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Abstract—Digital transformation is increasingly reliant
on service-based operations in fog networks. The latter is
a geo-dispersed form of the cloud, extending resources
closer to end-users for improved privacy and reduced
latency. The dispersion leverages diversity of compute-
network capacities and energy prices, while promotes the
coexistence of multiple providers. This drives variation in
operational cost, coupled with limited information sharing
across providers. Consequently, there is a critical need
for an orchestration solution that preserves autonomy
and optimizes operational cost across domains, while
meeting service requirements. This paper proposes a novel
service-based fog management and network orchestrator
(sbMANO), which utilizes service metadata in enabling
multi-provider resource management. The sbMANO is em-
powered with a novel optimization algorithm for service-
based joint request mapping and response routing. The
algorithm acts on partial information and preserves the
edge for delay-critical services. The performance of the
algorithm is evaluated analytically for delay-aware and
delay-agnostic variants. The results show that both achieve
near-optimal performance in maximizing user satisfaction
with minimum operational cost. Furthermore, the delay-
aware variant outperforms the agnostic counterpart, with
higher user satisfaction and lower operational cost.

Index Terms—Fog computing networks, service-based
networking, joint optimization, request mapping, response
routing, service management

I. INTRODUCTION

FOG computing extends the cloud closer to
end-users, to enable digital transformation [1]–

[4]. The reference architecture of [5] defines fog
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nodes as data centers (DC) of variant size, ranging
from small nano ones at the edge to large cloud
counterparts closer to the core. The variation of
capacity among fog nodes and the likely autonomy
of the fog provider from the network operator,
causes challenges in meeting service level agree-
ments (SLAs) while optimizing operational costs.
On one hand, the constrained capacity and connec-
tivity of edge data centers increases susceptibility
to resource straining, leading to higher processing
and transmission latency. Managing latency across
autonomous entities is not a trivial task. Because, it
typically requires sharing state information, deemed
sensitive by providers.

On the other hand, current indicators suggest that
the operational cost of a small DC is higher than that
of a large cloud counterpart. This is driven by the
difference in wholesale offers of energy [6], and the
lower efficiency of small DCs in utilizing power [7],
[8]. A qualitative study by the European Union
(EU) supports this argument, as it shows the Power
Utilization Effectiveness (PUE) is better in medium
to large data centers than small counterparts [9],
[10]. Moreover, the work of [11], [12] reveal that
only a marginal 3�8% of total energy consumption
is incurred by communications. This illustrates that
reducing communications by utilizing the edge has
a limited benefit in energy saving.

The argument above does not preclude the advan-
tages of the edge in latency reduction and privacy
preservation. It elucidates the need for optimized re-
source management based on service characteristics,
in addition to capacity constraints. So far, this need
has not been met by existing solutions. Instead, the
edge is generally prioritized in workload allocation,
to minimize network latency (examples [13], [14]).
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However, this work argues that a nondiscrimi-
natory allocation to the edge - irrespective of ap-
plication needs - can strain resources with latency
tolerant applications. This risks negating the sought
advantages of this scarce infrastructure. Not to men-
tion the side effect in reducing the consistency of
workload offered to the cloud, exposing it to higher
variation. Orthogonally, higher workload at the edge
translates to higher energy expenditure, resulting
in sub-optimal operational cost without significant
energy savings. Instead, allocation on need-basis
can promote the advantages of the edge and reduce
the operational costs.

This work addresses the need above by proposing
novel, decentralized: service-based fog Management
and Network Orchestrator (sbMANO); and, service-
based Alternating Direction Method of Multipliers
(sbADMM) algorithm. Together, they provide joint
request mapping and response routing in a multi-
provider fog ecosystem. The sbMANO facilitates
the exposure of applications and resources as at-
tributed services. The fog and network providers
utilize the capability to share only the cost of
their resources with each other. Each side utilizes
the other’s cost with their internal information in
sbADMM, to make optimized decisions. The main
contributions of this work are:

• First, we introduce the fog sbMANO, incorpo-
rating novel discovery and mapping services.

• Second, we model the fog ecosystem and for-
mulate the problem of service-based request
mapping and response routing.

• Third, we develop the novel sbADMM, having
partial information sharing between the fog
and network providers. We evaluate the algo-
rithm analytically and show that it achieves
near optimal performance in maximizing users’
satisfaction with minimum operational cost.

The remainder of this paper is structured as follows:
Section II reviews state of the art related work,
while Section III introduces the proposed sbMANO
within a fog ecosystem. Section IV models the
fog ecosystem and presents the problem formula-
tion. Section V describes the proposed sbADMM
algorithm, while Section VI presents the analytical
evaluation of the algorithm. Finally, Section VII
draws the conclusions and outlines future work.

II. RELATED WORK

Cloud-based ecosystems have been studied ex-
tensively in the literature [3], [4], [15]–[17]. So
far, the proposed solutions for resource management
either focus on homogeneous DC networks, or favor
the edge in workload allocation. The work in [13],
[18] tackles the problem of joint request mapping
and response routing in large DC networks. Their
solution ignores constraints on computing capacity
when minimize the propagation latency and energy
cost. This results in prioritizing closer nodes to end-
users for workload allocation. The work of [14]
tackles the same problem in content distribution
networks, and the solution similarly favors closer
nodes. In a fog ecosystem with the constrained edge
being the closest infrastructure, these solutions risk
straining edge resources. Rather than minimizing
latency, this work introduces awareness of response
time requirements per service. Consequently, pre-
serving the edge for demand of delay-critical ser-
vices, while allocating delay-tolerant counterparts to
farther points.

