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Abstract

In this thesis, we develop a new method to account for the vibrational renormal-

isation of electronic structure by both thermal and quantum lattice vibrational

effects. Atomic configurations are randomly sampled based on quasiharmonic

phonon calculations within density functional theory, and the excitation energy at

each configuration is evaluated using fixed-node diffusion quantum Monte Carlo.

We demonstrate that the developed technique is efficient and has the potential to

be applied to a wide range of materials. We report the zero-point renormalisation of

the band gap for benzene, monolayer and bulk hBN, bulk Si and C-diamond. The

proposed approach within quantum Monte Carlo is found to be sufficient to capture

the quantum effect of zero-point motion and improve the agreement with experiment

gap results. We also investigate the temperature-dependent renormalisation of

the direct band gap of benzene, bulk Si, and C-diamond arising from harmonic

vibrational effects within density functional theory. We study an impurity of a

single hole in ideal, dilute weakly doped 2D homogeneous electron gas modelling a

van der Waals heterostructure of a MoSe2 monolayer embedded in flakes of hBN.

This allows us to investigate the effect of a finite concentration of charge carriers that

interact via a periodic Keldysh interaction on the formation of a negative trion. The

quantum Monte Carlo results of relaxation energies and pair correlation functions

at a range of low densities are reported. Our results indicate that the screening

effects of the surrounding electron gas on the formation of a negative trion are

weak. We perform ab initio calculations of the defect formation energy for silicon

substitution and Stone–Wales defects in monolayer graphene and the atomisation

energy of bulk silicon, with the aim of benchmarking the accuracy of the widely used

density functional theory method in these types of calculations. Our results show

that the density functional theory significantly underestimates the defect formation

energy and overestimates the atomisation energy of bulk silicon.
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Chapter 1

Introduction

1.1 Electronic structure calculations

1.1.1 Many-particle Schrödinger equation

In the last few decades, many theoretical studies using first-principles (ab initio)

methods have enhanced our understanding of the various physical properties of a

broad range of quantum systems and the qualitative and quantitative behaviour of

electrons in condensed matter. In order to study the electronic structure properties

of materials it is important to solve accurately the many-body Schrödinger equation.

However, finding an exact solution to the Schrödinger equation remains the greatest

challenge for electronic-structure methods that grow exponentially with the system

size. Although an exact solution to the Schrödinger equation is only available for

the smallest system sizes, there are a wide range of approximate methods useful

for examining systems with a larger number of electrons. All results and equations

are expressed in Hartree atomic units (~ = |e| = me = 4πε = 1) unless otherwise

specified.

In a non-relativistic quantum system, the dynamics of the particles are governed

by the time-dependent Schrödinger equation, which is given by

i
∂

∂t
Ψ({ri}, {RI}, t) = ĤΨ({ri}, {RI}, t), (1.1)

where the wave function Ψ({ri}, {RI}, t) contains all the information specifying the

state of the system; ri is the coordinate of electron i and RI is the coordinate of
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nucleus I. The wave function must be antisymmetric in the coordinates of the

same-spin electrons to satisfy the Pauli exclusion principle.

The non-relativistic Hamiltonian Ĥ for a system containing N electrons and M

nuclei is given by,

Ĥ = T̂e + T̂p + V̂ep + V̂ee + V̂pp

= −1

2

N∑
i=1

∇2
i −

1

2

M∑
I=1

∇2
I

mI

−
N∑
i=1

M∑
I=1

ZI
riI

+
N∑
i<j

1

rij
+

M∑
I<J

ZIZJ
rIJ

, (1.2)

where Z and m are the atomic number and the nuclear mass, respectively, and r

is the separation, where i, j and I, J refer to electrons and nuclei, respectively.

The first two terms are the electron and nuclear kinetic energies respectively;

the third term is the electron–nucleus interaction; and the two remaining terms

represent the electron–electron and nucleus–nucleus interactions. Equations (1.1)

and (1.2) have a large number of degrees of freedom. Hence, solving the Schrödinger

equation exactly for any realistic system is generally impossible, and to tackle this

problem approximations are needed. Various numerical approaches for solving the

Schrödinger equation have been developed, and an overview of some of them is

presented in Sec. 1.2

1.1.2 Born-Oppenheimer approximation

The adiabatic or Born-Oppenheimer (BO) approximation [7] allows simplification of

the many-body Schrödinger equation. As nuclear masses are substantially heavier

than electron masses, the nuclei are relatively slow, thereby allowing decoupling

of the electronic motion from the nuclear motion. Thus, the wave function can be

written as a product of an electronic and a nuclear wave function. Since the electrons

move instantaneously in response to the nuclei, the electronic eigenfunction can be

written parametrically in terms of the nuclear position, and the time-dependence

of the electronic wave function can be ignored. Under these assumptions, the wave

function of a stationary state can be obtained by solving the non-relativistic time-

independent electronic Schrödinger equation, which is given by

ĤelΨn(R) = En(R)Ψn(R) (1.3)
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where En and Ψn(R) are the energy eigenvalues and eigenfunctions, respectively, of

the electronic Hamiltonian Ĥel. The 3N -dimensional vector R = (r1, r2, ..., rN)

denotes the coordinates of all the electrons. The ground-state is a stationary

state with the lowest energy that can be determined via the variational principle,

by minimising the total energy with respect to all possible variations in Ψ(R).

Therefore, the electrons remain in their instantaneous ground-state for any ionic

configuration [8], and we only consider the energy associated with the electronic

ground-state. The non-relativistic BO Hamiltonian for the electronic degrees of

freedom is

Ĥel = −1

2

N∑
i=1

∇2
i +

1

2

N∑
i 6=j

1

rij
−

N∑
i=1

M∑
I=1

ZI
riI

+ EI , (1.4)

where EI is the nucleus–nucleus interaction term that contributes to the total

energy of the system as a constant offset. A complete quantum description of the

nuclei motion can be included by solving the Schrödinger equation for the nuclei,

which is an important many-body problem. The fundamental form of the nuclear

Hamiltonian can be written as

Ĥvib =
∑
Rl,κ

− 1

2mκ

∇2
lκ + En(R), (1.5)

where κ denotes the different atoms within a primitive unite cell, mκ is the mass of

atom κ, Rl denotes the position vectors of the unit cell and En(R) is known as the

‘BO energy surface’. More details are given in Chapter 2.

1.2 Electronic structure methods

1.2.1 Hartree-Fock (HF) theory

The HF approximation [9, 10] is an important starting point for many modern

methods of performing electronic structure calculations. The HF theory was

developed to approximately solve the electronic Schrödinger equation Eq. (1.3).

For an N -electron system, the many-electron wave function is an antisymmetric

function under particle exchange formed by a single determinant made up of any

choice of single-electron spin orbital φi known as a ‘Slater determinant’. The function
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is denoted as

ΨS(X) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ1(x2) . . . φ1(xN)

φ2(x1) φ2(x2) . . . φ2(xN)
...

...
. . .

...

φN(x1) φN(x2) . . . φN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣
, (1.6)

where X = (x1,x2, ...,xN), xi = {ri, σi} denotes the spatial-spin coordinates of

electron i and (N !)−1/2 is a normalisation factor. The antisymmetric property

ensures that the Slater determinant vanishes when two same-spin electrons coincide

and that the Pauli exclusion principle will be satisfied. It also implies that each

electron moves independently in an effective potential that feels the average effect of

other electrons via the repulsive Coulomb interactions and the exchange interaction.

The exchange interaction effects arise due to the antisymmetric form of the wave

function. This description does not account for any correlation between electrons

that will result in electrons avoiding each other, which is often referred to as

the ‘independent particle theory’ or ‘mean-field theory’. Within the variational

principle, one can obtain a numerical approximation of Eq. (1.3) by minimising the

HF energy with respect to changes in the orbitals’ parameters, as follows:

〈ΨS|Ĥ|ΨS〉 ≥ E0, (1.7)

where E0 is the exact ground-state energy. The derived HF equations are eigenvalue

equations that can be solved using initial orbitals with the constraint that the single-

electron spin orbitals remain orthonormal, 〈φi|φj〉 = δij, and then refined iteratively

until self-consistency is reached. Because of this, it is called the ‘self-consistent field

(SCF) method’.

1.2.2 Beyond Hartree-Fock

In general, the HF theory accounts for the exchange effects of the antisymmetric

wave function but overlooks the electronic correlations resulting from the electron–

electron Coulomb interaction. Due to the absence of electronic correlation effects,

the HF method significantly overestimates the gap between the occupied and

unoccupied states. Although correlation effects account for a small fraction of the

total energy, they are important. Electronic correlation effects can be included
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by using post–HF methods in quantum chemistry. These methods construct

a more complicated many-electron wave function using a linear combination of

determinants, thus forming the so-called ‘multi-determinant wave function’. This

provides significant further variational freedom in the wave function for a given

system size and can recover a large fraction of the correlation energy [9, 10]. However,

the main problem with such expansions is that the number of required determinants

grows very rapidly with the system size, making it difficult to achieve comparable

accuracy in different systems and in different system sizes. For example, the CISD

(configuration interaction singles and doubles excited method), scales with system

size as O(N6) [11], where N is the particle number. Similarly, the coupled cluster

with single, double and perturbative triples (CCSD(T)) method is an accurate

method but computationally expensive.

1.2.3 Density functional theory

The density functional theory [12, 13] (DFT) is a theory that pertains to correlated

many-body systems. DFT allows replacement of the complicated N -electron wave

function and the associated Schrödinger equation with the much simpler electron

density n(r) and its associated calculational scheme. It was first proposed by

Hohenberg and Kohn (1964), [14] who stated that all properties of a many-body

system are uniquely determined as functionals of the ground-state electronic density

n0(r) that is uniquely defined by the external potential vext. For a know n0(r), the

Hamiltonian and hence the wave functions and ultimately all properties of the system

are uniquely determined by n0(r).

The Hamiltonian of the interacting electron system in an external potential vext

in which the electrons move

Ĥ = −1

2

∑
i

∇2
i +

∑
i

vext(ri) +
1

2

∑
i 6=j

1

rij
,

= T̂ + V̂ext + V̂ee (1.8)

The unique ground-state wave function ψ that has a global minimum value of energy

E is determined by solving the Schrödinger equation with this Hamiltonian. Within

the variational principle, the ground-state energy can be obtained by minimising the

total energy of the system E[n(r)] with respect to variations in the density function
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n(r) under the constraint that the number of electrons be kept fixed, as follows:∫
n(r)dr = N. (1.9)

For a given external potential determined by n(r), the total energy as a function of

n(r) is

EHK[n(r)] = 〈ψ|T̂ + V̂ee|ψ〉+ 〈ψ|V̂ext|ψ〉

= FHK[n(r)] +

∫
vext(r) n(r)d3r, (1.10)

where ψ is the ground-state wave function uniquely determined by ground-state

charge density n(r) via the external potential determined by n(r). FHK[n(r)] is a

universal function of the density, which includes all internal energies, namely, kinetic

and potential energies. If the obtained density function n(r) is exact, the evaluated

energy E is the exact ground-state energy. However, there are two main problems.

First, FHK[n(r)] is universal to all systems, and its exact form is unknown. Second,

there are no known formulas for calculating the wave function directly from the

density.

1.2.3.1 Kohn-Sham equations

The Kohn-Sham (KS) scheme [15] provides a practical way of implementing the

density-functional theory, which has become the basis of many of the current

methods of treating electrons in real systems. The basic idea of the KS formalism

is to replace the complicated interacting many-body system that obeys the

Hamiltonian Eq. (1.2) with a simpler non-interacting auxiliary system with N

independent single-particle equations that can be solved more easily, with the same

ground state density as the exact system.

Due to their non-interacting nature, the independent-particle wave functions can

be expressed as a Slater determinant of a set of single-particle orbitals φi(r), which

are defined in Eq. (1.6). In this formula, the electronic density is written in terms

of N orthonormal orbitals:

n =
N∑
i

|φi(r)|2 . (1.11)
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The independent-particle kinetic energy Ts is given as a functional of the orbitals as

follows:

Ts[n(r)] = −1

2

N∑
i=1

〈φi|∇2
i |φi〉 . (1.12)

The long-range Hartree energy or the electrostatic potential energy is

EH[n(r)] =
1

2

∫ ∫
n(r)n(r′)

|r− r′|
drdr′, (1.13)

The KS energy functional EKS is defined by rewriting the Hohenberg-Kohn

expression for the ground-state energy functional as

EKS[n(r)] = Ts[n(r)] + EH[n(r)] +

∫
Vext(r)n(r)dr + EXC[n(r)], (1.14)

where Vext is the external potential due to the nuclei and any other external fields

and the exchange-correlation energy EXC[n(r)] includes all the many-body exchange

and correlation interaction effects and is explicitly modelled as a density functional.

The KS auxiliary system for the ground state can be solved by minimising the energy

in Eq. (1.14) with respect to the orbitals φi that define the density n(r). This leads

to the following set of single-electron equations called the KS Schrödinger equations:

ĤKSφi(r) = εiφi(r), (1.15)

where εi denotes the eigenvalues and ĤKS is the effective Hamiltonian computed as

ĤKS = −1

2
∇2 + VKS(r), (1.16)

with an effective potential VKS also known as a ‘self-consistent field’ that is obtained

using the variation of the energy functional Eq. (1.14) with respect to n(r) under

the condition in Eq. (1.9).

VKS(r) = Vext(r) +
δEH

δn(r)
+
δEXC

δn(r)

= Vext(r) + VH(r) + VXC(r) (1.17)

The KS potential VKS, given by Eq. (1.17), depends on the electron density n(r),

but n(r) depends on the KS eigenstates φi(r). Therefore, Eq. (1.15) with a potential

Eq. (1.17) must be solved self-consistently with the resulting density. Once the DFT

computations have reached convergence, the KS many-body wave function can be

constructed as a compact single Slater determinant of KS single-particle orbitals, as

shown in Eq. (1.6).
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1.2.3.2 Local-density approximation and beyond

The most challenging part of DFT is constructing functionals that correctly describe

the exchange and correlation effects. The exact form of EXC[n(r)] can be reasonably

approximated as a density functional. The simplest (non-trivial) approximation

is local-density approximation (LDA), proposed by Kohn and Sham [15]. In this

approximation, the general inhomogeneous electron system is considered locally

homogeneous and has the same exchange-correlation (XC) energy as an equivalent

volume of a homogeneous electron gas (HEG) with the same density. The LDA

exchange-correlation functional reads:

ELDA
XC [n(r)] =

∫
n(r)εLDAXC [n(r)] d3r, (1.18)

where εLDAXC is the XC energy per electron of HEG at density n. This functional has

yielded impressively good results for a wide variety of materials, especially for weakly

correlated materials, such as simple metals and semiconductors [16]. However, it fails

in many situations due to its inability to describe non-local exchange and correlation

effects in van der Waals systems, inhomogeneities of density in weak inter-molecular

bonds, strong local correlation in strongly correlated systems, and band gap energies

[10].

Attempts to improve the LDA functional have been somewhat successful.

Generalised gradient approximations (GGA), such as the PBE (Perdew-Burke-

Ernzerhof) functional [17], are currently the most popular functionals that introduce

the non-locality of density. In this class of approximation, the XC functional involves

an expansion of the electron density in terms of the gradient that describes the

spatial inhomogeneity of the density. More accurate available approximations are

the hybrid functionals such as B3LYP (Becke, 3-parameter, Lee-Yang-Parr) [18, 19].

The XC functionals are built as a combination of the exact exchange term from

Hartree-Fock theory and a density functional.

Unfortunately, the DFT method with local and semi-local exchange-correlation

functionals fails to describe the nonlocal, weak interatomic van der Waals (vdW)

interactions. The vdW interactions are caused by the electrostatic interaction of

atomic dipolar fluctuations, which tend to the classical dipole-dipole interaction

(1/r6) at long-range distances. These interactions play a crucial role in determining
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the structure, stability and function of a vast range of materials. Therefore, an

accurate description of vdW interactions is necessary for advancing our knowledge

of several areas of chemistry, biology and condensed matter. Improvements for

the GGA and hybrid DFT exchange-correlation functionals have been proposed

to approximately describe the long-range vdW interaction [20, 21]. Using the

Tkatchenko-Scheffler (TS) vdW technique [22], which computes the vdW energy

corrections from the ground-state electron density of a molecule or solid and

reference values for the free atoms, an accurate determination of long-range vdW

interaction may be obtained. Further development of the TS-vdW scheme was

achieved by including the long-range screening effects of vdW interactions using

pairwise self-consistent-screening energy [23]. In general, having access to reliable

benchmark data for vdW bonded systems is essential for the development of vdW

correction techniques for DFT. Such benchmark data can be gathered via QMC

methods.

1.2.4 Quantum Monte Carlo methods

Quantum Monte Carlo (QMC) simulation is a powerful stochastic electronic-

structure technique that is capable of providing a direct and highly accurate

treatment of electron correlation and of stochastically solving the many-body

Schrödinger equation. Its establishment opened the possibility of dealing with larger

systems with several hundreds of electrons. QMC methods can be applied to a

wide variety of systems and are capable of accurately evaluating many properties.

Several types of QMC methods have been applied to problems in solid-state physics

in recent years, but in this thesis, for continuum models of electrons in solids, we

use variational quantum Monte Carlo (VMC) and diffusion quantum Monte Carlo

(DMC) [24, 25]. Both VMC and DMC are variational methods, as the evaluated

energy is an upper bounds on the exact ground–state energy. The VMC and DMC

methods have the advantage of having a zero–variance feature: whenever the trial

wave function is the exact eigenstate the statistical fluctuations in the estimated

energy reduce to zero and the evaluated energy is the true eigenvalue. Another

attractive feature is that the fixed-node DMC method is not affected by finite basis

set errors and depends only on the nodal surface of the trial wave function [26].

9



These methods are intrinsically parallel without loss of efficiency and scale as the

third power of the system size O(N3), which is highly favourable in contrast to

other correlated wave-function methods [24]. The CASINO software package [25]

was used for all QMC calculations reported in this thesis.

1.2.4.1 Monte Carlo integration

Monte Carlo (MC) integration is a more efficient method of evaluating the high-

dimensional integrals encountered in realistic electronic structure calculations than

conventional quadrature methods such as Simpson’s rule. The estimated error in

the evaluation of high d-dimensional integral using Simpson’s rule poorly scales with

integer dimensionality as M−4/d, where M is the number of sampling points within

the integration region. In contrast, the estimated errors in MC integration show the

scaling of M−1/2. Consider a definite integral of the form

I =

∫
Ω

g(R)dR, (1.19)

where R is a multi-dimensional vector, Ω is the region of configuration space in

which we are interested and g(R) is a non-trivial multidimensional function.

In general, suppose we have a defined function ω(R) ≈ |g(R)| in region Ω and a

positive normalised function P (R),

P (R) =
w(R)∫
w(R) dR

, (1.20)

where P (R) is a probability density function. The MC integration of Eq. (1.19) is

then carried out by decomposing g(R) into a product of two functions,

I =

∫
Ω

g(R)dR =

∫
f(R)P (R)dR, (1.21)

where f(R) is the real function that can be evaluated in Ω. This method is called

the importance sampling transformation method because f(R) is averaged over a

set of sampling points that are chosen by probability P (R). Therefore, the integral I

can be evaluated by the average f(R) over a large but finite M uncorrelated random

vectors Ri distributed according to P (R) as

I ≈ 1

M

M∑
i=1

f(Ri) = 〈f〉. (1.22)

10



The rewriting of the integral I in the form of Eq. (1.22) substantially reduces the

fluctuations in f(R) = g(R)/P (R) compared to those initially contained in g(R),

which increases the efficiency of the MC integration by sampling more frequently

from the region where the integrand is large. The standard error bar of the estimate

value I is ± σ√
M

, and the variance is

σ2 =

∫
P (R)(f(Ri)− f̄)2dR

≈ 1

M − 1

M∑
i=1

(f(Ri)− 〈f〉)2. (1.23)

Here, f̄ denotes the mean value of the function f .

Importance sampling allows for a significant reduction in the number of

stochastic steps required to achieve a certain level of accuracy by sampling

configurations from a well–defined probability distribution P (R). However, for the

non-trivial P (R), the normalisations of these multidimensional probability densities

may not be known and are so complicated that they cannot be sampled directly.

These obstacles can be overcome by utilising the Metropolis algorithm.

1.2.4.2 Metropolis algorithm

The importance sampling MC scheme using the Metropolis algorithm [27, 28] is

an acceptance–rejection method that allows for sampling from an unnormalised

probability density function without knowledge of the normalisation constant. In

this method, a set of random walkers is efficiently generated with a particular choice

of transition probability T . The transition probability satisfies the principle of

detailed balance in configuration space such that the probability of moving in a

given direction has the same probability as in the opposite direction, as shown

below:

T (R′ ← R)P (R)A(R′ ← R) = T (R← R′)P (R′)A(R← R′). (1.24)

where A(R ← R′) is the acceptance probability of a move from R′ to R. This

approach generates a sequence of sampling points according to the following steps:

1. Generate a walker at a random position R′.

2. Propose a trial move from R′ to R with the transition probability density

T (R← R′).
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3. Accept the move to the new configuration R with the following the probability:

A(R← R′) = min

{
1,
T (R′ ← R)P (R)

T (R← R′)P (R′)

}
. (1.25)

If the trial move is accepted, the new position R becomes the next point on the

walk; otherwise, R′ becomes the next point on the walk. Most trial moves in

regions with lower probability are rejected, and a sufficiently long equilibration

is needed.

4. Repeat step (2) onward until the required number of samples has been

collected.

A common choice of T is a Gaussian with an appropriate width and mean centred

on the current position of the walker. Although the Metropolis algorithm correctly

samples the target distribution P (R), the consecutive configurations are serially

correlated. The serial correlation of the sampled configurations complicates the

calculation of the statistical error bars on the estimated value. This issue can be

addressed using the reblocking analysis, see Sec. 1.2.9.1.

In practice, all initial configurations generated before attaining equilibrium must

be deleted since they are dependent on the starting point. The duration of the

equilibration time can be determined from the number of steps necessary to verify

that all transient effects of the initial distribution have vanished. Therefore, the root-

mean-square (RMS) distance diffused by a particle in a period T of an imaginary

time must be greater than the longest relevant length in the system. The RMS

distance diffused is given by

RMS =
√

2dDANmoveτ , (1.26)

where d is the dimensionality, D = 1/(2m) is the diffusion constant for a particle of

mass m, A is the acceptance rate (around 1 in DMC and 1/2 in VMC) [25], Nmove

is the number of steps, and τ is the width of the move proposal probability density.

Once the equilibrium is attained, the configurations are distributed according to the

desired probability P (R), and the detailed balance condition Eq. (1.24) is satisfied.

Therefore, P (R) is a stationary point of the Metropolis algorithm and the proposal

transition probability T is ergodic, in which any point in the configuration space

can be reached from another point in a finite number of moves, the algorithm will

converge exponentially rapidly to that stationary point.

12



1.2.5 Variational Monte Carlo method

The variational Monte Carlo (VMC) method is a simple and elegant QMC

algorithm. It is based on the incorporation of the variational principle and

the Monte Carlo integration scheme discussed in Sec. 1.2.4.1 to evaluate the

expectation values. Consider a many-electron wave function ΨT (X), where X =

({r1, σ1}, {r2, σ2}, ..., {rN , σN}) and ri is the spatial coordinate of electron i with

spin σi ∈ {↑, ↓}. Assume that ΨT (X) is an eigenfunction of the total spin operator

Ŝz =
∑N

i=1 ŝzi with eigenvalue (N↑ −N↓)/2, where N↑ + N↓ = N . The expectation

value of a spin-independent operator Â with respect to ΨT (X) is

〈Â〉 =
〈ΨT |Â|ΨT 〉
〈ΨT |ΨT 〉

=

∑
σ

∫
Ψ∗T (X)ÂΨT (X)dR∑
σ

∫
|ΨT (X)|2dR

, (1.27)

where the sums are obtained over all spin configurations such that the number of

electrons with a spin-up is N↑ and those with a spin-down is N↓. For fermion

particles, the ΨT is antisymmetric under an exchange of electrons. As a result of

the antisymmetry of ΨT , X can be replaced by

X′ =
(
{r1, ↑}, ..., {rN↑ , ↑}, {rN↑+1, ↓}, ..., {rN , ↓}

)
(1.28)

without modifying 〈Â〉. The spatial wave function can be defined as

ΨT (R) = ΨT ({r1, ↑}, ..., {rN↑ , ↑}, {rN↑+1, ↓}, ..., {rN , ↓}), (1.29)

which is only antisymmetric under the exchanges of positions of same-spin electrons.

Therefore, electrons of different spins are treated as distinguishable particles, and

ΨT can now be called the trial wave function. The terms in the spin sums in Eq.

(1.27) are identical; hence, the spin sums cancel each other out, and the expectation

value of the operator Â is given by

〈Â〉 =

∫
Ψ∗T (R)ÂΨT (R)dR∫
|ΨT (R)|2dR

. (1.30)

The ground–state energy can now be evaluated using the VMC method as an

expectation value of the Hamiltonian with respect to the trial wave function ΨT (R)

as follows:

EVMC =
〈ΨT (R)|Ĥ|ΨT (R)〉
〈ΨT (R)|ΨT (R)〉

=

∫
|ΨT (R)|2ELdR∫
|ΨT (R)|2dR

≥ E0, (1.31)
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where R = (r1, r2, .., rN) is a 3N–dimensional vector that will be referred to

hereupon as an electron configuration, EVMC is the VMC energy, which is an upper

bound of the true ground–state energy E0 and Ĥ is the many-body Hamiltonian.

We have used the importance sampling transformation

EVMC =

∫
p(R)EL(R)dR, (1.32)

where

p(R) =
|ΨT (R)|2∫
|ΨT (R)|2dR

(1.33)

is the probability distribution function at R and the local energy,

EL = Ψ−1
T ĤΨT . (1.34)

In the VMC method, the probability distribution p(R) is sampled using a random

walk procedure, such as the Metropolis MC algorithm 1.2.4.2. After an equilibration

period, the local energy is accumulated along the walk and averaged over these

sample points. The VMC expectation value is given by

EVMC =
1

M

M∑
i=1

EL(Ri). (1.35)

The variance of energy is

σ2 =
1

(M − 1)

M∑
i=1

(EL(Ri)− EVMC)2, (1.36)

where M refers to the number of generated configurations Ri after the equilibrium

phase has been reached [24, 29]. In practice, this method involves the generation

of trial moves that are accepted or rejected according to the Metropolis algorithm,

in which each trial move is sampled from a Gaussian distribution with a variance

chosen to ensure that the acceptance probability is around 50% [24]. In general, the

VMC method is most often used to optimise the trial wave function parameters (see

Sec. 1.2.7) that are varied to minimise the energy variance of local energy (see Sec.

1.2.8) and as a preliminary step for DMC simulation [29].

1.2.6 Diffusion Monte Carlo method

The accuracy of the VMC results is limited by the quality of the wave function.

This limitation can be overcome using a more accurate method such as the diffusion
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Monte Carlo (DMC) method. DMC is a projector method that takes advantage of

the imaginary–time Schrödinger equation to project out the electronic ground-state

component from the trial wave function.

1.2.6.1 Imaginary-time evolution

The imaginary–time Schrödinger equation (ITSE) is

− ∂

∂τ
Φ(R, τ) = (Ĥ − ET )Φ(R, τ)

= −1

2
∇2Φ(R, τ) + (V (R)− ET )Φ(R, τ), (1.37)

where Φ(R, t) = is a function of the 3N -dimensional configuration vector R of all

N electron coordinates and τ = it is the imaginary time, ∇ is the 3N-dimensional

gradient with respect to R, V (R) is the potential energy and ET is a constant

reference energy that is used to control the walker population during the simulation

[24].

A general solution Φ(R, τ) of Eq. (1.37) is

Φ(R, τ) =
∞∑
i=0

ciφi(R) exp[−(Ei − ET )τ ], (1.38)

where ci is a set of expansion coefficients, and Ei and φi(R) are the ith eigenvalue

and eigenfunction of the Hamiltonian Ĥ, respectively. By choosing ET = E0 with

the initial condition c0 6= 0, we get rid of the imaginary-time dependence of the wave

function at large imaginary time τ . In the limit of τ → ∞, the stationary solution

Φ(R, τ →∞) = c0φ0(R) is projected and the excited states die away exponentially

relative to the ground state.

Considering only the kinetic term, the ITSE in Eq. (1.37) is reduced to a diffusion

equation in the 3N-dimensional configuration space, whereas eliminating the kinetic

term from Eq. (1.37) results in a rate equation. At the short–time δτ propagator,

the DMC algorithm can be simulated by taking a set of configurations initially

distributed as Φ(R, 0) and randomly moving through the diffusion process. The

rate process is interpreted as a “birth/death” algorithm is used to kill the walkers

in regions of high V and replicate those in low V regions. After a long period of

evolution in imaginary time, all the excited-states components will die away and

leave just the wave function of the ground state.
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However, this algorithm suffers from two serious limitations. First, the Coulomb

potential V (R) suffers from divergences at coalescences. The resulting divergence

leads to significant fluctuation in the walker population and hence to poor statistical

estimates of expectation values. This poor behaviour can be addressed using

importance-sampling transformation [25]. The second issue is the fermion sign

problem, addressed in Sec. 1.2.6.2, which affects all projector QMC methods.

