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Abstract—With the advancement in Machine Learning (ML)
techniques, a wide range of applications that leverage ML have
emerged across research, industry, and society to improve appli-
cation performance. However, existing ML schemes used within
such applications struggle to attain high model accuracy due to
the heterogeneous and distributed nature of their generated data,
resulting in reduced model performance. In this paper we address
this challenge by proposing PPFM: an adaptive and hierarchical
Peer-to-Peer Federated Meta-learning framework. Instead of
leveraging a conventional static ML scheme, PPFM uses multiple
learning loops to dynamically self-adapt its own architecture to
improve its training effectiveness for different generated data
characteristics. Such an approach also allows for PPFM to
remove reliance on a fixed centralized server in a distributed
environment by utilizing peer-to-peer Federated Learning (FL)
framework. Our results demonstrate PPFM provides significant
improvement to model accuracy across multiple datasets when
compared to contemporary ML approaches.

Index Terms—Meta-learning, federated learning, deep learn-
ing, edge computing

I. INTRODUCTION

A growing number of emerging applications (social media,
mobile transactions, autonomous vehicles, navigation, etc) are
conducted on distributed architectures, whereby distributed
users request and/or generate data from disparate edge nodes.
As Machine Learning (ML) techniques are increasingly lever-
aged to analyze such datasets, the application of distributed
model training over edge nodes is gaining traction [1] in order
to improve application performance and user experience [2].

ML models are typically constructed using a centralized
server that collates data with similar patterns to extract com-
mon information for classification, prediction, and anomaly
detection [3]. However, datasets generated by distributed edge
nodes exhibit differing data characteristics with limited data-
size [4] and heterogeneous non-iid patterns [5] that both reduce
ML model accuracy. Furthermore, centralized data gathering
within a distributed environment raises privacy concerns to
individual edge nodes, as in certain scenarios it is impractical
to establish a centralized server to conduct data gathering
and model training [6]. Federated learning (FL) has been
considered as a promising ML approach to protect users’
privacy, since multiple users collaboratively train a global
model without sharing their local data [7]. However, typical
FL leverages a common global model for all the users and
operates using a fixed centralized server potentially unsuitable
to edge nodes with non-iid data within a distributed environ-
ment. As distributed environments expand to match distributed

applications, there is need for new FL approaches capable of
training accurate ML models over limited-size, heterogeneous
datasets whilst preserving edge node privacy without reliance
upon a fixed centralized server.

We propose PPFM (Peer-to-Peer Federated Meta-learning)
to utilize and extend meta-learning and peer-to-peer Feder-
ated Learning approaches to adapt the ML architecture to
characteristics of varied distributed datasets. PPFM provides
a defragmented ML approach whereby discrete data clusters
are dynamically generated and associated to a best suited
ML schema that matches data cluster characteristics. PPFM
leverages three levels: task level performs task-specific model
training of edge nodes within data clusters exhibitng similar
data patterns. Cluster level trains cluster-level meta models
via a peer-to-peer FL framework, with local models per data
cluster gathered to extract common task knowledge. Global
level adapts the peer-to-peer FL framework to train a global-
level meta model, where cluster-level meta models are gath-
ered to extract common cluster knowledge. PPFM performs
asynchronous training across levels to speed-up training, and
avoids reliance on a fixed centralized server by selecting a new
centralized server per model update round when performing
cluster level and global level meta-modelling.

To enable fast adaptation, within each cluster a weighted
aggregation of associated cluster-level and global-level meta
models are in turn fed back to the edge nodes to provide an
initial training model for local model updates. In particular, for
clusters with small-size data, a large weight can be assigned
to the global-level meta model to compensate for training data
deficiencies (e.g. data size). In contrast, for a cluster with
adequate data, a large weight can be assigned to the associated
cluster-level meta model in order to place more emphases on
the cluster’s own data patterns.

Our main contributions in this paper are as follows:

• A novel hierarchical meta-learning architecture is pro-
posed to adaptively match the characteristics of limited-
size and heterogeneous data in a distributed environment
to improve ML accuracy and efficiency.

• A peer-to-peer FL framework is designed to enhance
privacy of individual edge nodes and remove reliance on
a fixed centralized server in a distributed environment.

• Extensive experiments with real-world datasets to demon-
strate superior accuracy of our method to handle hetero-
geneous data compared with current ML approaches.