The works of [19], [20] define the fog as the
middle layer of infrastructure, between the cloud
and the edge. The work of [19] addresses the prob-
lem of service placement in large-scale, volatile,
edge networks. They propose a greedy algorithm
for minimizing the distance between fog and edge
nodes, constrained by the compute capacity of fog
nodes and their responsibility area. The work of [20]
addresses the problem of service placement and
request routing in Mobile Edge Computing (MEC)
networks. They propose an offloading solution that
takes into account compute and storage constraints
of MEC nodes. Both solutions prioritize closer
nodes irrespective of service needs. Additionally,
both solutions are expensive as they follow a cen-
tralized approach that assumes full knowledge of
compute-network state. This limits applicability to
scenarios where the fog and network resources are
managed by a single provider. In contrast, this
work proposes a decentralized solution that relies
on sharing cost information only, thereby suitable
for both single and multi-provider fog ecosystems.

Other work considers both the edge and the cloud.
The work of [21] solves the problem of fog node
planning and workload allocation, using particle
swarm optimization. The work of [22] proposes
a solution for minimizing the response time when
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selecting fog node(s) for offloading. Both solutions
follow a two-stage offloading approach, as workload
is first allocated to fog nodes and only offloaded to
the cloud when fog resources run low. In contrast,
the sbADMM algorithm proposed here does not
suffer from this sub-optimality, as it incorporates
response time awareness in one-stage workload dis-
tribution across the spectrum of edge to cloud nodes.

Furthermore, although strands of the work above
are at the granularity of services, they do not utilize
service popularity metrics to estimate the demand
per service and utilize it in planning resource alloca-
tions. However, existing work in DC networks such
as [23] show that considering service popularity for
demand prioritization offers significant gains.

III. PROPOSED FOG SERVICE-BASED MANO
(SBMANO)

A. Preliminary on the Fog Ecosystem
The fog ecosystem, illustrated in Figure 1, fol-

lows the OpenFog reference architecture [5]. It has
a tier-based hierarchical distribution; ranging from
a few large data centers at Tier-1 (cloud nodes)
to a large number of nano data centers at Tier-n
(edge nodes). Cloud nodes have virtually unlimited
capacity, while edge nodes have constrained coun-
terpart. Fog nodes are connected by an underlying
programmable network of forwarders. They follow
a similar hierarchy to that of fog nodes. Core
links of high bandwidth capacity and long distance
interconnect Tier-1 cloud nodes. While edge links
of constrained bandwidth and short distance connect
Tier-n edge nodes. Vertical links connect fog nodes
of different tiers, while horizontal links connect
nodes of the same tier. The ecosystem may have one
provider managing all infrastructure, or it may have
a separate fog provider and network operator. This
work assumes separate providers, with fog nodes
being managed by the fog provider, while links,
forwarders and access nodes are managed by the
network operator.

B. The Fog sbMANO
The ecosystem is controlled by a multi-provider

decentralized sbMANO, shown in Figure 1. It of-
fers service-based resource management and orches-
tration, particularly service discovery and demand
mapping. The structure of the sbMANO (Figure 2)
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Fog Node

Programmable  
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Fog sbMANO

Fog
sbMANO

Fog sbMANO Fog sbMANO

Physical Link
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Fig. 1. High-level view of a service-based fog ecosystem, showing
the decentralized sbMANO at the fog provider and access sides.
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Fig. 2. A simplified view of the Fog sbMANO showing how the
catalogs expose metadata to the discovery and mapping services. The
figure further show reliance on existing, supporting, services.

has the flexibility to operate with different configu-
rations for co-existing providers. This work presents
an example of two infrastructure providers: one
managing the computing side while the other man-
aging the access side. Each shares cost information
with the other for coordinated decision-making.

Service discovery is proposed through a pub-
lish/subscribe approach such as that of [24], for
exposing and disseminating services and their meta-
data. Here, service identifiers and metadata are
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published and subscribed to in service catalogs,
accessible by the discovery service. Services can
be any commodity offered on demand. Figure 2
illustrates an example of three services: user appli-
cations, network paths and compute nodes. Appli-
cation providers publish metadata as part of their
application offering to the fog provider. The latter
decides on application deployment in fog nodes,
based on user demand and requirements extracted
from the metadata.

The metadata model depends on the ecosystem.
Here, we assume three categories of information:
resource requirements, QoS thresholds and popular-
ity. Application popularity is determined by the fog
provider following demand analysis. So far, analysis
of workload observed in public clouds suggests that
application popularity follows a power law [25],
[26]. Orthogonally, the fog provider subscribes to
paths offered by the network, with path costs as
the metadata. Equivalently, the network operator
subscribes to fog nodes offered by the fog provider,
having node costs as the metadata.

The mapping service resolves a request for
application to a service point, hosted by a fog
node. It is comparable to the Domain Name Ser-
vice (DNS). However, unlike DNS, the proposed
mapping service decouples service and location
identifiers, while linking them in a many-to-many
mapping base (illustrated in Figure 3). The latter can
be updated periodically and on event basis, using an
optimization algorithm that solves the problem of
request mapping and response routing. Hence, the
mapping base is customized for each access node,
depending on the demand observed by the node.

The problem of request mapping and response
routing is treated here as a load management opti-
mization, similar to that presented in [13]. It focuses
on the trade-off between operational cost (OPEX)
and performance in a heterogeneous fog ecosys-
tem. This includes the diversity of: energy prices,
compute-bandwidth capacities and link length. The
problem cannot be solved centrally without disclos-
ing internal state information. However, this is not a
feasible option typically, because providers perceive
such disclosure as revealing sensitive knowledge to
competitors. Furthermore, with the geographic dis-
persion comes the need for autonomous optimiza-
tion, to allow for operation continuity within the
risk of disconnectivity. Therefore, this work takes
a decentralized approach in solving the problem.

SId1

SIdIv

SId2...
FogNode1

FogNodeN

FogNode2...

Service IdentifiersLocation Identifiers

Mapping Base per Access Node

Fig. 3. Schematic view of the proposed mapping base per access
node, maintained by the mapping service after the joint optimization
decides the fraction of application demand to be mapped to service
point at each fog node.

Specifically, developing a novel decentralized algo-
rithm based on ADMM [27]. The algorithm allows
for autonomy in solving the problem, by decoupling
the problem objectives and constraints with respect
to their owners. Each solves the problem from their
side and share their decision with the other.

