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Abstract—Three-dimensional (3D) graphene has been 

increasingly used in many applications due to its superior 

properties. The laser-induced graphene (LIG) technique is an 

effective way to produce 3D graphene by combining graphene 

preparation and patterning into a single step using direct laser 

writing. However, the variation in process parameters and 

environment could largely affect the formation and crystallization 

quality of 3D graphene. This paper develops a vision and deep 

transfer learning-based processing monitoring system for LIG 

production. To solve the problem of limited labeled data, novel 

convolutional de-noising auto-encoder (CDAE)-based 

unsupervised learning is developed to utilize the available 

unlabeled images. The learned weights from CDAE are then 

transferred to a gaussian convolutional deep belief network 

(GCDBN) model for further fine-tuning with a very small amount 

of labeled images. The experimental results show the proposed 

method can achieve the state-of-art performance of precise and 

robust monitoring for the quality of the LIG formation. 

 
Index Terms—Laser-induced graphene, process monitoring, 

deep transfer learning, semi-supervised learning. 

I. INTRODUCTION 

Since the discovery of graphene by Andre Geim, it has been 

widely used in microelectronics [1], energy storage[2], 

composite materials[3], and bionic devices [4]. In practical 

applications, for example, as an electrode material for energy 

storage and conversion devices, the two-dimensional (2D) 

graphene layer tends to re-stack and lose its unique properties, 

resulting in unsatisfactory performance [5]. An effective way to 

solve this issue is to construct graphene into a well-organized 

and interconnected three-dimensional (3D) structure, which not 

only retains the excellent properties of 2D graphene, but also 

shows a low mass density (~0.16 mg/cm3), high porosity, large 

specific surface area and unexceptionable flexibility [6]. 

At present, 3D graphene-based materials mainly include 

graphene hydrogels, graphene sponges, graphene aerogels, and 

graphene foams. Generally, the production of 3D graphene 

macrostructures includes methods such as self-assembly [7], 

template-assisted synthesis [8], and direct deposition [9]. 

However, the traditional manufacturing method of 3D graphene 

usually requires multiple steps to realize the construction of a 

3D structure, such as graphene oxide (GO) synthesis, assembly 

of 3D structure, and reduction of GO. At the same time, various 

chemical reagents are needed in the manufacturing process, 

which is easy to cause environmental pollution. For industrial 

applications, traditional manufacturing methods are difficult to 

achieve large-area rapid manufacturing. Due to its high 

production efficiency and the ability to form micro-nano 

structures, laser-assisted processing technology has been 

widely used in material manufacturing. Recently, James M. 

Tour et al. confirmed that the use of commercially available 

CO2 infrared laser scribing could form 3D porous graphene on 

polyimide (PI) under ambient conditions [10]. Compared with 

the traditional preparation method, this method simplifies the 

preparation process, and the construction of 3D graphene can 

be completed by only one step of laser scanning. The 

manufacturing process does not require the use of chemical 

reagents and is environmentally friendly. At the same time, the 

laser manufacturing method can be easily combined with 

numerical control technology to realize automated and rapid 

manufacturing. Recently, a simple lamination composite 

method has been used to produce functional, patterned, and 

multilayer laser-induced graphene (LIG) composites, which is 

compatible with roll-to-roll processing [11].  

In the manufacturing process of LIG, the changes of various 

process parameters and processing environment will affect the 

formation and crystallization quality of 3D graphene. So, the 

property of the final project needs to be confirmed by micro 

Raman spectrometer and other testing methods offline, which is 

time-consuming and effective in industrial production. The 

real-time monitoring technology plays a significant role in the 

field of laser-aided manufacturing. Establishing the mapping 

between real-time monitoring data and the properties of the 

products, not only ensures the product quality but also saves 

time and expenditure on the subsequent inspection. For 

example, Fraser et al. [12] used a low-coherence 

interferometric imaging technique to monitor melt pool 

morphology changes and stability during the selective laser 

melting process, which can detect process defects caused by 

poor parameter selections and identify characteristic fault 

signatures. Wong et al. [13] studied the correlation between 

micro-hardness of molten zone and the intensity of emission 

spectra were researched using the emission spectra detected 

during the laser melting process. However, for LIG production, 

effective process monitoring has not been investigated yet.  

