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Abstract

The choice of an estimation method has received considerable attention in the Operations Research literature. In

this paper we depart from the standard use of linex and double-linex loss functions which are widely used in parameter

estimation and forecasting problems and we propose a non-standard use for them. Speci�cally, we propose to use the

corresponding linex and double-linex error densities as models for the errors of a regression problem when more emphasis

should be placed on over-estimation or under-estimation of errors. The new techniques are applied to synthetic as well real

data concerning the role of management in production as well as to an application of forecasting volatility in intradaily

data.
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1 Introduction

The choice of estimation method in regressions is a time-honored problem and has been considered extensively in Operations

Research and related �elds (Bottmer et al., 2021; Liang et al., 2021; Ulrich et al., 2019; Bajestani et al., 2017, inter alia).

The problem we address is how estimation should be addressed when (in terms of forecasting for example) we do not have

a quadratic loss function which would yield the least squares solution. For example, overestimating and underestimating a

forecast relative to the true value may have di�erent costs for the decision maker, a fact that should be re�ected in his / her

objective function for estimation.

Linex loss functions proposed by Varian (1975) are asymmetric loss or cost functions which have been studied exten-

sively in the area of forecasting as well as optimal parameter estimation, see Zellner (1986), Granger, 1999), Christo�ersen

and Diebold (1997) and Hwang et al. (2001). �The linex loss function introduces preference asymmetries by being approxi-

mately exponential for under- (over-) forecasting and approximately linear for over- (under-) forecasting, depending on the

sign of its parameter� (Christodoulakis, 2005). The double-linex loss function allows for more �exibility as it contains two

parameters and it can, therefore, represent preferences over forecast errors more accurately. To summarize the problem let

θ̂ denote the estimate of a parameter θ and ∆ = θ̂ − θ denote the estimation error. Varian (1975) introduced the linex

loss function Λ(∆) = τ
(
ea∆ − a∆− 1

)
where a ̸= 0, τ > 0, and τ is a scale parameter. For a > 0 the loss function can

be quite asymmetric re�ecting the fact that overestimation is more costly than underestimation. For |a| near zero, since

ea∆ ≃ 1 + a∆ + 1
2a

2∆2, we have Λ(∆) ≃ 1
2a

2∆2 corresponding to a quadratic loss function. However, when |a| assumes

appreciable values, optimal point estimates and predictions will be quite di�erent from those obtained with a symmetric

squared error loss function� (Zellner, 1986, p. 446). For di�erent values of a, the linex loss functions are presented in Figure

1 (for τ = 1).

With data Y , if the posterior of the parameter is p(θ|Y ),1 a point estimate relative to the linex cost function is based

on minimizing expected posterior loss Eθ|Y Λ(θ̂ − θ) with respect to θ̂.

The use of linex loss functions as models for the data themselves has not been considered before although there is

clearly scope for such considerations. For example, in forecasting problems the objective is to determine optimal forecasts

ŷT+h of a quantity yT+h where T is the number of observations and h is the forecast horizon. In forecasting problems, the

objective is, therefore, to minimize expected loss Λ(εT+h) where

εT+h = ŷT+h − yT+h, (1)

is the forecast error. Corresponding to quadratic loss, Λ(ε) ∝ ε2 and in relation to a regression problem, say yi = x′
iβ + εi

(i = 1, . . . , n), where xi ∈ Rk is a vector of explanatory variables whose coe�cients are β ∈ Rk, this corresponds to a normal

distribution for the εis yielding the least squares (LS) estimator as the maximum likelihood (ML) estimator in this instance.

An interesting issue is a previously unconsidered problem in the literature, viz. considering linex distributions resulting

from linex cost functions. In this study we consider this problem for the linex as well as the more general double-linex loss

1If the likelihood function is L(θ;Y ) and the prior is p(θ) then by Bayes' theorem the posterior distribution has density p(θ|Y ) ∝ L(θ;Y )p(θ).