Section II reviews related work. Section III outlines PPFM
system architecture and algorithm design. PPFM techniques
are detailed in Section IV. Section V presents the evaluation
of PPFM. Section VI concludes this paper.

II. RELATED WORKS

Meta-learning performs efficient model adaptation for new
ML tasks with limited-size training data [8]. Existing ap-
proaches can be categorized into: Optimization-based ap-
proaches treat the training process as an optimization problem.
Finn et al. [9] proposed optimization-based meta-learning to
learn model initialization, so that the model can efficiently
adapt to unseen tasks within few gradient descent steps.
Model-based approaches first train a neural network model to
recognize tasks patterns with sampled trajectories, and adjust
trained model outputs based on new environmental states to
enforce fast learning for unseen tasks. Nagabandi et al. [10]
proposed an online adaptation mechanism to achieve sample-
efficient model-based reinforcement learning. Metric-based
approaches learn feature representation by employing non-
parametric learning techniques. Chen et al. [11] developed a
generic variational metric scaling framework. However, these
meta-learning approaches only consider ML tasks with sim-
ilar/homogeneous data patterns, and provide limited training
and performance adaptation for heterogeneous patterns. More-
over, works are designed for centralized settings, and subject
to privacy concerns when applied to distributed environments.

Federated learning (FL) [7] provides a framework to
enhance privacy of individual edge nodes when applying meta-
learning to distributed environments. FL is a collaborative ML
framework, where only local models are shared to conduct
global model aggregation in the learning process, while train-
ing data of individual edge nodes are never released. Many
FL approaches have been developed [7], including secure ag-
gregation [12], compression [13], resource allocation [14], etc.
Wang et al. [3] analyzed convergence bound for FL with non-
iid data distributions. To prevent extraction attacks and collu-
sion threats, Truex et al. [12] developed privacy-preserving FL
by combining secure multiparty computation with differential
privacy. Sattler et al. [13] developed a communication-efficient
FL framework by compressing both upstream and downstream
communications to non-iid data distributions. Zhao et al. [14]
proposed an FL optimization scheme by considering dynamic
wireless channels and different user computational capability.

Federated Meta-learning: Recent works have explored
integrating meta-learning with FL to achieve fast learning
with limited-size data and protecting individual users’ privacy.
Jiang et al. [15] interpreted an FL algorithm as a meta-
learning algorithm to train personalization models. Similar
to [15], Fallah et al. [16] developed a personalized variant
of an FL algorithm by finding an initial shared model to
easily adapt to the users’ own local datasets. Lin et al. [17]
introduced a platform-aided collaborative learning framework
to achieve real-time edge intelligence at target edge nodes by
using a federated meta-learning approach. Existing works do
not consider heterogeneous data patterns, and require a fixed
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Fig. 1. System architecture of PPFM

centralized server to conduct model training and adaptation,
which may not operate effectively in a distributed environment.

III. PPFM SYSTEM ARCHITECTURE

A. Distributed Environment Scenario

We consider a distributed network consisting of multiple
edge nodes, such as vehicles, sensors, and smart devices,
that communicate with each other via wireless links. The
edge nodes are moving and can join and leave the network
in real time. Each edge node has a learning task with a
set of local training data. Due to constraints on, e.g., real-
time data gathering and storage capability, the size of an
individual edge node’s training data is usually limited [18]. In
addition, different edge nodes may have significantly different
learning tasks and their training data could possess highly
heterogeneous patterns/distributions [19]. It is difficult to use
the same ML model to effectively process such different data
distributions. To address this issue, we aim to match dedicated
ML schemas to enable the edge nodes to achieve efficient ML
for their tasks over the distributed network. On this premise,
the following subsection develops our proposed solution.

B. PPFM Components

The proposed PPFM integrates two components, namely,
(1) a defragmented meta-learning framework for achieving
accurate and efficient ML over limited-size and heterogeneous
data, and (2) a peer-to-peer FL framework for provisioning



the privacy of individual edge nodes as well as removing the
reliance on a fixed centralized server. As shown in Fig. 1,
the defragmented meta-learning framework consists of three
levels: task level, cluster level, and global level. The task
level focuses on task-specific model training for the individual
tasks of the edge nodes linked to that task. We term this as
executing the ”inner loops”. The cluster level aims to extract
their common knowledge (termed as ”outer loops”), while the
global level aims to further extract global common knowledge
covering the tasks of all the edge nodes distributed in different
clusters through a global loop. In particular, the meta model
extractions at the cluster level and the global level are carried
out by the proposed peer-to-peer FL framework.

