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Abstract—Digital agriculture, hailed as the fourth great
agricultural revolution, employs software-driven autonomous
agents for in-field crop management. Edge computing resources
deployed near crop fields support autonomous agents with
substantial computational needs for tasks such as AI infer-
ence. In large fields, using multiple autonomous agents, called
swarms, can speed up crop management tasks if sufficient
edge resources are provisioned. However, to use swarms today,
farmers and software developers craft their own standalone
solutions that are either simple and ineffective or complicated
and hard-to-reproduce. We present MARbLE, a platform for
developing and managing swarms. MARbLE provides an easy-
to-use programming paradigm that helps users build swarm
workloads using multi-agent reinforcement learning. Developers
supply just two functions Map() and Eval(). The platform
automatically compiles and deploys swarms and continuously
updates the reinforcement learning models that govern their
actions. Developers can experiment with multiple swarm and
edge resource configurations both in simulation and with actual
in-field runs. We studied real UAV swarms conducting digital
agriculture missions. We observe that swarms demanded edge
computing resources in bursts; the ratio of average to peak
demand was 2.9X. MARbLE uses energy-saving load balanc-
ing policies to duty cycle machines during workload demand
troughs, leveraging workload patterns to save edge energy. Using
MARbLE, we found that four-agent swarms with load balancing
techniques sped up missions by 2.1X and reduced edge energy
usage by up to 2X compared to state of the art autonomous
swarms.

I. INTRODUCTION

Agriculture is one of humanity’s most important en-
deavors. Throughout three agricultural revolutions, humans
have harnessed our greatest technological achievements, from
mechanization to generics, to simplify and scale agriculture,
decrease costs, increase yield, and meet quality of life
standards [2]. However, agricultural practices must advance
greatly in the coming decades to sustain us. First, population
growth and increased food consumption per capita are pro-
jected to necessitate at least a 70% increase in agricultural
yields by 2050 [20], [18]. Second, climate change is making
farming increasingly difficult by contributing to crop health
stressors, e.g., drought, disease, and pest infestations [27].
These effects are expected to decrease crop yield by up to
11% by 2050 [39]. Digital agriculture, the cornerstone of
the fourth agricultural revolution, seeks to surmount these
challenges [2].

Digital agriculture [26] uses remote sensors (e.g., satellites
and UAV), in-field sensors (e.g., embedded soil sensors),
and data processing techniques (e.g., machine learning) to
inform planting, harvest, and crop treatment in ways that
maximize crop yield and minimize the environmental impacts
of agriculture. Frequent sensing can detect crop health stress
from drought and heat [11], identify diseases [60] and
pests [49], and find other harmful phenomena [62]. One
common task in digital agriculture is to transform sensed data
into health maps that provide a geo-spatial characterization of
crop health and guide crop treatment. The process of creating
health maps is called crop scouting [16].

Unmanned Aerial Vehicles (UAV) are a potent technology
in digital agriculture. UAV are fast, responsive, and ma-
neuverable sensors that noninvasively sense crop health. In
practice today, when UAV are used for crop scouting, they are
piloted via remote control to collect images manually. Then,
after capturing images of the whole field, a health map is
created offline [24], [3]. To be sure, remote control in the
context can involve manipulating a joystick or setting GPS
waypoints in a smartphone. Both approaches exhaustively
cover waypoints for the whole field during runtime. Recent
advances in edge computing have made it possible for UAV
to map fields in real-time [56], [61], [28], [34]. UAV can
transmit data to near-by edge resources to make real-time
decisions about flight paths, mapping, and treatment. This
trend has allowed UAV to operate as autonomous agents
(AA), making high-level decisions with no human interaction.
Autonomous UAV leverage edge hardware to model crop
health at runtime and avoid visiting redundant and useless
waypoints which signficantly speeds up crop scouting.

Groups of AA working toward a common goal are called
swarms [48]. Compared to AA working alone, swarms can
speed up crop-scouting missions. First, missions can be
partitioned into tasks that swarm members execute in parallel.
Second, swarm members can share observations of their sur-
roundings to help other members take effective actions [58].
In agriculture, fields are vast, crop health varies signficantly
within and between fields, and crop stressors change over
time. Limited by their batteries, a single UAV can not explore
a whole field on one charge and recharging batteries is time
consuming. Swarms can help greatly by allowing multiple



UAV to explore a field in parallel.
Swarms can be realized by partitioning waypoints into

regions that are assigned to each swarm member, collecting
data from the regions in parallel and computing health maps
offline [3]. Recent research provides automated partition-
ing and fault tolerance for such automated swarms [21].
However, pre-programmed behaviors fundamentally waste
resources by collecting and processing data of low value rel-
ative to the crop-scouting mission. Further, swarm members
can not share data to improve results.

Multi-Agent Reinforcement Learning (MARL) is an
emerging class of learning algorithms where agents coop-
erate to maximize a reward [58]. Agents learn their own
reinforcement learning policies, but they can also learn from
the actions and outcomes of other agents. MARL algorithms
applied to AA swarms can speed up missions via partitioning
(like the automated approach above) and via efficacy (i.e.,
taking better actions). Further, recent research on MARL
algorithms provides provable guarantees and strong empirical
results [32], [8], [57], [10]. However, MARL systems are not
simple to develop and manage; they require infrastructure for
AA workflows, selection of MARL algorithms and reward
functions, and data management policies. Developers must
create this infrastructure by hand and incorporate it into a
real-world system. The result is that, despite their potential,
these algorithms rarely go beyond theoretical studies or
highly specialised applications with bespoke components.

This complexity is compounded further by deployment
concerns. AA who rely on MARL for decision making often
do not have the onboard compute power to extract features
and make decisions alone, necessitating offloading [41]. Agri-
cultural areas are rarely provisioned with networks necessary
for low-latency cloud communication. For these reasons,
edge resources are critical for MARL swarms. Edge re-
sources, however, come with management concerns. Remote
edge deployments must use power sparingly to maximize
mission goals. Thus, an end-to-end solution for MARL
swarms should provide: 1) a programming mechanism for
training MARL models and testing swarm configurations to
meet user-defined goals, and 2) a power-aware and scalable
deployment platform for edge systems.

We present MARbLE, a platform for developing and man-
aging MARL-driven swarms. To create a MARL specification
in MARbLE, developers provide two functions: Map() and
Eval(). Map() converts sensed observations (e.g., images) to
application-specific feature vectors. Eval() evaluates system
performance towards autonomy goals. With these two func-
tions and configuration information, MARbLE can be used
to quickly deploy systems in the field. MARbLE can also
test swarm configurations in simulation, allowing users to
explore the performance tradeoffs of configuration settings
before committing to costly edge deployments.