Recently, deep learning has shown promising capability in 

achieving effective process monitoring of laser aided 

manufacturing. Shevchik et al. [14] developed a deep 
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learning-based real-time quality monitoring system for 

power-bed fusion (PBF) additive manufacturing (AM) using 

acoustic emission signals. Various quality categories with 

different levels of porosity could be accurately classified using 

a spectral convolutional neural network. Eschner et al. [15] 

proposed an approach for specimen density classification using 

artificial neural networks and acoustic emissions during the 

PBF process. The ANN model established a precise linkage 

between density and acoustic signals. Image-based approaches 

have gained increasing attention in processing monitoring due 

to both the convenience of the use of cameras and the abundant 

information contained in images during the process [16]. Wang 

et al. [17] developed a vision-based surface monitoring system 

using convolutional neural network (CNN) for fused deposition 

modeling which could achieve efficient defect classification 

with high accuracy. Zhang et al. [18] used machine vision and 

hybrid CNN to classify the different defects in the PBF process. 

The hybrid CNN model could learn both the spatial and 

temporal representative features from the raw images 

automatically based on the advantages of the CNN architecture. 

Li et al. [19] proposed a deep learning-based process 

monitoring method for directed energy deposition in AM using 

thermal images collected during manufacturing. Feng et al. [20] 

developed a deep learning enhanced approach to improve gas 

tungsten arc welding process monitoring and penetration 

detection using multisource sensing images. 

Despite the computer vision and deep learning-based 

methods can more effectively analyze and classify the 

manufacturing quality, they require a large number of labeled 

images to train the models from scratch [21]. However, In 

engineering practice, collecting and labeling large quantities of 

image samples with degraded performance of LIG production 

are usually laborious and even impractical. Unsupervised 

initialization combined with parameter transfer learning can 

provide powerful tools to handle this challenge [22]. With the 

unlabeled monitoring data that is typically easy to collect, a 

pre-trained unsupervised learning model can be used to 

initialize the deep learning model by transferring the 

parameters. In this paper, an in-situ process monitoring 

approach based on deep transfer learning is developed for LIG 

production. A high-speed camera is used to collect the images 

during the process. The experimental results show that the 

proposed approach can effectively evaluate the quality of 3D 

graphene produced with the in-process images. The main 

contributions of the paper are summarized as follows: 

1. A vision and deep transfer learning-based process 

monitoring approach is developed for LIG production for the 

first time, which achieves precise evaluation of the formation. 

2. The proposed method fully utilizes the unlabeled images 

collected by using a novel convolutional de-noising 

auto-encoder (CDAE) model.  

3. With weight transfer learning from the novel CDAE to the 

Gaussian CDBN, only a small amount of labeled images are 

needed to achieve precise process monitoring. 

The rest of the paper is organized as follows. Section II 

introduces the experimental setup of the developed 

vision-based LIG process monitoring system. Section III 

explains the principle of CDAE. The details of the proposed 

method are presented in Section IV. An experimental study, 

evaluation of the results, and discussion are presented in 

Section V. Section VI concludes this paper and highlights the 

future work.  

II. EXPERIMENTAL SETUP 

The developed vision-based LIG process monitoring system 

is shown in Fig. 1. Thermosetting polyimide (PI) solutions 

were coated to the surface of the substrate by knife coating 

method. A CO2 laser cutting system with a wavelength of 10.6 

um was used to directly synthesise graphene on the PI films 

under ambient conditions. The laser scanning speed was 

150mm/s. The laser head was 2cm above the PI film. The 

in-process images of the manufacturing process were collected 

utilizing CHRONOS high-speed camera. The frame rate of the 

high-speed camera was set to 2111 fps and the image resolution 

was 1280*512. The camera was fixed with a tripod and was 30 

cm away from the sample surface. Auxiliary LED was used as 

the fill light for the high-speed camera. 

