
Meta Agent Teaming Active Learning for Pose Estimation

Jia Gong1 Zhipeng Fan2 Qiuhong Ke3 Hossein Rahmani4 Jun Liu1∗

1Singapore University of Technology and Design, Singapore; 2New York University, United States
3The University of Melbourne, Australia; 4Lancaster University, United Kingdom

jia gong@mymail.sutd.edu.sg, zf606@nyu.edu, qiuhong.ke@unimelb.edu.au

h.rahmani@lancaster.ac.uk, jun liu@sutd.edu.sg

Abstract

The existing pose estimation approaches often require a
large number of annotated images to attain good estimation
performance, which are laborious to acquire. To reduce
the human efforts on pose annotations, we propose a novel
Meta Agent Teaming Active Learning (MATAL) framework
to actively select and label informative images for effective
learning. Our MATAL formulates the image selection pro-
cedure as a Markov Decision Process and learns an optimal
sampling policy that directly maximizes the performance of
the pose estimator based on the reward. Our framework
consists of a novel state-action representation as well as
a multi-agent team to enable batch sampling in the active
learning procedure. The framework could be effectively op-
timized via Meta-Optimization to accelerate the adaptation
to the gradually expanded labeled data during deployment.
Finally, we show experimental results on both human hand
and body pose estimation benchmark datasets and demon-
strate that our method significantly outperforms all base-
lines continuously under the same amount of annotation
budget. Moreover, to obtain similar pose estimation accu-
racy, our MATAL framework can save around 40% labeling
efforts on average compared to state-of-the-art active learn-
ing frameworks.

1. Introduction

Human hand (or body) pose estimation, aiming to lo-
calize the positions of specific key points in images, is an
important task that has a wide range of applications such
as augmented reality [11], sign language translation [21],
and human-robot interaction [40]. Despite the great suc-
cess of existing deep learning based pose estimation meth-
ods [63, 2, 15, 59, 19, 10, 56], they are notoriously data-
hungry. Furthermore, acquiring pose annotation is often
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very expensive and time-consuming, e.g., annotating a sin-
gle image in MPII dataset [1] takes around 40 seconds,
which limits the development of large-scale datasets. Ac-
cordingly, with the limited scale of the dataset, it is essential
to develop algorithms to use data more efficiently.

Active learning (AL), which proactively selects the most
informative unlabeled images to annotate, is one promising
solution to this problem. Recent active learning-based pose
estimation frameworks [38, 58, 4, 5, 22] can be categorized
into uncertainty-based or distribution-based methods. The
uncertainty-based methods [22, 58, 38] query annotations
for the samples with the lowest confidence scores. How-
ever, as shown in [24], neural networks tend to be over-
confident with unfamiliar samples, leading to overestimated
model performance and therefore lowering the labeling ef-
ficiency. Meanwhile, the distribution-based methods [35, 4]
aim to query annotations for representative images from the
unlabeled dataset. However, the most representative images
w.r.t. the unlabeled set may not always be the most infor-
mative ones to the pose estimator, as the estimator may have
already learned similar knowledge from earlier samples. As
the result, for both types of methods, their image selection
strategy does not directly relate to the improvements of the
pose estimator, leading to suboptimal performance.

Moreover, these methods suffer in the batch setting,
where the active learning algorithm selects multiple images
for annotation in one turn. Existing traditional methods
[22, 58] rely on selecting the most informative or represen-
tative images to construct a batch, disregarding the redun-
dancies in the formed batch. Recently, several works [4, 35]
explore the usage of distance-based clustering to identify
unique images yet maintain good coverage of the dataset.
However, the adopted clustering algorithms tend to be less
effective in the high-dimensional space, leading to less
effective sample selection processes during AL iterations
[34]. Therefore, it is important to construct a batch of sam-
ples for annotation in an intelligent way, taking care of both
the informativeness of each individual image and the overall
diversity of the batch.
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To address the aforementioned issues in a single end-to-
end learning framework, we propose a novel Meta Agent
Teaming Active Learning (MATAL) model for human hand
(or body) pose estimation, which leverages an agent team
to learn a teaming sampling policy from data. Our main in-
sight is that selecting a batch of informative yet diverse im-
ages for annotation can be viewed as a teamwork of a set of
agents, where each agent in the team selects one image col-
laboratively based on the other agents’ decisions. Then this
active learning procedure can be formulated as a Markov
Decision Process (MDP) [45], which could be solved with
Reinforcement Learning (RL). The agent team receives a
state signal characterizing the distribution of the images in
the dataset and cooperatively generates a batch of actions
to decide which images should be labeled. To help the
agent team to identify informative samples for annotation,
we introduce a novel state-action representation by leverag-
ing Kinetic Chain Space (KCS) to encode the topological
information of the hand (or body) pose. Finally, as the la-
beled dataset will expand with the new annotated data, we
train our model via meta-learning to facilitate fast adapta-
tion to the iteratively enlarged labeled dataset.

