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Abstract

In the past, Game AI has been a challenging area where humans devote much effort
to it. The game could be classified by whether players could fully observe the state
of the game into two different game types: perfect information game and imperfect
information game. While perfect information game has been studied well, like Go and
chess, the research on imperfect-information games is limited to poker and dice. The
board game King Up is a sort of imperfect information game with more complicated
rules and attributes, such as partial observation, multiple players, partly shared goals,
mixed strategy (cooperate and compete temporarily for goals), and a mixture of
dynamic game and static game (vote and move). Until now, King UP has not been
solved by existing methods.

Extended from Partially Observable Monte Carlo Planning, we propose a novel
algorithm called POMCP in a Public Game Tree to solve the problem, in which
we also combine the techniques from CFR with POMCP. The public game tree is
a data structure used to store belief over partial observable information and could
be applied in most imperfect information games with multiple players; inspired by
CFR, we propose local search and decision estimation processes to compute the value
function over correlated state and action; we also implement two decision estimation
methods, deterministic policy by Upper Confidence Bound and stochastic policy by
Regret Matching.

In the experiment, we evaluate the convergency situation of the algorithm. Also,
we evaluate the algorithm’s performance by further experiments like tournaments
between different decision estimations and verify the generalization by Rock-Paper-
Scissors.

At last, we rethink the motivation, insights, and contributions. Our algorithm
could work with less prior knowledge and perform well in complex, imperfect-
information games with multiple players like King UP and mixture game types
(dynamic and static game).
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Chapter 1

Introduction

1.1 Why game AI? Why King UP?

Since the start of human research about artificial intelligence, computer scientists in
all the world, in all history, have considered game AI as a fundamental challenge on the
route towards the romantic dream of strong AI. Building a powerful AI in the game
is the best example to show agents’ ability to learn, make decisions, and plan, which
are significant signs of intelligence. Another reason scientists are infatuated with the
game AI is that game is a virtual environment where humans can easily interfere
and gain data with only a limited economic expense. Furthermore, compared with
complicated reality, the game could provide problems defined clearly and worthy of
conquering.

Except for the perfect information game that has been solved well by Alpha Zero
[35], the progress of imperfect-information games AI is still limited. Most imperfect-
information games AI focuses on limited tasks like poker or liar’s dice to handle the
difficulty of partial observation, but partial observable game AI has other challenges
such as multiple players, teammates, and symmetric settings. These attributes could
make games more complicated.

King UP is a board game that was published in 2004, and until now, no one
has achieved any AI algorithm on it. Despite being a board game that could be
played by children older than 8, it is a very complicated imperfect-information game.
The Complicated Imperfect-Information Games (CIIG) like King Up should have
attributes such as partial observation, multiple players (more than 2), a mixture of
behaviors (cooperation and competence), and a mixture of game types (static game
and dynamic game).

These settings could not just be used in games but also in robotics or other fields.
For example, human-robot collaboration or multi-agent systems always need to solve
the same challenges. Solving complicated imperfect-information games like King UP
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Chapter 1. Introduction

could promote the development of these problems in reality.

1.2 Game AI techniques

Game AI techniques are the methods to achieve more intelligent performance,
especially about smarter decisions in the game environment. Sometimes games would
be classified by different rules in different backgrounds. Sometimes we mention games
about things that amuse others; sometimes, it refers more to a activity that players
try their best to beat each other. From different perspective, different methods are
studied. The goal of our research is to achieve better performance in AI. In the paper,
partial observation and imperfect information are equivalent.

There is a variety of techniques nowadays to achieve game AI; several main
branches about game AI techniques will be introduced here with their advantages
and disadvantages briefly.

One main branch of methods in game AI is forward statistical planning, including
Monte Carlo Tree Search and Rolling Horizon Evolutionary Algorithm. These kinds
of methods take advantage of computers’ high-speed computation power to consider
the future potential situations as much as possible to get an optimal policy; they
could get not terrible action with limited computation resources and require no pre-
training; usually, the more simulation they run, the more powerful strategies could be
approached. Partially Observable Monte Carlo Planning is a POMDP solver extended
from Monte Carlo Tree Search.

Another branch of algorithms is Counterfactual Regret Minimization, dominating
traditional imperfect-information games like poker and dice. This series of algorithms
are born from classical game theory. The game tree models all the history, including
public and private information, and needs lots of training. When playing in the game,
every time, CFR requires many resources to store and traverse the whole game tree.
According to [7], Baby Tartanian8, an MCCFR program with pruning, used about 2
million core hours and 18 TB of RAM to compute its strategy. Even though CFR
requires enormous amounts of computing resources, it could offer the most rational
strategy if conditions permit because of the most completed game model.

The last branch of game AI technique is reinforcement learning (RL). RL is a
typical learning method that requires many data to train, and the advantage of RL is
the ability to learn through online interaction even though the learning process could
be slow. On another side, the disadvantages are also apparent: RL lacks explainability,
and the learning rate is not as stable as former algorithms.
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Chapter 1. Introduction

1.3 Contributions

The state-of-the-art online planning algorithm, Partially Observable Monte Carlo
Planning, is to solve Partially Observable Markov Decision Process (POMDP) from
one single view, not for multiple players. The state-of-the-art algorithm in the
imperfect-information games Counterfactual Regret Minimization series algorithms
lose theoretical foundation beyond two persons and take a tremendous amount
of computation resources. ML methods like Reinforcement Learning lack the
transparency of decisions and require much data; therefore, existing algorithms cannot
deal with complicated imperfect-information games like King Up without enough
game data.

In our work, we extend POMCP to multiple players’ versions to deal with
complicated imperfect-information games like King Up. At last, we verify our
algorithm Partially Observable Monte Carlo Planning in Public Game Tree(POMCP-
PGT) could converge in both King Up for multiple players and Rock-Paper-Scissors;
through transferring regret matching to POMCP-PGT to replace UCB, we turn our
algorithms from the deterministic policy into stochastic policy. POMCP-PGT is also
the first extension of POMCP that synthesize multiagent with independent views in
one unified tree; it could offer a different way to solve multiagent decision problems
with partial observation.

1.4 Organization of Work

The work is organized into six chapters: introduction part, background (and related
work), methodology, result analysis, discussion, and conclusion. The Introduction
part will introduce the meaning of our work briefly.

The second chapter is about the background of the research. First, we introduce
state of the art about game AI including main methods, outstanding achievements,
and challenges. Then we introduce the rule and settings of King UP; we will also
give a brief analysis of the game. Later we would introduce several models to
understand the problem and algorithms highly related to our work, including Monte
Carlo Tree Search, Partially Observable Monte Carlo Planning, and Counterfactual
Regret Minimization.

The third part will introduce the methodology in the following sequence: Firstly,
the implementation of the game environment and required interfaces. Secondly, we
introduce a novel planning algorithm — Partially Observable Monte Carlo Planning
in public game tree, from representation to the main framework of the planning. Later
the details about challenges and solutions to action selection in a public game tree
will be mentioned. At last, we will discuss two decision estimation methods: Upper
Confidence Bound and Regret Matching.

3



Chapter 1. Introduction

The fourth chapter is about the result of our algorithms and analysis. In
the research, we implement a new statistical forward planning method POMCP-
PGT and synthesize two kinds of decision estimation algorithms into POMCP-PGT.
The algorithm’s efficiency would be checked by the convergency situation and the
performance of the specific algorithm against random choice. In addition, we do some
tournament experiments to compare different algorithms’ performance. At last, we
test our algorithm on rock-paper-scissors to show its generalization.