1.2.6.2 The fermion sign problem

This problem arises from the assumption that Φ is interpreted as a probability

distribution that is positive everywhere. This is valid for bosonic ground states, but

the antisymmetric nature of many-particle fermionic wave functions necessitates

both positive and negative regions. This is known as the ‘fermion sign problem’,

and it impacts the DMC method, in which configurations are distributed according

to the wave function Φ. The VMC method is unaffected by the fermion sign issue

because the distribution of walkers therein is governed by |ΨT |2, which is positive

everywhere.

Taking the probability density of the walker population in non-importance

sampled DMC to be |Φ| results in the so-called fixed-node approximation [30]. The

nodes of the DMC wave function are taken to be almost correct and are fixed to the

nodes of the trial wave function during the imaginary–time evolution, which divides

the configuration space into nodal pockets. This approximation is equivalent to

imposing an infinite repulsive potential barrier on the nodal surface of the trial

wave function, which is strong enough to cause the wave function to be zero on the

nodal surface. The Schrödinger equation in Eq. (1.37) is solved within each nodal

pocket subject to the boundary condition that the wave function becomes zero on

the nodal surface.

For complex wave functions, the fixed-phase approximation [31] results from

forcing the complex wave function to have the same phase as the trial wave function.

This approximation is the complex generalisation of the fixed-node approximation.

The fixed-node approximation is for special cases in which the trial wave function is

real and has a phase that is equal to 0 or π at each point in the configuration space.

Although both approximations are uncontrolled, their performance is remarkable.
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In the fixed-node approximation with an antisymmetric trial wave function, the

ground-state DMC energy obeys the variational principle, with the error positive

and second–order in the nodal surface error [32]. Similarly, the excited-state DMC

energy is variational under the fixed-phase approximation with a trial wave function

that transforms as a one-dimensional irreducible representation of the symmetry

group of the Hamiltonian [33]. The fixed-node approximation can be efficiently

implemented via importance– sampling transformation.

1.2.6.3 Importance-sampling transformation

The importance-sampling transformation in the DMC algorithm make use of the

trial wave function ΨT to bias the random walk to form the mixed distribution

f(R, τ) = Φ(R, τ) ΨT (R) ≥ 0 rather than Φ(R, τ), where the DMC wave function

Φ(R, τ) and the trial wave function ΨT (R) have the same nodal surfaces. By

substituting Φ(R, τ) = Ψ−1
T (R)f(R, τ) into Eq. (1.37), the importance-sampled

imaginary-time Schrödinger equation (ISITSE) then can be written as

− ∂

∂τ
f(R, τ) = −1

2
∇2f(R, τ) +∇· [vD(R)f(R, τ)] + [EL(R)−ET ]f(R, τ), (1.39)

where ∇ = (∇1,∇2, ...,∇N) is the 3N -dimensional gradient and vD(R) is the 3N -

dimensional drift velocity given by

vD(R) = ΨT (R)−1∇ΨT (R). (1.40)

The three terms on the right side of Eq. (1.39) describe diffusion, drift and branching

processes, respectively.

The corresponding integral form of Eq. (1.39) can be written as

f(R, τ + δτ) =

∫
G(R← R′, δτ) f(R′, τ) dR′ , (1.41)

with an importance-sampled Green’s function defined as

G(R′ ← R, δτ) = 〈R′|e−δτ(F̂+EL(R)−ET )|R〉, (1.42)

where F̂ = (1
2
)P̂2 + iP̂ · vD(R) is the Fokker-Planck operator, P̂ is momentum

operator, and the Green’s function G(R← R′, δτ) is the solution of Eq. (1.39) and

satisfies the initial condition G(R← R′, 0) = δ(R−R′). Using the Trotter-Suzuki
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formula [34],

G(R′ ← R, δτ) = 〈R′|e−δτ(F̂+EL(R)−ET )|R〉

= 〈R′|e−δτ
EL(R′)−ET

2 e−δτF̂ e−δτ
EL(R)−ET

2 +O(δτ 3)|R〉

= e−δτ
EL(R′)−ET

2 〈R′|e−δτF̂ |R〉 e−δτ
EL(R)−ET

2 +O(δτ 3). (1.43)

Within short-time-step approximation, the Green’s function is approximated as the

factorisation of a product of the drift–diffusion and branching components, which is

as follows:

G(R← R′, δτ) ≈ Gd(R← R′, δτ) Gb(R← R′, δτ) (1.44)

where

Gd(R← R′, δτ) = (2πδτ)−3N/2 exp

[
− [R−R′ − δτvD(R′)]2

2δτ

]
(1.45)

is the drift-diffusion Green’s function, and

Gb(R← R′, δτ) = exp {−δτ
2

[EL(R) + EL(R′)− 2ET ]} (1.46)

is the branching Green’s function. This simplification of the Green’s function

converges into the exact Green’s function in the limit δτ → 0 [29]

Within this method, the DMC algorithm becomes more stable due to the

replacement of the potential V (R) by the local energy EL(R) in the branching

factor. This is convenient because EL(R) is almost constant and is close to the

ground–state energy. This reduces the population fluctuations significantly. Using

the importance–sampling, the fixed-node approximation is implicitly enforced by the

representation of f(R, τ). The f(R, τ) is positive everywhere in the configuration

space and can now be interpreted as a probability distribution. As a result, whenever

a walker approaches the wave function node, the drift velocity grows and prevents the

walker from crossing the nodal surface. Also, sampling the wave function becomes

more efficient because the drift velocity guides the walkers toward large regions of

ΨT so that the more important part of the wave function is sampled more often [24].

The importance–sampling DMC algorithm starts with an initial distribution of

configurations that is drawn from the distribution f(R, 0) = |ΨT (R)|2, as in the
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VMC method. These configurations then evolve such that they sample the mixed

distribution f(R, τ) propagated depending on Eq. (1.44). In the drift-diffusion

process, each walker is drifted from its old position R′ over the distance vD(R′)δτ

and diffused by a three-dimensional vector χ of Gaussian random numbers with

variance δτ and a zero mean, such that

R = R′ + χ+ vD(R′)δτ. (1.47)

The importance-sampled Green function can be interpreted as a transition probabil-

ity density for the stochastic imaginary-time evolution of walkers in the configuration

space. The detailed–balance condition can then be read as

G(R← R′, τ)|ΨT (R′)|2 = G(R′ ← R, τ)|ΨT (R)|2, (1.48)

where detailed balance follows from the Hermiticity of the Hamiltonian [25]. In

the limit of small time steps, the detailed-balance condition is violated due to the

approximation that the drift velocity vD is constant over the walkers’ move. This

issue can be solved by including Metropolis–style acceptance–rejection steps in Gd.

The detailed-balance condition is reimposed by requiring that a trial move from R′

to R is accepted with the following probability:

Paccept(R← R′) = min

[
1,
Gd(R

′ ← R, τ)|ΨT (R)|2

Gd(R← R′, τ)|ΨT (R′)|2

]
. (1.49)

Each attempt to cross the nodal surface of the mixed distribution, will be rejected,

and the walker will remain in its original position. In this process, it has been found

to be more efficient and faster to use an electron–by–electron algorithm in which one

electron at a time is moved rather than to use the configuration–by–configuration

algorithm, particularly for large systems [35].

In real calculations, using a finite imaginary–time step in the Green’s function

in Eq. (1.44) leads to time-step bias in DMC calculations. This bias is linear in the

limit of a sufficiently small time step and can be largely removed via extrapolation

to zero–time step by performing a linear fit of the DMC energies evaluated as a

function of τ . The choice of the time–step for DMC calculations is guided by the

shortest length scale Lsmall in the system of interest. For a d-dimensional system,

the root–mean–square (RMS) distance diffused by an electron in each time–step,
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√
dτ , should be less than Lsmall.

The branching process is simulated by allowing the growth and decay of the

mixed distribution over periods of imaginary time by adjusting the reference

energy ET that appears in Eq. (1.46) throughout a simulation to keep the

configuration population under control and close to the target population. This

introduces inevitable positive systematic population-control bias into the DMC

energy. This bias is inversely proportional to the population size and can be removed

simultaneously with time-step bias extrapolation [35]. After a period of equilibration

in which the length is determined using Eq. (1.26), the excited–state contributions

die away; hence, f(R) has the desired ground–state mixed distribution. The walkers

can be further propagated in imaginary time to accumulate and average the needed

quantities, particularly the DMC energy, using the mixed estimator

Ebest = EDMC =
〈φ0|Ĥ|ΨT 〉
〈φ0|ΨT 〉

= lim
τ→∞

∫
f(R, τ)EL(R) dR∫

f(R, τ) dR

≈ 1

M

M∑
i=1

EL(Ri), (1.50)

where M is the set of walkers of f(R, τ) that are propagated in the statistics-

accumulation phase. Aside from the fixed-node error in the DMC ground–state

solution, the mixed estimator is accurate for operators that commute with the

Hamiltonian.

For operators that do not commute with the Hamiltonian, the systemic errors in

both the VMC and DMC estimates are linear to the error in the trial wave function.

The unbiased estimates can then be obtained using the extrapolated technique [36]

as follows:

〈Ŝ〉ext = 2〈Ŝ〉DMC − 〈Ŝ〉VMC, (1.51)

where Ŝ denotes the operator that corresponds to the physical quantity of interest,

and the accuracy of the extrapolation depends on the quality of the trial function.

The error in the extrapolated estimate is quadratic in the error in the trial wave

function.
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1.2.7 The trial wave function

The appropriate choice of trial wave function is important in both the VMC and

DMC methods. The VMC method relies entirely on the trial wave function, whereas

the DMC method depends only on the quality of the nodal surface of the wave

function [29]. An accurate trial wave function that considers the relevant correlations

in the system is important to avoid a large statistical noise, time-step bias, and

population-control bias.

The many-electron wave function can be constructed as a product of a

small number of antisymmetric Slater determinants and a positive, symmetric

parametrised Jastrow factor [37]. The number of determinants required to retrieve

a given fraction of the correlation energy with a multideterminant wave function

increases exponentially with the system size, making it challenging to converge the

results. However, the use of a single determinant for periodic systems has been found

to be effective in maintaining the correct symmetry and retrieving a substantial

fraction of the correlation energy [24]. The single-determinant Slater-Jastrow wave

function for a fermionic system is formally written as:

ΨT (R) = eJ(R)Ψ↑S(r1, ..., rN↑)Ψ
↓
S(rN↑+1, ..., rN),

= eJ(R)ΨS(R), (1.52)

where J(R) denotes the Jastrow correlation factor and ΨS is decomposed into a

product of spin-up and spin-down determinants usually constructed using DFT or

HF calculations.

The antisymmetric feature of the Slater determinant ensures that the fermionic

symmetry of the wave function is satisfied under the exchange of the position vectors

of same-spin electrons. The Jastrow factor must be a positive symmetric function

under exchange of same-spin positions to maintain the nodal surface defined by the

Slater part of the trial wave function [29]. In the absence of the Jastrow correlation

factor, the QMC calculations with only ΨS are reduced to the HF level. The

inclusion of the Jastrow factor provides a description of the dynamical correlation

effects between the particles, so that the correlation energy can be estimated as the

difference between the HF energy and the best available QMC energy.
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1.2.7.1 The standard Jastrow factor

The general form of the Jastrow factor for N electrons and Nion nuclei, such as that

developed by Drummond et al. [37], is written as

J(R) =
N∑
i>j

u(rij) +

Nions∑
I=1

N∑
i=1

χI(riI) +

Nions∑
I=1

N∑
i>j

fI(riI , rjI , rij) +
N−1∑
i=1

N∑
j=i+1

p(rij),

(1.53)

which is sum of electron–electron (u), electron–nuclear (χ) and electron–electron–

nucleus (f) terms and additionally of the cuspless plane-wave expansion (p) term

for periodic systems. The terms rij, riI , ri and rI are the electron–electron and

electron–nuclei separation vectors and the position vectors of the electrons and

nuclei, respectively. The two-body u term behaves according to the cusp conditions

(see Sec. 1.2.7.2), but also causes an unintended change in the electronic charge

density: the electrons are pushed from a high density region toward a lower one.

However, the correct DFT or HF form of the charge density can be retrieved using

the single-body χ function.

In periodic systems, QMC calculations are performed on simulation cells subject

to periodic boundary conditions. In such systems, the separation vectors are

evaluated under the minimum-image convention [29]. Hence, the u, χ and f terms

should be truncated at a distance less than or equal to a radius of the largest sphere

that can be inscribed in the Wigner-Seitz simulation cell to eliminate the sums over

the images. However, the truncation of the u term at the edge of the periodic cell

reduces its efficiency in capturing long–range correlations. The inclusion of the p

term adds greater variational freedom in the corners of the simulation cell, which

allows the correct description of correlation in the corners of the simulation cell

[37, 38].

The functional form of the Jastrow factor components should be parametrised

efficiently using power expansions with optimisable coefficients. For example, the

two-body u term in the Drummond-Towler-Needs Jastrow factor is written as

u(rij) = (rij − Lu)CΘ(Lu − rij)×

(
α0 +

[
Γij

(−Lu)C
+
Cα0

Lu

]
rij +

N∑
l=2

αlr
l
ij

)
,(1.54)

where Lu is the cut-off distance, C is the truncation order, Θ is a Heaviside step

function, αl are optimisable parameters and Γij is a constant determined by the
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cusp conditions. In this expression, if C = 2, the gradient of u is continuous but the

second derivative and thus, the local energy, is discontinuous; and if C = 3, both

the gradient and the local energy are continuous. The complete description of the

Jastrow factor can be found in the original paper [37] and the CASINO manual

[38].

1.2.7.2 The Kato cusp conditions

The components of the Jastrow factor of Eq. (1.53) should be chosen to enforce

the Kato cusp conditions [39]. These conditions define the behaviour of the many-

body wave function at the coalescence points. For a system of charged particles, the

Coulomb potential energy suffers from divergence whenever two particles coincide.

However, the true eigenstate of the Hamiltonian has a smooth and constant local

energy throughout the configuration space. To neutralise the singularity of the trial

wave function at the coalescence points, an equivalent and opposite divergence in

kinetic energy must be forced to cancel out the divergence in the potential energy.

For any two particles with charges qi and qj and masses mi and mj interacting via

the Coulomb potential, the Kato cusp condition is

∂J(R)

∂rij
=

2qiqjµij
d± 1

= Γij, (1.55)

where µij = mimj/(mi+mj) is the reduced mass and d represents the dimensionality.

The positive and negative signs in the denominator are for the indistinguishable and

distinguishable particles, respectively. For the Jastrow factor of Eq. (1.53), the Kato

cusp conditions can then be written as conditions Γij = 1
2

for unlike-spin electrons

pairs, Γij = 1
4

for like-spin electron pairs, and ΓiI = −Z for the electron–nucleus

cusp.

As mentioned above, fixed-node approximation is applied to overcome the

fermion sign problem in the DMC method. Consequently, the quality of the DMC

energy obtained with merely the Slater-Jastrow wave function is limited by the

accuracy of the trial wave function ΨS(R) nodes. One can of course go beyond the

standard form of the Slater-Jastrow wave function to optimised the shape of the

nodes by improving the orbital component of the wave function using a higher-order

technique such as backflow transformation (1.2.7.3). In recent years, a remarkable
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improvement in accuracy has been seen through the introduction of pairing orbitals

[40, 41] (Sec. 4.2.1) and multideterminant expansion [25, 42] (Sec. 1.2.7.4) for

characterising excited and degeneracy states in QMC calculations.

1.2.7.3 Backflow transformations

Introducing backflow transformations can incorporate further correlation effects in

the trial wave function and leads to further variational freedom in the antisymmetric

part of the trial wave function ΨS(R) [43–45]. The Slater determinant orbitals

are evaluated by transforming the coordinate positions R in Eq. (1.52) into

the new collective coordinates X(R) = (xi,x2, ...,xn), the so-called ‘quasiparticle’

coordinates, which are given by

xi = ri + ξi(R) (1.56)

where ξi(R) is the backflow displacement vector for particle i, which is a function

of the position of all the other electrons in the system, given by

ξ(R) =
N∑
i 6=j

η(rij)rij +

Nion∑
I=1

N∑
i=1

µ(riI)riI +
N∑
i 6=j

Nion∑
I

[Φ(riI , rjI , rij)rij

+θ(riI , rjI , rij)riI ] (1.57)

In this expression, ξ takes a form developed by López Rı́os et al. [46] analogous to the

parametrisation of the Jastrow factor in Eq. (1.53) where electron–electron η(rij),

electron–nucleus µ(riI) and electron–electron–nucleus Φ(riI , rjI , rij), θ(riI , rjI , rij)

are correlation functions.

1.2.7.4 Multideterminant (MD) expansions

Using a linear combination of a few determinants, also known as a multideterminant

expansion, significantly improves the trial wave function, expressed as:

ΨMD(R) = eJ(R)

Ndet∑
n

cn det[ψn(r↑i )] det[ψn(r↓i )], (1.58)

where cn are coefficients. The use of a multi-determinant wave function in the

modelling of extended systems is impracticable since the number of determinants

required to reach a specific level of accuracy grows exponentially with the system

size.
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1.2.8 Wave function optimisation

In the VMC and DMC methods, the statistical efficiency and accuracy of the results

are determined by the quality of the trial wave function [24]. Typically, the most

expensive part of VMC and DMC computations is the repetitive evaluation of the

trial wave function and its gradient. As a result, it is important to use an appropriate

trial wave function that is as precise as possible and yet can still be evaluated quickly.

VMC simulations are often used to optimise the wave function by minimising the

VMC energy or its variance.

The VMC method is typically used to optimise the many-electron trial wave

function that includes a set of free parameters {α} defined in Eq. (1.53) by

minimising the required cost function with respect to the values of these parameters.

For instance, one can minimise the variance of the local energy as follows:

σ2
E =

∫
|ΨT (R)|2|EL(R)− EVMC |2 dR∫

|ΨT (R)|2 dR
, (1.59)

Ideally, the local energy EL(R) for the exact trial wave function is the true eigenstate

energy with zero variance. The variance minimisation approach [47, 48], is carried

out via a correlated–sampling scheme in which a set of configurations distributed

according to |ΨT (R)|2 is generated and used to optimise the parameters. The

procedure is iterated until the parameters converge to optimal values of the wave

function with low variance of the local energy (self-consistency).

The variance minimisation method effectively optimises the linear parameters

of the Jastrow factor, but it performs badly when optimising parameters that

modified the nodal surface of the trial wave function. Changing these parameter

values throughout the optimisation cycle will shift the nodal surface across the

configurations, which will cause the local energy to diverge whenever a configuration

coincides with the nodal surface. A similar technique that can be useful in this

situation involves minimising the mean absolute deviation (MAD) [49] of the local

energies from the median local energy instead of the variance.

Another approach is the energy minimisation method. The approach proposed

by Nightingale and Melik-Alaverdian [50] changes the stochastic optimisation issue

into the diagonalisation of the Hamiltonian matrix in a finite basis set. The hard

integral evaluation in the diagonalisation procedure is replaced by a more stable
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least-squares fitting. This method works very well for linear parameters in the trial

wave function and it was extended by Umrigar et al. [51, 52] to optimise nonlinear

parameters in the trial wave function.

In this scheme, the resulting VMC energies are usually lower than those

obtained using the variance minimisation method [29]. This method is also useful

for optimising parameters that modify the nodal surface, such as the backflow

parameters. The resulting optimised wave function significantly improves the

efficiency of the importance–sampled DMC algorithm [53]. In this thesis, the

variance minimisation method was used to generate initial trial wave functions, after

which energy minimisation was performed to obtain the final trial wave functions.

1.2.9 Source of uncertainty in VMC and DMC calculations

1.2.9.1 Serial correlations

The estimated value in the Monte Carlo framework has its associated statistical error

that determines the confidence intervals of the estimate. Although serial correlation

has no impact on estimated values, it complicates the calculation of the statistical

error bar in the mean estimate. Serial correlation affects both VMC and DMC, but

it is more severe in DMC due to the use of a small time step to reduce the effect of

the Green’s function approximation. For an accurate estimate of the error bar one

must correct for serial correlation. The reblocking approach is a straightforward and

effective technique for eliminating serial correlation [54]. For a sufficient sized data

set, serially correlated data are repeatedly divided into blocks of successive pairs.

The data within each pair are averaged to produce a new data set with half the

number of points. As the block length increases, the standard error of the mean

increases until it hits a plateau, at which point the block averages are completely

independent of one another and the standard error in the mean is correctly estimated

[25].

1.2.9.2 Pseudopotentials in the QMC

All-electron DMC calculations scale with atomic number Z from Z5.5 to Z6.5 [53,

55, 56]. Thus, all-electron QMC calculations are feasible only for light atoms with
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atomic numbers Z < 10 and have been found to be prohibitively expensive for

extended systems of atoms. The existence of core electrons results in two inevitable

issues. The first issue is that both the kinetic and potential energies are large near

the nucleus, which causes large fluctuations in the local energy. Second, the variation

over the short length scale in the wave function close to the nucleus of a heavy atom

requires the use of a smaller time-step to converge the results in the linear-time

step bias regime. These issues are normally addressed by using pseudopotentials to

remove the chemically inert core electrons and nucleus from the problem and create

an effective potential to reproduce their effect on the valence electrons.

The use of non-local pseudopotentials in DMC calculations introduces further

errors because the non-local pseudopotentials cannot be applied to the implicit

probability distribution of the many-body wave function [25]. This issue is often

solved by utilising locality approximation, in which the non-local component of the

pseudopotential (V̂NL) acts on the trial wave function rather than on the DMC

wave function, so, V̂NL is replaced by Ψ−1
T V̂NLΨT . The leading-order error in this

approximation is of second order in the wave function error, which impacts the

stability of the DMC computations due to the loss of the variational property.

An alternative solution is the implementation of the semi-locality approximation

‘T-move scheme’ introduced by Casula et al. [57] for dealing with non-local

pseudopotentials in DMC calculations.

In this thesis, the non-local Trail & Needs Dirac-Fock (TNDF) pseudopotentials

[58, 59] were used in VMC and DMC calculations with the plane-wave cut-off

energy values determined in [60]. The T-move scheme [57] has been used in DMC

calculations to ensure that the variational principle is obeyed. For plane-wave DFT

calculations, the local channel for the TNDF pseudopotentials must be chosen to

have an s angular-momentum to avoid ghost states. This problem arises from the use

of the Kleinman-Bylander representation of pseudopotentials in the plane-wave DFT

calculations [61]. In contrast, the QMC calculations do not employ the Kleinman-

Bylander representation, and the local channel of the pseudopotentials with the

highest angular-momentum component can be selected [60].
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1.2.9.3 Fixed-node error

In theory, the DMC method is an exact approach, but its accuracy is restricted

by the uncontrolled but variational fixed-node approximation used to deal with

the fermionic nature of the anti-symmetric many-body wave function. The use

of fixed-node approximation with a trial wave function that transforms as a one-

dimensional (1D) irreducible representation (irrep) of the full symmetry group of

the Hamiltonian provides a variational principle with respect to the lowest-lying

eigenstate that transforms as that 1D irrep. Therefore, the DMC energy fulfils

the variational principle only for the ground state and a few excited states. For

the excited state that corresponds to degenerate states, the trial wave function

transforms as a multi-dimensional irrep of the full symmetry group, which may

lead to a DMC energy lower than the lowest energy of the exact eigenstate of that

symmetry. A weaker variational principle can be realised again by selecting a trial

function that transforms as a 1D irrep of a subgroup of the full symmetry group. In

this case, the DMC energy is an upper or equal bound on the eigenvalue of the lowest

exact eigenstate with the specified subgroup symmetry. Thus, the fixed-phase DMC

can estimate excited-state energies by using a suitable trial wave function [25, 33].

However, the use of the fixed-node approximation introduces inevitable positive

fixed-node errors that scale as second–order in the error in the trial wave function’s

nodal surface, which can be reduced by using a good trial wave function. The use of

backflow transformations in DMC calculations can recover a significant fraction of

the fixed-node errors, where backflow does not involve changing the nodal structure

[46].

1.2.9.4 Finite-size errors

The main source of finite-size (FS) errors in the many-particle approaches, such

as QMC, is the performance of the computations in a simulation cell of limited

number of unit cells subject to periodic boundary conditions rather than infinite

cells. Unlike single-particle methods, explicitly correlated methods require the use

of a supercell as the long-range of electrons correlation may exceed the primitive cell.

The supercell approach allows the removal of unwanted surfaces and preserves lattice

transitional symmetry but includes the periodic image interaction effects [25]. This

28



issue can be addressed by calculating the DMC energy at different system sizes and

then extrapolating the results to an infinite system size. In addition, performing

computations in a finite unit cell involves approximating the continuous integral

over the first Brillouin zone by summing over a discrete set of k-point wave vectors

with a fixed electron number. This results in oscillatory single-particle finite-size

errors, which cause the QMC energy per atom to vary as the size of the system is

altered. This issue can be mitigated by using the canonical-ensemble twist averaging

approach [62], which involves averaging the energy over offsets to the grid of k-

vectors. Further discussion of the effects of finite size can be found in the following

chapters.
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Chapter 2

Vibrational renormalisation of

quantum Monte Carlo band gaps

via random sampling of normal

coordinates

2.1 Introduction

First-principles electronic-structure calculations have been widely used to examine

electronic band structures over the past four decades. Density-functional theory

(DFT) approaches using the local density approximation (LDA) and generalised–

gradient–approximation exchange–correlation (XC) functionals often succeed re-

markably well in describing ground-state properties. However, even if an XC

functional that produces the exact ground-state energy were used, DFT would

still fail to provide exact band gaps [13], and it is well known that in practice,

DFT significantly underestimates gaps. This issue has prompted much research

on the calculation of electronic band gaps using more sophisticated methods, such

as DFT with hybrid exchange–correlation functionals [63, 64] and GW many-body

perturbation theory [65–68]. Second-order Møller-Plesset perturbation theory has

been found to be unreliable for band-gap calculations [69]. Quantum–chemistry–

based approaches, such as similarity–transformed equation of motion coupled–

cluster methods, have been used to compute energy gaps for small clusters of atoms
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in order to determine bulk band gaps [70], but such cluster calculations inevitably

suffer from surface effects, and successful calculations rely on the examination of

carefully selected finite clusters. In this study, we focus on quantum Monte Carlo

(QMC) methods, which have been shown to be applicable to a broad range of systems

and can accurately predict a wide range of ground-state and excited-state properties

[24, 71]. QMC has previously been used to investigate the energy gaps of several

molecular and crystalline systems [72–75].

Many theoretical methods are devoted to investigating the electronic–structure

modification induced by electron–phonon coupling using first-principles approaches.

The Allen–Heine–Cardona theory, known also as the quadratic approximation,

[76, 77] evaluated the zero-point renormalisation and temperature dependence

of band structure by taking the thermal average over an ensemble of atomic

displacements based on the perturbation theory framework. This approach has been

applied in many first-principles calculations [78–84]. The ab initio frozen-phonon

approach allows for the inclusion of electron–phonon effects by computing the change

of the electronic eigenvalues due to atomic displacements along the normal modes

[81, 83–88]. Alternatives to perturbational methods for the study of electronic and

vibrational properties have succeeded in capturing the nuclear quantum effects and

solving the electronic problem based on the framework of the Born–Oppenheimer

approximation. Path-integral molecular dynamics (PIMD) [89] has been combined

with electronic–structure methods to examine the effect of electron–phonon coupling

on the band gap [90, 91]. More recently, Monte Carlo (MC) integration methods

[92, 93] have been used widely [94–99]. Acceleration techniques for the MC sampling

scheme has been developed, such as the thermal lines method proposed by Monserrat

(2016) [100] and one-shot method by Zacharias and Giustino (2016) [101].

Over the past decades, several studies have investigated the incorporation

of vibrational-renormalisation corrections in first-principles calculations. These

studies have shown that for systems with light atoms or weak bonding, zero-point

atomic vibrations can have a significant effect on properties such as electronic

band gaps and thermodynamic stability, highlighting the importance of including

vibrational corrections in any comparison between theoretical and experimental

results [102, 103]. In many cases, vibrational renormalisation results in a significant

31



decrease in electronic band gaps. In the case of diamondoids, a frozen-phonon

approach based on DFT calculations has been used to account for vibrational effects,

resulting in a correction to the static nucleus energy gap of between −0.1 and −0.3

eV [104]. Vibrational renormalisations of electronic band gaps at the DFT level

have recently been shown to be as high as −0.4 eV for diamond and −0.03 eV

for silicon [99]. The vibrational-renormalisation correction has been found to be

very strong in the case of hexagonal ice, resulting in a significant decrease in the

electronic band gap of more than −1.5 eV [105, 106]. Monserrat et al. [97] calculated

the effect of electron–phonon coupling in molecular crystals of CH4, NH3, H2O, and

HF, revealing strong zero-point effects on the band gaps ranging from −1.0 eV

in NH3 to −2.0 eV in CH4. Recent work by Hunt et al. [107] has evaluated the

DFT vibrational renormalisation of the gaps of monolayer and bulk hBN. The

vibrational corrections were found to be significant in both the monolayer (−0.73

eV) and the bulk (−0.40 eV) at 300 K. Because DFT already underestimates

band gaps, including vibrational-renormalisation corrections generally exaggerates

the disagreement with experimental results. It is therefore essential to combine

vibrational-renormalisation corrections with more accurate methods for calculating

static-nucleus band gaps.

Post-DFT methods have also been used to investigate the vibrational renormali-

sation of band gaps. For example, using the G0W0 corrections to the LDA band gap

within the many-body perturbation theory, the zero-point renormalisation of the

direct band gap of diamond has been determined to be −0.2 eV [81]. A larger

zero-point correction of −0.6 eV has been obtained using Allen-Heine-Cardona

perturbation theory and a scissor operator equivalent to the GW correction [79].