Including the normalizing constant, we have p(θ|Y ) ∝ L(θ;Y )p(θ)∫
Θ L(ϑ;Y )p(ϑ) dϑ

, where Θ is the parameter space.
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functions and we show that parameters like a can be estimated from the data. The reason that the data is informative

about such parameters is that the εis themselves may be skewed and the direction of skewness may be unknown. Of course,

parameter a can be �xed in advance when the researcher wants to place more emphasis on under-estimation or over-estimation

of errors. The problem is important and arises, inter alia, in engineering control problem where the trade-o� between quality

and quantity is important (Chang and Hung, 2007 building on earlier work by Chen and Chou (2004), Huang (2001), and

Taguchi (1986). Another area where skewness aspects are important include stochastic frontier analysis for e�ciency and

productivity analysis (for a detailed presentation, see Kumbhakar and Lovell, 2000).

We show that the extension of linex or double-linex cost functions to error densities allows interesting likelihood

functions (and posterior distributions in a Bayesian context) and that ML estimation reduces to orthogonality between the

regressors xi and �generalized residuals� which are functions of the εis. This opens up the way for wider scope analyses when

the regressors fail to satisfy such orthogonality conditions, in which case these orthogonality conditions can be replaced by

instruments resulting in instrumental variables (IV) or Generalized Method of Moments (GMM) estimation of the parameters

of the model.

2 Linex loss functions and densities

The linex loss function is de�ned as

Λ(ε) = τ (eaε − aε− 1) , a ̸= 0, τ > 0, ε ∈ R. (2)

We can set τ = 1 although, in some cases, we retain τ for generality. Clearly, Λ(0) = 0 but other than that it is

asymmetric in errors ε depending on the value of the parameter a. Although we have to exclude the case a = 0, when |a| → 0

then we obtain a quadratic loss function as we showed in the previous section.

Any loss function can be converted to a likelihood function or density (Chernozhukov and Hong, 2003):

f(ε) = e−Λ(ε)∫ ∞
−∞ e−Λ(ϵ) dϵ

, (3)

provided the integral in the denominator converges.

The constant of integration can be computed in closed form and we have to evaluate

∫ ∞

−∞
e−τ(eaε−aε−1) dε. (4)
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Figure 1: Linex loss functions
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Using the change of variables eaε = u, the integral becomes

1
a

∫ ∞

0

e−τ(u−lnu−1) 1
u du = eτ

a

∫ ∞

0

uτ−1e−τu du = eτΓ(τ)
a ττ , (5)

using properties of the gamma distribution, where Γ(·) denotes the gamma function. Therefore, the full form of the density

is

f(ε) = a ττ

Γ(τ) e
−τ(eaε−aε). (6)

Suppose xi ∈ Rk is a vector of explanatory variables whose coe�cients are β ∈ Rk and

yi = x′
iβ + εi, i = 1, . . . , n. (7)

We denote the data Y = [yi, xi, i = 1, . . . , n]. In the following analysis we depart from the usual de�nition of error in linex

loss function which would have been εi = x′
iβ − yi.

2

2.1 Estimation by maximum likelihood

Although it is likely that applied researchers will, most likely, want to set a value for a in advance and examine how the

estimates of β change with di�erent values of a, in this paper we examine estimation of a as well. The likelihood function is

given by:

L(β, a; τ, Y ) ∝ τnτanΓ(τ)−ne−τ(
∑n

i=1 eaεi−a
∑n

i=1 εi). (8)

2The expected value of (6) is non-zero. The fact that the expectation of error is non-zero a�ects only the estimate of the intercept in the
regression which is, usually, of lesser importance. Another problem is that the introduction of a mean zero assumption for the error would
complicate signi�cantly ML and Bayesian analysis for parameter τ .
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Figure 2: Di�erent linex densities (τ = 1)
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The log-likelihood function:

l(β, a, τ ;Y ) = ln l(β, a;Y ) = nτ ln τ + n ln a− n ln Γ(τ)− τ

(
n∑

i=1

eaεi − a

n∑
i=1

εi

)
. (9)