In summary, our main contributions are: 1) We for-
mulate the pose estimation active learning procedure as a
Markov Decision Process (MDP) and develop a Reinforce-
ment Learning (RL) based framework for effective sample
selection. 2) To help the learning of the agents, we propose
a state-action representation to characterize the informative-
ness and representativeness of the samples. 3) We validate
the efficacy of the proposed MATAL framework on both
human hand and body pose benchmarks.

2. Related Work
Pose Estimation. Below we briefly review the recent pose
estimation methods. More works can be found in [7, 18].

Several approaches [55, 61, 32, 41, 30, 42, 20, 62, 8]
have investigated the usage of deep learning to predict hand
poses from depth or RGB-D images. These methods em-
ployed heatmap [52], pose structure information [44] or
hand’s shape information [26] to improve the performance.
More recent works [63, 29, 17, 64] derived the hand joints’
poses from RGB inputs. Similarly, recent human body pose
estimation approaches [49, 61, 27, 43, 31, 10] focused more
on deriving body joints’ poses from RGB images. The state-
of-the-art Stacked Hourglass [56] employed an encoder-
decoder structure to predict joints’ locations as heatmaps,
while the HRNet [43] maintained high resolution represen-
tations through the process to better localize the joints. Our
framework does not assume a specific architecture for the
pose estimator and could be used with various existing mod-
els to improve their annotation efficiencies.

To reduce the need of labeled data, learning methods
with less supervision signal, such as weakly-supervised

learning [28, 23, 8], semi-supervised learning [39, 3, 54]
and self-supervised learning [9, 51], have attracted much
attention recently. These methods utilize the unlabeled data
to improve the performance. However, most of the methods
still rely on the help of labeled data to distill useful informa-
tion from the unlabeled images. This means that the quality
and informativeness of labeled data are still crucial in their
methods. Our active learning approach is parallel to these
methods and could be integrated into the labeled data col-
lection process to significantly reduce the annotation cost.

Active Learning for Pose Estimation. Active learning is
an important machine learning problem, which has received
lots of attentions [35, 58, 6, 22]. In recent years, several
works explored applications of active learning for pose es-
timation. Liu et al. [22] introduced an uncertainty based
estimator, utilizing the entropy of the predicted heatmaps to
select the informative images. Yoo et al. [58] proposed a
loss prediction module, which is learned together with the
target model to predict the losses of unlabeled samples. A
subset of unlabeled samples with high predicted loss values
is selected for annotation. Shukla et al. [38] extended [58]
to improve the correlation between the predicted and true
loss values. The work in [4] used the Bayesian uncertainty
to estimate the confidence of the pose estimator’s prediction
and combined this with Core-set sampling [35] to perform
selection. Caramalau et al. [5] employed Graph Convolu-
tional Networks (GCN) to model the relation between la-
beled and unlabeled data. They then proposed two GCN-
based sampling approaches based on uncertainty and distri-
bution, respectively. Though these methods have achieved
increasingly accurate measurements for uncertainty or dis-
tribution of the images, their sampling policies are not di-
rectly related to the performance of the pose estimator, lead-
ing to limited performance improvement. We address this
by learning a sampling policy driven by the reward that di-
rectly relates to the performance of the pose estimator. To
the best of our knowledge, we are the first Active Learning-
based multi-agent framework to learn a batch sampling pol-
icy that promotes the learning of the pose estimator.

Reinforcement Learning in Pose Estimation. Reinforce-
ment learning (RL), which is a learning paradigm to solve
MDP problems, aims to learn a policy that takes actions to
maximize the accumulated reward in MDP [25, 45, 57, 50].
Recently, several works [33, 13] explored different applica-
tions of RL in pose estimation tasks. Jianzhun et al. [36]
used RL to learn to manipulate the 3D object to match
the ground truth mask. Another work [14] considered the
multi-camera settings in the human body pose estimation
task and leveraged an RL model to select the appropriate
viewpoints (or cameras) to improve the performance of the
pose estimator. Both of them involved RL into the pose
estimation procedure, however, with completely different
formulations to ours. Instead of employing RL to directly
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Figure 1. Overview of our MATAL framework for hand pose estimation (MATAL for human body pose estimation shares the similar
structure). The solid lines describe the data flow at the tth active learning iteration and dot lines are that of the (t + 1)th iteration. Given
a labeled sample pool DL

t and an unlabeled sample pool DU
t , our active learning framework works as follows: 1) We first project both

the DU
t and DL

t to the feature spaces with the pose estimator gt, then construct the state st and action space At from the feature spaces.
The state st records the differences between DU

t and DL
t in the feature spaces, and the consumption of annotation budget. The action

space At contains the projection of DU
t in the feature spaces. Each action at ∈ At corresponds to a unique image in DU

t and describes
the novelty, representativeness and appearance of the image. 2) The agent team follows the Q-learning [45] framework and evaluates the
state-action pair (st,at) to determine a set of actions {am

t }Nm=1 of raising corresponding images for annotation. 3) We then update DU
t+1

and DL
t+1 by moving new annotated images from DU

t to DL
t . The pose estimator is retrained on DL

t+1 to obtain gt+1. 4) The reward rt+1,
which measures the improvement of pose estimator’s prediction accuracy on Dre as Acct+1 −Acct, is used to optimize the agent team.