The fifth chapter discusses our research, and we would rethink the motivation and
value. Then we discuss its advantages and drawbacks, trying to analyze them further.
Furthermore, extended research directions about this algorithm should be pointed
out.

The last part of the research would be a conclusion. This chapter will review the
whole dissertation and discuss the next steps.
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Chapter 2

Background and Related Work

In this chapter, we offer the relevant background information necessary to comprehend
our work. It is arranged as follows: the representation of the partial observable games,
the gaming configuration of King UP, the approaches for the partial observable game
(MAB, POMCP, and CFR), and related studies.

2.1 Representation of sequential decision under

partial observations

2.1.1 Partially Observable Markov Decision Process

Markov Decision Process (MDP) is a standard sequential decision-making process
where the current state and inputted action will influence the state’s transition.
Partially Observable Markov Decision Process(POMDP) is a model originated from
Markov Decision Process. POMDP models a sequential decision process for an agent
in a situation where it cannot gain the state of the process directly and is only able to
obtain partial observation of the state. Therefore, POMDPmodels policy (or strategy)
distribution over observation instead of state in MDP. It suggests that POMDP is a
more general form of MDP. Given its generalization, it is applied to model sequential
decision problems. Formally, POMDP is defined as a tuple: {S,A, T,R, ω,O, γ} [22]:
S means a finite set of states which represents the environment S = s1, ..., sn;

A is an finite set of actions that agents could take to affect states, A = a1, ..., an;
T is the transition function defined as: T : S × A× S → {0, 1};
R is the reward value function defined as: R : S × A × S → ℜ(ℜ is the possible

reward set);
γ is the discounted parameter for reward.
ω is the finite set of possible observations, which means all the observations that

agents could perceive from the environment,ω = {o1, ..on};
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Chapter 2. Background and Related Work

O is the observation, in POMDP is a distribution over Ω,O : S × A× ω → [0, 1].
At a specific point in POMDP, the environment is in state s ∈ S, and the agent

is performing action a ∈ A; based on the transition function T , the environment
transitions to state s′ ∈ S. In the interim, the agent receives both an observation o
and an instant reward r; o is derived from ω and O, while r equals R(s, a).

The objective of the agent is to maximise the expected long-term reward:
E [

∑∞
t=0 γ

t ∗ rt], where rt equals to the reward the agent receives at some specific
moment. It is easy to find that discounted parameter γ decides the degree that the
agent care about the future. The smaller it is, the greater the importance an agent
places on current reward. A policy or strategy is a probability distribution over
observation and action Pr(a|O).

2.1.2 Imperfect Information Extensive-form Game

Imperfect-information extensive-form game is another form to represent partially
observable games. Imperfect-information extensive-form game is a model that
illustrates the policy interaction in games involving numerous rounds and multiple
players with private observation. This model derives from game theory; in this
area, the common objective is to approximate a Nash-equilibrium where every
player’s strategy has been optimal. Apart from some definitions staying the same
with POMDP, mentioned above, there are some novel notations as complementary.
Imperfect information extensive-form game is portrayed using the following notions:
{P,A, Z,R,H, I}:

P means the set of players;
A means the action sets like in POMDP;
Z is all the terminal nodes of the game where nobody could make any moves, and

z ∈ Z is one terminal state;
R is the reward function like in POMDP;
H is a set of sequential history of actions taken by players, h ∈ H denotes a certain

history; in Imperfect-information games, h could also be viewed as the state of the
game; in addition, we use h ⇀ h′ to represent a situation where h could leads to h′

with a series of action;
I is the information set (also called observation in other models). In particular,

for a certian player i get infoset Ii ∈ I, there could be several different h ∈ H in the
tree offering the same observation (infoset) owing to the partial observation; h ∈ I
means that a history h could offer the player a certain infoset I.

Except above notions, there are also some relative terms which are widely used
in this area. Perfect Recall is an assumption that all the players are assumed to
remmember all the information that they have access to since the beginning. The
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Chapter 2. Background and Related Work

problem that one single observation (infoset) I could not identify h is called Non-
Locality problem because of private observation.A policy π(I) is a probability vector
over actions for player i with infoset I(player i is decided by I).

2.1.3 Multi-Armed Bandit

Multi-armed bandit (MAB) is the last type of model to describe decision problems
with uncertainty and partial observation. The setting is straightforward: there are
always n options with an unknown reward distribution, and the objective is to optimise
the policy while simultaneously deducing the payoff of exploitation and exploration
after rounds. This model is consistently applied to online learning problems and
focuses primarily on the payoff. As a result of its simple setting, MAB is surrounded
by a large number of solid theoretical works. However, the simplicity of the setting
makes it difficult to generalise and apply to complex real-world problems.
Even though MAB is not an ideal model for sequential decision-making problems,
its performance with theoretical assurance makes it a fundamental component of
sequential decision-making algorithms.
Upper Confidence Bound (UCB) is one of the most well-known algorithms for choosing
action under uncertainty in MAB settings. It is invented to deal with the explore-
exploit tradeoff in uncertain decision-making. UCB provides a way to balance the
explore-exploit tradeoff. The idea of UCB is based on probability: Consider a given
evaluation over one choice for a decision-maker and how much confidence we could
trust in the evaluation. The UCB equation is divided into two parts: average reward
and optimal bias. One of the most famous versions of UCB is Upper Confidence
Bound 1 [3]:

UCB(t) =

{
∞, visit=0

UCB(t− 1) +
√

2∗logN
visit

, else

2.1.4 Comparison of the representations

Compared with POMDP, imperfect-information extensive-form games concentrate
more on using a game tree to depict the game state precisely and considers more
from the set of problems in game theory. Therefore, it ignores some problems that
are accounted for in POMDP. Firstly, POMDP uses the transition function to describe
that the transition of states is influenced by the environment, action, and state, but
imperfect information game considers action and state; secondly, POMDP considers
immediate reward after single action, and imperfect information game just computes
payoff at the end of one game.
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Chapter 2. Background and Related Work

2.2 King Up

King UP is a complicated imperfect information game with attributes like multiple
players, partial observation, and a mixture of game types. In the game King UP as
shown in Figure2.1: There are several distinguished pieces and a board with several
levels; each player is given a private target card with chosen targets of pieces and
limited vote cards. The game would pass through 3 stages: 1. players, in turn, set
a piece on some level of the board until the end of this stage; 2. recursively, players
promote the piece to a higher level until someone reaches the top; 3. players vote to
decide whether to calculate the results when all choose yes, or go back to stage 2.
Players’ target is to earn as many as points according to their target card.