We have

∂l(β,a;τ,Y )
∂β = τa

n∑
i=1

(eaεi − 1)xi, (10)

∂l(β,a;τ,Y )
∂a = na−1 − τ

(
n∑

i=1

εie
aεi −

n∑
i=1

εi

)
, (11)

∂2l(β,a;τ,Y )
∂β∂β′ = −τa2

n∑
i=1

xie
aεix′

i, (12)

∂2l(β,a;τ,Y )
∂a2 = −

(
n
a2 + τ

n∑
i=1

ε2i e
aεi

)
, (13)

∂2l(β,a;τ,Y )
∂β∂a = τ

n∑
i=1

(aεi + 1)eaεixi − τ

n∑
i=1

xi. (14)

From the �rst-order conditions for maximum likelihood estimation (MLE) we have

n∑
i=1

{
eaε̂i − 1

}
xi = 0(k×1), (15)

where ε̂i = yi − x′
iβ̂. These equations provide the so-called orthogonality conditions. For a → 0, we have eaε̂i ≃ 1 + aε̂i

and we recover the orthogonality condition corresponding to the least squares (LS) estimator. From (15) it is clear that the
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regressors xi should be all orthogonal to the (scalar) generalized residual ûi where

ûi = eaε̂i − 1, i = 1, . . . , n, (16)

rather than the LS residuals (to which they are orthogonal, however, when |a| → 0, to �rst-order of approximation. Alter-

natively, the columns of the n × k matrix X =


x′
1

...

x′
n

 should be orthogonal to the n × 1 generalized residual vector. To

second-order, however, the regressors should be orthogonal to ũi = ε̂i
(
1 + a

2 ε̂
2
i

)
.

The MLE â of a solves the equation:

n
â − τ

n∑
i=1

ε̂i
(
eâεi − 1

)
= 0. (17)

For â → 0 the solution is, approximately, τ ≃ n
â2

∑n
i=1 ε̂2i

from which we see that τ (or, more precisely, τa) can be

interpreted as a precision (inverse variance) parameter. Solving the nonlinear equation (17) provides the solution for the ML

estimator â.

It is worth noting that if we de�ne e(a/2)εixi = x̃i, then from (12) the covariance matrix of β̂ will be cov(β̂) =

1
τâ2 (X̃

′X̃)−1 where X̃ is the n×k matrix which contains the x̃is.

2.2 Bayesian analysis

Using the �at prior p(β, a) ∝ a−1 (in our case, τ = 1 as we mentioned before) the posterior is given by Bayes' theorem as

the product of the likelihood in (8) and the prior:

p(β, a|τ, Y ) ∝ an−1τnτ−1Γ(τ)−ne−τ(
∑n

i=1 eaεi−a
∑n

i=1 εi), εi = yi − x′
iβ ∀i = 1, . . . , n. (18)

Posterior analysis by Markov Chain Monte Carlo (MCMC) is performed using two facts. First, the log-posterior is

concave with respect to β because (12) is negative de�nite, so fact rejection algorithms can be used to draw from the posterior

conditional distribution of β|a, τ, Y (Gilks and Wilde, 1992). As the mode is required, this can be obtained by solving the

orthogonality conditions. Second, although the conditional a|β, τ, Y is not in any known family, from (18) it is a product

of a gamma density, G (n,
∑n

i=1 εi) with the term e−
∑n

i=1 eaεi
. To obtain a draw from p(a|β, τ, Y ) we use as a candidate

generating density an exponential distribution3, viz. q(a) = λe−λa, where λ is an unknown parameter. The ratio of the

target to the candidate generating density is

R(a, λ) = p(a|β,Y )
q(a) = λ−1eλaan−1e−τ(

∑n
i=1 eaεi−a

∑n
i=1 εi) (19)