solve pose/camera parameters, we address the task of active
learning for annotating selective informative samples under
a specific annotation budget, and design a state-action rep-
resentation with a novel meta agent teaming framework to
enable effective batch sampling.

3. Method
Given an unlabeled human hand (or body) dataset with a

limited annotation budget, the goal of active learning (AL)
is to annotate the most informative images iteratively to
maximize the performance of the target pose estimator. We
introduce a novel AL framework for human hand (or body)
pose estimation, which leverages an agent team to raise a
batch of informative images at each active learning iteration
as shown in Fig. 1.

In this section, we first show how AL for pose estimation
can be formulated as a Markov Decision Process (MDP)
(Sec. 3.1). Then we present our cooperative multi-agent
framework to perform effective batch selection and intro-
duce a compact representation to facilitate the cooperation
between agents (Sec. 3.2). Finally, we introduce the training
and deployment pipelines as well as a meta-optimization al-
gorithm, which facilitates the agents’ quick adaptation to
the enlarged labeled set in AL procedures during deploy-
ment (Sec. 3.3).

3.1. Active Pose Estimation as MDP

Existing AL algorithms [38, 58, 4, 5, 22] fall into the
paradigm of iteratively selecting a batch of images to label
until the annotation budget B runs out. In the tth iteration,
given an unlabeled set DU

t , a labeled set DL
t and a pose

estimator gt, these AL algorithms take the following steps:

(1) Evaluate the informativeness of each image in DU
t ; (2)

Select a batch of informative images to query annotation;
(3) Move the selected images from DU

t to DL
t then retrain

the pose estimator gt on the updated labeled dataset DL
t+1

to obtain gt+1.

In this paper, we aim at learning an optimal sampling
strategy that directly maximizes the performance of the tar-
get pose estimator under a fixed annotation budget, driven
by maximizing the designed reward. To ease the under-
standing, we assume there is a single agent to propose a
single image for annotation in this section. In Sec. 3.2, we
further discuss the image batch selection by multiple agents.
We formulate the AL steps as a MDP: (st, at, rt+1, st+1)
and convert the key AL steps as: (1) Estimate the state st
which characterizes the distribution difference between the
unlabeled setDU

t and the labeled setDL
t at the tth iteration.

(2) Evaluate each state-action pair (st, at) to determine an
image to be annotated. (3) Update DL

t , DU
t to DL

t+1, DU
t+1

by moving newly annotated image from DU
t to DL

t . Re-
train gt on the updated DL

t+1 to obtain gt+1 and update the
state to st+1 based on DL

t+1 and DU
t+1. (4) Compute the re-

ward rt+1 based on gt+1 and gt evaluated on a separatedly
reserved reward set Dre to update the agent.

We adopt the Q-learning algorithm [45] to solve this
MDP problem, in which the agent scores each state-action
representation pair (st, at) and takes the action at with the
highest score (i.e., the Q-value). By deriving reward from
the improvement of the pose estimator directly, we can op-
timize the agent to learn a policy that maximizes the reward
as well as the performance of the pose estimator. Below we
elaborate on the detailed definition of state st, action at, and
reward rt.
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State. Intuitively, the state st should capture the distribu-
tion gap between the labeled dataset DL

t and the unlabeled
dataset DU

t , which helps the agent to pick out the most in-
formative image that could compensate the distribution shift
between DL

t and DU
t . With an unbiased training set dis-

tribution, the pose estimator is more likely to generalize
well to unseen cases. Specifically, in pose estimation, we
consider two key attributes to characterize the distribution
drifts: appearance variation and pose topological variation,
which are also key considerations when collecting pose es-
timation datasets [60].

Based on these intuitions, we propose to collect two
kinds of cues including the appearance information and
topological information to characterize the distribution dif-
ference betweenDL

t andDU
t . Note that the difference is dy-

namical as it depends on the pose estimator gt. The design
of the state helps the agent to select appropriate samples for
the pose estimator gt during the active learning process.

For the appearance information fA of the sample x,
we collect the average pooled feature from an intermedi-
ate layer of the pose estimator gt, as shown in Fig. 1. This
feature depicts the general look of the image sample x.