Monserrat [99] has evaluated the zero-point vibrational correction and temperature

dependence of the direct band gap of silicon, diamond, TiO2, LiF, and MgO using

the many-body G0W0 approximation via the mean thermal line. The zero-point

renormalisation results in a large correction to the direct gap of diamond (−640

meV, LiF (−500 meV), and MgO (−210 meV) and in a slight decrease in silicon

(−52 meV) and TiO2 (−150 meV).

Seeking a more accurate approach to electronic structure, several recent studies

have used the diffusion Monte Carlo (DMC) technique to compute the ground-
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state and excited-state energies for atomic configurations generated by molecular

dynamics (MD). The first implementation to combine the QMC method and the

ab initio MD simulation was introduced by Grossman and Mitas (2005) [108].

This approach evaluates the electronic energy within the QMC method along the

nuclear trajectories that are generated using the DFT/MD method. More recently,

Azadi et al. [109] has used DMC-PIMD calculations to evaluate the harmonic and

anharmonic effects on the quasiparticle and excitonic band gaps of dense hydrogen

at finite temperature. Coupled electron–ion Monte Carlo is an ab initio method

based entirely on QMC algorithms [110, 111]. In this approach, the electronic

problem is solved within the Born–Oppenheimer approximation using an electronic–

ground–state QMC calculation, and the ionic degrees of freedom are sampled with

a Metropolis algorithm at a fixed temperature [112–114]. However, the application

of these method is focussed on the study of phase transition diagrams rather than

the electron excitations.

The true potential energy surface is typically approximated by a quadratic

function with a single minimum at the equilibrium point with fixed lattice vectors.

In this quasiharmonic approximation, the vibrational Hamiltonian separates into

a set of independent harmonic–oscillator Hamiltonians, one for each normal mode

(see Sec. 2.2.2); quanta of vibrational energies are referred to as phonons. Small

deviations from the ideal quadratic potential energy at fixed lattice vectors, referred

to as anharmonicity, result in phonon–phonon scattering and thermal expansion

effects. In this study, however, we focus on harmonic vibrational effects on the

electronic structure, neglecting anharmonic effects as a small correction to a small

correction.

Therefore, this chapter focuses on the vibrational renormalisation of band gaps

at zero and finite temperature by developing a methodology that accounts for

vibrational effects with the QMC technique in order to achieve quantitative accuracy

in gap calculations.
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2.2 Theoretical background

2.2.1 The vibrational Schrödinger equation

A complete quantum description of the nuclei vibrations can be provided by solving

the Schrödinger equation for the nuclei, which is an important many-body problem.

Starting from the eigenvalue problem for a system of coupled electrons and nuclei,

ĤΨs({r,R}) = EsΨs({r,R}), (2.1)

where {r} are the electron coordinates, {R} are the nuclear coordinates, Ĥ is the

fundamental Hamiltonian defined in Eq. (1.2) and Es is the total energy of the sth

eigenstate of the coupled system. The full solutions wave function Ψs can be written

as the product

Ψs({r,R}) =
∑
i

χsi({R})Ψi({r} : {R}), (2.2)

where Ψi({r} : {R}) is the electronic wave function that describes a complete set of

electronic states at each nuclear coordinates {R} and χsi({R}) are the expansion

coefficients that depend on the nuclear coordinates. Inserting Eq. (2.2) into the

time-independent Schrödinger equation with the total Hamiltonian of Eq. (1.2),

multiplying from the left by Ψ†i ({r} : {R}), and integrating over the electron

variables r, we obtain[∑
Rl,κ

− 1

2mκ

∇2
lκ − Eelec

i ({R})− Es
]
χ({R}) = −

∑
i

Cii′χ({R}), (2.3)

where κ denotes the different atoms within a primitive unit cell, mκ is the mass of

atom κ, Rl denotes the position vectors of the unit cell, and Eelec
i ({R}) is electronic

energy. The Cii′ are the matrix elements given by

Cii′({R}) = Aii′({R}) +Bii′({R})

= −
∑
κ

1

mκ

〈Ψi({r} : {R})|∇κ|Ψi′({r} : {R})〉∇κ

−
∑
κ

1

2mκ

〈Ψi({r} : {R})|∇2
κ|Ψi′({r} : {R})〉. (2.4)

and describe the electrons’ transitions between the electronic states.
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Under the Born–Oppenheimer (BO) approximation [7], a small change in the

nuclear positions affects the electronic state only adiabatically; the electrons remain

in their given electronic state as the nuclei move. In contrast, the nuclei can be

affected only by the time–averaged adiabatic electronic potential. This assumption

is valid only for materials with nuclei that are heavy enough for the lattice vibration

energy to be much lower than the electron’s excitation energy between the electronic

levels. The nonadiabatic Cii′ terms in Eq. (2.4) can therefore be neglected. The

nuclear motion now can be described by a purely nuclear Schrödinger equation:[∑
Rl,κ

− 1

2mκ

∇2
lκ + Eelec

ni ({R})

]
χni({R}) = Ĥvibχni({R}) = Evib

ni χni({R}), (2.5)

where n denotes the nuclear state and Evib
ni and Eelec

ni are, respectively, the vibrational

energy and the electronic total energy result from solving the electronic Schrödinger

equation as a function of nuclear positions, known as the ‘BO energy surface’.

Using the harmonic approximation, the nuclear motion problem of Eq. (2.5) can be

described classically with a set of simple independent harmonic oscillators. Some

phenomena, such as thermal expansion, cannot be explained with this method,

which is a significant limitation. In this thesis, the treatment of lattice vibration

effects will be limited to the harmonic approximation.

2.2.2 Lattice dynamics

Suppose atom κ in the lth unit cell is displaced from its equilibrium position x(lκ) by

a small amount u(lκ) compared to the lattice spacings. The instantaneous positions

of the atoms are

R(lκ) = x(lκ) + u(lκ). (2.6)

Under this condition, the BO potential can be expanded in a power series with

respect to the atomic displacement u(lκ) to give what is known as the Taylor

expansion, that is,

φ = φ0 +
∑
lκα

φα(lκ)uα(lκ) +
1

2

∑
lκα
l′κ′β

uα(lκ)φαβ(lκ; l′κ′)uβ(l′κ′) + . . . , (2.7)

35



with

φα(lκ) =
∂φ

∂uα(lκ)
|0 (2.8a)

φαβ(lκ; l′κ′) =
∂2φ

∂uα(lκ) ∂uβ(l′κ′)

∣∣∣∣
0

, (2.8b)

where the subscript 0 means that the derivatives are evaluated at the equilibrium

configuration; φ0 = Eelec(x) is the static equilibrium potential energy of the crystal;

φα(lκ) is the gradient of potential energy (−1 force) that acts on atom κ in the

direction α = x, y, z and vanishes at the equilibrium configuration; and φαβ(lκ; l′κ′)

is the interatomic force constants matrix given by the second derivative of the

potential energy with regard to atomic displacement. This coefficient gives the

negative force that exerted on atom (lκ) in the Cartesian direction α when the

atom at (l′κ′) is displaced in the direction β by a small distance, and all other

atoms are in their equilibrium positions. This is called the harmonic approximation;

it approximates the potential energy surface as a quadratic function of the ionic

displacements. The high-order terms of expansion are neglected within the harmonic

approximation [8, 115].

The classical harmonic vibrational Hamiltonian for the system with N number

of atoms per unit cell can be written as

H = φ0 +
1

2

∑
lκα

Mκu̇
2
α(lκ) +

1

2

∑
lκα
l′κ′β

φαβ(lκ; l′κ′)uα(lκ)uβ(l′κ′), (2.9)

where Mκ is the mass of atom κ. The classical equation for the motion of the lattice

is

Mκüα(lκ) = − ∂φ

∂uα(lκ)
= −

∑
l′κ′β

φαβ(lκ; l′κ′)uβ(l′κ′). (2.10)

This equation is composed of an infinite homogeneous set of coupled linear

differential equations. Eq. (2.8b), indicates that φαβ(lκ; l′κ′) satisfies the symmetry

condition

φαβ(lκ; l′κ′) = φβα(l′κ′; lκ). (2.11)

Lattice periodicity dictates that the lattice must coincide with itself if it is translated

relative to itself by a lattice vector Rl. This indicates that φαβ(lκ; l′κ′) does
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not depend on l and l′ separately but on the relative positions of cells l and l′.

Furthermore, the translation of the entire system by the arbitrary constant amount

u(lκ) = d, in which all atoms are displaced from their equilibrium position by d,

will not change the potential energy. This can be expressed as∑
lκ

φα(lκ) = 0∑
lκα
l′κ′β

φαβ(lκ; l′κ′) = 0. (2.12)

The general solution of the equation of motion (Eq. [2.10]), as below for u(lκ) is

a superposition of harmonic travelling waves with various wavevectors k in the BZ

and mode label j [116], where

u(lκ) =
∑
k,j

ujk(κ) exp(i[k ·Rl − ωj(k)t]), (2.13)

where ujk(κ) is the displacement vector independent of unit cell l, because according

to Bloch’s theorem, the displacements on different lattice sites differ only by the

phase factors. Substituting Eq. (2.13) in Eq. (2.10), the vibrational problem is

reduced from the infinite set of equations of motion to a set of 3N linear homogeneous

equations in 3N unknowns ujk(κ
′):

Mκ ω
2
j (k) ujk(κ) =

∑
l′κ′β

φαβ(lκ; l′κ′) ujk(κ′) exp[ik · (Rl −Rl′)]. (2.14)

where N is the number of atoms in the primitive cell. Consider a periodic crystal

of volume V = L1 × L2 × L3 and Np unit cells. Applying the Born–von Karman

periodic boundary condition, in which u(l + Liai) = u(l) for each of the primitive

lattice vectors ai, restrict the allowed values of the wave vectors k to a set of discrete

values

ki =
hi
Li

bi, hi =, 0, .., Li − 1, i = 1, 2, 3 , (2.15)

where bi are reciprocal lattice vectors that satisfy bi · ai = 2πδij. This results in

the decoupling of the motion equations at different k vectors. Now, the equations

of motion can be written in the compact form

ω2
j (k)ujk(κ) =

∑
κ′

D(κκ′|k)ujk(κ
′), (2.16)
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where Dαβ is the element of the mass-reduced Fourier–transformed–dynamical

matrix of the force constants that is given by

Dαβ(κκ′|k) = (MκMκ′)
− 1

2

∑
l

φαβ(lκ; l′κ′) exp(ik · [Rl −Rl′ ]), (2.17)

where exp(ik·[Rl−Rl′ ]) is the phase factor that represents any atomic wave motion.

For each wave vector k, the solution of Eq. (2.16) can be obtained by solving the

secular equation

det| Dαβ(κκ′|k)− ω2
j (k) δαβ δκκ′ | = 0, (2.18)

which yields a set of 3N independent harmonic oscillators (branches) each corre-

sponding to an eigenvector e(κ|kj). The frequencies ω = ωj(k), j = 1, 2, . . . , 3N

are known as the dispersion curves. Following from Eq. (2.17) and using Eq. (2.11),

it can be seen that

Dβα(κ′κ|k) = D∗αβ(κκ′|k). (2.19)

Thus, the dynamical matrix is Hermitian, and its eigenvalues ω2
j (k) are always real.

The equation of motion can be expressed in vector form as

ω2
j (k)e(κ|kj) =

∑
κ′

D(κκ′|k)e(κ′|kj) (2.20)

The eigenvalues of the dynamical matrix give the squares of the normal mode

frequencies ωj(k), and the eigenvectors e(κ′|kj) are known as polarisation vectors

that give the pattern of atomic displacement and consist of the displacement vector

weighted by the square root of the atomic mass. The use of these mass-weighted

variables in the equation of motion (Eq. [2.20]) allows us to find a solution for

ω2 instead of Mκω
2. Therefore, the eigenvectors should be chosen to satisfy the

orthonormality condition, where∑
κ

e†(κ|kj)e(κ|kj′) = δjj′ . (2.21)

Moreover, Eq. (2.17), indicates that

Dαβ(κκ′|−k) = D∗αβ(κκ′|k), (2.22)

which implies that the dynamical matrix is a symmetric matrix. Similarly, taking

the complex conjugate of Eq. (2.20), where ω2
j (k) is always real, we can state that

e(κ′|kj) = e∗(κ′|−kj) (2.23)
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and that due to the time–reversal symmetry,

ω2
j (k) = ω2

j (−k). (2.24)

Furthermore, the solutions of Eq. (2.20) describe collective modes or excitations as

a complete set of linearly independent (orthogonal) atomic motions associated with

each wave. These motions are complex in general. Real displacement patterns can

be evaluated by taking the real and imaginary parts, which corresponde to linear

combinations of the eigenvectors at +k and −k [8, 115].

We can simplify the problem further by formulating the harmonic Hamiltonian

in terms of a new set of coordinates—normal coordinates qjk that are linked to the

atomic displacements u(lκ) through the expressions

qjk =
1√
Np

∑
l,κ

√
Mκe

†(κ|kj)u(lκ)e−ik·Rl , (2.25)

u(lκ) =
1√
NpMκ

∑
k,j

e(κ|kj)qjkeik·Rl , (2.26)

where Np is the number of primitive unit cells, which is chosen to be equal to the

number of wave vectors that are commensurate with lattice supercell, and qjk is

the normal coordinate of branch j at wavevector k. Eq. (2.26), indicates that

the collective atomic displacement is the superposition of normal mode motions

weighted by coefficients e(κ|kj)eik·Rl . The total number of normal–mode frequencies

in the crystal is 3NpN , in which all the atoms at each frequency vibrate with the

same phase. Accordingly, the normal mode coordinate qjk gives an independent

description of the crystal vibration mode with one normal–mode frequency ωj(k).

In view of these definitions, the classical Hamiltonian of the lattice as a function

of the normal coordinates [115] is

Hvib =
1

2

∑
kj

[
q̇2
jk + ω2

j (k)q2
jk

]
. (2.27)

This Hamiltonian is a summation of terms for noninteracting (uncoupled) simple

harmonic oscillators, each of which corresponds to a normal mode ωj(k) of the

lattice. Thus far, we have formulated discussions in terms of classical mechanics.

2.2.2.1 Quantisation of normal modes

In the landscape of the BO approximation, the nuclei are heavy classical particles

that perform small vibrations around their respective equilibrium positions. Never-
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theless, a nuclear subsystem must be viewed as a quantum system and described by

a wave function whose square modulus defines the probability density of the nuclear

locations. For the given vibrational state, the mean value of these calculated nuclear

coordinates can be observed experimentally. The complete quantum description of

the nuclei is thus given by the Schrödinger equation for the nuclei. The vibrational

Schrödinger equation for the mode jk can be written as[
−1

2

∂2

∂q2
+

1

2
ω2
j (k)q2

]
ψnjk(q) = Enj(k)ψnjk(q), (2.28)

with the corresponding well-known solution

ψnjk(q) =

(√
ωj(k)

π
1
2 2nn!

)1/2

e−
1
2
ωj(k)q2Hn

(√
ωj(k)q

)
, (2.29)

where n is the occupation number of the normal vibrational mode, Hn is the nth

Hermite polynomial, and Enj(k) is the total energy of the nth excited state of branch

j at k given by the discrete set of values

Enj(k) =

(
n+

1

2

)
ωj(k), n = 0, 1, 2, . . . . (2.30)

Because the Hamiltonian is separable, the overall vibrational wave function can be

written as a simple product of single-oscillator wave functions

Ψn =
∏
jk

ψnjk(q). (2.31)

The classical term ‘normal’ mode is replaced with analogous term ‘Phonon’, which

is used to describe the quanta of the ionic displacement field. Phonons are boson

quasiparticles, with a symmetric wave function under particle exchange, which can

exist in the same state at the same time, unlike fermions, which are subject to

Pauli’s exclusion principle. Phonons adhere to Bose–Einstein statistics, whereby

the expected number of phonons in a particular vibrational state is determined by

nB(ωkj, T ) = [expωj(k)/kBT )− 1]−1, (2.32)

where kB is the Boltzmann constant.
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2.3 The vibrational renormalisation of the band

gap

First-principles techniques have been used mainly to calculate physical properties

within the static lattice approximation, in which the electronic Schrödinger equation

is solved with fixed nuclear positions under the BO approximation. In particular,

this is the case for calculations of electronic band gaps because of the difficulty of

describing electron–phonon interactions [79, 100]. However, nuclear motion due to

both thermal and quantum effects alters the electronic band structure of crystalline

materials by altering the equilibrium lattice parameters [117] and by providing a

distribution of nuclear positions within each unit cell [76, 77].

In this section, we will discus the vibrational renormalisation of band gap

energy. Calculating the band gap requires a determination of the electron’s

transitions (excitations) energy from the valence band to the conduction band.

Because electronic transitions are instantaneous on the timescale of nuclear motion,

vibrationally renormalised electronic excitation energies are obtained by averaging

excitation energies over the distribution of nuclear coordinates in the initial

electronic state. Such vibrational renormalisations of optical and excitonic gaps

are approximately equal to the effects of including vibrational free energies in

quasiparticle bands. The resulting zero–point renormalisation of the band gap,

therefore, is sizeable enough to be comparable to the size of the thermal shift of the

band gap at room temperature.

2.3.1 The nuclear thermal average

From the theory of statistical mechanics, it is straightforward to apply general

formulas to show that the equilibrium distribution of the nuclear configurations

can be treated within Boltzmann quantum statistics. Assuming that the nuclei are

distinguishable particles, the probability that a given vibrational state s with energy

Es will be occupied can be determined by Boltzmann or Gibbs distribution, as

P (Es) =
1

Z
exp (−βEs), (2.33)
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where β = 1/(kBT ) is the reciprocal temperature, T is temperature, kB is

Boltzmann’s constant and Z is the normalisation factor, known as the partition

function and defined as

Z =
∑
s

exp (−βEs). (2.34)

For a quantum system with many particles, the thermal density matrix operator (or

thermal propagator) ρ̂ with a basis of a complete set of eigenstates Ψi of Ĥ can be

written as

ρ̂ ≡ e−βĤ =
∑
i

|Ψi〉e−βEi〈Ψi|. (2.35)

The probability of state i with eigenstates ψi of Ĥ can be written as

ρi ≡ 〈Ψi|ρ̂|Ψi〉 =
1

Z
exp (−βEi). (2.36)

We can thus write the quantum expression for the canonical partition function as

Z =
∑
i

〈Ψi|ρ̂|Ψi〉 = Tr[ρ̂]. (2.37)

Therefore, the thermal average of any quantum operator A can be easily expressed

using the density matrix ρ:

A(T ) = 〈A〉T =
1

Z

∑
i

〈Ψi|A|Ψi〉e−βEn (2.38)

=
1

Z
Tr[ρA] =

Tr[ρ̂A]

Tr[ρ̂]
. (2.39)

During the optical transitions between the initial and final states, the system

must satisfy the Franck-Condon (FC) principle [118], in which the time required

for an optical transition between vibrational sublevels of two electronic states is

substantially less than the time required for the lattice to relax at a constant distance

between nuclei. Following this scheme, let the BO potential energy surfaces in the

electronic ground state and some particular electronic excited state be V0(R) and

Vm(R), respectively. Let the corresponding distributions of nuclear coordinates be

p0(R) and pm(R), respectively. Thus, at finite temperature, it is convenient to

write a general formula of these distributions, which arise due to both thermal and

quantum effects, according to the canonical Boltzmann distribution. Assuming that
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the system is in a particular electronic state i, the canonical distribution function

for the nuclear configuration R can be written as 1

pi(R) =
Tr
[
|R〉 〈R| exp

(
−βĤi

)]
Tr
[
exp

(
−βĤi

)]
=

∑
n |Ψn,i(R)|2 exp (−βEn,i)∑

n exp (−βEn,i)
, (2.40)

where Ĥi is the nuclear Hamiltonian for the BO potential energy surface Vi(R) and

En,i and Ψn,i(R) are the energy eigenvalues and eigenfunctions of Ĥi. The trace

operation refers to the sum over all the states of the system with a given number

of particles. The index i = 0, 1, .. is here used to identify one electronic state for

different nuclear configurations R, and n is the entire set of associated vibrational

quantum states.

Using Eq. (2.38), the vibrational average of an observable A(R) can be written

as

Â(T ) =
1

Zi

∑
n

〈Ψn,i(R)|Â(R)|Ψn,i(R)〉e−βEn,i . (2.41)

This expression can be clearly related to the FC principle [118], which evaluates the

thermal average where the electron transition between electronic states i → i′ (i.e.

excitations) are allowed at the instantaneous frozen nuclear configuration R. Thus,

at every temperature, even absolute zero, the atoms in a crystalline solid can be

seen as frozen but randomly displaced from their equilibrium lattice sites, resulting

in a distribution of electronic excitation energies with a mean value that differs from

the static-nucleus gap.

The adiabatic BO approximation can be invoked by restricting the electronic

wave function to a single electronic state in the BO approximation, typically the

ground electronic state. Hence, Eq. (2.41) is reduced to considering only the

electronic–ground state, expressed as

Â(T ) =
1

Z0

∑
n

〈Ψn,0(R)|Â(R)|Ψn,0(R)〉e−βEn,0 , (2.42)

where Z0 =
∑

n e
−βEn,0 , and where En,0 and Ψn,0(R) are the nuclear eigenvalues and

eigenfunction in the BO ground electronic states. Using the form of the harmonic

1The trace operator is re-expressed on the basis of the nuclear degrees of freedom because it is

invariant regarding the basis set choice.
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eigenfunction defined in Eq. (2.29), the harmonic vibrational thermal average can

be rewritten as

Â(T ) =
1

Z0

∑
n

∫
dR|Ψn,0|2Â(R)e−βEn,0 . (2.43)

The vibrational thermal average in Eq. (2.42) has been evaluated in the literature

using the quadratic approximation, known as Allen–Heine–Cardona theory [76, 77],

molecular dynamics, path integral molecular dynamics [89] and Monte Carlo

methods [92, 93]. In this work, the vibrationally renormalised expectation value

is evaluated using the random sampling algorithm, as described in Sec. 2.4.

2.3.2 Band–gap renormalisation

Within the adiabatic approximation, the quantum and thermal effect of lattice

fluctuations on physical properties can by demonstrated by simulating the harmonic

atomic motion. At a particular nuclear configuration R, the lattice is almost frozen

during electron transitions between initial and final states. Using the previous

definitions in Sec. 2.3.1, we can now address the vibrational renormalisation of

the band gap for the system at a finite temperature from two different perspectives.

2.3.2.1 Optical absorption and emission gaps

In studying the fundamental physical properties of semiconductor materials, the

optical simulation of electron excitations across the band gap from the occupied

state into the unoccupied state is crucially important [119–121]. The electronic

transitions between the ground state and excited state are assumed to be dipole-

allowed. During the interaction of radiation with matter, the system undergoes

a series of transformations that include absorption and emission, accompanied

by changes in the state of the system. For an equilibrium system, the electron

transitions start whenever the absorbed or emitted photon energy is equal to the

energy gap between the valence and conduction band. Such inter-band transitions

can provide the desired absorption (emission) edge to calculate the static-nucleus

absorption ∆static
abs and emission gaps ∆static

em as follows:

∆static
abs = V1(R0)− V0(R0) (2.44)
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∆static
em = V1(R1)− V0(R1), (2.45)

where R0 and R1 are the equilibrium nuclear configurations in the electronic ground

state and excited state, respectively.

Thus far, we have referred mainly to the optical transitions of electrons between

electronic or quasiparticle states. However, these transitions are subject to thermal

shifts induced by the interaction of electrons with the lattice. According to the

FC principle, the radiative (optical–induced) electronic transitions (absorption or

emission) between initial and final levels are assumed to occur while maintaining the

atomic configurations characteristic of the initial state, so the energy of a photon that

is absorbed or emitted at nuclear configuration R is equal to the energy gap V1(R)−

V0(R). The nuclear configuration R fluctuates in time and in space throughout the

crystal, so that the electronic transition of interest gives rise to a distribution of

photon absorption and emission peaks. If the FC approximation is valid and the

absorption or emission bands are narrow, such that we can meaningfully identify a

peak corresponding to the electronic transition of interest, the distribution of photon

energies is well characterised by its mean [76, 77].

The mean optical absorption gap is

∆abs =

∫
[V1(R)− V0(R)] p0(R) dR. (2.46)

Likewise, the mean emission gap is

∆em =

∫
[V1(R)− V0(R)] p1(R) dR. (2.47)

The vibrational renormalisation corrections of the absorption and emission gaps

can be now calculated as ∆static
abs −∆abs and ∆static

em −∆em. In principle, vibrational

renormalisation can be of either sign; in practice, for the commonly encountered

situation in which the excited-state BO potential energy surface has a shallower

minimum than the ground state, renormalisation is negative. For a situation

in which the Stokes shift ∆abs − ∆em is small, we simply refer to vibrational

renormalisation of the optical gap. However, the FC approximation breaks down

in any material that exhibits a significant Stokes shift, meaning that the optical

absorption and emission gaps differ significantly. This typically arises from a large

difference between the equilibrium nuclear configurations R0 and R1 in the electronic
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ground and excited states caused by the lattice relaxation between the electron

excitation and the subsequent emission transitions.

2.3.2.2 Electron addition and removal gaps

In the static-nucleus approximation, the atoms are fixed at their equilibrium

configurations R, in which both the nuclear and electronic entropies are neglected.

The static-nucleus quasiparticle gap may thus be evaluated as

∆static
qp = EI − EA = V+(R+) + V−(R−)− 2V0(R0), (2.48)

where EI = V−(R−)−V0(R0) is the ionisation potential and EA = V0(R0)−V+(R+)

is the electron affinity. R± is the equilibrium nuclear configurations of the system

with one additional and one fewer electron, respectively. Under conditions of

constant pressure, V0 and V± are Gibbs free energies. The atomic structure is

allowed to relax after the addition or removal of an electron, resulting in a small

contribution to the static–nucleus ionisation potential and electron affinity. However,

this contribution largely cancels out the static–nucleus quasiparticle gap. Likewise,

the static-nucleus excitonic gap can be calculated as

∆static
ex = V1(R1)− V0(R0). (2.49)

In the vertical excitations of an electron, the equilibrium nuclear coordinates of the

excited state are assumed to be the same as that of the ground state. Within this

assumption, the static-nucleus excitonic gap is equal to the static-nucleus optical

absorption and emission gaps.

During thermodynamic calculations (for occupancies of excited states and

transport calculations, etc.), the thermal shift of electronic energy levels due to the

lattice vibrations can be understood as the free energy differences upon electronic

excitation [122, 123] rather than the average of a gap over nuclear coordinates.

Therefore, at a given temperature and system volume, the shift in the energy of a

nearly empty conduction band is E = F+−F0, where F0 is the Helmholtz free energy

of the system in the electronic ground state and F+ is the Helmholtz free energy

in the presence of an additional electron in a specified state. Likewise, the shift in

the energy of a filled valence band is E = F0 − F−, where F− is the Helmholtz free
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energy of the system with an electron removed. The quasiparticle gap is

∆qp = F+ + F− − 2F0, (2.50)

which is the difference between the conduction-band minimum and valence-band

maximum. In a similar way, we can define an excitonic gap

∆ex = F1 − F0 (2.51)

as the change in free energy when an electron is excited. In semiconductor

materials, the difference between ∆qp and ∆ex is the exciton binding energy. The

vibrational renormalisation corrections of the quasiparticle gap and excitonic gap

can be evaluated as ∆qp −∆static
qp and ∆ex −∆static

ex , respectively.

2.3.2.3 Brooks’ theorem

Based on the previous discussion, the vibrational effects in quasiparticle and exci-

tonic gaps have different physical origins to those of the vibrational renormalisation

of optical absorption and emission gaps. Nevertheless, these two viewpoints are

brought together by Ref. [124] as Brooks’ theorem [122]. According to Brooks’

theorem, the thermal shift in electronic energy levels arises when the change in

the phonon occupancy is equal to the thermal shift of phonon energies resulting

from changes in electronic occupancy. In other words, the effects of electron–

phonon interactions on the electronic band structure of solids can be computed

by renormalising either the phonons or the electrons. As the electronic transitions

occur at fixed nuclear coordinates, each configuration R yields an energy gap equal

to U(R) = V1(R)−V0(R) and a probability, defined by the nuclear wave function as

|Ψn,0(R)|2, that is assumed to be populated according to the Boltzmann distribution

Eq.(2.36). The thermal average of the optical absorption gap can be calculated as

an expectation value:

∆abs = 〈Ψn,0(R)|U(R)|Ψn,0(R)〉. (2.52)
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Considering U(R) as a small perturbation, we can now apply the first–order

perturbation theory to the optical absorption gap in Eqs. (2.46) as follows:

∆abs =
∑
n

e−βEn,0

Z0

∫
[V1(R)− V0(R)] |Ψn,0(R)|2 dR

≈
∑
n

e−βEn,0

Z0

(En,1 − En,0) +O(V1 − V0)2. (2.53)

For the optical gap, an analogous form of the thermal average of a band gap

over the initial–state ensemble can be written in terms of the Helmholtz free energy

[123]. At constant pressure P and finite temperature T , the thermal probability

that a system with volume Ω will promote an electron from the ground state to the

first excited state is

p0n = exp [β(F0 − En,0 − PΩ)], (2.54)

where F0 is the ground–state Helmholtz free energy. The Helmholtz free energy can

be expressed in terms of the partition function in the canonical ensemble as

Fi = − 1

β
lnZi. (2.55)

The thermal average of the excitonic gap Eq. (2.51) can be calculated as

∆ex =
−1

β
[ln(Z1)− ln(Z0)]

≈ 1

Z0

∑
n

e−βEn,0 (En,1 − En,0) +O(V1 − V0)2, (2.56)

where we have inserted a first-order Taylor expansion of ln(Z1) in En,1−En,0, where

Z1 =
∑

n e
−βEn,1 =

∑
n e
−βEn,0e−β(En,1−En,0). Hence ∆abs ≈ ∆ex. Likewise, ∆em ≈

∆ex. For materials in which the exciton–binding energy is negligible because excited

quasiparticles are delocalized, the quasiparticle gap can be estimated to be equivalent

to the excitonic gap and, therefore, the optical absorption and emission gaps. This

result is sometimes referred to as Brooks’ theorem. In a material with a large

Stokes shift, Brooks’ theorem is unlikely to hold because the optical absorption and

emission gaps will not be in agreement with the excitonic gap. This results from a

significant dissimilarity between the equilibrium nuclear configurations R0 and R1

in the electronic ground and excited states.
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2.4 Method development

2.4.1 Neumann acceptance/rejection procedure

The expectation value of the band gap and any other properties with respect to

the vibrations of the atoms in a solid at temperature T can be determined via MC

sampling of the normal coordinates. Although the VMC technique is an elegant

and straightforward approach to accurately sampling vibrational wave functions,

the resulting atomic configurations are serially correlated. For independent normal

modes, this issue can be avoided by using the Neumann acceptance/rejection

procedure.