High-speed camera

Laser head

Auxiliary LED

Sample  
   

Fig.1. Vision-based process monitoring system of LIG production. 

 

Different levels of laser power including 7%, 8%, 10.5%, 

11%, and 15% were used to produce different formations. 

Raman spectra of LIG were obtained by excitation with a 

532nm laser in Zolix RTS2 Micro confocal Raman 

spectrometer system with a 50x objective lens. The optical 

photograph of the sample was obtained with an Olympus BX35 

microscope. The MIRA 3 field emission scanning electron 

microscope was used to obtain the micro morphology of the 

sample at 10 kV. Based on the Raman spectrum and micro 

morphology of the laser manufacturing results, the 

corresponding LIG formation categories are: (a) No formation; 

(b) Graphite formed; (c) Graphite and graphene; (d) Graphene 

formed; (e) Graphene destroyed. The processing parameters 

and the resulting formation categories are shown in Table I. 

The objective of the experiment is to classify the five 

resulting formations by using the information from the 

in-process images, where most of the images are without 

formation categorical labels.  
TABLE I 

THE PROCESS PARAMETERS AND LIG FORMATION CATEGORIES  

Formation Category Laser Power (%) Laser Scanning Speed 
(mm/s) 

No formation 7 150 

Graphite formed 8 150 

Graphite and graphene 10.5 150 
Graphene formed 11 150 

Graphene destroyed 15 150 

III. THE PRINCIPLE OF CONVOLUTIONAL AUTO-ENCODER  

Different from CNN, convolutional de-noising auto-encoder 
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(CDAE) belongs to unsupervised learning algorithms. Unlike 

DAE, CDAE is constructed with 2D structure. Therefore, with 

the successful combination of CNN and DAE, CDAE can 

directly learn the useful characteristics of the 2D input in a 

completely unsupervised way [23]. Concretely, the encoder and 

decoder of the CDAE are built with convolution network and 

deconvolutional network, respectively, shown in Fig. 2. 

Convolutional
layer Pooling 

layer 

Original

 image

Fully connected 
layer Unpooling 

layer 

Deconvolutional
layer

Reconstructed 

image

Input

 layer

Output

 layer

 

Fig. 2. The structure of a CDAE model.  
 

The encoder is formed by an input layer, a convolution layer, 

and a pooling layer. Given an original 2D image x  with no 

label in the input layer and its size is NV×NV. The feature 

transformation process is expressed by  
2ˆ ( , )= + 0 Ιx x N                                 (1) 

ˆ ˆ( )k k k=  +h x W b                              (2) 

where x̂  denotes the noisy 2D image, 2( , )0 ΙN  denotes the 

Gaussian noise with zero mean and 2 Ι  variance, I is the unit 

matrix, ˆ k
h  denotes the kth hidden feature map with 2D size of 

NH×NH, Wk
 denotes the weight matrix of the kth convolution 

kernel with 2D size of NW×NW,   denotes the 2D convolution 

operation, bk denotes the bias of ˆ k
h  and ( )   denotes the 

transform function, usually selected as sigmoid. After the 

convolution layer, a max pooling layer with 2D size of NP×NP 

is added to reduce feature dimensionality. 

