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Abstract – Laser Wire Additive manufacturing (LWAM) 

requires a clear understanding of process parameters and 

their effects on the geometry and wider material properties 

of the parts produced to support the production of 

consistent, repeatable quality parts. Furthermore, its ability 

to capitalise on using novel alloys depends on efficient 

characterisation of optimum process parameters. In this 

work, a method for identifying the range of usable 

parameters is presented, which produces sufficient data to 

train Cascade Forward Neural Networks, which are capable 

of predicting process windows and basic LWAM track 

geometries for 316L stainless steel. The performance of 

these networks provides the foundation for further work to 

identify optimum process parameters and, through transfer 

learning, may reduce the experimental requirements for the 

process development of other alloys. 
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I. BACKGROUND 

Laser Wire Metal Additive Manufacturing (LWAM or 
LWMAM) is a subset of the group of metal additive 
manufacturing technologies known as Direct Energy 
Deposition (DED) [1]. All of which use an energy source 
to create a melt pool, delivering metal powder or wire 
feedstock into it to create a metal bead. These beads or 
‘tracks’ are built up in layers to create cladding on existing 
metal parts or to form new, fully dense parts which are net 
shape or near net shape. Fig. 1 shows a simple schematic 
of the LWAM process where wire of diameter, d is fed at 
speed u, into a laser beam of diameter D and power, P, 
moving at speed, v to create a track of height, h, and 
width, w. 

 

LWAM is a growing technology area, particularly 
given the scale and complexity of the parts that are 
possible, whilst being cleaner and safer than powder-
based equivalents. LWAM is also more energy efficient 
than other wire based DED processes which use other 
energy sources (for example wire arc or plasma). LWAM 
can also manufacture parts out of alloys that are not usable 
in conventional manufacturing processes due to the higher 
temperatures achieved in the melt pool. However, 
significant challenges remain for the technology, 
particularly that of consistency of the quality of repeat 
parts and between machines, and the reliance on trial and 
error to refine the process window for each individual part 
[2-4]. These challenges are broadly a result of the LWAM 
process being sensitive to variables such as laser 
configuration, shield gas type and flow, material type, 
geometry of the part and the thermal field established 
during the manufacturing process. 

Key to addressing these challenges is developing 
robust methods for structured parameter optimisation, 
planning and control to ensure the repeatable fabrication 
of defect-free parts with desirable microstructures and 
mechanical behaviour. The methods must be themselves 
repeatable and transferable between alloys and processes, 
capitalising on the data gathered to reduce the time needed 
to deliver this and to support qualification of the part and 
process.  

AM Process optimisation is a systematic, numerical 
characterisation of the process and the subsequent 
identification of the optimum machine configuration and 
process parameters to achieve particular targets. Optimal 
process parameters throughout the printing process are 
fundamental to a high-quality part and the effects of 
varying these parameters can be most easily seen in the 
deposition of simple tracks. Multiple parameters and the 
resulting geometric and physical properties must be 
considered to fully optimise a process. To address the 
complex interactions between parameters and properties 
Machine Learning (ML) tools are increasingly being used 
in metal AM research[3].  

ML is valuable in AM because of its ability to process 
non-linear problems, it can cope well with outlying data, it 
is computationally fast, once trained, and has the ability to 
understand complex problems without the need for 
accurate calibration of input parameters[3, 5, 6]. Shallow 
Artificial Neural Networks (ANNs), such as Cascade 
Forward Neural Networks, are particularly suited to the 
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Figure 1 - Schematic of the LWAM process 



non-linear relationships between process parameters and 
resulting properties. A multi-layer network can learn any 
finite input-output relationship arbitrarily well, given 
enough hidden neurons [7]. 

A significant limitation of ML within the AM field is 
the relatively small datasets available to train ML models. 
There are a number of mitigations to this, such as 
combining experimental data with data from numerical 
modelling tools [6], using models to generate training 
data, transfer learning [8] and data augmentation [9]. 
Despite this, relatively simple shallow ANNs have shown 
reliable predictions for the distortion of simple parts [5], 
material properties [10] and thermal modelling [6]. 

This paper intends to build upon the current 
understanding and use ML techniques to develop a 
framework for optimising process parameters for creating 
single track geometries using LWAM technology. The 
approach focusses on specific target outcomes for the 
track geometry so as to build a foundation for improving 
process optimisation and control in more complex multi-
layer builds. 

