 1 and 2,
respectively. For example, as shown in Fig. 1, neighborhood 1
of xi = 1101 consists of the points with labels 0101 and 1001;
these two points generate the error strings 1101⊕0101 = 1000
and 1101⊕1001 = 0100, therefore E1(1101) = {1000, 0100}.
Neighborhood 2 of 1101 comprises only one point with label
0001, hence E2(1101) = {1100}. As a result of Gray coding,
the Hamming weight of all members of E1(xi), for any value
of xi, is 1. Similarly, the Hamming weight of all members
of E2(xi), for any xi, is 2. The cardinalities of E1(xi) and
E2(xi) depend on the location of the point with label xi in
the constellation. As illustrated in Fig. 1, the square M -QAM
constellation is composed of corner points, side points and
inner points. If xi is mapped onto a corner, side or inner point,
the number of elements in E1(xi) is 2, 3 or 4, respectively,
while the size of E2(xi) is 1, 2 or 4, respectively.

At the receiver, the n-bit sequence y at the output of the
demodulator can also be written as a sequence of L strings,
that is, y = (yi)

L
i=1, where yi is a string of log2M bits

that corresponds to a point in the M -QAM constellation
diagram. Bit-level GRAND generates and tests error patterns
in order of likelihood until an error pattern ê that satisfies
y ⊕ ê ∈ C is found. The likelihood of an error pattern
is taken to be a monotonically decreasing function of its
Hamming weight. In the proposed symbol-level GRAND, the
requirement for y⊕ ê ∈ C remains in place but is expressed as
(yi⊕ êi)

L
i=1 ∈ C, where êi is the i-th error string of the error

pattern ê, and yi ⊕ êi is a string that corresponds to a point in
the constellation diagram. Given the structure of the M -QAM
constellation, êi will be a member of either E1(yi) or E2(yi)
with high probability, or will be a string of log2M zeros,
denoted by 0. In contrast to bit-level GRAND, symbol-level
GRAND does not need to generate and test every realization
of ê for an increasing Hamming weight; instead, it generates
only realizations of ê that are composed of error strings, which
belong to E1 and E2 of the respective strings in ŷ, or are equal
to 0, that is, (yi⊕ êi)

L
i=1 ∈ C for êi ∈ {0}∪E1(yi)∪E2(yi).

Henceforth, for simplicity, we say that an error string êi is of
type Ej if êi ∈ Ej(yi) for j = 1, 2. Let P (L1, L2) denote the
probability of an error pattern ê being composed of L1 error

strings of type E1, L2 error strings of type E2, and L−L1−L2

error strings that contain zeros, for a given fading coefficient
h and noise variance N0. The following propositions derive a
tight approximation of P (L1, L2) and obtain an estimate of
the worst-case complexity of symbol-level GRAND.

Proposition 1: An error pattern is a sequence of L error
strings, each of length log2M bits. The probability that L1+L2

of the error strings are non-zero, when L1 of them are of type
E1 and L2 are of type E2, can be approximated by:

P (L1, L2) ≈∑
Lc+Ls+Li=L

(
L

Lc, Ls, Li

)
4Lc+Ls

(√
M − 2

)Ls+2Li

×
∑

Lc,e+Ls,e+Li,e=L1+L2

Lc,e≤Lc

Ls,e≤Ls

Li,e≤Li

∏
∀`∈L
L={c,s,i}

(
L`

L`,e

)
p
L`−L`,e

`,0

×
∑

Lc,e1
+Ls,e1

+Li,e1
=L1

Lc,e1
≤Lc,e

Ls,e1
≤Ls,e

Li,e1≤Li,e

∏
∀`∈L

(
L`,e

L`,e1

)
p
L`,e1

`,e1
p
L`,e−L`,e1

`,e2
(3)

where L = {c, s, i} is a set of indices, which signify the possi-
ble locations of a constellation point, i.e., corner (c), side (s) or
inner (i) point, as explained in Fig. 1. For a given constellation
point ` ∈ L, an error string will contain zeros, be of type E1 or
be of type E2 with probability p`,0, p`,e1 and p`,e2 , respectively.
Expressions for the three probabilities for ` ∈ L are provided
in Table I. All probabilities in Table I are functions of the
distance between a constellation point and the nearest decision
boundary, defined as d′ , d|h|/

√
N0/2 and depicted in Fig. 2.

Notice that d′ encapsulates the effect of the channel parameters
|h| and N0 on d. Using (2), we obtain d′ =

√
3 SNR/(M − 1).