To support its novel programming paradigm, MARbLE
provides end-to-end control, deployment, and scheduling of

an entire swarm-support infrastructure – including UAV and
heterogeneous edge computing resources. After sensing data
at a waypoint, AA require substantial compute resources to
compute crop health at runtime, but these demands dissipate
as AA move between waypoints. MARbLE scales resources
as needed, turning off edge devices during demand troughs
to save power and efficiently bin-packing for energy-efficient
load balancing.

We used MARbLE to build a real MARL swarm of UAV
to predict crop health. We deployed our swarm on an 85-acre
Ohio soybean field for one month, conducting over 150 crop-
scouting missions. With MARbLE, we explored 45 custom
configurations which ultimately resulted in a 31% agricultural
profit increase over an automated swarm implementation.
Our MARL swarm outperformed competing approaches,
improving mapping times by 2.1X while using 2X less edge
energy. With MARbLE, we were able to easily scale up edge
compute resources to support multiple AA, allowing AA to
learn from each other online while dynamically allocating
resources to fit demand and save precious power at the edge.

MARbLE makes three contributions:
1. MARbLE allows users to swap out the building blocks
of MARL to develop and deploy a myriad of swarm
configurations. Without MARbLE, policies to govern
each agent’s actions must be handcrafted.

2. MARbLE demonstrates that MARL swarms can im-
prove performance via efficacy; Agents can take more
effective actions by sharing data with each other and
updating their policies via online learning.

3. MARbLE counteracts increased resource utilization of
MARL swarms by leveraging their resource usage pat-
terns to duty cycle edge devices.

The remainder of the paper is organized as follows:
Section II provides background information on UAV swarm
workloads in agriculture. Section III details MARbLE’s high
level design and programming model, which allows users to
easily build MARL swarms. Section IV discusses MARbLE’s
runtime, which includes a cluster autoscaling mechanism
which saves edge power without sacrificing performance
and a priority-based online learning approach. Section V
covers our implementation of MARbLE to map crop health
using a UAV swarm deployment and the evaluation of 45
potential deployment configurations. Section VI evaluates the
performance of MARbLE compared to prior automated and
autonomous swarm approaches. Section VII discusses the
limitations of MARbLE. Section VIII presents related work
and Section IX provides conclusions.

II. BACKGROUND: SWARM WORKLOADS

We studied three types of AA swarms in digital agriculture,
as shown in Figure 1. Automated swarms [50] are the most
widely used approach for UAV swarms today. Automated
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Fig. 1. Types of swarms: Automated, Autonomous, and MARL. Each agent
explores its environment from a starting point, senses data, and, when its
mission is completed, produces a report. This figure depicts four UAVs
scouting a crop field and producing a health map. Depending on the type
of swarm, agents visit fewer waypoints, require more edge resources, and
communicate more frequently to complete missions faster.

swarms partition an environment into equal sections and
sense those sections in their entirety. Environments are repre-
sented as sets of GPS waypoints. UAV fly to each waypoint
and capture images, video, or other data in sequence. Soft-
ware packages used for automated systems can be ground
control stations [1], onboard control platforms and software
development kits [35] or more complicated robotics control
platforms [43]. Automated swarms require limited resources
on the ground, but produce longer missions, taking days to
weeks to scout entire crop fields.

A second way to implement UAV swarms replaces au-
tomated GPS routes with AA that creatively sample fields
using reinforcement learning (RL) [61]. Researchers can train
machine learning algorithms using field data to identify crop
diseases, pests, and stressors online. This data can be then
used by RL algorithms to determine the best regions to search
to properly map phenomena while eschewing regions that
are healthy or irrelevant. Finally, unexplored regions can
be predicted from nearby values, presenting a sufficiently
accurate map in significantly less time. Autonomous agents
do, however, require edge resources. UAV often do not have
the processing power to analyze observations in real-time and
make RL decisions. This makes autonomous deployments
more difficult, requiring optimal hardware, software, and
model configuration to assure efficient mission execution at
the edge [7]. Autonomous swarms act as parallel sets of
autonomous collaborating agents. These agents, however, do
not communicate with one another. They act alone in their
own partitioned environments.

MARL swarms differ from autonomous swarms in that
they collaborate directly, using one or more MARL algo-
rithms designed to maximize a global goal as opposed to
individual local goals. MARL swarm members share an
initial reinforcement learning model that changes over time
as observed environments diverge from the original training
data. Data sharing and online learning help to increase
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Fig. 2. The architecture of MARbLE. Programmers input mission config-
urations and Map() and Eval() functions, and MARbLE compiles a MARL
algorithm. MARbLE then deploys MARL apps as containers across an edge
cluster.

map accuracy and goal performance. These improvements,
however, come with a cost. MARL swarms have even greater
resource management concerns than autonomous swarms.
They add data sharing and retraining workloads beyond
those needed for general autonomous flight. MARbLE is
designed specifically to simplify the building process for
MARL swarms and to manage their deployments and addi-
tional resource needs. However, we note that MARL swarms
subsume automated and autonomous swarms. MARbLE can
be used to build any of these types of swarms.

III. DESIGN

As shown in Figure 2, MARbLE is an end-to-end platform
for autonomous swarms, covering the development of AA,
their workflow and coordination, and their execution on edge
computing devices.

To create a swarm, developers implement two functions,
Map() and Eval(), and specify a mission configuration. Map()
functions convert quantized inputs from sensing devices (e.g.,
cameras, GPS, etc.) into a feature vector that represents the
state of the swarm. Eval() functions aggregate all outputs
from Map() invocations during an epoch and assess the
extent to which the mission has been completed. The mission
configuration defines key parameters that developers can
adjust across swarm applications. Figure 2 depicts three
mission configuration settings. First, developers can provide
thresholds to determine when missions are complete or



uncompletable, known as goals and budgets. Goals determine
if a mission has successfully completed (e.g an agent has
exited a maze), budgets determine whether a mission can be
completed given current resources (e.g the agent has run out
of battery in the maze). MARbLE also uses sensor profiles [7]
which specify the amount of each budget that is consumed
by a given MARL action (e.g moving to a new state,
sensing data). Using budgets and profiles, MARbLE draws a
novel link between RL training and resource management at
compile time.

MARbLE compiles these inputs to create swarm work-
flows for sensing surroundings and taking actions. Here, the
challenge is to decide which actions to take after running
Map() and Eval(). MARbLE automatically builds MARL
models by (1) replaying data from prior execution contexts,
and (2) learning effective actions that improve Eval() out-
comes.

