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Abstract—Matrix polynomial expansion (MPE) based detector
incurs either complicated computation of polynomial coefficients
or slow convergence in uplink large-scale MIMO (LS-MIMO)
systems. To solve these issues, an improved MPE (IMPE) detector
is proposed, which can speed up the convergence significantly
with uncomplicated polynomial coefficients. However, a chal-
lenging problem of performing IMPE is needed to compute
all the eigenvalues of channel covariance matrix in real time.
Unfortunately, directly calculating the eigenvalues of the channel
covariance matrix requires complexity, which is as costly as
the matrix inverse. To this end, an inverse-transform-sampling
based IMPE (ITS-IMPE) detector is proposed to enhance the
convergence rate and accuracy in a simple way. First, the closed-
form expression of the eigenvalue spectral cumulative distribution
function of the channel covariance matrix is deduced analytically,
which is a critical factor that influence the eigenvalues estimation.
Second, the improved polynomial coefficients of ITS-IMPE are
then introduced by a fast online ITS-based eigenvalues estimation
algorithm and a least-squares fitting procedure, which achieve a
well trade-off between precision and computation. Simulation
results exhibit that ITS-IMPE detector is able to achieve a sig-
nificant enhancement performance with much lower complexity
compared with many reported detectors under Rayleigh fading
channel and low spatial correlated channel.

Index  Terms—Large-scale = MIMO, Inverse-transform-
sampling, Matrix polynomial expansion, Fast convergence.

1. INTRODUCTION

ARGE-SCALE multiple-input multiple-output (LS-

MIMO) is regarded as a promising technology to
enhance the spectral/energy efficiency requirements for
the 5-th generation (5G) and beyond wireless systems
[1], [2]. However, enormous system dimensions impose
great challenges to signal detection in terms of practical
implementations and computational complexity [3].

A. Literature Review on LS-MIMO Detector

The nonlinear maximum-likelihood (ML) detector is con-
sidered as the optimal detector, but its complexity increases
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exponentially in LS-MIMO, or high-order modulations that
limit its applications in LTE, 5G and beyond [4], [S]. The
variants of ML detectors like sphere decoding (SD) detector
[6], K-best detector [7], reactive tabu search detector [8]
and belief-propagation-based detector [9], exhibit near-optimal
performance and lower complexity compared with ML detec-
tor. Nevertheless, these detectors are not the most suitable and
popular choice for LS-MIMO circuit implementation. Other
more complex detectors (e.g. approximate message passing
(AMP) [10]) are able to provide superior performance, but they
incur severe degradation for certain LS-MIMO configurations
[11]. By comparison, approximate inversion-based linear de-
tectors are popular for practical LS-MIMO systems, not only
for their good performance-complexity trade-off, but also for
easy implementation.

At present, a lot of attention has been paid to the ap-
proximate inversion-based linear detectors, among which the
iterative methods based detectors (e.g., the variants of Gauss-
Seidel (GS), the successive over relaxation (SSOR), and so
on) [3], [12]-[15] and matrix polynomial expansion-based
detectors [16], [17] exhibit advantages in performance and
low-cost. Among them, the former detectors suffer from
low parallelism and require calculation of the Gram matrix,
while the latter ones have advantages in high parallelism
and small computation latency [18]. It is widely known that
one typical application scenario of 5G is ultra-reliable and
low-latency communications (URLLC). Particularly, the end-
to-end delay of URLLC service is maintained below 1ms
[18], [19]. Therefore, the suitability of highly parallelizing
detector algorithms is a critical determinant in meeting strict
computational deadlines required for LS-MIMO in 5G and
beyond wireless networks. But in this scenario, various matrix
polynomial expansion-based detectors, such as Neumann Se-
ries Approximation (NSA) [20], [21], Cayley-Hamilton Theo-
rem with maximum eigenvalue (CHTME) [22] and truncated
polynomial expansion (TPE) [23], [24], suffer either slow
convergence performance or complicated computation of poly-
nomial coefficients in uplink LS-MIMO systems. In [23], [24],
a TPE method based on Taylor series expansion was proposed
to solve the precoding/detection problem. In this way, however,
all polynomial coefficients need to be recalculated once the
order of the polynomial changes, and the calculation of the
corresponding polynomial coefficients was very complicated.
To solve this problem, other simpler methods to calculate
the asymptotic polynomial coefficients were proposed in [22],
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[25]. Additionally, a weighted Neumann series approximation
algorithm (WNSA) was proposed to approximate matrix inver-
sion, in which only one parameter @ was used to control matrix
polynomial expansion coefficients a;, [/ € {0,1,2,---,L — 1}
(a; is the I-th polynomial coefficient) [26]. Nevertheless, they
incur a slow convergence performance.

B. Motivation and Contributions

In this paper, an improved matrix polynomial expansion
(IMPE) detector is designed, which can speed up the con-
vergence significantly with uncomplicated polynomial coeffi-
cients. Nevertheless, a challenging issue of designing these
coefficients is needed to obtain all the eigenvalues of channel
covariance matrix in real time. Unfortunately, the eigenvalues
estimation can only be obtained offline through numerical
integration and binary searching method [27], leading to
unsatisfactory performance in practical LS-MIMO scenarios.

In fact, user terminals (such as mobile phones, unmanned
aerial vehicles (UAVs) [28], sensors [29], vehicle to vehicle
(V2V) [30], and so on) usually access and are removed from
the cellular network randomly, which leads to the constan-
t change of eigenvalues of the channel covariance matrix.
Therefore, the fast estimation of all the eigenvalues online is
necessary and critical.

To this end, based on the aforementioned IMPE, a novel
inverse-transform-sampling based IMPE (ITS-IMPE) detector
is further proposed. Unlike [23], the improved polynomial co-
efficients proposed herein are developed by a fast online ITS-
based eigenvalues estimation algorithm and a least-squares
fitting procedure, which achieve a well trade-off between
precision and computation. Once the order of the matrix
polynomial or the number of user changes, the ITS-IMPE
algorithm will calculate the corresponding coefficients more
simply and efficiently. Importantly, the ITS-IMPE algorithm
are applicable to practical implementations not only for its
close-to-MMSE performance, but also for its low complexity
and hardware-friendly. The main contributions of this work
are as follows:

1) We design an IMPE detector, which can speed up
the convergence significantly with uncomplicated poly-
nomial coefficients. In order to fast estimate all the
eigenvalues online, we further proposed a novel ITS-
IMPE detector, where all the eigenvalues estimation of
the channel covariance matrix can be obtained at a
very low computational complexity. It means that the
negative impact on dimension change of practical LS-
MIMO scenarios can be significantly reduced.

2) We derive a closed-form expression of the eigenvalue
spectral cumulative distribution function (CDF) of the
LS-MIMO channel covariance matrix, which is almost
identical to the true CDF under different LS-MIMO
system configurations. This is the key to implement ITS-
IMPE detector. Furthermore, we deduce the improved
polynomial coefficients by the ITS-based eigenvalue
estimation algorithm and the least-squares fitting proce-
dure, achieving a good trade-off between approximation
accuracy and computation. When the order of the ma-
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trix polynomial changes, calculation of the polynomial
coefficients becomes simple.

3) We verify the actual performance-complexity advan-
tage of the proposed ITS-IMPE detector in LS-MIMO
systems by simulation. In a word, the proposed ITS-
IMPE exhibits favorable stability for different channel
estimations and reaches a better trade-off between BER
performance and complexity load under Rayleigh fading
channel and low spatial correlation channel.

