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Sam Kirkham and Claire Nance

Abstract

This article aims to understand the development of diachronic asymmetries
in phonological systems by evaluating the variability stability of synchronic
contrasts. We focus on sonorant systems involving secondary palatalisation,
grounded in the claim that palatalised laterals are more common than
palatalised rhotics cross-linguistically. Our analysis reports acoustic and
articulatory data on Scottish Gaelic, a Celtic language with a large sonorant
inventory contrasting palatalised, plain and velarised phonemes across laterals,
nasals and rhotics. We summarise high-dimensional dynamic characteristics
of the acoustic spectrum and midsagittal tongue shape using a two-stage data
reduction process and use these coefficients as inputs for training a Support
Vector Machine. This trained model classifies unseen data in terms of its
phonemic identity, which reveals that rhotics are classified best word-initially
and worst word-finally, with nasals always classified better than laterals. We
find that dynamic information substantially improves acoustic classification,
but only improves articulatory classification for some sonorants. We propose
that the variable synchronic stability of palatalisation contrasts complicates

potential trajectories of diachronic change in Gaelic.
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1. Introduction

In this article, we investigate whether diachronic and typological asymmetries
in phonological systems are reflected in the variable stability of synchronic
contrasts. It is widely predicted that the diachronic instability of some
phonological contrasts is a consequence of a larger pool of synchronic variability.
This is because such variability is hypothesised to facilitate misperception-based
sound change (Ohala, 1981) and can also weaken the robustness of phonemic
categories, leading to potential neutralisation over time (Bybee, 2015). But
does the propensity of a phonological contrast towards diachronic neutralisation
necessarily mean that it will be less robust at a given point in time? An
assumption underpinning many theories of sound change is that we can observe
the tendencies of diachronic change through examination of synchronic data,
with the hypothesis that there is a tight link between the two at any point
in time (Labov, 1994, 21). This suggests that a greater tendency towards
diachronic neutralisation should also be evident in synchronic data. In this
study, we examine claims about the diachronic trajectories of typologically
unusual sound systems and whether the variable stability of synchronic
contrasts is predictable from the attested sound changes. We also speculate
on whether variable synchronic stability between phonological categories
might be able to tell us something about future trajectories of sound change,
especially in light of existing diachronic predictions.

A particularly good case study for examining variable diachronic and

synchronic stability is the cross-linguistic system of contrasts that fall under
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the banner of secondary palatalisation. Previous research shows that some
secondary palatalisation contrasts in consonants are more unstable than
others (Kochetov, 2005; Iskarous and Kavitskaya, 2018). Palatalised rhotics, in
particular, are cross-linguistically rare and prone to merger with non-palatalised
rhotics (Hall, 2000), but laterals seem more robust to sound change (Iskarous

and Kavitskaya, 2010). Word-final palatalisation contrasts are also more

unstable than word-initial contrasts (Padgett and Ni Chiosdin, 2018). Importantly,

previous work shows that the robustness of palatalisation contrasts may
vary depending on the features analysed; for example, nasals may be more
distinctive than laterals in format transitions, but laterals have a more
distinctive spectral shape than nasals, with rhotics being least distinct in both
analyses (Iskarous and Kavitskaya, 2018). This suggests that palatalisation
contrasts are multi-dimensional and temporally distributed, potentially as a
consequence of a high number of phonological categories existing together in
a relatively narrow phonetic space.

The fact that some sonorant contrasts are diachronically less stable than
others cross-linguistically makes them an ideal candidate for assessing claims
about variable diachronic trajectories using synchronic data. In this study
we wish to further understand why some sonorants show greater stability
than others and, in doing so, we focus on palatalisation contrasts in Scottish
Gaelic (Celtic), which contrasts palatalised, velarised and plain sonorants
across laterals, rhotics and nasals. Notably, Scottish Gaelic has retained a
larger system of sonorants in comparison to closely-related Irish and Manx.
In this study, we take seriously the dynamic nature of sonorant contrasts,

building upon our previous work that has focused on selective sampling of
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a limited number of timepoints. We show that this previous research may
underestimate the extent of contrast that is present in the Scottish Gaelic
sonorant system; contrasts which we argue are fundamentally dynamic in
nature. We further demonstrate this by comparison with analyses that focus
only on a sonorant ‘steady-state’, which illustrates how some contrasts may

be more dynamic in nature than others.