MARbLE models MARL-driven swarms as three asyn-
chronous components: Sensors, AA Workflow, and Online
Learning. These components execute in shared-nothing con-
tainers connected via distributed storage (e.g., HDFS [46]).
Containers are replicated to support swarms. Distributed
storage holds model information and aggregates data to
update swarm member’s models in execution. MARbLE
deploys all sensor, agent, and online learning containers,
and support software across an edge cluster in-situ. To
minimize resource consumption, MARbLE right-sizes via
automatic duty-cycling of unused compute and employs a
novel, priority-based online learning and scheduling mecha-
nism to manage compute demand.

In this section, we first provide a rigorous primer on
MARL algorithms. Then, we introduce the specification
of MARbLE applications, i.e., swarms of AA. Finally, we
describe each of the key functions and models listed above.
In Section IV, we describe the MARbLE runtime and man-
agement system.

A. MARL Primer

Broadly, reinforcement learning approaches determine a
policy π∗ that approximates an optimal solution to a Markov
Decision Process (MDP). MDPs comprise States S, Actions
A, a transition probability function P → SxA → ∆(S),
a reward function R(si, ai, si+1) defining the immediate
reward an agent receives from performing an action, and a
discount factor γ [58]. A policy π is a means of determining
which action to take in a given state to transition to another
state. The optimal policy π∗ is the policy that results in the
set of state transitions that maximizes overall reward.

MDP : (S,A, P,R, γ) (1)

MDPs are a useful tool for solving simple state transition
problems, but MARL missions are too complex for this
framework. Crop scouting is a complex workload where the
execution context changes over time and reward is difficult

to define. If the system is rewarded based on the estimated
yield it predicts in each state, it will likely over or under-
predict yield based on how reward is assigned. Furthermore,
even if reward is properly assigned, it is likely that states
and transition probabilities will change over time as crops
grow and conditions change. In many cases, an optimal
policy is nearly impossible to determine a priori. For these
tasks, reinforcement learning is used to develop π∗′ ≈ π∗,
an approximately optimal policy for navigating execution
contexts while maximizing reward.

There are many methods for approximating π∗ through
reinforcement learning including value based methods like Q-
learning, policy based methods like actor-critic RL, and anal-
ogous deep methods like Deep Q-Networks and Deep Deter-
ministic Policy Gradients [54], [19], [38], [31]. Throughout
this paper, we will use Q-learning as a basis for MARL, but
other techniques fit into our programming model as well.

Q-learning is a value-based method for reinforcement
learning which uses a Q-function to determine π∗′. Q(Si, Ai)
is the Q-function which predicts the expected reward (Q-
value) of an action Ai taken at state Si. In practice, Q-
values are stored in a Q-table Q[S,A] indexed by state-
action pairs. When an action is performed, the Q-table is
updated using the bellman equation shown in equation 2,
which uses dynamic programming to update the Q-value for
a state-action pair based on the reward for a given action, plus
expected reward of all future actions modified by learning
rate α and discount factor γ. Properly informed Q-tables
and other RL mechanisms solve MDPs with high reward by
learning π∗′ through a combination of exploration (taking
random actions and learning from results) and exploitation
(taking predicted high-quality actions and learning from
results).

Q(si, ai) = (1− α) ∗Q(si, ai)+

α[R(si, ai, si+1) ∗ γmax(Q(si+1, ai+1))]
(2)

This process translates quite well to multi-agent systems.
Transitioning a reinforcement learning algorithm to a multi-
agent domain can involve constructing careful global reward
functions [9]. Another approach, team-average reward [22],
[13], maximizes the reward received by the system given
agents with different and potentially discordant reward func-
tions. MARL algorithms of this type are called Markov
Games (MGs) [33]. MGs, shown in equation 3, expand the
MDP by adding multiple agents, defined by N ≥ 1. Each
agent i ∈ N has its own action set Ai and reward function
Ri. Similar to MDPs, the solution to the MG is policy π∗,
the set of state transitions that maximizes reward. Much
work has also been done with networked agents [59], [42],
[57], agents within a MG that communicate over some time-
varying network, may have individual reward functions, and
may require data privacy.

MG = (N,S,Ai
i∈N , P,Ri

i∈N , γ) (3)



Given this specification, MARbLE should accommodate
different MARL algorithms using the same base components
while assuring that these algorithms fit within the MARbLE
framework. To allow the design and deployment of MARL
algorithms for real-world AA, MARbLE takes some of these
base MARL components as inputs and generates others
offline.

B. The MARbLE Spec

MARbLE Spec : (N,S,Ai
i∈N ,Map(), Eval(),C) (4)

Equation 4 presents the minimum specification for MAR-
bLE applications, called the MARbLE Spec. Similar to a
Markov Game, the MARbLE Spec accepts a number of
agents N ≥ 1, states S, and action sets Ai for each agent.
States are non-injective and surjective mappings from action
sequences to integers < att=0, a

t
t=1...a

t
t=T >→ Z where

at ∈ Ai
i∈N . States affect the behavior of action drivers. For

example, if a vehicle is at the eastern edge of allowed states,
the command go East is muted by the action driver.

Unlike Markov Games, the MARbLE Spec eschews state
transition probability and reward functions. First, MARbLE
developers can reuse action drivers created by others. The
action drivers may support states about which the developers
are unaware, making state transition models incomplete.
Second, constructing mathematical reward functions is chal-
lenging. Real-world swarms take on missions that involve
complex, domain-specific knowledge. The value of their
actions can be subtle and may depend on prior actions,
requiring complex non-linear reward functions that overly
complicate the development of AS.

Instead, MARbLE simplifies reward engineering through
Map() and Eval() functions. The Map() and Eval() functions,
coupled with representative observations from prior missions
C suffice to compile initial MARL models which consider
goal performance as well as edge resource consumption. The
remainder of this section details the training process.

C. Map() and Eval() Functions

Like in MapReduce [12], Map() functions in MARbLE
structure input data. AA get their input data from sensor
containers. The output is a feature vector, called a state-
space vector (SSV), that describes sensed observations in the
system’s current state. Precisely, let Dj be the sensor data
observed in state Si, Map(Dj) directly translates observed
sensor data to a SSV, as shown below.

D =< d1, d2, ...dn > (5)

Map(D) = SSV =< f1, f2, ...fm > (6)

By emitting a structured SSV, Map() functions in MARbLE
can compose multiple extractor functions that process a
portion of the sensed data D′ ⊂ D and emit part of the SSV.
Extractor functions are shown in Figure 3 for crop scouting.