The overall design of PPFM is summarized by Algorithm
1 and informally elaborated next with detailed analysis in
Section 3. As outlined in Algorithm 1, the proposed PPFM has
four functional blocks: clustering, task-level training, cluster-
level meta training, and global-level meta training.

Clustering. We assume PPFM is running on N edge nodes.
These edge nodes are first partitioned into K clusters, where
each cluster includes a subset of edge nodes whose training
datasets share similar patterns. In particular, from line 2 to 6,
each edge node i utilizes Variational AutoEncoder (VAE) to
extract a feature vector zi to represent its data Di. Then, from
line 7 to 8, the K clusters are generated by using a K-means
algorithm based on the learned feature vectors, where the
metric Kullback-Leibler (KL) divergence is used to calculate
the distance between feature vectors. The details of feature
extraction and cluster generation are provided in Section IV-A.

Task-level training. In the task level, each edge node i
is assigned to its respective cluster in order to learn a local
task-level ML model wi

in. To do this, within each cluster k,
at the first task-level communication round, each edge node
i first arbitrarily initializes its local model. After the first
communication round, the initial local model is a weighted
aggregation of the cluster-level meta model wk,r

ou of cluster
k and the global-level meta model wg

glob. Note that r is
the number of cluster-level communication rounds for the
update of outer loops and g is the number of global-level
communication rounds for the update of global loops. The
details are presented in Eq. 4 in Section IV-B. The weights
are proportional to the data size of the edge node i. This
initialization is essential for achieving fast adaptation by taking
into account both cases of limited-size data and heterogeneous
patterns. After the initialization, from line 18-23, each edge
node i updates its local model wi,r

in over its local training data
Di by using LocalUpdate in the rth communication round.
The details of local model training LocalUpdate, are provided
in Section IV-B and Algorithm 2. The updated local model
wi,r

in will be sent to the cluster master node Nk
clu.

Cluster-level meta training. For each cluster k, line 24
iteratively develops and refines a cluster-level meta model
wk,r

ou , which aims to extract the common features from all task-
level models. The details for model extraction are provided in
Section IV-B. The updated meta model will be uploaded to
the global master node Ng

glob.

Algorithm 1: PPFM runs on N edge nodes (indexed
by i). Each node has a local dataset Di = {xi}Xj=1.

1 Procedure DataClustering
2 VAE Feature Extraction
3 for each node i ∈ {1, 2, · · · , N} in parallel do
4 Parameters of VAE are updated by using SGD

based on Eq. (1)
5 zi = µ+ σ ⊙ ϵ ▷ Details are described in Sec.

IV-A
6 end
7 KL based K-means Clustering
8 K clusters ← Computed by K-means, based on

KL divergence distance (defined in Eq. (2))
9 w ← HierFedMetaLearning(K, i, Di)

10 Procedure HierFedMetaLearning (K, i, Di)
11 Global-level Meta Training
12 for each global-level communication round

g ∈ {1, · · · , G} do
13 Select one node from all nodes randomly as a

global master node, denoted by Ng
glo

14 Cluster-level Meta Training
15 for each cluster k ∈ {1, · · · ,K} in parallel do
16 Select one node from M nodes randomly

as a cluster master node, denoted by Nk
clu

17 for
each cluster-level communication round
r ∈ {1, · · · , R} do

18 Task-level Model Training
19 for each edge node i ∈ {1, · · · ,M} in

parallel do
20 ▷ LocalUpdate is detailed in Alg. 2
21 wi,r+1

in ← LocalUpdate(wi,r
in , k, E)

22 Send wi,r+1
in to Nk

clu

23 end
24 wk,r+1

ou is updated by using Eq. (10)
25 end
26 Send wk,R

ou to Ng
glo

27 end
28 wg+1

glob ←
1
K

∑K
k=1 w

k,R
ou

29 Send wg+1
glob to each cluster k

30 end
31 Return w ← wG

glob

Global-level meta training. In the global level, line 28 fur-
ther constructs a global-level meta model wglob by extracting
common features from different cluster-level meta models.