C. Outline of the Paper and Notations

Paper Outline: The remainder of this paper is organized
as follows. The system model is introduced in Section II.
IMPE and ITS-IMPE detectors are presented in Section III and
Section IV, respectively. Next, the computational complexity
is analyzed in Section V. And the simulation results are
illustrated in Section VI. Finally, the conclusion is drawn in
Section VII.

Notations: Matrices and column vectors are represent-
ed in uppercase and lowercase bold letters, respectively.
G, O, ()7L, Pr(), A() and p(-) stand for the complex con-
jugate, conjugate transpose, inverse, probability, eigenvalue
and spectral radius, respectively. Un(a, b) denotes a uniform
distribution with the lower endpoint a and upper endpoint
b. Additionally, diag(A) denotes the diagonal matrix, whose
elements consist of diagonal elements of matrix A. [®];;
represents the (7, j)-th element in matrix ®. m ~ CN(u, &)
denotes that m is a complex random variable which obeys the
Gaussian distribution with mean u and variance &.

II. SystEm MoODEL

We consider an uplink multiuser LS-MIMO scenario with
U single antenna users and B antennas at the base station side.
The received signal can be expressed as: y = Hs + n, where
H € 5V denotes the channel matrix, n = [ny,---,np] € &
with n, ~ CN(0,0?%), b € {l,---,B} denotes the addi-
tive white Gaussian noise vector, and s denotes a (U X 1)-
dimensional transmitted symbols from constellation set A with
E{ss”} =E,I;. At the base station side, the MMSE estimate
of the transmitted symbols can be given by

2
— g, _ _
SMMSE = (HHH+E—IU) 'H"y = G 'H"y, (1)

where G = H'H + Z—%IU. Nevertheless, the direct calculation of
the estimations in (1) incurs a high complexity of O(BU?*+U?)
and unfavorable hardware implementation [22]. Furthermore,
the computations are used for the Gram matrix G (i.e.,
O(BU?)), which are even higher than that of the matrix inverse
especially when B >> U.

III. THe ProPosep IMPE DETECTOR

To alleviate the aforementioned issuse, a novel IMPE al-
gorithm is proposed in this section, which does not require
computation of the Gram matrix and can further enhance
the convergence performance and accuracy of approximate
inversion-based MPE algorithm.
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According to the Neumann series theorem [11], [31],
the invertible matrix G! can be expressed as: G™! =
K Z (Iy —kG) ~ Z Iy — kG)' if hm (Iy — kG)" = 0, which

=0
holds for 0 < k < 2/max/l(G) [23] To speed up the

convergence rate, a set of weighting factor cg,cy,---,cr-1 18
introduced, thus G™! is written as
G!'=1lim«Y" Iy - «G)
17—00 =0 (2)

~ Yy ey — kG,

where 17 and L denote the matrix polynomial terms. Let G, £
ZLZ_OI cik(Iy — kG). According to binomial expansion theorem
[32], G™! can be transformed into

G'l=x GL
(—1)'G! 3)

l
=X Zi-ock|
st aL_lGLil.

=aly + a;G + a2G2 +

Here, G™!
of a weighted matrix polynomial.

can be approximated by the first L-terms
Consider that the

eigen-decomposition of G = VAV~! where A =
diag{A\1, Ay, -+, Ay} and V = [vq,v,,---,vy]. Here, A, (u =
1,2,---,U) is the u-th largest eigenvalue of G, v, € CV*!(u =

1,2,---,U) is the u-th column eigenvector of G. Substituting
G = VAV~ into (3), we have
VA-1v-!
] aoVV’l + (1]VAV71 + (12‘71\2‘771 + -+ LlL_|VAL71V71
= V(Ziy @AYV,

“4)
ie, A1 ~ Y aAl Thus, without computing V, a;(! =
1,2,---,L—1) can be obtained by solving the following linear
equations

I/Ay 7T [ 1 Aq AIL‘1 17 ao
1/A, 1 Ay Aé_l ap
VA, |5 1 A AL-1 ay
/Ay 1 L 1 Ay Af‘/_l | a;—1 |

4)
To solve linear equations (5), in this paper, we use the classic
least-squares method with complexity O(UL?), where L <<
U. One of the most critical issue of solving (5) is to obtain
eigenvalues A,(u = 1,2,---,U). The IMPE algorithm with
the efficient polynomial coefficients {ag,ay, -, a;,---,ar-1} 18
summarized in Algorithm 1.
Observe that the calculation of Syysg ~ (agly+a;G+a,G*+
--+a;_G*""H"y involves multistage parallel multiplications

2
of matrix-vector, such as y; = Gy, = Hy, + %yl where

Y2 £ Hy; and y, 2 Hy. Nevertheless, directly calculating
the eigenvalues of G requires the computational complexity
of O(U?), which is as much as that of the matrix inverse. The
work [27] proposed a an eigenvalue estimation approach from
the specified distribution f;(x), which is expressed as:

fd(,i,[l filxdx = (1dl —di1) fa(x)

[

(6)
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Algorithm 1: The IMPE algorithm
Input: B, U, L, y, He CU*3,
Output: G;.
1 Calculate the exact eigenvalues A,(u=1,2,---,
2 A= diag{Al,Az, cee ,AU}
3 Based on (5), the efficient polynomial coefficients

U) of G.

{ag,ar, -+,a;,--,a;_,} are calculated

4 Based on VAV = V(ZE ! ¢)AHV~!, G is calculated
in (3).

55~ GLHHy.

where dy < dy < --- < dy are the U + 1 points located
on the horizontal axis. Here, the horizontal axis is x which
represents the range of eigenvalues. And d; is defined as:
fdof fidx =1/U, | = 1,2,---,U — 1. After {d}}, are cal-
culated, the eigenvalues can be estimated as

1

_ 1
Xu = f,{ [U(dl _ d[fl)]’

However, these points dj,---,dy_; can only be calculated
offline through numerical integration and binary searching
method [27], leading to unsatisfactory performance in prac-
tical scenarios. Furthermore, users randomly access and are
removed from the cellular network, leading to the con-
stant change of the number and the value of these points
di,-,dy_;.

u=12,---,U. @)

IV. Tue Proposep ITS-IMPE pETECTOR

To tackle the aforementioned issue, by making full use
of the typical properties of LS-MIMO channel matrices, an
ITS-IMPE detector is proposed in this section. Compared
with other sampling methods, such as reject sampling and
Monte Carlo methods, ITS method demonstrates excellent
performance, greater simplicity and intuitiveness [33]. Next,
we will detail the ITS-IMPE detector as follows.

First, a fast online ITS-based eigenvalues estimation algo-
rithm consists of the following three steps:

1) Step I: Deduce the closed-form expression of the CDF,
e.g., Fy(x), of eigenvalues A,(u = 1,2,---,U) based on its
empirical probability density distribution function;

2) Step 2: Calculate the inverse of the desired CDF which is
obtained in Step 1, e.g., F;l(x);

3) Step 3: Generate U uniform numbers within the interval
[0,1] and substitute them into the inverse function of the
CDF as input, then the results can be used as the eigenvalues
estimation.

Second, the improved polynomial coefficients of ITS-IMPE
is then introduced by the above on-line ITS-based eigenvalues
estimation algorithm and a least-squares fitting procedure. The
specific design and analysis is as follows.

A. Inverse-transform-sampling Scheme
Theorem 1. (Adapted from [33]): Let Z be the random
variable, and its CDF is Fy 2 Pr{Z < z},-o < 7z < +o0.
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Fgl(m) is defined as Fz~'(m) 2 inf{z : Fz(z) = m}. If random
variable M ~ Un(0, 1), then for all z € R, the equation

Pr(F,' (M) < z) = Pr(inf{t : Fz(t) = M} < 7)
= Pr(M < F;(2)) (8)
= Fu(Fz(2))
= Fz(2),

where inf{A} and Un(a, b) stand for the infimum of set A and
a uniform distribution on the interval (a, b), respectively. Thus,
Z satisfies Z = F;'(M), M ~ Un(0,1).