Request mapping is treated as an access problem,
where each access node determines the fraction
of service demand mapped to a fog node. While
response routing is a fog provider problem, where
each fog node decides the fraction of service de-
mand to be processed and response routed back
to the access node. The two sides of the problem
are solved independently and each side share their
results with the other. The process is repeated until
convergence, then followed by updating the map-
ping base of each instance of the sbMANO.

Notably, we assume the path between each pair of
access and fog nodes has been calculated separately
by the network operator and provided to both nodes.
Hence, the problem of path calculation is outside
the scope of this work. This does not preclude that
paths share common links, thus competition over
bandwidth resources may occur. The next section
introduces the model of the fog ecosystem and for-
mulates the two-side problem ahead of introducing
the novel sbADMM algorithm.

IV. THE ECOSYSTEM MODEL

A summary of the model notations is provided in
Table I.

A. The Network
Recall that the ecosystem is assumed to follow

a tier-based hierarchical structure. For simplicity
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TABLE I
SUMMARY OF NOTATIONS

Notation Definition
V , N Set of forwarders and fog nodes in the ecosystem
v, n single access node, single fog node
e, E single edge, set of edges connecting forwarders
wuv, luv bandwidth capacity on edge euv , length of euv
pnv directional path in set of links from n to v

cn, �n CPU capacity, CPU energy price per fog node
i, I single service, set of services in the ecosystem
N i subset of N hosting service points of i
q
i
, c

i
, r

i request data, task, response data sizes of i
d
i maximum response time tolerance of i

c
i
n CPU capacity of service point of i at fog node n

�
i
v request rate of service i at access node v

�
i
v computation workload of service i by v’s demand
!

i,q
v ,!

i,r
v request and response traffic of i by v’s demand

�n CPU energy price of fog node n

�nv bandwidth energy price on the path from n to v

✓n, ✓nv CPU price of n, bandwidth price of path pnv

⌧
i
n processing latency of i service point at n
⌧
i
nv transmission latency of i’s traffic on path pnv

↵
i
vn mapping decision variable

�
i
nv response routing decision variable

t iteration step of the algorithm
µ
i
vn, ⇢ the Lagrange multiplier, the penalty parameter

�
i the Lagrange multipliers of the access problem

�
i the Lagrange multipliers of the fog problem

spri, sdual residual parameters of the algorithm
✏pri, ✏dual stopping criterion of the algorithm
Hp sum of ratios of links’ bandwidth on path p

without loss of generality, the rest of this work
assumes a three-tier ecosystem. The forwarding
network is modeled as a set of vertices V , V = |V|,
interconnected by a set of edges E = {euv|u, v 2

V, u 6= v}. Each edge euv 2 E is characterized by
hwuv, luvi, wuv is the bandwidth capacity in Mbps
and luv is the length in meters. A set of fog nodes
N , N = |N |, N  V are co-located with a subset
of forwarders. A fog node may be: a large tier-1
cloud node, a teir-2 cloudlet of moderate capacity
(micro DC), or tier-3 small edge node (nano DC).
Each n 2 N is characterized by a tuple hcn, �ni,
where cn is the CPU capacity in MIPS and �n is
the energy cost in Penny per MIPS (PpMIPS).

Each forwarder v 2 V connects an access node,
which acts as a gateway that connects end-users
to the fog ecosystem. The access node receives
users’ requests for applications and map them to
fog nodes, as well as relays the response back to
users. The number of users connected to an access
node depends on its resources at the user-facing
side. This includes physical layer resources, such as

spectrum availability for wireless communications.
Notably, users connect to their access node using
a wide range of technologies and this is usually
separated from the edge-to-core network, considered
in this work. Consequently, managing the access
resources is outside the scope of this work and
does not impact its outcomes. Nevertheless, we
assume access resources are optimized separately
and the solution provides a setting of the number of
connected users.

Each access-fog nodes pair (v, n) are likely to be
of the same tier. They are provided with request and
response forwarding paths, pvn and pnv respectively,
pre-established by the network operator. Paths may
traverse common links, hence sharing bandwidth ca-
pacity. This is generally the case when the network
implements link/node-based forwarding solutions,
such as [28], [29]. The bandwidth capacity on a
path is constrained by the thinnest link, i.e. wp =
min({we|e 2 p}). The access node of v is aware of
pvn, pnv length and bandwidth availability, while fog
node n is only aware of their costs. Equivalently, the
access node of v only knows the CPU cost of n, but
not its capacity.

B. Services
A set of services I, I = |I| is exposed in the

ecosystem. For simplicity, without loss of generality,
we focus on user application type of services. Each
service i 2 I is identified by a resource tuple
hqi, ci, rii and a QoS parameter, di. The resource
tuple specifies: the size of request data (qi bits), the
size of computation task of the service (ci MIPS)
and the size of response data (ri bits). The QoS
parameter, di, identifies the latency threshold of the
service in seconds, that is the maximum response
time tolerance. Furthermore, the fog provider may
extend the profile of a service i with such metrics
as popularity distribution and ranking; to facilitate
demand estimation as modeled in Section IV-D.