The energy of a normal mode of frequency ω is treated as a discrete random

variable that occupies the harmonic-oscillator energy levels according to the

Boltzmann distribution p(n) = 1
Z
e−(n+ 1

2
)ωβ, where β = 1

kBT
, Z =

∑∞
n=0 e

−(n+1/2)ωβ =

1

2 sinh(βω2 )
is the canonical partition function, and kB is Boltzmann’s constant.

This distribution specifies the probability that the normal mode will be in a

particular vibrational quantum state n as a function of temperature. The inverse

transform approach is used to sample randomly from the Boltzmann distribution

the vibrational state n. This technique is as follows:

1. Generate a random number u ∈ [0, 1) distributed according to the uniform

probability distribution function.

2. Set n = n′ if F (n′ − 1) ≤ u < F (n′), where F (n) =
∑n

n′=0 p(n
′) is the

cumulative probability function. Equivalently, we may set n = floor(F−1(u))+

1, where the inverse of F is

F−1(u) = − 1

βω
ln
[
1− Zu

(
eβω/2 − e−βω/2

)]
− 1. (2.57)

The collective atomic displacements [Eq. (2.26)] are evaluated within the harmonic

approximation by sampling the vibrational wave function [Eq. (2.29)]. The

Neumann acceptance/rejection approach is an effective method for sampling from a

complicated target distribution f(q). This technique requires a comparison function

g(q) from which random values of q are drawn, which satisfies

f(q) ≤ cg(q) for all q, (2.58)
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where c ≥ sup[f(q)/g(q)] is a positive scaling factor that can be adjusted to ensure

that the comparison function exceeds the entire target function.

2.4.1.1 Sampling the ground state

The harmonic oscillator’s ground-state wave function, and hence the ground-state

distribution of normal coordinates in each mode, is a simple Gaussian function.

Hence, in the ground state, the normal coordinates for each mode can be sampled

using the Box–Muller algorithm [125].

The target distribution f(q), as shown in Fig. 2.1, is a harmonic-oscillator

probability distribution:

f(q) =| ψ0(q) |2= (
αj(k)

π0.5
)e−α

2
jq

2

, (2.59)

where α2
j (k) = ωj(k). The comparison function g(q) is a normal distribution

with the correct asymptotic behaviour for the harmonic oscillator probability

distributions f(q), allowing for efficient sampling of the tail of the f(q). The

probability density is given by

g(q) =
ξ√
π
e−ξ

2 q2 , (2.60)

where ξ is a constant given by

ξ =
1

σg
√

2
= c0 σf . (2.61)

Here c0 is a positive real constant selected to guarantee that the comparison function

covers the entire target distribution. The standard deviations of the Gaussian and

harmonic–oscillator eigenfunctions are represented by σg and σf , respectively:

σf =
1

α

√
2n+ 1

2
and σg =

√
1

2ωjk
, (2.62)

in which the scaling constant c can be calculated for the ground state as

c = c0 =
σg
σf
. (2.63)
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Figure 2.1: Histogram for sampling the vibrational normal coordinates of the ground

state harmonic oscillator.

2.4.1.2 Sampling excited states

For the nth excited state of each normal mode, the target distribution f(q) takes

the form

f(q) = |ψn(q)|2 =

√
ω

2nn!
√
π
e−ωq

2

H2
n(
√
ωq). (2.64)

This is a multimodal distribution, with n + 1 maxima. As Fig. 2.2 shows, an

appropriate comparison function is

g(q) =

 fmax if |q| ≤ qmax

fmax exp(−(|q| − qmax)2/(2σ2)) otherwise ,
(2.65)

where σ =
√

1
2ωjk

is the standard deviation and qmax is the position of the maximum

of the target distribution that is obtained using the cubic spline interpolation of

the range of points [0, q0], where q0 is the positive classical turning point at energy

(n + 1/2)ω. For known qmax, the fmax ≡ f(qmax) is the maximum value of the

target function. We find that the comparison function [Eq. (2.65)], shown as the

black curve in Fig. 2.2(b), spans the full range of our target distributions. We have

verified that for a very large number of points q sampled from g(q), in every case

g(q) ≥ f(q).
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In this method, the comparison function g(q) is a combination of three

distributions: two half-Gaussian functions and one uniform distribution in the range

[−qmax, qmax]. Each distribution has an associated probability (a), so the overall

g(q) in the range [−qmax, qmax] can be broken into a combination of three easily

generated distributions g1, g2, and g3. Let g1 and g2 be the left- and right-hand half

Gaussians in Fig. 2.2, and let g3 be the uniform distribution in the center. Then

a1 = a2 = α
√

2πσfmax/2 and a3 = 2αfmaxqmax, where the constant α is determined

by the normalization condition a1 + a2 + a3 = 1. The random sampling method for

the given harmonic excited state n is as follows.

1. Select one of the functions with probability ai, where
∑

i ai = 1, as follows:

(a) Draw a random number s from a uniform distribution on [0, 1).

(b) If s < a1 then

{sample from G = g1}

else if s < a1 + a2 then

{sample from G = g2}

else if s < a1 + a2 + a3 then

{sample from G = g3}

end if

2. Draw a random number X from the chosen function G using the Box-Muller

transformation for g1 and g2 or the uniform probability distribution function

for g3.

3. Shift X by the mean of chosen distribution G and then calculate both f(X)

and g(X).

4. Draw a random number Z from a uniform distribution on [0, g(X)).

5. If Z < f(X), accept, and set q = X. Otherwise, return to step 1.
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Figure 2.2: Histogram of the acceptance/rejection technique for sampling normal

vibrational coordinates from the 10th excited state of the harmonic oscillator.

2.4.2 Unfolding the band structures of periodic systems

To investigate the effects of the vibrational motion of atoms on electronic band

structures, calculations of excited electronic states in periodic supercells containing

randomly sampled atomic configurations are performed. As we increase the system

size, the representative supercell Brillouin zone (SCBZ) gets smaller, resulting in

dense blocks of complicated electronic bands. To identify the valence and conduction

bands, we need to unfold the hidden primitive cell character in supercell eigenstates.

The supercell lattice vectors can be written as

as
i =

∑
j

Sija
p
j , (2.66)

where ap
j is the jth primitive lattice vector and Sij is a nonsingular integer matrix.

The supercell defined by S contains Np = | det(Sij)| = Ωs/Ωp primitive cells, where

Ωs and Ωp are the volumes of the supercell and primitive cell, respectively. In the

case of non-degenerate static-nucleus states, unfolding the band structure would

be a straightforward procedure by projecting the primitive-cell eigenvectors of a

wavevector kp and band m onto all the folded supercell states Ψs
nks

as 〈Ψp
mkp
|Ψs

nks
〉,

where the maximum overlap indicates the correct supercell band.
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Consider a system in its static nuclear configuration, where the electronic states

are gn-fold degenerate or nearly degenerate, i.e. pseudodegeneracy. In this case,

the orbitals in the supercell are identified by examining the overlap between the

supercell orbital and the linear combination of primitive-cell degenerate orbitals.

The primitive-cell eigenvector can be written in the form of a linear combination of

degenerate states:

|Ψp
mkp
〉 = c1φ1 + c2φ2 + · · ·+ cgnφgn =

gn∑
i

ciφi, (2.67)

subject to the orthonormality constraint

〈Ψp
mkp
|Ψp

m′kp
〉 = δmm′ , (2.68)

where {ci} are linear coefficients that should be chosen to maximize the square

modulus of the overlap between the supercell and primitive-cell eigenvectors. This

can be done using the method of Lagrange multipliers:

∂

∂c∗i

[
|〈Ψp

mkp
|Ψs

nks
〉|2 − λ

gn∑
i

|ci|2
]

= 0, (2.69)

leading to a set of equations

(A− λ)C = 0, (2.70)

where λ is the eigenvalue, C is a vector of coefficients ci, andA is an gn×gn Hermitian

matrix given by

A =


|〈Ψs

nks
|φ1〉|2 〈φ1|Ψs

nks
〉〈Ψs

nks
|φ2〉 · · · 〈φ1|Ψs

nks
〉〈Ψs

nks
|φgn〉

〈φ2|Ψs
nks
〉〈Ψs

nks
|φ1〉 |〈Ψs

nks
|φ2〉|2 · · · ...

...
...

. . .
...

〈φgn |Ψs
nks
〉〈Ψs

nks
|φ1〉 · · · · · · |〈Ψs

nks
|φgn〉|2

 .

(2.71)

At this point, the constructed primitive-cell eigenvector Eq. (2.67) is used to perform

the overlap with the supercell eigenvector. The solution of Eq. (2.70) can be obtained

simply by using the LAPACK routine zheev. Figure 2.3 shows an example of the

overlap results for unfolding the threefold degenerate valence and conduction bands

at the center simulation cell of the static-nucleus Si 4× 4× 4 supercell.
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Figure 2.3: Square absolute overlap for unfolding the threefold degenerate valence

and conduction bands at the Γ point of a 4 × 4 × 4 supercell of the static-nucleus

bulk Si.

For a periodic system with a plane wave basis set, the orbitals may be written

as

Ψn,k(r) =
∑
G

Cn,k(G) exp [i(k + G) · r] , (2.72)

where G is a reciprocal lattice point, k is a Bloch wavevector that lies in the

first Brillouin zone (BZ), n is the band index, and Cn,k is a Fourier coefficient.

The supercell eigenstates are generally superpositions of the Bloch states of the

underlying primitive cell. Therefore, a wavevector ks of the SCBZ is said to unfold

into Np wavevectors kp of the primitive-cell BZ (PCBZ) if there exists a set of Np

distinct reciprocal lattice points G0
s of the supercell such that

kp = ks + G0
s. (2.73)

The supercell reciprocal space with a mesh of Gs that is compatible with the

translational symmetry of the primitive cell can be remapped to PCBZ by matching

the supercell and the primitive-cell Bloch basis functions that fulfill

ks + Gs = kp + Gp. (2.74)

Substituting Eq. (2.73) into Eq. (2.74), the unfolded SC basis function is a
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partial function with a subset of the supercell reciprocal lattice points (G′s) that

defined by

G′s = Gp + G0
s, (2.75)

at particular kp, where all Gs vectors that do not satisfy Eq. (2.74) are zeroed out.

As a result, the supercell’s basis function at ks can be decomposed into subsets of

unfolded functions that correspond to Eq. (2.73) of the primitive cell. The unfolded

supercell states can be written as

Ψs
nks

=
∑
G′s

Cs
nks

(G′s) exp [i(ks + G′s) · r] . (2.76)

For greater efficiency, both Gp and Gs are sorted into stars of equal magnitude and

then remapped within each star. Using the overlap procedure enables a full recovery

of the hidden primitive-cell band structure of a system. This can be accomplished

by projecting the primitive-cell Bloch states of a fixed kp that satisfy Eq. (2.73) onto

all the unfolded supercell states:

〈Ψp
mkp
|Ψs

nks
〉 =

∑
Gp

∑
G′s

Cp∗
mkp

(Gp)Cs
nks

(G′s)Ωsδkp+Gp,ks+G′s

= Ωs

∑
Gp

Cp∗
mkp

(Gp)Cs
n(kp−G0

s )(Gp + G0
s ), (2.77)

where the maximum overlap should indicate the correct band. For an ideal supercell

structure with no degeneracy, the overlap procedure would identify the supercell

states unambiguously.

2.4.3 Random selection method

Freezing in random lattice vibrations generally lowers the lattice symmetry to the

trivial group that contains only the identity operation. Consequently, in most cases,

the electronic-state degeneracy will be removed. Applying the band unfolding

technique, we can determine an appropriate orbital in the supercell containing a

randomly sampled atomic configuration by looking for the maximum overlap of

each supercell orbital with the desired static-nucleus primitive-cell orbital (or set

of degenerate primitive-cell orbitals). Effectively we assume that only one supercell

orbital has a non-negligible overlap with the primitive-cell orbital of interest, and

that the electron remains in that state as the nuclei move.
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Alternatively, supercell orbitals may be identified using a random selection

approach based on the square absolute overlap with the desired static-nucleus

primitive-cell orbitals. These square absolute overlaps give the probabilities that an

electron initially in the desired static-nucleus orbital ends up in the corresponding

supercell orbitals, assuming an instantaneous change in the nuclear positions. Since

the nuclei in fact move slowly on the electronic time-scale, it is more reasonable

to use this MC approach to select between the N = gn supercell orbitals with the

largest overlaps with gn-fold degenerate static-nucleus primitive-cell orbitals.

The random selection method is as follows.

1. Let y =
∑N

i=1 a(i) be a sum of the N squared absolute overlaps of target

“offset” atomic configuration orbitals with the linear combination of the gn-

fold degenerate orbitals of the reference “static” atomic configuration.

2. Generate a random variable s taken uniformly from y.

3. If s < a(1) then

return {The random selected band is the band with square absolute

overlap a(1)}

else if s < a(1) + a(2) then

return {The random selected band is the band with square absolute

overlap a(2)}

· · ·

2.5 The optical band gap in single–particle–orbital

theories

The excitonic (optical) gap is the energy at which the onset of absorption or emission

of photons occurs. In an N -electron system, the optical gap can be written as the

difference between the electron affinity (the amount of energy needed to create an

anion from a neutral atom or molecule) and the ionisation energy (the amount of

energy needed to remove an electron from its orbital). In first–principle calculations,

this can be defined as the energy difference between the eigenvalue at the bottom

of the conduction band (LUMO) and the eigenvalue at the top of the valence band
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(HOMO). In the HF approximation, the excitation energy can be examined using

Koopmans’ theorem [126]. Assuming the orbitals are frozen, the orbitals of the

remaining electrons cannot respond to the removed or added one. The ionisation

energy (I) and electron affinity energy (A) are given by

I = EN − EN−1

A = EN+1 − EN . (2.78)

In the HF approximation, the ionisation energies are relatively plausible, but the

electron affinity energies are not, because the empty states are meaningless and

unbounded, resulting in an overestimation of the predicted band gap. In addition,

the HF theory is insufficient for making reliable predictions of band gaps because it

neglects the electrons’ correlation energy.

In DFT, the Kohn–Sham eigenvalues are evaluated as the derivatives of the total

energy with respect to the occupation of a state:

εi =
dEtotal

dni
=

∫
dr
dEtotal

dn(r)

dn(r)

dni
. (2.79)

This derivative is discontinuous due to the discontinuous nature of the exchange–

correlation energy, which is a function of the density. Therefore, the HOMO–LUMO

gap from the KS–DFT differs from the exact band gap. The DFT optical gap can

be written as

∆Ex = εg + ∆xc , (2.80)

where εg is the KS eigenvalue band gap and ∆xc is the additional contribution

of the derivative discontinuity of the exchange–correlation energy. This well-

known problem is called band-gap discontinuity. As a result of this discontinuity,

the band gap is underestimated in the DFT calculations. Even with the exact

KS eigenvalues obtained from a high-quality exchange–correlation function, the

accuracy of the calculated gap remains questionable [127]. Because the reliability

of DFT band–gap calculations has been questioned in recent years, the theory

describing the vibrational renormalisation process should depend on accurate static

gap calculations instead. Currently, the most accurate computations for gaps in

materials are based on fixed-node DMC, in which the calculated energies are merely

a function of the nodes of the many-body trial function.
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2.6 Summary

In this chapter, we introduced a new method based on the random sampling of the

vibrational normal coordinates from the nuclear wave functions. The incorporation

of the classical treatment of ion displacements and the quantum treatment of

electrons allows the efficient exploration of the configurational space within the

adiabatic approximation. Furthermore, we developed an efficient method to unfold

the electronic band structure with negligible computational expense, which takes

into account the degeneracy of orbitals. In addition, we proposed the random

selection approach based on the MC technique for determining the vibrational

offset band structure. Using the proposed methods, the harmonic zero-point

renormalisation and temperature-dependence of the optical gaps for a range of

materials are presented in the next chapter within the QMC and DFT methods.
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Chapter 3

Application of vibrational

renormalisation of the band gap

In many materials with light atoms, the vibrational corrections of band gaps caused

by the quantum effects of zero-point motion and temperature dependence are

significant. The treatment of these effects on the electronic band structure has a long

history. In the previous chapter, we gave a brief summary of current developments

in this area, an outline of the theory, and a formal description of the proposed

technique. In this chapter, at the harmonic level, we calculate the zero-point

renormalisation of the band gap in molecular and crystalline systems using both the

DFT and QMC calculations. In addition, we examine the temperature-dependent

renormalisation of the direct band gap of benzene, silicon, and diamond arising

from harmonic–disorder effects using our proposed method with first–principle DFT

calculations.

3.1 Computational methodology

3.1.1 DFT calculations

3.1.1.1 Geometry optimisation, phonon calculations, and band-structure

calculations

All of our DFT calculations were implemented using the castep plane-wave-basis

code [128]. These calculations were performed using the Perdew–Burke–Ernzerhof
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(PBE) generalised gradient approximation and ultrasoft “on the fly” pseudopoten-

tials [129] to represent the nuclei and core electrons, unless otherwise stated. For

benzene, the geometry–relaxation, phonon, and band-structure calculations were

performed using both the PBE and the LDA exchange–correlation functionals for

comparison and a plane-wave cutoff energy of 740.15 eV. The phonon calculations

were performed using the method of finite displacements in supercells [130] with

atomic displacements of about 10−3 to 10−2 Å from the equilibrium position.

The vibrationally renormalised highest occupied molecular orbital (HOMO)-lowest

unoccupied molecular orbital (LUMO) band gaps were found to be independent of

the size of the atomic displacement in the phonon calculation.

For bulk silicon and carbon diamond, we used the DFT-LDA lattice parameters

a = 3.529 and 5.394 Å, respectively, taken from Ref. [100]. The phonon and band-

structure calculations were performed using LDA exchange–correlation functionals

for consistency with Ref. [100]. The phonon calculations were performed using

the method of finite displacements in supercells [130] with atomic displacements of

amplitude 0.005 Åand plane-wave cutoff energies of 305.77 and 566 eV, respectively.

The calculations used a 16 × 16 × 16 Monkhorst–Pack k-point grid centred at Γ

for 2-atom primitive cell and a set of phonon q-point grids commensurate with the

supercell size 2×2×2, 3×3×3 and 4×4×4 for C-diamond and 3×3×3 and 4×4×4

for Si-diamond. The Si calculation with a q-point grid of size 2 × 2 × 2 was found

to be insufficient to capture all the relevant phonons in the supercell, resulting in

negative frequencies. The DFT-LDA band-structure calculations were implemented

at different system sizes (containing 2Np atoms, where Np is the number of primitive

cells), using norm-conserving pseudopotentials (again, for consistency with Ref.

[100]) and plane-wave cutoff energies of 348.31 and 1001.4 eV, respectively.

In the case of monolayer hBN, all of our DFT calculations were performed

using norm-conserving pseudopotentials. We used the DFT-PBE lattice parameter

a = 2.512 Å reported in Ref. [107]. The phonon calculations were implemented

using density–functional perturbation theory [131] with phonon wave vectors

commensurate with supercell size, a 32 × 32 Monkhorst–Pack k-point grid centred

at Γ, a plane-wave cutoff energy of 700 eV, and an artificial periodicity of 26.46 Å.

Our DFT-PBE electronic-band-structure calculations were performed for different
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system sizes (containing 2Np atoms) using a plane-wave cutoff of 680 eV and an

artificial periodicity of 21.17 Å in the out-of-plane direction. For bulk hBN, we

used Tkatchenko–Scheffler dispersion-corrected [23] to include the van der Waals

interlayer interaction. DFT-PBE phonon calculations with the DFT-PBE in-plane

lattice parameter a = 2.512 Å [107] and the experimental out-of-plane lattice

parameter c = 6.6612 Å [132] were performed. The calculations were performed

for supercells containing NP = 9 and 18 primitive cells.

3.1.1.2 DFT orbital generation for QMC trial wave function

The DFT calculations were used to generate orbitals for our QMC trial wave

functions using Trail–Needs Dirac–Fock pseudopotentials with s chosen as the local

channel to ensure the elimination of ghost states [60]. These orbitals were re-

represented by 3D B-splines (blips) on a grid. For benzene, the DFT orbitals were

obtained using both PBE and LDA functionals and a plane-wave cutoff energy of

2176.9 eV. For silicon and carbon diamond, the DFT-LDA orbitals were generated

using different supercell sizes, a single k-point at Γ, and plane-wave cutoff energies

of 1088.456 and 1632.6840 eV, respectively. For hBN, we used the same lattice

parameters as in our pure DFT calculations (see Sec. 3.1.1.1), with a plane-wave

cutoff energy of 2721 eV.

3.1.1.3 The vibrational renormalisation of degenerate band edges

The vibrational renormalisation of the band gap due to electron-phonon coupling

can be defined in three different ways, as shown in Table 3.5: (i) ∆vib denotes

the quantum average band gap between the valence band and conduction band

with maximum overlap between the gn-fold static-nucleus and offset geometry band

structures; (ii) ∆rand indicates the quantum average of the band gap that results

from the random selection method presented in Sec. 2.4.3; and (iii) ∆̄ is the quantum

average of the band gap calculated as the mean value of all direct transitions between

the gVB
n highest eigenvalues associated with the valence band maxima (VBM) and

the gCB
n lowest eigenvalues associated with the conduction band minima (CBM). In

the case of a molecule system, ∆vib is the quantum average HOMO-LUMO band

gap.
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3.1.2 QMC calculations

3.1.2.1 DMC calculations

Our QMC calculations were carried out using casino [25], in which we employed

trial wave functions of the Slater–Jastrow (SJ) type with a single Slater determinant

containing Kohn–Sham orbitals obtained from the DFT calculations; (see Sec.

3.1.1.2). We used a flexible Jastrow factor consisting of isotropic electron–electron,

electron–nucleus, and electron–electron–nucleus polynomial terms and, for periodic

systems, plane-wave electron–electron terms [37]. The wave function free parameters

were optimised via minimisation of the variance of the energy [47, 48] followed by

minimisation of the VMC energy [52]. For benzene, we also performed calculations

using Slater–Jastrow–backflow (SJB) trial wave functions [46]. Where backflow was

used, the Jastrow factor and backflow function were optimised together via VMC

energy minimisation. We used Trail–Needs Dirac–Fock pseudopotentials, selecting

the highest available angular momentum channel d as the local potential. Although

the use of pseudopotentials introduces a bias into DMC calculations, the T-moves

method ensures that this bias is positive [60, 133], resulting in some cancellation of

errors in band-gap calculations.

The fixed-node DMC calculations were performed to compute the ground- and

excited-state energies. The DMC energy is exact if the nodal surface of the trial

wave function is exact; otherwise it is an upper bound on the exact ground-state

energy. For each excited state, an appropriate wave function can be constructed by

choosing the occupancies of the single-particle orbitals in the Slater determinants of

QMC wave functions.

3.1.2.2 Optical band gap

The optical gap can be calculated as the difference between the total energies

acquired by promoting an electron to an excited state and the total energy of the

ground state. Therefore, the excited state can be selected by occupying single-

particle orbitals in the Slater determinant in the trial wave function. The optical

gap, then, is given by

∆Ex(kv,kc) = E ′N(kv,kc)− EN , (3.1)
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where EN is the ground-state energy and E ′N is the excited-state total energy of a

system in which an electron has been promoted from an occupied state at wave vector

kv to an unoccupied state at wave vector kc. This promotion may be accompanied by

a spin flip for triplet excitations. In the present study, we consider only the singlet

excitations that correspond to the optical absorption gap. Our calculations also

utilised the multideterminant trial wave functions to be examined in the calculations

of the benzene molecules. In the QMC calculations of optical gaps, both EN and

E ′N must be assessed between pairs of k-points that are simultaneously represented

in the grid of the crystal momentum k that is commensurate with the supercell.

3.1.2.3 Random errors in the vibrationally renormalised gap

The standard error in the vibrational average of the excitation energy falls off as

one over the square root of the number of atomic configurations sampled. Averaging

over QMC calculations simultaneously reduces error bars due to the QMC sampling

of electronic configurations and the sampling of atomic configurations; hence, the

total cost of vibrationally renormalised QMC calculations may be sublinear in the

number of atomic configurations. Indeed, if the computer time for a QMC gap

calculation is dominated by DMC statistics accumulation, vibrational averaging is

almost “for free.” Furthermore, averaging over atomic configurations introduces

trivial parallelism. Nevertheless, QMC gap calculations are much more expensive

than their DFT counterparts, and it is thus possible to obtain significantly smaller

error bars on vibrationally renormalised DFT energy gaps. We therefore used the

DFT gaps as a control variate to reduce the statistical error bar of QMC gaps by

fitting

∆DMC(R) = 〈∆DMC〉+ c [∆DFT(R)− 〈∆DFT〉] (3.2)

to the DMC energy gaps at different atomic configurations; ∆DMC(R) and the

∆DFT(R) are the DMC and DFT gaps at atomic configuration R, c and the

renormalised DMC gap 〈EDMC〉 are fitting parameters, and 〈EDFT〉 is the DFT

renormalised gap with a fine sampling of atomic configurations.
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3.1.2.4 Finite-size errors

To simulate an extended system, QMC simulations were performed using finite

simulation cells subject to periodic boundary conditions. The simulation cell’s

size was constrained by both practical and computational considerations. These

constraints resulted in finite-size (FS) errors that can be significant and represent

one of the main barriers to the application of accurate QMC methods to solids [134].

Achieving high accuracy in QMC simulations of extended systems relies heavily on

quantifying and correcting these errors.

We reduced FS effects by obtaining vibrationally renormalised gaps in different

supercell sizes and extrapolating the results to infinite system size. Extrapolation

to infinite system size uses scaling laws obtained by considering the screened

electrostatic interactions between periodic images of excited quasiparticles or

excitonic complexes [75, 135]. Such extrapolation not only removes much of the

systematic error in the gap, but also helps to average out some of the quasirandom

FS errors in energy gaps.

In a finite simulation cell, only a discrete set of vibrational wave vectors is

commensurate with the periodic boundary conditions, leading to quasirandom

FS effects in vibrational properties. For this reason, when evaluating the QMC

vibrational renormalisation of the hBN gap, we evaluated a correction to the

DFT vibrational renormalisation in a finite cell, which is then applied to the

DFT vibrational renormalisation reported in Ref. [107]. This approach allowed us

to focus on the difference between DFT and QMC vibrational renormalisations.

The DFT renormalisation reported in Ref. [107] was itself determined via MC

sampling of normal coordinates in finite cells to evaluate a correction to the DFT

renormalised gap obtained by assuming a quadratic dependence of the gap on the

normal coordinates; the latter approach enables the use of much larger system sizes

[136].

3.1.2.5 Backflow

To address the effect of fixed-node errors in our calculations of excitonic gaps,

we carried out some DMC gap calculations using backflow transformations with

polynomial electron-electron and electron-nucleus terms. The inclusion of backflow
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reduces the static-nucleus DMC optical gap of benzene by 0.07(2) eV. The energy

difference is less than the effect of different geometry structures from LDA and

PBE. In monolayer hBN, we find that backflow lowers the static-nucleus DMC

direct gap by 0.02(2) eV and the indirect gap by 0.01(2), which are not statistically

significant. In contrast, backflow lowers the static-nucleus DMC optical gap of Si

3×3×3 bulk and C diamond 2× 2× 2 bulk by 0.22(7) and 0.091(22) eV, respectively,

as shown in Table 3.1. These effects are expected to influence the vibrationally

renormalised gap results to a comparable extent. However, the use of backflow

correlation significantly increases the computational cost of QMC calculations, which

can be highly demanding in vibrational-renormalisation calculations.

Table 3.1: Static-nucleus direct gaps in eV with and without backflow.

