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Abstract

Forecasting of the cumulative distribution function (CDF) of demand over lead time is a standard re-

quirement for effective inventory replenishment. In practice, while the demand for some items conforms

to standard probability distributions, the demand for others does not, thus making it challenging to esti-

mate the CDF of lead-time demand. Distribution-free methods have been proposed, including resampling

of demand from previous individual periods of the demand history, often referred to as bootstrapping in the

inventory forecasting literature. There has been a lack of theoretical research on this form of resampling.

In this paper, we analyze the bias and variance of CDF estimates obtained by resampling, both with

and without replacement. Counterintuitively, we find that the ‘with replacement’ approach does not always

dominate ‘without replacement’ in terms of mean square error of CDF estimates. Closed-form expressions

are given for the components of Mean Square Error, with and without replacement. For shorter lead times, of

two or three periods, these may be used directly to identify series that may benefit from resampling without

replacement. Inventory performance implications are evaluated on simulated and empirical data. It is found

that marked differences may arise between ’with replacement’ and ’without replacement’ bootstrapping

approaches. The latter method can be more beneficial for lower target Cycle Service Levels, longer lead

times and shorter demand histories.
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1 Introduction

This paper is concerned with the statistical properties of resampling approaches that have been recommended

for inventory replenishment systems, and their implications for inventory performance. In this introduction, the

background of the research is outlined, a brief literature review is presented, and our findings are summarized.

1.1 Background

Inventory replenishment systems often require, at the level of the individual stock keeping unit (SKU), fore-

casting of the cumulative distribution function (CDF) of demand over the lead time (Siddiqui et al. 2022).

The characterization of the cumulative distribution function of lead-time demand is often a challenging problem

in practice. Many probability distributions have been suggested, with the normal and gamma being popular

choices for faster-moving demand, and the Poisson and compound Poisson distributions finding favour for slower-

moving demand. Amongst the compound Poisson distributions, the negative binomial (Poisson-logarithmic) and

stuttering Poisson (Poisson-geometric) are often recommended (see, for example, Axsäter (2015)). The char-

acterization of the demand of all items by compound Poisson distributions can become inaccurate, especially

when the probability mass functions become multi-modal, as often observed in industry.

Syntetos et al. (2013) undertook an extensive empirical analysis of the goodness of fit of the Poisson, normal,

gamma, negative binomial, and stuttering Poisson distributions to discrete demand patterns, examining 5000

SKUs from the Royal Air Force (RAF) and just over 3000 series from the electronics sector. They found that

all distributions failed to fit lead-time demand for at least 10% of the electronics demand series, and for more

than 25% of the RAF series, according to a Kolmogorov-Smirnov (KS) goodness-of-fit test at the 5% level.

These findings were confirmed by Turrini and Meissner (2019), who re-analyzed the RAF dataset, using the

same distributions as Syntetos et al. (2013) but employing a modified KS test that puts more emphasis on the

upper tail of the distribution, reflecting the importance of this tail in inventory management. They found that

all distributions failed to achieve a ‘strong fit’ (at the 5% level) to lead-time demand for at least 50% of series.

They also noted that a Kolmogorov-Smirnov test is conservative for discrete data, meaning that the results may

be an overestimate of the percentages of series well fitted by the distributions tested.

For items with non-standard demand distributions (and standard distributions alike) distribution-free ap-

proaches may be used for the forecasting of the cumulative distribution function of demand over the lead time.

One such approach is based on resampling, with or without replacement, previous demand observations over

individual periods. The resampling approach, often referred to as bootstrapping in the inventory forecasting

literature, has been adopted, with modifications (Willemain and Smart (2001)), in commercial demand fore-

casting software, in current use by a wide range of organizations. Nevertheless, its properties, with specific

reference to the cumulative distribution function, have not been well studied. In this paper, we endeavour to fill

this gap, by establishing statistical properties of cumulative distribution function estimates from resampling.
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1.2 Literature Review

Akcay et al. (2011) categorized research in statistical estimation of demand distributions into three streams,

according to the available information on the distribution and its parameters. In the first stream, the form of

the demand distribution is known but its parameters are unspecified. In the second stream, partial information

about the demand distribution is available. For example, Saghafian and Tomlin (2016) considered the case

where a set of possible demand distributions is known and there are bounds on the expected value of demand

and the tail probabilities. In the third stream of research, the demand is modelled by an empirical distribution

function of the historical demand data.

The first stream of research is the most well developed, but is unhelpful when demand distributions are not

‘well behaved’, for example if they are multi-modal. In the second stream of research, replenishment quantitites

are sought that maximize the worst-case profit (e.g. Gallego and Moon (1993)), satisfy a minimax regret

criterion (e.g. Perakis and Roels (2008)), or are based on a Conditional-Value-at-Risk objective (e.g. Lee,

Kim and Moon (2021)). In the third stream of research, the empirical distribution function may be estimated

in different ways, depending on the assumptions about the nature of demand and the information available to

the decision maker. For example, Huh et al. (2011) assumed i.i.d. discrete (censored) demand, and proposed

the Kaplan-Meier estimator for constructing the empirical CDF. Other authors have focused on i.i.d. discrete

(uncensored) demand, using blocking or resampling procedures.

Two commonly employed blocking procedures are non-overlapping aggregation and overlapping aggregation

(Porras and Dekker (2008), Rostami-Tabar et al. (2013)). In the first approach, an empirical distribution

function is calculated based on the proportions of previous blocks (of length equal to the lead time) whose total

demand has not exceeded the specified amount. The second approach is similar to the first, but is based on

historical blocks that overlap; for example, if the block-size is 2 and the demand history is for 24 periods, then

there will be 12 non-overlapping blocks, but 23 overlapping blocks. For independent and identically distributed

demand, it is well known that both of these approaches produce unbiased estimates of the CDF. Boylan and

Babai (2016) gave a formula for the variance of CDF estimates from overlapping blocks, and compared it to

the variance of non-overlapping blocks. They showed that overlapping blocks usually produces lower variance

than non-overlapping blocks, but there are some circumstances where this result is reversed. The overlapping

blocks method has been augmented by using empirical extreme value theory to model the tail of the lead-time

demand distribution (Zhu et al. (2017)).

Bookbinder and Lordahl (1989) was the first paper in the inventory literature to use the bootstrapping

approach (Efron (1979)) to determine the reorder point in an inventory system operating to achieve a target

service level. Based on lead-time simulated data from a number of populations with varying tail shapes, they

analysed the statistical and inventory cost performance of the bootstrapping approach compared to the normal

distribution based approach. Wang and Rao (1992) used the bootstrapping approach to estimate the reorder

point when demand follows an autoregressive process of order one (AR(1)). In both of these papers, previous
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lead-time demands were resampled. Fricker and Goodhart (2000) investigated the estimation of demand

distributions for the Marine Expeditionary Force. They found that direct resampling of lead-time demands was

not feasible. Actual lead-time periods could not be identified because historical data on the inventory position

was not available. They proposed a resampling scheme that can be summarized as follows. For a fixed lead

time of L periods, demands over single periods are randomly selected (with replacement). This is done L times,

with the total demand representing the resampled demand over lead time. This whole process is repeated many

times, thereby yielding a discrete empirical distribution function of lead-time demand, together with the reorder

point/ order-up-to level corresponding to the appropriate quantile of the distribution. This approach allows for

a more efficient use of the available data, for independent and identically distributed time series, as it permits

the resampling of non-consecutive (and repeated) periods. It may be easily communicated to practitioners with

a limited technical grounding in statistics and can be applied when data histories are short, as is common in

practice. However, Fricker and Goodhart (2000) did not investigate its statistical properties.

The idea of resampling demands from single periods has been found to be particularly appealing for in-

termittent demand patterns which, in addition to sporadicity of demand occurrence, often show highly erratic

discrete demand. Some of these demand series may exhibit serial independence but others show ‘streaks’ of

demand occurrence (Willemain et al. (1994)). To address this issue, Willemain et al. (2004) introduced a

Markov chain mechanism, allowing dependence between successive demand occurrences to be modelled, and a

‘jittering’ mechanism, whereby previously unobserved demands (over a single period) can be introduced into

the procedure. This methodology, often referred to as WSS in the literature, has been embedded in commercial

software, which has been patented in the United States (Willemain and Smart (2001)). The software has been

adopted by companies in many sectors including automotive, aviation, durable goods, industrial equipment,

and public transit. The ‘jittering’ mechanism has been critiqued (Rego and Mesquita (2015)) and sources of

bias summarized (Boylan and Syntetos (2021)). Nevertheless, the fundamental resampling method, equivalent

to that of Fricker and Goodhart (2000), has remained unchallenged.

Another refinement of resampling with replacement was proposed by Zhou and Viswanathan (2011) for

intermittent demand series. According to this method, demand intervals (the number of periods betwen succes-

sive non-zeroes) and demand sizes (non-zeroes only) are resampled with replacement. If demand occurs in every

period, then the method is equivalent to that of Fricker and Goodhart (2000). Hasni et al. (2019) conducted

an empirical comparison of the accuracy of the methods advocated by Willemain et al. (2004) and Zhou and

Viswanathan (2011), with neither method dominating the other over all experimental settings. However, there

was no investigation of the statistical properties of the fundamental approach on which these methods are based.

In summary, resampling demands from individual periods to reconstitute lead-time demands, as recom-

mended by Fricker and Goodhart (2000), is an attractive idea and has been taken forward by other authors.