C. Service Points
Each fog node n 2 N hosts service point(s) for

one or multiple services. A service point of i 2

I is a virtual resource (i.e., a virtual machine, a
container or a mixture of both) that process requests
for i. It is worth noting that multiple instances of
a virtual machine or a container of i running on
n would still be exposed as a single service point.
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This is based on the assumption that a load balancer
exists to receive requests for i and delegate them to
the appropriate instance. N i

✓ N is defined as a
subset of fog nodes hosting service points of i. A
service point of i hosted at n is characterized by cin,
the compute capacity of the service point in MIPS.
The capacity of a service point is limited by the
total capacity of the fog node, cn, formulated in the
constraint below:

X

i2I

cin  cn (1)

D. Service Demand and Decision Variables
During a defined time slot, each access node

receives a number of requests for a subset of ser-
vices. We define �i

v as the average request rate per
second for service i, received by the access node
connected to v 2 V . �i

v is assumed to depend on
the popularity of the service. So far, models suggest
that the popularity of realistic cloud applications
follows a Zipf distribution [25], [26]. This does
not restrict the ecosystem model. However, the
distribution affects the expected volume of demand
per service. Because, �i

v translates into computation
and upload-download communication demands, �iv
and !i,q

v , !i,r
v respectively defined as:

�iv = �i
v · c

i (2)
!i,q
v = �i

v · q
i (3)

!i,r
v = �i

v · r
i (4)

An access node of v 2 V with demand for service
i decides ↵i

vn 2 [0, 1], the fraction of its demand for
i to be mapped to fog node n 2 N

i. Equivalently,
n decides �i

nv 2 [0, 1] fraction of v’s demand for i
to be processed and response routed back to v. It
is desired that ↵i

vn should equal �i
nv, indicating that

all the mapped demand is admitted for processing.

E. Operational Cost (OPEX)
This work focuses on two key cost drivers in a

fog ecosystem: energy and resource scarcity.
1) Energy: The computation energy cost, �n

PpMIPS is derived from the wattage consumption
per MIPS and Watt price in pennies per Watt. For
simplicity, we assume each 1 MIPS to consume ⇡ 1
Watt of power1, hence the Wattage consumption

1https://ourworldindata.org/grapher/computing-efficiency

can be directly derived from ci MIPS, for any
service i 2 I. The Watt price is dependent on
the underlying infrastructure, including the energy
price offered at the site. Orthogonally, each path pvn
or pnv has a communication energy cost, �vn,�nv
penny per Mbps (PpMbps) respectively. This is
derived from the wattage consumption for sending
1Mbps of data and Watt price. For simplicity of
analysis, we assume 1 Mbps to consume ⇡ 1Watt of
power [30]. Hence, the wattage consumption on pvn
and pnv can be derived from qi and ri, respectively.
Notably, since optimizing the network OPEX with
respect to upstream data is outside the scope of this
work, �vn is not considered further here.

2) Resource Scarcity: This is an abstract, unit-
less, cost that indicates the preciousness of a re-
source. The higher the constraints on capacity, the
more precious the node. Hence, compute resources
of a large cloud node are considerably cheaper
than their edge constrained counterparts. The same
applies to network links, particularly in an edge-
densified network. There, edge forwarders are di-
rectly connected to each other by constrained links,
in addition to being connected to the core by aggre-
gate links. As such, the cost of utilizing a core link
is significantly cheaper than a constrained edge. We
define ✓n as the CPU cost for executing 1 MIPS on
a service point of i, hosted at fog node n. While
✓nv is the bandwidth cost for transmitting 1Mbps of
response data on path pnv, from n to v. Notably,
the bandwidth cost on the request path pvn is not
considered, as recall that optimizing upstream data
OPEX is outside the scope of this work.

F. Quality of Service: Response Time

The response time is the elapsed time between
an access node sending a request to a service point
and receiving a response back. The term can be split
into: processing latency and communication latency.
The former depends on the task size, ci, and the
processing capacity of a service point, cin. The com-
munication latency is subdivided into: transmission
latency and propagation latency. Since this work
focuses on a fog ecosystem with an average size of
a large city, propagation latency is assumed to be
negligible and the dominant term is the transmission
latency. This depends on the request and response
sizes, qi and ri, and the bandwidth capacity on the
path wp. Now, given �iv and Little’s Law [31], a
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service point of i at n can be modeled as a M/M/1
queue with a service rate cin/c

i. The arrival rate
equal the sum of request rates mapped to n from
all access nodes. Hence the processing latency is
formulated as:

⌧ in =
ci

cin �
P

v2V ↵
i
vn�

i
v

(5)

The transmission latency is incurred by the tandem
queues of the request and response paths, pvn, pnv.
Each is an interconnected series of M/M/1 queues
of the on-path forwarding nodes. Hence, the latency
on pvn and pnv can be defined as:

⌧ ivn =
X

e2pvn

qi

we � ↵i
vn!

i,q
v

(6)

⌧ inv =
X

e2pnv

ri

we � ↵i
vn!

i,r
v

(7)

G. Problem Formulation
Given the above, the problem of service-based

joint request mapping and response routing can
be defined as a constrained two-cost minimization
problem. It is to decide ↵i

vn that minimizes the
computing cost for the access side, and �i

nv that
minimizes the response communication cost for the
fog side, for each i 2 I, v 2 V and n 2 N .
Mathematically, the problem can be formulated as:

min
↵,�

X

i2I

X

n2N i

X

v2V

(�iv�n✓n)↵
i
vn + (!i,r

v �nv✓nv)�
i
nv

(8)
subject to:

C1:
X

n2N i

↵i
vn = 1, 8v 2 V (9)

C2: ⌧ in + ⌧ ivn + ⌧ inv  di (10)

C3:
X

v2V

�i
nv�

i
v  cin, 8i 2 I, 8n 2 N

i(11)

C4: ↵i
vn!

i,r
v  wp, p = pnv (12)

C5-a: ↵i
vn � 0 (13)

C5-b: �i
nv � 0 (14)

C6: ↵i
vn = �i

nv (15)

C1 (9) ensures that all demand of an access
node is allocated to a service point(s). C2 (10)
is the QoS constraint, restricting allocation such
that the actual response time does not exceed the
service tolerance threshold. C3 (11) and C4 (12)

are the CPU and bandwidth capacity constraints,
which ensure that allocated demand does not exceed
the capacities of the service point and the response
path, respectively. C5-a(13) and C5-b(14) are the
non-negativity constraints of the decision variables,
↵i
vn and �i

nv, respectively. Finally, C6 ensures the
fraction of demand mapped to a fog node equals
that which is admitted by the node. Notably, C1,
C4 and C5-a constrain only the access side problem
(i.e. ↵i

vn), while C3 and C5-b constrain the fog part
of the problem (i.e. �i

nv). The constraint on pvn is
omitted in this work, as request data is assumed to
be small enough not to cause congestion.
Next, we introduce sbADMM, a decentralized ap-
proximation algorithm for solving the problem
of (8) with limited information sharing across sides.