System SJ-DMC SJB-DMC

Benzene 5.679(18) 5.610(7)

Si (3× 3× 3) 3.83(5) 3.61(5)

C (2× 2× 2) 7.11(2) 7.02(1)

hBNdir (3× 3× 1) 6.214(19) 6.20(2)

hBNindir (3× 3× 1) 5.953(19) 5.94(2)

3.2 Results and discussion

3.2.1 Molecular system: Benzene

Benzene is a planar nonlinear molecule with D6h symmetry and a large energy gap,

found to be about 4.9 eV [137] experimentally in gas-phase measurements. Recent

DFT-PBE calculations revealed that vibrational effects reduce the static-nucleus

gap by 0.5 eV [98]. Table 3.3 shows the energy gaps of benzene obtained via DFT

with two choices of functional (LDA and PBE) and different wave functions with

which to assess the accuracy of the DMC gaps. All the calculations were performed

using a large simulation cell of volume 3507.4 Å3 to ensure the elimination of the

contribution of periodic images. Figure 3.1 illustrates the temperature dependence

of benzene’s optical gap over a wide temperature range (from 0 to 1800 K) based
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on two different density functionals.

At 0 K, the atoms vibrate around their equilibrium positions as a result of

quantum effects only, leading to zero-point renormalisation of band gaps. The

DFT-PBE and DFT-LDA zero-point corrections to the band gap are −0.429(7)

eV and −0.418(9), respectively. The renormalised band-gap curves showed a

monotonic decrease with temperature, as illustrated in Fig. 3.1. At low temperature,

renormalised band-gap curves are quadratic and governed by both the quantum

and classical effects of lattice vibrations. However, at very high temperature, the

renormalised band gaps shows a linear asymptote of temperature dependency that

is dominated by classical effects. This relation can be well described by fitting to

the Bose-Einstein law [1, 5]:

∆(T ) = ∆0 − a
[
1 + 2

(
eΘ/T − 1

)−1
]
, (3.3)

where a and Θ are the fitting parameters given in Table 3.7. In general, both the

DFT-LDA and DFT-PBE results exhibit a significant underestimation of the band

gap due to the derivative discontinuity in the XC potential for the excited state

[138].
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Figure 3.1: Temperature dependence of the vibrationally renormalised optical gap of

benzene. The solid lines are the fit with the Bose–Einstein statistical factor, where

fitting parameters are reported in Table 3.7.

In benzene the HOMO and LUMO are two-fold degenerate, so that we have to

consider the different ways in which the orbitals at each randomly sampled atomic
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configuration can be identified as corresponding to the static-nucleus HOMO and

LUMO. The vibrational renormalisation of the band gap due to electron-phonon

coupling can be defined in three different ways (see Sec. 3.1.1.3), as shown in

Table 3.2. As a result of the local deformation of interatomic bonds caused by the

presence of lattice vibrations (electron-phonon coupling), the bands are shifted to

their vibrational renormalised values. Therefore, the PBE-DFT ∆vib, ∆rand and

∆̄ gaps showed that there are significant vibrational renormalisations of about

−0.428(7), −0.121(1) and −0.11(2) eV, respectively.

In Fig. 3.2, we report the vibrational renormalised (blue curve) eDOS average of

benzene at room temperature. The static-nucleus band gap can be easily calculated

between the 2-fold degenerate HOMO and LUMO bands, which were represented

by two vertical black lines. The inclusion of the harmonic vibrational effects led to

increase in the valence eigenvalue by around 0.14 eV, but significantly reduced the

conduction eigenvalue by 0.28 eV as a result of the strong electron-phonon coupling.

We found that these strong effects substantially removed the band edges degeneracy,

as shown in Fig. 3.2 by the orange and red vertical lines. The renormalised HOMO-

LUMO gap can be effectively inferred using the renormalised eigenvalues to be the

highest occupied band energy and the lowest unoccupied band energy, respectively.

Consequently, the minimum ∆vib gap edge accurately represents the renormalised

optical gap of benzene.

Table 3.2: The vibrationally renormalised optical gaps in eV for benzene at room

temperature for different choices of the renormalised band gap.

Method ∆vib ∆rand ∆̄

DFT-PBE 4.672(7) 4.98(1) 4.99(2)

SJB-DMC SD (PBE) 5.184(3) - -
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Figure 3.2: The vibrational renormalisation average of electronic density of states

(eDOS) of benzene at room temperature (blue curve). The black vertical lines are

the 2-fold degenerate static-nucleus HOMO and LUMO bands. The orange and red

vertical lines are the two highest renormalised valence eigenvalues and two lowest

renormalised conduction eigenvalues, respectively.

For vibrationally renormalised QMC gap calculations, we performed the calcula-

tion for 24 random distribution of nuclear coordinates. The VMC and DMC results

obtained using the trial wave function with different level of accuracy are reported

in Table 3.3. All the VMC gap results are upper bounds on the DMC gap energies,

as shown in Fig. 3.4. All the DMC calculations were performed using time steps

τ = 0.01, 0.04, and 0.16 a.u. with the corresponding target walker populations being

varied in inverse proportion to the time step. The total energies of both ground and

excited states were extrapolated linearly to zero time step, as shown in see Fig. 3.3.

To improve the nodal surfaces of our wave functions, we also carried out calculations

using SJB wave functions. As shown in Table 3.3, the inclusion of backflow reduces

the static-nucleus SJ-DMC band gap by 0.07(2) eV.

Multideterminant trial wave functions with a few determinants of 2-fold de-

generate ground- and excited-states at the single-particle level were also used in

our calculations. The use of multideterminant expansions to characterise electron

promotion between degenerate states was statistically insignificant, resulting in a

0.01(1) eV reduction in the static-nucleus SJB-DMC band gap. We also performed

SJB-DMC calculations using the DFT-LDA geometry, which showed a larger gap
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than SJB-DMC using the DFT-PBE geometry by 0.14(2) eV. We found that the

SJB-DMC ground-state energy obtained using PBE-DFT geometry and orbitals

is lower than that calculated with LDA geometry and orbitals by 0.01(1) eV,

which is statistically insignificant. The energy difference, however, is less than the

vibrational-renormalisation correction to the band gap.
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Figure 3.3: DMC total energies of benzene against DMC time step τ at the static-

nucleus structure. The dashed lines show linear fits to the energy as a function of

time step.

For vibrationally renormalised DMC gap calculations at zero temperature, the

inclusion of a multideterminant expansion to describe the electron promotions from

HOMO to the LUMO degenerate or nearly degenerate states introduced additional

improvement into the trial wave function and reduced the excited-state energies,

leading to a lowering of the renormalised SJB-DMC energy gap from 5.183(3) eV

to 5.146(3) eV. At a randomly sampled atomic configuration, the degeneracy of

the HOMO and LUMO states is lifted. The excited states can thus be correctly

determined by promoting an electron from the HOMO to the LUMO using a

single-determinant (SD) wave function in QMC calculations, leading to a zero-

point renormalisation of −0.427(8) eV. We found that employing a few-determinant

expansion in the excited-state calculations lowered the vibrationally renormalised

band gap by 0.037(5) eV with respect to the SD wave function, which is negligible

compared to the attributable vibrational corrections.
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Our results demonstrate a strong correlation (correlation coefficient ρ = 0.98)

between SJB-DMC (SJB-VMC) and DFT-PBE gaps at randomly sampled atomic

configurations, as shown in Fig. 3.4, justifying our use of DFT gaps as a control

variate to reduce the statistical error bar of QMC gaps [Eq. (3.2)]. For the purpose

of comparison, we performed SJB-DMC calculations of vibrational renormalisation

based on the DFT-LDA structure. The SJB-DMC zero-point correction was found to

be −0.443(17) eV. Ideally, the two zero-point SJB-DMC corrections based on PBE-

and DFT-LDA geometries should be identical; therefore, the discrepancies that arose

were due to the DFT functional approximations and the errors inherent in the

DFT evaluation of the harmonic vibrational frequencies of benzene [139]. This issue

introduced a further source of error in our calculations, that is, the DFT evaluation of

the harmonic normal mode frequencies of benzene. The vibrational renormalisation

of the SD SJB-DMC optical gap at room temperature did not differ significantly

from the zero-point vibrational renormalisation. However, it was found that the use

of multideterminant wave functions was necessary to preserve the symmetry of the

wave functions and retrieve the vibrational renormalisation of the band gap at room

temperature. Our calculations using multideterminant wave functions significantly

reduced the vibrational renormalisation of SJB-DMC optical gap to 5.087(3) eV,

which was in good agreement with experimental results [137]. Additional sources of

error in the VMC and DMC gaps included the neglect of anharmonicity effects and

the use of pseudopotentials.
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Figure 3.4: Benzene vibrationally renormalised gaps using SJB-VMC (red circles)

and SJB-DMC (black circles) against DFT-PBE gaps, for different atomic

configurations.

Table 3.3: Static-nucleus and vibrationally renormalised excitonic gaps in eV for

benzene at 0 K. An asterisk (*) denotes the vibrationally renormalised gaps at

room temperature.

Method ∆static ∆vib

DFT-PBE 5.101 4.672(7) 4.673(7)∗

DFT-PBE [98] 5.106 4.653

DFT-LDA 5.179 4.761(9) 4.724(9)∗

SJ-VMC SD (PBE) 5.93(1)

SJB-VMC SD (PBE) 5.89(1) 5.415(4)

SJB-VMC MD (PBE) 5.76(1)

SJ-DMC SD (PBE) 5.68(2)

SJ-DMC SD (PBE) [98] 5.63(4)

SJB-DMC SD (PBE) 5.610(7) 5.1827(34) 5.184(3)∗

SJB-DMC SD (LDA) 5.75(2) 5.302(3)

SJB-DMC MD (PBE) 5.600(7) 5.1460(34) 5.087(3)∗

Exp. (T = 300 K) 4.9 [137]
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3.2.2 2D crystalline system: monolayer hexagonal boron

nitride

Of the materials in the family of 2D atomic crystals, hexagonal boron nitride

(hBN) was one of the first to be mechanically exfoliated from bulk phases [140].

It is a dielectric, insulating material possessing D6h space group symmetry with a

honeycomb lattice structure based on sp2 covalent bonds that complements graphene

and the transition metal dichalcogenides in electronic and optical properties [141].

In contrast to graphene, which has no band gap, hBN exhibits a wide band gap in

the π bands because the inversion symmetry is broken by the mismatch between the

boron and nitrogen sublattices [142]. Recent advances in experimental approaches

for merging graphene and other 2D materials to form van der Waals heterostructures

have garnered significant interest owing to their remarkable properties. Because

hBN is atomically flat and electrically inert, it has been found to be an exceptional

substrate for graphene when the lattice misalignment angle is large [141, 143]. At

small misalignment angles, the moiré superlattice potential can radically change the

low-energy electronic properties of graphene. Examples include the appearance of

second-generation Dirac points and the formation of Hofstadter’s butterfly states in

the presence of an applied magnetic field [144, 145].

Recently, many theoretical and experimental studies have investigated the

atomically thin hBN sheets consisting of a single to a few monolayers due to

the unique properties associated with their 2D structure and high crystal quality

[107, 146–153]. For 2D monolayer materials, in-plane screening modifies the form of

the Coulomb interaction between charges, resulting in strong long-range Coulomb

interactions that heavily influence the band gap in these materials. The main

feature of interest here is the enhancement of the electron–phonon interactions

in these 2D systems [154] and its effect on the band gaps. As a consequence of

the strength of electron–phonon coupling in 2D materials, studies have identified

considerable vibrational renormalisation of band gaps for both monolayer and bulk

hBN [107, 155]. Despite this increasing interest in hBN and the vast number of

studies dedicated to this material, the fundamental issues of the nature of its band

gap and the effect of including electron–phonon interactions remain controversial.
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Utilising our newly developed random sampling technique along with the DFT and

QMC calculations, we investigated the vibrational renormalisation of optical band

gaps in both monolayer and bulk hBN.

The phonon dispersion in hBN obtained from DFT-PBE calculations along the

high–symmetry directions Γ → K → M → Γ is illustrated in Fig. 3.5(a). The

calculations showed that artificial imaginary frequencies were introduced into the

flexural acoustic phonon modes around the Γ point, a phenomenon frequently

observed in first-principles lattice dynamics calculations for 2D materials [107, 156].

This was not an issue for wave vectors commensurate with the supercells that we

used to sample normal mode coordinates. Our results were consistent with the

phonon dispersion curves reported in Ref. [107].
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Figure 3.5: (a) DFT-PBE phonon dispersion curves for monolayer hBN and (b)

DFT-PBE electronic band structure for monolayer hBN.

Table 3.4 summarises our final DFT-PBE and SJ-DMC static-nucleus and

vibrationally renormalised optical band gaps at 0 K. We calculated the promotion

of electrons from Kv → Kc and Kv → Γc at different system sizes. The direct

and indirect optical gap calculations were performed in supercells of size 3m × 3n

centered on the Γ point, where m and n are integers. In a 4 × 4 supercell of hBN,

only the Kv → Kc excitonic gap was calculated by shifting the supercell Bloch vector

ks point to the K point of the primitive-cell BZ. Both the valence and conduction

bands of supercells were identified using the band-unfolding procedure described in

Sec. 2.4.2. Averaging over harmonic nuclear vibrational motion reduced the static-

lattice band gaps. Our DFT-PBE band-structure calculations predict a direct band
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gap (Kv → Kc), as shown in Fig. 3.5(b). The DFT-PBE Kv → Kc and Kv → Γc

energy gaps with a fine k-point mesh are 4.636 eV and 4.654 eV, respectively. For

the larger system size 6 × 6 × 1 (72 atoms), harmonic vibrational effects increase

the valence band eigenvalue at Kv by around 0.034(2) eV and reduced that of the

conduction band by more than 0.089(1) eV at Kc and by 0.069(4) eV at Γc. This

indicates that electron-phonon coupling is stronger than hole-phonon coupling. Our

DFT zero-point correction for the minimum gap Kv → Kc was −0.125(3) eV and

for the Kv → Γc gap was −0.103(4) eV. However, the DFT calculations significantly

underestimate the band-gap results.

All the SJ-DMC calculations were performed using time steps τ = 0.04 and 0.16

a.u. and target populations that were varied inversely with time step τ . To account

for systematic FS errors, the energies of optical gaps were calculated at different

supercell sizes. Using DFT-PBE calculations, the O(N−1
p ) FS error was dominant

in the Kv → Kc and Kv → Γc excitonic gaps of the isolated hBN sheet, as shown in

Fig. 3.6. We therefore extrapolated our SJ-DMC optical gaps to the thermodynamic

limit using an order O(N−1
p ) scaling. Physically, this scaling is appropriate because

the simulation cell size is comparable to the exciton Bohr radius [107]. In agreement

with the observation in Ref. [107], our SJ-DMC calculations show that the isolated

hBN sheet is an indirect semiconductor. For the static-nucleus direct optical gap,

there is a statistically significant difference between our DMC result and earlier work

[107] despite using a similar range of supercell sizes. This is probably due to the

fact that our results were accurately converged to the limit of infinite system size

with a lower estimated error bar. We found that the static-nucleus results of the

direct and indirect optical gaps were 8.06(3) eV and 6.88(5) eV, respectively.
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Figure 3.6: DFT-PBE renormalised excitonic gaps of monolayer hBN against N−1
p ,

where Np is the number of primitive cells in the supercell.

Figure 3.7 shows a plot of the SJ-DMC vibrational renormalised excitonic band

gaps for both direct and indirect gaps against system size. The SJ-DMC vibrational-

renormalisation results were obtained for 24 random atomic configurations. The

energies were then extrapolated linearly to zero time step, and the results were

then averaged over atomic configurations using Eq. (3.2). The DMC optical gaps

of supercells of various system sizes were extrapolated to the thermodynamic limit

of infinite system size using O(N−1
p ) scaling. The zero-point renormalisation of the

direct optical gap Kv → Kc was around −0.61(4) eV slightly larger than the DFT

result of the earlier work [107]. In contrast, the inclusion of zero-point motion effects

induces a slight decrease in the indirect gaps by around −0.08(5) eV in disagreement

with [107]. Our results show that the inclusion of the vibrational effects improves

the agreement with the experimental result.
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Table 3.4: Static-nucleus and vibrationally renormalised optical gaps for monolayer

hBN at 0 K.

SJ-DMC (eV) DFT-PBE (eV)
Gap Supercell

∆static ∆vib ∆static ∆vib
Exp.

Kv → Kc

3× 3 6.214(19) 5.924(13) 4.591 4.560(2)

4× 4 6.802(29) 6.594(14) 4.6305 4.5347(16)

6× 6 7.61(3) 7.074(12) 4.639 4.514(3)

9× 9 8.43(8) -

8.6(2) [107], 8.06(3) 7.46(2)

Kv → Γc

3× 3 5.953(19) 5.710(13) 4.606 4.632(3)

6× 6 6.49(4) 6.524(12) 4.658 4.555(4)

9× 9 7.19(8) -

6.9(3) [107], 6.88(5) 6.80(2)

VBM→CBM 6.1(3) [157]
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Figure 3.7: SJ-DMC vibrationally renormalised excitonic gaps of monolayer hBN

against N−1
p , where Np is the number of primitive cells in the supercell.
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3.2.3 3D crystalline systems

3.2.3.1 Si and C diamond

Si and C in the diamond structure are semiconductors with indirect band gaps and

a face centered cubic lattice with a basis of two atoms. The valence-band maximum

is at the Γ point, and the conduction-band minimum is on the line connecting the Γ

and X points of the BZ. The effects of electron-phonon interactions on the electronic

band structure represent one of the fundamental properties of the semiconductors

that have been extensively investigated experimentally and theoretically over the

last few decades [1, 75, 79, 81, 86, 102, 158–165]. Understanding electron-

phonon coupling in these materials continues to be very important for more

recent technological applications [166, 167]. Si and C diamond, therefore, offer

an ideal foundation for benchmarking the vibrational renormalisation of QMC

band-gap results. Using our approach, we investigated the zero-point harmonic

renormalisation and temperature dependence of the direct Γv → Γc excitonic gap in

both materials.

Table 3.5 shows the DFT-LDA vibration renormalisation of the direct band gap

using three different methods. Our C diamond 2 × 2 × 2, 3 × 3 × 3 and 4 × 4 × 4

supercell ∆vib results show that there is a substantial difference of around −0.05(2)

eV, −0.29(1) eV and −0.286(9) eV, respectively, from the static-nucleus band gap.

These vibrational renormalisation corrections are a clear indication of the strength of

the electron-phonon coupling effects. In contrast, the Si bulk results demonstrated

a marginal difference between the gaps, implying weak electron-phonon coupling.

In both systems, the direct optical band gaps of Si and C diamond correspond to

the minimum ∆vib gaps.

Figure 3.8 shows the calculated zero-point normalization and T -dependence of

the DFT-LDA direct band gap of Si and C diamond with the static band gap

as a reference. The calculations were carried out using large simulation cells

containing 128 atoms. The ground and excited states were determined by finding

the orbitals that have the maximum overlap with the “target” static lattice orbitals

(see Sec. 2.4.2). The Si and C diamond DFT-LDA static-nucleus direct band gaps

with fine k-point sampling are 2.545 eV and 5.556 eV, respectively. Electron-
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Table 3.5: Zero-point vibrational renormalisation of direct band gaps of Si and C

diamond at 0 K for different choices of the renormalised band gap.

C diamond (eV) Si diamond (eV)
Supercell

∆vib ∆rand ∆̄ ∆vib ∆rand ∆̄

2× 2× 2 5.40(2) 5.41(2) 5.41(2) - - -

3× 3× 3 5.24(1) 5.316(9) 5.30(1) 2.487(3) 2.480(3) 2.480(2)

4× 4× 4 5.261(9) 5.35(2) 5.36(5) 2.506(2) 2.504(2) 2.502(2)

phonon interactions introduce temperature-dependence into the electronic band

structure. In particular the band gaps of many semiconductors exhibit the well-

known monotonic decrease with temperature [168]. This relation can be well

described using the phenomenological expression of the Bose-Einstein law [1, 5],

where the fitting parameters are given in Table 3.7. As Fig. 3.8 shows, the T -

dependence of the direct band gap in bulk Si is relatively small compared to that in

C diamond. The zero-point renormalisation corrections for the larger supercell size

(4×4×4) are −0.03(2) eV for Si and −0.286(9) eV for C diamond in agreement with

DFT-LDA vibrational corrections in Ref. [99]. The insets in Fig. 3.8 also illustrate a

comparison with experimental results [1, 2]. All the DFT-LDA results substantially

underestimate the direct band gap in both materials, and the use of a post-DFT

method (DMC in this work) is critical to restoring the agreement with experiments.

Our final DFT and DMC energy gap results for Si and diamond are shown in

Table 3.6. The fixed-node DMC results were obtained using real trial wave functions

constructed at the Γ point of the simulation supercell. The SJ-DMC static-nucleus

band gaps were 3.83(5) eV for Si and 8.653(11) eV for C diamond. DMC calculations

were performed for 24 randomly sampled atomic configurations using time steps

τ = 0.04 and 0.16 a.u. and target populations that were varied inversely with time

step τ . Figure 3.9 shows the linear correlation between the DFT and DMC zero-

point motion renormalisation of optical gaps as a function of atomic configuration.

DFT band gaps can therefore be used as a control variate when evaluating the DMC

band-gap energy. To investigate the convergence of the results as a function of cell

size and to account for FS errors, the calculations were performed using different sizes

of fixed supercell shape. The results were then extrapolated to the thermodynamic
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Figure 3.8: T -dependence of the direct energy gap of (a) Si (4×4×4 supercell) and

(b) C diamond (4× 4× 4 supercell). The blue lines represent the DFT-LDA static-

nucleus band gap with a set of k-points grid that commensurate with the supercell

size. The red circles indicate DFT-LDA results, which have error bars of around

0.002 eV. The black dashed lines in the inset show curves fitted to the experimental

results of Ref. [1] for Si and Ref. [2] for C diamond.
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limit assuming the errors scale as O(N
−1/3
p ), because the supercells are much smaller

than the exciton Bohr radius, implying that the electron-hole pair is unbound and

hence that the systematic finite-size error is a screened simulation-cell Madelung

constant [75].

The SJ-DMC vibrational-renormalisation calculations of C diamond show a

significant reduction in the direct band gaps. The zero-point correction of the direct

band gap ∆vib is about −1.0(1) eV, larger than previously reported GW corrections

in Refs. [79] and [81]. In addition, the random selection direct optical gap ∆rand

was calculated in order to explore the harmonic vibrational effects on the band edge

degeneracies. Our SJ-DMC ∆rand results showed a insignificant difference of around

0.2(2) eV from the direct optical gap ∆vib. The large vibrational renormalisation

indicates strong electron-phonon coupling effects. The incorporation of harmonic

vibration correction significantly improves the agreement with the experiment, and

the remaining discrepancy can be attributed to the neglect of anharmonic effects and

the use of pseudopotential. In contrast, the vibrational-renormalisation correction

of the Si band gap was relatively small, in agreement with the DFT results in Table

3.5. We found that the SJ-DMC zero-point correction to the Si band gap is −0.12(5)

eV for a simulation cell containing 54 atoms. This indicates the weak effects of the

electron-phonon coupling on the silicon direct band gap.

Comparing the vibrational renormalised SJ-DMC optical gaps with experimental

results for silicon and diamond shows overestimate of around 0.31(2) eV and 0.39(7)

eV, respectively. There are several sources of uncertainty in our calculations,

including the use of pseudopotentials, the neglect of anharmonic effects, the

unquantified fixed-node errors resulting from the use of a single determinant wave

function, and the residual finite-size errors in diamond or the untreated finite-size

effects in the case of silicon. In addition, the backflow results in Table 3.1 indicate

that the fixed node errors significantly impact the static-nucleus DMC gaps. The

neglect of the treatment of these effects in the vibrational renormalisation gap

calculations introduces an additional source of errors in the results.
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Figure 3.9: SJ-DMC vibrationally renormalised direct optical gap of C-diamond

2×2×2 bulk against DFT-LDA gaps, for different atomic configurations. The error

bar at each atomic configuration is around 0.06 eV.

Table 3.7: The values of resulting parameters from the fit of the T -dependence

band-gap energies to the Bose–Einstein law [1, 5].

System ∆0 (eV) a (meV) Θ K

C6H6 (DFT-PBE) 4.851 171.98 1006.67

C6H6 (DFT-LDA) 4.96 210.73 1122.2

Si (DFT-LDA) 2.512 5.099 153.89

C (DFT-LDA) 5.35 68.73 763.77

3.2.3.2 Bulk hBN

Bulk hBN, also known as white graphite, is a wide-band-gap semiconductor with

high chemical and thermal stability. Bulk hBN consists of monolayer hBN layers

that are bonded by weak interplanar van der Waals force. This stacking is an

AA′ arrangement with experimental interatomic spacing of 6.6612 Å [132], in which

the prime symbol indicates that the atoms in the same vertical sublattice sites of
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the hexagonal lattice layers are of different species. The experimental estimate

of the nature (direct–indirect crossover) and magnitude of the bulk hBN band

gap has long been a point of contention, with findings varying across studies.

Experimentally measured band gaps range from 4.3 to 7.1(1) eV [148, 150–153].

Recent experimental work by Watanabe et al. [153] has determined that bulk hBN

is a direct semiconductor with an excitonic gap of 5.822 eV. Recent research

conducted by Cassabois et al. [148] has revealed that bulk hBN is in fact an indirect

semiconductor with an excitonic gap of 5.955 eV.
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Figure 3.10: The DFT-PBE electronic band structure for bulk hBN.

In the Fig. 3.10, the PBE-DFT band structure for bulk hBN is plotted along

high-symmetry directions of the BZ. The static-nucleus DFT-PBE energy gaps with

a fine k-point sampling for Kv → Kc and Kv → Γc optical gaps were 4.890 eV and

5.278 eV, respectively. In Table 3.8, we report the PBE-DFT and SJ-DMC gap

results for bulk hBN supercells. We observe that both the direct and indirect gaps

of bulk hBN decreased with the increase of the number of layers. This trend of

decreasing band gaps was attributed to the increased dispersion of electronic bands

caused by interlayer interactions [170]. The DFT band-structure calculations were

performed using supercells containing 36 and 72 atoms at the gamma point. Our

results showed that the DFT calculations not only underestimated the band gaps

but also yielded an incorrect conduction band minimum. In the DFT-PBE band-

structure calculations, the bulk hBN had a direct optical gap (Kv → Kc) with a

zero-point correction of around −0.066(2) eV. The vibrational renormalisation of

the indirect gap (Kv → Γc) was approximately −0.046(3) eV.

Within the static-nucleus SJ-DMC gap calculations, we found that a supercell
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of bulk hBN containing Np = 9 primitive cells has an indirect optical gap, in

agreement with the latest experimental observation [148] and QMC study by Hunt

et al. [107]. Our results show that the static-nucleus SJ-DMC optical gap between

the top of the valence band at K and the bottom of the conduction band at Γ is

6.90(2) eV. In contrast, the static-nucleus SJ-DMC direct (Kv → Kc) gap is around

7.04(2) eV. The SJ-DMC vibrational renormalisation calculations were performed

for 24 atomic configurations with time steps τ = 0.04 and 0.16 a.u. and target

populations that were varied inversely with time step. The band-unfolding procedure

was performed to identify the valence and conduction bands and the final gap results

were obtained by averaging over the atomic configuration using Eq. (3.2). The SJ-

DMC zero-point vibrational corrections for the minimum band gap Kv → Γc was

−0.12(2) eV and for the Kv → Kc gap was −0.28(2) eV. Our results show that the

inclusion of the vibrational effects in SJ-DMC calculations alters gaps by significant

fractions compared with the PBE-DFT vibrational corrections. These large SJ-

DMC zero-point corrections indicate strong electron-phonon coupling effects and

the inefficiency of DFT calculations in describing them. These effects are expected

to substantially modify the optical gaps for larger supercell sizes and enhance the

agreement with the experimental results.

Table 3.8: Static-nucleus and vibrationally renormalised optical gaps for bulk hBN

at 0 K.

SJ-DMC (eV) DFT-PBE (eV)
Gap Supercell

∆static ∆vib ∆static ∆vib
Exp.

Kv → Kc

3× 3× 1 7.04(2) 6.876(6) 4.863 4.826(3)

3× 3× 2 4.582 4.516(2)

8.3(1) [107]

Kv → Γc

3× 3× 1 6.90(2) 6.772(8) 5.239 5.219(4)

3× 3× 2 5.154 5.108(3)

8.2(5) [107]

VBM→CBM 5.822 [153] 5.955 [148]
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3.3 Conclusion

In summary, we performed DFT and QMC calculations to determine the static-

nucleus and vibrationally renormalised band gaps for a range of materials. The

zero-point renormalisation and the temperature dependence effects were included in

the calculations using the proposed method. The vibrational renormalisation results

of benzene band gap showed that the implementation of a superior wave function

with a backflow function and multideterminant expansions substantially improves

the agreement with the experimental results. The SJ-DMC renormalised direct gap

calculations of C-diamond gave the largest vibrational correction in our presented

calculations by around −1.0(1) eV, whereas bulk Si showed small but non-trivial

vibrational corrections. We have also investigated the vibrational corrections of

the optical gaps of monolayer hBN at different system sizes. Our results showed

that the inclusion of the zero-point motion effect significantly decreases the direct

gap by around −0.61(4) eV, but the indirect gap is only marginally reduced. The

vibrational renormalisation of bulk hBN showed a seizable correction of band gaps

and a larger range of supercell sizes are needed to improve the agreement with the

experimental results.
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Chapter 4

Quantum Monte Carlo study of

trion formation in weakly doped

monolayer MoSe2 encapsulated by

hBN

4.1 Introduction

In recent years, the rapid development in the fabrication and control of quasi-two-

dimensional semiconductor heterostructures has led to the production of truly two-

dimensional (2D), atomically thin semiconductors [140]. Extensive research has

been dedicated to investigating the functional properties of these materials. At

thermodynamic equilibrium, the intrinsic charge carriers of these systems encounter

reduced out-of-plane electrostatic screening, resulting in the formation of electron-

hole pairs (neutral exciton) via Coulomb attraction, generally with exciton binding

energies ranging from tens to hundreds of meV [147, 171, 172]. Under finite

doping, the weak out-of-plane electrostatic screening and the strong 2D geometrical

confinement result in the emergence of new many-particle phenomena such as trions

[173]. The rich physics resulting from the Coulomb interaction between electrons

and holes in these materials offers a wide range of potential novel optoelectronic

applications.