Although these methods have been evaluated empirically, the statistical properties of resampled estimates of

the cumulative distribution function (CDF) of demand have not been investigated. The aim of the research
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presented in this paper is to make progress in that direction, by deriving some analytical results, and examining

their implications for the mean square error of CDF estimates and for inventory performance.

1.3 Findings

To achieve the aim stated above, this paper makes the following contributions for discrete i.i.d. demand:

1. A bias expression is obtained for estimates of the CDF of aggregate demand over several periods, using

resampling with replacement from previous individual periods. It is shown that, for an ever-increasing

length of demand history, the method is asymptotically unbiased.

2. An analytical result is established for the maximum magnitude of bias for CDF estimates from resampling

with replacement, for aggregation of demand over two periods.

3. Variance expressions are obtained for the estimates of the CDF of demand over several periods using

resampling with and without replacement.

4. Numerical examples are given to demonstrate that the mean square error of a CDF estimate from re-

sampling ’without replacement’ can be lower than resampling ’with replacement’, and to show that the

reduction may be substantial.

5. Experiments are conducted on simulated and empirical data, demonstrating that ’without replacement’

can generate better inventory performance than ’with replacement’, especially for lower Cycle Service

Level targets, longer lead times and shorter demand histories.

The first and third contributions are generally applicable to discrete i.i.d. demand for any length of aggrega-

tion in the resampling methods. The second result is specific to a length of two periods. Analytical results for

the maximum magnitude of bias for aggregation of demand over three or more periods become intractable. Also,

the variance expression for sampling with replacement becomes very unwieldy for longer periods of aggregation.

However, by means of counter-examples, the fourth contribution is to show that ’with replacement’ does not

always dominate ’without replacement’, in terms of mean square error, for i.i.d. demand.

The fifth contribution demonstrates that the ’without replacement’ approach to this form of resampling

should not be ignored. The ‘with replacement’ approach to the estimation of the Cumulative Distribution

Function can lead to biases and greater variance in the estimates of CDFs than ’without replacement’, especially

when long demand histories are not available. These can translate to improvements in inventory performance

by using ’without replacement’ in certain situations, which are identified in this paper.
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2 Bias of Resampled Estimates for the

Discrete Cumulative Distribution Function

The aim of this section is to establish the bias properties of resampled estimates from previous individual

periods, with and without replacement, of the cumulative distribution function (CDF) of lead-time demand.

General expressions for bias are given and asymptotic properties are established, based on an ever-increasing

number of historical demand observations.

2.1 Assumptions and Notations

We assume that historical demand values d1, d2, ..., dn are non-negative integers and are observed from an inde-

pendent and identically distributed (i.i.d.) time series. These assumptions are consistent with the resampling

of individual historical periods, which may be non-consecutive, as noted in the literature review. We use the

following notation:

n number of observed historical demand values (strictly positive integer)

f(dj) population probability mass function for demand in period j (for j = 1, ..., n)

m number of resampled demand values (strictly positive integer (n ≥ m ≥ 2))

y cumulative demand over m time periods

Fm(y) population CDF of the cumulative demand over m time periods, evaluated at y

F̂R
m(y) estimated CDF, over m time periods, by resampling with replacement (R), evaluated at y

F̂NR
m (y) estimated CDF, over m time periods, by resampling ’without replacement (also known as

’no replacement’, NR), evaluated at y.

Usually, the n historical observations will be for the most recent n time periods. However, this need not be

the case. If the demand is genuinely i.i.d., then it will not matter if there are some missing historical values,

and the n observed values stretch back further in time than n periods ago. Similarly, the cumulative demand,

y, will usually relate to m successive time periods over the forthcoming lead time, as this is the most common

inventory application. However, the cumulative demand may relate to a length of time that does not equate to

the lead time, or to the total demand over time periods that are not successive, providing the i.i.d. assumption

still holds.

2.2 Resampling without Replacement: Lack of CDF Bias

If m demand values are resampled with no replacement, then m distinct time indices are sampled from 1, ..., n,

say i1, ..., im, assuming that there are sufficient historical observations available (n ≥ m). For convenience, the

sampled indices are relabelled as 1, ...,m, with the demand values associated with these indices being d1, ..., dm.
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As all of the resampled observations are mutually independent, the expected value of the resampled CDF

estimate, with no replacement, is given by:

E(F̂NR
m (y)) =

y∑
d1=0

y−d1∑
d2=0

...

y−d1−...−dm−1∑
dm=0

m∏
j=1

f(dj) = Fm(y) (1)

It is evident that resampling with no replacement gives an unbiased estimate of the population cumulative

distribution function, Fm(y).

2.3 Resampling with Replacement: Existence and Quantification of CDF Bias

If aggregation is over only one period, then there is no need to distinguish between ‘replacement’ and ‘no

replacement’. In this case, resampling is an unbiased estimator of the cumulative distribution function.

When the length of aggregation extends to two periods or more, then resampling estimates with replacement

are no longer unbiased. The bias, E(F̂R
m(y)) − Fm(y), can be found from Proposition 1 (in which ⌊x⌋ denotes

the greatest integer less than or equal to x).

Proposition 1. The expected value of the CDF estimate of the cumulative demand over m time periods,

evaluated at y, for discrete i.i.d. demand with probability mass function f , using the method of resampling with

replacement from n historical time periods, with demands d1, ..., dn, is given by:

E(F̂R
m(y)) =

1

nm

min(m,n)∑
k=1

∑
λ∈P(m,k)

N(n,m, k, λ)

 U1∑
d1=0

...

Uk∑
dk=0

k∏
j=1

f(dj)

 (2)

where:

N(n,m, k, λ) =
n!m!

(n− k)!λ1!...λk!r1!...r|λ|!

U1 = ⌊y/λ1⌋, ..., Uk = ⌊(y − λ1d1 − ...− λk−1dk−1)/λk⌋

and P(m, k) is the set of integer partitions λ = (λ1, ..., λk) of m into k parts, where λ1 ≥ ... ≥ λk and there

are |λ| distinct values, λ′
1 > ... > λ′

|λ| repeated r1, ..., r|λ| times.

The proof of Proposition 1 is given in Appendix A. In this proposition, the integer partition λ1+ ...+λk = m

shows how the total number of resampled time indices (m) splits into repeated selections. For example, for

m = 5, the partition λ = (2, 2, 1) indicates that one previous time index is resampled twice (λ1 = 2), a second

time index is resampled twice (λ2 = 2), and a third time index is resampled once (λ3 = 1). This gives two

distinct values, λ′
1 = 2 and λ′

2 = 1, with the first distinct value repeated twice (r1 = 2).

2.4 Resampling with Replacement: Asymptotic Result

Proposition 1, based on a finite length of demand history, leads to the following corollary:
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Corollary For a fixed value of m, E(F̂R
m(y)) → Fm(y) as n → ∞ for all integer values of m greater than

or equal to two.

In Equation (2), the first upper limit of summation is m, as consideration is being given to the limit as n → ∞,

for fixed m. The terms from k = 1 to k = m−1 and the term for k = m are analyzed separately. For the former

terms, k ≤ m− 1 and the expression n!/(n− k)! has the highest power of n being no greater than m− 1. After

division by nm, the limit of each of these terms (as n → ∞) is zero (k = 1, ...,m− 1). The latter term, k = m,

corresponds to the partition m = 1+1+...+1 (and r1 = m), and U1 = y, U2 = y−d1, ..., Um = y−d1−...−dm−1.

For this term,

lim
n→∞

E[F̂R
m(y)] = lim

n→∞

1

nm

m∏
i=1

(n− i+ 1)

y∑
d1=0

y−d1∑
d2=0

...

y−d1−...−dm−1∑
Ym=0

m∏
j=1

f(dj)

=

y∑
d1=0

y−d1∑
d2=0

...

y−d1−...−dm−1∑
dm=0

m∏
j=1

f(dj) = Fm(y)

(3)

Hence, the estimator is aymptotically unbiased.

The implication of this corollary is that the bias of resampling with replacement becomes negligible for

long demand histories. However, the assumption of an identical distribution of demand over time can become

unsustainable as the demand history lengthens.

2.5 Magnitude of the bias by resampling with replacement

Equation (2) reduces to a much simpler form for an aggregation of demand over two periods (m = 2):

E(F̂R
2 (y)) =

1

n
F1 (⌊y/2⌋) +

(
1− 1

n

)
F2(y) (4)

This equation has a natural interpretation. For m = 2, there are two possible ways in which resampling

may occur: i) the same historical time index is sampled twice; ii) different historical time indices are sampled.

If there are n historical demand observations, then the probabilities of these occurrences are 1/n and 1− 1/n,

respectively, for random selections. In the latter case, there is no bias, as it is equivalent to resampling ’without

replacement’. In the former case, the expected value of the CDF is found by identifying the highest value that

can be chosen twice without the total exceeding the given value of y. This is clearly ⌊y/2⌋ for discrete demand

and so the first term is specified accordingly.