Figure 2.1: King UP

Parameters in the King UP environment to represent the real-time state are defined
as below:
TargetCard A array of players’ private target;
< target1, target2..targetn > where any targeti denotes a set of several independent
pieces for player i;
V oteCard A array of players’ cards for rejection because each player only has limited
chances to refuse;

8
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PieceLocation Piece location function to record every piece’s location in the board;
PieceLocation(piece) denotes the location for certain piece;
Parameters to initialize a game are listed as follows: RejectionLimit Rejection cards
amount for a player at the beginning;
BoardHeight The highest level of the board;
BoardWidth The limited number of pieces could share the same level;
PlayerNum Players involved in the game, ranging from 3 to 6;
PiecesNum is the sum of individual pieces;
SetRound Before playing, each player has SetRound chances to set a piece on the
board;
Bonus The bonus is awarded to a player who gets 0 credits as an additional bonus;
TopScore The score is awarded to those whose pieces are on the top level.
In later sections, we will use these notations to define the experiment environment.
After introducing the game, we discuss the playing rules (Figure 2.2 shows the game

Figure 2.2: King UP-Game Process

process): 1. At the beginning of the game, each player has randomly received a card
TargetCard that contains the names of several pieces; 2. Players, in turn, choose
one piece from the pieces stack to put in a level on the board, noticing that players
could only put it in a level no higher than BoardHeight− 2 and, except for the 0th
level, each level could contain limited pieces BoardWidth; After rounds, there would
be pieces left out of the board. 3. Players recursively move one piece up from floor
i to floor i + 1. Continue this stage till one piece is on the top floor; 4. Players
independently choose ’yes’ or ’no’ (’no’ would consume V oteCard) to decide whether
to end the game. Actions would be public observable after the vote. If at least one

9
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’no’ is played, the piece at the top would be discarded, then go back to stage 3; 5.
If all approved the top piece or there is no other action to take, we calculate each
player’s credit. The player’s credit sum is related to pieces in their card, and each
piece staying on the board would add credit according to its position. There is a
supplement rule: if some players get no piece on the board, a considerable amount of
bonus points Bonus would be given (Special Rule). Three rounds of games would be
played, and each round begins with the lost player in the last round.

2.3 Partially Observable Monte Carlo Planning

Partially Observable Monte Carlo Planning (POMCP) is the most important
extension of Monte Carlo Tree Search for imperfect information game. Joel Veness and
David Silver[26] put forward this algorithm to solve to solve large Partially Observable
Markov Decision Processes; in POMCP, they put forward Partial Observable Upper
Confidence Tree with Monte Carlo Planning which is extended from Monte Carlo Tree
Search in Markov Decision Process; they also proved the convergence of POMCP in
POMDP based on the theoretical work by Szepesvári [21] that UCT could converge
in MDP.

In the POMCP, the tree is described by two sorts of nodes: observation node
and action node. In the POMCP tree (shown in Figure 2.3.1), every node holds
a set of belief particles to simulate the state distribution for certain observations
represented by the node and also stores related value functions. At each observation
node, the agent chooses the appropriate action, but the same action could lead to
different observations representing the transition function in POMDP. To deal with
the uncertainty about unobservable information, POMCP uses the belief sampling
technique to choose the right belief state at the tree’s root to simulate and help
compute the payoff. By using Monte Carlo Simulation to repeat the process of belief
sampling and game simulation from the root, the algorithm could master the game
approximately and converge to a quite optimal policy for the root node. As an online
planning method, the algorithm could start a search from any new observation node
every time.

2.4 Counterfactual Regret Minimizatoin

Counterfactual Regret Minimization (CFR) was invented by Zinkevich[32]. Since
its invention, CFR has played a significant role in imperfect information game like
poker and dice. It has played a fundamental role in the state of the art of poker
AI Libratus[[8]] and DeepStack [[25]], both widely believed to be milestones in AI
history. Regret Matching, one of the essential element algorithms in CFR, and some

10
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Algorithm 1 Partially Observable Monte Carlo Planning

procedure SEARCH(h, World Model)
repeat

if h=empty then
s ∼ h

else
s ∼ B(h)

SIMULATE(s,h,0)
until time use up return argmax

b
Q(hb)

procedure Rollout(h,s,depth)
if γdepth < ϵ then return 0

a ∼ πrollout(h, •)
(s′, o, r) ∼ G(s, a) return r + γ · rollout(s′, hao, depth+ 1)

procedure SIMULATE(state, h, WorldModel)
if γdepth < ϵ then return 0

if h /∈ T then
for each a ∈ A do

T (h, a)← (Ninit(ha), Qinit(ha), ∅
return Rollout(S,h,depth)

a← argmax
b

Q(hb) + c
√

logN(h)
N(hb)

(s′, o, r) ∼ G(s, a)
R← r + γ · rollout(s′, hao, depth+ 1)
B(h)← B(h) ∪ s
N(h)← N(h) + 1
N(ha)← N(ha) + 1

Q(ha)← Q(ha) + R−Q(ha)
N(ha)

return R
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ideas to deal with Non-Locality problems (introduced in 2.1.2) in CFR are applied in
our work; so in this part, we will introduce CFR’s implementation.

The algorithm of Counterfactual Regret Minimization is based on the imperfect
information extensive-form game that we mentioned in the previous section, not
POMDP. All the notions from above are applied here, and the algorithms are
implemented on a game tree according to the setting.

Figure 2.3: CFR

In CFR’s game tree (shown in Figure2.3), the chance node means the action taken
by the environment, like rolling the dice or shuffling the cards, and the player’s node
means that the player takes action at this node; a certain game state is a node in the
tree, and its information is made up of the history of the action from the root node;
of course, for a certain player in some node, some edges to the root could be invisible
for it (partial observation).

Here are some notions about CFR, most of them are extending from imperfect-
information extensive-form games: 1. History node h represents a action sequence
that denotes all the information that a certain player knows or does not know; 2.
Information set Ii denotes all the information player i could observe, including both
public and private information for player i; 3. Policy set σ ← I is a set of strategy
distribution over every single action for independent decision-makers; 4. Q is also
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the expected value;in addition, Q(I) means the expectation at infoset I also called
the average expectation;Q(I, a) means the expected value when you choose a at I. 5.
Regret τ is regret defined as the difference between average expected value Q(I) and
Q(I, a).

No regret learning originates from game theory and plays an important role in
CFR. The core idea behind no regret learning is that through the learning process, the
action election always approximates the regret decline direction. No regret learning
method is a series of algorithms that choose the policy to minimize the regret; in
other words, you always tend to choose the policy with lower regret; this process
could be stochastic (by choosing according to regret distribution after normalization)
or deterministic (by choosing the one with min regret). It can also be understood
in a way that uses average utility Qi(I) as a baseline, immediate regret is defined as
τi(I, a) = Qi(I, a)−Qi(I), and the player tends to choose action with less regret. The
policy σi(s, a) in training is updated by the following equation:

σi(s, a) =
τi(s, a)∑n

j=1 τi(s, aj)

(If τi(s, a) < 0 then τi(s, a) = 0, sometimes a slight possibility is given)
This equation is called Regret Matching, a very useful no-regret learning algorithm.

CFR uses no regret learning like Regret Matching in each training iteration to update
policy.

The key to computing policy as no regret learning is to get right Q(I). Non-
Locality is a problem in CFR that there are possibly several nodes h that share the
same I leading to a result that a player cannot localize itself in the tree precisely. To
deal with the problem, CFR takes the following method to compute the right utility
Q: once the player faces a particular situation I, traverse the whole game tree to
identify all the nodes where h ∈ I , then it could get the correct utility over action
a ∈ A by the formula:

Q(a|I) =
∑

h∈I Pr(h|I) ∗Q(a|h)
Pr(I) ∗Q(I)

According to [32], if CFR takes no regret learning to choose action in each round of
training, the average policy of all the rounds could converge to a Nash equilibrium
in a 2-person’s imperfect information game. Therefore, the last step of CFR is to
compute the average strategy σ̄(I) distribution after training as the final result to
play:

σ̄T
i (I) =

∑T
t=1 (Prti(I)σ

t
i)∑T

t=1 Prti(I)
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2.5 Related Works

Game AI has always been an active area where lots of groundbreaking development
for AI happens regularly. As DeepMind significant works [27, 28, 29] outperforming
humans in Go and several related perfect information games by MCTS with
Reinforcement Learning, the conclusion that given enough resources, RL with search
could handle all the perfect information games is accepted by the community; the
interests about perfect information game is moving to other problems. For partial
observable games, there are several limited subjects attracting attention. There is
a branch of traditional imperfect information games, which usually are represented
in the model from game theory; these games include poker [6, 7, 8, 19, 20], dice
[14, 15, 16], etc. have been researched on for as much time as Go, and AI for those
imperfect information game with strict setting and comparatively simple rules has also
outperformed human being by algorithms based on game theory. Following limitations
of these algorithms based on game theory like Counterfactual Regret Minimization
[8, 22, 23, 25, 32] and Fictitious Self Play [18, 19, 20, 29, 31] are obvious: 1. Their
theoretical foundation is only applied to 2 players; 2. They are designed to compute
Nash Equilibrium which could be useless when more than two irrational players are
involved. Only a limited number of imperfect information games with complex rules
are researched, like Hanabi [4, 13] and Settlers of Catan [12].