For the topological information, we encode the topolog-
ical features such as the bone length and bone rotations via
Kinetic Chain Space (KCS) [53, 16]. More precisely, we
derive M bone vectors from the estimated pose ŷ = gt(x)
and concatenate them to form an M × n matrix, where n
is the dimension of the joint coordinates. Then the KCS is
computed as the inner product of the matrix and its trans-
pose. We denote the KCS for all bone vectors of the whole
hand (or whole body) as the global topological feature fP0 .
Moreover, the performance of pose estimator varies with
each joint [56], leading to different pose estimation qualities
over various local joints of the hand (or body). To help the
pose estimator to achieve good performance on each joint,
we additionally track the properties for the local parts of the
hand (or body). We decompose the whole hand (or whole
body) to six local parts including the palm and five fingers
(torso, head, left/right arm, and left/right leg for body). We
then compute the KCS for these parts as the local topologi-
cal features {fP1

, fP2
, ..., fP6

} of the image x.

In this way, we extract the appearance feature fA and
the topological features {fP0 , fP1 , ..., fP6} for the image
x. Then the appearance features of all data in the la-
beled and unlabeled datasets form the appearance feature
space FA. Similarly, we can build the topological fea-
ture spaces {FP0

, FP1
, ..., FP6

}. To model the distribution
drifts between the labeled dataset DL

t and the unlabeled
datasetDU

t , we regard the labeled and unlabeled datasets as
two domains and measure the domain gap between them.
Specifically, we adopt the Maximum Mean Discrepancy
(MMD) [47] and compute the gap for each feature space

S, where S ∈ {FA, FP0
, FP1

, ..., FP6
}, via MMD as:

KS =MMD(SL, SU ) =

nL∑
i=1

nL∑
j=1

k(pi, pj)

n2L
+

nU∑
i=1

nU∑
j=1

k(qi, qj)

n2U
−

nL∑
i=1

nU∑
j=1

2 ∗ k(pi, qj)
nLnU

,

(1)

where SL and SU are the distributions of S on DL
t and DU

t

respectively, andKS is a scalar representing the distribution
difference between SL and SU . We denote the samples in
SL and SU as p and q. nL and nU are the numbers of
samples in DL

t and DU
t , and k(·) corresponds to the radial

kernel [47] to measure the distance between two samples.
Moreover, the available budget is another piece of im-

portant information for the agent to perform an effective
selection. Here, we use the budget consumption ratio b
to represent this status. Finally, the state st is defined as:
{KFA

,KFP0
,KFP1

, ...,KFP6
, b}, which encodes the distri-

bution drifts between the labeled and unlabeled sets as well
as the available budget. It guides the agent to determine
which kind of images could benefit the pose estimator most.

Action. The action should ideally captures the potential
contribution of a specific unlabeled sample when adding it
to the labeled set DL

t . Intuitively, combining the state and
action representations, the agent should have enough infor-
mation to score each unlabeled sample and select an infor-
mative image from the unlabeled set DU

t to query annota-
tion. To this end, we associate each action at in the action
space At with a unique image x in the unlabeled pool DU

t .
To assist the selection of the informative sample, we

compute three kinds of features from each unlabeled image
x: 1) the novelty of the pose in the image x; 2) the represen-
tativeness of the image for the unlabeled pool; 3) the gen-
eral appearance information of the image. Intuitively, these
three features characterize the informativeness, the repre-
sentativeness of the pose as well as the appearance of an
unlabeled image x. We detail each representation below.

The novelty of the image helps estimate the potential
performance gain brought by adding accurate annotation.
However, it is hard to measure without the actual ground
truth pose. Therefore, we propose to approximately evalu-
ate it by utilizing the topological features from the labeled
set DL

t . Intuitively, the closeness of the global/local topo-
logical information indicates the similarities between the
whole/local part of the estimated pose and the ground truth
pose. A novel pose will likely have low similarities to any
pose from the labeled set DL

t . Therefore, we compute the
maximum cosine similarity between the unlabeled image x
and the labeled setDL

t individually on each topological fea-
ture space {FP0 , FP1 , ..., FP6} as {s0, s1, ..., s6}, and con-
sider it as a proxy for the pose novelty.

We then introduce our parameterization for the repre-
sentativeness of the sample. The labeled set DL

t and un-
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labeled set DU
t jointly describe the distribution of the data.

Therefore it is also important to sample representative im-
ages w.r.t. the unlabeled set DU

t , which could be charac-
terized by the distribution of the similarity scores. We in-
troduce a histogram-based representation d to record the co-
sine similarity distribution between x andDU

t on each topo-
logical feature space as {d0, d1, ..., d6}. Combining with
the parameters {s0, s1, ..., s6} representing similarity of x
toDL

t , the agent could avoid repeatedly sampling the repre-
sentative images that our pose estimator has already learned
from, leading to improved sampling efficiency.