The bias of the resampling estimate of the CDF (with replacement), for m = 2 and for discrete demand,

may be written as follows:

E(F̂R
2 (y))− F2(y) =

1

n

⌊y/2⌋∑
i=0

f(i)− 1

n

y∑
i=0

y−i∑
j=0

f(i)f(j) (5)
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The sign and magnitude of the bias depend on the form of the probability mass function and the cumulative

demand over two periods (y). Suppose that demand over one period can take only three values: zero, one and

two, and that it can take any probability mass function f(0), f(1) and f(2) = 1 − f(0) − f(1). Then, the

conditions for positive bias, using resampling with replacement over two periods, vary according to the value

of y. For y = 1, the condition is that f(0) < 1 − 2f(1) (provided f(0) > 0). For y = 2, the condition is that

f(0) < f(1) (provided f(2) > 0). Finally, for y = 3. the bias cannot be positive. The maximum and minimum

bias values, and the conditions under which they are attained, are given in Proposition 2.

Proposition 2. The resampled estimate (with replacement) of the cumulative distribution function (CDF),

evaluated at y, for discrete i.i.d. demand with probabilty mass function f , when resampling two periods from n

historical time periods, has a maximum bias of 1/4n, for y ≥ 0; and has a minimum bias of −1/4n, for y ≥ 1,

and zero for y = 0. The maximum bias of the CDF estimate is attained under the following conditions:

⌊y/2⌋∑
i=0

f(i) =
1

2
,

∞∑
i=y+1

f(i) = 1−
y∑

i=0

f(i) (6)

and, if y ≥ 1, for i = ⌊y/2⌋+ 1, ..., y:

f(i)

y−i∑
j=0

f(j) = 0

The minimum bias of the CDF estimate, evaluated at y, is attained, for y = 0, when f(0) = 0 and f(0) = 1

with
∑∞

i=1 f(i) = 1− f(0) in both cases. For y ≥ 1, the minimum is attained under the following conditions:

⌊y/2⌋∑
i=0

f(i) =
1

2

y∑
i=⌊y/2⌋+1

f(i) =
1

2
(7)

and, for i = 0, ..., ⌊y/2⌋:

f(i)

y−i∑
j=0

f(j) = f(i)

and, for i = ⌊y/2⌋+ 1, ..., y:

f(i)

y−i∑
j=0

f(j) =
1

2
f(i)

The proof of Proposition 2 is given in Appendix B. This result gives a formula for a precise bound of 1/4n

on the absolute value of the bias of the resampling estimate (with replacement) for m=2. Consequently, for

longer demand histories, the bias will be modest. However, for shorter histories, often observed in practice, the

bias becomes of greater concern.

Derivation of closed-form expressions for the maximum and minimum biases for aggregation levels of three

periods or more (m≥ 3) becomes intractable. Numerical experimentation shows that the maximum and mini-

mum biases may be of greater absolute value than those for m=2. As an illustration, for an aggregation level

of m=4, and for y=3, and for short histories of 10 and 20 observations, the maximum biases are 6.16% and
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3.12%, respectively. This example shows that the bias in the estimation of the CDF may, in some cases, become

of sufficient magnitude to be of practical significance, especially for shorter demand histories.

3 Variance of CDF Estimates by Resampling

(With and Without Replacement)

In this section, exact analytical expressions are given for the variance of CDF estimates generated by resampling

with and without replacement, for i.i.d. demand. The complexity of these expressions, particularly for ‘with

replacement’, makes it very difficult to obtain simple conditions under which one method outperforms the other

in terms of mean square error. However, in the final sub-section, examples are given to show that resampling

with ‘replacement’ does not always dominate resampling with ‘no replacement’.

3.1 Variance of CDF resampling estimate without replacement

Proposition 3. The variance of the CDF estimate, F̂NR
m (y), evaluated at y, for discrete i.i.d. demand, when

resampling m periods with no replacement from n historical time periods (n ≥ m), is given by the following

formula:

Var(F̂NR
m (y)) =

m∑
k=0

(
m
k

)(
n−m
m−k

)(
n
m

) Θk,m(y)− Fm(y)2 (8)

where:

Θk,m(y) =

y∑
d1=0

...

y−d1−...−dm−1∑
dm=0

y−dm−k+1−...−dm∑
dm+1=0

...

y−dm−k+1−...−d2m−k−1∑
d2m−k=0

2m−k∏
j=1

f(dj)

The proof of Proposition 3 is given in Appendix C.

Resampling ’without replacement’ produces an unbiased estimate of the CDF. Therefore, the result given in

Proposition 3 is also an expression for the mean square error.

In this proposition, Θk,m(y) (k = 0, 1, ...,m) represents the chance that two sets of resamplings (’without

replacement’) of m previous periods, which have an intersection of k periods, both have total demands not

exceeding y. We note that, for all values of m, Θ0,m(y) = Fm(y)2 (providing n ≥ 2m), and for all values of m,

Θm,m(y) = Fm(y). For the special case of m = 2 (and n ≥ 4):

Var(F̂NR
2 (y)) =

(n− 2)(n− 3)F2(y)
2 + 4(n− 2)Θ1,2(y) + 2F2(y)

n(n− 1)
− F2(y)

2 (9)

where Θ1,2(y) =
∑y

d1=0

∑y−d1

d2=0

∑y−d2

d3=0 f(d1)f(d2)f(d3) and F2(y) =
∑y

d1=0

∑y−d1

d2=0 f(d1)f(d2).

In the special case of m = 3 (and n ≥ 5), the variance is given by:

Var(F̂NR
3 (y)) =

(n− 3)(n− 4)(n− 5)F3(y)
2 + 9(n− 3)(n− 4)Θ1,3(y) + 18(n− 3)Θ2,3 + 6F3(y)

n(n− 1)(n− 2)
−F3(y)

2 (10)
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where Θ1,3(y) =
∑y

d1=0

∑y−d1

d2=0

∑y−d1−d2

d3=0

∑y−d3

d4=0

∑y−d3−d4

d5=0 f(d1)f(d2)f(d3)f(d4)f(d5)

and Θ2,3(y) =
∑y

d1=0

∑y−d1

d2=0

∑y−d1−d2

d3=0

∑y−d2−d3

d4=0 f(d1)f(d2)f(d3)f(d4)

Similar expressions can be derived for m ≥ 4 but the expressions become very lengthy.

3.2 Variance of CDF resampling estimate with replacement

Proposition 4. The variance of the CDF estimate of the cumulative demand over m time periods, F̂R
m(y)

evaluated at y, for discrete i.i.d. demand, using the method of resampling with replacement from n historical

time indices with demands d1, ..., dn, is given by:

Var(F̂R
m(y)) =

1

n2m

min(2m,n)∑
k=1

(∑
λA

∑
λB

∑
λB−A

|A|+|B−A|=k

N(n,m, k, λA, λB , λB−A)E(1A∗,B∗)

)
− E(F̂R

m(y))2 (11)

where E(F̂R
m(y)) is given by Proposition 1, A∗ and B∗ are m-permutations (with repetition) from n time indices,

A and B are the associated sets of distinct time indices, λA = (λA
1 , ..., λ

A
|A|) is a partition of m representing

the multiplicities of the elements of A in A∗ (and similarly for λB), λB−A = (λB−A
1 , ..., λB−A

|B−A|) is a partition

representing the multiplicities of the elements of B−A in B∗, and |λA| denotes the number of distinct elements

in the partition λA, with rA1 , ..., r
A
|λA| indicating the number of repetitions of those distinct elements (and similarly

for λB−A) and:

N(n,m, k, λA, λB , λB−A) =
n!|A|!

(n− k)!(|A| − |B −A|)!|B −A|!
1

Π
|λA|
j=1 r

A
j !Π

|λB−A|
j=1 rB−A

j !

(m!)2

Π
|A|
j=1λ

A
j !Π

|B|
j=1λ

B
j !

E(1A∗,B∗) =

U1∑
d1=0

...

Uα+β+γ∑
dα+β+γ=0

α+β+γ∏
j=1

f(dj)

Ui =



⌊(
y −

i−1∑
j=1

λA
j dj

)
/λA

i

⌋
i = 1, ..., α

⌊(
y −

i−1∑
j=α+1

λB
j dj

)
/λB

i

⌋
i = α+ 1, ..., α+ β

min

(⌊(
y −

α∑
j=1

λA
j dj −

i−1∑
j=α+β+1

λA
j dj

)
/λA

i

⌋
,

⌊(
y −

i−1∑
j=α+1

λB
j dj

)
/λB

i

⌋)
i = α+ β + 1, ..., α+ β + γ

where, after renumbering, A−B = {d1, ..., dα}, B−A = {dα+1, ..., dα+β} and A∩B = {dα+β+1, ..., dα+β+γ}

The proof of Proposition 4 is given in Appendix D.

The variance formula becomes lengthy as m increases but is of a shorter form for m = 2. The components of
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the calculation of n4E(F̂R
2 (y)2) for all feasible combinations of λA, λB and λB−A are shown in Table 1 (where

Λ1,2(y) =
∑⌊y/2⌋

i=0

∑y−i
j=0 f(di)f(dj)).

Table 1: Calculation of n4E(F̂R
2 (y)2

k = |A ∪B| λA λB λB−A n4E(F̂R
2 (y)2)

1 (2) (2) nF1(⌊y/2⌋) +
2 (2) (2) (2) n(n− 1)F1(⌊y/2⌋)2 +
2 (1,1) (2) 2n(n− 1)Λ1,2(y) +
2 (2) (1,1) (1) 2n(n− 1)Λ1,2(y) +
2 (1,1) (1,1) 2n(n− 1)F2(y) +
3 (1,1) (2) (2) n(n− 1)(n− 2)F1(⌊y/2⌋)F2(y) +
3 (2) (1,1) (1,1) n(n− 1)(n− 2)F1(⌊y/2⌋)F2(y) +
3 (1,1) (1,1) (1) 4n(n− 1)(n− 2)Θ1,2(y) +
4 (1,1) (1,1) (1,1) n(n− 1)(n− 2)(n− 3)F2(y)

2

In Table 1, λB−A does not vary for any given combination of λA and λB , but may vary when m ≥ 3. For

example, if λA = (3) and λB = (2, 1), then λB−A may be (2) or (1).