Because of the complexity of partial observable games, there is no general but
powerful algorithm now. King Up has very challenging settings, including complicated
behaviors, multiple players, and confidential information; this kind of game has never
been solved before. Existing techniques, including RL, CFR, and MCTS, are not
applicable in King Up. Therefore, we combine POMCP with CFR developing a more
powerful algorithm to handle the problem.

Since POMCP was invented in 2010, it has become the state-of-the-art planning
method for POMDP problems in different environments. [5] introduces parallelizing
POMCP to speed up in larger and more complicated scenarios.[17] extend POMCP
to a continuous real-time environment to realize robots’ find-and-follow tasks. [2]
introduce POMCP into multiagent settings where all the agents share the unified
partial observation; following works about POMCP in a multiagent setting, they all
follow the same settings like [11, 30] where they might share the joint history, joint
observation, and joint action.

Most of the extensions from POMCP focus on the application area and do not
violate the strict setting of POMDP for one single decision-maker. For two players
game, POMCP could be changed in a way like a minimax tree does. Nevertheless, for
the situation with more than two players, the solutions are rare. The only extension
for more than two players imperfect information game is that [12] apply POMCP
with human preference in Settler of Catan; in this work, they use a feature function

14



Chapter 2. Background and Related Work

ω(B, S) to represent the feature from belief B and state S in substitution of observation
node and use human preferences to generate behaviors from other agents; despite
Settler of Catan is multiagent setting, POMCP in Settlers of Catan[12] admits their
algorithm is designed for one single observer.[1] introduce another POMCP based on
the theory of mind. In their method, POMCP for different players communicates and
interacts during the playing time. The algorithm is very complicated, provides limited
assurance about performance (the analysis of how the planning process is influenced
by distributed setting is lacking), and leads to difficulty in giving feedback from a
unifying view. Nowadays, even though POMCP is proved a powerful POMDP solver,
no one has really extended it to multiple players’ views.

The research about CFR is very active. Here are some key developments in the
history of CFR: [24] introduces Monte Carlo CFR, where Monte Carlo Sampling is
used to do pruning in the tree; [9] introduces deep CFR, which uses deep learning
to symbolize the behavior tabularly and proved it outperform Neural Fictitious
self-play[20] in two-person imperfect information game; [10] introduced the ReBeL
algorithm in which deep reinforcement learning is combined with CFR search. The
CFR has the theoretical assurance to approach Nash Equilibrium in 2 players’ game,
and, compared with all other algorithms in partial observation, it has the most detailed
opponent model leading to a strong performance. However, the CFR model leads to
unacceptable resource assuming when traversing the tree, even for small tasks in life.
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Chapter 3

Methodology

3.1 Partially Observable Monte Carlo Planning in

Public Game Tree

As introduced in former chapters, decision-making problems in partial observation
are usually modeled according to POMDP. When planning method in POMDP like
Partially Observable Monte Carlo Planning deal with multiple players’ situation,
independent agents will play at the same time with a different process which
could make the analysis of strength difficult; methods like counterfactual regret
minimization takes a lot of time when traversing all the game tree and could only
deal with either dynamic or static extensive game.

In this part, we introduce a novel algorithm, Partially Observable Monte Carlo
Planning in Public Game Tree (POMCP-PGT), which is an extension of Partially
Observable Monte Carlo Planning (POMCP). Vanilla POMCP, proposed by D. Silver
and J.Veness[26] executes planning on a tree consisting of action nodes and observation
nodes so that it could represent a strict Partially Observable Markov Decision Process
(POMDP) for a single player’s view. For a game with multiple players, the other
player’s action could only be part of the observation and could lead to difficulties
when sampling without knowing others’ strategies.

POMCP-PGT is an extension of POMCP to do planning on a type of game tree
that we call Public Game Tree. POMCP-PGT is one novel forward planning method
for multiple players in one unified game tree and could perform well on extensive
imperfect information game with dynamic parts and static parts simultaneously.

3.1.1 Representation of POMCP-PGT

POMCP-PGT inheritances notations from both POMDP and extensive imperfect
information game to introduce the algorithm itself. While the notations were
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mentioned in the former chapter 2, the related notations in our algorithm will be
introduced in detail as follow:

H: Like in POMDP, H is also a series of action and observation,h =<
o0, a1, o1. . . , an, on >. Specifically, in our Public Game Tree, all the h could only
contain history which is observed to the public; therefore,h could get a abbreviated
form, h =< a1, .., an >.

S: As defined in POMDP, S is the set of state. In original defination, s ∈ S
contains all the information to identify a specific state.

I : Information set is the information that players could observe; Ii(s) is what a
certain player i could observe at a particular state s;

obs private observation function. obsi(s) denotes what player i observes privately
at state s;

B : What we call belief B here is a probability distribution over state s given
public information history h : B(s, h) = Pr(s|h)

P : Players set
σ: Strategy is a distribution over actions from some certain Ii which denotes as

σi(a, Ii)
Q : Same expected value function in POMDP. It is a function related to Infoset

Ii. Our planning goal is to optimize the expected value given observation Exp(Qi(Ii))
for the decision maker i

Z : terminal state set, where no move could be taken.
To help understanding, several important notions would be explained with

King UP setting: infoset Ii could contain TargetCard,V oteCard,PieceLocation
and public action history h ∈ H; state s should be the union of all players’
TargetCard,V oteCard,PieceLocation and public action history h ∈ H; obsi(s) would
be TargetCard for player i.

Public Game Tree we use for planning is namely a game tree, but the tree node
is only identified by the public information node h ∈ H, which is different from the
game tree identified by Hg in CFR(it contains chance nodes). As we set, node h
could contain a series of information, including belief distribution over state B(s, h),
value function Q(s, h) and node type c. B(s, h) is the possibility of the state s given
particular h; Qi(s, h) denotes the expected value for player i given state s and history
h; node type c would be either static(vote stage in King UP), dynamic(make a move
or set piece in King UP) or terminal(the end of the game).

The mixture of static and dynamic game makes POMCP-PGT different from other
game trees. In an extensive form game mixed with both dynamic and static game,
the subtree in a PGT made up of consecutive static nodes could create a temporarily
invisible subtree. In this case, players could only decide according to the view of the
last visible ancestor node. After this stage of the static game finishes, the subtree
becomes publicly observable to all.
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Figure 3.1: Public Game Tree

Figure3.1 is an example of PGT. As shown in it, only three types of nodes are
represented by a circle in the image: dynamic node, static node, and terminal node;
terminal nodes provide the payoff of one game; we always execute planning from one
dynamic node or static node; the root node could be either of nodes which containing
history information; every edge in the tree contains the taken action information; each
node also contains the belief over state s ∈ S as well as the related value function
Qi(s) for all players; players take action along the tree.