In the above, the functional blocks of clustering, cluster-
level meta training, and global meta training require collabora-
tions between the edge nodes, and are carried out by a peer-to-
peer FL framework, described next. The number of hierarchy
levels within PPFM can be adjusted based on application data
characteristics, capable of supporting a two-level, three-level,
and higher. The three-level hierarchy as shown in Fig. 1 is a



visual depiction of one instance.
Peer-to-peer FL. Given a set of participating edge nodes,

each edge node has a local model. In general, the proposed
peer-to-peer FL framework has the following three steps. (i)
Master node selection: the base station connected by edge
nodes is responsible for randomly selecting a master node
for each cluster. (ii) Local model update and gathering: each
participating edge node updates its local model and sends it
to the master node. (iii) Joint model update: the master node
performs required operations over the local models of the
participating edge nodes and sends required updated outputs
to the other participating edge nodes.

IV. PPFM TECHNIQUES

In this section, we elaborate the details of our proposed
PPFM. We first describe hierarchical tasks clustering based
on heterogeneous datasets. Then, we introduce how inner,
outer and global loops can collaboratively train ML models to
enhance model training efficiency. An asynchronous weighted
aggregation algorithm for peer-to-peer federated learning and
a weighted model initialization approach are presented.

A. Data Representation Clustering

As shown in Fig. 2, we utilize data features from edge node
for clustering. To learn highly effective data representation
from the local dataset at each edge, Variational AutoEncoder
(VAE) is exploited [20]. With the derived representation
vectors, a Kullback-Leibler (KL) divergence based K-means
algorithm is further used to cluster the heterogeneous datasets.

We assume each edge node/task has a local dataset Di =
{xi}Xj=1, consisting of X non-iid samples of some continuous
or discrete variable x. VAE is an unsupervised artificial neural
network, aiming to copy its input x to its output by learning
latent representations z [21]. Typically, a VAE consists of an
encoder and decoder. The encoder takes x as input and outputs
a distribution pθ (z | x) of latent representation z, where θ are
parameters of a neural network. For the decoder, its input is the
representation z and it outputs the parameters to the probability
distribution of the data, defined as qϕ (x | z), where ϕ are the
parameters of another neural network. The loss function of
VAE [21] is defined by

ℓ (θ, ϕ;xi) = − Ez∼pθ(z|xi) [log qϕ (xi | z)]
+KL (pθ (z | xi) ∥ p (z)) .

(1)

The first term is the reconstruction loss. We take the expecta-
tion of the encoder’s distribution over the representations. The
reconstruction log-likelihood logqϕ (xi | z) is used to measure
how effectively the decoder learns to reconstruct an input x
given its latent representation z. The second regularization
term is the KL divergence [22] between the encoder’s distri-
bution pθ (z | x) and p (z), where p (z) is a prior distribution
over latent variables z. This loss term penalizes the VAE
if it starts to produce latent vectors that are not from the
desired distribution. In order to optimize this loss function of
VAE, we use a reparameterization trick to do optimization.
pθ (z|x) is a Gaussian distribution. The reparameterization
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Fig. 2. PPFM data clustering method

trick rewrites the representation of z ∼ pθ (z|x) = N
(
µ, σ2

)
into z = µ + σ ⊙ ϵ, ϵ ∼ N (0, 1) [21], where µ and σ are a
mean and a variance of Gaussian distribution. ϵ is an auxiliary
noise variable. VAE can effectively cluster similar input data in
the latent space, so we use the output of the encoder network
as the representation of edge node to cluster edge nodes.

Since the given representation of each dataset zi are sampled
from distributions, KL divergence can conveniently be used
to measure the difference between these distributions. Thus,
a KL divergence based K-means clustering algorithm [23] is
utilized to cluster edge nodes. The main steps of the clustering
algorithm are given as follows. The first step is to randomly
select K representation vectors from the edge nodes as initial
cluster centers. The second step is to compute the distance of
each calculated representation vector to the cluster centres by
using KL divergence that can be defined as

DKL (pj (z) ∥ pi (z)) =
∑
z

pj (z) log
pj (z)

pi (z)

=
∑
z

pj (z) log pj (z)−
∑
z

pj (z) log pi (z) .
(2)

pj (z) and pi (z) represent calculated probability distributions
where representation vectors z of edge nodes and cluster
centers are sampled from, respectively. In the third step, each
representation vector is allocated to the closest cluster. The
fourth step is that the centre of each cluster is recomputed by
taking the mean of representation vectors of edge nodes in a
cluster. Steps two to four are repeated until convergence [24].
Additionally, in the distributed environment, new edge nodes
may keep arriving continuously. Thus, the new edge node will
join K-means during the training process.