II. EXPERIMENTAL METHODS 

The experiments were conducted using a Meltio M450 
laser metal wire printer, which uses six laser diodes with a 
wavelength of 976nm, fed via fibre optics to collimators 
mounted coaxially around the deposition head. The 
desired laser power is spread equally between the lasers, 
giving the system a maximum power of 1200W, Fig. 2 
shows the side profile of the print head configuration.  

The deposition head remains fixed and the print bed, 
with substrate attached, moves in the x, y and z plane 
below. Argon shielding gas is fed locally to the melt pool 
from the deposition head at a rate of 5.5 litres per minute. 
The system was configured to use 1 mm diameter 316L 
stainless steel wire, building onto 15 mm thick 316L 
stainless steel substrates mounted to the print bed, which 
is cooled to 13oC. 50mm long tracks were printed 5mm 
apart, deposited in a random order across the plate, with a 
three-minute pause between depositions to minimise the 
effects of substrate heating on the resulting track 
geometries. This ensured substrate temperature was below 
40oC, thereby enabling a fair comparison throughout the 
trial. 

Optimisation studies involved analysing the effect of 
changes in the laser power P, the laser head speed, v, and 
the wire extrusion rate, u, on the resultant track geometry 
of single-track builds. The investigation comprised two 
steps, the first a broad assessment of the ability to produce 
tracks of an acceptable geometry (as determined by visual 
inspection – acceptable being defined as a track that could 
be selected for using in a part build with a consistent 

visually smooth top and profile and clean, straight edges 
securely bonded to the substrate), the second a more 
refined appraisal of the influence of process parameters on 
the track geometry for “Good” tracks.  

For the broad assessment, the power was varied from 
550 to 950W in increments of 100W, the laser speed from 
5 mm/s to 35 mm/s and the wire extrusion rates from 5 
mm/s to 55 mm/s. In order to avoid an excessive number 
of failed prints, on the basis of recommendation of [11], 
the Wire Speed Factor (WSF - the ratio of the wire to laser 
speed) was limited to values greater than two. In total, 246 
tracks were printed in this first section of the investigation, 
with approximately 5% of the tracks repeated five times.  

From the first set of experiments, the upper and lower 
bounds for head and extrusion speed were determined for 
each power level. From this, a Multi-Level Factorial 
Design of Experiment (DOE) method was used to design 
the second set of experiments using Minitab statistical 
software. General full factorial designs were created for 
the same powers as the previous experiment and within 
the limits of speeds identified, the design used two factors, 
laser and extrusion speed for each power, with three or 
four levels depending on the range of parameters 
evaluated, 151 tracks were produced. Of these tracks, 37 
were deemed good and were reprinted on 3mm thick 316L 
plates overlaying the 15mm substrate. This was performed 
not just to ensure repeatability, but in order to permit the 
tracks to be placed on the bed of an Olympus LEXT 
OLS5100 Laser Microscope so that the geometry of the 
tracks could be measured.  

Measurements with the laser microscope were taken at 
five places across the length of each track, 10mm at each 
end of each track was omitted to avoid skewing the 
measurements by the effects of the ‘laser switch on’ and 
‘laser switch off’ process of the machine. Track height 
and width was measured and the standard deviation of 
these calculated to indicate consistency. Fig. 3 shows the 
typical track height and width geometry measured by the 
microscope. Measurements were filtered using a traveling 
average filter to remove noise from the measurement 
process.  

Measurement data for the geometry of the track were 
used, along with input process data, to train ANN models. 
MATLAB r2020a was used to create the models in the 

 
 

Figure 2 - Schematic of the Meltio print configuration 

Figure 3 - Typical geometries for the tracks as 

measured by the laser microscope 

 



study and Cascade Forward Neural Networks were 
selected after a comparison of the performance of a 
number of different neural network architectures. The 
networks were repeatedly trained in loops of 200 cycles 
with different configurations of layers and node numbers 
to find the highest R ratio and the lowest Mean Square 
Error (MSE). It was found that two hidden layers were 
most effective, with 20 nodes in the first and 14 in the 
second. Fig. 4 shows the configuration of the network. 
The default transfer functions for the hidden layers were 
used, Hyperbolic Tangent Sigmoid for the first and Linear 
for the second. The training function used was 
Levenberg–Marquardt and the performance function was 
MSE. 70% of the data were randomly selected to train the 
networks, 15% were used for verification, and 15% for 
testing. 