Finally, we extract the image appearance feature fA of
the unlabeled image x as its appearance property (e.g.,
clothes texture, skin color, background, etc). The fi-
nal action representation at corresponding to the unla-
beled image x is the combination of these features: at =
{s0, s1, ..., s6, d0, d1, ..., d6, fA}, enabling the agent to ef-
fectively identify the informativeness of the unlabeled im-
age x and perform selection.

Reward. The reward is a metric that evaluates how much
the selected unlabeled image can benefit the target pose
model gt. We reserve a specific subset Dre for accurate
reward estimation before starting the active learning proce-
dure. Then, we measure the accuracy of the pose estimator
on this reward setDre, and the reward rt+1 is defined as the
difference of the accuracy between gt+1 and gt, as shown in
Fig. 1. Note Dre is only used for evaluation and not used in
any training process of the pose estimator. With the reward
rt+1, we can optimize the agent to select the most infor-
mative image to maximize the reward, leading to improved
pose estimation accuracy during each AL iteration.

3.2. Teaming Sampling Policy Learning

Sampling a single unlabeled image in each active learn-
ing iteration to query annotation is inefficient for two major
reasons [35]: (1) The performance gain brought by a sin-
gle sample is often hard to measure; (2) The pose estimator
needs to be retrained more frequently due to more iterations
involved. To address these issues, the most recent meth-
ods [38, 4, 5, 22] often query annotations for a batch of
samples at each active learning iteration.

However, it is less trivial to perform batch sampling in
our proposed framework. Using a single agent to generate
a batch of samples by raising images with high predicted
scores (Q-values) disregards the redundancies within the
batch, leading to inferior performance as shown in Sec. 4.3.

Therefore, we further introduce a cooperative agent team
module, consisting of a set of agents, working collabo-
ratively to select image batch effectively and efficiently.
Specifically, the agents in the team sequentially select sam-
ples for annotations, and each agent can observe the previ-
ous agents’ actions to perform the selection cooperatively.
For the mth agent in a N -agent team, we denote its pol-

𝑠!

ℎ!"

𝑎! 𝑄-value

16 128 128

c
𝑧!"

Figure 2. The architecture of the mth agent in the team. Note that
each agent shares the similar model architecture but with its own
parameters. at and hm

t are first fed into a linear layer with ReLU
activation to generate feature zmt ∈ R16. zmt , at and st are then
concatenated and passed through three linear layers with ReLU
activation in between to output the Q-value.

icy network as qm, and the action performed by it as amt .
Then, to model the sequential cooperation between agents,
we can additionally provide the mth agent with the actions
{ait}m−1i=1 of the previous m− 1 agents. However, it will re-
quire an increasingly deep and wide neural network to pro-
cess the information of {ait}m−1i=1 with a large m, leading to
undesired high computational complexity. To address this,
we use the the expectation of {ait}m−1i=1 , a fixed-length com-
pact representation of the previous agents’ actions, as an ex-
tra state for the mth agent. Mathematically, the expectation
of previous agents’ actions hmt is computed as:

hmt =
1

m− 1

m−1∑
i=1

ait, (2)

and then the action made by the mth agent becomes:

amt = argmax
at∈At

qm(st, at, h
m
t ; θm), (3)

where amt is the action selected by themth agent qm, which
is parameterized by θm, and at ∈ At is the candidate action,
which forms into the state-action pair (st, at) to be evalu-
ated by the agent qm. The structure of the mth agent is
depicted in Fig. 2.

Finally, we build our agent team module as {qm}Nm=1,
where N is the number of agents in the team. To train the
agent team, we follow the Double DQN formulation [50] to
optimize our agent team by minimizing the temporal differ-
ence (TD) error as:

TD(θ, θ̂) =
( N∑

m=1

qm(st, a
m
t , h

m
t ; θm)− rt+1

− γ
N∑

m=1

qm(st+1, a
m
t+1, h

m
t+1; θ̂m)

)2
,

(4)

where θm is the parameters of the mth agent’s policy net-
work, θ = {θ1, θ2, . . . θN} is the parameter set of all the
agents in the team, θ̂ denotes the parameters of the off-
policy network, used to keep the learned Q-value, and peri-
odically updates itself with θ, following the setting of Dou-
ble DQN [50]. Via such a cooperative mechanism, the agent
team performs batch sampling in each iteration effectively.
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Algorithm 1: Teaming Sampling Policy Learning
Input: agent team {qm}Nm=1, an initial pose estimator ginit, an

initial set Dinit with annotation and image batch size N
1 DL

init, DU
init, Dre ←− RandomPartition(Dinit)

2 while not done do // Episodes training
3 DL

0 ←− DL
init, DU

0 ←− DU
init, g0 ←− UPDATE(ginit, D

L
0 )