B. Hierarchical Federated Meta-Learning

Based on the above data clustering, our goal is to learn
hierarchical meta models with strong adaptation ability for
tasks within and across clusters. PPFM achieves this goal by
jointly optimizing adaption performance to similar tasks within
a cluster and the generalizability across heterogeneous clusters
of learning tasks. The learning task of edge node i is denoted
by Ti where the dataset of the learning task is Di. Let us
denote a set of learning tasks as T = {T1, T2, ..., Tn}. In
PPFM, the learning tasks are divided into K clusters T̂ =
{T 1, T 2, ..., T K} where each cluster of tasks T k includes
several similar learning tasks T k = {T k

1 , T
k
2 , ..., T

k
m}. We



Algorithm 2: Local update in PPFM. M edge nodes
are indexed by i; b is batch size; δ is the data weight

1 Procedure LocalUpdate(wi,r
in , k, E)

2 Download wr
ou from Nk

clu and wg
glob from Ng

glo

3 wr+1
in∗ ← (1− δ)wg

glob + δwr
ou , defined in Eq. (4)

4 for each local epoch e from 1 to E do
5 for mini-batch b do
6 wi,r+1

in ← wi,r+1
in∗ − α∇LTk

i

(
wi,r

in , Di

)
+

7 λ
2

∥∥∥wi,r
in − w

i,r+1
in∗

∥∥∥2, defined in Eq. (9)
8 end
9 end

10 return wi,r
in to cluster master node Nk

clu

assume that there are m nodes in cluster k. The loss function
of a learning task T k

i is defined as LTk
i

. Define wi,r
in , wk,r

ou , and
wg

glob as the task-specific model parameters of task T k
i in the

inner loop, the meta parameters of the outer loop for cluster
T k, and meta parameters of the global loop, respectively.

The inner loop training in the task level aims to quickly
learn an effective task specific model based on the local dataset
and the meta parameters of the outer loop so that the training
loss is minimal. The inner loop target function is to minimize
LT k(wi

in). PPMF obtains wi
in by optimizing this loss through

stochastic gradient descent (SGD), that is:

wi,r+1
in ← wk,r

ou − α∇LTk
i
(wk,r

ou ), (3)

where wk,r
ou represents the calculated meta parameters of outer

loop in the r-th round. The pseudocode of the inner loop train-
ing is described in Algorithm 2. Note that, for each learning
task in the task cluster T k, the model parameters are initialized
by the meta parameters of the outer loop T k in the first round.
After the first communication round, considering the different
amount of data among edge nodes, each edge node contributes
differently to the global model. A larger weight is given to the
edge node with a larger dataset. Thus, instead of directly using
the computed cluster-level meta model as the initial model, we
combine the cluster-level meta model with global-level meta
model by using two weights. These weights are decided by
the proportion of the data size of cluster to the total data size
of all participating edge nodes. Thus, the initial model of edge
nodes after the first communication round is as follow:

wi,r+1
in∗ ← (1− δ)wg

glob + δwk,r
ou , (4)

where δ is the data weight. wk,r
ou and wg

glob are downloaded
from Nk

clu and Ng
glo, respectively.

The goal of the outer loop training in a task cluster is
to learn the meta parameters T k so that the corresponding
learning task can fast learn effective task-specific model wk

i .
We define p(T k) as learning task distribution in cluster T k.
The goal of the outer loop training in the cluster level can be
formally defined as

min
wk

ou

LT k(wk
ou) = ETk

i ∼p(T k)

[
LTk

i
(wk,R

in )
]
. (5)

R is the total number of cluster-level rounds. PPMF initializes
the meta parameters of the outer loops, wg

glob, by the meta
parameters of global loop T k. Since we optimize the model
parameters through SGD, thus the meta parameters of the outer
loop can be obtained by

wk,r+1
ou ← wg

glob − β∇ETk
i ∼p(T k)

[
LTk

i
(wk,r

i )
]
. (6)

Here, wk,r
i can be obtained by Eq. (3) and β is the learning

rate of the cluster-level loops.
Similarly, the goal of the global loop is to extract common

knowledge among clusters, which can speedup the training
of outer loop for each cluster. Denote p(T̂ ) as the cluster
distribution of learning tasks. The learning target of the global
loop is to obtain effective global meta parameters so that the
loss function of the outer loops in the cluster level is minimal.
Formally, we define the global loop loss function as:

min
wk

ou

LT̂ (w
g
glob) = ET k∼p(T̂ )