3A gamma distribution of the form G
(
n,

∑n
i=1 εi

)
would seem to be more reasonable but the second-order conditions to solve the saddle point

problem in (21) are not always met. In this case, one can use the Metropolis-Hastings algorithm.
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and its logarithm is (keeping in mind that τ = 1):

r(a, λ) = lnR(a, λ) = − lnλ+ λa+ (n− 1) ln a− τ

(
n∑

i=1

eaεi − a

n∑
i=1

εi

)
. (20)

We select the optimal value of λ by solving the minimax problem:

min
λ

max
a

r(a, λ). (21)

We have

∂r(a,λ)
∂a = λ+ n−1

a − τ

(
n∑

i=1

εie
aεi −

n∑
i=1

εi

)
, (22)

Moreover

∂r(a,λ)
∂λ = a− λ−1. (23)

Setting ∂r(a,λ)
∂λ = 0 we obtain the optimal value λ = a−1. In turn from (22) the optimal value ã of a solves the

nonlinear equation:

n = aτ

(
n∑

i=1

εie
aεi −

n∑
i=1

εi

)
. (24)

As ∂2r(a,λ)
∂λ2 = 1

λ2 > 0, and ∂2r(ã,1)
∂a2 = −n−1

ã2 − τ
∑n

i=1 ε
2
i e

ãεi < 0 then ã and λ̃ = 1
ã corresponds to a solution of the

saddle point problem in (21). In turn, we generate a candidate draw a(c) from an exponential distribution with parameter

λ = 1
ã (where ã solves (24)) and we accept the draw with probability

r(a(c),λ̃)

r(ã,λ̃)
, (25)

where the denominator is the maximal value of the acceptance rate in (21).4 An alternative is to notice that the conditional

posterior of a is log-concave. Indeed, we have:

∂ ln p(a|β,τ,Y )
∂a = n−1

a −
n∑

i=1

εi −
n∑

i=1

εie
aεi , (26)

∂2 ln p(a|β,τ,Y )
∂a2 = −n−1

a2 − τ

n∑
i=1

ε2i e
aεi < 0. (27)

To provide a drawing from p(a|β, τ, Y ) we use, again, rejection designed for log-concave densities (Gilks and Wilde,

4This procedure is quite fast as it, usually, requires no more than two or three rejections per acceptance.
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1992). The mode of the density is required and this can be obtained by solving the nonlinear equation:

n−1
a − τ

(
n∑

i=1

εie
aεi −

n∑
i=1

εi

)
= 0,

for a.

3 Double-linex loss functions and densities

The double-linex loss function involves a second parameter, b, introduced in the interest of �exibility:

Λ(ε) = τ
[
eaε + e−bε − (a− b)ε− 2

]
, a, b, τ > 0. (28)

If we turn the loss function into a density we have

f(ε) = 1
J(a,d,τ) · exp

{
−τ
[
eaε + e−bε − (a− b)ε− 2

]}
, (29)

where J(a, d, τ)=
∫∞
−∞ exp

{
−τ
[
eaε + e−bε − (a− b)ε− 2

]}
dε, and d = b

a . Finally, the form of the density becomes

f(ε) = 1
J(a,d,τ) exp

{
−τ
[
eaε + e−bε − (a− b)ε− 2

]}
. (30)

It is not possible to evaluate J(a, d, τ) in closed form but we can compute it numerically. When τ = 1, for example,

a third-degree polynomial can be used to approximate the values shown in panel (a) of Figure 3. Di�erent double-linex

densities (with τ = 1) are shown in panel (b) of Figure 3.