1.1. Dynamics of secondary palatalisation

Secondary palatalisation involves overlap between a palatal gesture and
the consonant’s primary place of articulation, which contrasts with ‘full
palatalisation’, where the consonant’s primary place of articulation is changed
(Bateman, 2007, 2). Some languages, such as Russian and Scottish Gaelic,
have extensive secondary palatalisation contrasts across the consonant system,
such that almost every consonant has a palatalised and non-palatalised
counterpart (see Yanushevskaya and Bunci¢ 2015 for description of Russian,
and Nance and O Maolalaigh 2021 for description of Scottish Gaelic). For
this reason, all consonant palatalisation pairs in Russian, Scottish Gaelic
and other languages with this system are considered to contrast in secondary
palatalisation even though the secondary palatalisation contrast may at times
manifest as a change in primary place/manner.!

In terms of articulation, the most widely reported articulatory correlate
of secondarily palatalised consonants is tongue body fronting and raising

towards the palate accompanying the primary consonantal gesture (Kochetov,

!For example in maide ‘stick’ /matfo/, where the orthographic ‘d’ is palatalised and

changes from alveolar to post-alveolar place of articulation.
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2002; Stoll, 2017; Bennett et al., 2018; Malmi and Lippus, 2019; Spinu et al.,
2019). The fronting and raising gesture also frequently extends into the
surrounding vowels (Malmi and Lippus, 2019). This tongue body fronting is
often accompanied by tongue root advancement and pharyngeal expansion
(Kavitskaya et al., 2009; Bennett et al., 2018), while palatographic studies
additionally demonstrate that the tongue blade is spread across the hard
palate to a greater extent than in non-palatalised consonants (Farnetani et al.,
1991; Meister and Werner, 2015).

Capturing the acoustics of palatalisation contrasts is complex given their
multi-dimensional and dynamic nature. When the tongue body is raised and
fronted for a palatalised consonant, this results in a larger back cavity and
raised F2, which is particularly robust in laterals (Sproat and Fujimura, 1993;
Nance, 2014; Kochetov et al., 2020). The vowels surrounding palatalised
consonants also tend to show raised F2 due to an /i/-like glide in the transition
to/from a palatalised consonant, with such articulatory dynamics being
important to the contrast (Ni Chiosdin and Padgett, 2012; Kochetov, 2017;
Nance and Kirkham, 2020; Howson, 2018; Malmi et al., 2022). F1 and
F3 may also be lower in palatalisation contexts (Shuken, 1980; Bennett
et al., 2018; Kochetov, 2017). The multi-dimensional nature of palatalisation
contrasts have led others to analyse more holistic spectral features, such
as Mel Frequency Cepstral Coefficients (MFCCs) (Spinu et al., 2012; Spinu
and Lilley, 2016; Spinu et al., 2018) and smoothed spectra (Kochetov, 2017;
Iskarous and Kavitskaya, 2018; Nance and Kirkham, 2020). For example,
cepstral coefficients have been found to significantly outperform spectral

measures in classifying palatalised fricative contrasts (Spinu and Lilley, 2016;
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Spinu et al., 2018).

Secondary palatalisation is a good case study for testing the relationship

between diachronic neutralisation and synchronic stability, because of well-documented

differences between sonorant types. Palatalised rhotics involve a retracted
and stabilised tongue body for trill production (McGowan, 1992; Recasens,
2013), which comes into conflict with the tongue body advancement needed
for palatalisation (Iskarous and Kavitskaya, 2018; Kochetov, 2005; Stoll,
2017). Such biomechanical constraints may lead to a larger pool of synchronic
variability (Ohala, 1989), with the possibility that variants become phonologised
or contrasts are neutralised over time (Beckman et al., 1992; Bybee, 2015). For
example, articulatory variability may lead to ambiguity in perception, which
could advance the spread of a change further when misperceived by the listener
(Ohala, 1981). Such explanations are explicitly pursued in previous research
on sonorant palatalisation in terms of acoustics (Iskarous and Kavitskaya,
2018) and articulation (Kochetov, 2005; Stoll, 2017), with the claim in both
cases being that less robust phonemic categories are more susceptible to

merger.