4 for t = 0 to T − 1 do // AL procedure
5 Build the state st and action space At (Sec. 3.1)
6 Use the agent team {qm}Nm=1 to select images

following Eq. 3: {xm}Nm=1 ⇐ {amt }Nm=1
7 Annotate data: {(xm, ym)}Nm=1 ← {xm}Nm=1

8 Update DU
t , DL

t and gt :
DL

t+1 ← DL
t ∪ {(xm, ym)}Nm=1, D

U
t+1 ←

DU
t \ {xm}Nm=1, gt+1 ←−UPDATE(gt, DL

t+1)
9 Compute reward on Dre:

rt+1 = Acc(gt+1)−Acc(gt)
10 end
11 Update {qm}Nm=1 following Eq. 4
12 end

3.3. Model Training with Meta Optimization

With the introduced RL for AL formulation in Sec. 3.1
and the agent teaming framework in Sec. 3.2, we introduce
the training and deployment pipelines in this section.

Given an unlabeled datasetDfull and an annotation bud-
get B, our MATAL pipeline works as follows. We first ran-
domly sample an initial subsetDinit to request annotations.
With the labeled initial subset Dinit, we further partition
it to simulate the AL procedure and train our agent team
{qm}Nm=1. Specifically, we partition the labeled initial set
Dinit into the labeled setDL

init, the unlabeled setDU
init, and

the reward setDre, and then have our agent team to play the
active batch image selection game following Sec. 3.1 and
Sec. 3.2. The detailed process is illustrated in Alg. 1. We
denote this phase of training the agent team on the initial
labeled set as Training Phase.

Furthermore, once our agent team is trained on Dinit, it
could be deployed to execute the real active learning proce-
dure on the rest of the unlabeled pool DU = Dfull\Dinit,
until the budget B ran out. We denote this phase as De-
ployment Phase, in which the agent team proposes batch
samples {xm}Nm=1 for annotation from DU at each itera-
tion and expands the labeled pool DL = DL ∪ {xm}Nm=1

to update the pose estimator g. We set DL = Dinit at the
start of this phase and expand it in the Deployment Phase.

With the enlarged labeled set DL, we can then retrain
our agent team on it to improve the performance of the RL
agent team, again following Alg. 1. Note that we set Dinit

in Alg. 1 to the most up-to-date DL each time when we
perform retraining in this Deployment Phase.

However, the training of the agent team {qm}Nm=1 on the
expanded labeled set DL could be time-consuming due to
the growing size of DL. To reduce the time complexity,
we further propose a Meta-Learning based extension of the

Alg. 1. Inspired by MAML [12], we consider each retrain-
ing process as a task and leverage the Meta-Learning [12]
to learn a good initialization for the policy network param-
eters that could quickly adapt to the new tasks of retraining
on the enlarged dataset. We adopt this Meta-Learning based
extension in the Training Phase and empirically show that
we could reduce the multi-agent team update cost by a half
without sacrificing the performance, as shown in Sec. 4.3.

4. Experiment
We conduct extensive experiments on both the human

hand and body pose datasets to evaluate the effectiveness of
our proposed MATAL framework.

For human hand pose estimation, we follow the ex-
perimental settings of [5] and evaluate the performance
of MATAL on three widely used datasets, ICVL [46],
NYU [48] and BigHand2.2M [60]. ICVL is a depth-based
hand image dataset and NYU is a larger RGB-D dataset col-
lected by multiple cameras. Furthermore, to evaluate the
efficacy of our method on large-scale datasets, we set up
experiments on BigHand2.2M [60], which contains around
2.2 million images collected from ten different subjects. For
human body pose estimation, we use MPII [60], which is an
RGB dataset widely used in recent works.

4.1. MATAL on Human Hand Pose Estimation

Baseline. We compare the performance of our MATAL
on hand pose estimation task with random sampling as well
as existing state-of-the-art methods, including Coreset [35],
MCD CKE [4], UncertrainGCN [5] and CoreGCN [5],
based on their reported results on each dataset.

Implementation Details. Following [5], we use Deep-
Prior [32] as the backbone of our pose estimator. We ex-
tract the feature map from the last convolutional layer of
DeepPrior, and perform average pooling by a 5 × 5 kernel
with stride 3, followed by flattening to generate a 128-D ap-
pearance feature vector. We use the 21 joints estimated by
DeepPrior and compute a 275-D topological feature vector.
We use 40 agents to build the agent team for image batch
selection on NYU and BigHand2.2M, and use 4 agents for
ICVL as it is much smaller than other datasets.