1 func[] extractrs = [ExG(), LAI(), DefoNet()]
2 float[] Map(Obj data) {
3 float[] SSV = [];
4 for(e in extractrs) {
5 SSV.append(e(data));
6 }
7 return SSV;
8 }
9

10 Obj[] Eval(float[][] fs, float[][] budgets,
Float[][] goals) {

11 goalPerf, finished = GoalPerf(fs, goals)
12 budgetPerf, overrun = BudgetPerf(fs, budg)
13 loss = goalPerf * budgetPerf
14
15 bool done = (finished || overrun)
16 return [loss, done]

Fig. 3. Map() and Eval() function pseudocode for crop scouting.

Map(Dj) for crop scouting provides data Dj to extractors
including ExG() which determines excess green [23] (a
metric for predicting crop yield), LAI() which estimates the
leaf area index [44] of crops in the image, and DefoNet, a
soybean leaf defoliation detecting neural network [62]. Each
of these extractors provides important information about the
execution context that can be used to both build final yield
maps and predict optimal actions for sampling. Each of these
extractors return one or more floating point values which are
added to the final SSV.

As Map() is meant to simplify how autonomous agent
data is ingested by MARL algorithms, Eval() simplifies the
model evaluation and training process that reinforcement
learning engineers often perform manually. Reinforcement
learning algorithms balance goals (e.g finding targets, navi-
gating through environments) and systems-level budgets (e.g
energy expenditure, mission time). Engineers hand-design
complex reward functions to accomplish goals within bud-
gets, penalizing poor agent behavior and rewarding positive
behavior. Normally, this process at best loosely considers
system budgets. MARbLE swarms, however, are intended
to execute real-world missions on tight budgets, so edge
resource budgets must be considered at every step. To sim-
plify this process, MARbLE automatically engineers reward
functions through an iterative, budget-aware training process
described in section III D. This process relies on the Eval()
function.

FS = {SSV1, SSV2, SSV3...SSVn} (7)

B = {β1, β2, β3...βm} (8)

Γ = {γ1, γ2, γ3...γo} (9)

Eval(FS,Γ, B) =

[ |Γ|∑
i=0

γi(FS)

]
∗
[ |B|∏
i=0

βi(FS)

]
(10)



Eval() determines whether and to what degree a swarm has
accomplished its goals. For some AA, this can be as simple
as reaching a certain state. For others, like autonomous crop
scouting, goal evaluation is more difficult. Depending on the
size and type of field being modeled, the goal may be to make
the most accurate yield map possible within some timeframe,
cost, or sampling coverage.

Eval() accepts a feature space FS comprised of n ≥ 1
SSVs and a set of goals Γ and system budgets B, and
determines whether the swarm’s mission has concluded suc-
cessfully. Γ is a set of individual goal functions γ1..n which,
when passed FS, determine whether a goal has been met.
Goals are meant to be necessary conditions for mission
success. Budgets, on the other hand, denote how well or
poorly a mission was completed with respect to system
resources. Budgets encompass features of mission completion
like mission time, energy expenditure, and efficiency.

As shown in Equation 10, Eval() first determines the sum
of all goals, and multiplies it by the product of all budgets.
When a goal γi is evaluated, that goal function is passed
FS, and returns either a positive or negative user-specified
number reflecting the value of completion (reward) or failure
(penalty) of the goal. Similarly, budgets return a floating
point modifier between 0 and 1, based off of FS information,
which reflects how well the mission performed with respect
to that budget. The product of all budgets is calculated and
multiplied by the sum of goal rewards and penalties to return
a loss value which scores performance. This performance
score is then used in training.

D. Training

MARbLE training automates time-consuming and compli-
cated conventional MARL training tasks. The conventional
MARL training process can be decomposed into three steps.
First, designers set hyperparameters like rewards, penalties,
and budget limits. Next, the model is trained and its per-
formance is evaluated. Finally, designers determine based on
the models performance if it is acceptable, or tweak hyperpa-
rameters and train again. Hyperparameter tuning and model
training are regularly performed in machine learning [55], but
rarely consider resource utilization at time of deployment.
MARbLE leverages real-world traces and budget consid-
erations to evaluate estimated mission performance in the
training process to assure that models meet goals without
exceeding budgets. MARbLE then iteratively tweaks reward
function hyperparameters as developers would to maximize
model performance.

Besides Map() and Eval() functions which ingest AA data
and score performance, to train a MARL model, MARbLE
requires training data. Users provide training data as a set of
representative traces (C) of AA environments. Representative
traces hold data from real autonomous agent environments
and executions. Traces for autonomous agent research are
common [17], [7], [6] and regularly used. Traces can in-

1 Obj[] train(float[] G, float B[], Obj[] C) {
2 float[] W = initWeights(|B| + |G|)
3 Obj MARL = initMARL()
4 int bestLoss = MAX_INT
5 Obj bestMARL = []
6
7 for i from 0 to numEpochs_HP {
8 for j from 0 to numEpochs_T {
9 for trace in C_tr {

10 float[] FS = sim(trace, MARL)
11 loss = Eval(FS, G, B, W)
12 MARL.update(FS, G, B, loss)
13 }
14 }
15 loss = getTestLoss(C_te, MARL)
16 if(loss < bestLoss) {
17 bestLoss = loss
18 bestMARL = MARL
19 }
20 W = BayesOpt(W, loss)
21 }
22 return bestMARL;
23 }

Fig. 4. Bayesian reward shaping pseudocode. Reward Shaping seeks to find
the set of hyperparameters which minimizes loss and meets goals.

volve simulated environments [6], linear execution data [17],
or spatially navigable linked data from real AA environ-
ments [7]. MARbLE allows users to bring the trace system
that best fits their agents and goals, so long as it allows an
AA to sense data and take actions.

Given Map(), Eval(), and C, the MARbLE training pro-
cess, as shown in pseudocode in Figure 4, builds a MARL
model and tunes its reward function to best fit user goals
and budgets. The training process accepts as arguments
sets and representative traces (C). MARbLE first initializes
weights which modify each goal and budget’s reward or
penalty applied to the evaluation. The optimization of these
weights across MARL training sessions serves to replicate
manual hyperparameter tuning that MARL engineers would
conventionally perform. Once weights and a blank MARL
model are initialized, the training process can begin.