Theorem 1 demonstrates that given a standard uniform
distribution variable M on the interval (0, 1), and an invertible
CDF Fy, then the variable Z = F EI(M) obeys the distribu-
tion of Fz. That is to say, using Theorem 1, the number
M ~ Un(0, 1) can be used to generate the sampling values,
which are distributed as the specified distribution. However,
the critical factor of the implementation of ITS scheme is to
find the CDF, i.e, Fz. An intuitive diagram of the processing
of ITS scheme is presented in Fig. 1.

B. CDF of the Eigenvalues of LS-MIMO Channel Covariance
Matrix

In the lemma below, we derive the closed-form expression
of the eigenvalue empirical CDF of LS-MIMO channel co-
variance matrix for Rayleigh fading channels.

Lemma 1: In Rayleigh fading channels, for large-(B, U)
regime with U/B — 7, the empirical cumulative distribution
of channel covariance matrix eigenvalues A(H”H) will almost
surely converge to a certain limit distribution as

ﬂm=fﬁmm

x \/ﬁ
=f0fuﬁmn(x”® D i ©)
., 2ntx
= %[\/—;@ +2(1+1)x— (1 -1)°
) Lo l+T—x
— |1 — 7| arcsin ot (1+7) arcsm(z—\ﬁ) + 7],

1 s

_5 08 f,(x) distribution

3]
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Fig. 1. The schematic diagram of ITS method.
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where H = 1/ VBH.

Proof: For LS-MIMO, with the Marcenko-Pastur distribu-
tion, empirical probability density function (PDF) of A(ﬁ” H)
converges to f(x)=(1 — 1/7)*6(x) + V(x —a)* (b — x)" [2n7x,
where (e)* = max(0,e), a = (1 — V7)2, and b=(1+V7)? [34],
35 Let ¥ 2 (x—a)b—x), 0 2 —ab, ® 2 a+b, c = -1,
A24gc—9 = —(a-b? <0.1f0 <0, A<0,c <0,
V92 — 46c = (a + b)? — 4ab = b — a, thus, we have

£d —2—m[v_+9f \/_d +—f—dx
* (10)

27TT X

where

20 + Ix
—46c

arcsin

1
f o
x + 0

—dx = - arcsm(
/& e

Substituting (11) and (12) into (10). Then we can obtain:

27TT f \/_dx

[ \/_ V=@ arcsin —200x
= V92 — 46c

SEVE -
13)

Note that the range of A,(HH), u € {1,---,U} is [a,b]
[34]. According to the definition of CDF, we have

). (12)

2cx+9 )]

Nary

(a+b)x 2ab _ a+b a+b— 2x
Vab arcsin e arcsin(“5=>)].

-5 J arcsin( 22

= 2

Fa(x) = [ fux)dx
17y 80+ Y= Q' b-2"

2nTx

:fax(1_

= s [V-x2+(a+b)x—ab-

b
(”;' )arcsm(‘”b 2") Fa)],

A/ (a+b)x—2ab
ab arcsin -2

(14)
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Fig. 2. CDF of the eigenvalues of H¥H under different LS-MIMO system
configurations.



This article has been accepted for publication in IEEE Systems Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSYST.2022.3179299

IEEE SYSTEMS JOURNAL, VOL. , NO. , AUGUST 2021

A/ 'ab arcsin (a+b)x—2ab

Fua) = 5=[ V=22 + (a + b)x — ab - N

(le) arcsm(‘”” Zx)] |x:a

1 ﬂ(\/_ \/_)

2nt

(15)
Thus, a closed-form expression of F,(x) can be obtained by

(a+b)x—2ab
Vab arcsin o

Fax) = s [V=-22 + (a + b)x —ab -
n(\ﬁi—\/_>]
1

(fl+b) arcsm(‘”b 2,\)

(16)

Substituting a = (1 - V©)? and b = (1+ v7)? into (16).

Thus, Lemma 1 is proved. As presented in Fig. 2, the closed-

form expression of CDF deduced by (9) is almost identical

to that of the true CDF under different LS-MIMO system

configurations. Therefore, it is a perfect match between our
theoretical analysis and simulation results.

C. ITS-based Eigenvalues Estimation

Since F,(x) is a monotonically increasing function (i.e., m <
n = F,(m) < F,(n)), there exists an inverse function F;l(x),
x €[0,1), and F;l(x) must also be monotonically increasing
(e, m <n = F;'(m) < F;'(n)). According to (9), it is very
difficult to calculate the analytical expression of F’ ;'(x). Thus,
the linear approximation is used. More specifically, the interval
[a, b] is firstly partitioned into K segments, then we have a =
Xo < X1 < - -<xk< < xxk =b, Yk e {1,2,---,K}. Each
interval A, = K , SO Xx; = xo + Ak. Then, the hnear function
is calculated within [a, b]:

Vo= Falgor) + 0k(x — xm1), Xem < x < xg, (17

where 6; = W Then the expression of the inverse
of v is o
x = Fa(xe—
Wy = 2D F) < x < Fatw). (18)
k-1 A(Xk-1 (X

Oy

Since l}im Ww)y'=F ;l(x), thus, an approximately closed-form

expression of the inverse function of CDF is given by
x = Fa(x-1)
Sk

Note that the value of K should be properly selected in
practice to trade-off the approximate accuracy and complexity
of the inverse function. Next, U uniform distributed samples
X1y Xxyu) are generated within the interval (0, 1).
According to Theorem 1, we substitute (x,, - - L Xnu)
into (19) as x and output the samples F;l(x) which obey the
PDF distribution. Thus, F'(x,,), u € {1,2,--- U} can be used
as the estimated value of /ll,(ﬁHI’-i), uef{l,2,---,U}. There-
fore, it yields the ITS-based eigenvalues estimation algorithm.
Its implementation is detalled in Algorithm 2.

Since G = HYH + "IU, the eigenvalues of G can be
approximated by

Fi'(x) = + X1, Fa(xer) < x < Fa(x). (19)

Xnus* s

s Xnus *

PR o2
A, = BAHTH) + £

2 (20)
~ BF (1) + 3,

uefl,2,---, U}
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Algorithm 2: Online ITS-based eigenvalues estimation
algorithm

Input: B, U.

Output: 1,(H'H), ue{l,2,---
1 Compute F,(x) by (9).
2 Compute U uniform distributed samples

, U}

(Xn1> """ 5 Xuu» ** +, Xpu) Within the interval (0, 1).
3 Compute 1,(H"H), u € {1, U} by (19).
4 Compute A, u €{1,2,---,U} by (20).

As discussed above, once F,(x) and F;l(x) is deduced ana-
Iytically, the eigenvalues estimation of G in the proposed ITS-
based algorithm can be obtained with a very low complexity
o).

D. LLR Approximation

To enhance the accuracy of ITS-IMPE detector, the log-
likehood ratios (LLRs) which can be extracted from soft
decision [4], [36], is employed. Let R = G 'H”H and
P = RG™!, where the equivalent channel matrix is denoted by
R, and the equivalent channel gain is denoted by u, = Ry,..
Then, the noise-plus-interference (NPI) variance can expressed
as

U
vy = Z IR *+Pgy 07, 21
i#u
where R;,) and P ;) denote the (i, u)-th element in matrix R
and the (i, i)-th element in matrix P, respectively. The LLR of
bit b for the u-th user can be computed by [4], [36]
Ha 8
Ly = —(mml——ql — min I——q ).
Uu qeSy Hu q€X, Hu

(22)

Here, S 2 and S ; are the b-th bit of the symbol from
constellation set A, where the b-th bit is 0 and 1. The
proposed ITS-IMPE algorithm is summarized in Algorithm
3. Meanwhile, a functional diagram of ITS-IMPE processing
and detection is given in Fig. 3.