Monolayer transition metal dichalcogenides (TMDCs) are very promising nanos-
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tructures of the 2D-periodic thin layer semiconductors that can be easily exfoliated.

Their remarkable electronic and optical properties attract a lot of interest [174–

177]. The pre-existing finite concentration of charge carrier for these materials led

to the emergence of an abundance and variety of excitonic complexes that were

observed as distinct lines in their photoluminescence (PL) spectra [175, 176, 178–

180]. The unusual nature of excitonic complexes in 2D TMD materials shows

strong binding energies that have been the subject of many theoretical studies

[172, 181–186]. As a result of their nature of strong excitonic effects, as well as their

promising optoelectronic application, TMDCs have become attractive materials for

many studies. Recent experimental investigations have demonstrated that the lowest

energy peak in the PL spectra of a doped TMDC monolayer is often induced by trions

(negative and positive) [187–190]. Their distinct band structure of direct band gap

at K and K ′ points of the hexagonal Brillouin zone associated with the spin and

valley degrees of freedom, allowing for the investigation of various trion states (dark

and bright) in 2D TMDC [185, 191, 192].

Recent experiments investigated high-quality van der Waals heterostructures

based on TMDC monolayers encapsulated in hexagonal boron nitride (hBN)

layers [193–195]. The results showed that the hBN encapsulation of TMDC

materials isolated them from the effects of the substrate and sharply narrowed their

photoluminescence linewidth, allowing access to their intrinsic optical properties.

These homogeneous dielectric environments induced additional screening effects that

influenced the exciton binding energy and renormalised the free-particle bandgap

in TMDC materials [196, 197]. Moreover, both the polarisation effects of these

thin layers and their weak dielectric screening mutually contribute to modifying

the interaction form between charge carriers from the Coulomb interaction to

the so-called Keldysh interaction [198–200]. The Keldysh interaction behaves

logarithmically at a short distance and it reduces to the Coulomb form (1/r) at

long range. Over the past decade, many works have studied the binding energies of

isolated excitonic complexes in 2D semiconductors using the Keldysh interaction

[181, 183–185, 201], but the effect of the surrounding charge carriers on these

species remains ambiguous. In this chapter, I will present the quantum Monte

Carlo simulations of a single hole in ideal, dilute weakly doped 2D homogeneous
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electron gas (HEG) modelling (MoSe2). This allows for investigation of the effect of

a finite concentration of charge carriers that interact via the Keldysh interaction on

the binding energy of negative trions.

In the study of 2D HEG, it is more convenient to work in a scaled set of units

that are physically appropriate for the system. In Hartree atomic units (~ = |e| =

me = 4πε0 = 1), lengths are in terms of the Bohr radius a0, masses are in terms

of the bare electron mass me, and energies are in terms of Hartree (Ha). In this

chapter, effective Hartree atomic units are used unless otherwise stated. The lengths

are given in unit of the exciton Bohr radius as a∗0 = (ε/µ) a0, where ε is the static

dielectric constant (relative permittivity) of the host material, µ = m∗em
∗
h/(m

∗
e+m∗h)

is the reduced mass of the electron–hole pair, and m∗h and m∗e are the hole and

electron effective masses, respectively. The energy is given in terms of the exciton

Hartree Ha∗ = (µ/ε2) Ha, where the exciton Rydberg (Ry∗) is 1R∗y = Ha∗/2. There

are three important length scales in our calculations including the Coulomb exciton

Bohr radius a∗0, the Keldysh interaction length scale r0 and the density parameter

rs of the 2D HEG.

4.1.1 Keldysh interaction

It is important to consider the electrostatic screening effects in describing the

interactions between charge carriers in 2D semiconductor materials. In the 2D

TMDs thin sheets, the polarisation effects of a confined structure alter the Coulomb

electrostatic interactions to Keldysh interaction form. Consider a 2D semiconductor

sheet of zero thickness at z = 0 that contains a charge density

ρ(r) = ρ(x, y)δ(z), (4.1)

and embedded in an isotropic medium of permittivity ε. The electric displacement

field D that results due to this charge is given by

D = εE + P = −ε∇φ+ P (4.2)

where E is the electric field, φ is the electrostatic potential, and P = P⊥(x, y)δ(z)

is the polarisation vector, where P⊥(x, y) is the in-plane polarisation. The P⊥ can

be written as

P⊥ = −κ∇[φ(x, y, 0)], (4.3)
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where P⊥ has no component in the z direction because the charge lies in-plane and

κ is the in-plane susceptibility of the material.

Now, using Gauss’s law, where ∇ ·D = ρ(x, y)δ(z), gives

ε∇2φ = −ρδ(z)− κ(∇2[φ(x, y, 0)])δ(z). (4.4)

By taking the Fourier transform of Eq. (4.4), we find

φ(q, k) =
ρ(q)− κq2φ(q, z = 0)

ε(q2 + k2)
. (4.5)

but

φ(q, z = 0) =
1

2π

∫
φ(q, k)dk

=
1

2εq
[ρ(q)− κq2φ(q, z = 0)]. (4.6)

Then, by rearranging for φ(q, z = 0), the in-plane electric potential can be written

as

φ(q, z = 0) =
ρ(q)

q(2ε+ qκ)
(4.7)

For a 2D semiconductor that contains point charges qi and qj, the electrostatic

potential energy is given by

v(q) =
qiqj

q(2ε+ κq)
=

qiqj
2εq(1 + r∗q)

(4.8)

where r∗ = κ/(2ε) is the Keldysh interaction screening length parameter. Taking

the inverse Fourier transform of Eq. (4.8), the potential energy can be written as

v(r) =
qiqj

4πεr∗
V
( r
r∗

)
(4.9)

where r is the particle separation, and

V
( r
r∗

)
=
π

2

[
H0

( r
r∗

)
− Y0

( r
r∗

)]
, (4.10)

where Hn(x) is a Struve function and Yn(x) is a Bessel function of the second kind

(Neumann function). The interaction in the expression in Eq. (4.10) is known as

the Keldysh interaction [200]. At long range (r >> r∗), this potential reduces to

the Coulomb interaction:

V
( r
r∗

)
≈ r∗

r
. (4.11)
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However, at short range (r << r∗), the interaction is approximately logarithmic:

V
( r
r∗

)
≈ [log(2r∗/r)− γ] = log

( 2r∗
exp (γ)r

)
, (4.12)

where γ is Euler’s constant. We refer to the interaction potential of Eq. (4.12) as

the logarithmic interaction. For a system of N electrons (and holes) interacting via

the Keldysh interaction, the Schrödinger equation is[
−
∑
i

∇2
ri

2mi

+
N∑
i>j

qiqj
4πεr∗

V
(rij
r∗

)]
ψ = Eψ, (4.13)

where mi and qi are the band effective mass and charge of particle i, rij is the

separation of particles i and j, and E is the energy eigenvalue.

4.1.2 Lattice sums

To model HEG in 2D material, the Keldysh interaction must be carried out in finite

simulation cells subject to periodic boundary conditions. Therefore, it is necessary

to provide a means for addressing the lattice sum for two-particle interactions of the

form

v(r) =
∑
R

vK(|r−R|) (4.14)

where R is the 2D lattice translation vectors. The Keldysh interaction is logarithmic

at short range; however, it behaves identically to the Coulomb interaction at long

range. This implies that the 2D periodic Keldysh interaction can be rewritten as a

typical Coulomb interaction plus a correction ∆v. This correction is equal to the

difference of the finite Keldysh potential and the Coulomb potential ∆v = vK − vC
summed over periodic images. The difference between Keldysh and Coulomb

interactions falls off as (r−3) at long range [4], and thus, summation of this difference

over all periodic images of a pair of particles yields an absolute convergence.

Therefore, Eq. (4.14) becomes

v(r) =
∑
R

vC(|r−R|) +
∑
R

∆v(|r−R|) (4.15)

As the Keldysh interaction reduces to the Coulomb interaction at long range,

this indicates that the long-range Keldysh behaviour inherits the same issue as

the long-range Coulomb interaction in which the sums over the periodic images
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do not converge completely. This problem can be overcome using the standard

solution Ewald method [202]. In the CASINO software package [25], the Coulomb

lattice sums of the 2D periodic system are evaluated using the standard 2D Ewald

method developed by Parry [203], in which the lattice sum in Eq. (4.14) is replaced

with the Ewald interaction potential plus Madelung constant (particle self-image

energy). Therefore, the implementation of the Keldysh interaction in periodic

systems requires an Ewald-like version. Additionally, the Madelung constant must

be modified to ensure that the average electrostatic potential within the simulation

cell is fixed at zero. All these required expressions were developed by R. J. Hunt

[4]. The resultant Ewald–Keldysh interaction is well suited for simulating the HEG

in 2D semiconductors [38].

4.1.3 Model material parameters

For free-standing MoSe2, the hole and electron effective masses are respectivelym∗h =

0.44m0 and m∗e = 0.38m0 [204], where m0 is the free electron mass. The Keldysh

screening parameter is r∗ = 39.79 Å[205]. The encapsulation of MoSe2 in hBN

introduces additional screening, where the dielectric constant of the surrounding

medium ε = 4ε0 [206], decreases the Keldysh screening parameter to r∗ = 9.9475 Å =

1.7858 a∗0. The size of the exciton in 2D materials with the Keldysh interaction

between the charges is r0 =
√
r∗/(2µ) [185]. For the embedding a MoSe2 monolayer

in flakes of hBN, the exciton size is r0 = 4.2 a.u.. Using the Wigner-Seitz radius rs,

which is the average radius of the circle containing one electron, the densities were

determined by

rs =
m∗e
ε

1.06616× 108

√
n

=
1.01× 107cm−1

√
n

, (4.16)

where rs is in effective Hartree atomic units and n is the number density in

experimentally relevant units of cm−1.
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4.2 QMC calculations

4.2.1 Trial wave functions

The calculations were performed using Slater-Jastrow (SJ) and Slater-Jastrow-

backflow (SJB) [46] trial wave functions. The main results were obtained using

the plane-wave (PW) orbitals for each particle. The trial wave function forms using

PW orbitals are as follows:

ΨSJ
PW = eJ(R)det [eiki·r↑ ]det [eiki·r↓ ]

ΨSJB
PW = eJ(R)det [eiki·(r↑+ζ(R))]det [eiki·(r↓+ζ(R))] (4.17)

where eJ(R) is the Jastrow factor [37] that is used to provide a description of the

electron–hole and electron–electron correlations, R is the particle coordinates, ζ(R)

is the backflow displacement [46], and r↑ and r↓ denote the positions vector of the

ith spin up and down electron.

We also tested another type of orbital called a pairing orbital (Pair), which was

suggested by Spink et al. [3]. The trial wave function form is defined in terms

of a product of Slater determinants containing pairing orbitals φi that describe

the electron-electron and electron-hole correlation. The trial wave functions using

pairing orbitals can be written as

ΨSJ
Pair = eJ(R)det [φi(r

↑
i − rh)]det [φi(r

↓
i − rh)]

ΨSJB
Pair = eJ(R)det [φi(r

↑
i − rh + ζ(R))]det [φi(r

↓
i − rh + ζ(R))] (4.18)

where rh is the position vector of the hole. The pairing orbitals take a flexible form

with optimisable parameters as

φi(r) = exp[uGi(r)] exp {iGi · r[1− ηGi(r)/r]}, (4.19)

where uGi(r) refers to the orbital-dependent electron-hole Jastrow factor and ηGi

is the orbital-dependent electron-hole backflow function, where Gi indicates the

ith shortest reciprocal lattice vector. The full description of the paring orbitals

components can be found in [3].

For a system of particles interacting via the Ewald-Keldysh interaction, satisfying

the Kato cusp conditions at coalescence points requires adding a minimal cusp-

satisfying term to the ordinary two-body Jastrow u term [4] to become
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uK(rij) = −
(

1− rij
LuK

)C
Θ(LuK − rij)ΓK

ij r
2
ij log (rij), (4.20)

where LuK is the cutoff distance of the uK term, C is the truncation order, and the

pairing coefficient ΓK
ij for distinguishable pairs of particles of masses mi and mj and

charges qi and qj is given by

ΓK
ij =

qiqjmimj

2r∗(mi +mj)
. (4.21)

For indistinguishable particle pairs, the value of the pairing coefficient ΓK
ij is halved.

For all the trial wave function types, the Jastrow function was composed of

the electron–electron u term and p term in the case of PW orbitals, whereas the

backflow function consisted of the cuspless two-body polynomial η function [46].

We also performed tests using the cuspless PW backflow Π term, which is similar to

the p term for describing the long-range correlations [38]. The Jastrow exponents

components were first optimised using the VMC variance–minimisation method [48],

and then all parameters including the pairing orbitals and backflow parameters

were optimised using the VMC energy–minimisation method [52]. The optimisation

calculations of wave function parameters were performed separately for each wave

function and system used.

4.2.2 DMC time step and target population

The DMC total-energy calculations were performed using a hexagonal simulation cell

subject to the periodic boundary for systems with Ne = 54, 62, and 110 electrons

over a range of low densities. The DMC time steps were chosen to be small enough

to ensure the time-step linear regime. The reasonable choice of time steps τ are such

that the typical diffusion distance
√

2τ should be much smaller than the smallest

physical length scale in the system. The smallest physical length in the model of the

fluid phase of the single hole in the 2D HEG is the exciton Bohr radius. The target

walker populations were varied inversely with respect to the time step, enabling

simultaneous extrapolation to infinite population and zero time step. Our main

results were obtained using simulation cell area A = πr2
sNe.
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4.2.3 Electron–hole relaxation energy

In the context of the photoluminescence experiments, consider an n-doped semicon-

ductor system with a finite concentration of charge carriers in the conduction band,

which undergoes an electron photoexcitation across the band gap. A single hole

in a homogenous Ne-electron gas will bind with two electrons to create a negative

trion. In response to the creation of the trion via photoexcitation, the remaining

(Ne − 2) electrons in the interacting electron gas system rearrange themselves in

the new potential. The (Ne − 2)-electron gas system then relaxes into a new state

of ground-state energy EHEG(Ne−2). The minimum photon energy required in the

photoexcitation process can be calculated as the sum of electron–hole correlation

energy, the Fermi energy of electron gas, hole energy at the Fermi wave vector, and

quasiparticle band gap [25].

In the optical absorption spectra, the change in the band gap due to photon

absorption can be inferred by calculating the energy gained by allowing the

creation of the electron-hole pair. In the theoretical modelling of creation of

excitonic complexes in the 2D dilute electron gas system interacting via the Keldysh

interaction, the electron–hole correlation energy, known also the relaxation energy,

can be evaluated as

ER = Eh+HEG(Ne) − EHEG(Ne) (4.22)

where Eh+HEG(Ne) is the total energy of the system that contains a single hole in a

2D HEG of area A and EHEG(Ne) is the total energy of the pristine 2D HEG of the

same area containing the same number of electrons. In the limit of low density, the

electron–hole correlation (relaxation) reaches the energy of an isolated trion, and

Eh+HEG(N) can be approximated as

Eh+HEG(N) ≈ EHEG(N−2) + EX− + Eimm
X− , (4.23)

where EX− is the total energy of a negative trion and Eimm
X− is the energy acquired

by immersing the trion in HEG. At low density, Eimm
X− is roughly equivalent to the

Fermi energy of the HEG. For an infinite 2D HEG, the Fermi energy is given by

EF = ε(rs)−
rs
2

dε(rs)

drs
(4.24)
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where ε is the energy per electron as a function of rs. The Fermi energy EF is equal

to the energy required to pluck one electron from a HEG system of constant area

in the thermodynamic limit [3]. Therefore, the relaxation energy Eq. (4.22) can be

reexpressed as

ER ≈ −2EF + EX− + Eimm
X−

≈ −EF + EX− . (4.25)

In this study, the electron-hole relaxation energy is calculated directly using Eq.

(4.22).

4.2.4 Pair-correlation function

The electron–hole pair-correlation functions (PCFs) were calculated by binning the

electron–hole distances r sampled in VMC and DMC calculations as

geh(r) =
A

2πrNe

〈 Ne∑
j=1

δ(|rj − rh| − r)
〉
, (4.26)

which approaches unity when r >> rs. The DMC PCFs were obtained at different

time steps and then averaged. For an operator that does not commute with the

Hamiltonian, such as the PCF, the errors in the VMC and DMC expectation values

are linear in the error in the trial wave function. Therefore, the leading-order finite

size errors that result from the dependence of PCF on the trial wave function can

be removed by extrapolated estimation [36]

geh(r) = 2gDMC(r)− gVMC(r), (4.27)

where gDMC and gVMC are the DMC and VMC PCFs, respectively. The errors in

the extrapolated estimate Eq. (4.27) are quadratic in the error in the trial wave

function.

The short-range PCF data at zero inter-particle distance, known as the contact

PCF, can be inferred by extrapolating the electron-hole PCFs to zero separation

for each system at each r∗ value. To perform the extrapolation, we fitted ln[geh(r)]

to the polynomial satisfying the Kimball’s cusp conditions suggested by Drummond

et al. [207] for the electron-hole PCF at short range. A compatible form for the
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Keldysh interactions can be written as

ln geh(r) = a0 +
µ

r∗
r2 ln (r) + a2r

2 + a3r
3 + ...+ a6r

6, (4.28)

where a0, a2, ... and a6 are fitting parameters. The cusp term in Eq. (4.28) was

obtained from the electron-hole cusp condition in Eq. (4.21). The estimated contact

PDF is geh(0) = exp (a0). To compute the error bars on geh(0), we used the method

outlined in Refs. [3, 207] by assigning a constant error σ to the PCF data and

defining its value as

χ2 =

∑
i

[
gfit
eh(ri)− geh(ri)

]2
dσ2

= 1, (4.29)

where d indicates the number of degrees of freedom.

4.2.5 Finite–size effects

The largest common source of the bias in the QMC calculation is the finite-size

effects that are incurred mainly due to the use of finite simulation cells subject

to periodic boundary conditions (PBCs), causing the expectation values to depend

on the shape and size of the used supercell. For 2D systems of Ne-electrons, the

dominant PBC finite-size errors result from quasirandom single particle momentum

quantisation effects, the neglecting of long-range correlations, and the artificial

distortion of the exchange-correlation hole surrounding the electrons. The single-

particle finite-size error can be effectively reduced using the Monte Carlo twist–

average (TA) method; see Sec. 5.2.3 for more details. The residual systematic

error arising from finite-size effects in the energy per particle was found to scale

as O(N−5/4) with system size [134]; hence, it can be removed via extrapolation to

infinite system size. In our calculations, the energies per particle were calculated

at different system sizes of Ne = 54, 62, and 110 electrons in hexagonal lattice

at a range of low electron densities, which will introduce an inevitable finite-size

effect. Therefore, it is important to extrapolate the relaxation energy results at

each density to the thermodynamic limit assuming that the systematic finite-size

effects are O(N−1
e ) by fitting the relaxation energy data to

ER(Ne) = ER(∞) + CN−1
e , (4.30)
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where ER(∞) and C are fitting parameters. Such scaling was used in Ref [3]. The

relaxation energy is effectively a defect formation energy of a single hole in the

electron gas, see Chapter 5 for more discussion of finite-size effects.

To examine the quasirandom single-particle errors that arose from the momentum-

quantisation finite-size effects in the relaxation energy, we implemented the TA

method for a system of 54 electrons at rs = 15 a.u. and simulation cell area Neπr
2
s .

The TA method was performed using 24 offsets randomly sampled throughout the

first Brillouin zone, in which both the pristine 2D HEG and single-hole doped 2D

HEG systems have the same set of twists. The Jastrow factor and backflow function

were independently optimised at each twist. In the DMC simulations, a full-length

period of equilibration is undertaken at each of the twists with the same amount

of samples followed by a period of the statistics accumulation for the given target

accuracy. Therefore, averaging the energy over a set of twists will effectively reduce

the statistical noise as σTA/
√
NTA, where σTA is the obtained average error on one

twist and NTA is the number of twists.

The comparison between the non-twist (ks = 0) and TA SJB-DMC energies is

reported in Table 4.1. During the TA simulation, the energy per particle varies as the

twist offset is changed, where the energy difference between the TA and non-twist

results shows the convergence with cell size. Moreover, the use of the Hartree-Fock

(HF) energies as a control variate leads to improving the accuracy of the TA energies

[208]. The use of an HF control variate reduced the standard error in the TA DMC

energy per particle. However, we found that the uncertainty due to the statistical

noise in the energy per particle results were cancelled out in the calculations of the

relaxation energies. The twist average relaxation energy was calculated at each twist

and then averaged over the set of twists. As shown in Table 4.1, the twist-averaged

and non-twist relaxation energy results were close. Therefore, there is no point in

adding the complexity involved in the TA method when a single, longer, and non-

twist calculation can obtain an equivalent result. Thus, all the main calculations

were performed using a simulation-cell Bloch vector of ks = 0.
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Table 4.1: Energies from SJB-DMC simulation in 54 electrons at rs = 15 a.u.. The

COV refers to that we used the HF kinetic and potential energy of the Keldysh

2D HEG as control variates when averaging over a set of twists. The twist average

relaxation energy was calculated at each twist and then averaged over the set of

twists.

ks = 0 TA
-

hole-2D HEG 2D HEG hole-2D HEG 2D HEG

DMC energy(a.u./particle) −0.056634(3) −0.0529602(5) −0.056702(3) −0.053030(3)

DMCCOV energy(a.u./particle) - - −0.056701(2) −0.0530284(4)

DMC relaxation energy (a.u.) −0.2550(2) −0.2550(1)

4.3 Results and discussion

4.3.1 Trial wave function and simulation cell area choice

Table 4.2 show the energies per particle evaluated using VMC and DMC with

different trial wave functions (ΨSJ
PW, ΨSJ

Pair, ΨSJB
PW and ΨSJB

Pair) for a single hole immersed

in a 2D HEG at Ne = 62 electrons and rs = 15 electron density. As shown in

Table 4.2, the VMC and DMC energies with the SJB wave functions are lower than

those with the SJ wave functions. The inclusion of the backflow function has a

more profound effect on the VMC than on the DMC results, in which the energy

difference in VMC results is equivalent to four times the difference in the DMC

results. Hence, we used the backflow function in all our production calculations.

The PW orbitals were found to be relatively insensitive to optimising the cutoff

length of the η backflow term, and the usage of the Π backflow component had an

insignificant effect on the results.

The VMC and DMC results of pairing orbitals with only the η backflow term

showed dependence on the optimisation of the η cutoff length to recover the expected

behaviour as the lower bound or equivalent to those in the PW orbital results.

However, we found that using the long-range Π backflow term in ΨSJB
Pair calculation is

important to improve the trial wave function by retrieving more correlation effects

and maintain the agreement with ΨSJB
PW results. It can be seen that the pairing
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orbitals ΨSJB
Pair generally gave lower energies than the PW orbitals ΨSJB

PW but with

negligible energy differences, indicating that the DMC energies are highly accurate.

The DMC calculations using ΨSJB
Pair wave functions were found to be more expensive

than the DMC using ΨSJB
PW wave functions with almost identical results. Therefore,

we used the ΨSJB
PW with only the η backflow term in all our main calculations.

Table 4.3 shows the SJB-VMC and SJB-DMC results for two different choices of

simulation cell area, πr2
s(Ne−1) and πr2

sNe. The cell area πr2
s(Ne−1) has been used

previously in Ref. [3] to ensure that the electron charge density is correct at the long

range far from the doped impurity [209, 210]. As illustrated in Table 4.3, the two

mentioned cell areas show a noticeable energy difference in the energy per particle

for the single hole in 2D HEG and pure 2D HEG systems, which is expected to

vanish in the limit of the infinite system size. However, the relaxation energies and

on-top PCF results were found to be almost identical in both cell areas. The SJB-

VMC relaxation energy data showed a small energy difference of about −0.00086(8)

a.u.. In the more accurate calculations, the SJB-DMC relaxation energy results

were insensitive to the used cell area with a negligible energy difference of around

0.0003(4) a.u.. In any case, finite size effects result from the choice of simulation

cell area will be removed in the extrapolation to the thermodynamic limit, in which

the energies become independent of the cell area and number of electrons and are

only functions of rs. Therefore, we used simulation cells of area A = πr2
sNe in all

our main calculations.
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Table 4.2: The VMC and DMC results for a system of Ne = 62 electrons at rs = 15

and area A = Neπr
2
s . The results show the effect of optimising the backflow cutoff

lengths and including the backflow Π term at different level of the trial wave function.

Method WF EBF
cut optimised Π present Energy (a.u./part.) Variance (a.u.)

VMC ΨSJ
PW F F −0.055263(1) 0.02453(3)

VMC ΨSJ
Pair F F −0.0553345(9) 0.02316(3)

DMC ΨSJ
PW F F −0.056181(4)

DMC ΨSJ
Pair F F −0.056182(4)

VMC ΨSJB
PW F F −0.055553(1) 0.02480(3)

VMC ΨSJB
PW T F −0.055556(1) 0.02386(3)

DMC ΨSJB
PW F F −0.056257(4)

DMC ΨSJB
PW T F −0.056257(4)

VMC ΨSJB
Pair F F −0.0555296(9) 0.02453(3)

VMC ΨSJB
Pair T F −0.0555654(9) 0.02429(3)

DMC ΨSJB
Pair F F −0.056243(4)

DMC ΨSJB
Pair T F −0.056257(4)

VMC ΨSJB
PW F T −0.055555(1) 0.02456(3)

VMC ΨSJB
PW T T −0.055558(1) 0.02501(3)

DMC ΨSJB
PW F T −0.056269(4)

DMC ΨSJB
PW T T −0.056256(4)

VMC ΨSJB
Pair F T −0.055589(1) 0.02531(3)

VMC ΨSJB
Pair T T −0.055599(1) 0.02487(3)

DMC ΨSJB
Pair F T −0.056269(4)

DMC ΨSJB
Pair T T −0.056268(4)
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Table 4.3: The SJB-VMC and SJB-DMC results for a system of Ne = 62 electrons

at rs = 15 and ks = 0 using different simulation areas.

Neπr
2
s (Ne − 1)πr2

s

Method
hole-2D HEG 2D HEG hole-2D HEG 2D HEG

VMC energy (a.u./particle) −0.055553(1) −0.0528702(2) −0.0558644(9) −0.0532006(2)

VMC variance (a.u.) 0.02480(2) 0.000653(4) 0.02430(3) 0.000643(2)

DMC energy (a.u./particle) −0.056257(4) −0.0530508(8) −0.056576(4) −0.0533803(9)

VMC relaxation energy (a.u.) −0.22188(6) −0.22102(6)

DMC relaxation energy (a.u.) −0.2550(3) −0.2547(3)

On-top geh(0) 62.3(1) 61.8(2)

4.3.2 The electron-hole relaxation energies

Table 4.4 shows the relaxation energies of a single hole immersed in 2D HEG for

different system sizes at a range of low charge densities. We calculated the electron–

hole relaxation energy using ΨSJB
PW wave function, Neπr

2
s simulation cell area and

ks = 0 Block wave vector. The SJB-DMC relaxation energies are plotted against

the inverse of system sizes in Fig. 4.2. Our DMC data show that the relaxation

energy results converged well with system sizes and the single-particle finite size

effects are negligible. Using the fitting form from Ref. [207], the relaxation energy

data can be well fitted to a function form, as follows,

ER(rs) =
A−1r

−1
s + A0 + A1rs + EX−B2r

2
s

1 +B1rs +B2r2
s

, (4.31)

where A−1 = 110.864, A0 = −6.41894, A1 = −1.64917, B1 = 9.10327 and B2 =

0.689267. The EK
X− = −1.213 R∗y is the energy of the isolated negative trion, which

was calculated using parameters in Sec. 4.1.3 and a supplied utility from Ref. [185].

In addition, the energy of the isolated exciton is EK
X = −1.1194 R∗y in Keldysh

interaction. The fitting form of electron-hole relaxation energy reaches the energy

of the isolated negative trion at extreme low densities. Fig. 4.1 shows the electron-

hole relaxation energy along with the total energies of negative trion and neutral

exciton.

Fig. 4.3 illustrates that the sum of the relaxation energy and the Fermi energy of
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the 2D HEG approaches the total energy of an isolated negative trion at the extreme

low carrier density. The Fermi energy data were obtained using the parameterisation

of the paramagnetic Fermi fluid energy ε(rs) reported in Ref. [4]. The PCFs results,

as illustrated in Sec. 4.3.3, indicate that for rs length larger than the trion radius,

the effect of the surrounding electron gas screening on the interaction between the

trion’s charge carrier is weak, resulting in the formation of the trion. Therefore,

the results in Fig. 4.3 imply that Eq. (4.25) is not exact at the range of used rs

values. In the optical absorption spectra, the change (renormalisation) in the band

gap ∆Eg due to the photon absorption and the electron-hole pair correlation effects

can be understood as

∆Eg = Eexc − Eh − (ER + EF ), (4.32)

where Eexc is the minimum energy required to create an electron-hole pair via

photoexcitation and Eh = k2
F/(2mh) is the kinetic energy of a hole at Fermi

wave vector kF . At the finite concentration of charge carriers, this change is well

approximated to the energy of an isolated negative trion.