Using the results in Table 1 and expressing the probabilistic terms explicitly yields the following variance

formula for m = 2:

Var(F̂R
2 (y)) =

1

n4

[
n(n−1)

( ⌊y/2⌋∑
i=0

f(i)

)2

+2(n−2)

⌊y/2⌋∑
i=0

f(i)

y∑
i=0

y−i∑
j=0

f(i)f(j)+(n−2)(n−3)

(
y∑

i=0

y−i∑
j=0

f(i)f(j)

)2

+ 4n(n− 1)

⌊y/2⌋∑
i=0

y−i∑
j=0

f(i)f(j) + 4n(n− 1)(n− 2)

y∑
i=0

y−i∑
j=0

y−j∑
l=0

f(i)f(j)f(l)

+ n

⌊y/2⌋∑
i=0

f(i) + 2n(n− 1)

y∑
i=0

y−i∑
j=0

f(i)f(j)

]
−

[
1

n

( ⌊y/2⌋∑
i=0

f(i)

)
+ (1− 1

n
)

(
y∑

i=0

y−i∑
j=0

f(i)f(j)

)]2
(12)

The variance formula for m = 3 is tractable but lengthy; it is provided in Appendix E and used later in the

numerical experiments.

3.3 With Replacement vs. Without Replacement

The results of Propositions 3 and 4 allow comparison of resampling with and without replacement. Numerical

evaluation of the formulae in these propositions is sufficient to show that one method does not dominate the

other, either in terms of the variance or mean square error of the CDF estimates. Consider the simplest special

case, of m=2 and y=1, with intermittent i.i.d. demand, with probabilities of zero lead-time demand, P(0), and

lead-time demand of one unit, P(1). P(0) and P(1) are varied between 0.1 and 0.9 with a step increase of 0.2.

The two components of the mean square error (squared bias and variance) are evaluated in Tables 2 and 3, for

demand histories of n=5 and n=100. Results for n=10 and n=20 are included in Tables 12 and 13 in Appendix

F. Tables 2, 3, 12 and 13 show the differences in squared biases (∆1), and in variances (∆2), between resampling

with replacement (R) and with no replacement (NR), both expressed as a percentage of the mean square error
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(NR). The expressions for ∆1 and ∆2 are given by:

∆1 = 100((BiasR)2 − (BiasNR)2)/MSENR and ∆2 = 100(VarR − VarNR)/MSENR.

The calculations in the relevant tables are based on the bias results in Sections 2.2 and 2.3, and the variance

results in Sections 3.1 and 3.2. Positive results indicate a lower value for ‘no replacement’; negative values

indicate a lower value for ‘replacement’.

Table 2: Percentage differences in squared biases (∆1) and variances (∆2) between ’replacement’ and ’no
replacement’ (m = 2, n = 5)

P(1)

P(0) 0.1 0.3 0.5 0.7 0.9

0.1
∆1 (%) 3.65 0.24 0.01 0.24 0.55
∆2 (%) 17.93 -2.97 -10.23 -14.40 -17.25

0.3
∆1 (%) 2.69 0.06 0.43 2.03
∆2(%) -2.28 -10.81 -12.68 -12.37

0.5
∆1 (%) 1.25 0.12 4.44
∆2 (%) -11.09 -13.57 -4.00

0.7
∆1 (%) 0.24 9.03
∆2 (%) -15.71 13.89

0.9
∆1 (%) 21.18
∆2 (%) 86.35

Table 3: Percentage differences in squared biases (∆1) and variances (∆2) between ’replacement’ and ’no
replacement’ (m = 2, n = 100)

P(1)

P(0) 0.1 0.3 0.5 0.7 0.9

0.1
∆1 (%) 0.29 0.02 0.00 0.01 0.03
∆2 (%) 2.07 0.31 -0.32 -0.66 -0.89

0.3
∆1 (%) 0.16 0.00 0.02 0.11
∆2(%) 0.16 -0.41 -0.56 -0.57

0.5
∆1 (%) 0.07 0.01 0.25
∆2 (%) -0.49 -0.65 -0.01

0.7
∆1 (%) 0.01 0.58
∆2 (%) -0.81 1.30

0.9
∆1 (%) 2.15
∆2 (%) 7.72

In accordance with our earlier results. ∆1 is always positive, because ‘no replacement’ (NR) is always

unbiased and ‘replacement’ (R) is always biased. The differences in variances (∆2) show that one method does

not always dominate the other, and the same applies to the difference in mean square errors (∆1+∆2). Indeed,

for some combinations of probabilities, the reduction in mean square error, by using ‘no replacement’ instead of
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‘replacement’, can be quite substantial. This is illustrated in Table 2 by the case of m = 2, n = 5, P(0) = 0.9,

and P(1) = 0.1. In Table 3, for m = 2 and n = 100, the differences are much smaller, as was anticipated

for longer demand histories. Experiments were also conducted for the cases of m = 3 and m = 4 and similar

insights were gained.

For further illustration, we compare the percentage differences in squared biases and variances between

replacement and no replacement when the demand follows a compound Poisson distribution. As noted earlier,

resampling methods may be used for standard distributions and the compound Poisson distribution is flexible

in modelling fast and slow moving demands, with evidence of goodness-of-fit to real demand data (Lengu et al.

(2013), Prak et al. (2021)). Table 4 shows the results for ∆1 and ∆2 under a Poisson-geometric distribution

where the Poisson demand arrival rate λ = 0.1, 0.4, 0.7, 1, 2, 3 and the theta parameter of the geometric

demand size distribution takes the values of θ = 0.1, 0.4, 0.7.

Table 4: Percentage differences in squared biases and and variances between ’replacement’ and ’no
replacement’ under Poisson-geometric distribution (m= 2)

θ (n = 5) θ (n = 100)

λ 0.1 0.4 0.7 0.1 0.4 0.7

0.1
∆1 (%) 0,37 0,04 0,14 0,02 0,00 0,01
∆2 (%) -17,55 -17,68 -15,94 -0,91 -0,95 -0,90

0.4
∆1 (%) 1,59 0,28 0,05 0,08 0,01 0,00
∆2 (%) -12,91 -15,34 -15,07 -0,61 -0,78 -0,78

0.7
∆1 (%) 2,99 0,66 0,00 0,17 0,04 0,00
∆2 (%) -7,15 -12,33 -13,80 -0,23 -0,57 -0,66

1
∆1 (%) 4,58 1,16 0,11 0,27 0,07 0,01
∆2 (%) -0,05 -8,54 -11,69 0,28 -0,29 -0,49

2
∆1 (%) 10,59 3,35 1,22 0,86 0,24 0,08
∆2 (%) 36,75 11,16 1,68 3,33 1,37 0,64

3
∆1 (%) 15,76 5,52 2,67 2,12 0,60 0,26
∆2 (%) 107,67 46,46 26,75 10,59 5,20 3,34

In Table 4, the differences in variances (∆2) show that one method does not always dominate the other,

and the same applies to mean square errors (∆1+∆2). The results also show that for some combinations of the

distribution’s parameters, the reduction in mean square error, by using ‘no replacement’ instead of ‘replacement’,

can be quite substantial. This is illustrated in Table 4 by the case of n = 5, λ = 3 and all selected values of

θ). The effect reduces as the λ parameter decreases. The effect is also diminished when the length of demand

history, n, increases, as shown in Table 4 for the case of n = 100.

We now analyse the impact of increasing the number of resampled periods m. We report in Table 5 the

results of ∆1 and ∆2 under a Poisson-geometric distribution with the same numerical settings but with m = 3.
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Table 5: Percentage differences in squared biases and and variances between ’replacement’ and ’no
replacement’ under Poisson-geometric distribution (m= 3)

θ (n= 5) θ (n= 100)

λ 0.1 0.4 0.7 0.1 0.4 0.7

0.1
∆1 (%) 1,28 0,22 0,17 0,07 0,01 0,01
∆2 (%) -29,88 -30,78 -28,75 -1,65 -1,80 -1,70

0.4
∆1 (%) 0,17 1,64 0,17 0,34 0,10 0,01
∆2 (%) -28,75 -25,17 -29,18 -0,46 -1,13 -1,44

0.7
∆1 (%) 9,25 3,84 1,59 0,68 0,26 0,10
∆2 (%) -0,07 -16,12 -23,83 1,10 -0,20 0,87

1
∆1 (%) 13,20 6,47 3,89 1,12 0,50 0,29
∆2 (%) 21,65 -3,50 -14,40 3,16 1,10 0,09

2
∆1 (%) 24,75 15,37 12,82 3,66 2,09 1,66
∆2 (%) 151,38 74,00 48,74 16,05 9,50 7,01

3
∆1 (%) 36,36 22,07 19,01 9,00 5,74 4,97
∆2 (%) 480,55 259,02 199,53 48,81 30,96 25,15

The findings from Table 5, for the case of m = 3, are similar to those from Table 4. Again, they show that

the reduction in mean square error can be substantial. It also shows that the effect can be greater than the case

of m = 2.