Every trace in C is used as either a training trace Ctr or test
trace Cte. For every representative trace Ctr,i ∈ Ctr, MAR-
bLE runs a single iteration of MARL training. Using Ctr,i as
its environment, a simulated swarm of agents explores Ctr,i

using the MARL algorithm in training, updating that model
with the loss value returned by EVAL after goals have been
met or budgets exceeded. This training process takes place for
each representative trace repeating over a number of epochs
decided by the user. Once a MARL model has been trained,
it’s performance is tested on Cte to determine a final loss
value. Once MARL training has concluded, MARbLE uses
Bayesian optimization [5], a common hyperparameter tuning
technique, to update the weights that goals and budgets have



been given in the Eval() function. This reward engineering
step allows MARbLE to determine which goals and budgets
to prioritize for determining reward. This reward shaping step
takes place for another set number of epochs as determined
by the user, at the end of which the best evaluated MARL
model and weighted reward function are returned.

IV. EDGE-OPTIMIZED RUNTIME

Digital agriculture requires computation on far-edge re-
sources that connect to the Internet via endpoints on the
last mile for Internet service providers (ISPs). With Ku-
bernetes and Docker, these resources can use cloud-native
tools for workload management. However, MARL workloads
on far-edge resourcs present new challenges for runtime
management. First, unlike cloud workloads that can provision
seemingly infinite data center resources on demand, far-edge
resources are capped. Further, with low bandwidth to the
Internet, it is impractical to offload data and computation to
the cloud. Second, in rural areas, the energy burden— that
is percentage of monthly income spent on electricity— is
three times higher than the national average [29]. Far-edge
resources should conserve energy. Finally, crop fields vary
spatially and temporally. For example, an aphid infestation
will damage crops near the edge of a soybean field first, but
without treatment, the infestation will spread to the whole
field within days to weeks. Thus, the computational demands
of AA at runtime will change as agents move around the field.

Given the challenges above, we advocate for adaptive
management of far-edge resources for swarms. Using our
resource-aware development techniques, MARbLE provi-
sions the far-edge resources needed for the peak demands
of AA. MARbLE uses cloud-native container orchestration
and storage tools to auto-scale edge clusters. MARbLE uses
duty-cycling to turn off resources when they are not needed,
saving energy. We have observed that AA have periodic peaks
and troughs in their computational demand that make duty
cycling effective. Finally, MARbLE also manages resource
usage for retraining and updating MARL models at runtime
by using priority scheduling.

A. Runtime Components

MARbLE deploys all of its core components in contain-
ers [36] to maintain hardware independence and support
scale-out. Figure 2 shows the different container types that
encapsulate pre-built inputs like MARL algorithms, retrain-
ing routines, and feature extractors along with core MARbLE
platform elements. We use Kubernetes [45] to deploy con-
tainers in MARbLE, assign containers to available nodes, and
migrate containers in case of cluster autoscaling. Kubernetes
also ensures that latency-sensitive real-time tasks such as
UAV flight control are assured to be executable within their
latency windows. Any remaining cluster resources are used
sparingly for online learning. The MARbLE runtime also
relies on the Hadooop distributed file system (HDFS [46])
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Fig. 5. Online learning evaluates model quality to determine coefficients
for priority-based scheduling to update MARL models.

for cluster storage. MARbLE stores models and observations
in HDFS to provide redundant and distributed access to
individual agents. HDFS automatically replicates data across
nodes and self-heals when nodes go offline: a feature that the
MARbLE autoscaling approach leverages to avoid data loss.

The final piece of the MARbLE runtime is the MARbLE
governor. The governor is a Python application which starts
missions, deploys all containers using Kubernetes, and au-
toscales the cluster based on resource utilization thresholds.

B. Cluster Autoscaling

Because MARbLE may include many nodes, and edge
devices are provisioned for peak load, it is beneficial to scale
the cluster up and down in response to workload needs.
MARbLE includes a custom Kubernetes autoscaler which
drains compute tasks from superfluous nodes and powers
them down to save edge power when loads are low, and
re-powers decommissioned nodes using Wake-On-LAN [37]
when the system detects that more compute is required.

Powering down nodes in this way must be sensitive to
cluster storage implications. Each edge node stores different
fragments of data, so we must ensure that no data becomes
unavailable. For this purpose we use HDFS for cluster data
management, configured to replicate all data twice across the
edge node cluster. When data is ‘lost’ from a decommis-
sioned node it will therefore still be available at one other
node in the cluster; after each decommission we simply wait
for data to be re-replicated by HDFS before powering down
any further nodes, guaranteeing data availability as the active
node population changes.

C. Online Learning and Priority-based Scheduling

MARbLE dedicates some of its resources to retraining
MARL models online to assure model freshness and to allow
agents to diverge when presented with sufficiently different
environments. Model retraining is federated, meaning agents
maintain local copies of their own models which are up-
dated over time. Updated models are regularly incorporated
into a global MARL model, but can also be incorporated
into intermediate ”aggregator” models. Aggregator models
incorporate updates from two or more agent’s local models,
allowing users or agents themselves to exploit similarities



between agent’s individual goals or environments to share an
intermediate model. Agents generally use consensus between
various models to render decisions.

For model retraining tasks, we augment the resource
allocation algorithm used by Kubernetes to optimise place-
ment and task selection for MARbLE operations. Placement
decisions are impacted by data locality, where training data
for MARL models is typically fragmented across multiple
systems within MARbLE. Our resource allocation algorithm
guarantees that containers will be scheduled on an edge node
that either (1) has at least some of the data required for
model retraining, or (2) is within a user-defined edge hub with
expanded compute. This provides Kubernetes with sufficient
flexibility in scheduling, but guarantees that data transfer
times remain relatively low and allows for the potential of
partial or complete data locality at the training site.

Task selection is impacted by the likely quality of a
retraining task: when edge compute resources cannot support
all retraining tasks, we choose those with the lowest quality
first. We rank model quality as determined by relative Eval()
outputs. Models who evaluate poorly will receive more pri-
ority for retraining as opposed to models that evaluate well.
MARbLE uses Kubernetes’ priority scheme for scheduling
training procedures using the aggregate usefulness of each
model provided by AA containers as shown in Figure 5.
Model usefulness is simply the floating point value Ui =
[0, 1) determined by inverting normalized Eval() results.

Pi = ⌊10 ∗ Ui⌉ ∗ 100, 000, 000 (11)

Pi then becomes a priority value in range [0..900, 000, 000]
at intervals of 100, 000, 000, allowing for 10 possible priority
values. This range maps into the entire range of priority
levels available in Kubernetes, which is specified by integers
between 0 and 1 billion, while providing a coarse granular-
ity that clearly differentiates retraining routines of different
utilities and allows us to reserve the priority level 10 for
containers with real-time guarantees.