The representation difference between my work and POMCP is that they modeled
game tree in a POMDP from one single player’s, others’ action is contained in
observation node; therefore, in POMCP for simulation part, you could only use Monte
Carlo Simulation or run the algorithm again; but in our algorithm, each node at the
same time offers positions for right players, the simulation also takes advantage of
belief from before rounds. In the program, to save memory, only store Qi(h, s) and
belief distribution Belief in each node is recorded. It could not be hard to deduct
other information like Qi(s) and Qi(s, a) from existing information.

18



Chapter 3. Methodology

3.1.2 POMCP in Public Game Tree

In this part, the main procedure of POMCP-PGT will be introduced, especially the
framework, and several component algorithms will be introduced in the latter part.

Similar to POMCP, the POMCP-PGT comprises three main essential procedures:
Search, Simulate, and Rollout. Algorithm2 shows the specific pseudo code of POMDP-
PGT.

The algorithm starts with the procedure Search. Public information history h is
given and begins its search from the root node identified by h. The algorithm requires
an independent virtual game to play the role of a world model so that we could know
the control information (who should be following and available action list) and the
final payoff situation at the terminal node; a little bit different here from POMCP
is that our world model does not contain others’ strategy. In King UP, the action
list would be decided by inner parameters TargetCard,V oteCard and PieceLocation
according to the rules in Chapter 2.2.

In the main Search procedure: before planning time use up, the agent sample
state s(involving its private information and others’) from both world model and past
belief in root node h; the sampled hidden state would be the only actual state until the
calculation of payoff and be kept in world model sandbox; in each node, corresponding
decision-maker could only observe part of it; then it could come into Simulate decision
process from the node; update belief and value function at h( Qi(h, s) = Qi(h, s) +
rewardi
visit(s|h) , i ∈ 1..n); recursively execute the procedure until the time use up; at last,
return chosen optimal action.

In simulate part: the agent makes decisions at points on behalf of corresponding
players with limited observation until a leaf node of the tree; if the node has never
been explored, then we should expand child nodes linked with independent actions
and use the rollout procedure to get a coarse evaluation over this node( it could give
us an initial value expectation to optimize); if not leaf node or terminal node, we
should use ChoosePolicy procedure( choosing optimal action would be discussed later
and it is the core technique of our algorithm ) to generate action a and instant reward
r; then take action of a in world model to get new node h′ simulate from h′ and get
reward; update belief and Q and return reward.

In the rollout part: Doing Monte Carlo Simulation from given h, count the average
payoff as the primary evaluation Q(h). Here could play rollout simulation more times
to get a more precise evaluation at the very beginning.

Figure3.2 contains one complete round of POMCP-PGT, the pink nodes show
the h where decisions are made, and the red edges show the action is executed. It
shows a process consisting of simulation from node h to h′: h, (a2,p1), (a5,p2),
expansion(h′) and rollout(h′).
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Algorithm 2 POMCP-PGT

procedure SEARCH(h,Ii, World Model)
repeat

s← Sample(World Model, Ii) or Beliefs(h)
reward← SIMULATE(s, h,WorldModel)
update(h,s,reward)

until time use up
return ChoosePolicy(h, exp=false)

procedure SIMULATE(s, h, WorldModel)
if node h is leaf then

visit(s,h)+=1

Q(s, h) = Q(s, h) + payoff(s,h)
visit(s,h)

return payoff(s,h)

if node h is new node then
Expansion from h
return ROLLOUT(h,s)

a ← ChoosePolicy(h , obsi(s), player))
s′, h′, r ← WorldModel(player, a, s)
B(h) = B(h) ∪ s
reward = r + discount ∗ Simulate(s′, h′,WorldModel)
visit(s, h)+ = 1
Q(s, h) = Q(s, h) + reward

visit(s,h)

return reward
procedure Rollout(h,s)

random choose action until payoff
return payoff

procedure ChoosePolicy(h,obsi(s),exp=False)
Q(I), I ← LocalSearch(h, obsi(s))
a← DecisionEstimation(Q, h, obsi(s), I, exp)
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Figure 3.2: POCMP-PGT process

3.2 Choose Policy

The Choose Policy is a core part of algorithm2 POMCP-PGT; as described in the
former part, the procedure’s input would be node h and personal observation obsi(s)
which denotes private observation that player i could obverve from the certain state
s ∈ S. Our algorithm is value-based, so our design goal would be to get the value
function Q(a| I(h, obsi(s)) for all possible a is available at obsi(s).
As shown in algorithm POMCP-PGT, the procedure of Choose Policy comprises
two parts: Local Search and Decision Estimation.

3.3 Local Search–Decision in Dynamic Subgames

and Static Subgames

Expanding POMCP to multiple players’ versions in a PGT will lead to a problem
called Non-Locality. Non-Locality is a notion from Counterfactual Regret Minimiza-
tion in section 2.4 which appears again in our algorithm POMCP-PGT. Non-Locality
describes the situation that at one node in the game tree with a particular history
h for player i, if there exists any hidden information in the history h, the player i
should not decide according to Q(h) but according to personal knowledge Q(Ii). In
the CFR’s game tree, whether public and private information is depicted; therefore,
CFR traverses all the tree to find all possible node h′ with the same infoset Ii.
Our algorithm POMCP-PGT depresses hidden information in one node to reduce the
size of the tree. However, each node h contains public information; the problem, like
the King UP, synthesized both dynamic games and static games in one game tree;

21



Chapter 3. Methodology

in the static games part, players’ actions should be temporarily invisible, which also
leads to a non-Locality problem in POMCP-PGT.
Figure3.3 helps understand this non-Locality problem: in the right tree, when the

Figure 3.3: Non-Locality Problem

player makes decisions as p2, it gets only two potential options: ’yes’ or ’no’ ; because
the static sub-game stage is not over; so you should not observe others’ actions.
If you only compute the belief and expectation value at your node, you could not
compute the correct expectation value Q(h yes(p2)) instead of Q(h yes(p1) yes(p2))
or Q(h no(p1) yes(p2)). The image also shows two trees with different root node
types, and the Local Search method works for both.
Our algorithm uses a similar trick, LocalSearch, to fix this problem in POMCP-
PGT (shown in Algorithm LocalSearch). According to the description of the tree
representation in the previous chapter, each node contains the belief distribution and
corresponding Q value. Intuitively, we understand that for a static decision node, we
need to observe from the nearest node with public information, which could contain
all the infoset I needed for a decision. In Algorithm LocalSearch, we use the function

Algorithm 3 LocalSearch

procedure LocalSearch(h,obsi(s),player i)
h′ SearhAncestor(h)
I = h+ obsi(s)
for h′′ ∈ subtree(h′) do

if I(h′) == I(h′′) then

Qi(I, a) = Qi(I, a) +Q(obsi(s), h
′′, a) ∗ Pr(visit(h

′′)
visit(h′)

)

SearchAncestor to get the nearest ancestor node h′ from current node h; In this
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function, the program checks the parent node recursively from the current node until
the root node or first dynamic node. Getting the nearest ancestor node h′ (we could
consider the set of all the child nodes linked to h′ only through static node as a sub-
game tree, and it could be this sub-game tree’s root) is not efficient, and it could only
offer you the infoset I consisting of public observation h′ and private observation obs
that player i should observe at node h; according to our design, this subtree would
share the same public information h′; owing to the action information is defined in
the edge, and the player at h′ may not be player i, so for Qi(I, a) ̸= Qi(h

′, a). Our
target is to calculate Qi (I, a) ; it is easy to come to the equation to calculate Q value:

Qi (I, a) =
∑

h′′∈h′, I(h′)==I

Q (si, h
′′, a) ∗ Pr(

visit(h′′)

visit(h′)
)

Define node h′ as a new root and traverse nodes in its subtree where its route to the
root are all static nodes, then get all the h′′ that share the same information I.