E. Numerical Evaluation of Convergence Performance

We compare ITS-IMPE with wNSA [26] to demonstrate
the convergence performance of ITS-IMPE detector. Ac-
cording to [26], the L—term wNSA is written as: G, 2
Zn o (I=(aD™ NG)'(@D™), where D = diag(G), 0 < a < 1.
By setting @ = 1, wNSA is called INSA [20]. Fig. 4 shows
that, with fixed B = 128, the INSA diverges for U = 32 and
U = 40. The reason is that when B/U < 5.8, the spectral radius
of the convergence matrix of INSA p(Iy=D7'G) > 1 [37], and
the INSA can not satisfy the condition for converging to G™'.
At the same time, two preferable wNSA (a = 0.5 (selected by
[26]), @ = 0.67) converge at different rates for U = 16, U = 24,
U = 32 and U = 40. By contrast, when the same L (e.g.,
L > 2) is used, the convergence performance of ITS-IMPE
with different weighting factors {ag,ai,--,a;,---,a;.-1} is
obviously enhanced compared with that of wNSA with a fixed
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Online ITs-based
eigenvalues estimation
algorithm
(Algorithm 2)

Ap A, A,

Least-squares
fitting procedure
is used to solve (5)

¢ Qp,a1,a2 ... AL

H 00 K
. H,_, A ..
Preprocessing M‘i IMPE X e
M Unit } H oL 5}
| E, |
} H" 4—>‘ Z2C] ap, —» a
Detection IMPE [ C S 1 L L-1Y2L-1

Fig. 3. Functional diagram of ITS-IMPE processing and detection.

Algorithm 3: The ITS-IMPE detector
Input: B, U, L, y, He CV*8,G = HH.
Output: L, ;.
1 Generate U uniform numbers (X1, , Xpus* ** > XnU)

o \ N within the interval [O,_l]. ) ,
WNSA [26], a=0.67 WNSA [26], a=0.67 2 Compute T, d, b by T= U/B, a = (1 - \/;) N and
N=‘: - —+— The proposed ITS-IMPE —+— The proposed ITS-IMPE
] 07, 3 4 5 6 7 8 2 4 6, 8 10 b:(l+\/;)2-
B — 3 Based on PDF f)(x), the empirical CDF of
P B=128, U=32 —~—
A, HH?), Yu € {1,---, U} can be calculated by (9).
10° . . .
° 4 Based on CDF F,(x), the approximately inverse function
of the CDF F;'(x) can be calculated by (19).
e e 5 Plug (xu1, -+, X, -+ +» Xpu) into the approximately
o1 |z, aros. \ T meaLeh a0 closed-form expression (19) as x, the estimated values of
—+— The proposed ITS-IMPE —+— The proposed ITS-IMPE Au(u — 1’ 2’ . , U) Can be Obtained by (20).
2 3 4 5 6 7 8 2 3 4 5 6 7 8 .
L L 6 A:dlag{Al,A2,~~-,AU}

7 By using the least-squares fitting procedure to solve (5),
the efficient polynomial coefficients {ag, -, a;,- -, ar-1}
are calculated.

8 Calculate s ~ (aoly + |G + a,G* + - - - + a;_ | GF"HH y.

f 8128, U=16 9 LLR Approximation:

Fig. 4. The F-norms of ||IU—GGL||2F with B = 128;

-1 ,
10“’% 10 for u=1:U do
ey 11 for b =1 : log,|A| do
2 N N
2| My : Su 2 : Su 712
10 12 Lyp = p(min|—gl" — min |2 —g'[").
@ —6— MMSE " geS, 9'€X,
== ITS-IMPE, L=3 13 end
_3 || 9 INSA [20], L=4
10 INSA [20], L=5 14 end
WNSA [26], L=4,
WNSA [26], L=5,
=V IMPE, L=3
10 ‘
2

parameter. Furthermore, the benefit brought by the proposed
J ITS-IMPE can be shown in Fig. 5. As the number of users
? increased from 16 to 32, the bit error rate (BER) performance
\

of INSA suffers obvious divergence since p(Iy — D7'G) > 1.
Meanwhile, by choosing @ = 0.5 [26], the convergence perfor-
mance of wWNSA shows some improvement. Undoubtedly, the

S 1o e Los optimal choice of weight factor has a vital influence on the

10 INSA [20], L=6 convergence performance. However, the improvement brought

oA 5] Los, a0 by WNSA is limited. This is due to the fact that only one

104 TV IMPE. LS ‘ ‘ ‘ parameter « is used to implement matrix polynomial expansion
0 2 10 12

and the spectral radius of the iterative matrix p(Iy — (@D HG)
increases with an increase in U. To further enhance the conver-

Fig(-i51- The BER of ITS-IMPE, INSA and wNSA for a = 0.5 with 16-QAM  gence rate and accuracy, by introducing efficient polynomial
modulation.

6
SNR [dB]
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coeflicients {ag,ay,---,a;,---,a;—1}, the ITS-IMPE is able to
achieve a significant enhancement performance. Furthermore,
a performance bound of the ITS-IMPE algorithm which is
obtained by IMPE algorithm is also used as the benchmark for
comparison. Fig. 5 depicts that, without directly calculating
the true eigenvalues and the complicated matrix inversion
operations, ITS-IMPE algorithm can fast converge to the exact
MMSE and its performance bound even when the number of
users increases. This can be explained by the fact that the
proposed ITS-based sample values can be used to estimate
the true eigenvalues simply and effectively.

V. CoMPLEXITY ANALYSIS

Computational complexity analysis and comparison is given
in this section.
For a given L,’s can be obtained by

S~ (aoly + ;G + a:G? + -+ + a;_ GFHHy
2

o, o,
=agy+a;(H"y, + E—YI)+02(HHY4 + E—Y3)+ o

y3 ) Ys
9
In

E,

(23)

+ap-1(Hy2 5 + —2yar-3)

Yor-1
=apy1t+a1ys+arys+axyy - - +ap-1y2r-1

A (ri
Yar-1 = Gyar3 = Hyy 5 + EY2L-3

- )
where | y; £ Gy, = Hy, + 2y,

A
y2 = Hy,
A
yi1 = Hy .
From (23), the calculation of s involves multistage parallel

multiplications of matrix-vector (see Fig. 3 for detail). Hence,
the complexity for the calculation of §'is :

N =QL-1)BU +2UL-U.

(24)

Note that the number of complex-valued multiplications
(NCMs) [38] is considered in the computation complexity.
In addition, the number of NCMs involved in estimating the
eigenvalues and performing least-squares method is approxi-
mately Nig = 3U+UL? (U >> L), and the complexity of LLR
approximation is: Npig = U? + U. Thus, without computing
the Gram matrix, the overall complexity of ITS-IMPE can be
calculated by:

Niota=N+Nps+Npr
=(QL-1)BU +2UL +3U + UL?* + U?,

which is evidently lower than many of the reported methods
(see TABLE I). For the fair comparison of complexity and
performance, the max-log LLR approximation is taken into
account by all detectors in TABLE 1. L; denotes the initial
settings of Gauss-Seidel-NSA (GS-NSA) and RSI (i.e., the
first L;-terms of NSA in GS-NSA [39] and the first L; initial
value of RSI [40]). L;; denotes the number of iterations in CG,
QRI, CD, GS-NSA, JS-CD and RSI algorithms. Also note that
Gram matrix calculations cannot be avoided in many of the
reported methods, such as GS-NSA, JC-SD, CG, RSI and so
on.