V. ALGORITHMIC SOLUTION

Appendix A provides a preliminary on the classic
ADMM algorithm.

A. Service-based ADMM (sbADMM)
ADMM cannot be applied directly to solve the

problem of (8) as C2 (10) couples all variables.
This means, C2 (10) cannot be met without one
side revealing leverage information to the opposite
side. For example, containing C2 wholly within the
access problem requires an access node to calculate
the processing latency. This, in turn, requires the
fog provider to reveal the processing capacity and
workload of each service point to the network
operator. The opposite is equally true, i.e., if C2 is
handled by the fog side, the latter need to calculate
the transmission latency.

However, given the access side knowledge of ⌧ ivn
and ⌧ inv, and the fog side of ⌧ in; an alternative,
leverage-preserving, approach is to decompose C2
into two parts. Each part is computed at their side
and communicated to the other. The latter treats the
received part as a constant value and calculates the
total response time. Hence, C2 is reformulated as
C2-a (access side) and C2-b (fog side). C2-a can be
written as:

⌧ in +
X

e2pvn

qi

we � ↵i
vn!

i,q
v

+
X

e2pnv

ri

we � ↵i
vn!

i,r
v

 di

(16)
while C2-b is written as:

ci

cin �
P

v2V �
i
nv�

i
v

+ ⌧ ivn + ⌧ inv  di (17)
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Now, the augmented Lagrangian of the two-side
problem can be formulated as:

L(↵, �, µ) =
X

i2I

X

n2N i

X

v2V

(�iv�n✓n)↵
i
vn+

(!i,r
v �nv✓nv)�

i
nv + (↵i

vn � �i
nv)µ

i
vn+

⇢/2(↵i
vn � �i

nv)
2

(18)

Each side solves their problem and exchange the
solution with the opposite. This is repeated until
convergence is reached, within a predefined error
gap. The access problem is a reduction of (18),
including ↵i

vn terms only. This can be decomposed
into a distributable set of access-node sub-problems,
having each access node solve its problem indepen-
dently of the rest. As such, the access-node problem
at any iteration t+ 1 can be written as :

min
↵i
v

X

n2N i

↵i
vn

⇣
(�iv�n✓n) + µi,t

vn+

⇢/2(↵i
vn � 2�i,t

nv)
⌘ (19)

subject to: C1 (9), C2-a (16), C4 (12), C5-a (13)
and C6 (15). Notice that C2-a indirectly introduces
tighter bounds on the solution space than C4. Be-
cause, meeting the latency threshold require less
loaded paths. Therefore, C4 need to be verified
only if C2-a cannot be satisfied. Hence, the set of
constraints of problem (19) at an iteration t+1 will
include either C2-a or C4, but not both.

The fog problem is a reduction of (18), involving
only �i

nv. It can be decomposed into a set of
fog-node sub-problems, having each node solve its
problem independently from others. Hence, at step
t+ 1 the minimization problem can be written as:

min
�i
n

X

v2V

�i
nv

⇣
(!i,r

v �nv✓nv)� µi,t
vn+

⇢/2(�i
nv � 2↵i,t+1

vn )
⌘ (20)

subject to: C2-b (17), C3 (11), C5-b (14) and
C6 (15). Upon obtaining optimal ↵i,t+1

vn and �i,t+1
nv ,

the dual variable can be updated as follows:

µi,t+1
vn = µi,t

vn + ⇢(↵i,t+1
vn � �i,t+1

nv ) (21)

sbADMM is outlined in Algorithm 1. Since the
problems are strictly convex, given the penalty
term and obeying Lipschitz continuous gradient,
sbADMM is guaranteed to converge to near optimal
solution within a predefined error gap [32].

Algorithm 1 sbADMM
1: Initialize t = 0, spri = 1, sdual = 1, ✏pri > 0,

✏dual > 0
2: each v 2 V initializes ↵i,t

vn = 0, 8i 2 I, n 2 N
i

and publish the energy and bandwidth costs of
their paths �vn, ✓vn to the service points.

3: each n 2 N
i, 8i 2 I initializes �i,t

nv = 0, µi,t
vn =

0, 8v 2 V and publish their energy and pro-
cessing costs, �n, ✓n to the access nodes.

4: for i 2 I do
5: Each access node v 2 V calculates the

communication latency ⌧ ivn+⌧ inv to each valid
n 2 N

i and publish it to the respective n.
6: Each service point of n 2 N

i calculates the
processing latency ⌧ in and publish it to the
access nodes. If the service point reaches its
capacity limits, the fog node notifies access
nodes to remove it from the candidates set.

7: Both sides calculate the response time ⌧ ivn +
⌧ inv + ⌧ in

8: while (||spri||2> ✏pri OR ||sdual||2> ✏dual) do
9: Each v 2 V solves its access problem

of (19) for ↵i
v, given �i,t = {�i,t

nv |

n 2 N
i
} and publish the optimal solution

{↵i,t+1
vn |n 2 N

i
} to fog nodes N

i

10: Each n 2 N
i solves its fog problem of (20)

for �i
n, given ↵i,t+1

n = {↵i,t+1
vn | v 2 V}

11: Each n 2 N
i updates dual variable µi

vn

as per (21) and share the optimal solution
�i,t+1
nv and the new dual value µi,t+1

vn with
each v 2 V

12: end while
13: end for

1) Solving the Access-node and Fog-node Prob-
lems: The access and fog problems at each step
t+1 are conic quadratic programs that can be solved
analytically as follows:

Lemma 1: for any access node of v 2 V and
service point of i hosted by n 2 N

i, if (�i,t
nv �

µi,t
vn+�iv�n✓n

⇢ )!i,r
v < |pnv |ri

di�⌧ in�⌧ ivn
, the optimum ↵i,t+1

vn is:

↵i,t+1
vn = max

n
�i,t
nv �

⇣�iv�n✓n + µi,t
vn

⇢

⌘
, 0
o

(22)

The proof is provided in Appendix B.
Lemma 2: for any service point of i at n 2 N

i,
if

P
v2V(

µi,t
vn�!i,r

v �nv✓nv

⇢ )�iv < cin
ci �

1
di�⌧ inv+⌧ ivn

, the
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optimum �i,t+1
nv is:

�i,t+1
nv = max

n
↵i,t+1
vn +

µi,t
vn � !i,r

v �nv✓nv
⇢

, 0
o

(23)

The proof is provided in Appendix C.
Notably, a node’s problem is a system of linear
equations that develops into a non-invertible matrix,
which cannot be solved in a straightforward manner.
Schur decomposition [33] is applied to obtain the
orthogonal and upper triangular matrices, used to
back-solve the system. Furthermore, there are cases
of stalemate when the two sides cannot converge on
a solution. To avoid these and expedite the opera-
tion of the algorithm, we calculate the cumulative
average of ||spri||2 at each iteration in the form:

||spri||t2 =

Pt
k=2||spri||

k
2�||spri||

k�1
2

t
(24)

and apply min(||spri||t2, ||spri||
t
2)  ✏pri as the stop-

ping criteria. This allows flexibility in converging
faster when the optimum solution is found and
no better solution is achieved within a controlled
number of iterations. At the same time, it allows the
algorithm sufficient number of iterations when the
variation of spri is high. This technique along with
varying the penalty parameter [27] lead to better
performance than the simpler alternatives of [13].

B. Complexity Analysis
For a service i, an access node connected to

v and a service point hosted at n respectively,
the computation complexity is comprised of the
calculations of: the latency terms O(⌧ i), the map-
ping decision at the access node O(↵i

v) and the
response routing decision at the service point O(�i

n).
The complexity in calculating the latency terms is:
O(⌧ i) = O(N + 1) as each service point calculates
its own processing delay and each access node
calculates the communication delay to each fog
node. The mapping decision complexity, without
considerations of parallel computations, is O(↵i

v) =
t(O(N3) + 3⇥O(N2)). The first term corresponds
to the complexity of Schur decomposition to ob-
tain the triangular matrices, while the second term
corresponds to three solving operations of the linear
system. This is repeatable for t iterations, until con-
vergence. Similarly, the complexity of the response
routing decision is O(�i

n) = t(O(V 3)+3⇥O(V 2)).
Considering efficiencies of computation parallelism,

for a small value of t = 19 and N = 20, V = 26,
solving for ↵i

v takes an average of 30 � 50 msec,
while solving for �i

n takes an average of 5�7 msec.
For a large t = 731, solving for ↵i

v takes on average
1.5�2 sec while for �i

n 25�50 msec. The algorithm
is run on a 64-bit server, having Intel Xeon Bronze
3106 CPU of 1.70GHz and L2 cache of 1024K.
Orthogonally, the spacial complexity of the mapping
and response routing decisions across all services
are: O(↵v) = I ⇥O(↵i

v) and O(�n) = I ⇥O(�i
n).

VI. PERFORMANCE EVALUATION

This section analytically evaluates the perfor-
mance of the proposed sbADMM algorithm for
service-based request mapping and response rout-
ing. Four key performance indicators are assessed:
delay satisfaction rate for SLA compliance; CPU
and bandwidth utilization; along with CPU and
bandwidth Energy costs. The latter reflect the costs
incurred by the two providers. Furthermore, con-
vergence is analyzed as an indicator of the speed to
converge on an optimum solution.

For the ecosystem: AT&T topology of 25 nodes
and 114 links [34] is assumed as the operator’s
network, each node representing a forwarder. A set
of fog nodes are colocated with a subset of network
forwarders. Their distribution follows the centrality
order of forwarders in the network. Hence, tier-
1 clouds are likely to be colocated with highly
connected tier-1 forwarders, while tier-3 edge nodes
are likely to be placed with less connected tier-3
forwarders. The remainder forwarders do not have
fog nodes colocated with them. Hence, their access
nodes need to map demand to remote fog nodes.

1000 services are exposed in the network with a
Zipf-based popularity distribution of exponent value
0.9. This generates realistic workload based on
service popularity, as has been observed in existing
cloud data centers [25], [26]. The penalty parameter,
⇢, is initialized to 1 and subsequently tuned by
⇣ = 10 as suggested by [27] for faster convergence.
The evaluation parameters and their common set-
tings are summarized in Table II. Notably, the CPU
energy price varies within a range, depending on
the tier of the fog node. However, the bandwidth
energy price is fixed irrespective of the link’s tier.
This is a deliberate choice to reduce the evaluation
complexity and focus on illustrating the impact of
CPU energy cost on the algorithm’s performance.
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TABLE II
EVALUATION PARAMETERS AND THEIR SETTINGS

Parameter Setting
number of services 1000
popularity distribution zipf(s = 0.9)
task size per service [MIPS] [80� 100]
Average upstream data per service [Mb] 0.4
Average downstream data per service [Mb] 4.0
Average response time tolerance [msec] [60� 200]
fog nodes per tier {t1 : 2, t2 : 6, t3 : 12}
Average CPU capacity per node [MIPS] {t1 : [107 � 108], t2 : [106 � 107], t3 : [105 � 106]}
Average CPU energy price per node [PpMIPS] {t1 : [10�3 � 10�2], t2 : [10�2 � 10�1], t3 : [10�1 � 100]}
Average bandwidth capacity per link [Mbps] {t1 : [106 � 107], t2 : [105 � 106], t3 : [104 � 105]}
Average bandwidth energy price per link [PpMbps] 10�3

Average link length [Km] {t1 : [10� 100], t2 : [1� 10], t3 : [0.1� 1]}
error gaps ✏pri : 10

�2
, ✏dual : 10

�4

⇢, ⇣ 1, 10

Three scaling scenarios have been examined:
1) scaling demand: by increasing the number of
requests per access node; 2) infrastructure dis-
tribution: by extending the fog from 1-tier cloud
to 2-tier cloud/cloudlets and 3-tier hierarchical fog
of cloud/cloudlets/edge; and, 3) tier scaling: by
increasing either tier-2 or tier-3 nodes. For each
scenario, 10 simulations have been conducted in
which the locations of fog nodes are selected follow-
ing a centrality-guided probability. The algorithm is
assessed for two variants: delay-aware and delay-
agnostic. The former incorporates C2-a and C2-b,
and only when they cannot be satisfied it falls back
to the capacity constraints. The delay-agnostic coun-
terpart ignores C2-a and C2-b and only incorporates
the capacity constraints.