For known values of a and d, the log-likelihood function is

l(β;Y ) = −n ln J(d, τ)− τ

n∑
i=1

{
eaεi + e−adεi + a(1− d)εi

}
, εi = yi − x′

iβ. (31)

Therefore,

∂l(β;τ,Y )
∂β = τa

n∑
i=1

{
eaεi − de−adεi + (1− d)

}
xi = 0(k×1), (32)

∂2l(β;τ,Y )
∂β∂β′ = −τa2

n∑
i=1

{
eaεi + d2e−bεi

}
xix

′
i. (33)
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Figure 3: Exact and approximate values of J(a, d, 1) and di�erent double-linex densities

0 1 2 3 4 5 6 7 8 9 10

d

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

ln
J(

d)

(a)

exact
approximate

-15 -10 -5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

de
ns

ity

(b)

a=0.1, b=0.5
a=0.5, b=0.1
a=0.2, b=0.2
a=1, b=2
a=2, b=1
a=2, b=2

From (32) it is clear that the regressors xi should be orthogonal to the generalized errors

ui = eaεi − de−adεi + (1− d), i = 1, . . . , n. (34)

Finally, from (33) it is clear that the Hessian of the log likelihood is negative de�nite and it can be used to obtain the

asymptotic covariance matrix of the ML estimator.

4 Illustration

We use a sample size of n = 10 and we generate random observations from εi ∼ N (0, 1), a standard normal distribution.

All regression parameters are equal to 1.5 Our prior is p(a, d) ∝ (ad)−1. Our prior for the regression parameters is �at.

However, for the regression parameters one can also use a multivariate normal prior. We �x d = 2 and we present the

marginal posterior densities of β2 and β3 in panel (a) of Figure 4. Then we �x a = 0.3 and we present the marginal posterior

of d in panel (c) of Figure 4.

Although the marginal posterior of a given d and d given a are well de�ned, in this instance, the bivariate posterior in

panel (c) of Figure 4, indicates that as a gets larger and d → 1 the marginal posteriors converge to the marginal posteriors

corresponding to those of the normal distribution for the error terms, as the case should be.

Next, we construct an example with n = 100, k = 3, yi = x′
iβ+ui = β1+β2xi1+β3xi3, ui ∼ N (0, 1). The regressors

are generated from standard normal distributions, with k = 3 (the �rst regressor is a vector of ones corresponding to having

an intercept in the model and true coe�cients β equal to one. We present the marginal posterior densities of β2 and β3 in

panels (a) and (b) of Figure 5 for various values of a. The marginal posterior density of d is reported in panel (c) of the same

5We use the numerically computed value of the normalizing constant. Results using the polynomial approximation were the same.
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Figure 4: Marginal posteriors in an example with n = 10
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Figure 5: Marginal posteriors, synthetic data
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Figure. The posterior density of d is highly skewed to the left, making maximum likelihood inferences somewhat unreliable

as they depend on asymptotic normality of parameter estimates.

5 Endogeneity

Often, some of the regressors xi are endogenous in the sense that they are correlated with the error term in (7). Previously

we did not make assumptions about the regressors. In fact, the moment conditions regrading orthogonality to so-called

�generalized residuals� was prominent leading directly to the discussion on endogeneity. We think this is important precisely

as it deviates from the practice of deterministic regressors or regressors that are orthogonal to �generalized residuals�. If this

not so, then the orthogonality conditions in (15) or (33) do not provide consistent estimators. Instead, suppose zi ∈ Rp is a

vector of instrumental variables which are orthogonal to the errors but, nevertheless, correlated with the regressors (and, in

fact, contain any regressors that are thought to be uncorrelated with the errors). In this case, (15) or (33) can be replaced

by

n∑
i=1

(
1− eaε̂i

)
zi = 0(p×1), (35)
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Table 1: Empirical results for managerial practices
LSDV a = 5 a = 4 a = 3 a = 0.4 a = 0.25 a = 0.1

labor 0.287
(0.007)

0.287
(0.052)

0.287
(0.039)

0.288
(0.029)

0.289
(0.019)

0.307
(0.010)

0.324
(0.009)

capital 0.689
(0.007)

0.694
(0.066)

0.695
(0.050)

0.696
(0.036)

0.698
(0.024)

0.699
(0.012)

0.689
(0.011)

management 0.076
(0.009)

0.072

(0.055)

0.072

(0.042)

0.071
(0.033)