4 Inventory Implications of CDF Estimates by Resampling

(With and Without Replacement)

In this section, we analyze the implications of the resampling with and without replacement on inventory

performance. To do so, we consider an order-up-to-level (OUTL) inventory control policy and we analyse the

implications in calculating the OUTL using both approaches. We start by doing this for theoretically generated

data. We generate demand series following a Poisson-geometric process with parameters λ and θ. We calculate

the OUTL needed to achieve a target cycle service level, CSL using the theoretical distribution and the empirical

distribution obtained with and without replacement. We consider 1000 series of length n and for each series

the empirical distribution is built using 3000 (sampling) replications. The results (average OUTL across all

series) are reported for n = 10, 15, 25, 50 and CSL =90%, 95%, 99%. Three lead-time values are considered to

calculate the OUTL: L = 2, 4, 6. The results are reported in Tables 6, 7 and 8 where BootR and BootNR refer

to bootstrapping with ’replacement’ and ’no replacement’, respectively.
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Table 6: Theoretical and achieved order-up-to-level using bootstrapping, with and without replacement,
under Poisson-geometric distribution (Leadtime = 2)

λ = 0.2 and θ = 0.2 λ = 1.5 and θ = 0.2

CSL=90% CSL=95% CSL=99% CSL=90% CSL=95% CSL=99%

Theoretical 7 11 20 31 37 51

n = 10
BootR 7.290 7.845 12.175 28.934 33.204 41.851

BootNR 7.267 7.647 9.660 28.366 32.099 38.126

n = 15
BootR 8.592 8.800 12.257 30.212 34.890 43.881

BootNR 8.591 8.717 10.904 29.854 34.183 41.7927

n = 25
BootR 6.711 11.527 14.151 29.767 35.528 45.397

BootNR 6.698 11.523 13.436 29.426 34.992 44.022

n = 50
BootR 7.436 11.195 16.406 29.754 36.296 47.709

BootNR 7.390 11.051 16.134 29.652 35.997 47.179

Table 7: Theoretical and achieved order-up-to-level using bootstrapping, with and without replacement,
under Poisson-geometric distribution (Leadtime = 4)

λ = 0.2 and θ = 0.2 λ = 1.5 and θ = 0.2

CSL=90% CSL=95% CSL=99% CSL=90% CSL=95% CSL=99%

Theoretical 12 16 26 52 60 77

n = 10
BootR 9.669 12.808 16.022 48.057 54.418 64.606

BootNR 9.483 9.660 10.257 45.140 48.611 54.272

n = 15
BootR 10.230 12.578 17.961 51.587 58.345 71.26

BootNR 10.094 12.121 13.346 49.815 55.350 64.33

n = 25
BootR 12.216 14.274 19.275 49.681 56.553 69.757

BootNR 12.142 13.959 18.113 48.732 54.835 65.504

n = 50
BootR 12.348 16.352 22.656 50.104 57.805 71.855

BootNR 12.265 16.227 22.086 49.787 57.250 70.484
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Table 8: Theoretical and achieved order-up-to-level using bootstrapping, with and without replacement,
under Poisson-geometric distribution (Leadtime = 6)

λ = 0.2 and θ = 0.2 λ = 1.5 and θ = 0.2

CSL=90% CSL=95% CSL=99% CSL=90% CSL=95% CSL=99%

Theoretical 16 21 32 72 82 101

n = 10
BootR 14.992 16.587 21.975 68.828 76.085 89.861

BootNR 10.275 10.449 10.489 59.252 62.361 66.322

n = 15
BootR 13.541 18.149 22.212 68.811 77.303 92.099

BootNR 12.808 13.358 14.548 63.522 68.542 76.719

n = 25
BootR 15.210 18.777 26.243 68.384 76.74 92.970

BootNR 14.645 17.118 20.501 65.867 72.435 83.869

n = 50
BootR 16.887 20.354 28.523 69.291 78.22 95.388

BootNR 16.647 19.699 25.97 68.086 76.144 90.930

These tables show that there is no uniform outperformance of one method by another. For a target Cycle

Service Level of 90%, and Poisson-geometric parameters of λ = 0.2 and θ = 0.2, the ‘without replacement’

method is able, for n = 50, to achieve a lower mean OUTL than ‘with replacement’, but still exceeding

the theoretical OUTL. In other settings, the ‘without replacement’ method has lower mean OUTLs than the

theoretical values.

The results in Tables 6, 7 and 8 are all based on data conforming to a Poisson-geometric distribution.

Of course, real-world data is not always so well behaved, and so we now empirically analyse the inventory

performance of the two approaches. To do so, we use a dataset related to the monthly demand of 3000 spare

parts from the automotive industry with a demand history composed of 2 years (i.e. 24 periods). The demand

data descriptive statistics are reported in Table 9. where we report for the demand intervals, demand sizes and

demand per period, the minimum, the first, second and third percentiles and the maximum.

Table 9: Descriptive statistics of the demand data

Demand Intervals Demand Sizes Demand per period

Mean St. Dev Mean St. Dev Mean St. Dev

Min 1.043 0.209 1.000 0.000 0.542 0.504

25%ile 1.095 0.301 2.050 1.137 1.458 1.31

Median 1.263 0.523 2.886 1.761 2.333 1.922

75%ile 1.412 0.733 5.000 3.357 4.167 3.502

Max 2.000 1.595 193.750 101.415 129.167 122.746

Table 9 demonstrates that the series are a mix of higher and lower volume SKUs and include intermittent

demand items.

In Table 10, we report the average and standard deviation of the difference for each SKU between the
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(achieved) order-up-to-levels calculated using with and without replacement (statistics reported across 3000

SKUs). The results are reported for two demand history lengths: n = 13 and 24, three target CSL values:

CSL = 90%, 95%, 99% and three lead-time values: L = 2, 4, 6.

Table 10: Difference in empirically achieved order-up-to-level results, subtracting resampling ’without replace-
ment’ from ’with replacement’

n = 13 n = 24

CSL=90% CSL=95% CSL=99% CSL=90% CSL=95% CSL=99%

L = 2
Mean 0.174 0.399 0.572 0.098 0.151 0.571

St. Dev 1.214 1.743 3.076 1.506 1.180 2.854

L = 4
Mean 0.886 1.433 3.844 0.350 0.562 1.552

St. Dev 1.744 2.826 11.676 1.495 2.174 4.959

L = 6
Mean 3.000 5.087 8.140 1.353 2.228 4.832

St. Dev 5.556 12.684 18.003 2.859 4.478 11.833

The mean differences are somewhat greater in Table 10 than was observed in Tables 6, 7 and 8. There are

also some large standard deviatons, indicating the need to probe inventory performance more deeply.

We evaluate the performance of the WSS bootstrapping method where resampling with (WSSR) and without

(WSSNR) replacement are used for the sampling of the nonzero demands. The probability of a non-zero demand

occurrence is estimated using a Markov transition matrix, and this does not induce any further biases. However,

no jittering is used in this method in order to avoid conflation with the effect of the bias resulting from jittering

(Rego and Mesquita (2015), Boylan and Syntetos (2021)). The effect of jittering bias on inventories is an

important issue and worthy of further research.

The order-up-to-level policy is used to control the inventory. We use the first 13 periods to initialise the

calculations and the performance evaluation is evaluated over the remaining periods. We calculate the resulting

holding volumes, backordering volumes and achieved CSL when both bootstrapping approaches are used. Then,

the results (averages across 3000 SKUs) are reported for three target CSL values, namely: CSL = 90%, 95%,

99% and three lead-time values: L = 2, 4, 6. The empirical results are summarised in Table 11.
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Table 11: Inventory performance of resampling with and without replacement

Holding volumes Backlog volumes Achieved CSL (%)

L = 2 WSSR

CSL=90% 8.756 0.449 90.9
CSL=95% 10.793 0.298 94.1
CSL=99% 14.769 0.160 96.9

WSSNR

CSL=90% 8.739 0.456 90.8
CSL=95% 10.582 0.308 93.8
CSL=99% 13.956 0.177 96.5

L = 4 WSSR

CSL=90% 13.332 0.465 91.0
CSL=95% 16.175 0.315 93.8
CSL=99% 22.352 0.154 97.0

WSSNR

CSL=90% 12.670 0.504 90.2
CSL=95% 14.845 0.368 92.9
CSL=99% 18.432 0.226 95.6

L = 6 WSSR

CSL=90% 18.905 0.429 91.9
CSL=95% 22.796 0.292 94.2
CSL=99% 29.428 0.156 96.9

WSSNR

CSL=90% 17.379 0.521 90.5
CSL=95% 19.136 0.411 92.4
CSL=99% 22.454 0.278 94.8

The results in Table 11 show that neither of the bootstrapping methods can reach the higher target CSLs.

However, they can both achieve the target of 90%. The ’no replacement’ approach can do so with lower average

holding volumes.