Two sets of Cascade Forward Neural Networks were 
trained, the first to predict whether the track would be 
successful, based on the track quality assessment, the 
second to predict track geometry. Both networks used the 
input parameters of power, head speed, extrusion rate and 
WSF. The first network had the track quality as the 
response, which was represented as a value between 0 and 
1, which was interpreted as a confidence level, where 
values above 0.8 were considered ‘Good’. The second 
used the measured track geometry information, which 
included track width, height standard deviation of width 
and height along its length (to indicate consistency and 
'waviness' of the track) and the height to width ratio.  

III. RESULTS AND ANALYSIS 

An image of a plate with deposited tracks is shown in 
Fig. 5. Across all of the experiments, a small proportion of 
the tracks (4%) were classified differently on their repeat 
going from ‘Good’ to fail or vice versa, resulting in some 
parameter combinations appearing ambiguous as to 
whether they could produce successful tracks. There were 
however clear windows where combinations of 
parameters were identified that produced consistently 
good quality tracks. These process windows are plotted in 
Fig. 6, for powers of 550W, 750W and 950W. 

Measurement data for the 37 “good” tracks, used in 
the second ANN, are shown in Table 1. Broad trends in 
these data can be observed. At a given power and 
extrusion rate, as the laser head speed increases, the width 
and height of the track both tend to decrease. Similarly, 
for a fixed laser head speed, as the extrusion rate 
increases, so do both the track height and width. These 
relationships are expected from the conservation of 
material deposited. When the head speed and extrusion 
rate are fixed and the power increased, the track height 
decreases and the width tends to increase. For all these 
cases the effect on the track height is much clearer than on 
the width. All these trends agree with observations in the 
literature [12, 13].  

Image a. in Fig. 7 shows a successful track within the 
process window, for a laser power of 950W. Outside of 
the process window, different types of defective tracks can 
be identified. As the head speed increases, for the same 
extrusion rate, (image b) the track cross sectional area 
must decrease, and reduced substrate melting prevents 

 
 

 
 

 

Power
Laser 

Speed

Extrusion 

Rate
WSF

Width 

(mm)

SD of 

Width

Height 

(mm)

SD of 

Height

H-W 

Ratio

550 3.75 15 4.00 3.09 0.62 1.85 0.04 0.63

550 5 15 3.00 1.75 0.01 1.59 0.01 0.91

550 6 15 2.50 2.77 0.56 1.38 0.02 0.52

550 7.5 15 2.00 1.56 0.02 1.21 0.02 0.77

550 9.25 16 1.73 1.49 0.03 1.10 0.02 0.74

550 10 15 1.50 1.61 0.06 0.92 0.02 0.57

550 10 20 2.00 1.46 0.20 1.23 0.07 0.86

650 8.7 17.4 2.00 1.56 0.06 1.18 0.02 0.76

650 10 18.75 1.88 1.66 0.06 1.07 0.02 0.65

650 16 18.75 1.17 1.69 0.05 0.74 0.01 0.43

750 5 20 4.00 3.25 1.03 1.76 0.02 0.59

750 5.1 20.4 4.00 3.27 0.13 1.77 0.02 0.54

750 5.83 20.4 3.50 2.09 0.03 1.59 0.01 0.76

750 6.8 20.4 3.00 2.02 0.05 1.41 0.02 0.70

750 8.16 20.4 2.50 2.01 0.04 1.23 0.02 0.61

750 10 20 2.00 1.80 0.06 1.09 0.01 0.60

750 10.2 20.4 2.00 1.87 0.03 1.02 0.01 0.54

750 13.6 27.2 2.00 1.73 0.08 1.09 0.04 0.63

750 17 34 2.00 1.67 0.04 0.95 0.05 0.57

750 18.7 37.4 2.00 1.62 0.07 0.97 0.02 0.60

850 10 26.7 2.67 2.00 0.06 1.29 0.02 0.64

850 11.4 22.8 2.00 1.84 0.05 1.05 0.02 0.57

850 15 26.7 1.78 1.94 0.03 0.95 0.02 0.49

850 15.2 30.4 2.00 1.78 0.09 1.01 0.06 0.57

850 19 38 2.00 1.68 0.06 1.05 0.06 0.62

850 20.9 41.8 2.00 1.69 0.03 0.94 0.07 0.55

850 22 26.7 1.21 1.80 0.06 0.71 0.02 0.39

850 25 27 1.08 1.65 0.07 0.68 0.03 0.41

950 6.45 25.8 4.00 2.31 0.06 1.69 0.03 0.73

950 7.37 25.8 3.50 3.14 0.53 1.52 0.01 0.50

950 8.6 25.8 3.00 2.19 0.08 1.38 0.01 0.63

950 10.32 25.8 2.50 1.98 0.05 1.20 0.01 0.61

950 12.9 25.8 2.00 1.93 0.03 1.00 0.02 0.52

950 17.2 25.8 1.50 1.78 0.05 0.84 0.01 0.47

950 17.2 34.4 2.00 1.76 0.08 1.07 0.04 0.61

950 21.5 43 2.00 1.66 0.08 0.95 0.04 0.57

950 23.65 47.3 2.00 1.66 0.04 0.94 0.02 0.57  

TABLE I.  PROCESS AND GEOMETRY DATA FOR “GOOD” 