A. Delay Satisfaction Rate

This section presents the achieved mean delay
satisfaction rate per service. A value below 1.0
indicates a violation of the response time tolerance
of the service. Figure 4a shows for over 90% of
demand (i.e. for the 10% most popular services),
the satisfaction rate remains at ⇡ 100% for in-
creasing number of requests. The rate only drops at
the highest 5000 request/access-node where outlier
violations are observed. The lowest is at 83% for
the delay-agnostic variant compared to 90% for the
delay-aware counterpart. The 10% demand for the
lower ranks of services [100, 1000] has 75 � 95%
satisfaction rate. The number of violations is less
significant for the delay-aware variant, having the
most frequent outliers in the range of ⇡ 87%�95%.

In comparison, the delay-agnostic counterpart has
frequent outliers in the range of ⇡ 82%� 91%.

The violations by the delay-aware variant are
instigated by the error gap between the two opti-
mization sides. Besides, there are instances that lack
a solution satisfactory of C2-a and C2-b, particularly
for latency-critical unpopular services. In the delay-
agnostic variant, limiting constraints to capacities
and energy cost translates into a larger misalignment
between the delay requirement of a service and
the solution. This leads to delay-non-discriminatory
mapping of popular services to the edge, straining
its resources and leaving insufficient capacity for
latency-critical services. Consequently, demand for
the latter is mapped to the middle or central tier,
leading to violation of the tolerance threshold.

Figure 4b shows the delay satisfaction rate when
the fog infrastructure expands from 1-tier cloud
to 3-tier hierarchical fog. The number of requests
in this scenario is fixed to an average of 3000
requests/access-node. The results show the satis-
faction rate improves significantly, from ⇡ 40%
to ⇡ 90% when moving towards a hierarchical
distribution. Complementary, while in 1-tier setting
the difference of satisfaction rates between the two
variants is marginal, it is considerably larger in the
2-tier and 3-tier settings. The delay-aware variant
is showing superiority over the agnostic counterpart
by ⇡ 10 � 25%. Figure 4c shows the satisfaction
rate when scaling the number of fog nodes at tier-2
or tier-3 of a hierarchical fog. The average number
of requests/access-node is 3000. The results show
superior improvement of the satisfaction rate when
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Service Rank/Delay Aware
[1−10)/No
[1−10)/Yes

[10−100)/No
[10−100)/Yes

[100−1000)/No
[100−1000)/Yes

(a) Scaling Demand
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Service Rank/Delay Aware
[1−10)/No
[1−10)/Yes

[10−100)/No
[10−100)/Yes

[100−1000)/No
[100−1000)/Yes

(b) Infrastructure Distribution
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Fig. 4. Mean delay satisfaction rate per service for three scaling scenarios: load, distribution and capacity per tier.

increasing the number of edge nodes, compared to
increasing cloudlet nodes.

Notably, the Zipf distribution of service popular-
ity allows for efficient prioritization of demand, by
service rank. This has shown to maximize the ratio
of satisfied demand. Albeit, it comes at the cost
of disadvantaging demand of unpopular services. In
contrast, distributions such as the uniform have a
flattening effect on the volume of demand across
services. Consequently, alternative prioritization cri-
teria to service rank would be needed. However,
preliminary indicators suggest that this increases the
risk of reducing the overall demand satisfaction.

B. CPU and Bandwidth Utilization

This section presents the results of CPU and
bandwidth utilization. Figure 5a shows the results
when scaling up the demand. Generally, allocation
is higher in tier-2 cloudlets with a maximum average
of ⇡ 0.5�0.55, when demand is lowest at 1000 and
highest at 5000 requests/access-node. However, the
ratio drops to a lowest value of ⇡ 0.4� 0.45 in the
middle at 3000 requests/access-node. The second
highest ratio of allocation is on tier-3, the edge,
exhibiting opposite pattern to that of tier-2. Tier-
1 has the lowest allocation rate, following similar
pattern to that of tier-2.

Orthogonally, the delay-aware variant shows a
higher demand allocation to tiers 1 and 2 by ⇡

7� 10% compared to their delay-agnostic counter-
part. This is counter intuitive, revealing a non-trivial
interplay of costs. In the delay-agnostic case, as the
path cost is dominantly a function of bandwidth ca-
pacity and distance, allocation to the edge is overall
cheaper by saving communication cost. However, in
the delay-aware case, the algorithm attempts to push
allocation as close to the flourished cloud as the
latency tolerance allows. Consequently, alleviating

pressure on the precious capacity of the edge, and
sparing it for latency-critical services. This differ-
ence in allocation has a considerable impact on the
satisfaction rate as has been shown in Figure 4a,
and the energy cost analyzed in Section VI-C.

Figure 5b shows the CPU allocation when the
infrastructure extends from a 1-tier cloud to a 3-tier
fog, for a fixed average of 3000 requests/access-
node. The results show a significant shift of allo-
cations, from tier-1 cloud to tiers 2 and 3. However,
introducing the edge does not change the fraction
of allocation to cloudlets at tier-2. This is because
tier-2 continues to offer the cheapest combination
of compute and communication cost. The difference
between the delay-aware and delay-agnostic variants
is marginally visible, with the delay-aware variant
allocating highest fraction to tier-2.