[
LT k(wk,R

ou )
]
. (7)

where wk
ou can be obtained by Eq. (6). Therefore, the update

rule of the global level can be expressed by

wg
glob ← wg

glob − η∇ET k∼p(T̂ )

[
LT k(wk,r

ou )
]
. (8)

where η is the learning rate of the global loop.
Specifically, the optimization of wg

glob and wk
ou uses second

and third derivatives when backpropagating the meta-gradient
in Eq. (6) and Eq. (8), respectively. In FL setting, calculating
second and third derivatives requires extra communication and
computation power, which might not be suitable for edge
devices. Hence, we use the first-order approximation method
[25] to remove the second and third derivative terms in Eqs.
(6) and (8). According to [25], the loss function of inner loop
can be rewritten as:

LT k

(
wi,r+1

in

)
= min

wi,r
in

{
LT k

i

(
wi,r

in

)
+
λ

2

∥∥∥wi,r
in − w

i,r
in∗

∥∥∥2} .
(9)

wi,r
in is the task-specific model of edge node i in the r-th

communication round. λ is a regularization parameter, which
decides the contribution of wi,r

in∗ to the task-specific model.
Therefore, the update of a model in the outer loop is as
follows:

wk,r+1
ou = (1− ψ)wk,r

ou + ψ

M∑
i=1

wi,R
in

|Di|
. (10)

Note that ψ is an additional parameter for model update. In
the global loop, the FederatedAveraging (FedAvg) algorithm
[7] is applied. The FedAvg based global meta model updates
is as follows: 1

K

∑K
k=1 w

k,R
ou .

Additionally, in the outer loops and the global loop, a
weighted asynchronous aggregation algorithm is executed to
aggregate the model. Edge nodes contain different computing
and storage capabilities, which causes some edge nodes to lag
behind or drop out during the training process. A synchronous
aggregation algorithm may result in extremely slow training
time. Thus, we utilize an asynchronous aggregation algorithm



to conduct the outer and global loops, without waiting for all
participating edge nodes to upload their models.

The relationship between inner loop, outer loop and global
loop is as follows. The local data at each edge node is the
inputs of inner loops and the outputs of inner loops is meta
parameters which are the inputs of outer loops. After the outer
loop performs the aggregation, the task-level meta-parameters
can be obtained. They are the outputs of the outer loop, which
are also the inputs to the global loop. The outputs of the global
loop is the cluster-level meta parameters. They will be sent
back to outer loops, to start a new communication round.
Furthermore, the complexity of PPFM algorithm is O (N),
where N is the data input size.

V. EVALUATION

In this section, we conduct a variety of experiments to
evaluate the performance of PPFM under distributed environ-
ments, considering variations of data heterogeneity effects. We
compare PPFM with multiple state-of-the-art FL methods to
validate the higher accuracy achieved by PPFM.

A. Experiment Settings

1) Simulation Environment: We utilize a Multi-access
Edge Comping (MEC) environment consisting of several ve-
hicles and smart devices. These edge nodes have local datasets
on which model training is conducted. The number of edge
nodes varies from 5 to 100 similar to contemporary settings
[3] [16]. The simulation was conducted by using 3 x HP Z440
workstations with 64G memory. Keras is employed as the
ML framework to implement the meta-learning and FL, with
TensorFlow as the execution engine.

2) Datasets & Models: We evaluate the proposed PPFM
on four different datasets: two real-world datasets and two
synthetic datasets. First, we evaluate the proposed method
on classification tasks with standard image datasets: MNIST
[26] and CIFAR-10 [27]. MNIST is a database of handwritten
digits, containing 60,000 examples in a training set and 10,000
examples in a test set with 10 classes. CIFAR-10 is labeled
subsets of 80 million images dataset. It consists of 60000
32x32 color images in 10 classes, with 6000 images per class.
Compared with MNIST, this dataset is larger in scale. To
evaluate the proposed framework on various heterogeneous
data distributions, we generate a synthetic dataset by following
a similar setup to the one used in [28]. The parameter γ
is used to control the level of heterogeneity. We vary γ to
generate four heterogeneous distributed datasets, as shown in
Fig. 4. For evaulating PPFM on regression, we utilize the
sinusoid function to generate another synthetic dataset [9],
where the phase and amplitude of the sinusoid are varied
between edge nodes. In our experiments, the phase varies in
the range [1, π] and the amplitude varies within [0.1, 5.0], and
the dimension of input and output is 1. Additionally, three ML
models are used to evaluate PPFM, which are Deep Neural
Network (DNN), Convolutional Neural Network (CNN), and
Conditional Multinomial Logistic Regression (CMLR).