0.069
(0.020)

0.064
(0.010)

0.059
(0.008)

Notes: LSDV is the least squares estimator with dummy variables. Standard errors are reported in parentheses. Numbers in bold mean that the

respective estimates are not statistically signi�cant at the 5% signi�cance level.

for the linex case or
n∑

i=1

{
eaεi − de−adεi + (1− d)

}
zi = 0(p×1), (36)

for the double-linex case. Generally, p ≥ k. Given these orthogonality conditions, the Generalized Method of Moments

(GMM) estimator can be used (Hansen, 1982). Bayesian versions can be constructed using the Bayesian empirical likelihood

/ posterior (Lazar, 2003; Chaudhuri and Mondai, 2017).

6 Empirical applications

6.1 Management in production

We apply the new techniques to a data set of Bloom and van Reenen (2007) which examines the role of managerial practices

in production. The dependent variable is log de�ated sales, and the regressors include log labor, log capital, the index of

managerial practices as well as �xed e�ects. Our empirical results are reported in Table 1. For this application, we keep the

original interpretation of the error εi = x′
iβ − yi rather than the opposite. So, as α → 0 we would get estimates close to the

LS results.

Numbers in bold mean that the respective estimates are not statistically signi�cant at the 5% signi�cance level. This

happens for estimates of management contribution for a = 3, 4 and 5. The question is whether one should �believe� more

these estimates that try to avoid over-estimating the regression errors. As we are estimating a production function it is quite

likely that technical ine�ciency is present, a fact that would give negative skewness to the errors. Therefore, over-estimating

the regression errors should be avoided and estimates corresponding to the higher values of a, would be more closely to reality

casting some doubt on the role of the particular managerial index in production. Indeed, for this data set, the ML estimate

of a turns out to be â = 3.472 (with standard error 0.105). The marginal posterior density of a from Bayesian analysis is

reported in Figure 6. Moreover, in Table 2 we report di�erences in estimates from LSDV, linex and double-linex posteriors.

Apparently, the results are quite di�erent as posterior means and posterior standard deviations di�er between linex and LS,

as well as linex versus double-linex. Therefore, in practice, we should not expect that LSDV, linex and double-linex will

deliver the same results.
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Figure 6: Marginal posterior density of a
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For negative values of a we have not managed to obtain convergence in solving the system of orthogonality conditions

(15). Moreover, posterior results are very similar to what we report here so, we avoid stating them in the interest of space

although they are available on request. The marginal posterior densities of a from Bayesian analysis are reported in Figure

6. We use �ve di�erent normal priors. All of them are normal a ∼ N (0, σ2
a) for σa = 1 (prior 1), σa = 5 (prior 2), σa = 10

(prior 3), σa = 100 (prior 4), and σa = 103 (prior 5). The sixth prior is the �at prior for β. All priors seem to yield the

same posteriors as in Figure 6. Notice that as σa → ∞, the normal prior reduces to a �at prior. The densities appear to be

bimodal indicating that asymptotic inferences may be somewhat misleading in this instance, although the di�erent modes

are not too far apart. So, marginal posterior densities of a appear to be robust. The posterior mean (for prior 5) is 3.47 and

the posterior standard deviation is 0.092 (somewhat lower compared to its ML counterpart).

6.2 Stock returns

We use 43,151 intraday (tick-by-tick) observations of the stock of Johnson & Johnson (JNJ), traded on October 5, 2010

between 9:30 AM and 4:00 PM Eastern time. Aspects of the data are reported in Figure 7.
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Table 2: Empirical results for managerial practices using di�erent estimation techniques
LSDV linex double- linex

labor 0.287
(0.007)

0.126
(0.022)

0.177
(0.018)

capital 0.689
(0.007)

0.494
(0.036)

0.415
(0.010)

management 0.076
(0.009)

0.055
(0.017)

0.035
(0.005)

Notes: LSDV is the least squares estimator with dummy variables. Standard errors are reported in parentheses. For linex and double-linex we

report posterior means with posterior standard deviations in parentheses.