(25)
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TABLE I
COMPUTATIONAL COMPLEXITIES COMPARISON

Detector scheme Computational Complexity

MMSE
NSA/WNSA(L > 2) [20]
CG [41] [22]

((B+7T)U? + U3 +3BU +2U)/2
(B+DHU*+BU+UL*+U3+U
(BU? +3BU)/2 + QU?* + TU)(Liy — 1) + U + U?

QRI [42] (B/2+ DU? +2BU + QU + U)Ly; + U
CD [43] Liy(4BU? + 2U) + U + U?
CHTME [22] (2L +2)BU + (3L - YU + U?
JC-SD [44] 2BU? + 4BU + 5U% + 13U + 4L, U?
GS-NSA [39] BU?/2 + (Lyy + 2Ly — DU? + 4U
RSI [40] BU?/2+BU+2U?+4U + (U*+2U+4)L;

Proposed ITS-IMPE QL-1)BU +2UL +3U + UL + U?

VI. SmmuLATION RESULTS

To validate the performance of proposed ITS-IMPE de-
tector, the BER of ITS-IMPE is studied and compared with
exact MMSE, CG [41], QRI [42], CHTME [22], JCSD [44],
GS-NSA [39], RSI [40] under perfect channel estimation and
maximum likelihood (ML) channel estimation [45]. For simu-
lations, independent and identically distributed (i.i.d.) Rayleigh
fading channel, spatial correlation channel, and an uncoded
LS-MIMO system with B = 128 and U = {16,32,40} are
considered. K is set to 8. At the same time, two modulations,
16-QAM and 64-QAM, are adopted.

First, the i.i.d. Rayleigh fading channel is taken into account.
As presented in Fig. 6, using L = 3 is sufficient for ITS-IMPE
to fast achieve almost the same BER performance as the exact
MMSE, performing better over all the considering modulations
under perfect channel estimation, when B = 128, U = 16.
Furthermore, the proposed ITS-IMPE is superior to that of oth-
er reported algorithms such as CG, QRI, GS-NSA, CHTME,
RSI and JCSD, which have apparently low complexity (see
TABLE I and Fig. 8), especially when 64-QAM is employed.
Moreover, with the decrease of base-station to user antenna
ratios (BUARs), CHTME and JCSD suffer severe divergence.
And at the same time, CG and QRI incur slow convergence
performance, but ITS-IMPE can still obtain the similar near-
optimal BER performance as exact MMSE. Thus, more user
terminals can be served in the cellular network (such as
sensors [29], unmanned aerial vehicles (UAVs) [28], vehicle
to vehicle (V2V) [30], etc). As shown in Fig. 6, at BER 1074
with B = 128, U = 32 for 16-QAM, ITS-IMPE (L = 6)
outperforms the CG (L; = 6) by 1.5 dB, outperforms GS-NSA
(Ly =2,L; =2) by 2 dB, outperforms QRI (L; = 6) by 2.1 dB
and outperforms RSI (L; = 2, L; = 4) by 0.5 dB, but at BER
10~* with B = 128, U = 40 for 16-QAM, ITS-IMPE (L = 7)
outperforms the CG (L; = 7) by 4.9 dB, outperforms QRI
(Liy = 7) by 5.2 dB. Additionally, GS-NSA (L, = 2,L; = 4)
and RSI (L; = 2,L; = 5) with higher iterations not only is
inferior to ITS-IMPE by a 0.2 dB and a 0.4 dB gap, but also
suffers higher complexity burden. For higher-order modula-
tions (e.g., 64-QAM), the BER performance advantage of ITS-
IMPE is further increasing. In other words, the proposed ITS-
IMPE detector is able to achieve a significant enhancement
performance, and its complexity advantage is discussed in Fig.
8.
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10°
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Fig. 6. BER performance comparison with perfect channel estimation in B = 128, U = {16,32,40} LS-MIMO systems.

B=128, U=32

—6— MMSE —O— MMSE
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- CG [41], L =4 =Xp= CG [41], L =6 == CG [41], ;=7
102 ¢ «oplrs CHTME [22], L=4 ¥ 073 Hf+ee cHTME [22), L=6 1073 + ks CHTME [22], L=7
=9 JCSD [44], L =4 L —e— JCSD [44], L =6 @ JCSD [44], L ;=7
QRI[42], L =4 QRI[42], L =6 QRI[42], L =7
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Fig. 7. BER performance comparison with ML channel estimator in B = 128, U = {16,32,40} LS-MIMO systems.
Fig. 7 compares the BER performance of different algo-
rithms with ML channel estimator under different LS-MIMO o B=128, U=32, 16.0AM 010" B=128, U=32, 64-QAM
configurations. As observed in Fig. 7, the SNR required by +;N‘N‘S:eﬂemchannew pamen L . Pertect channel estimaion
. . ) L= MMSE
exact MMSE to reach BER 107 increases compared with ~ °[ | NN u s QR LS
. . o - - CG [41],L =6 s L= s
perfect channel estimation. Some detectors like CHTME and  ,° | RSI40] =2, 1= ek L '
. . = | * RSI[40], L =2, L;=4 *
JCSD fail to converge when BUARs decreases (i.e., small 27 | GSNSA [39], =2, L,=2] } T GsNsA[BY) =2, L=2
. . |
B/U). However, the proposed ITS-IMPE not only maintains 6 | or |
. | |
at a near-MMSE level, but also outperforms other algorithms 5  [TSMPE, L=6 5[ poirsampE, L=6
. . . | |
even with smaller BUARs and higher-order modulations, when %2 0 oz o4 oo os 1 12 o I R
the ML channel estimator is employed. It further verifies the s B TS 6. aAm P s Bei3 Uto eaoni
effectiveness and robustness of the ITS-IMPE detector. 1ol JMmsE ML chenefostmator | LT TMMSE L chaml estmator o
. . ’ L CG [41], L, =8 QRI[42], L =9
Further, a clear overview of the performance-complexity | ce [4ll]>.L‘t:7 \‘ il b "
. . . . . . |
trade-off under different channel estimations is provided in | |, L2
. . . . . . GS-NSA[39], L, =2,L =4 [IPR ¢
Fig. 8. As depicted in Fig. 8, the horizontal and vertical axes = | | o a2l || esNsAB L2 L=
. . . | |
denote the SNR loss of each detection algorithm at a specific ! |
. o | |
BER compared with exact MMSE and the CompleX1t1es of 08 } *RSI [40], L, =2.L,=5 08T | xRsI[40],L,=2 =5
. . . . . 0 1TS-IMPE, L=7 | 01Ts. =
the detection algorithms, respectively. On the horizontal axis, . ; ;. s SRR S
. . SNR loss at BER 10 ™ (dB) SNR | BER 10 3 (dB
the smaller the SNR loss of the algorithms compared with oss et @
exact MMSE, the better the algorithm performance. On the Fig. 8. The performance-complexity trade-off comparison for different

vertical axis, the less the NCMs, the lower the computational
complexity. We find that the proposed ITS-IMPE detector,
which comes with an improved matrix polynomial expansion
to avoid matrix inversion operation, has a much lower com-
putational cost compared with that of exact MMSE. At the