(a) MNIST Dataset (b) CIFAR-10 Dataset

Fig. 3. PPFM vs. Comparative algorithms (Standard Datasets)

3) Comparative Algorithms: Our proposed framework
PPFM is compared with the two FL baseline approaches:
Federated Averaging (FedAvg) and Personalized Federated
Learning (PerAvg). FedAvg is a baseline of FL that allows
local nodes to perform more than one batch update on the
local dataset and exchanges the updated weights, instead of
the gradients [7]. PerAvg is a state-of-the-art method of FL
[16], that combines meta-learning to learn more personalized
model for each node. Algorithm configuration values match
those within each paper.

B. Performance Evaluation

Evaluation for Classification Tasks: Figs. 3 show the
effectiveness of our proposed method PPFM for classification
tasks in terms of accuracy by comparing it with FedAvg
and PerAvg. With the increase of communication rounds, the
accuracy of all algorithms increases. Our proposed PPFM out-
performs FedAvg and PerAvg. This is because PPFM utilizes
multiple meta-models to extract common knowledge from all
edge nodes. PerAvg and FedAvg use one meta-model/model
to process the heterogenous data. The accuracy of PerAvg is
higher than FedAvg, since it uses meta-learning to train more
personalized models for edge nodes. In contrast, FedAvg only
conducts a global model for all edge nodes, which results
in low model accuracy for individual edge nodes. As shown
in Fig. 3 (a), the dataset we used is MNIST and DL model
is Deep Neural Network (DNN). The accuracy of PPFM is
95.13% when federated communication rounds are 10, while
PerAvg achieves 91.12% and FedAvg is only 78.25%. PPFM
can reach optimal accuracy in a few communication rounds.
Thus, PPFM can also improve the efficiency of model training.
The same trend has been observed in Fig. 3 (b). The dataset
of CIFAR-10 and the DL model of Convolutional Neural
Network (CNN) are used in this experiment. After 20 rounds,
the accuracy of PPFM can achieve 80%; PerAvg gets 60%;
FedAvg is 42%. CIFAR-10 dataset is more complex than
MNIST, thus the model accuracy is lower than MNIST. 20
edge nodes participate in these two experiments.

Data Distribution Effects: Figs. 4 demonstrate the in-
fluence of data distribution on learning performance of the
model in PPFM. We use four different levels of heterogeneity
non-iid data distribution datasets to evaluate PPFM. The right
side of each subfigure in Figs. 4 shows the data distribution
of the edge node. Each of them contains various number
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Fig. 4. PPFM vs. Comparative algorithms (Synthetic Datasets)

TABLE I
COMPARISON OF PPFM AND PPFM WITHOUT HIERARCHICAL ARCHITECTURE

PPFM PPFM without hierarchical architecture
ML Model Dataset Accuracy Time / per round Accuracy Time / per round

DNN non-iid MNIST 95.13% 4.86s 90.68% 1.15s
CNN non-iid CIFAR-10 83.97% 32.6s 79.73% 17.81s

MCLR Synthetic 92.46% 3.13s 87.21% 0.92s

of classes and data samples. There are 10 participated edge
nodes in these experiments. Data heterogeneity increases from
Synthetic Dataset 1 in Fig. 4 (a) to Synthetic Dataset 4 in
Fig. 4 (d). Figs. 4 show that PPFM has different advantages
for different data distributions. As expected, PPFM achieves
the highest accuracy among other reference algorithms, as it
utilises hierarchical learning loops to analyze heterogeneous
data. More fine-grained data features are extracted, so the
accuracy of PPFM can be further improved. Compared to
FedAvg, PPFM improves model accuracy by around 20%
on average. For instance, as shown in Fig. 4 (a), PPFM
achieves 57% in the first communication round, while PerAvg
gets 31% and FedAvg is about 7%. After 20 communication
rounds, PPFM almost obtains the optimal accuracy, which
is about 85%. Meanwhile, PerAvg is 79.5% and FedAvg is
73%. As data heterogeneity increases, PPFM shows significant
advantages in model accuracy and training efficiency, as shown
in Figs. 4 (b), (c) and (d). It always can train a more accurate
model and achieve optimal accuracy faster than PerAvg and
FedAvg. When the value of γ is 1, the accuracy of PPFM in
the first communication round reaches 78% and it can achieve
about 86% after 50 communication rounds. In contrast, PerAvg
can only get 38% and FedAvg is 19% in the first round. When
the communication round is 50, the accuracy of PerAvg and
FedAvg are 77% and 66%, respectively.