For each dataset, we first randomly sample a small num-
ber of images from the training set of the dataset to build
the initial set Dinit and the remaining images form the un-
labeled setDU . The sizes ofDinit in ICVL, NYU, and Big-
Hand2.2m datasets are 80, 800, and 800, respectively. Then
we train our MATAL onDinit via Alg. 1, in which theDinit

is split into three disjoint setsDre,DU
init andDL

init with the
ratio of 3:6:1. Later, we deploy the trained MATAL to sam-
ple the images from DU and initialize DL as Dinit. In the
Deployment Phase, the agent team is frozen to sample in-
formative image batches iteratively while the pose estima-
tor is updated every time a newly annotated batch arrives.
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(a) ICVL [46] (b) NYU [48] (c) BigHand [60] (d) MPII [1]
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Figure 3. (a)-(d): Active learning results of pose estimation over four datasets. The results of (a) ICVL (b) NYU (c) BigHand are for hand
pose estimation and the curves in these figures show the average mean-square error of the joints’ poses (lower is better) over different
numbers of annotated frames. The result of human body pose estimation on MPII dataset is presented in the sub-figure (d), where the
metric is the PCKh@0.5 (higher is better). (e)-(f): Ablation study for agent team on human hand and body benchmarks.

Each time the size of the labeled dataset DL doubles com-
pared to the previous time the agent team was trained, we go
back to the Training Phase to retrain our agent team mod-
ule via efficient meta optimization with Alg. 1, in which we
set Dinit to the most up-to-date labeled set DL. With the
updated agent team, we resume the AL procedure on DU .
These steps are repeated until the annotation budget B is
exhausted.

We set the learning rate of our policy network to 1e-4 and
the discount factor γ in Eq. 4 to 0.9. We use the average
joint error to measure performance of the pose estimator
on the test set of each dataset. To show the robustness of
our method, we run our experiments 5 times and report the
mean performance and its deviation.

Result on ICVL. Fig. 3 (a) shows the performance of
our proposed MATAL on ICVL dataset. Our method con-
stantly outperforms state-of-the-art methods at each active
learning iteration by a clear margin. UncertainGCN out-
performs other existing methods at the beginning state, but
later CoreGCN achieves better performance, which is possi-
bly due to the fact that the fixed criteria based on uncertainty
or representativeness could not constantly identify informa-
tive samples during the entire AL procedure. Instead, our
MATAL selects images that can most benefit the pose esti-
mator with the proposed learning framework, which adapts
to the needs of the pose estimator at different stages. As
shown in Fig. 3 (a), our MATAL just needs 600 labeled im-
ages to reduce the average joint error to less than 12.5 mm,
while uncertainGCN [5] and MCD CKE [4] need more than
900 labeled images. At the end of the AL procedure with
1000 labeled images, the average joint error in our model is
reduced to 11.89 mm, which is much lower than the mini-
mum value obtained by other methods.

Result on NYU. This dataset was collected by multi-
ple cameras, leading to several images sharing nearly same
topological information. Although these images have dif-
ferent appearance features, the redundant topological infor-
mation significantly decreases the learning efficacy of the
pose estimator. As shown in Fig. 3 (b), the performance
of Coreset [35] is close to the error of random sampling,

as the Coreset mainly relies on the appearance feature in-
formation but disregards the topological information. MCD
CKE [4] obtains better performance by utilizing the pose
estimator’s uncertainty. Our method, benefited by learning
the sampling policy directly from data, significantly outper-
forms the MCD CKE baseline. On this dataset, our method
only requires 5K images to achieve the nearly same perfor-
mance (23.5 mm) obtained by other approaches that require
around 10K labeled images.

Result on BigHand2.2M. We use the large scale Big-
Hand2.2M [60] dataset to show the scalability of our
method. It contains around 2.2 million images of subjects
with different hand shapes and contains schemed, random,
and egocentric poses. Thus, this dataset is much more di-
verse and challenging. Figure 3 (c) shows the performance
of different AL algorithms. Our method still outperforms
other methods. It demonstrates that our MATAL can learn
to select informative images even on this diverse dataset.

4.2. MATAL on Human Body Pose Estimation

Baseline. We benchmark our MATAL framework with
SOTA active learning frameworks for human body pose es-
timation, including Coreset [35], LearningLoss [58], Learn-
ingLoss++ [38] and EGL++ [37].

Implementation details. Following the previous
works [38, 37], we use Stacked Hourglass [32] as the back-
bone of our pose estimator. We collect the feature map from
the bottleneck CNN layer of the last Hourglass block and
perform global average on it to build the image appearance
feature and use the predicted 16 joints to build the topo-
logical features. A team of 40 agents are set up for batch
selection, and 800 images are randomly sampled to build
the initial dataset Dinit. Moreover, we follow the previous
works [38, 37] and use PCKh@0.5 [31] to measure the per-
formance. Other settings follow the hand pose estimation.