An unpooling layer, a deconvolutional layer, and an 

output layer constitute the decoder, which aims at 

reconstructing the original input from the hidden feature map as  

1

ˆˆ
K

k k

k


=

 
=  + 

 
y h W c                          (3) 

where k
W  denotes the weight matrix of the kth deconvolution 

kernel, which is the flip of k
W , K denotes the number of the 

hidden feature maps, c  denotes the bias of decoder, and ŷ  

denotes the reconstruction of input. Before the deconvolutional 

layer, an unpooling layer should be added for recovering the 

original 2D size. By minimizing the mean square error (MSE) 

between the input and reconstruction, the weight parameters of 

CDAE can be updated with stochastic gradient descent (SGD) 

optimization algorithm, expressed as 
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where   denotes the learning rate, N denotes the number of the 

2D image samples that all have no labels, 
( )i

x  denotes the ith 

image sample, T denotes the current iteration, 
( )[ ]k

TW  and 

( )[ ]CAE TL  denote the trained weight and MSE at the thT  

iteration, respectively; 

IV. THE PROPOSED METHOD 

A. Gaussian CDBN construction 

Convolutional deep belief network (CDBN) is a new-type 

deep learning model which combines advantages of DBN and 

CNN. In terms of structure, CDBN is more similar to CNN than 

DBN, which has the ability to use the two-dimensional 

structure of images, and also has the characteristics of weight 

sharing and local receptive field. In terms of principle, CDBN 

is more similar to DBN than CNN, which belongs to a 

hierarchical generative model and adopts unsupervised 

layer-by-layer greedy pre-training algorithm. However, the 

traditional CDBN constructed with binary units in both the 

visible (input) and hidden layers is not ideal for feature 

extraction and classification of the collected images from the 

high-speed camera. By employing Gaussian units instead of 

binary ones, the so-called Gaussian DBN has shown obvious 

advantages in dealing with real-valued images, such as 

non-binary images with noise [24, 25]. Accordingly, Gaussian 

CDBN (GCDBN) is built in this paper based on Gaussian input 

units and hidden units. Concretely, GCDBN is composed of 

multiple base models named Gaussian Convolutional 

Restricted Bozeman Machine (GCRBM) with the new energy 

function as  

,

2 2
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where v  and h  denote the Gaussian input layer and hidden 

layer, respectively, v  accepts the non-binary 2D images with 

a  size of NW×NW, h  has K feature maps denoted as h1, h2,…, 

hK with each size of NH×NH, and each feature map is linked to 

a weight matrix, successively denoted as W1, W2,…,WK, with 

each size of NW×NW, NW = NV - NH +1, ,i jv  denotes the ith 

row and the jth column of v , 
,

k

i jh  denotes the ith row and the 

jth column of the kth feature map hk, 
,

k

r sW  denotes the rth row 

and the sth column of the kth filter weight Wk, bk  denotes the 

bias, and a denotes the shared bias of all the input units. 

In the GCDBN, a max pooling layer is added after the 

hidden layer to reduce features, which also has K groups with 

each size of
 
NP×NP, as shown in Fig. 3. 

According to the new energy function, the conditional 

probabilities of the GCRBM for the input and hidden units are  

( ) (( ) , )k k kP = =  +I Ih v W v b                  (7) 

( ) ( ( ) , )k k

k
P = =  +I Iv h W h a                 (8) 

where 2
( ),   denotes the Gaussian probability density 

function with mean   and variance 2 . The upgraded 

gradients with respect to the weights of GCRBM using 

contrastive divergence algorithm are expressed as  
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where, d    and m    denote the expectation over the data 

and model distributions, respectively, in which the latter can be 

efficiently estimated using one-step Gibbs sampling technique. 

Despite the GCDBN can more effectively analyze and 

classify non-binary images with noise, its performance is 

significantly affected by the size of available labeled image 

samples. Obtaining a large number of labeled data is laborious 

or even impractical in a real application. In this study, 

unsupervised initialization combined with parameter transfer 

learning is used by transferring the parameter knowledge from 

a pre-trained unsupervised learning model to initialize the 

GCDBN. The next subsection introduces the weight parameter 

transfer between the novel CDAE and GCDBN in detail. 

 

 
 

 

 

 

Fig. 3.  The structure of a Gaussian CRBM model. 