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

detectors under different channel estimations. Exact MMSE is used as the
benchmark to compare the SNR loss of ITS-IMPE, CG, GS-NSA, QRI
detectors. JCSD and CHTME detectors is not compared in this figure, since
the BER performance of these two detectors are declining sharply, which
cannot achieve the illustrated BER level.
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same time, its performance remains almost the same as the
benchmark. From Fig. 8, with different channel estimations,
ITS-IMPE is not only superior to GS-NSA, CG, QRI, but also
consume obvious lower computational cost. For example, with
the perfect channel estimation for 64-QAM, ITS-IMPE with
6 polynomial terms can achieve near MMSE performance at
BER 1073 when B = 128, U = 32, but the computational cost
of ITS-IMPE is about 52.7% of MMSE. At the same time,
the SNR loss of ITS-IMPE at BER 103 shows a decrease
of 27.5 dB from that of GS-NSA (L; = 2,L; = 2), 9.8
dB from that of CG (L; = 6) and 22 dB from that of QRI
(L = 6), respectively, but it only consumes 68%, 56.7% and
54% computational cost of that of GS-NSA, CG and QRI,
respectively. In addition, ITS-IMPE with 6 terms is superior
to RSI (L, =2,L; =4) by a 0.2dB gap, but the computational
cost of ITS-IMPE is about 64% of RSI. With ML channel
estimation for 64-QAM, as shown in Fig. 8, the SNR loss
of ITS-IMPE with 7 terms also shows a decrease of 1 dB
from that of GS-NSA (L, = 2,L; = 4), 7.5 dB from that
of CG (L; = 8), and 12.3 dB from that of QRI (L; = 8),
at BER 1073 when B = 128,U = 40, but it only consumes
62.2%, 52% and 50% computational cost of GS-NSA, CG and
QRI, respectively. In this case, RSI performs well, but the ITS-
IMPE is still slightly better than it in both performance and
complexity. Hence, the proposed ITS-IMPE exhibits favorable
stability for different channel estimations and reaches a better
trade-off between BER performance and complexity.

B=128, U=32, SNR=14dB, 16-QAM B=128, U=32, SNR=14dB, 16-QAM

Perfect channel estimation,£=0.2 Perfect channel eswt‘fmrff;? 7

:}{{:‘f’ S iy

T~

—6—mmse v
—8— ITS-IMPE

il —6— MMSE WS ,
o —8— ITS-IMPE S 107 f—#e cHTME [22]

—%- cG 41

lmcemn Py N JCSD [44]

103 H—fe cHtmE2) | S T ORI 2]
D [44] S Wi INSA [20]
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4
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Fig. 9. Comparison of BER performance vs. L or L;; with correlation channel
with 16-QAM modulation.

Finally, to further investigate the convergence performance
of the different algorithms in correlation channel environment,
the BER performance comparison among the detectors versus
different L or L;, is given in Fig. 9. Note that the exponential
correlation model which depicts the spatial correlation of LS-
MIMO channels is adopted here [4], [23]. The exponential
model is modeled as [46]: [®];; = &', when i < j;
[@];; = (£77)*, when i > j, where & (0 < & < 1) represents
magnitude of the correlation between two adjacent antennas at
the base station side. Thus, spatially correlated channels, H is
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modeled as [47]: H=®'/>H, where H € C*U represents the
Rayleigh fading coefficients with i.i.d. Gaussian elements. We
made the BER performance of exact MMSE as the benchmark.
From Fig. 9, INSA, CHTME and JCSD unable to converge,
meanwhile CG and QRI suffer slow convergence performance
in low correlation channel (¢ = 0.2) under both perfect and
ML channel estimations, when B = 128, U = 32 for 16-
QAM. As shown in Fig. 9, we can notice that RSI also
fails to converge in the low correlation environment. This is
due to the fact that RSI is a semi-iterative method based on
Richardson iteration for signal detection, and it is difficult for
Richardson iteration to produce more reliable iterative result
for correlation channel. Additionally, as illustrated in Fig. 9,
the proposed ITS-IMPE with a few numbers of polynomial
terms can converge to exact MMSE under both perfect and ML
channel estimations, which shows the performance advantage
of ITS-IMPE in low correlated channel scenarios. For high
correlated channel scenarios (¢ = 0.7), ITS-IMPE suffer severe
divergence, it is because the empirical PDF is no longer ap-
plicable to high correlated channel environment [34], causing
the deduced CDF (9) to be inapplicable. Therefore, obtaining
the closed-form expression of eigenvalue CDF of channel
covariance matrix with different propagation environments is
the key to implement ITS-IMPE detector.

VII. CoNcLUSION

Based on the proposed IMPE, we have further designed
a novel data-detection scheme, ITS-IMPE detector, which
can fast reach near-optimal performance of MMSE and its
performance bound in both perfect channel estimation and ML
channel estimation. The proposed detector does not require
calculation of the Gram matrix and thus presents very low
complexity. Furthermore, it is able to enable pipelining to
execute multistage parallel structure for different modulations
and hence exhibits low-cost and hardware-friendly. Theoretical
and simulation results have shown the actual performance-
complexity advantages of the proposed ITS-IMPE detector for
LS-MIMO systems under Rayleigh fading channel and low
spatial correlation channel.

As future work, there are many potential applications.
The proposed design can be extended to other more com-
plex detectors, such as expectation propagation with approx-
imation (EPA) [26] [48] [49], ADMM-based infinity-norm
(ADMIN) [36] [50], and so on, which involve underlying
high-dimensional matrix inversion operations and outperform
MMSE performance. Also, it can be used as a new iterative
initial solution for other iterative algorithms, such as GS,
CG, and so on. Furthermore, it can be used as a promis-
ing preconditioning matrix for some algorithms like Steepest
Descent [37] to improve the convergence rate. Finally, the
multilevel block matrix partition based on the correlation
channel eigenvalue spectral CDF is further employed in the
proposed design for high correlated channel scenarios, which
is a part of ongoing work.

ACKNOWLEDGMENT

This work was supported in part by Hainan Provincial
Natural Science Foundation of China under Grant 2019RC130



This article has been accepted for publication in IEEE Systems Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSYST.2022.3179299

IEEE SYSTEMS JOURNAL, VOL. , NO. , AUGUST 2021

and Grant 620QN238, in part by the National Natural Science
Foundation of China under Grant 61771066, and in part by the
Scientific Research Starting Foundation of Hainan University
under Grant KYQD(ZR)-1999 and Grant KYQD(ZR)-21132.

[1]

[2]

[3]

[4]

[6]

[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

X. You, C. Wang, J. Huang, X. Gao, and Z. Zhang, “Towards 6g
wireless communication networks: Vision, enabling technologies, and
new paradigm shifts,” Science China, vol. 64, no. 1, pp. 1-76, 2021.
B. C. Pandey, S. K. Mohammed, P. Raviteja, Y. Hong, and E. Viterbo,
“Low complexity precoding and detection in multi-user massive mimo
otfs downlink,” IEEE Transactions on Vehicular Technology, vol. 70,
no. 5, pp. 4389-4405, 2021.

M. A. Albreem, M. Juntti, and S. Shahabuddin, “Massive mimo detec-
tion techniques: A survey,” IEEE Communications Surveys andTutorials,
vol. 21, no. 4, pp. 3109-3132, 2019.

L. Dai, X. Gao, X. Su, S. Han, . Chih-Lin, L., and Z. Wang, “Low-
complexity soft-output signal detection based on gauss-seidel method
for uplink multi-user large-scale mimo systems,” IEEE Transactions on
Vehicular Technology, vol. 64, no. 10, pp. 4839-4845, 2015.