Furthermore, in order to analyse the trade-off between the inventory holding volumes and service perfor-

mance, we provide the efficiency curves of both bootstrapping methods. We do so for three values of lead-time

and three target CSLs as shown in Figures 1-2. Note that Figure 1 shows the efficiency for the combined

holding volumes and backordering volumes whereas Figure 2 shows the efficiency of the holding volumes and

the acheived CSL.
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Figure 1: Efficiency curves (Holding volumes versus Backordering volumes) of WSS bootstrapping method with
and without replacement (L = 2, 4, 6) and target CSL = 90%, 95%, 99%

Figure 2: Efficiency curves (Holding volumes versus Acheived CSL) of WSS bootstrapping method with and
without replacement (L = 2, 4, 6) and target CSL = 90%, 95%, 99%

Table 11 together with Figures 1 and 2, show that the WSS method (with Markov transition modelling but

without jittering) can be improved by switching from ‘with replacement’ to ‘without replacement’ for a target

Cycle Sevice Level of 90%. Reductions in inventory holding volumes of 0.2%, 5.0% and 8.1% are achieved by
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this switch, for lead times of 2, 4 and 6 periods, respectively. Consistent with the previous simulation results,

the effect for short lead times is modest, but it becomes more pronounced for longer lead times. Also consistent

with previous results is the finding that ‘without replacement’ falls further short than ‘with replacement’ for

target Cycle Service Levels of 95% or 99%.

5 Conclusions

In previous research (e.g. Fricker and Goodhart (2000), Willemain et al. (2004), Zhou and Viswanathan

(2011), Hasni et al. (2019)), it has been implicitly assumed that resampling with replacement should be

used when resampling demands over single periods, in order to estimate the cumulative distribution function of

lead-time demand. In this paper, we have evaluated the resampling with replacement approach by comparing

it to resampling with no replacement. From a bias perspective, our conclusions are clear: resampling with

replacement generates biased CDF estimates, whereas resampling with no replacement does not. We have shown

that the severity of the bias (with replacement) depends on the value at which the CDF is to be estimated,

the underlying probability distribution of demand, the lead time, and the length of demand history (n). This

bias will flow through to inventory replenishment orders, which may be inflated if the CDF is underestimated

or deflated if the CDF is overestimated, thus leading to excessive stocks or stock-outs. For a lead time of

two periods, the maximum bias magnitide is 1/4n, showing that the bias problem diminishes as the demand

history lengthens. Indeed, we have proven that, for any length of lead time, resampling with replacement is

asymptotically unbiased. Nevertheless, the bias issue is of some practical significance, given the short demand

histories often encountered in industry.

We have given formulae for variances (and, hence, mean square errors) of the CDF estimates from reampling

with replacement and with no replacement. It is worth noting that the bias and variance formulae derived in

this paper can be modified to allow for continuous demand. However, product demand is almost invariably

discrete and, therefore, resampling of discrete variables will be the norm in practice. Counter-intuitively, it has

also been found that the variances of the CDF estimates from resampling with replacement are not always lower

than with no replacement. The same is true for the mean square errors. The formulae for mean square errors

of CDF estimates allow direct comparisons to be made between ‘with replacement’ and ‘without replacement’,

especially for the simpler cases of short lead times of two or three periods. Even then, simulation of inventory

performance is advisable to assess the stock implications of the two approaches. For longer lead times, the

formulae for ‘with replacement’ become much lengthier, and simulation analyses may be conducted.

The empirical analysis conducted in this paper shows that, for a lower target Cycle Service Level (90%), a

longer lead time (6 periods) and shorter demand histories (13 periods), a reduction in inventory holdings of over

8% is achievable by using ’without replacement’, whilst still hitting the target CSL. However, ‘with replacement’

has been found to be preferable for the higher target CSLs of 95% and 99%.
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Appendix A: Proof of Proposition 1 - Existence and quantification of

CDF bias of resampling with replacement

As the resampling is with replacement, a time index may be sampled once, twice, or up to m times. Consequently,

the number of distinct time indices, k, may take any integer value between 1 and m, provided that n ≥ m;

otherwise, if n < m, then k ranges from 1 to n. In general, k has a lower limit of 1 and an upper limit of

min(m,n). Each value of k must be analyzed separately, to account for the varying number of repetitions of

sampled time indices. The number of choices of the k distinct time indices, {i′1, ..., i′k}, from n historical time

indices for which demand observations are available, is given by the standard binomial formula, n!/(k!(n− k)!).

The restriction to k distinct time indices imposes the constraint,
∑k

j=1 λj =
∑|λ|

j=1 rjλ
′
j = m. Taking into

account repetitions, there are k!/(r1!...r|λ|!) permutations of the set {λ1, ..., λk}, with the jth element in this

set indicating the number of times the time index i′j is resampled.

For a given allocation of the number of resamplings of {i′1, ..., i′k}, there are m!/(λ1!...λk!) arrangements of

the time indices {i1, ..., im}, taking repetitions into account. The product of the formulae for the number of

choices of distinct time indices, the number of allocations of the amounts of resamplings, and the number of

arrangements of the time indices, gives the result for N(n,m, k, λ) shown in Proposition 1.

There are nm ways of choosing m time indices from n indices (with replacement), and so the proportion of

all possible choices of time indices that have a particular partition λ = (λ1, ..., λk) is given by N(n,m, k, λ)/nm.

The expected value of the resampled (with replacement) estimate of the CDF, given an integer partition,

λ = (λ1, ..., λk), is expressed as:

E[F̂R
m(y)|λ] =

U1∑
d1=0

...

Uk∑
dk=0

k∏
j=1

f(dj) (13)

where:

U1 = ⌊y/λ1⌋, U2 = ⌊(y − λ1d1)/λ2⌋, ..., Uk = ⌊(y − λ1d1 − ...− λk−1dk−1)/λk⌋

Hence, weighting each of these expectations by the relevant proportions of integer partitions, and summing

over all integer partitions with k parts, and summing over all possible values of k, establishes the result given

in Proposition 1.

Appendix B: Proof of Proposition 2 - Resampling with replacement:

maximization and minimization of bias (Aggregation of two periods)

In this appendix, the number of historical observations (n ≥ 2) is kept fixed. The aim is to find the non-negative

discrete distributions that maximize or minimize the bias (or, equivalently, n times the bias) for m = 2 and for

any value of y. The bias is denoted by Bn,2(y) = E[F̂R
2 (y)]− F2(y).

Starting with the maximization problem, we analyse the cases y = 0 and y ≥ 1 separately. For y = 0,
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we have: nBn,2(0) = f(0) − f(0)2, and it follows immediately that this is maximized at f(0) = 1/2 (and∑∞
i=1 f(i) = 1/2) and, for such a probability mass function, Bn,2(0) = 1/4n. For y ≥ 1, the maximization

problem is to choose f(0), ..., f(y) ≥ 0 to maximize:

nBn,2(y) =

⌊y/2⌋∑
i=0

f(i)−
y∑

i=0

y−i∑
j=0

f(i)f(j) (14)

subject to
∑y

i=0 f(i) ≤ 1. The Lagrangian (L) is given by:

L =

⌊y/2⌋∑
i=0

f(i)−
y∑

i=0

y−i∑
j=0

f(i)f(j) + λ

(
1−

y∑
i=0

f(i)

)
(15)

where λ ≥ 0. This yields the following Karush-Kuhn-Tucker (KKT) conditions for i = 0 to i = ⌊y/2⌋:

f(i)

1− 2

y−i∑
j=0

f(j)− λ

 = 0 (16)

and, for i = ⌊y/2⌋+ 1 to i = y:

f(i)

−2

y−i∑
j=0

f(j)− λ

 = 0

Therefore, for i = ⌊y/2⌋+1, ..., y, either (i) f(i) = 0 or (ii) λ = −2
∑y−i

j=0 f(j). If the second condition holds for

a particular value of i, then λ ≥ 0 implies that λ = f(0) = f(1) = ... = f(y − i) = 0. If the second condition

does not hold, then f(i) = 0. Thus, for all i in the range ⌊y/2⌋+ 1 ≤ i ≤ y:

f(i)

y−i∑
j=0

f(j) = 0 (17)

Hence the objective function simplifies to:

nBn,2(y) =

⌊y/2⌋∑
i=0

f(i)−
⌊y/2⌋∑
i=0

y−i∑
j=0

f(i)f(j)

=

⌊y/2⌋∑
i=0

f(i)−
⌊y/2⌋∑
i=0

⌊y/2⌋∑
j=0

f(i)f(j)−
⌊y/2⌋∑
i=0

y−i∑
j=⌊y/2⌋+1

f(i)f(j)

(18)

From Equation 17, if i ≥ ⌊y/2⌋ + 1 and i + j ≤y, then f(i)f(j) = 0. Swapping the roles of i and j results in

the final term of the last expression vanishing:

nBn,2(y) =

⌊y/2⌋∑
i=0

f(i)−
⌊y/2⌋∑
i=0

⌊y/2⌋∑
j=0

f(i)f(j)

= F1 (⌊y/2⌋)− F1 (⌊y/2⌋)2
(19)
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This is maximized at F1 (⌊y/2⌋) = 1/2 at which:

Bn,2(y) =
1

4n
(20)

Thus, f(0), ..., f(⌊y/2⌋) can be chosen in any way such that their sum is 1/2 and f(⌊y/2⌋ + 1), ..., f(y) can be

chosen in any way that satisfies Equation 17. Because f is a probability mass function, the final condition is

that:
∑∞

i=y+1 f(i) = 1 −
∑y

i=0 f(i). For any distribution satisfying these conditions, the bias is maximised at

1/4n, for all y ≥ 1.