The QMC study for the isolated negative trion and electron-hole relaxation

energies in 2D HEG of free standing material have been reported previously [3].

Using parameterisation of the fitting function (S16) in Ref. [3], the total energy

of the isolated negative trion with mass ratio mh/me = 1.158 in the presence of

screened Coulomb interaction is EC
X− = −4.477 R∗y, lower than the EK

X− by around

3.264 R∗y. This large difference in the results might be due to the dependence of the

trion state on the host environment, as screening by material encapsulation reduced

the Keldysh screen parameter (r∗) resulting in an increase in the negative trion total

energy.

Figure 4.1 shows also the electron-hole relaxation energy at high densities by

interpolating the data from Ref. [3] at mass ratio mh/me = 1.158 plus a correction

obtained by considering the energy difference between the Keldysh and Coulomb

interactions. The correction was evaluated using the exact trion energies as EK
X− −

EC
X− . The validity of this correction originates from the fact that the localised nature

of an isolated negative trion dominates the low-density limit where the long-range

Keldysh interaction reduces to Coulomb interaction. In addition, the relaxation

energy can be approximated to Eq. (4.25) at extreme low densities (rs → ∞). It
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is also important to point out that the Fermi energy EF is only weakly dependent

on the form of the screened interaction. EF at high densities is dominated by the

kinetic energy, which is the same for both interactions, whereas at low densities

the difference between Fermi energies of the Keldysh and Coulomb interactions is

insignificant because the Keldysh interaction behaves identically to the Coulomb

interaction. Fig. 4.1 demonstrates that the relaxation energies at high densities

are well approximated by the correction (EK
X− − EC

X−), showing some consistency

with our results at low densities. It also illustrates that the localised form of the

negative trion does not arise at high densities due to the strong screening effects by

the electron gas, as the electron-hole relaxation energy diverges towards −∞.

Table 4.4: System-size dependence of the SJB-DMC electron-hole relaxation energies

calculated using PW orbitals in a.u. for a range of densities.

rs (a.u.)
Ne 15 20 25 30 35

54 −0.2550(2) −0.2689(3) −0.2766(3) −0.2858(4) −0.2880(4)

62 −0.2550(2) −0.2689(5) −0.2778(3) −0.2835(4) −0.2885(2)

110 −0.2543(3) −0.2687(4) −0.2780(3) −0.2844(4) −0.2883(4)

∞ −0.2538(6) −0.2685(9) −0.2793(7) −0.2832(9) −0.2885(8)
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Figure 4.1: Relaxation energy data as a function of density parameter (rs) of a hole

immersed in 2D 110-electron gas. The dashed black line shows the least–squares fit

of the SJB-DMC relaxation energy to Eq. (4.31). The dashed green and red lines

are the total energy of the neutral exciton and negative trion, respectively. The

blue curve is the interpolation of electron-hole relaxation energy at high density

from Ref. [3] of mass ratio mh/me = 1.158 plus the difference between the Keldysh

and Coulomb trion total energies (EK
X− − EC

X−).
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Figure 4.2: Relaxation energy data against the inverse of the system size for a hole

immersed in HEGs at different density parameter (rs). The dashed fitting lines

shows the linear least–squares fit of the DMC data.
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Figure 4.3: The sum of the relaxation energy and the Fermi energy of HEG as a

function of the density parameter rs. The Fermi energy data of HEG were obtained

using the parameterisation of the paramagnetic Fermi fluid energy in Ref. [4].

The blue dashed line is the total energy of isolated negative trion in the Keldysh

interaction.

4.3.3 Pair correlation functions (PCF)

4.3.3.1 The total PCF data

The total electron-hole PCFs were evaluated using the extrapolated estimation of

Eq. (4.27) due to the small but statistically significant differences between the VMC

and DMC results; the DMC PCFs were averaged over different time steps. We found

that the effect of the extrapolated estimate at low densities is significant, as seen in

Table 4.5. The total electron-hole PCFs geh(r) are plotted for Ne = 110 at different

densities in Fig. 4.4 and for different system sizes at rs = 20 a.u. in Fig 4.5. The

importance of the electron-hole PCF is that its value at r represents the proportion

of the electronic density at a distance of r from the hole to that of the surrounding

electron gas. Therefore, the first measured minimum of the electron-hole PCF gives

a very direct indication of the degree of isolation of the localised trion. For the low-

density limit, our results show that all of the geh(r) data have regions less than one

and become more pronounced at the lowest density, which indicates the localisation

of the negative trion in this region away from the surrounding electrons.
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Figure 4.4: The total electron-hole PCF geh(r) as a function of the density parameter

(rs) of the 110-electron gas.
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Figure 4.5: The total electron-hole PCF geh(r) as a function of the system size at a

density parameter (rs = 20) of the electron gas.

4.3.3.2 On-top pair density

Adapting the fitting function from Ref [207] slightly to a compatible form for the

Keldysh interaction, we extrapolated all the total electron-hole contact PCF results

by fitting Eq. (4.28) to ln [geh(r)] on the short range 0 < r < rs/2 and then estimated

the contact PCF as geh(0) = exp [a0]. The uncertainty in geh(0) data as estimated

using Eq. (4.29) with N − 1 degrees of freedom, where N is the number of data

fittings minus the number of fitting parameters in Eq. (4.28). It is clear that the
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contact PCFs increase rapidly as the density decreases, as shown in Table 4.6. Large

values of geh(0) at low densities suggest a strong electron-hole correlation and the

formation of the negative trion. Using the fitting form from Ref. [207], we fit the

electron-hole contact PCF at low-density limit to:

geh(0) = 1 + 1.23rs + a1r
3/2
s + a2r

2
s + a3r

7/3
s + a4r

8/3
s + a5r

3
s , (4.33)

where a1 = 128.687, a2 = −188.778, a3 = 124.459, a4 = −32.372 and a5 = 3.04482

are the fitting parameters. The electron-hole contact PCF results are plotted against

rs in Fig. 4.6. We also compared the contact PCF obtained for different system

sizes at various low density parameter (rs) in Fig. 4.7. The geh(0) is particularly

important in constructing the local and semilocal exchange-correlation functionals

for use in DFT calculations to describe a single hole embedded in inhomogeneous

systems [211, 212]. It is also important to determine the recombination rate for

hole immersed in a HEG, in which the geh(0) is proportional to the electron-hole

recombination rate.

Table 4.5: Contact PCF for a single hole in 2D 110-electron HEG at rs = 15 using

different methods.

Method geh(0)

SJB-VMC 35.7(1)

SJB-DMC 48.15(2)

Extrap. 60.5(1)

Table 4.6: System-size dependence of the calculated contact PCF data using ΨSJB
PW

for a range of densities.

rs (a.u.)
Ne 15 20 25 30 35

54 63.5(2) 107.4(3) 161.8(3) 228.5(5) 263.5(5)

62 62.3(1) 105.7(2) 161.3(2) 213.8(3) 288.7(2)

110 60.5(1) 107.7(1) 166.7(4) 229.9(2) 313.2(4)
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Figure 4.6: The electron-hole contact PCF, geh(0), at a range of density parameter

(rs) values. The geh(0) results were obtained by extrapolating to the thermodynamic

limit using the scale N−1. The dashed line shows the results obtained by fitting the

extrapolated geh(0) data at different density parameter (rs) values to Eq. (4.33).

0.01 0.012 0.014 0.016 0.018

N
-1

0

100

200

300

400

g
e

h
(0

)

r
s
=30

r
s
=35

r
s
=15

r
s
=20

r
s
=25

Figure 4.7: Electron-hole contact PCF geh(0) as a function of the inverse of the

system size for a range of density parameter (rs) values of the electron gas.

4.4 Conclusion

In summary, QMC calculations were performed to simulate finite concentrations of

charge carriers interacting through the Keldysh interaction in 2D materials. At the

low density limit, the electron-hole relaxation energy, PCF and the contact PCF were

calculated. The calculated electron-hole relaxation energy was found to approach
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the isolated trion energy at extreme low densities. In addition, the relaxation energy

results show some consistency with the earlier work using Coulomb interaction at

high densities. Our results indicate that the screening effects of the surrounding

electron gas on the formation of trion in the range of used rs values is weak.
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Chapter 5

Point defect in graphene

5.1 Introduction

Graphene 1, a sheet of carbon atoms arranged in a honeycomb structure, is one of the

most intriguing materials for future technological applications [214–216]. However,

the production of large, defect-free graphene layers on insulating substrates remains

a considerable technical difficulty [217]. Point defects may occur spontaneously

during the synthesis of graphene, or they can be deliberately injected into pure

graphene through processing [218]. As point defects can have a significant effect on

the electrical and optical properties of graphene [219, 220], it is vital to understand

their structure and features to comprehend fully the performance of graphene-

based devices. Graphene defect structures have been observed using high-resolution

transmission electron microscopy and related techniques [221, 222]; however, these

approaches inevitably produce more defects. Theoretical approaches have played

an important role in graphene defect research. In particular, density functional

theory (DFT) has been utilised in a large number of studies to examine defect

formation energies and other features in a variety of applications and devices,

including graphene [223–225], graphite [6, 226, 227] and other two-dimensional (2D)

or layered materials [228–230].

The Dirac point at the Fermi level of pure graphene is the most significant char-

1This work was done in collaboration with D. M. Thomas and N. D. Drummond. Only minor

modifications were introduced to Ref. [213]. The pristine graphene QMC total energies used in

this work were calculated by D. M. Thomas [213].
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acteristic of its electronic structure. Many types of defects at finite concentrations

break the sublattice symmetry or shift the Fermi level, significantly altering the

electronic properties of graphene [231]. Substitutional impurity atoms are among

the most common defects in graphene, and they have been extensively studied

using DFT [232]. Several studies [233–235] have shown that nitrogen and boron

impurities in graphene act as donors and acceptors, respectively. DFT has been

used to investigate the electronic and magnetic properties of a graphene sheet doped

with iron, cobalt, silicon, and germanium impurities at a 3% concentration, finding

that the substitution of a carbon atom with silicon or germanium can open a band

gap in the electronic spectrum of graphene, while the insertion of iron or cobalt

produces a metallic phase [236]. Silicon substitutions (SiSs) in graphene are an

attractive approach for engineering the band structure [237]. The silicon atom,

which has the same number of valence electrons as carbon, has been shown to be

able to modulate the electronic structure of graphene without significantly changing

its carrier mobility [220].

Stone–Wales (SW) defects in graphene are some of the most commonly observed

intrinsic topological defects [231]. SW defects influence the electronic, structural,

chemical and mechanical properties of graphene [238–243]. SW defects result in the

tendency for monolayer graphene to bend; therefore can be used in the fabrication

of nonplanar carbon nanostructures [244]. SW defects show mutual attraction [245],

and the formation of SW defects clusters at high temperature is one of the first steps

in the melting of graphene [246]. SW defects have also been observed to migrate

over the graphene lattice. The SW migration energy barrier can be determined by

the activation energy barrier Ea of thermally induced processes and by the threshold

energy of the electron irradiation processes [247]. Once again, DFT has played a

key role in elucidating the properties of SW defects.

The most significant thermodynamic attribute of a point defect is its formation

energy E f, which can be calculated as the free energy difference between the defective

material and the pristine material, in addition to any changes in the energies of atom

reservoirs that are added or subtracted when the defect is generated. For instance,

the defect formation energy of an SiS defect is equal to the difference between the

free energy of a large region of graphene containing a single SiS defect and the free
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energy of the corresponding large region of pristine graphene, plus the free energy

per atom of graphene and minus the free energy per atom of bulk silicon.

This chapter focuses on the quantum Monte Carlo (QMC) calculations of

the formation energies of isolated SiSs and SW defects. Using first–principles

density functional calculations, the energy barrier to SW defect formation has been

investigated. Our aim is to provide a QMC assessment of defect-formation energy

to evaluate the validity of the DFT method, which has been widely used in studies

of graphene defects. Because this work necessitates the calculation of the energy

per atom of both graphene and bulk silicon, we also take this opportunity to report

the QMC atomisation energy of bulk diamond-structure silicon.

5.2 Computational methodology

5.2.1 Defect formation energies

The investigation of the changes in the free-energy surface of graphene provides a

substantial understanding of the formation and migration of defects. The ‘pure’

formation energy Epf of an isolated defect in graphene is defined as the free-energy

difference between a large graphene layer with a single defect and an analogous sheet

of pristine graphene. The pure defect formation energy is approximately equal to

the sum of the difference between the static-nucleus electronic ground-state energies

of defective and pristine graphene, which we evaluate using both DFT and DMC,

and the temperature-dependent difference in vibrational Helmholtz free energies,

which we evaluate using DFT.

The defect formation energy E f can be calculated as the summation of Epf and

the changes in the free energies of the reservoirs of the atoms that are added or

removed. For the SW defect and SiS, these are:

E f
SiS = Epf

SiS + µC − µSi (5.1)

E f
SW = Epf

SW, (5.2)

where the chemical potentials µC and µSi are the Helmholtz free energies per atom of

monolayer graphene and bulk diamond-structure silicon, respectively. The chemical

potential is defined as the sum of the static-nucleus electronic ground-state energy
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per atom and the temperature-dependent Helmholtz free energy per atom. Because

the pure defect generation energy is dependent on the pseudopotentials chosen, it

has no physical significance in itself. However, it is important from a theoretical

standpoint to distinguish between the finite-concentration and finite-size effects

caused solely by the calculations in the finite simulation subject of the periodic

boundary conditions from the finite-size errors in the energy per atom of graphene

and silicon.

5.2.2 Free energies of atomisation

The atomisation energy of a solid is an important quantity used to evaluate the

binding strength and thermal stability of a crystal. It is defined as the energy

required to release an atom from a solid. We calculate the free energy of the

atomisation of bulk silicon as the difference in the energy of an isolated, spin–

polarized silicon atom in its 3P0 ground state and the Helmholtz free energy per

atom in bulk silicon. This provides a pseudopotential-independent (in principle) free

energy per atom that can be used to compare the stability of different condensed

phases. Note, however, that the temperature dependence of the free energy of the

reference gaseous atomic state is neglected.

5.2.3 Twisted periodic boundary conditions

Calculations of infinite periodic crystals in one-particle theories, such as DFT, can

be simplified to calculations of a single primitive cell that is subject to Bloch

boundary conditions. The expectation values can then be calculated per unit cell by

integrating them over the entire first Brillouin zone (BZ) or, equivalently, averaging

them over a discrete set of dense points in k-space. However, this approach cannot be

implemented in many-particle methods, such as QMC, as the long range of electrons

correlation may exceed the primitive cell size. Therefore, QMC calculations must

be performed in simulation cells comprised of several primitive cells that are subject

to the periodic boundary conditions described in [26]. For a supercell that contains

N electrons, the Hamiltonian must obey:

Ĥ(r1, ..., ri + Rs, ...., rN) = Ĥ(r1, ..., ri, ...., rN) (5.3)
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Ĥ(r1 + Rp, ..., ri + Rp, ...., rN + Rp) = Ĥ(r1, ..., ri, ...., rN) (5.4)

where ri is the electronic coordinate of electron i, and Rp and Rs are the primitive

cell and supercell lattice vector, respectively. As a result of these translational

symmetries, the many-body wave function of the simulation cell must satisfy the

following many-body Bloch conditions:

Ψks(r1, ...., rN) = Uks(r1, ...., rN) exp
(
iks ·

N∑
i=1

ri
)
, (5.5)

where ks is the supercell Bloch wave vector that lies within the supercell first BZ.

Uks is an invariant function under the translation of any electron through a vector

Rs.

Ψkp(r1, ...., rN) = Vkp(r1, ...., rN) exp
(
ikp ·

1

N

N∑
i=1

ri
)
, (5.6)

where Rp is a primitive cell Bloch wave vector that lies within the first BZ of the

primitive cell. Vkp is an invariant function under the simultaneous translation of all

N electrons by a vector Rp. The use of a supercell Bloch vector ks 6= 0 is referred

to as the twisted boundary condition [62], where the wave function picks up a phase

exp (ikp ·Rs) whenever a single particle is translated by a supercell lattice vector

Rs.

The trial wave function should be selected to fulfil Eqs. (5.5) and (5.6)

simultaneously, with Uks and Vkp differing only by a phase factor. To do so, the

one-particle orbitals in the Slater determinant must be chosen to be of Bloch form

Ψk(r) = uk(r) exp [ik · r], where uk has the periodicity of the primitive cell. The

twisted boundary conditions require that for a supercell consisting of l × m × n

primitive cells, the single-particle orbitals must be generated for a single primitive

unit cell with an l × m × n Monkhorst-Pack grid [248] offset from the origin by

the supercell Bloch vector (twist) ks, which lies within the supercell BZ. The twist

offset ks is permitted to vary randomly across the first BZ of the simulation cell.

For a fixed number of electrons, the total expectation values are computed as an

average over all twist vectors ks that are uniformly distributed over the supercell BZ.

This approach is called the canonical-ensemble twist averaging (TA) method [62],

and it has been shown that this method of averaging greatly reduces the oscillatory

single-particle finite-size effects of ground-state expectation values [134].
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5.2.4 The activation energy for the SW transformation

Defects migration is typically regulated by an activation barrier that varies with the

type of defect and grows exponentially with the temperature [247]. The activation

barrier refers to the amount of energy that reactants must obtain prior to producing

the products. Hence, the activation barrier energy of SW transformation can be

calculated as the difference between the ground-state energy of the transition state,

which is a saddle point with an energy maximum in the direction of the reaction

coordinate and minimum energy in all other directions, and the energy of the pristine

graphene ground state. Using modified geometry optimisation techniques, such as

the synchronous-transit approach for searching reaction pathways, the saddle point

in defect reactions can be determined. The maximum energy along the reaction

pathway is referred to as the activation energy Ea, and the accompanying structure

is referred to as the transition state. The obtained barriers energy can be then used

to study the relation between the reaction rates under experimental conditions and

the temperature. Using a simple Arrhenius equation, the lifetime t of a state can

be calculated as:

1

t
= A exp

(−Ea

kBT

)
(5.7)

where A is the characteristic optical phonon frequency, kB is the Boltzmann constant

and T is the deformation temperature. The pre-exponential A can be estimated

using the Vineyard formula [249].

5.2.5 DFT calculations

5.2.5.1 Total energy, geometry optimisation and phonon calculations

Using the plane-wave-basis code castep [128], DFT calculations were performed

using the PBE generalised gradient approximation exchange-correlation functional

[17]. Nuclei and core electrons were represented by ultrasoft pseudopotentials [129]

in the calculations of total energy, geometry optimisation, and phonons. The

plane-wave cutoff energies of 556 eV and 305 eV were used for graphene sheets

and bulk silicon, respectively. The geometry structure for each defective graphene

was optimised to a force tolerance of 0.0025 eV Å−1 using lattice vectors equivalent
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to a pristine graphene carbon–carbon bond length of 1.42 Å [250, 251]. Using

Monkhorst–Pack grids with about (51/
√
N) × (51/

√
N) points, the total energies

of defective graphene layers were computed for supercells of N primitive cells in a
√
N×
√
N arrangement including a single defect. All the 2D DFT calculations were

performed using an out-of-plane artificial periodicity of 30 Bohr. Our bulk silicon

calculations used 17× 17× 17 Monkhorst–Pack k-point grids.

The vibrational contributions to the free energy were calculated using the DFT

finite-displacement supercell method. All geometric structures were optimised to

minimise the forces on atoms below 0.0005 eV Å−1 The phonon calculations were

carried out with atomic displacements of 0.005, 0.01, 0.015, 0.02, and 0.025 bohr,

and 5 × 5 Monkhorst–Pack supercell k-point grids were used. The final energies

were obtained by extrapolating linearly to a zero atomic displacement.

5.2.5.2 QMC orbital generation

The used structures were fixed to the DFT-PBE geometries produced from ultrasoft

pseudo-potentials and the fine k-point grid. The DFT orbitals were generated using

PBE relaxed graphene supercells consisting of 3× 3, 4× 4 and 5× 5 primitive cells

with an artificial periodicity of 30 bohr. The plane-wave cutoff energy for the smaller

two supercells is 3401 eV, and the plane-wave cutoff energy for the larger supercell

is 2231 eV. These cutoff energies are such that the DFT energy per atom converges

to within the chemical accuracy limits of 0.1 mHa and 1.59 mHa [60], respectively.

Trail-Needs Dirac-Fock pseudopotentials [58, 59] were used to represent the nuclei

and core electrons with the s channel being chosen to be the local component when

the pseudopotentials are re-represented in Kleinman-Bylander form [61]. For bulk

silicon, supercells of 2× 2× 2, 3× 3× 3 and 4× 4× 4 primitive cells were used with

a plane-wave cutoff energy of 2231 eV for all system sizes.

5.2.5.3 The SW transition state calculations

All the transition state calculations were performed using the plane-wave-basis

code castep [128]. The calculations were performed using the relaxed DFT-PBE

geometries generated by ultra-soft pseudo-potentials, a fine k-point grid and an

artificial periodicity of 30 Bohr. Using the same parameters, the SW transition
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state calculations were performed using supercells consisting of 3× 3× 1, 5× 5× 1

and 6 × 6 × 1 arrangements of primitive cells with a plane-wave cut-off energy

of 348.31 eV and fine k-point grid. Starting from a fully optimised reactant (pure

graphene) and product (SW) structures, we employed the linear synchronous transit

maximum method (LST maximum) [252] to locate the initial intermediate image.

A more refined saddle point search was performed using an iterative sequence

of quadratic synchronous transit maximisations (QST) in conjunction with the

conjugate gradient minimisations method [252] until the true transition state was

located. Finally, the nudged elastic band technique (NEB) [253] was utilised to

validate the transition state and evaluate the energy profile and structural images

along the transformation pathway of the SW defect in the graphene sheets.

5.2.6 QMC calculations

5.2.6.1 Trial wave functions

The QMC calculations were performed using the trial wave functions of Slater-

Jastrow (SJ) form. Using the TA method, different sets of orbitals were constructed

for each twist. The plane-wave orbitals were re-represented on a blip (B-spline)

basis [254] to improve the computational efficiency of the QMC calculations and to

eliminate the undesirable periodicity in the out-of-plane direction. The Jastrow

factor consisted of polynomial electron-electron, electron-nucleus and electron-

electron-nucleus terms, in addition to a plane-wave electron-electron term [37]. The

trial wave functions were optimised by first minimising the energy variance [47, 48]

and subsequently the energy expectation value [52]. For each supercell size, the

wave function optimisation was conducted at a single, randomly selected twist, and

the resultant optimised Jastrow factor was then used for all twists. The Trail-

Needs Dirac-Fock pseudopotentials [58, 59] were used with the d angular momentum

channel chosen to be local.

5.2.6.2 DMC calculations

To remove the biases caused by using finite time steps and populations of

configurations, the DMC calculations at each twist were performed using time

118



steps of τ = 0.04 and 0.16 Ha−1, with the corresponding target walker populations

being varied inversely to the time step. The target population was at least 256

configurations in all cases. The DMC energies were then extrapolated linearly to

a zero time step and infinite population. Concerning the DMC total energies of

defective graphene, Fig. 5.1 shows that the usage time steps are not small enough

to be in the linear-bias regime. Nevertheless, as shown in Fig. 5.2, the non-linear

parts of the time-step bias cancel out in the calculation of the pure defect formation

energy at each twist.
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Figure 5.1: DMC total energies per supercell of (a) SiS, and (b) SW defects in a

3 × 3 supercell of graphene against the DMC time step τ at a single, randomly

chosen twist ks. The dashed lines show quadratic fits to the energy as a function of

the time step.
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Figure 5.2: DMC pure formation energies of (a) SiS and (b) SW defects in a 3× 3

supercell of graphene against the DMC time step τ at the twist ks used in Fig. 5.1.

The dashed lines show linear fits to the pure formation energy as a function of the

time step.

For bulk silicon calculations, the DMC energies per atom were calculated using

the time steps of τ = 0.01, 0.04 and 0.16 Ha−1, enabling linear extrapolation to

eliminate the time-step bias in the total energy per atom. Once again, the target

walker population was altered inversely with the time step.

5.2.7 Finite-concentration and finite-size effects

5.2.7.1 Periodic supercells

The main source of uncertainty in our defect formation energy results is the need to

use finite simulation cells subjected to periodic boundary conditions with a single

point defect in the supercell in the DMC calculations. This results in many physical

differences from the dilute limit of isolated point defects in a large graphene sheet.

In the first place, the modelling of periodic supercells induces finite-size effects

at a given defect concentration. These finite-size errors in DMC total energies

include quasi-random, oscillatory, single-particle finite-size errors due to momentum

quantisation. This issue can be resolved by using the canonical-ensemble TA method

[62]. The leading-order long-range finite-size error in the kinetic energy per electron

largely cancels out the pure defect formation energies. Second, there are finite-

concentration effects resulting from the fact that we are modelling a periodic array

of point defects rather than a single defect. The leading-order systematic finite-
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concentration error in isolated defect-formation energy arises from unwanted elastic

interactions between defects and screened electrostatic interactions between periodic

images of defects [255]. Additional non-systematic finite-size errors result from

the interactions between charge-density oscillations surrounding defects. Using an

appropriate fitting function, we extrapolate the results to an infinite cell size to

decrease systematic effects and average out non-systematic effects.

For the calculation of chemical potentials and atomisation energy, the ground-

state energies per atom must be determined. In a finite supercell, these calculations

suffer from finite-size errors including (i) quasi-random single-particle finite-size

errors due to momentum quantisation effects and (ii) systematic finite-size errors

due to the evaluation of the long-range interaction between each electron and the

surrounding exchange-correlation hole using the Ewald interaction instead of 1/r

[256], as well as the neglect for long-range two-body correlations [134, 257].

5.2.7.2 Single-particle finite-size effects

In the finite supercell subject to periodic boundary conditions, the replacement of

the continuous integral over the first BZ by a sum over a discrete set of k-points

induces fluctuations in the energy per particle as a function of system size due to

single-particle finite-size effects. Similar energy oscillations are often seen in QMC

simulations, albeit with a different amplitude. Because momentum quantisation is

a single-particle effect, the fluctuations in the QMC energies as a function of twists

are generally proportionally ‘correlated’ to the corresponding fluctuations in the

DFT energies. DFT energies can therefore be utilised as a control variate (CV) for

calculating the twist-averaged (TA) DMC energy.

The TA energy ETA
DMC was determined by fitting:

EDMC(ks) = ETA
DMC + b

[
EDFT(ks)− Efine

DFT

]
(5.8)

to the DMC energy EDMC(ks) at twist ks, where b is a fitting parameter, EDFT(ks)

is the corresponding DFT energy and Efine
DFT is the DFT energy calculated using a

fine k-point mesh. The use of DFT energy with the fine k-point as a covariate in

Eq. (5.8) simultaneously eliminates the noise result from momentum quantisation

due to using a finite number of twists and the residual errors in TA energy. Using

this approach removes most of the quasirandom noise resulting from momentum
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quantisation. The residual long-range errors are many-body effects that cannot be

removed by TA method.

All our graphene and bulk silicon DMC calculations were performed using

random twists of 24 each. In the calculations of defect formation energy, the total

DMC and DFT energies E(ks) in Eq. (5.8) were replaced with the DMC and DFT

pure defect formation energies Epf(ks). The calculations of both pure and defective

graphene were performed at identical twists; therefore, the twist-sampling error in

the pure defect energy is far lower than the error in the total energies. There are

two highly different sources of (quasi-)random error in the TA-DMC energy for

a given supercell: the statistical error from the Monte Carlo simulation and the

residual momentum quantisation error that is not fully removed by fitting Eq. (5.8)

to Epf(ks). By utilising the same set of random twists for both defect and pristine

graphene computations, it is more likely that momentum quantisation errors and

statistical errors in pure defect formation energy will be significantly cancelled out

than in the total energy. In our calculations, we also minimise the mean bias using

Eq. (5.8) with all the twists to obtain the TA energy, and we only use twist-blocking

method proposed in Ref. [213] to estimate the error bar for the TA formation energy.

5.2.7.3 Long-range finite-size effects

To account for the finite-size effects and long-range finite concentration, the DMC

calculations have been performed at different supercell sizes and then the results

were extrapolated to an infinite system size using scaling law. In the case of the

SiS, there is some charge transfer from the silicon atom to the graphene sheet,

giving the defect a dipole moment. Defects in neighbouring supercells lead to

the inclusion of unwanted electrostatic dipole–dipole interactions. The screened

interaction between charges in a 2D semiconductor is of Rytova-Keldysh form

[198, 200], which is logarithmic at a short range, before crossing over to a 1/r

interaction at a lengthscale typically of the order of many tens of Å. The supercell

sizes that we study here are comparable to this length scale. Rytova-Keldysh dipole–

dipole interaction energies go as r−3 at long range and as r−2 at a short range, which

leads to finite-concentration errors that go as O(N−1) in small supercells, then as

O(N−3/2) in very large supercells.
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The SW defect, on the other hand, is a neutral defect with no dipole moment,

as it does not require a charge transfer between atoms. However, these defects

have a quadrupole moment, resulting in weak electrostatic interactions between

periodic images that decay rapidly as O(N−2–N−5/2). Furthermore, elastic finite-

concentration effects result from the interaction of periodic images of point defects

through the long-range strain and stress field, which depend on the size and shape

of the unit cell used [255]. In general, assuming the defects induce isotropic stress,

the elastic finite-concentration effects on the energy scale as O(N−1).