B. Novel CDAE design and weight transfer strategy 

The key task of the CDAE model is to train the connection 

weights. According to the basic update rule shown in Eq. (4), it 

can be observed that only the weights after the previous 

iteration are used to update the current weights. Besides, the 

learning rate is fixed during the whole update process. These 

two problems are likely to lead to high oscillation and slow 

convergence of MSE. In order to simultaneously address the 

two problems mentioned above, adjustable learning rate and 

weight smoothing based on exponential moving average are 

combined and developed. Then, the new update rule for the 

weight is 
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where (0)[ ]  denotes initial learning rate,   denotes a very 

small positive number, ( )[ ] T and ( )[ ] Tg  denote the learning 

rate and gradient at the thT  iteration, respectively. 

From Eqs. (10)-(12), it can be found that (1) all of the 

trained weights from the previous iterations are utilized for 

further adjusting the present weight. (2) The contribution 

proportions of weights are different at the different iterations, 

specifically, the contribution from the weights in the latest 

iterations is higher than the weights in the early stage. (3) The 

learning rate can be adjusted according to the change of the 

gradient in real time, largely improving the training 

performance. These will make the learned weights smoother 

and the MSE curve converge more quickly. 

By now, a novel CDAE has been designed. Compared 

with the labeled image samples, the unlabeled images are easier 

to be acquired, which can be fully used to train the novel CDAE 

with excellent performance. Then, the trained weights of the 

novel CDAE are transferred to the GCDBN with the same 

model structure as its initial weights. Fig. 4 shows the main 

idea of weight transfer learning from novel CDAE to GCDBN. 

With the help of the initial weights containing good knowledge 

for pattern classification, the GCDBN can be efficiently trained 

with a very small number of labeled samples.  
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Fig. 4. Weight transfer learning from the novel CDAE to Gaussian GCDBN. 

C. Framework of the proposed method 

The implementation framework of process monitoring of 

LIG production in the proposed method is presented in Fig. 5. 

The main steps are summarized as follows: 

Step 1: Collect the in-process images of LIG production under 

different conditions using a high-speed camera.  

Step 2: Obtain the Raman spectra and micro morphology of 

some samples and determine the formation categories. 

Only a small number of samples are characterized and 

labeled with categorical information.  

Step 3: Novel CDAE is constructed with adjustable learning 

rate and weight smoothing, which is used to learn the 

discriminative features from all the unlabeled images, 

and finally the trained weights containing good 

knowledge for pattern classification are acquired. 
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Step 4: Construct GCDBN by employing real-valued input 

units and hidden units, whose network structure is the 

same as the trained novel CDAE. 

Step 5: The trained weights of the novel CDAE are transferred 

to the GCDBN as the initial weights. 

Step 6: The small number of labeled images is used to further 

adjust the weights of the GCDBN to achieve high and 

robust classification performance. 

Fig. 5.  The framework of the proposed method.  

V. RESULTS AND DISCUSSION 

A. In-process image collection and sample characterization 

Five groups of image samples corresponding to the five LIG 

formation categories were collected using the developed 

system with laser power of 7%, 8%, 10.5%, 11%, and 15%. The 

samples sizes of the images for the five categories are listed in 

Table II. The number of the testing image samples is always 

fixed as 30. All of the unlabeled and labeled images are 

collected from the same process parameters and environment. 

One image sample cropped with only the region of interest 

from each of the five categories is shown in Fig. 6. The 

corresponding Raman spectrum and micro morphology are 

displayed in Fig. 7. 
TABLE II  

THE FIVE LIG FORMATION CATEGORIES AND THEIR SAMPLE SIZES 

LIG formation 

categories  

Unlabeled images 

for training novel 

CDAE 

Labeled images for 

training/testing 

GCDBN 

State 

labels  

No formation 100 3 / 30 1 
Graphite formed 100 3 / 30 2 

Graphite and graphene 100 3 / 30 3 

Graphene 100 3 / 30 4 
Graphene destroyed 100 3 / 30 5 

     

Fig. 6. The region of interest of the in process images for different categories:  

(a) State 1; (b) State 2; (c) State 3; (d) State 4; (e) State 5. 