3.4 Decision Estimation

The motivation of this part is to deal with the explore-exploit dilemma in decision
making. This part will introduce two decision estimation methods I implement inside
our algorithms: Upper Confidence Bound and Regret matching.

3.4.1 Upper Confidence Bound

In our algorithm, we implement UCB1[3], which is a widely used version of UCB. In
our case, we calculate the UCB value of Q(a| I) and choose the action a with the
biggest UCB value; N is the visiting times of infoset I and visit counts how many
time a is taken from I; after UCB estimation, we would choose the action a with
biggiest UCB value.

UCBQ(I, a) =

{
∞, visit = 0

Q(I, a) +
√

2∗log visit(I)
visit(I,a)

, else

3.4.2 Regret Matching

Another algorithm implemented in this work as a substitution of UCB to select
action is Regret Matching (RM and the detailed definition are in Section 2.4).
Regret Matching is also known as no-regret learning, a powerful algorithm in an
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imperfect information game. The motivation I apply this algorithm to replace UCB
is that while the forward planning method usually uses Monte Carlo simulation to
sample randomly, they always choose action with the max reward by algorithms
like UCB. Policy generated by this would lead to a problem that if the opponent
could approximate the game tree, the decisions given by the algorithm would be
deterministic and transparent to the opponent. Stochastic algorithms like RM could
make the policy more elusive.
In our case, King Up is played among multiple players. So, we just use vanilla regret
matching as a decision estimation method. In our algorithm’s description, the regret
τ is defined as:

τi(a, I) = Qi(a, I)−Qi(I)

The policy σi(I, a) is updated by the following equation:

σi(I, a) =
τi(I, a)∑

a′∈Action(I) τi(I, a
′)

(If τi (I, a) < 0 then Ri(I, a) = 0.01, a small number is given)
In addition, if all the action at the beginning is lower than baseline Q(I), our algorithm
would give all the action with negative regret a very slight possibility to be chosen
(0.01 we give in the experiments). In later experiments, it seems to influence the
performance, so it is not as good as UCB. This detail will be researched further in
later work.
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Result Analysis

4.1 Simulation Environment of King UP

In our simulation, we set the game size smaller than the real game to compress the
searching space so that we could have fewer data to check if this algorithm could
evaluate the expectation thoroughly after enough training.

The environmental parameters we choose in the simulating experiments are shown
in Table 4.1. In King UP, a player could get max scores in a situation where except
for one target piece on the top, all other target pieces stay in the BoardHeight − 1
level. Therefore the best situation could be calculated as below:

(BoardHeight− 1) ∗ (TargetNum− 1) + TopScore

In our game setting shown in Table4.1, the best score could be 22. But in the real game
setting, the parameters would be a little bit different: BoardHeight and TargetNum
would be 7 and 6; in some versions of the game, TopScore could be 15 or 20. Therefore,
in real game rules, the max score could be 50((7− 1) ∗ (6− 1) + 20).

In order to normalize the value, all the reward is always divided by 50; even
though in our simulation, the max score is not that bigger, to stay consistent with
the future expansion of the actual game setting, we still choose 50, not 22 as the
hyperparameter to normalize the reward. Therefore all the Q value and reward in
the simulation would be between [0, 0.44].

Details about notions and rules in King UP are introduced in section 2.3. The link
between POMCP-PGT and King UP’s parameters has been illustrated in Chapter 3.
The game state of King UP would involve these parameters: TargetCard,V oteCard
and PieceLocation. Once these three parameters are decided, the state of the game
will be determined.
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PlayerNum 3
TargetNum 4
PiecesNum 7

Bonus 15
TopScore 10
SetRound 2

BoardHeight 5
Boardwidth 3

RejectionLimit 1

Table 4.1: Parameters Table of King UP environment

4.2 Convergence Analysis

The key foundation of our POMCP-PGT is based on Monte Carlo simulation. The
core philosophy of it is that if the agent could play as many rounds as possible, the
agent could master the game very well. We suppose that if the agent could master the
game, they could evaluate their expectation of reward more precisely after simulation.
To check the efficiency of our algorithm, we verify the convergence situation under
different conditions. The results show no matter whether POMCP-PGT with UCB
or POMCP-PGT with RM converges quickly.

4.2.1 Performance of POMCP with UCB

To demonstrate the convergence of POMCP-PGT with UCB, we randomly generate
1000 game state by generating TargetCard,V oteCard and PieceLocation. Then we
could run the algorithm since these game state, and they all converge quickily.

Figure4.1 4.2 4.3 4.4 are selected from 1000 games to show the results. Despite
results among 1000 experiments demonstrating more obvious convergence, we ran-
domly choose these four figures to show a more general situation. We verify that our
algorithm could converge successfully no matter what node to start. In each images,
there are 3 lines for 3 players showing how value function Qi(s, h) varies through
iterations; nodes in POMCP-PGT restore other players’ Q value as well except the
current decision maker, so we could see the other two players’ expected value in the
image as well. The generative parameters of the environment are listed in appendixA.

Unlike Figure4.1 4.2 4.3 4.4 show the situation where simulation start from four
mutually independent and randomly generated game states including not specified
player to start, Figure4.5 4.6 4.7 4.8 illustrate four sequential results that in one
single game, player 2 takes continuing four actions according to game states (the other
two players make move in turn with player 2); the other two lines show the reward
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Figure 4.1: POMCP-PGT with UCB(a) Figure 4.2: POMCP-PGT with UCB(b)

Figure 4.3: POMCP-PGT with UCB(c) Figure 4.4: POMCP-PGT with UCB(d)
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Figure 4.5: step 1(a) Figure 4.6: step 2(b)

Figure 4.7: step 3(c) Figure 4.8: step 4(d)
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expectation of player 1 and player 3 when player 2 make a move first in corresponding
states; it is easier to find that the closer to the end, the player2’s evaluation is more
precise. There is a special case; the last picture shows that player 2 gets a very smooth
curve, and it converges to 0.3 which exactly denotes a bonus situation that player 2
get bonus because of 0 credits. The parameters are listed in the AppendixA.

29



Chapter 4. Result Analysis

4.2.2 Performance of POMCP with RM

In our work, we implement Regret Matching as a replacement for UCB to compute
action according to the action probability distribution. I use a random choice strategy
to generate a game state and apply POMCP with Regret Matching; it turns out
that they all convergence after a while; because each planning could generate images
leading to a huge amount of them, there are selected convergence situations shown in
Figure4.9 4.10 4.11 4.12; the results show the convergence again.

Figure 4.9: POMCP-PGT with RM(a) Figure 4.10: POMCP-PGT with RM(b)

Figure 4.11: POMCP-PGT with RM(c) Figure 4.12: POMCP-PGT with RM(d)
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4.3 Tournament Performance

We set a tournament by chosen algorithms to evaluate the performance of each
algorithm by comparing them. In the following part, we use ’UCB’ referring to
vanilla POMCP-PGT with UCB and ’RM’ referring to POMCP-PGT with regret
matching. We set the environment as mentioned in section 4.1. After 1000 games,
we use a binomial confidence interval to compute the winning rate(z=1.96, confidence
level=95%).