In summary, the scaling of the elastic finite-size error (and the electrostatic finite-

size error in the case of the SiS) suggests that TA pure defect formation energies Epf

should be extrapolated to the thermodynamic limit by fitting:

Epf(N) = Epf(∞) + CN−1, (5.9)

where C and Epf(∞) are fitting parameters. Using DFT calculations, we confirm

in Fig. 5.3 that O(N−1) systematic finite-concentration errors are dominant in SW

and SiS defects in graphene.

For the bulk silicon results, the energy per atom was extrapolated to an infinite

system size by fitting the TA energies per atom 〈eP(N)〉TA to:

〈eP(N)〉TA = eP(∞) + c N−γ, (5.10)

where eP(∞) and c are fitting parameters, and γ = 1 for bulk silicon [257].

Graphene defect formation energies were computed using Eqs. (5.2)–(5.2) after

dealing with the finite-size effects in the pure defect formation energy and chemical

potentials separately.
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Figure 5.3: DFT pure formation energies of (a) SiS, and (b) SW defects in graphene

against the reciprocal of the supercell size N . Fine k-point grids were used in each

supercell. Ultrasoft pseudopotentials were used. The dashed lines show fits of Eq.

(5.9) to the data.

5.3 Results and discussion

5.3.1 Atomic structures

5.3.1.1 SiS

We used a carbon–carbon bond length of 1.42 Å in all our pristine graphene

calculations [250, 251], and we used the exact same supercell lattice parameters

for our pristine and defective graphene calculations. Replacing a single carbon atom

using a silicon atom results in a defect of Cs point group, rather than D3h, due to a

Jahn-Teller distortion [231]. The DFT-PBE-relaxed geometry in Fig. 5.4 shows the

silicon atom bonded with three carbon atoms and lying above the graphene plane

due to partial sp3 hybridisation.
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Figure 5.4: (a) Top-down and (b) in-plane views of the DFT-PBE-relaxed SiS

structure in a 5× 5 supercell. The silicon atom is shown in blue.

5.3.1.2 SW defect

In graphene, an SW defect is formed by an in-plane rotation of a single carbon–

carbon bond 90◦ across its midpoint. This transforms four hexagonal unit cells into

two pentagons and two heptagons, as shown in Fig. 5.8, with the same number

of carbon atoms as pristine graphene and without any dangling bonds. The SW

rotation compresses or stretches many bonds, resulting in a wave of significant

vertical displacement of carbon atoms around the defect, as shown in Fig. 5.5. The

relaxed lattice will adopt either a ‘sine-like’ buckled structure, in which the two

rotated carbon atoms are slightly displaced in opposite out-of-plane directions, or a

‘cosine-like’ buckled structure, in which the two rotated carbon atoms are slightly

displaced in the same out-of-plane direction. The ‘sine-like’ structure is the lower-

energy configuration [258, 259] and is the structure studied in this work.
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(a) (b)

Figure 5.5: (a) Top-down and (b) in-plane views of the DFT-PBE-relaxed “sine-like”

SW defect structure in a 5× 5 supercell.

5.3.2 Defect formation energies

Figure 5.6 shows the DMC and DFT defect formation energies as a function of the

reciprocal of the system size with different methods to handle the quasirandom finite-

size effects. Both the DFT and DMC calculations used Dirac-Fock pseudopotentials.

The silicon and carbon chemical potentials were considered the energy per atom

of bulk silicon and monolayer graphene, extrapolated to an infinite system size.

Therefore, the variation in the results with system size that is shown in this figure

only arises from the finite-concentration and finite-size effects in the pure formation

energy. The DMC results obtained using the TA method are either performed

directly without using a control variate (CV) or by using the DFT results as a CV

by fitting to Eq. (5.8). The error bars on the ‘TA-DMC with CV’ data were obtained

using Gaussian propagation of errors through the fit of Eq. (5.8) to the DMC results

at all 24 twists. We also employed a twist-blocking technique [213] to get a standard

error estimate that accounts for both Monte Carlo random errors and finite-twist-

sampling random errors. The ‘TB-DMC’ data were obtained by grouping the data

of 24 twists into six blocks of four twists. Figure 5.6 demonstrates that the use of

a CV significantly reduces the random errors in the DMC energy data. However,
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the use of a twist-blocking approach to account for the remaining twist-sampling

errors does not affect the random error estimate significantly. The DFT results are

obtained with a fine k-point mesh and the TA-DFT results were calculated in the

same fashion as the TA-DMC results without a CV.
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Figure 5.6: DFT and DMC formation energies against reciprocal of supercell size

N , using different methods for dealing with momentum quantisation errors, for (a)

SiS, and (b) SW defects. The red dashed lines show an unweighted least-squares fit

of Eq. (5.9) to the TB-DMC data.

In theory, the most accurate way to obtain the TA energy is to fit Eq. (5.8) to

formation energies in a single block of all the twists and then to use TB to obtain the

error bars. We found that the difference between the TA and TB mean energies is

negligible in practice; thus, we only used the TB-DMC mean energies for the finite-

size extrapolation. However, the TB errors are not large enough to quantify the

quasirandom finite-size errors in the formation energies at different supercell sizes.

This finite-size noise must thus originate from such effects as the enforced supercell

commensurability of Ruderman-Kittel oscillations in the density and pair density

rather than momentum quantisation. Quasirandom finite-size effects are larger in

the DMC formation energies than in the DFT results, presumably because of the

explicit treatment of correlation in QMC methods. Performing DMC calculations

on a larger range of supercell sizes and presumably shapes would be straightforward

but expensive method to decrease these errors. The error bars on our DMC results

were obtained using the unweighted least-squares fit of the TB-DMC energy data.

Our final DFT and DMC defect formation energies are shown in Table 5.1, along
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Table 5.1: Theoretical static-nucleus formation energies for various point defects in

monolayer graphene. The carbon and silicon chemical potentials are the energies

per atom of graphene and bulk silicon, respectively. Results without citations were

obtained in the present work. ‘NTBM’ refers to a nonorthogonal tight-binding

model. To compare with experimental results, the vibrational free energies reported

in Table 5.3 should be added to the static-nucleus data reported in this table.

Method
Defect formation energy (eV)

SiS SW

DFT-PBE 3.77 [237], 6.85 [260]1, 3.59 4.71 [259], 4.32

DFT-LDA 4.66 [261]2, 4.86 [262], 5.42 [259]

NTBM 4.60 [239]

DMC 4.0(5) 5.82(3) [259] , 5(1)

DMC-corrected DFT 4.4(1) 4.9(1)

1 Reference [260] uses the ground-state energies of isolated atoms as chemical

potentials; for comparison with the other defect formation energies reported in this

table, the atomisation energies of graphene and bulk silicon should be, respectively,

added to and subtracted from the formation energy of Ref. [260].

2 This work extrapolates DFT energies at different system sizes in the same fashion

we do here. All other cited DFT works are performed at finite supercell size.
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with DFT results from the literature. At each system size, we evaluate a correction

to the DFT formation energy as a difference between the TB-DMC result and the

DFT result with a fine k-point grid. The DMC corrections to the defect formation

energies in different supercells, including the chemical potentials extrapolated to

the thermodynamic limit, are given in Table 5.2. The DMC-corrections to the

DFT defect formation energy of the Si-substitution and SW defects were around

0.8(1) eV and 0.5(1) eV, respectively. In general, the difference between the DFT

and DMC formation energies is expected to be dominated by short-range effects,

with systematic finite-concentration errors (due to electrostatic and elastic effects)

similar in DFT and DMC; this is confirmed by the similar gradients of the fitted

lines in Fig. 5.6. However, the difference between DFT and DMC shows quasirandom

fluctuations as a function of system size, which suggests that the best scheme for

using DMC to evaluate defect formation energies is to average the difference between

TB-DMC and fine-k-point DFT formation energies obtained in multiple supercells

and then to apply the resulting correction to DFT results extrapolated to the diluted

limit of infinite supercell size. Averaging over multiple supercells is clearly necessary,

because the difference between the DMC and DFT results obtained in different cell

sizes in Table 5.2 fluctuates randomly by an amount that is significantly larger than

the error bars on the individual differences. This is congruent with the finding of

Ma et al. [259] concerning the SW defect in the graphene sheet.
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Table 5.2: DMC corrections to the static-nucleus formation energies for Si

substitution and SW defects. Corrections were evaluated as the difference between

defect-formation energies calculated with TB-DMC using Eq. (5.8) and DFT-PBE

using a fine k-point grid. The DFT calculations use ultra-soft pseudopotentials

rather than the Trail-Needs Dirac-Fock pseudopotentials used by the QMC

calculations.

DMC correction to formation energy (eV)
Supercell

SiS SW

3× 3 1.07(9) 0.65(2)

4× 4 0.54(9) 0.27(2)

5× 5 0.91(9) 0.70(3)

Mean 0.8(1) 0.5(1)

The DMC literature result for the SW formation energy [259], which has a

comparatively tiny standard error, was only calculated in a 5 × 5 supercell with

no attempt to control finite-size effects; our standard error is larger because it

accounts for quasirandom finite-size effects. DFT-PBE significantly underestimates

the formation energy for both defects. The DFT-PBE differences in the zero-

point vibrational energies and Helmholtz free energies at 298 K between defective

and pristine graphene for the SiS and SW defects are shown in Table 5.3. These

vibrational free-energy contributions should be added to the static-nucleus defect-

formation energies in Table 5.1. The vibrationally corrected DMC defect-formation

energies are 3.6(1) and 4.4(1) at 298 K for SiS and SW defects, respectively.

Table 5.3: DFT-PBE vibrational contributions to the Helmholtz free energies of the

formation of various point defects in monolayer graphene. The contributions are

extrapolated to the dilute limit.

Vib. contrib. to form. energy (eV)
Temperature (K)

SiS SW

0 −0.44 −0.49

298 −0.41 −0.47
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5.3.3 SW transition state

Our PBE-DFT calculations predict that the true transition state corresponds to

the intermediate geometry, with two carbon atoms being displaced out of the plane

in different directions and two broken carbon bonds, as shown in Fig. 5.8c. The

NEB method has been used to generate a set of images between the reactant and

product structures of the system and then to optimise them to the minimum energy

pathway. The energy diagram in Fig. 5.7 illustrates the calculated energy barrier as

a function of the bond rotation from 0 to 90. The PBE-DFT values for the formation

and activation energies of the SW transformation are illustrated in Table 5.4. The

high-barrier energy is a result of the extensive atomic rearrangements, including the

breakage of two carbon bonds in the transition state. The high activation energy

for the SW transition state indicates that the formed SW defect will remain stable

under normal conditions and it is unlikely, even at high temperatures, to restore the

graphene structure to its pristine state after the SW defect has formed [247].

Table 5.4: The PBE-DFT activation barrier energy Ea and defect formation energy

for SW defects in graphene monolayer sheet ESW. The DFT results in [6] were

obtained using the DFT-PW91 functional.

Supercell Ea (eV) ESW (eV)

3× 3 9.68 6.84

5× 5 9.2[6], 9.44 4.8[6], 5.2

6× 6 9.394 4.898
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Figure 5.7: The energy barrier of the SW defect formation for a 6× 6× 1 supercell

as a function of reaction coordinates.
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Figure 5.8: The Stone–Wales transformation: (a)-(d) show the intermediate images

for the corresponding reaction coordinates at different rotation angles of the central

bond from 0◦ to 90◦ with respect to the loading direction. (c) The atomic

configurations of the SW transition state.

132



5.3.4 Bulk silicon atomisation energies

For bulk silicon, we used DFT-PBE lattice parameters of 5.469 Å. DMC atomisation

energies are plotted against system size in Fig. 5.9 for bulk silicon, showing that

finite-size effects are largely removed by extrapolation. The DFT-PBE vibrational

Helmholtz free energies per atom at 0 K and 298 K were found to be 61.9 meV/atom

and 36.1 meV/atom for silicon bulk, respectively. We also take this opportunity to

compare the bulk diamond-structure silicon results to the silicene, the 2D allotrope

of silicon. Silicene, the silicon counterpart of graphene, is a honeycomb structure

of silicon atoms with slightly buckled hexagonal sublattices that result from mixing

sp2 and sp3 hybridization. The dynamical stability of free-standing silicene has

been demonstrated theoretically using DFT calculations [263, 264]; however, in

practice it can only be synthesized experimentally on metal surfaces [265–267].

The fundamental issue for any attempt to use silicene in practical devices is its

lack of thermodynamic stability. Our vibration results indicate that the vibrational

effects stabilise silicene [213] more than bulk diamond-structure silicon at room

temperature.
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Figure 5.9: TA-DMC static-nucleus atomisation energies of bulk silicon against N−1,

where N is the number of primitive cells in the supercell. The atomisation energies

are defined with respect to the DMC spin-polarised 3P0 ground states of an isolated

silicon atom.

The vibrational corrected DMC atomisation energies for bulk silicon extrapolated

to infinite system size, are reported in Table 5.5, along with DFT results. We found

the vibrationally corrected SJ-DMC atomisation energy to be 4.4815(6) eV and
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4.5073(6) at 0K and 298 K, respectively. We evaluated our DFT and DMC results

considering the results reported in the previous literature [268–271]. Both LDA-

DFT and PBE-DFT calculations significantly overestimated the atomisation energy

of bulk silicon in DFT compared with DMC. Compared to the earlier DMC works

[268, 270], there is a small but statistically significant difference from our DMC

result. This disagreement probably arises from the fact that the earlier works did

not use TA. The DMC and DFT-PBE results are in reasonable agreement with the

experimentally determined atomisation energy of bulk silicon. In comparison with

the silicene’s DMC atomization energies results, bulk silicon is energetically more

stable than silicene by a huge margin of 0.7522(5) eV/atom [213]. This quantifies the

significant thermodynamic challenge involved in producing free-standing silicene.

Table 5.5: Helmholtz free energies of THE atomisation of bulk silicon. The DFT-

PBE vibrational free-energies reported in Sec. 5.3.4 have been subtracted from our

static-nucleus atomisation energies. Results without citations were obtained in the

present work.

Method
Atomisation energies (eV/atom)

Bulk silicon

Temperature 0 K 298 K

DFT-LDA 5.34 [268], 5.3 [269], 5.29 5.31

DFT-PW91 4.653 [268]

DFT-PBE 4.55 4.58

GFMC 4.51(3) [269]1

DMC 4.62(1) [268], 4.63(2) [270], 4.4815(6) 4.5073(6)

Experiment 4.62(8) [271, 272]

1 Green’s function Monte Carlo method.

5.4 Conclusion

In summary, we used the DMC method to investigate the accuracy of DFT in first-

principles studies of point defect formations in monolayer graphene. The DMC

and DFT calculations of defected graphene were performed for different simulation
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cells. We found that DFT and QMC defect formation energies are affected by both

systematic and quasirandom finite-concentration effects. Although the systematic

finite-concentration effects in both QMC and DFT are similar, (so such that they

can be eliminated by extrapolation using an appropriate scaling law), the residual

quasi-random errors in our DMC formation energy are significant. These errors

can be reduced by taking the difference between the TA QMC and DFT formation

energy over different cell sizes, then applying that as a correction to DFT formation

energies extrapolated to infinite system size.

Our results suggest that DFT-PBE underestimates the formation energies of

isolated silicon substitutions and Stone–Wales defects by a significant margin of

order 1 eV. Vibrational contributions to the free energies of the formation of point

defects in graphene have also been found to be non-negligible. Thus, there are

many factors to balance when evaluating defect formation energies in 2D materials

from first principles. We have also investigated the SW defects’ transition state

and the associated activation barrier energy at different system sizes. We found

that the energy barrier of SW transformation is as high as 9.3 eV due to the

atomic rearrangement caused by the 90◦ rotation of a single carbon–carbon bond.

We also calculated the DMC atomisation energies of bulk silicon to be in good

agreement with experimental results. Our results indicate that the DFT-PBE

calculations significantly overestimate the bulk silicon atomisation energy. We have

also compared the QMC atomization energies of bulk silicon and monolayer silicene,

finding that bulk silicon is more stable than silicene by 0.7522(5) eV per atom.
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Chapter 6

Conclusions

QMC methods are accurate many-body approaches that can be applied to a wide

range of extended condensed materials or molecules. In this thesis, we have studied

the electronic, vibrational and optical properties of several materials using QMC

methods. In Chapter 1, we briefly reviewed the electronic structure methods most

commonly used in continuum condensed matter physics problems–namely, Hartree-

Fock theory, density functional theory and variational and diffusion quantum Monte

Carlo.

In Chapter 2, we developed a new methodology that accounts for the vibrational

effects on electronic structure based on the random sampling of the vibrational

normal coordinates from the nuclear wave functions within the BO approximation.

We started with a brief summary of the current developments in this area and

then outlined the vibrational renormalisation theory. We assumed that the atoms

in a crystalline solid can be considered frozen but randomly displaced from their

equilibrium lattice positions due to the quantum and thermal effects of lattice

vibration, resulting in a distribution of electronic excitation energies with a mean

value that differs from the static-nucleus gap. On the timescale of nuclear motion,

electronic transitions are instantaneous; therefore, the vibrational renormalisations

of optical gaps are obtained by averaging gap energies over a set of randomly sampled

atomic configurations. The formal description of the proposed technique was then

discussed in detail. We presented an efficient method to unfold the electronic band

structure of crystalline systems with negligible computational expense, considering

the electronic states’ degeneracy.
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In Chapter 3, we explored the application of our developed random sampling

method and employed the unfolding algorithm for electronic band structures.

Atomic configurations were randomly sampled based on quasiharmonic phonon

calculations within density functional theory, and the excitation energy at each

configuration was evaluated using QMC. The zero-point renormalisation and

temperature dependent effects were calculated for a range of materials. Our

presented method is based on supercell computations, which can be computationally

expensive for a larger system size. Nevertheless, the number of needed atomic

configurations sampled to reach convergence within QMC calculations is significantly

reduced to a small number (24) of random configurations by using the DFT

renormalised gaps as a control variate to reduce the statistical error bar of QMC

gaps. Our results show that averaging the band gap over atomic configurations

reduces statistical error bars, and the additional cost of vibrationally averaging QMC

calculations is relatively small. The vibrational renormalisation of the benzene band

gap shows a noticeable dependency on the DFT functionals used to produce the

harmonic vibrational phonons and generate the geometry and the orbitals for the

QMC calculations. The energy difference between the PBE and LDA functionals

renormalised gaps was approximately −0.119(5) eV, introducing a further source

of error into our QMC gap calculations. The implementation of a superior wave

function with a backflow function and multideterminant expansions in the benzene

calculations substantially improved the agreement with the experimental results.

In the calculations of bulk Si and C-diamond renormalised band gaps, the phonon

frequencies and bond lengths of semiconductors have been stated to be accurately

described by the LDA-DFT functional [16]. Using the LDA structure and phonon

frequencies, we reported the static-nucleus and vibrationally renormalised direct

gaps of bulk Si and C-diamond. The SJ-DMC renormalised gap calculations of

C-diamond gave the largest vibrational correction in our presented calculations by

around −1.0(1) eV, which indicates strong electron-phonon coupling effects. On

the other hand, the SJ-DMC renormalisation calculations of bulk Si direct gap

show small but not trivial vibrational corrections, which indicate the weak effect of

electron-phonon coupling on the band gap. The vibrational correction of the direct

optical gap of monolayer hBN was about −0.60(4) eV, whereas the indirect optical
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gap correction exhibited a small reduction. We also investigated the quantum effect

of zero-point motion on optical gaps of the vdW system of bulk hBN. We calculated

the quantum effect of zero-point motion on the optical gaps of bulk hBN. It is clear

that the SJ-DMC renormalisation corrections for the bulk hBN band gaps are not

negligible for the size of the studied system. In all our gap calculations, the DFT

method significantly underestimated the band-gap energy.

In Chapter 4, we performed QMC calculations to simulate finite concentrations

of charge carriers interacting through the Keldysh interaction in 2D materials. At

the low density limit, the electron-hole relaxation energy, PCF and contact PCF

were calculated. The calculated relaxation energy showed some consistency with

earlier work using Coulomb interactions. For a range of density parameter rs values

larger than the size of an isolated trion, the results indicated the formation of the

negative trion. Our results also showed that the electron-hole relaxation energy

approached the isolated negative trion energy at extreme low densities. The findings

of pair correlation functions, particularly the electron-hole contact PCF, will be of

advantage in calculating the electron-hole recombination rate.

Finally, in Chapter 5, we considered the properties of point defect formations

in monolayer graphene–namely, the silicon substitutions and Stone-Wales defects–to

benchmark the accuracy of the widely used DFT method in the study of point defects

in graphene sheet. The defect formation results showed that the residual quasi-

random finite-size errors in our DMC formation energy were significant. Therefore,

we suggested that the best way to calculate the defect formation energies is to use

the difference between the TA QMC and DFT formation energy as a correction to

DFT formation energies extrapolated to infinite system size. Our results showed

that DFT-PBE underestimates the defect formation energies of isolated silicon

substitutions and Stone-Wales defects by a significant margin (1 eV). Moreover,

the PBE-DFT activation energy for the SW transformation was as high as 9.3 eV,

in good agreement with earlier work. The DMC atomisation energy of bulk silicon

was also estimated and found to be in excellent agreement with the experimental

data.
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[3] G. G. Spink, P. López Ŕıos, N. D. Drummond, and R. J. Needs, “Trion

formation in a two-dimensional hole-doped electron gas,” Phys. Rev. B, vol. 94,

p. 041410, Jul 2016.

[4] R. J. Hunt, “Ab initio modelling of two-dimensional semiconductors,” 2019.

[5] L. Viña, S. Logothetidis, and M. Cardona, “Temperature dependence of the

dielectric function of germanium,” Phys. Rev. B, vol. 30, pp. 1979–1991, Aug

1984.

[6] L. Li, S. Reich, and J. Robertson, “Defect energies of graphite: Density-

functional calculations,” Phys. Rev. B, vol. 72, p. 184109, Nov 2005.

[7] M. Born and J. R. Oppenheimer, “On the quantum theory of molecules,” Ann.

Physik, vol. 87, no. 457, 1927.

[8] N. W. Ashcroft, Solid state physics. New York : South Melbourne ; London:

Holt, Rinehart and Winston, Brooks/Cole, Thomson Learning, 1976.

[9] A. Szabo and N. Ostlund, Modern Quantum Chemistry: Introduction to

Advanced Electronic Structure Theory. Dover Books on Chemistry, Dover

Publications, 2012.

139



[10] J. Kohanoff, Electronic structure calculations for solids and molecules : theory

and computational methods. Cambridge: Cambridge University Press, 2006.

[11] J. A. Pople, “Nobel lecture: Quantum chemical models,” Rev. Mod. Phys.,

vol. 71, pp. 1267–1274, Oct 1999.

[12] R. G. Parr and Y. Weitao, Density-Functional Theory of Atoms and Molecules.

International Series of Monographs on Chemistry, New York: Oxford

University Press, Incorporated, 1989.

[13] R. M. Martin, Electronic structure : basic theory and practical methods.

Cambridge: Cambridge University Press, 2004.

[14] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev.,

vol. 136, pp. B864–B871, Nov 1964.

[15] W. Kohn and L. J. Sham, “Self-consistent equations including exchange and

correlation effects,” Phys. Rev., vol. 140, pp. A1133–A1138, Nov 1965.

[16] S. Baroni, S. De Gironcoli, A. Dal Corso, and P. Giannozzi, “Phonons and

related crystal properties from density-functional perturbation theory,” Rev.

Mod. Phys., vol. 73, no. 2, p. 515, 2001.

[17] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient

approximation made simple,” Phys. Rev. Lett., vol. 77, pp. 3865–3868, Oct

1996.

[18] A. D. Becke, “Density-functional thermochemistry. III. the role of exact

exchange,” J. Chem. Phys., vol. 98, no. 7, pp. 5648–5652, 1993.

[19] C. Lee, W. Yang, and R. G. Parr, “Development of the Colle-Salvetti

correlation-energy formula into a functional of the electron density,” Phys.

Rev. B, vol. 37, pp. 785–789, Jan 1988.

[20] F. O. Kannemann and A. D. Becke, “van der Waals interactions in density-

functional theory: Intermolecular complexes,” J. Chem. Theory Comput.,

vol. 6, no. 4, pp. 1081–1088, 2010.

140



[21] S. Grimm2011e, “Density functional theory with London dispersion

corrections,” Comput. Mol. Sci., vol. 1, no. 2, pp. 211–228, 2011.

[22] A. Tkatchenko and M. Scheffler, “Accurate molecular van der Waals

interactions from Ground-State Electron density and free-atom reference

data,” Phys. Rev. Lett., vol. 102, p. 073005, Feb 2009.

[23] A. Tkatchenko, R. A. DiStasio, R. Car, and M. Scheffler, “Accurate and

efficient method for many-body van der Waals interactions,” Phys. Rev. Lett.,

vol. 108, p. 236402, Jun 2012.

[24] W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Rajagopal, “Quantum Monte

Carlo simulations of solids,” Rev. Mod. Phys., vol. 73, pp. 33–83, Jan 2001.

[25] R. J. Needs, M. D. Towler, N. D. Drummond, P. López Ŕıos, and J. R.
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[217] R. Muñoz and C. Gómez-Aleixandre, “Review of CVD synthesis of graphene,”

Chem. Vap. Depos., vol. 19, no. 10-11-12, pp. 297–322, 2013.

[218] L. Vicarelli, S. J. Heerema, C. Dekker, and H. W. Zandbergen, “Controlling

defects in graphene for optimizing the electrical properties of graphene

nanodevices,” ACS Nano, vol. 9, no. 4, pp. 3428–3435, 2015.

[219] P. Y. Huang, J. C. Meyer, and D. A. Muller, “From atoms to grains:

Transmission electron microscopy of graphene,” MRS bulletin, vol. 37, no. 12,

pp. 1214–1221, 2012.

[220] S. J. Zhang, S. S. Lin, X. Q. Li, X. Y. Liu, H. A. Wu, W. L. Xu, P. Wang, Z. Q.

Wu, H. K. Zhong, and Z. J. Xu, “Opening the band gap of graphene through

silicon doping for the improved performance of graphene/GaAs heterojunction

solar cells,” Nanoscale, vol. 8, pp. 226–232, 2016.

[221] A. Hashimoto, K. Suenaga, A. Gloter, K. Urita, and S. Iijima, “Direct evidence

for atomic defects in graphene layers,” Nature, vol. 430, pp. 870–873, Aug 2004.

[222] A. W. Robertson and J. H. Warner, “Atomic resolution imaging of graphene

by transmission electron microscopy,” Nanoscale, vol. 5, pp. 4079–4093, 2013.

161



[223] M. T. Lusk and L. D. Carr, “Nanoengineering defect structures on graphene,”

Phys. Rev. Lett., vol. 100, p. 175503, Apr 2008.

[224] G. M. Yang, H. Z. Zhang, X. F. Fan, and W. T. Zheng, “Density functional

theory calculations for the quantum capacitance performance of graphene-

based electrode material,” J. Phys. Chem. C, vol. 119, no. 12, pp. 6464–6470,

2015.

[225] Y. Okamoto, “Density functional theory calculations of lithium adsorption and

insertion to defect-free and defective graphene,” J. Phys. Chem. C, vol. 120,

no. 26, pp. 14009–14014, 2016.

[226] E. Kaxiras and K. C. Pandey, “Energetics of defects and diffusion mechanisms

in graphite,” Phys. Rev. Lett., vol. 61, pp. 2693–2696, Dec 1988.

[227] A. A. El-Barbary, R. H. Telling, C. P. Ewels, M. I. Heggie, and P. R. Briddon,

“Structure and energetics of the vacancy in graphite,” Phys. Rev. B, vol. 68,

p. 144107, Oct 2003.

[228] S. Azevedo, J. R. Kaschny, C. M. C. de Castilho, and F. de Brito Mota,

“A theoretical investigation of defects in a boron nitride monolayer,”

Nanotechnology, vol. 18, p. 495707, Nov 2007.

[229] J. R. Reimers, A. Sajid, R. Kobayashi, and M. J. Ford, “Understanding and

calibrating density-functional-theory calculations describing the energy and

spectroscopy of defect sites in hexagonal boron nitride,” J. Chem. Theory

Comput., vol. 14, no. 3, pp. 1602–1613, 2018.

[230] W. H. Blades, N. J. Frady, P. M. Litwin, S. J. McDonnell, and P. Reinke,

“Thermally induced defects on WSe2,” J. Phys. Chem. C, vol. 124, no. 28,

pp. 15337–15346, 2020.

[231] F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, “Structural defects in

graphene,” ACS Nano, vol. 5, pp. 26–41, Jan 2011.

[232] J. D. Wadey, A. Markevich, A. Robertson, J. Warner, A. Kirkland, and

E. Besley, “Mechanisms of monovacancy diffusion in graphene,” Chem. Phys.

Lett., vol. 648, pp. 161 – 165, 2016.

162



[233] C. Lijie, S. Li, C. Jin, D. Jariwala, W. Dangxin, L. Yongjie, A. Srivastava,

Z. F. Wang, K. Storr, L. Balicas, L. Feng, and P. M. Ajayan, “Atomic layers of

hybridized boron nitride and graphene domains.,” Nat. Mater., vol. 9, no. 5,

pp. 430 – 435, 2010.
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