B. Effectiveness of the weight transfer based on unsupervised 

initialization 

The effectiveness of the weight transfer strategy based on 

unsupervised initialization is first evaluated. As listed in Table 

III, the average testing accuracies during the ten independent 

runs of different combinations are compared. Specifically, 

Methods 1-6 adopt a weight transfer strategy based on 

unsupervised initialization, i.e., unlabeled image samples are 

firstly used for training the novel CDAE to get good weights for 

subsequent classifiers (such as Gaussian CDBN, Binary CDBN, 

and CNN), and then a few labeled image samples (three in this 

study) are used to further fine-tune the weights. On contrary, 

Methods 7-15 directly use different numbers of labeled image 

samples (50, 100, and 200) to train the classifiers from scratch. 

The average testing accuracy of Method 1 (the proposed 

method) is 95.40% (1431/1500), which is the highest among 

Methods 1-5. For one run, the multi-class confusion matrix is 

shown in Fig. 8, and the F-scores are 1, 0.9667, 0.9333, 0.9153, 

and 0.9508, respectively. 
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TABLE III 
AVERAGE TESTING ACCURACIES OF DIFFERENT METHODS 

Different methods Sizes of unlabeled training samples for 

unsupervised initialization 

Sizes of labeled samples for training Average testing 

accuracies  

Method 1 (Novel CDAE + Gaussian CDBN) 100 * 5 for novel CDAE 3 * 5 for Gaussian CDBN 95.40% (1431/1500) 

Method 2 (Novel CDAE + Binary CDBN) 100 * 5 for novel CDAE 3 * 5 for Binary CDBN 78.93% (1184/1500) 

Method 3 (Novel CDAE + CNN) 100 * 5 for novel CDAE 3 * 5 for CNN 91.07% (1366/1500) 
Method 4 (Basic CDAE + Gaussian CDBN) 100 * 5 for basic CDAE 3 * 5 for Gaussian CDBN 89.87% (1348/1500) 

Method 5 (Basic CDAE + Binary CDBN) 100 * 5 for basic CDAE 3 * 5 for Binary CDBN 73.93% (1109/1500) 

Method 6 (Basic CDAE + CNN) 100 * 5 for basic CDAE 3 * 5 for CNN 86.20% (1293/1500) 

Method 7 (Gaussian CDBN) 0 (Without unsupervised initialization) 200 * 5 for Gaussian CDBN 99.07% (1486/1500) 
Method 8 (Binary CDBN) 0 (Without unsupervised initialization) 200 * 5 for Gaussian CDBN 78.20% (1173/1500) 

Method 9 (CNN) 0 (Without unsupervised initialization) 200 * 5 for Gaussian CDBN 98.33% (1475/1500) 
Method 10 (Gaussian CDBN) 0 (Without unsupervised initialization) 100 * 5 for Gaussian CDBN 97.07% (1456/1500) 

Method 11 (Binary CDBN) 0 (Without unsupervised initialization) 100 * 5 Binary CDBN 77.60% (1164/1500) 

Method 12 (CNN) 0 (Without unsupervised initialization) 100 * 5 CNN 92.73% (1391/1500) 
Method 13 (Gaussian CDBN) 0 (Without unsupervised initialization) 50 * 5 for Gaussian CDBN 76.80% (1152/1500) 

Method 14 (Binary CDBN) 0 (Without unsupervised initialization) 50 * 5 Binary CDBN 60.40% (906/1500) 

Method 15 (CNN) 0 (Without unsupervised initialization) 50 * 5 CNN 73.20% (1098/1500) 

Note: Method 1 refers to the proposed method 

 

 

 

 

Fig. 
7. Raman spectrum and micro morphology for different categories: (a) State 1; 

(b) State 2; (c) State 3; (d) State 4; (e) State 5. 