Now, we turn to the problem of finding the non-negative discrete distributions that minimize the bias (or,

equivalently, n times the bias) for an aggregation level of m = 2 and for any value of y. Again, we analyze the

cases y = 0 and y ≥ 1 separately. For y = 0, we have: nBn,2(0) = f(0)− f(0)2, and it follows immediately that

this is minimized at f(0) = 0 (with
∑∞

i=1 f(i) = 1) and at f(0) = 1 (with
∑∞

i=1 f(i) = 0). At both values, the

bias takes a minimum value of Bn,2(0) = 0. For y ≥ 1, the Lagrangian (L) for this minimization problem is

given by:

L = −
⌊y/2⌋∑
i=0

f(i) +

y∑
i=0

y−i∑
j=0

f(i)f(j) + λ

(
1−

y∑
i=0

f(i)

)
(21)

where λ ≥ 0. This yields the following KKT conditions for i = 0 to i = ⌊y/2⌋:

f(i)

−1 + 2

y−i∑
j=0

f(j)− λ

 = 0 (22)

and for i = ⌊y/2⌋+ 1 to i = y;

f(i)

2

y−i∑
j=0

f(j)− λ

 = 0

If λ = 0, the second KKT condition reduces to Equation 17 and, as previously shown, the bias can then be

calculated from Equation 19. This function is non-negative for any cumulative distribution function F1(⌊y/2⌋).

However, for y ≥ 1, this cannot be the minimum value of nBn,2(y) because the bias can take negative values

(for example, if f(0) = f(y) = 1/2). Hence, λ > 0 and the constraint in the original minimization problem is

active, so that: F1(y) =
∑y

i=0 f(i) = 1. The KKT conditions can be re-expressed as follows, summing from

i = 0 to i = ⌊y/2⌋:
⌊y/2⌋∑
i=0

y−i∑
j=0

f(i)f(j) =
λ+ 1

2

⌊y/2⌋∑
i=0

f(i) (23)

and summing from i = ⌊y/2⌋+ 1 to i = y:

y∑
i=⌊y/2⌋+1

y−i∑
j=0

f(i)f(j) =
λ

2

y∑
i=⌊y/2⌋+1

f(i) (24)

24



Adding:
y∑

i=0

y−i∑
j=0

f(i)f(j) =
λ

2
+

1

2

⌊y/2⌋∑
i=0

f(i) (25)

This yields the following result:

nBn,2(y) =
1

2

⌊y/2⌋∑
i=0

f(i)− λ

2
=

1

2
F1 (⌊y/2⌋)−

λ

2
(26)

Now, subtracting Equation 24 from Equation 23:

⌊y/2⌋∑
i=0

⌊y/2⌋∑
j=0

f(i)f(j) =
λ+ 1

2

⌊y/2⌋∑
i=0

f(i)− λ

2

y∑
i=⌊y/2⌋+1

f(i) (27)

where, on the left-hand side, we have made use of the identity
∑y

i=⌊y/2⌋+1

∑y−i
j=0 f(i)f(j) =

∑⌊y/2⌋
i=0

∑y−i
j=⌊y/2⌋+1 f(i)f(j).

Hence:

F1 (⌊y/2⌋)2 =
λ+ 1

2
F1 (⌊y/2⌋)−

λ

2
(1− F1 (⌊y/2⌋)) (28)

2F1 (⌊y/2⌋)2 − (2λ+ 1)F1 (⌊y/2⌋) + λ = 0 (29)

Solving this quadratic equation:

F1 (⌊y/2⌋) =
2λ+ 1± (2λ− 1)

4
(30)

This gives two solutions, namely F1 (⌊y/2⌋) = λ and F1 (⌊y/2⌋) = 1/2.

Substituting into Equation 26, these solutions correspond to nBn,2(y) = 0 and nBn,2(y) = 1/4−λ/2. It has

already been noted that the minimum bias must be negative, which means that, for y ≥ 1, the first solution

cannot correspond to the minimum. We have shown previously that F1(y) = 1 and since, for the second solution,

F1(⌊y/2⌋) = 1/2, it follows that:
⌊y/2⌋∑
i=0

f(i) =

y∑
i=⌊y/2⌋+1

f(i) =
1

2
(31)

Thus, the bias is minimized if f(0), ..., f(⌊y/2⌋) and f(⌊y/2⌋ + 1), ..., f(y) are chosen in any way such that

both of their sums are 1/2 and Equations 23 and 24 are satisfied. Because f is a probability mass function,

f(i) = 0 for i ≥y + 1.

The pair f(0) = f(y) = 1/2 is a solution provided that the following constraints are satisfied:

1

2
= f(0)2 + f(0)f(y) =

λ+ 1

2
f(0) =

λ+ 1

4
(32)

1

4
= f(0)f(y) =

λ

2
f(y) =

λ

4
(33)

Both of these constraints are satisfied at λ = 1. Thus one of the minimum solutions has been found, at
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which nBn,2(y) = 1/4− 1/2 = −1/4. This shows that the minimum value attained by the bias is given by:

Bn,2(y) = − 1

4n
(34)

The constraint given by Equation 23, for i = 0, ..., ⌊y/2⌋ becomes, for λ = 1:

f(i)

y−i∑
j=0

f(j) = f(i) (35)

The constraint given by Equation 24, for i = ⌊y/2⌋+ 1, ..., y becomes:

f(i)

y−i∑
j=0

f(j) =
1

2
f(i) (36)

Appendix C: Proof of Proposition 3 - Variance expression of CDF

resampling estimate without replacement

By definition,

F̂NR
m (y)2 =

(
1(
n
m

) ∑
I∗∈I

1

[∑
i∈I

di ≤ y

])2

(37)

where I∗ represents a specific permutation of m indices that have been resampled (and I is the set of all

such m-permutations from n indices that can be resampled without replacement) and I is the associated set of

elements of the m-permutation. Then:

F̂NR
m (y)2 =

1(
n
m

)2 ∑
I∗∈I

∑
J∗∈I

1

[∑
i∈I

di ≤ y

]
1

[∑
j∈J

dj ≤ y

]
(38)

E(F̂NR
m (y)2) =

1(
n
m

)2 m∑
k=0

∑
I∗∈I

∑
J∗∈I

|I∩J|=k

E
(
1

[∑
i∈I

di ≤ y

]
1

[∑
j∈J

dj ≤ y

])
(39)

Recalling the definition of Θk,m(y) for k = 0, 1, ...,m, it follows that :

E(F̂NR
m (y)2) =

1(
n
m

)2 m∑
k=0

∑
I∗∈I

∑
J∗∈I

|I∩J|=k

Θk,m(y) (40)

Now, it is required to find the number of ways of choosing m elements for one set (with no replacement) and

m elements for a second set (with no replacement) in such a way that k of them are in common. The total

number of ways of choosing any m elements from n, for the first set, is
(
n
m

)
. The number of ways of choosing the

elements of the second set so that k of them intersect, and m−k do not, is
(
m
k

) (
n−m
m−k

)
. Hence, the unconditional
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expectation is given by:

E(F̂NR
m (y)2) =

m∑
k=0

(
m
k

)(
n−m
m−k

)(
n
m

) Θk,m(y) (41)

By applying the standard identity Var(F̂NR
m (y)) = E((F̂NR

m (y))2)−(E(F̂NR
m (y)))2, and recalling that E(F̂NR

m (y)) =

Fm(y), Proposition 3 is established.

Appendix D: Proof of Proposition 4 - Variance expression of CDF

resampling estimate with replacement

By definition,

F̂R
m(y)2 =

(
1

nm

∑
A∗∈A

1

[∑
a∈A

λA
a da ≤ y

])2

=
1

n2m

∑
A∗∈A

∑
B∗∈A

1A∗,B∗ (42)

where 1A∗,B∗ = 1

[∑
a∈A λA

a da ≤ y

]
1

[∑
b∈B λB

b db ≤ y

]
and A is the set of all m-permutations (with

repetition) from n indices.

The expectation of 1A∗,B∗ depends on the number of distinct elements selected over both sets A and B

(namely |A ∪B| = |A|+ |B −A| = k), which ranges from 1 to min(2m,n), and so:

E(F̂R
m(y)2) =

1

n2m

min(2m,n)∑
k=1

∑
A∗∈A

∑
B∗∈A

|A|+|B−A|=k

E(1A∗,B∗) (43)

Renumbering indices, we let A−B = {d1, ..., dα}, B−A = {dα+1, ..., dα+β} and A∩B = {dα+β+1, ..., dα+β+γ}.

Then the expectation of 1A∗,B∗ may be written:

E(1A∗,B∗) =

U1∑
d1=0

...

Uα∑
dα=0

Uα+1∑
dα+1=0

...

Uα+β∑
dα+β=0

Uα+β+1∑
dα+β+1=0

...