J. Fuentes, I. Santos, J. C. Aradillas, and M. Sanchez-Fernandez, “A low-
complexity double ep-based detector for iterative detection and decoding
in mimo,” IEEE Transactions on Communications, vol. 69, no. 3, pp.
1538-1547, 2021.

X. Chu and J. Mcallister, “Software-defined sphere decoding for
fpga-based mimo detection,” IEEE Transactions on Signal Processing,
vol. 60, no. 11, pp. 6017-6026, 2012.

Tsai, P.-Y., Huang, and Z.-Y., “Efficient implementation of qr decompo-
sition for gigabit mimo-ofdm systems,” IEEE Transactions on Circuits
and Systems I Regular Papers, vol. 58, no. 10, pp. 2531-2542, 2011.
N. Srinidhi, S. K. Mohammed, A. Chockalingam, and B. S. Rajan,
“Low-complexity near-ml decoding of large non-orthogonal stbcs us-
ing reactive tabu search,” in 2009 IEEE International Symposium on
Information Theory, 2009.

J. Yang, W. Song, S. Zhang, X. You, and C. Zhang, “Low-complexity
belief propagation detection for correlated large-scale mimo systems,”
Journal of Signal Processing Systems, vol. 90, no. 4, pp. 585-599, 2018.
S. Wu, L. Kuang, Z. Ni, J. Lu, D. D. Huang, and Q. Guo, “Low-
complexity iterative detection for large-scale multiuser mimo-ofdm
systems using approximate message passing,” IEEE Journal of Selected
Topics in Signal Processing, vol. 8, no. 5, pp. 902-915, 2017.

X. Tan, W. Xu, Y. Zhang, Z. Zhang, and C. Zhang, “Efficient expectation
propagation massive mimo detector with neumann-series approxima-
tion,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 67, no. 10, pp. 1924-1928, 2020.

F. Jiang, C. Li, and Z. Gong, “Low complexity and fast processing
algorithms for V2I massive MIMO uplink detection,” IEEE Transactions
on Vehicular Technology, vol. 67, no. 6, pp. 5054-5068, Feb. 2018.

C. Zhang, Z. Wu, C. Studer, Z. Zhang, and X. You, “Efficient soft-
output gauss-seidel data detector for massive mimo systems,” [EEE
Transactions on Circuits and Systems I Regular Papers, vol. 68, no. 12,
pp. 5049-5060, 2021.

X. Gao, L. Dai, Y. Hu, Y. Zhang, and Z. Wang, “Low-complexity signal
detection for large-scale mimo in optical wireless communications,”
IEEE Journal on Selected Areas in Communications, vol. 33, no. 9,
pp. 1903-1912, 2015.

I. A. Khoso, X. Zhang, I. A. Khoso, Z. A. Dayo, and X. Dai, “Com-
putationally efficient data detection in massive mimo wireless systems
via semi-iterative method,” IEEE Transactions on Vehicular Technology,
vol. 70, no. 10, pp. 10252-10264, 2021.

H. Sifaou, A. Kammoun, L. Sanguinetti, M. Debbah, and M. S.
Alouini, “Max-min sinr in large-scale single-cell mu-mimo: Asymptotic
analysis and low-complexity transceivers,” IEEE Transactions on Signal
Processing, vol. 65, no. 7, pp. 1841-1854, 2017.

A. A. Lu, X. Gao, Y. R. Zheng, and C. Xiao, “Low complexity
polynomial expansion detector with deterministic equivalents of the
moments of channel gram matrix for massive mimo uplink,” /EEE
Transactions on Communications, vol. 64, no. 2, pp. 586-600, 2016.
A. Benzin, G. Caire, Y. Shadmi, and A. M. Tulino, “Low-complexity
truncated polynomial expansion dl precoders and ul receivers for massive
mimo in correlated channels,” IEEE Transactions on Wireless Commu-
nications, vol. PP, no. 2, pp. 1069-1084, 2019.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

(35]

[36]

[37]

[38]

[39]

[40]

A. Osseiran, F. Boccardi, V. Braun, K. Kusume, P. Marsch, M. Maternia,
0. Queseth, M. Schellmann, H. Schotten, and H. Taoka, “Scenarios for
5g mobile and wireless communications: the vision of the metis project,”
IEEE Communications Magazine, vol. 52, no. 5, pp. 26-35, 2014.

M. Wu, B. Yin, and G. Wang, “Large-scale MIMO detection for 3GPP
LTE: algorithms and FPGA implementations,” IEEE Journal of Selected
Topics in Signal Processing, vol. 8, no. 5, pp. 916-929, Mar. 2014.

M. Wu, B. Yin, K. Li, C. Dick, J. R. Cavallaro, and C. Studer, “Implicit
vs. explicit approximate matrix inversion for wideband massive mu-
mimo data detection,” Journal of Signal Processing Systems, 2017.

S. Shafivulla, A. Patel, and M. Z. A. Khan, “Low complexity signal
detection for massive-mimo systems,” [EEE Wireless Communication
Letters, vol. 9, no. 9, pp. 1467-1470, 2020.

A. Mueller, A. Kammoun, and E. BjoRnson, “Linear precoding based
on polynomial expansion: reducing complexity in massive mimo,”
EURASIP Journal on Wireless Communications and Networking, vol.
2016, no. 1, p. 63, 2016.

A. Kammoun, A. Muller, E. Bjornson, and M. Debbah, “Linear pre-
coding based on polynomial expansion: Large-scale multi-cell mimo
systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 8,
no. 5, pp. 861-875, 2017.

Q. Deng et al., “High-throughput signal detection based on fast matrix
inversion updates for uplink massive multiuser multiple-input multi-
output systems,” IET Communications, vol. 11, no. 14, pp. 2228-2235,
2017.

X. Tan, H. Han, M. Li, K. Sun, and C. Zhang, “Approximate expectation
propagation massive mimo detector with weighted neumann-series,”
IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68,
no. 99, pp. 662-666, 2021.

K. Lee and C. E. Chen, “An eigen-based approach for enhancing matrix
inversion approximation in massive mimo systems,” IEEE Transactions
on Vehicular Technology, vol. 66, no. 6, pp. 5480-5484, 2017.

X. Liang, W. Xu, H. Gao, M. Pan, and P. Zhang, “Throughput op-
timization for cognitive uav networks: A three-dimensional-location-
aware approach,” IEEE Wireless Communications Letters, vol. 9, no. 7,
pp. 948-952, 2020.

A. Chawla, A. Patel, A. K. Jagannatham, and P. K. Varshney, “Distribut-
ed detection in massive mimo wireless sensor networks under perfect
and imperfect csi,” IEEE Transactions on Signal Processing, vol. 67,
no. 15, pp. 4055-4068, 2019.

M. Bennis, M. Debbah, and H. V. Poor, “Ultrareliable and low-latency
wireless communication: Tail, risk, and scale,” Proceedings of the IEEE,
vol. 106, no. 10, pp. 1834-1853, 2018.

H. Wang, Y. Ji, Y. Shen, W. Song, and C. Zhang, “An efficient
detector for massive mimo based on improved matrix partition,” JEEE
Transactions on Signal Processing, vol. 69, pp. 2971-2986, 2021.

B. A. Mamedov, “Analytical evaluation of the fully relativistic plasma
dispersion function using binomial expansion theorems,” IEEE Trans-
actions on Plasma Science, vol. 37, no. 9, pp. 1770-1773, 2009.

S. I. Gass and M. C. Fu, Eds., Inverse Transform Method.
Boston, MA: Springer US, 2013, pp. 815-815. [Online]. Available:
https://doi.org/10.1007/978-1-4419-1153-7"200343

A. M. Tulino and S. Verd, “Random matrix theory and wireless commu-
nications,” Foundations and Trends in Communications and Information
Theory, vol. 1, no. 1, pp. 1-182, 2004.