Figure 7: Aspects of Johnson & Johnson stock
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Figure 8: Volatility forecasts
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We use an ARMA(1,1)-GARCH-M(1,1) model of the following form:

yt = β0 + β1 log σ
2
t−1 + ut,

ut = β2ut−1 + β3et−1 + et,

et|Ft−1 ∼ T (0, σ2
t , ν),

σ2
t = β4 + β5σ

2
t−1 + β6(yt−1 − β0 − β1 log σ

2
t−1)

2,

(37)

where yt = log pt

pt−1
denotes returns (the stock price being pt), Ft−1 denotes information up to date t− 1, T (0, σ2

t , ν) is the

Student-t distribution with location zero, scale σ2
t and unknown degrees of freedom ν. We use the ARMA speci�cation to

capture the signi�cance of long lags in returns and the GARCH-M (GARCH-in-mean) speci�cation to allow for the e�ects

of volatility on returns. We estimate the model using observations 1 through 43,000 (using maximum likelihood) and we

perform out-of-sample forecasting for the remaining 151 observations. From Figure 8, volatility forecasts (e.g. Chen et al.,

2022) slightly underestimate large shocks when they occur. We can correct for this by using linex posterior analysis following

the de�nition of forecast errors in (1). To do this, we assume a linex distribution for et instead of the Student-t speci�cation

in (37). The forecasts are one-step ahead and the scale parameter σt is modeled using a GARCH(1,1) speci�cation.

The results are presented in panel (a) of Figure 8. The posterior distribution of the linex parameter (a) is presented
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in panel (b). In panels (c) and (d) we report the marginal posterior densities of a and b from double-linex posterior analysis.

The posterior mean of a (panel (b), linex case) is 0.032 (posterior s.d. 0.004). From panels (c) and (d), in the double linex

case, the marginal posterior moments of a and b are 0.034 (posterior s.d. 0.0014) and 0.381 (posterior s.d. 0.027). The

positive sign indicates that, based on the de�nition of forecast error in (1), underestimation of volatility is the more important

problem in this data set (assuming the order of di�erence is reversed in (1)). Under-estimating volatility would be compatible

with most behavioral rules or portfolio managers. Regarding, forecasting and comparison with LS, we present some relevant

statistics in Table 3. RMSE stands for �root mean squared error�, and MAE for �mean absolute error�. DM is the Diebold

and Mariano (1995) test for comparing two forecasts (here we use it three times to compare linex and double-linex, linex

and LS, as well as double-linex versus LS). The null hypothesis of the DM test is that the two forecasts are the same so,

when the p-value is less than, say, 0.01, we can reject the null. The DM test is asymptotically normally distributed. Clearly,

RMSE and MAE favor the double-linex model, and the DM test whose p-values are very close to zero, indicate that the the

di�erences in forecasts are statistical signi�cant at the 1% signi�cance level. Maximum likelihood estimates and posterior

moments for the JNJ data are reported in Table 4. For linex and double-linex we also report the posterior moments of a

and b.

Table 3: Forecast comparisons, Johnson and Johnson data

linex double-linex LS
RMSE 0.041 0.032 0.055
MAE 0.030 0.027 0.067

DM test
linex vs. double-linex p-value 0.003

linex vs. LS 0.000
double-linex vs. LS, p-value 0.000

Notes: RMSE stands for �root mean squared error�, and MAE for �mean absolute error�. DM is the Diebold and Mariano (1995) test for comparing two

forecasts (here we use it twice to compare linex and double-linex, as well as double-linex versus LS).