TRACKS 

Figure 4 - Schematic of the configuration of the ANN 

Figure 5 - Examples of deposited tracks 



good bonding. Conversely as the head speed slows, 
(image c) the track cross section increases and unstable 
wavy tracks are formed from the excessive material in the 
melt pool. At a given laser head speed, when the extrusion 
rate is too slow, (image d) the energy input per unit 
volume of material is too high and the wire melts before it 
reaches the substrate, creating intermittent balls of melted 
material. When the extrusion rate is too high (image e) 
there is insufficient energy to melt the high throughput of 
material. 

Predictions for geometry and track success were made 
using the test data and the two Cascade Forward Neural 
Networks designed for geometry and quality. To address 
the relatively small number of training data, particularly 
for track geometry, data augmentation was used to 
improve the network training, whereby the data was used 
twice by appending it in reverse order to the training data 
set. This resulted in 74 response variables for track 
geometry training, validation and testing. All tracks 
printed throughout the experimental process were 
evaluated as ‘Good’ or ‘Failed’, resulting in 511 
responses, with augmentation this provided 1022 response 
variables for track quality. 

Track quality predictions resulted in track success 
being accurately predicted in 98% of cases. Albeit 
random, most of the test data was likely within the known 
region of working parameters, given the initial stage of 
characterisation. It can be seen from Fig. 8 that the ML 
predicted process window is wider than identified using 
the experimental data. This is to be expected given the 
wider inferences that the ML model will make using the 
whole training dataset. For clarity, in this figure, known 
failed tracks are also marked, to show that the predictions 
do not extend to spaces where build failures are known. 

All of the ML predicted windows encompass some tracks 
which were measured experimentally as failed, in all cases 
these points had tracks which were repeated and 
categorised as ‘Good’. These regions were drawn outside 
of the boundary for good parameters in the above analysis. 
It demonstrates the network’s ability to accommodate 
outlying data points and the challenge of producing 
repeatable results in LWAM at the boundaries of the 
process window. Further experimental work is required to 
confirm this wider window. The size and accuracy of the 
windows is sufficiently close to support the successful 
predictive capability of this approach. 

Fig. 9 show the measured height, width and their 
standard deviations for the test dataset and their 
correlation with the ANN’s predicted values. Fig. 9 shows 
the points are scattered closely to the target line which 
represents a perfect correlation, the fit line and the R2 
value for this reflects the closeness of the correlation, one 
indicating a perfect correlation. The results show that the 
models have a high accuracy for prediction of height and 

 

 

 

 

 
Figure 7 - Process window and track geometry for 
950W 

Figure 8 - Comparison of predicted and experimental 

process windows for good tracks  

Figure 6 - Schematic of the process window for 
“Good” tracks 

 



the standard deviation of height owing to stronger 
experimentally observed effects on track height. The 
width measurements have lower accuracy, which supports 
the observation from the track geometry analysis, that 
there was not a strong link between track width and the 
process parameters. The strength of the models for 
prediction is sufficient to support parameter planning and 
further refinement of process parameter for single track 
printing, and particularly to support identifying optimum 
aspect ratios for defect free track overlap [12]. 

IV. CONCLUSION AND RECOMMENDATIONS  

A method that can identify the usable range of process 
parameters in the form of a process window has been 
developed. This process produces sufficient data to train 
ML models in the form of two shallow Cascade Forward 
Neural Networks, which can effectively identify process 
windows and to predict basic track geometries, which 
have sufficient accuracy to support a subsequent 
parameter optimisation process.  

This work has also demonstrated that track geometries 
produced using LWAM conform with other DED research 
in terms of the basic relationships between track height 
and width and the laser head speed and extrusion rate. 

This study will be further extended to investigate 
whether the models and data produced can be used to 
support the prediction of process windows for other alloys 
and as a result reduce the volume and cost of experimental 
work required to create a similar process window. 
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