We also use model quality to assign compute resources.
Kubernetes allows users to provide minimum and maximum
resource usage constraints when pods are instantiated. We
use the same priority numbers [0, 9] to assign relative CPU
and RAM maximums to pods. All available RAM and CPU
units are portioned among pods based on their priority levels.

CPUi =
CPUt

n+
∑n

j=0 Pj
∗ (Pi + 1) (12)

Shown above, all CPU cores available across the system
CPUt for retraining are split evenly among pods based on
priority. This same process is used to allocate memory. Pods
with a priority of 0, representing the best performing class of
models, are scheduled with very few resources, while poorly
performing pods are scheduled with the most resources. This
priority mechanism allows us to provide more resources
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Fig. 6. Our crop scouting application takes MARbLE spec inputs and maps
them to a real autonomous swarm implementation.

to retrain models that perform poorly, and avoid retraining
models that already perform well.

V. APPLICATION

To evaluate MARbLE, we built a real agricultural MARL
swarm. Shown in Figure 6, we map MARbLE variables
directly to implementation details. Our swarm focuses on
modeling a specific crop health condition: leaf defoliation.
Leaf defoliation is the process by which crops lose leaf area
through predation, disease, or natural aging. Defoliation is a
normal part of many plant’s lifecycles, but premature defoli-
ation is associated with decreased yield [30]. In soybeans, a
globally important crop with over $40 Billion of production
annually in the US alone [51], leaf defoliation signifies
diseases and pests which can be treated to improve yields,
or can decrease yield if ignored. Our swarm uses MARbLE
in combination with DefoNet [62], a soybean defoliation
neural network, to model crop health. To build our swarm, we
first evaluated 45 different hardware, training, and mission
length configurations using MARbLE to determine which
configuration was most profitable. We then implemented that
configuration using the MARbLE runtime and 3 DJI Mavic
UAVs in an 85 acre soybean field. In this section, we describe
our configuration analysis process and the implementation of
our swarm.

A. Building Optimal Models with MARbLE

Before deployment, we built a series of MARL models
with MARbLE and tested them on various edge configu-
rations. Autonomous agents are delicate and configuration
parameters have cascading performance effects that are dif-
ficult to predict a priori [7]. We wanted to understand the
performance our system would garner based on hardware
configurations, mission flight goals, and model training times.
We used MARbLE to build MARL models for 45 separate
configurations, and tested each to determine their effects on
overall agricultural profits.

Figure 7 shows the performance of each configuration
with respect to normalized agricultural profit, with 0% being
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Fig. 7. MARbLE allows developers to test goal and budget combinations
to maximize performance.

break-even, and 100% being the best performing configura-
tion. We tested all permutations of 3 edge hardware profiles, 3
mission lengths, and 5 training lengths (1000-5000 epochs of
training). Mission lengths describe how much of the field we
map with UAV compared to how much we extrapolate from
field-sensed data. Hardware profiles describe the hardware
accessible to the MARbLE cluster. Training epochs describes
the length to which MARbLE trains MARL models before
each reward engineering step. All models were trained using
20 reward engineering steps and evaluated using custom UAV
and hardware profiles.

We modeled profit by estimating the total profit available
for our target 85 acre soybean field and subtracting the
costs of equipment, treatment, labor, and crop loss from
each configuration. We used agricultural data to determine
treatment costs [52] and profits [51] for soy beans. We
calculated labor at $30 per hour for a single swarm operator.
We simulated final model execution across a validation set of
soybean images reserved from the original training set and
applied treatment to each region that the UAV either sensed
or predicted as defoliated. In our profit model, we assumed
that any treated or healthy region would produce an average
yield, and that any untreated and unhealthy region would
have it’s yield uniformly decreased. Our baseline system
(shown as configuration 2 in Figure 7 (B)) is an automated
3-UAV swarm which senses every region of the field with
offline analysis and generates a treatment plan. All other
configurations are MARL 3-UAV swarms which use online
analysis to inform mapping.

Figure 7 (A) shows a cumulative density function (CDF)
describing the performance of our models as configurations
changed from worst to best performance. We found that some
configurations performed very poorly despite running as
MARL swarms. These configurations suffered from parame-
ter mismatches like long mission times and minimal hardware

which decreased startup costs but drastically increased the
deployment length and in turn labor costs. Figure 7 (B) shows
example configurations of varying levels of performance.
Configuration 1, for example, performs poorly due to a
mismatch between hardware and mission length. Configu-
ration 1 maps 50% of the crop field using MARL with
limited hardware, making each operation take considerably
longer than automated scouting and essentially erasing any
performance gains from MARL by adding labor costs.

Configurations 3 and 4 show how increased training time
provides benefit to MARL algorithms which directly translate
to profits. Both configurations use the same hardware and
mission lengths, but configuration 3’s model was trained
for only 1000 epochs while configuration 4 was trained for
5000, adding a benefit of 3% increased profit. This profit
improvement holds for all 45 configurations, meaning an
additional 1000 epochs of training always either improves
profit or rarely (n=6) leaves profit the same. Configurations
5 and 6 demonstrate the importance of hardware selection.
In this scenario, our low hardware profile takes considerable
time (> 10s) to return classification and MARL results for
each image which inflates labor costs. Conversely, our highly
provisioned profile returns classifications faster (< 3s) and
can retrain more often, leading to better results over time and
faster results constantly, resulting in a 33% profit improve-
ment despite increased initial costs. Finally, configurations 7
and 8 demonstrate the importance of well-calibrated mission
goals. Configuration 7 sets a goal to map 50% of the crop
field to return results, while configuration 8 maps a more
sparing 10%. The benefit configuration 7 provides from
increased mapping does not outweigh the cost in time and
labor to map additional field regions. Configuration 8 was
the most profitable of all configurations, beating the baseline
automated scouting approach by 31%.

B. Implementation

We deployed a MARbLE cluster at a private 85 acre soy-
bean field. Our deployment ran from August 26th to Septem-
ber 16th 2021, the period at which those soybeans were
most susceptible to yield loss due to premature defoliation.
Over this time, we ran 150 UAV swarm missions. Figure 6
shows our MARbLE spec implementation and configuration.
First, we initialized all MARbLE inputs: Map(), Eval(), and
C, with added budgets and goals. Our Map() and Eval()
functions for crop scouting are shown in pseuocode Figure
3. Our Map() function uses DefoNet along with two simpler
crop health metrics (Green Excess and Leaf Area Index)
to determine health and inform map building. Eval() uses
an extrapolation procedure from prior work [61] to build
crop health maps from Map() feature sets collected by our
UAV agents. C was a set of 30 Autonomy Cubes collected
from 5 separate soybean fields located over 100 miles from
our test field. Each autonomy cube contains 1344 spatially
linked aerial soybean images composed into a 32x42 matrix.