Next, we compare the performance of the linex and double-linex loss functions results with state-of-the-art prediction

methods. We use the concept of optimal prediction pools (Geweke and Amisano, 2011). These are weighted linear combi-

nations of prediction models, or linear pools, evaluated using the log predictive scoring rule. An optimal linear combination

typically includes several models with positive weights. For a given sample Yn = Y o
n (where �o� stands for observed) and

model m ∈ {1, ...,M}, the log predictive score is

LSm(Y o
n ) =

n∑
t=1

log pm(yot ;Y
o
t ). (38)
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Table 4: Empirical results for Johnson & Johnson data
maximum
likelihood

Bayes linex
posterior

Bayes double-linex
posterior

β0 0.00072
(16.12)

0.00070
(23.45)

0.00071
(19.42)

β1 4.04 10−5

(14.03)

5.12 10−3

(22.35)

6.05 10−3

(43.14)

β2 �0.045
(�2.14)

�0.057
(�6.47)

�0.071
(�13.65)

β3 �0.155
(�6.58)

�0.120
(�7.18)

�0.251
(�6.55)

β4 4.12 10−4

(24.88)

3.20 10−3

(15.44)

4.78 10−3

(21.56)

β5 0.522
(30.78)

0.713
(28.44)

0.434
(19.81)

β6 0.120
(14.48)

0.192
(48.71)

0.361
(22.55)

ν 5.032
(44.32)

4.210
(87.55)

2.717
(55.40)

a � 0.034
(0.001)

0.045
(0.007)

a � 0.032
(0.004)

�

b � � 0.381
(0.027)

Notes: z-statistics are reported in parentheses. For Bayesian results the z-statistics are the ratios of posterior means to posterior standard deviations.
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Table 5: Log predictive scores

LPS Optimal weights
GARCH �47,881.25 0.000
GARCH-t �46,335.12 0.000
EGARCH �45,812.55 0.235

linex -41,832,44 0.248
double-linex -40,745.34 0.517

With pm(yt;Yt−1) = pm(yt|Yt−1) and we have

LSm(Y o
t ) =

n∑
t=1

log pm(yot |Y o
t−1) = log pm(Y 0

t ) = log

∫
pm(Y o

t , θm) dθm, (39)

where θm is the parameter vector corresponding to model m. In linear pooling we consider predictive densities of the form∑M
m=1 wmpm(yt;Y

o
t−1),

∑M
m=1 wm = 1, wm ≥ 0 (m = 1, ...,M). Computing the optimal weights is a relatively straightforward

mathematical programming problem. We evaluate these densities using the log predictive score (LPS) function

LPS =

n∑
t=1

log

M∑
m=1

wmpm(yot ;Y
o
t−1). (40)

In our empirical application we consider several models and we report the LPS in Table 5. Evidently, the double-linex

performs best in comparison to GARCH (with normal disturbances), GARCH-t, EGARCH as well as the linex model. From

the optimal linear pool weights in the last column of Table 5, we see that the EGARCH is contained in the pool with a

weight 0.235, the linex receives 0.248 and the double-linex receives the lion's share (0.517) testifying to the good predictive

abilities of the model.

Concluding remarks

In this paper we propose a novel extension of linex and double-linex loss functions to the context of densities as models of

the error terms in regression models. We derive the equations for maximum likelihood estimation and we propose e�cient

MCMC schemes for Bayesian inference. In the linex case, the parameter of the loss function (a) can be estimated using ML or

Bayesian methods. The double-linex case presents more di�culties which are, however, immaterial when the researcher wants

to compare parameter estimates of the regression model for di�erent known values of the underlying loss parameters (a and

b). The new methods are illustrated using simulated as well as real data concerning the role of management in production

and volatility forecasts in tick-by-tick data. In terms of future research, it will be worthwhile to use our instrumental

variables (IV) estimator in Section 5 to formulate the problem in terms of a Bayesian empirical posterior which is known

to perform better than IV or GMM. Additionally, it would be quite interesting to see more applications in the area of

quality control where the usual practice is to assume a linear model with normal errors (usually, such models have the form
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yi = β1 + β2xi + β3x
2
i + εi) and then use the linex loss function for decision making. The techniques developed here can be

used to integrate estimation and decision making into a single step through a linex- or double-linex-based error process.
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