2* Winning rate(95%confidenceinterval) Average score 2*Rounds
P1 P2 P3 P1 P2 P3

(UCB, UCB, UCB) 0.366± 0.029 0.334± 0.029 0.3± 0.028 13.29 12.412 12.026 1000
(RM, RM, RM) 0.412± 0.03 0.304± 0.028 0.284± 0.028 11.8 11.7 11.6 1000
(UCB, RM, RM) 0.602± 0.030 0.204± 0.024 0.194± 0.024 13.05 11.14 10.83 1000
(RM, UCB, RM) 0.334± 0.029 0.465± 0.031 0.201± 0.025 11.994 13.778 11.228 1000
(RM, RM, UCB) 0.317± 0.029 0.26± 0.027 0.423± 0.031 11.996 11.152 12.852 1000
(UCB, UCB, RM) 0.457± 0.031 0.363± 0.030 0.18± 0.024 13.133 12.932 11.335 1000
(RM, UCB, UCB) 0.239± 0.026 0.415± 0.031 0.346± 0.029 11.13 12.888 12.082 1000
(UCB, RM, UCB) 0.495± 0.031 0.189± 0.024 0.316± 0.029 13.648 11.299 12.053 1000

Table 4.2: Tournament of POMCP-PGT with UCB and POMCP-PGT with RM

As shown in Table 4.2, we could receive straightforward feedback that for all the
games that involve both POMCP-PGT with UCB and POMCP-PGT with RM, the
player who uses POMCP-PGT with UCB has a higher winning rate than those who
use POMCP-PGT with regret matching. Another finding is that POMCP-PGT with
regret matching’s performance is highly based on the position that it performs a lower
winning rate as player 3 compared with the result it achieves with the role player 1
and player 2. However, POMCP-PGT with UCB gets higher winning rates. The
average points POMCP-PGT with RM gets very closed (the difference is around 1).
It suggests that POMCP-PGT with RM shows an effective performance.

2* Winning rate(95%confidenceinterval) Average score 2*Rounds
P1 P2 P3 P1 P2 P3

(UCB, RM, random) 0.609± 0.030 0.262± 0.027 0.129± 0.020 13.727 11.597 9.051 1000
(RM, UCB, random) 0.390± 0.030 0.490± 0.031 0.12± 0.020 12.157 13.398 9.193 1000
(random, RM, UCB) 0.183± 0.024 0.348± 0.030 0.469± 0.031 9.238 12.054 13.56 1000
(RM, random, UCB) 0.350± 0.030 0.164± 0.023 0.486± 0.031 12.387 9.438 13.484 1000
(UCB, random, RM) 0.616± 0.030 0.137± 0.021 0.247± 0.027 13.79 9.27 11.736 1000
(random, UCB, RM) 0.199± 0.025 0.525± 0.031 0.276± 0.028 9.553 13.471 12.370 1000

Table 4.3: Tournament of random, POMCP-PGT with UCB and the one with RM

Another tournament among three agents is shown in Table4.3; they independently
use three different methods: POMCP-PGT with UCB, POMCP-PGT with regret
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Chapter 4. Result Analysis

matching, and the random choice method. The same parameters of the game are set
like the former one. It could be concluded that no matter where the positions they
are at, the random choice strategy shows the worst performance, and POMCP-PGT
with UCB gives the best performance.
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Chapter 4. Result Analysis

Figure 4.13: time analysis

4.4 Computational Time

Figure4.13 shows the time consumption for both POMCP-PGT with RM and
POMCP-PGT with UCB. The result suggests that when expanding the exploration
scale, both two algorithms show an increase in time consumption, while the one
with RM always consumes more time than the one with UCB. The cause of this
phenomenon should be explored in future work.
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Figure 4.14: Convergency of Rock-Paper-Scissors

4.5 Generalisation

We also verify POMCP-PGT’s generalization by applying it to rock-paper-scissors.
We do not change the code of the POMCP-PGT and just apply it in a new game
setting.
Rock-Paper-Scissor is a classical static imperfect information game where three actions
could beat each other recursively. We set the reward function as following 4.4

From Game theory, we already know that the expected value of one of the Nash
equilibriums is 0.5 for both players if they are all rational. Through the figure4.14, it is

rock paper scissor
rock 0.5,0.5 0,1 1,0
paper 1,0 0.5,0.5 0,1
scissor 0,1 1,0 0.5,0.5

Table 4.4: reward function of Rock-Paper-Scissor
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Chapter 4. Result Analysis

found that the expected value converges to 0.5 after 20000 rounds of self-play, which
conformed to the theoretical result. Therefore, it could demonstrate that without
additional feature engineering, POMCP-PGT could be applied in other imperfect
information games only if they have a public observation.
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Further Discussion

5.1 Belief Model - The core of decisions under

uncertainty

During this project, much time is spent going through all techniques as much as
possible. Too many voices and ideas look attractive in solving the game AI in partial
observation. What are the similarity and differences between CFR, MCTS, and
RL? What are the motivation behind MAB, POMDP, and extensive form imperfect
information games? Why do we deal with the same task in so many different
ways? Comparing all these methods, the fundamental idea behind all these fantastic
techniques is to get the belief over the uncertainty; in other words, how possible the
state could be according to observations. The idea conforms to intuition and decision
theory that the clearer the states are, the easier decision can be made.
Specifically, MAB considers only the most straightforward situation of decisions under
uncertain rewards but ignores the consecutive change in the environment. POMDP
is a specification of MDP that the current decisions are decided by the observation;
an extensive game tree could be considered as a particular model only to represent
POMDP in a more game theory form; similarly, could we consider RL in a way that
it depresses the model knowledge in huge table or neuron network? The common
thing in these algorithms is they all try to use belief to transfer partial observation
into certain states so that the problem could turn into a decision-making problem in
full observation. Similiarly, POMCP-PGT also models the belief over observation for
especially public information.
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5.2 Why POMCP-PGT?

As introduced before, several routes exist to solve partial observable games like King
Up. The first choice is chosen from learning and planning, two distinct and effective
technical branches to deal with such problems.

The learning method is a series of algorithms aiming at getting a model with
training data. In game AI, Reinforcement Learning (RL) is a very powerful tool to
approach rational policy by interacting with the environment. The advantage of RL
here is that they could represent tremendous value tabular through neural networks,
and RL does not necessitate a world model; on the contrary, it cannot be explainable,
and the policy is approached slowly by training(sometimes, RL is known as delayed
interactive learning ).

Planning usually requires a world model to simulate the task and the techniques
like simulation and search to explore the optimal strategy. Usually, the precise
extent of the final results by planning would depend on the extent of the exploration.
Planning methods like MCTS and CFR could also give us an understanding of the
decisions from a statistical way that approximates the possible solution in a large-scale
searching space.

Because our game has not been played by AI before (without data), we chose
the planning route with more decision transparency. Compared with CFR, POCMP
requires fewer computing resources and has been proved a powerful tool in POMDP
tasks. Therefore, we choose POMCP as the foundation of our research.