G. Lu, J. Wu, R. C. Qiu, and H. Ling, “Analysis on the empirical spectral
distribution of large sample covariance matrix and applications for large
antenna array processing,” IEEE Access, vol. 7, no. 1, pp. 2169-3536,
2019.

S. Shahabuddin, I. Hautala, M. Juntti, and C. Studer, “Admm-based
infinity-norm detection for massive mimo: Algorithm and vlsi archi-
tecture,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 29, no. 4, pp. 747-759, 2021.

Q. Deng, X. Liang, X. Wang, M. Huang, and Y. Zhang, “Fast converging
iterative precoding for massive mimo systems: An accelerated weighted
neumann series-steepest descent approach,” IEEE Access, vol. 8, pp.
50244-50255, 2020.

W. Hui, J. Ya, and S. Yi, “An efficient detector for massive mimo based
on improved matrix partition,” IEEE Transaction on Signal Processing,
vol. Early Access, no. 2, pp. 1-15, 2021.

C. Zhang, Z. Wu, C. Studer, Z. Zhang, and X. You, “Efficient soft-
output gauss-seidel data detector for massive mimo systems,” [EEE
Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 12,
pp. 5049-5060, 2021.

I. Khoso, X. Zhang, I. Khoso, Z. Dayo, and X. Dai, “Computationally
efficient data detection in massive mimo wireless systems via semi-



This article has been accepted for publication in IEEE Systems Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/JSYST.2022.3179299

IEEE SYSTEMS JOURNAL, VOL. , NO. , AUGUST 2021

iterative method,” IEEE Transactions on Vehicular Technology, vol. 70,
no. 10, pp. 10252-10264, 2021.

Y. Hu, Z. Wang, X. Gao, and J. Ning, “Low-complexity signal detec-
tion using cg method for uplink large-scale mimo systems,” in /EEE
International Conference on Communication Systems, 2014.

[42] J. Minango and C. De Almeida, “Optimum and quasi-optimum relax-
ation parameters for low-complexity massive mimo detector based on
richardson method,” Electron. Lett., vol. 53, no. 16, pp. 1114-1115,
2017.

M. Wu, C. Dick, J. R. Cavallaro, and C. Studer, “High-throughput data
detection for massive mu-mimo-ofdm using coordinate descent,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 63, no. 12,
pp. 2357-2367, 2017.

X. Qin, Z. Yan, and G. He, “A near-optimal detection scheme based
on joint steepest descent and jacobi method for uplink massive mimo
systems,” IEEE Communications Letters, vol. 20, no. 2, pp. 276-279,
2016.

C. Yao, S. Zhang, and C. Pei, “MIl and map channel estimation for
distributed one-way relay networks with orthogonal training,” China
communications, vol. 12, no. 12, pp. 84-91, 2015.

H. Lim, Y. Jang, and D. Yoon, “Bounds for eigenvalues of spatial
correlation matrices with the exponential model in mimo systems,” IEEE
Transactions on Wireless Communications, vol. 16, no. 2, pp. 11961-
204, 2017.

B. M. Nouri, S. Haghighatshoar, and G. Caire, “Low-complexity statisti-
cally robust precoder/detector computation for massive mimo systems,”
IEEE Transactions on Wireless Communications, vol. 17, no. 10, pp.
6516-6530, 2018.

[48] J. Cespedes, P. Olmos, M. P. Sanchez-Fernandez, and F. Perez-Cruz,
“Probabilistic mimo symbol detection with expectation consistency
approximate inference,” IEEE Transactions on Vehicular Technology,
vol. 67, no. 4, pp. 3481-3494, 2018.

Y. Dong, C. Gong, Z. Zhang, X. Wang, K. Long, and X. Dai, “Low-
complexity ep receiver based on location-aware and reliability-aware
strategy,” IEEE Communications Letters, vol. 25, no. 6, pp. 2034-2038,
2021.

I. N. Tiba, Q. Zhang, J. Jiang, and Y. Wang, “A low-complexity admm-
based massive mimo detectors via deep neural networks,” in ICASSP
2021 - 2021 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2021, pp. 4930-4934.

[41]

[43]

[44]

[45]

[46]

[47]

[49]

[50]

Qian Deng received the B.S. and M.S. degrees in
Communication Engineering from Guilin University
of Electronic Technology, China, in 2006 and 2009
respectively, and the Ph.D. degree with the Key
Laboratory of Universal Wireless Communications,
Ministry of Education, Beijing University of Posts
and Telecommunications (BUPT), Beijing, China,
in 2019. Since 2019, she is a lecturer with the
College of Information and Communication Engi-
neering, Hainan University. Her research interests
include low-complexity precoding and detection in
massive MIMO systems, cognitive wireless network, convex and nonconvex
optimization with applications on signal processing, and UAV network.

Xiaopeng Liang received the B.S. degree in Com-
munication Engineering from Heilongjiang Univer-
sity, China in 2006, and the M.S. degree in Com-
munication Engineering from Guilin University of
Electronic Technology, China in 2009. From Sept.
2016, he started to pursue the Ph.D. degree in
Beijing University of Posts and Telecommunications
(BUPT), China. Since 2021, he is a lecturer with the
College of Information and Communication Engi-
neering. His research interests focus on the massive
MIMO signal processing, cognitive radio network

and UAV network.

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Qiang Ni (M04-SMO08) received the B.Sc., M.Sc.,
and Ph.D. degrees from the Huazhong University of
Science and Technology, China, all in engineering.
He is currently a Professor and the Head of the Com-
munication Systems Group, School of Computing
and Communications, Lancaster University, Lancast-
er, U.K. His research interests include the area of
future generation communications and networking,
including green communications and networking,
millimeter-wave wireless communications, cognitive
radio network systems, non-orthogonal multiple ac-
cess (NOMA), heterogeneous networks, 5G and 6G, SDN, cloud networks,
energy harvesting, wireless information and power transfer, IoTs, cyber
physical systems, Al and machine learning, big data analytics, and vehicular
networks. He has authored or co-authored 300+ papers in these areas. He
was an IEEE 802.11 Wireless Standard Working Group Voting Member and
a contributor to various IEEE wireless standards.

Jinsong Wu (SM11) received PhD from Department
of Electrical and Computer Engineering Queens
University, Canada. He received 2020 IEEE Green
Communications and Computing Technical Commit-
tee Distinguished Technical Achievement Recogni-
tion Award, for his outstanding technical leadership
and achievement in green wireless communications
and networking, He is elected Vice-Chair Tech-
nical Activities (2017-present), IEEE Environmen-
tal Engineering Initiative, a pan-IEEE effort under
IEEE Technical Activities Board (TAB). He was the
Founder and Founding Chair (2011-2017) of IEEE Technical Committee on
Green Communications and Computing (TCGCC). He is also the co-founder
and founding Vice-Chair (2015-present) of IEEE Technical Committee on Big
Data (TCBD). He received 2017, 2019, and 2021 IEEE System Journal Best
Paper Awards. His co-authored paper won 2018 IEEE TCGCC Best Magazine
Paper Award. He was a Series Editor in the IEEE JOURNAL OF SELECTED
AREAS ON COMMUNICATIONS Series on Green Communications and
Networking. He is the Founder and the Editor of the IEEE Series on Green
Communication and Computing Networks in the IEEE Communications
Magazine. He is an Area Editor of the IEEE TRANSACTIONS ON GREEN
COMMUNICATIONS AND NETWORKING.

A