Figure 5c illustrates the CPU allocation when
scaling tier-2 or tier-3. Expanding tier-2 results in
a significant shift of ⇡ 30 � 35% of allocations,
from tier-3 towards tier-2. In comparison, allocation
is shifted by ⇡ 15 � 25% when expanding tier-3
instead. This comes back to the cheaper rate of tier-2
combined with the suitable proximity to end-users,
achieving the desired response time at a cheaper
cost. This result together with the earlier ones of
Figure 4c present a critical trade-off to service
providers, between the cost and benefit of extending
the edge as opposite to the middle cloudlet.

Figure 6 shows the bandwidth utilization for the
three scenarios. Given that the energy price per link
tier is fixed, link usage does not skew towards one
tier or the other. Although, the delay-aware variant
shows marginal favor of tier-1 and tier-2 links com-
pared to tier-3. This is caused by two factors: 1) the
cheaper cost of bandwidth on tier-1 and tier-2 links,
outweighing the longer distance of these links; and
2) the higher CPU allocation to tier-2 nodes, often
reachable via paths that incorporate more tier-1 and
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Fig. 5. CPU utilization per fog tier as a fraction of total workload allocation for all services.
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Fig. 6. Bandwidth utilization per link tier as a fraction of total response data of demand allocation for all services.

tier-2 links than tier-3 counterparts.

C. CPU and Bandwidth Energy Cost
This section presents the CPU and bandwidth

energy cost, incurred by the allocations shown ear-
lier in Section VI-B. The results are presented as
a relative value to the most expensive allocation
instance. Figure 7a shows the minimum computing
energy cost, which increase approximately linearly
and flattens out for the high end of load (i.e.
4000�5000 requests). The cost growth is correlated
with demand rather than energy price, which shows
the algorithm’s ability to bound the growth in cost
by usage. Orthogonally, the cost incurred by the
delay-aware variant is ⇡ 13 � 15% less than that
of the delay-agnostic counterpart, at the lower end
of load (i.e. 1000 � 3000 requests). This is due to
the higher allocation to tier-2 by the delay-aware
variant, not only conserving tier-3 resources but
facilitating lower energy cost. Notably, the delay-
agnostic variant does not always result in cheaper
CPU energy cost. Because, although the overall cost
is minimized by higher usage of the edge, higher
energy prices there drive the CPU energy cost higher
than that of the delay-aware variant.

Figure 7b illustrates the CPU energy cost incurred
by different fog distributions. The figure shows
the ratio of computing energy cost to have strong

correlation with the price range of each tier. Com-
plementary, Figure 7c shows the computing energy
cost when scaling tier-2 or tier-3. As expected, the
computing cost incurred by scaling tier-2 is consid-
erably lower than that of scaling tier-3, ⇡ 40�50%.
These results, together with those of Figures 4b
and 4c, present a cost-benefit analysis to service
providers. The trade-off is between improving the
satisfaction rate by scaling the edge, and the cost of
such expansion.

The results of Figures 8a-8c show the relative
communication energy cost per link tier. Tier-2
links incur the highest fraction of energy cost, ⇡

44�50%, followed by tier-3 incurring ⇡ 30�35% of
cost. The lowest is tier-1 with a share of ⇡ 18�20%.
The higher fraction of cost of tier-2 is driven by the
higher allocation to cloudlets, which increases the
likelihood of utilizing tier-2 links. Hence, the cost
correlates with the utilization rate.

Complementary to the above, it is worth not-
ing that higher allocation to the edge changes the
characteristics of aggregate demand expected by
network operators and cloud providers. For instance,
exposing these deeper parts of the ecosystem to
higher demand variation hinders forecast and pre-
diction exercises. Consequently, introduces a higher
likelihood of sub-optimal utilization of existing in-
frastructure and challenges in longer terms planning.
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Fig. 7. Computation Energy Cost per fog tier as a relative value to the most expensive allocation instance.
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Fig. 8. Communication Energy Cost per link tier as a relative value to the most expensive allocation instance.

For these reasons, edge planning and utilization
need to take into account service requirements along
with infrastructure constraints, to maximize the so-
cial welfare of all entities in the ecosystem.

D. Convergence
Figure 9 show the distribution of number of

iterations needed to reach convergence, in each of
the scaling scenarios. The lower and upper whiskers
indicate the 5% and 95% percentiles, respectively.
The results show overall the number of iterations
is lowest for scenario (b), scaling infrastructure
distribution. Because, when the infrastructure is
limited to 1-tier cloud or 2-tier cloudlets, the set of
candidate solutions is small with relaxed capacity
constraints. The number is higher for the delay-
aware variant, because the delay constraint enforces
tighter restriction on the solutions space. The impact
of it intensifies when the infrastructure includes
the constrained tier-3 edge. This results in higher
variation of constraints and costs across the two
sides of the problem, causing slower convergence.

VII. CONCLUSION

This work proposed a service-based, decentral-
ized, fog management and network orchestrator
(sbMANO). The sbMANO offers novel discovery
and mapping services, allowing for autonomous
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Fig. 9. Number of iterations of sbADMM per scaling scenario, for
all services, tests and control variables.

optimization at the granularity of services. The fog
ecosystem has been modeled analytically and the
problem of joint request mapping and response
routing has been formulated. To solve the latter,
the work further proposed a novel approximation
algorithm based on ADMM, having provable near-
optimal performance with bounded violations. The
algorithm minimizes the joint computing and com-
munication costs. This takes into account diverse:
energy prices, CPU-bandwidth capacities and phys-
ical distance. The algorithm’s performance has been
evaluated analytically for two variants: delay-aware
and delay-agnostic. Evaluation results have shown
that unnecessary allocation to the edge can strain its
resources, hindering its ability to serve demand for
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latency-critical services. Instead, allocation to the
middle tier of cloudlets results in superior perfor-
mance. This is reflected by the higher satisfaction
rate of ⇡ 100% for over 90% of total demand, at a
lower energy cost. Future work will tackle problems
of service management and workload allocation for
cloud-native applications, given data storage con-
straints and variation in processor architectures.
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