The nature of our POMCP-PGT is a multiple players’ POMCP with some skills
from CFR to deal with non-Locality problems. We can easily imagine: if there are
all dynamic nodes, the whole search would be no different with POMCP; if there are
all static nodes, the procedure will degrade to CFR; but whatever, the tree size of
POMCP-PGT would be smaller than both POMCP and CFR because we compress
many states into belief storing in fewer tree nodes. Another advantage is that the
Public Game Tree we get after planning could be viewed as a world model generated
by Monte Carlo Simulation.
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Chapter 5. Further Discussion

5.3 Contribution

Our contributions are listed below:
1. In the past, research about imperfect information games is rare. Most of the

research is concentrated on limited types of games like poker and dice. For other
games with complicated rules, there is only a limited number of games involved, like
Hanabi and Settlers of Catan. King UP is a new game that has never been solved. It
contains the property, including multiple players, partial observation, partly shared
goals, and a mixture of game types( dynamic and static game).

2. POMCP has been a very successful online planning algorithm for POMDP
problems in the past ten years. This work is designed for one single observer, and there
is no efficient solution to expand it to multiple independent observers. Multiagent
settings like Dec-POMDP would use a joint view, unlike multiple independent
observers. POMCP-PGT extends POMCP to a version where multiple observers
make a decision in one tree by designing PGT and dealing with non-locality problems
caused by multi-observers.

3. In POMCP-PGT, we evaluate that no regret learning (from CFR) could
be a replacement for UCB and shows equivalent performance. It suggests that in
MCTS-like algorithms, no regret learning like regret matching could be a substitution.
Moreover, it is a vital step to combine the advantages of CFR and POMCP.

4. We implement a version of POMCP-PGT for a general imperfect information
game. When we test it on Rock-Paper-Scissors without any change, it converges to a
50-50 winning rate; furthermore, it offers a policy reaching Nash equilibrium.
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5.4 Future Works

Because of the time limitation, several works are left to be done in the future. Frist,
POMCP-PGT should evaluate performance on more common tasks(games) like liar’s
dice or poker with state-of-the-art algorithms like ReBEL; Secondly, theoretical proof
is still needed despite its convergency in the experiments.

Another significant challenge in the imperfect information game is that all the
planning method requires a known model to simulate the process. In other words,
we need to have prior knowledge about the state behind the observation. Perhaps we
should explore a way to learn the possible world model instead of being given one.

Reinforcement learning method could compute the policy without approaching the
belief model but with less precision. However, all the reinforcement learning method
is based on value function, and few of them considers regret. There is a possibility to
transfer CFR’s idea into RL.

At last, we could generalize our POMCP-PGT to other areas like robotics,
computing system, or even art. In the human-robot interaction area, human-aware
planning also requires a belief model over humans in partial observation.
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Chapter 6

Conclusions

To review, research about complex imperfect-information games is rare in the game
AI area, and most of the research is within two persons. The board game King
Up is a complicated game with partial observation, partly shared goals, multiple
players, and a mixture of different game types (dynamic game and static game).
The current solutions for a partially observable game like Counterfactual Regret
Minimization(CFR) and Partially Observable Monte Carlo Planning (POMCP)
cannot solve this game well. Inspired by the task, we propose a new algorithm called
Partially Observable Monte Carlo Planning in Public Game Tree (POMCP-PGT),
which extends POMCP from one player’s view to multiple independent players’ views.
In POMCP-PGT, we make three parts of changes from vanilla POMCP: 1. We define
the data structure of the Public Game Tree to represent multiple players’ views in one
tree; 2. To deal with the non-Locality problem when extending to multiple players
in PGT, we adopt the ’Local Search’ procedure to deal with temporarily hidden
information; 3. Apart from Upper Confidence Bound (UCB), which is generally used,
regret matching (RM) is implemented as a replacement for UCB.

As the results shown in experiments, in a three-person setting, no matter whether
POMCP-PGT with UCB or POMCP with RM is proved to converge to approximate
value and outperform random choice strategy obviously; through the tournament
among different algorithm settings, POMCP-PGT with UCB outperform POMCP-
PGT with RM in winning rate, whereas their expected reward is approximately
equivalent. In addition, to demonstrate our algorithm’s generalization, we tested
the POMCP-PGT in rock-paper-scissors, converging to a known Nash equilibrium.

POMCP-PGT is a general algorithm for multiple player imperfect information
games, extending from POMCP; furthermore, it offers regret matching instead of
UCB to turn POMCP from deterministic to stochastic strategy. In further work,
we should compare it with more robust algorithms in King UP and try to prove the
convergence of our algorithm from a theoretical level.
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King UP setting

The game state of 4.1
TargetCard: [’D’,’E’,’F’,’G’], [’A’,’B’,’F’,’G’], [’B’,’C’,’D’,’E’]
V oteCard:1,1,0
LocationP iece:D:3,E:2,G:3
The game state of 4.2
TargetCard:[’A’,’B’,’F’,’G’],[’B’,’C’,’D’,’E’],[’A’,’B’,’C’,’G’]
V oteCard:1,0,0
LocationP ieceA:0,B:0,D:4,E:4,F:3
The game state of 4.3
TargetCard[’A’,’E’,’F’,’G’],[’B’,’C’,’D’,’E’],[’A’,’B’,’C’,’D’]
V oteCard1,0,1
LocationP ieceA:0,B:0,D:4,E:4,F:3
The game state of 4.4
TargetCard: [’D’,’E’,’F’,’G’],[’A’,’E’,’F’,’G’],[’B’,’C’,’D’,’E’]
VoteCard1,1,1
LocationPieceA:3,B:0,D:4,E:4,G:2

The game state of 4.9
TargetCard: [’A’,’B’,’F’,’G’],[’B’,’C’,’D’,’E’],[’A’,’E’,’F’,’G’]
V oteCard:0,0,0
LocationP iece:A:,B:2,C:3,D:3,E:3,G:3
The game state of 4.10
TargetCard:[’D’,’E’,’F’,’G’],[’B’,’C’,’D’,’E’],[’A’,’B’,’F’,’G’]
V oteCard:1,1,1
LocationP ieceA:4,B:4,D:3,E:4,F:2,G:2
The game state of 4.11
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Appendix A. King UP setting

TargetCard[’A’,’B’,’F’,’G’],[’A’,’B’,’C’,’D’],[’B’,’C’,’D’,’E’]
V oteCard0,0,1
LocationP ieceA:4,B:0,C:3,E:0,G:2
The game state of 4.12
TargetCard: [’A’,’B’,’C’,’D’],[’A’,’B’,’F’,’G’],[’B’,’C’,’D’,’E’]
VoteCard1,1,1
LocationPieceA:0,B:0,C:1,E:0,G:1

The game state of 4.5
TargetCard: [’A’,’B’,’C’,’G’], [’D’,’E’,’F’,’G’], [’A’,’B’,’C’,’D’]
V oteCard:1,0,1
LocationP iece:A:2,B:2,D:0,E:4,F:4
The game state of 4.6
TargetCard: [’A’,’B’,’C’,’G’], [’D’,’E’,’F’,’G’], [’A’,’B’,’C’,’D’]
V oteCard:1,0,0
LocationP iece:A:3,B:3,D:0,E:4
The game state of 4.7
TargetCard: [’A’,’B’,’C’,’G’], [’D’,’E’,’F’,’G’], [’A’,’B’,’C’,’D’]
V oteCard:0,0,0
LocationP iece:A:3,B:3,D:0
The game state of 4.8
TargetCard: [’A’,’B’,’C’,’G’], [’D’,’E’,’F’,’G’], [’A’,’B’,’C’,’D’]
V oteCard:0,0,0
LocationP iece:A:3,B:4,D:0
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