 

The main conclusions are as follows. (1) By comparing 

Methods 1-3, the GCDBN reports higher accuracy than Binary 

CDBN and CNN (LeNet-5). (2) Through the comparisons 

between Methods 1, 7 and 10, Methods 2, 8 and 11, Methods 3, 

9 and 12, the effectiveness of the weight transfer strategy based 

on unsupervised initialization is clearly demonstrated. (3) From 

the results of Methods 7-15, the good performance of the 

classical CNN and Gaussian CDBN trained from scratch need 

enough labeled samples, and it is very difficult to effectively 

distinguish the LIG formation categories using only a few 

labeled image samples without other advanced technologies, 

such as weight transfer strategy based on unsupervised 

initialization here. (4) The comparison results between 

Methods 1 and 4, Methods 2 and 5, Methods 3 and 6 confirm 

that the novel CDAE is more effective than the basic CDAE 

due to the adjustable learning rate and weight smoothing that 

can largely avoid high oscillation and slow convergence. Fig. 9 

is the average MSE curves (from the 10th iteration and the 40th 

iteration) of the ten runs, and the average MSE curve of the 

novel CDAE converges more quickly than the basic CDAE. 

Moreover, by using unsupervised initialization of the novel 

CDAE and the weight transferred from the novel CDAE to 

GCDBN, we only need three labeled image samples to achieve 

high and robust classification performance in this case study. 

The hyper-parameters and architecture settings used in the 

proposed method in the case study are listed in Table IV. 

 

 

 

 

(e) 
(a) 

(b) 

(c) 

(d) 
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TABLE V 
AVERAGE TESTING ACCURACIES OF THE PROPOSED METHOD AND SVM WITH DIFFERENT SIZES OF THE LABELED IMAGES FOR EACH STATE 

Different methods Average testing accuracies with different numbers of labeled images for each state 

1 2 3 4 5 10 

Proposed method 87.47% 91.93% 95.40% 97.73% 99.07% 100.00% 

SVM 41.80% 60.73% 70.87% 79.47% 84.13% 89.27% 
 

 

 

Fig. 8. Confusion matrix of the proposed method (Method 1) for one run.  
 

 

Fig. 9. The average MSE curves of the novel CDAE and basic CDAE.  

 

TABLE IV 
HYPER-PARAMETERS AND ARCHITECTURE SETTINGS OF THE NOVEL CDAE 

AND GAUSSIAN CDBN  

Hyper-parameters and architecture settings Details 

The selected 2D size of each grayscale images 40*40 

Weight matrices of novel CDAE and Gaussian CDBN in the 

first convolutional layer 
(5*5)*8 

Max pooling operations of novel CDAE and Gaussian CDBN 

in the first pooling layer 
(2*2)*8 

Weight matrices of novel CDAE and Gaussian CDBN in the 
second convolutional layer 

(5*5)*14 

Max pooling operations of novel CDAE and Gaussian CDBN 

in the second pooling layer 
(2*2)*14 

Activation functions of novel CDAE and Gaussian CDBN Sigm 

Iteration times of novel CDAE / Gaussian CDBN 100 / 60 

Initial learning rate / Noise variance of novel CDAE 0.10 / 0.05 
 

C. Discussions on the size of the labeled images and the noise 

interference 

Generally, acquiring and labeling many in-process 

monitoring images in practice are laborious and difficult. 

Thereby, the analysis and discussion on the size of the labeled 

images for training GCDBN are of significance. 

As presented in Table V, six different sizes of the labeled 

images are investigated, which are 1, 2, 3, 4, 5, and 10, 

respectively. Here, support vector machine, the commonly used 

small-sample learning method, is also applied for comparison. 

For each investigation case, the numbers of the unlabeled 

images for training novel CDAE and the labeled images for 

testing GCDBN and SVM are kept at 100 and 30, respectively. 