We used an approach from prior work [7] to build and
validate profiles for UAV and edge systems. Profiles included
energy consumption and time distributions for flight between
waypoints, data capture, and data transfer times.

Our swarm’s runtime used a custom autonomous UAV
software package to control UAV. We connected each DJI
Mavic via remote control to it’s own android tablet running
our UAV control platform. Our MARbLE cluster, based on
configuration 8 in figure 7, consisted of two Lenovo T470
Thinkpads, 4 HP G6 laptops, and one Dell precision 7920
workstation. Each Lenovo had an Intel i7 CPU and ran
Ubuntu 18.04. One Lenovo was used as the MARbLE head
node, controlling all UAV communication and acting as the
MARbLE Kubernetes master. This machine was provisioned
with 24 GB of RAM. The second Lenovo was used for UAV
control and retraining offloading, and was provisioned with
8GB of RAM. The Dell workstation had one Intel Xeon
6258R CPU, 64 GB of RAM, and an NVIDIA RTX 2080Ti
GPU. This machine was used for classification and as the
primary node for reinforcement learning retraining. Each HP
G6 laptop was used for additional compute for retraining and
control pods.

VI. EVALUATION

We implemented our swarm as described in Section V
across a real farm and in software simulation using var-
ious configurations and swarm sizes. In this section, we
describe MARbLE performance results from our deployment
using single UAV missions and 3 UAV swarms, and use
deployment-validated simulation to provide results for 2 and
4 UAV swarms.

We evaluate MARbLE’s comparative performance against
state-of-the-art autonomous swarm control and automated
control methods as described in section 2. Figure 8 (a-b)
show MARbLE’s performance on our crop scouting workload
as compared to commensurate autonomous and automated
approaches. Figure 8 (a) shows results for 8 mission config-
urations. The first four configurations show results for our
maximum accuracy setting which is shown as configuration
7 in figure 7. This setting covers a wide range of our field
to maximize prediction accuracy. The final four configura-
tions represent our maximum profit configuration, shown as
configuration 8 in Figure 7. This configuration maximizes
field profit by minimizing labor costs while providing suffi-
ciently accurate maps with short missions. For each of these
configurations, we show how MARbLE performs against
autonomous and automated scouting in various swarm sizes.
Results for swarm sizes 1 and 3 were obtained from our real
world MARbLE deployment, while results for swarm sizes
2 and 4 were produced using mission-validated simulations.

Figure 8 (a) shows how long swarms of various autonomy
settings take to accomplish the same task. Shorter times are
preferred due to decreased labor costs and additional time for
more missions. Figure 8 shows that MARbLE swarms across

all configurations are shorter than automated swarms by (1.2-
2.1X) and autonomous swarms by (1.1-1.73X). When com-
pared to automated swarms, MARbLE converges quickly by
carefully selecting waypoints to sample. Automated swarms
visit waypoints faster because their flight-paths are prede-
termined and do not have to be calculated online. This,
however, limits their flexibility. MARbLE swarms outperform
automated swarms on all settings despite additional decision-
making because the benefits of model-based sampling out-
weight the speedup from pre-determined paths. Furthermore,
automated swarms must search up to 30% more waypoints
to meet the same accuracy goals MARbLE swarms, further
increasing automated mission lengths. When compared to
autonomous swarms, MARbLE’s better optimized models,
online learning capabilities, and engineered reward function
outperform stale autonomous models. We found that even
short periods (10 missions) of online learning contribute
between 1.1% and 3.4% improvements to final map accuracy,
allowing MARbLE swarms to converge to goals faster. Inter-
estingly, autonomous swarms are outperformed by automated
swarms for two configurations: high accuracy swarms with
3 and 4 agents. Autonomous swarms decrease performance
relative to swarm size due to increased contention for cluster
resources which increases inference times for individual UAV.
This prohibits scale, allowing automated flight to outperform
autonomous flight at larger swarm sizes. MARbLE, on the
other hand, slightly improves performance as swarm size
increases ( 1%) as the benefits of data-sharing outweigh the
costs of scale.

Figure 8 (b) shows one way that MARbLE is able to
complete goals faster than autonomous and automated scout-
ing while requiring additional compute power. Figure 8 (b)
shows the relative number of samples each approach required
to create a maps of various quality. Low quality maps
(70%+ accuracy) are quick to produce but provide only some
treatment benefit. Medium and high quality maps (80%+ and
90%+ accuracy) provide additional benefit for targeted treat-
ment, but take longer to capture. Figure 7 shows that lower
accuracy fast maps are optimal for maximizing profit in this
agriculture scenario, but other scenarios may require higher
quality swarm outputs to maximize performance. Figure 8
shows that MARbLE requires considerably less samples than
autonomous (up to 1.7X) and automated (up to 2.2X) to
meet accuracy goals. Even at the highest accuracy settings,
MARbLE requires less samples than both approaches to ac-
complish its mission due to MARbLE’s coordination among
swarm members and goal-based development.

MARbLE swarms require considerably more resources
at peaks than autonomous or automated swarms. Figure 8
(c) and (d) show the CPU and memory needs of 3-UAV
autonomous and MARbLE swarms over a 2 hour period. Our
UAV swarms are deployed on 8 mapping missions, where
UAV fly to waypoints in the crop field, sense them to build
a crop scouting map, and return for a battery exchange.
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Both autonomous and MARbLE swarms experience periodic
demands in-mission. At some points, multiple UAV request
resources for inference, pathfinding, or flight control and
at others no UAV are making requests. For autonomous
swarms, these periods can be seen clearly peaking when all
swarm members are deployed, and tapering off as members
actions diverge and individual UAV finish their missions.
Eventually, all UAV conclude their mapping or run out of
battery, and must return for a manual battery exchange where
we see troughs in workload utilization. MARbLE swarms
use the periods directly after mission execution to learn from
prior inference. MARL models are updated to improve per-
formance, which consumes considerable resources. For this
reason, MARbLE swarms require 3.4X more CPU and 1.6X
more memory at peak than autonomous swarms, and notably
9.7X more CPU on average due to the effects of online
learning. MARL swarms also experience steep differences in
average to peak demand, requiring 2.9X compute resources
at peaks compared to averages. These consistent but periodic
demands require additional resource provisioning. To meet
these demands while minimizing overall deployment energy
consumption, we implemented our energy-saving load bal-
ancing system described in Section 4.