Proof: To compute P (L1, L2), we need to consider the
structure of sequences of L error strings. A sequence will con-
tain Lc, Ls and Li error strings that are specific to the neigh-
borhoods of corner, side and inner points, respectively. The
M -QAM constellation consists of 4 corner points, 4(

√
M−2)

side points and (
√
M − 2)2 inner points. Hence, there exist

4Lc(4(
√
M − 2))Ls(

√
M − 2)2Li unique sequences for fixed

values of Lc, Ls and Li. If we take the sum over all possible
values of Lc, Ls and Li, provided that Lc + Ls + Li = L,
we obtain the second line of (3). Let us now focus on the Li

error strings in the sequence, which are associated with inner
points (` = i). Of them, Li,e error strings will correspond to
symbols received in error and will be non-zero; Li,e1 non-zero
error strings will be of type E1 with probability pLi,e1

i,e1
, and the

remaining Li,e − Li,e1 non-zero error strings will be of type
E2 with probability pLi,e−Li,e1

i,e2
. The sequence will also contain

Li−Li,e error strings that are composed of zeros only, as they
correspond to symbols that have been received correctly with
probability p

Li−Li,e

i,0 . Expressions for pi,0, pi,e1 and pi,e2 are
provided in Table I. We focused on inner points but the same
reasoning can be applied to error strings that are associated
with corner points (` = c) and side points (` = s). If we take
the sum over all possible values of L`,e and L`,e1 , for every
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Fig. 2. Example of the extended region considered in the calculation of the
probability that 0110 was transmitted given that 0010 is received.

` ∈ L, provided that the total number of non-zero error strings
is L1 + L2 and the total number of non-zero error strings of
type E1 is L1, we obtain the third and fourth lines of (3).

Some expressions in Table I consider extended regions
instead of individual constellation points and are, therefore,
approximations. For instance, assume that 0010 is received, as
shown in Fig. 2. The probability that 0110 was transmitted and
a type-E1 error string occurred considers points that lie above
the top-side boundary and between the left-hand and right-
hand boundaries of 0110. These constraints do not single out
0010 but define a region (striped area in Fig. 2), which contains
three points, including 0010. Owing to the approximations in
Table I, expression (3) is also an approximation that becomes
tighter as the channel conditions improve.

Proposition 2: The number of error patterns that are tested,
until a transmitted codeword is estimated, is a measure of
complexity. Given that received codewords of n bits are
composed of L strings of log2M bits when M -QAM is used,
the worst-case number of error patterns that symbol-level
GRAND tests is 9

n
log2M .

Proof: Symbol-level GRAND determines the most likely
value of êi ∈ {0} ∪ E1(yi) ∪ E2(yi) for i = 1, . . . , L, such
that (yi⊕ êi)

L
i=1 ∈ C, where yi corresponds to a constellation

point. The number of error strings that are tested, for any value
of i, is maximized when yi is mapped to a point that has the
most neighbors, i.e., an inner point. In that case, êi will take
values from a set that contains nine values: 0, four values from
E1(yi) and four values from E2(yi). The worst-case scenario
is the receipt of L strings that all correspond to inner points,
which will lead to 9L = 9

n
log2M possible error patterns. Using

the same reasoning, bit-level GRAND would consider all error
patterns of length n bits, that is, 2n = 2L log2M = ML.
However, as proven in [6], fewer than 2n−k error patterns are
tested, on average, before bit-level GRAND selects an error
pattern that produces a valid codeword (either the transmitted
codeword or an incorrect codeword).

Symbol-level GRAND uses (3) to evaluate P (L1, L2) for
L1 = 0, . . . , L and L2 = 0, . . . , L− L1, where L1 + L2 > 0,
and arranges the obtained probability values in descending
order. If P (L∗1, L

∗
2) is the i-th probability value in the ordered

list, L∗1 and L∗2 are assigned to the entries of the i-th row of an
(L(L+3)/2)×2 lookup table A = [ai,j ], that is, ai,1 = L∗1 and
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subplot represents error patterns containing L1 type-E1 and L2 type-E2 error
strings, which occur with probability P (L1, L2) shown on the vertical axis.

ai,2 = L∗2. Consequently, the relationship between the entries
of consecutive rows of A is P (ai,1, ai,2) ≥ P (ai+1,1, ai+1,2).
For every row i of A, symbol-level GRAND generates all
error patterns that consist of ai,1 error strings of type E1 and
ai,2 error strings of type E2. As the algorithm moves from
the top row toward the bottom row of A, the likelihood of
the generated error patterns reduces. Symbol-level GRAND
terminates when an error pattern ê that meets the requirement
for y ⊕ ê ∈ C is identified.

IV. RESULTS AND DISCUSSION

To verify the tightness of (3), we ran simulations for
Eb/N0 = 10 dB and Eb/N0 = 12 dB, and observed the error
patterns at the output of a 16-QAM demodulator for received
sequences impaired by Rayleigh fading or by AWGN only.
In the former case, fading coefficients with magnitudes fixed
at |h| = 0.8 and |h| = 0.9 were considered. In the case of
AWGN, the fading coefficient was set to h = 1. Since coding
does not influence P (L1, L2) in (3), we focused on uncoded
16-QAM, where k = n = 128. As per the definition of SNR

in Section II, the two values of Eb/N0 and the three values of
|h| produce six SNR values. For each SNR value, expression (3)
was used to build a lookup table A, as described in Section III.