It can be found from Table V that the average testing 

accuracies gradually increase with the growing size of labeled 

images used in the training of GCDBN. Concretely, with only 2 

labeled images, the classification accuracy has reached 87%, 

and with 3 images, the accuracy is higher than 95%. Compared 

with SVM, the proposed method shows better performance in 

dealing with extremity small samples with the help of weight 

transfer strategy based on unsupervised initialization. 

Fig. 10 shows the standard deviations of the classification 

accuracies for each investigation case. It can be observed that 

the standard deviation shows a steady downward trend as the 

number of labeled images increases. The proposed method 

shows excellent capability in LIG formation monitoring with 

very limited labeled information. 

 
 
Fig. 10. Standard deviations of the proposed method with different sizes of the 

labeled images. 

 

To further evaluate the robustness of the proposed method, 

the influence of noise is analyzed. The noise characteristic is 

simulated by adding Gaussian white noise with zero-mean and 

different variances (0.01I, 0.03I, 0.05I, 0.07I, and 0.09I) into 

the grayscale images. The grayscale images of the five states 

with variance 0.01I and variance 0.09I are shown in Fig. 11 and 

Fig. 12, respectively.  

 

  
 
Fig. 11. Grayscale images of five states under Gaussian white noises with 

variance 0.01I: (a-e) States 1, 2, 3, 4, 5. (I is the unit matrix) 

 

     

Fig. 12. Grayscale images of five states under Gaussian white noise with 
variance 0.09I: (a-e) States 1, 2, 3, 4, 5. (I is the unit matrix) 
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Here, for different methods, the number of the labeled 

images is set as 3, the numbers of the unlabeled images for 

training novel CDAE and the labeled images for testing 

Gaussian CDBN are always set to 100 and 30, respectively. 

For the proposed method and Method 3, their average testing 

accuracies of the ten runs given under Gaussian white noise 

with different variance levels are shown in Table VI. The 

detailed accuracies of the proposed method are given in Fig. 13. 

The proposed method is more effective than Method 3 in 

classifying the original grayscale images under the influence of 

noise. Besides, despite the average testing accuracies of the 

proposed method decrease when the variance levels of noise are 

larger than 0.05, basically, it still shows good anti-noise 

capability.  

TABLE VI 

AVERAGE TESTING ACCURACIES UNDER DIFFERENT WHITE NOISE LEVELS 

Different 

methods 

Different variances of Gaussian white noise 

0.01 0.03 0.05 0.07 0.09 

Method 1 94.67% 95.17% 95.40% 94.00% 92.67% 

Method 3  91.25% 92.00% 92.67% 90.92% 88.83% 

Note: Method 1 refers to the proposed method 

 

Fig. 13.  The detailed testing accuracies of the proposed method.  

VI. CONCLUSIONS 

Advanced process monitoring of laser-induced graphene 

manufacturing is of great significance to evaluate the quality of 

products, improve productivity and reduce material 

consumption. This paper developed a vision-based intelligent 

process monitoring system for LIG production. To fully utilize 

the unlabeled monitoring data and to address the challenge of 

limited labeled data, novel convolutional networks using 

unsupervised initialization and weight transfer learning were 

proposed. First, a novel CDAE was constructed with adjustable 

learning rate and weight smoothing, which was trained using 

the unlabeled images to obtain weights containing good 

knowledge for classification. Then, a GCDBN by employing 

real-valued input units and hidden units is constructed with the 

weights transferred from the trained CDAE. Finally, a very 

small number of labeled images are used to further adjust the 

weights of the GCDBN. The experimental results showed a 

superior classification performance compared with state-of-art 

deep learning methods. The robustness of the proposed 

methods was also evaluated by varying the labeled data size 

and corrupting the images with different levels of noise. A 

possible future work can be exploring multimodal sensory data 

to achieve more accurate and reliable monitoring with effective 

sensor fusion.  
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