Uα+β+γ∑
dα+β+γ=0

α+β+γ∏
j=1

f(dj) (44)

where

U1 = ⌊y/λA
1 ⌋, ..., Uα =

⌊(
y −

α−1∑
j=1

λA
i di

)
/λA

α

⌋

Uα+1 = ⌊y/λB
α+1⌋, ..., Uα+β =

⌊(
y −

α+β−1∑
i=α+1

λB
i di

)
/λB

α+β

⌋

Uα+β+1 = min
(⌊(

y −
α∑

i=1

λA
i di

)
/λA

α+β+1

⌋
,

⌊(
y −

α+β∑
i=α+1

λB
i di

)
/λB

α+β+1

⌋)
, ...,

Uα+β+γ = min
(⌊(

y −
α∑

i=1

λA
i di −

α+β+γ−1∑
i=α+β+1

λA
i di

)
/λA

α+β+γ

⌋
,

⌊(
y −

α+β+γ−1∑
i=α+1

λB
i di

)
/λB

α+β+γ

⌋)

This shows that the expectation of 1A∗,B∗ depends on λA and λB . The number of feasible permutations
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depends on the parameters n, m and k. It also depends on the partitions λA and λB , and on the partition

λB−A, as will be discussed shortly. Hence, letting N(n,m, k, λA, λB , λB−A) represent the number of feasible

permutations for given parameters and partitions:

E(F̂R
m(y)2) =

1

n2m

min(2m,n)∑
k=1

∑
λA

∑
λB

∑
λB−A

|A∪B|=k

N(n,m, k, λA, λB , λB−A)E(1A∗,B∗) (45)

Now it is required to evaluate N(n,m, k, λA, λB , λB−A). Consideration needs to be given to three components

of the calculation: i) allocation of time indices to the multiplicities of elements λA
1 , ..., λ

A
|A|; ii) selection from set

A of those time indices to be members of set B (i.e. the elements of A ∩B); and iii) allocation of time indices

to the mutiplicities of elements λB−A
1 , ..., λB−A

|B−A|.

For the first component, the number of permutations is given by the following expression, allowing for

repetition of multiplicities: n!/((n−|A|)!Π|λA|
j=1 r

A
j !); a similar expression applies for the third component, namely

(n−|A|)!/((n−|A|− |B−A|)!Π|λB−A|
j=1 rB−A

j !) (noting that |A|+ |B−A| = |A∪B|). For the second component,

the number of choices of |A∩B| intersecting elements from the set A is given by the standard binomial formula:

|A|!/(|A ∩B|!(n− |A ∩B|)!).

Finally, the number of arrangements of the time-indices in sets A and B must be quantified. taking into ac-

count the multiplicities for sets A and B. The formulae for the arrangements are: m!/Π
|A|
j=1λ

A
j ! and m!/Π

|B|
j=1λ

B
j !

respectively.

Multiplying all the relevant components yields the expression for N(n,m, k, λA, λB , λB−A) given in Propo-

sition 4. Therefore, the proposition is proven.

Appendix E: Variance expression of resampling with replacement (case

of m = 3)

The following expression is a special case of the general formula (11).
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Var(F̂R
3 (y)) =

1

n6

[
n(n− 1)(

⌊y/3⌋∑
i=0

f(i))2 + 6n(n− 1)(n− 2)

⌊y/3⌋∑
i=0

f(i)

⌊y/2⌋∑
i=0

y−2i∑
j=0

f(i)f(j)

+2n(n− 1)(n− 2)(n− 3)(

⌊y/3⌋∑
i=0

f(i))(

y∑
i=0

y−i∑
j=0

y−i−j∑
k=0

f(i)f(j)f(k)) + 9n(n− 1)(n− 2)(n− 3)(

⌊y/2⌋∑
i=0

y−2i∑
j=0

f(i)f(j))2

+6n(n− 1)(n− 2)(n− 3)(n− 4)(

⌊y/2⌋∑
i=0

y−2i∑
j=0

f(i)f(j))(

y∑
i=0

y−i∑
j=0

y−i−j∑
k=0

f(i)f(j)f(k))

+n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)(

y∑
i=0

y−i∑
j=0

y−i−j∑
k=0

f(i)f(j)f(k))2 + 6n(n− 1)

⌊y/3⌋∑
i=0

⌊(y−i)/2⌋∑
j=0

f(i)f(j)

+6n(n− 1)(n− 2)

⌊y/3⌋∑
i=0

y−i∑
j=0

y−i−j∑
k=0

f(i)f(j)f(k) + 9n(n− 1)(n− 2)

⌊y/2⌋∑
i=0

y−2i∑
j=0

⌊(y−i)/2⌋∑
k=0

f(i)f(j)f(k)

+9n(n− 1)(n− 2)

⌊y/2⌋∑
i=0

Min(y−2i,⌊y/2⌋)∑
j=0

y−2j∑
k=0

f(i)f(j)f(k) + 9n(n− 1)(n− 2)

⌊y/2⌋∑
i=0

y−2i∑
j=0

⌊(y−j)/2⌋∑
k=0

f(i)f(j)f(k)

+18n(n− 1)(n− 2)(n− 3)

⌊y/2⌋∑
i=0

y−2i∑
j=0

y−i∑
k=0

y−i−k∑
l=0

f(i)f(j)f(k)f(l) + 6n(n− 1)

⌊y/3⌋∑
i=0

y−2i∑
j=0

f(i)f(j)

+18n(n− 1)(n− 2)(n− 3)

⌊y/2⌋∑
i=0

y−2i∑
j=0

y−j∑
k=0

y−j−k∑
l=0

f(i)f(j)f(k)f(l) + 9n(n− 1)(n− 2)

⌊y/2⌋∑
i=0

y−2i∑
j=0

y−2i∑
k=0

f(i)f(j)f(k)

+9n(n− 1)(n− 2)(n− 3)(n− 4)

y∑
i=0

y−i∑
j=0

y−i−j∑
k=0

y−i∑
l=0

y−i−l∑
t=0

+9n(n− 1)

⌊y/2⌋∑
i=0

Min(y−2i,⌊(y−2i)/2⌋)∑
j=0

f(i)f(j)

+36n(n− 1)(n− 2)

⌊y/2⌋∑
i=0

y−2i∑
j=0

y−i−j∑
k=0

f(i)f(j)f(k) + 18n(n− 1)(n− 2)(n− 3)

y∑
i=0

y−i∑
j=0

y−i−j∑
k=0

y−i−j∑
l=0

f(i)f(j)f(k)f(l)

+n

⌊y/3⌋∑
i=0

f(i) + 9n(n− 1)

⌊y/2⌋∑
i=0

y−2i∑
j=0

f(i)f(j) + 6n(n− 1)(n− 2)

y∑
i=0

y−i∑
j=0

y−i−j∑
k=0

f(i)f(j)f(k)

]

− 1

n3

[
n

⌊y/3⌋∑
i=0

f(i) + 3n(n− 1)

⌊y/2⌋∑
i=0

y−2i∑
j=0

f(i)f(j) + n(n− 1)(n− 2)

y∑
i=0

y−i∑
j=0

y−i−j∑
k=0

f(i)f(j)f(k)

]2
(46)
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Appendix F: Bias and variance reduction - Case of discrete distribution

(n = 10, 20)

Table 12: Percentage differences in squared biases (∆1) and variances (∆2) between replacement and no
replacement (n = 10)

P(1)

P(0) 0.1 0.3 0.5 0.7 0.9

0.1
∆1 (%) 2.33 0.14 0.01 0.12 0.28
∆2 (%) 14.36 0.78 -4.11 -6.90 -8.75

0.3
∆1 (%) 1.49 0.03 0.23 1.05
∆2(%) 0.27 -4.74 -5.93 -5.94

0.5
∆1 (%) 0.65 0.07 2.37
∆2 (%) -5.19 -6.63 -1.00

0.7
∆1 (%) 0.12 5.16
∆2 (%) -7.98 10.02

0.9
∆1 (%) 15.00
∆2 (%) 57.67

Table 13: Percentage differences in squared biases (∆1) and variances (∆2) between replacement and no
replacement (n = 20)

P(1)

P(0) 0.1 0.3 0.5 0.7 0.9

0.1
∆1 (%) 1.32 0.07 0.00 0.06 0.14
∆2 (%) 8.83 1.02 -1.79 -3.37 -4.41

0.3
∆1 (%) 0.78 0.018 0.12 0.530
∆2(%) 0.50 -2.199 -2.86 -2.914

0.5
∆1 (%) 0.33 0.033 1.22
∆2 (%) -2.51 -3.277 -0.25

0.7
∆1 (%) 0.06 2.75
∆2 (%) -4.02 5.82

0.9
∆1 (%) 9.10
∆2 (%) 33.71
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Appendix G: Bias and variance reduction - Case of Poisson-geometric

distribution (n = 10, 20)

Table 14: Percentage differences in squared biases and and variances between replacement and no
replacement under Poisson-geometric distribution

θ (n = 10) θ (n = 20)

λ 0.1 0.4 0.7 0.1 0.4 0.7

0.1
∆1 (%) 0,18 0,02 0,07 0,09 0,01 0,04
∆2 (%) -8,96 -9,18 -8,52 -4,53 -4,67 -4,40

0.4
∆1(%) 0,82 0,14 0,03 0,41 0,07 0,01
∆2 (%) -6,28 -7,75 -7,67 -3,10 -3,90 -3,87

0.7
∆1 (%) 1,59 0,35 0,00 0,81 0,18 0,00
∆2 (%) -2,87 -5,91 -6,76 -1,26 -2,89 -3,35

1
∆1 (%) 2,51 0,62 0,06 1,31 0,32 0,03
∆2 (%) 1,44 -3,55 -5,37 1,09 -1,60 -2,57

2
∆1 (%) 6,81 2,05 0,72 3,87 1,13 0,39
∆2 (%) 25,34 9,49 3,57 14,76 5,87 2,55

3
∆1 (%) 12,39 4,02 1,85 8,16 2,49 1,10
∆2 (%) 73,15 34,71 21,79 44,10 21,53 13,79
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