Figures 8(e-g) show how MARbLE’s edge-focused load-
balancing approach improves overall edge energy consump-

tion on our crop scouting workload. Using our prototype
MARbLE cluster, we ran real-time crop scouting missions
for swarm sizes 1 and 3, and modeled swarm sizes 2 and
4 in deployment-validated simulation. Energy was calculated
using an AC watt meter connected to the cluster. We tested
all swarms using our most profitable configuration, shown as
configuration 8 in Figure 7.

Figure 8(f) shows MARbLE’s performance against a
MARbLE cluster with no load-balancing. When compared
to autonomous execution, MARbLE conserves energy in
two different ways: mission lengths are shorter overall, and
edge cluster resources are more efficiently used due to our
load-based duty-cycling approach. Compared to autonomous
flight, similar sized MARbLE missions consume 1.58X-
2X less power. A swarm of multiple UAVs is also more
energy efficient per-device than fewer UAVs; compared to
autonomous flight using a single UAV as in prior work, a
swarm of four MARbLE controlled UAVs uses 3.7X-3.9X
less energy depending on swarm size and goals.

Figure 8(f) shows exactly how MARbLE manages re-
sources across extremes during a swarm mission. For a single
UAV, a one node MARbLE cluster is enough to handle all
resource needs. As the swarm grows, more nodes must be
provisioned. As swarm size increases from 2 to 4, peak and
trough allocations change. For instance, a 4-UAV swarm can



operate at troughs using just 4 nodes, but requires all 6
to handle peak loads. MARbLE’s energy savings shown in
Figure 8(e) are a direct result of its ability to spread resources
evenly across the cluster and shut down unnecessary nodes
until they are needed.

Finally, we examine MARbLE’s usefulness-aware model
retraining; this offers better use of finite edge resources by
prioritizing retraining for poorly performing models. Fig-
ure 8(g) shows how our usefulness metric affects model
retraining times compared to average retraining times. When
the system is not under load, Kubernetes is easily able to
distribute containers. If the system is correctly provisioned
for the edge, however, it may experience peak loads where
containers must contend for resources. We evaluated retrain-
ing times for 4-UAV swarms on our crop-scouting bench-
mark. We found that wait-times for high-priority containers
(8-9 on the x-axis) were insignificant even at peak loads,
but could be up to 2.4X normal retraining time for very low
(0-2) priority containers. Similarly, high-priority containers
experienced only modest (1.3X) lifetime increases even when
the system was highly pressured. This was at the expense of
lower priority containers, which experienced lifetimes up to
4.6X longer than usual. This behavior allows the system to
take resources from models with high utility to the system
and give them to low utility models.

VII. LIMITATIONS AND FUTURE WORK

Contribution 1 shows that MARbLE simplifies building
MARL systems by replacing handcrafted reward functions
with Map() and Eval() functions that are easier to program.
However, MARbLE also requires representative traces from
the target environment (C). Generating realistic traces, espe-
cially in novel and dynamic environments can be challenging
and costly. Future work should explore tradeoffs in cost,
realism and data availability. Also, we have not evaluated
training time for MARbLE swarms. In our tests, training
time ranged from 29 and 250 minutes on a Lenovo laptop
with one GPU. Future work exploring more complex swarm
workloads will demand efficient training procedures.

Contribution 2 showed that MARbLE can use Bayesian
optimization to improve swarm performance. In general,
Bayesian optimization has admirable attributes like fast con-
vergence, but other popular techniques, such as gradient
descent, could be applied as well. We have not explored
the tradeoffs in convergence time and learning efficacy. Con-
tribution 3 showed that container management with priority
scheduling can reduce energy usage and improve utilization.
Advanced edge-aware approaches to manage inference and
training [14], [15] should be explored in this context. In
our evaluation, we used Q-learning for our crop-scouting
scenario. Conceptually, MARbLE is compatible with other
techniques, e.g., deep Q-networks. Future work should test
efficacy across such modeling frameworks. Lastly, we tested
MARbLE on digital agriculture workloads only. While im-

portant and illustrative of many edge computing challenges,
MARbLE should work well for many other MARL problems
which require autonomous agents deployed in edge contexts.

VIII. RELATED WORK

Much recent work has tackled the concerns of real-world
autonomous agents using strong theoretical foundations. Lin
et al [32] explores a federated meta-learning approach to
train models with small datasets in an edge setting. Singh
et. al [47] demonstrates a novel reward-training mechanism
for reinforcement learning to eliminate the need for reward
shaping. Kilinc and Montana [25] constructs a framework
for sharing data among agents non-stationary environments
using intrinsic reward and temporal locality. Other recent
work [59], [57], [42] on networked agents provide consid-
erable insight into the behaviors of real-world cooperative
MARL systems with limited communication capabilities.
Porter et. al [40] presents a novel development platform
for creating software that autonomously assembles itself
and discovers optimal execution policies online without the
need for expert model building and reward shaping. Edge-
SLAM [4] provides mechanisms offloading for SLAM, a
critical component of autonomy, using edge computing in
a way that is suitable for AA like our autonomous UAV.

Much related work deals specifically with autonomous
aerial systems. Boubin et. al [7] demonstrates that naive
hardware and algorithm selection for fully autonomous aerial
systems can have serious performance consequences. Cui
et. al [10] implements MARL for allocating networking re-
sources across a network of UAV base-stations. In agriculture
Zhang et. al [61], Yang et. al [56], and FarmBeats [53]
provide new techniques for automated and autonomous UAV
crop scouting.

IX. CONCLUSION

Swarms of autonomous agents powered by resources at the
edge can provide insight and actuation that can solve glob-
ally important challenges in digital agriculture. We present
MARbLE, an end-to-end platform for building, deploying,
and executing these swarms. To use MARbLE, developers
implement Map() and Eval() functions and specify mis-
sion configurations. MARbLE compiles and deploys swarms
using a multi-agent reinforcement learning framework and
allows users to explore myriad configurations to build the best
models for their application’s goals. At runtime, MARbLE
manages load-balancing for edge resources by duty-cycling
compute resources when demands are low, and linking
online learning outcomes to retraining resource allocation.
Our evaluation shows that MARbLE can produce effective
and efficient swarms beyond state of the art techniques,
suggesting that this tool chain could make swarms more
accessible to researchers and developers.
Acknowledgments: This work was funded by NSF Grants
OAC-2112606 and DGE-1343012, and the Ohio Soybean
Council.
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