Fig. 3 compares the occurrence probabilities of the five
most likely structures of error patterns, which were measured
through simulations for each SNR value, with predictions
obtained using (3). The structure of an error pattern composed
of L1 type-E1 and L2 type-E2 error strings has been expressed
as [L1 L2] on the horizontal axis of each subplot in Fig. 3. The
Hamming weight of an error pattern with structure [L1 L2] is
L1+2L2 for Gray-coded QAM. The vertical axis of each sub-
plot displays the theoretical and measured values of P (L1, L2)
for each pattern structure. Fig. 3 demonstrates that predictions
match simulation results, thus (3) is a tight approximation of
P (L1, L2). Although error patterns that contain only type-E1
error strings, i.e., with structure [L1 0], become dominant at
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high Eb/N0 values, structures that incorporate type-E2 error
strings continue to appear among the most likely structures.
Fig. 3 also confirms that the structure of error patterns is more
pivotal to their likelihood than their Hamming weight.

To compare symbol-level GRAND with bit-level GRAND,
in terms of performance and complexity, RLC with k = 103
and n = 128 was combined with 16-QAM at the transmitter.
At the receiver, the decoding algorithms consider error patterns
of Hamming weight up to wth, where wth ∈ {2, 3}. This
means that symbol-level GRAND examines each row of
table A, from top to bottom, and considers a structure [L1 L2]
in a row if L1 + 2L2 ≤ wth; otherwise, it moves to the next
row. Given that the estimated codeword x̂ at the output of
the decoder is referred to as a block, the block error rate
(BLER) is used as a measure of performance. The number
of error patterns that are tested, on average, until the decoder
estimates the transmitted codeword, is adopted as a measure of
complexity. Simulation results1 for a Rayleigh fading channel
are presented in Fig. 4. Observe that symbol-level GRAND
perfectly matches the BLER of bit-level GRAND and con-
verges to a solution faster than bit-level GRAND. For example,
a switch from bit-level to symbol-level GRAND reduces the
average number of tests by ∼ 40% for wth = 2, and by ∼ 56%
for wth = 3 when Eb/N0 ∈ [20, 34], as shown in Fig. 4.
The complexity gain of symbol-level GRAND over bit-level
GRAND was also proven in Proposition 2, which concluded
that, for fixed n, the worst-case complexity of symbol-level
GRAND diminishes as M increases, whereas the worst-case
complexity of bit-level GRAND is independent of M .

The complexity advantage of symbol-level GRAND comes
with a small increase in memory requirements. A two-
dimensional (2D) lookup table A contains the ordered struc-
tures of error patterns for a desired value of SNR. Different 2D
lookup tables can be constructed for a range of SNR values and
then stacked together to form a 3D lookup table. If structures
of the form [L1 L2] that satisfy 0 < L1 + 2L2 ≤ wth are
only considered, then L1 and L2 take values in the ranges
0 ≤ L1 ≤ wth and 0 ≤ L2 ≤ bwth/2c, where btc denotes the
integer part of t. Thus, storage of a structure [L1 L2] requires

λ = dlog2(wth + 1)e+ dlog2(bwth/2c+ 1)e bits (4)

where dte = btc+1 if t > btc else dte = t. If only the υ most
likely structures for each SNR value are stored, and τ values of
SNR are required, the memory size of the 3D lookup table will
be λυτ bits. For example, the 3D lookup table that was used
to obtain the simulation results of symbol-level GRAND for
wth = 3 in Fig. 4 contained 1995 bits. This is because λ = 3
bits per structure of error patterns are needed, according to (4),
the υ = 5 most likely structures per SNR value were stored, and
τ = 133 evenly spaced SNR values, between 5 dB and 38 dB,
were considered. The size of the 3D lookup table could be
further reduced if fewer and unevenly spaced SNR values were
recorded to account for the fact that changes in the ordering
of the υ structures occur less frequently as SNR increases.

1Openly available at https://github.com/IoannisChatzigeorgiou/sGRAND
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Fig. 4. BLER and average number of tests per block, as functions of Eb/N0,
for bit-level GRAND and symbol-level GRAND, when RLC[128, 103] is used
with 16-QAM on a Rayleigh fading channel. The abandonment threshold is
set to wth = 2 and wth = 3.

V. CONCLUSION

This letter introduced symbol-level GRAND, a variant of
bit-level GRAND that takes into consideration the structure
of the constellation of the adopted M -QAM scheme and the
channel conditions in the search of error patterns that are
used in the estimation of transmitted codewords. Analysis
and simulation results established that symbol-level GRAND
requires a marginal increase in memory allocation but offers a
significant computational complexity advantage over bit-level
GRAND without compromising its error correction capability.
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