Hierarchical Architecture Effects: Table I compares the
model accuracy in PPFM and PPFM without hierarchical
architecture. In this experiment, three ML models (CNN,
DNN, and CMLR) are utilized by using three datasets
(MNIST, CIFAR-10, and Synthetic). For non-iid data distri-
bution datasets, the accuracy of PPFM is significantly higher
than PPFM without hierarchical architecture, since multiple
meta-models collaboratively to deal with heterogeneous data
across different edge nodes. For example, the accuracy of the
DNN model in three-level PPFM is 95.13% by using non-
iid MNIST. In contrast, DNN in PPFM without hierarchical
architecture can only achieve 90.68%. The accuracy of CNN
and MCLR under the three-level architecture are 83.97% and
92.46%, while without a three-level framework they only
obtain 79.73% and 87.21%, respectively.

Additionally, experimental results in Table I present a
trade-off between accuracy and training time for the non-iid
data distribution. Higher accuracy can be achieved by using
more time. In PPFM with three-level architecture, per FL
communication round of training DNN takes 4.86s with the
non-iid dataset. In contrast, training the same DNN model
in PPFM without hierarchical architecture only needs 1.15s.
Training time is greatly reduced. Similar trends are obtained
for training other models (CNN and MCLR). Thus, there
are some limitations of PPFM. PPFM takes more time to



Number of gradient steps

M
ea

n 
sq

ua
re

d 
er

ro
r Amplitude = 4.5, phase = 0.44 Amplitude = 1.88, phase = 1.65 Amplitude = 0.15, phase = 1.36

Fig. 5. Sinusoid regression results (Synthetic Dataset)

train a model for per communication rounds. As we can see
from Fig. 4 (a), PPFM may achieve similar accuracy with
other FL based methods if the dataset is iid or low-level data
heterogeneity, but it has high computational cost. Our method
is more suitable for heterogeneous data. Furthermore, in our
proposed PPFM, we use the cluster level to optimize the meta-
model adaptability of similar data distribution, in order to
further process non-iid data distribution and accelerate new
edge nodes to train their model. However, using clustering
algorithms in PPFM is less efficient if all edge nodes have
similar data characteristics. In this case, all edge nodes can be
assumed in one cluster, therefore, the global level in PPFM
is not necessary. It is because the global level is supposed to
learn common knowledge from all different clusters.

Evaluation for Regression Tasks: Fig. 5 presents the
efficiency of PPFM on regression tasks. Each edge node
involves a regression task that aims to fit a sine wave. Data
x are sampled uniformly from [−5.0, 5.0]. The regressor
in this experiment is a multilayer perceptron model with 1
hidden layer of size 10 with ReLU nonlinearity. We evaluate
the performance of PPFM by fine-tuning the model that is
trained by PPFM on different data distribution. Oracle is the
baseline, which presents the best performance. Figs. 5 show
the learning curve at test time with varying numbers of test-
time samples, amplitude, and phase. After 20 gradient steps,
the mean squared error is close to the oracle which is 0. The
mean squared error of PPFM reduces with the number of
gradient steps rising. PerAvg and FedAvg also show a similar
trend, but the mean squared error is higher than PPFM. For
example, when amplitude is 4.5 and phase is 0.44, the mean
squared error of PPFM is 6 after the first gradient steps, while
PerAvg is 10.2 and FedAvg is 14.5. When the gradient step is
20, PPFM decreases to 0.9, PerAvg is 1.4 and FedAvg is 2.2.

VI. CONCLUSIONS

In this paper, we have proposed PPFM - a new defrag-
mented federated meta-learning architecture capable of adap-
tively matching varying data characteristics by dynamically
generating learning loops. We have also integrated a peer-
to-peer FL into PPFM to effectively operate within dynamic
distributed environments. Our experiment results show that
PPFM can improve the accuracy and efficiency of ML models
for processing heterogeneous data, allowing multiple meta-
models to collaboratively extract common features from edge
nodes. In our future work, we intend to further build upon
PPFM to design an adaptive meta reinforcement learning

framework for edge computing, to enable lifelong learning
ability in a distributed dynamical environment.
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