Result on MPII. Figure 3 (d) demonstrates the perfor-
mance of MATAL on the body pose estimation task. All
existing methods achieve better results than random sam-
pling but their PCKh@0.5 scores are close to each other.
The EGL++ [37] tends to slightly outperform other exist-

11085



Table 1. Ablation study on the design of the state and the action
representation. We ablate the state/action representations by com-
paring the accuracy of the model with individual component re-
moved for state st and action at.

Method MSE (mm) with labeled samples
2000 4000 6000 8000

State w/o KFP0
28.44 25.21 23.47 23.01

State w/o {KFPi
}6i=1 28.30 25.24 23.66 23.23

State w/o KFA
29.00 25.65 24.49 23.55

State w/o b 28.62 25.22 24.10 23.85
Action w/o {si}6i=0 30.47 26.77 25.36 25.13
Action w/o {di}6i=0 27.60 24.82 24.51 24.12
Action w/o fA 29.18 25.84 24.44 23.69
MATAL 26.08 24.11 22.97 22.53

ing approaches and has a narrow deviation. Our MATAL
achieves significantly higher accuracy by learning a sam-
pling policy that directly maximizes the performance of the
pose estimator. The proposed MATAL uses around 25% of
labels to obtain PCKh@0.5 of 85.1% while using the full
annotated data yields PCKh@0.5 of 90.5%. Moreover, the
proposed MATAL requires only 4K images to achieve simi-
lar performance compared to others that require 6K images,
saving the labeling efforts of around 2K images.

4.3. Ablation Study

Effect of the state and action representations We per-
form an ablation study on NYU dataset to evaluate the con-
tribution of each component in our proposed state and ac-
tion representations. As the team agent relies on the state
to decide the sampling policy, we first investigate the influ-
ence of the state information by removing its components
individually from the complete model. Similarly, we also
discuss the effect of the information in the action vector. As
shown in Table 1, the complete MATAL gives the lowest
average joint error in all active learning iterations. Remov-
ing either global or local topological information in the state
will degrade the performance of our method. The largest in-
crease of average joint error occurs when the score of maxi-
mum similarity in action representation {si}6i=0 is removed.
It further verifies the effectiveness of using the difference in
global and local topological features to estimate the novelty
of the recovered poses.

Effect of agent team policy learning We further vali-
date the performance of the proposed multi-agent sampling
policy on NYU and MPII datasets. We first consider the us-
age of only one agent to select a single image in each active
learning iteration. Then we construct the second baseline
as one agent to select a batch of images in one shot. Here,
the images with N highest Q-values are sampled. Finally,
we present the performance of using N agents to select N
images in two different settings: with or without teamwork.
Figure. 3 (e) and (f) report the performance of these sam-
pling strategies. As shown in Fig. 3 (e) and (f), selecting
multiple images by either a single agent or noncooperative
multiple agents gives the worst results. We argue that this is

Table 2. Ablation Study for the meta optimization. We compare
MATAL with or without the Meta-Optimization and showcase that
Meta-Optimization significantly accelerates the retraining process.

Method MSE (mm) Time cost (h)
MATAL w/o meta 23.68 4.5
MATAL w meta 23.74 2

because these methods tend to select similar images whose
Q-values are high yet close to each other, leading to sev-
eral inefficiencies in the batch image selection setting. In-
troducing cooperation among separate agents helps address
this problem, as the proposed expectation of previous ac-
tions provides valuable information about the other agents’
decisions and the agent could learn to sample with a better
coverage of the underlying distribution. Using one agent to
select an image at each iteration also provides a competi-
tive performance but still tends to be inferior to our agent
team method. The main reason is that the minor improve-
ment of the pose estimator leads to small and noisy rewards,
making it difficult for the agent to learn a good sampling
policy. Furthermore, the time cost of the method that uses
one agent to select one image only is much higher than our
agent teaming method.

Effect of Meta-Learning We use meta-optimization to
update the agent team module more effectively and effi-
ciently. In this experiment, we compare the time cost of col-
lecting 5K informative images by our model with/without
meta-learning on the NYU dataset in Table 2. Note that
the time cost of sampling is almost the same for both mod-
els, but it is the time consumption for the retraining of the
agent team that really makes a difference. As shown in Ta-
ble 2, with our meta-optimization scheme, our model ob-
tains competitive performance while significantly reducing
the time consumption by more than a half.

5. Conclusion

In this paper we proposed an RL-based batch selec-
tion active learning framework for pose estimation named
MATAL. MATAL directly learns a cooperative sampling
policy for a team of agents to achieve effective image batch
selection. Moreover, a Meta-Optimization was introduced
to significantly accelerate the retraining of our team agent
during the Deployment Phase of the active learning proce-
dure. We conducted extensive ablation studies to verify the
design of our framework. Furthermore, we compared the
performance of our model with existing SOTA works on
four widely used datasets and obtained better accuracy on
all experiments.
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