1.2. Palatalisation in Gaelic

Our study focuses on Scottish Gaelic, a Celtic language closely related

2

to Irish and Manx.” The Scottish Gaelic language is usually referred to

in English by its speakers simply as ‘Gaelic’ /galik/ and we refer to it as

?Manx is believed to have become extinct as a first language in the 1970s, following a
long period of decline, but has subsequently undergone revival. It is taught in immersion
schooling and is transmitted in a small number of families. See Lewin (2021) for more

information on revived Manx.
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Gaelic henceforth. Together, the Celtic language sub-family consisting of
Gaelic, Irish and Manx is known as ‘Goidelic’. The most recently available
data (Scottish Government, 2015) show that there are approximately 57,600
Gaelic speakers in Scotland. Traditionally, Gaelic is associated with the
north-west Highlands and Islands of Scotland, and this is where the most
densely concentrated populations of Gaelic speakers live. In particular, Gaelic
is associated with the chain of islands off the north-west coast of Scotland
known as the Outer Hebrides or Western Isles, where around 60% of the
population reported the ability to speak Gaelic (Scottish Government, 2015).
A map showing the concentration of Gaelic speakers in Scotland is in Figure
1. The speakers in this study are from the Isle of Lewis, the most northerly
island in the Outer Hebrides chain. The Goidelic languages are descended
from Old Irish, which expanded from Ireland to Scotland and Isle of Man
in early medieval times (McLeod, 2020). It is generally thought that Gaelic
in Scotland had sufficiently diverged from Irish to be considered a separate

language in approximately 1100 CE (O Maolalaigh, 2008).

The Goidelic languages all have systems of contrastive secondary palatalisation

across the entire consonant system (with a few exceptions in some consonants)
(Broderick, 2009; Hickey, 2014; Bennett et al., 2018; Nance and o) Maolalaigh,
2021). In Nance and Kirkham (forthcoming 2022), we provide a historical
overview of the development of palatalisation in rhotics and comparison to
different Goidelic dialects. In this paper, we focus on the contrasts across
the whole sonorant system. To summarise: the most extensive Goidelic
palatalisation contrasts were found in Old Irish, where the system developed

by approximately 900 CE (Greene, 1973; Hickey, 1995). At this time, Old Irish
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Figure 1: Map showing the concentration of Gaelic speakers in Scotland according to the
most recently available figures from the 2011 National Census. Attribution: By SkateTier -
Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=31996352.

Original figure in colour, converted to greyscale here.

sonorants contrasted in place of articulation as well as palatalisation, resulting
in four different phonemes for laterals, nasals and rhotics (Thurneysen, 1946;
Russell, 1995; Hickey, 1995). It is thought that a three-way contrast between

palatalised, plain and velarised sonorants developed in Middle Irish (900-1200
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CE) (Hickey, 1995). The Irish system has evolved since early medieval times
in different ways in the modern Goidelic dialects. The most innovative dialect
in this respect is Manx, where palatalisation contrasts were lost in rhotics, and
reduced in laterals and nasals. At the other end of the scale are Hebridean
dialects of Gaelic, including the dialect under investigation here, Lewis Gaelic.
In Lewis and other Hebridean dialects, three lateral, three nasal and three
rhotic phonemes are maintained.

In comparison to many of the previous studies of palatalisation, Lewis
Gaelic is interesting in several respects. The majority of work carried
out previously on palatalisation has examined contexts where palatalised
consonants are contrasted with non-palatalised consonants, such as Russian.
In Gaelic sonorants there is instead a three-way distinction between palatalised,
plain and velarised. The rhotic inventory, however, has been particularly
prone to reduction across Goidelic dialects, with laterals appearing most
robust to sound change. This is in line with the findings discussed above for
Slavic, which show that rhotics are more susceptible to change than laterals

(Carlton, 1990; Iskarous and Kavitskaya, 2018).

1.8. Summary and predictions

In the current study, we investigate the extent to which palatalisation
contrasts are maintained, combining dynamic phonetic evidence from acoustics
and articulation in order to examine whether phonemic distinctiveness varies
between laterals, nasals and rhotics. We specifically build upon previous work
in the following ways. First, previous work on the asymmetry of sonorant
palatalisation contrasts has focused on Russian as the language with the most

extensive system of sonorant palatalisation in the Slavic family (Kochetov,

10
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2005; Stoll, 2017; Iskarous and Kavitskaya, 2018). Here, we consider Lewis
Gaelic, as the Goidelic dialect with the most extensive system of sonorant
palatalisation in a completely different language family. Second, previous
work in this area has considered articulation (Kochetov, 2005; Stoll, 2017) or
acoustics (Iskarous and Kavitskaya, 2018) respectively, but we combine both
perspectives and use a method that allows us to subject each modality to a
comparable classification task. Third, much previous work has focused on
static timepoints, either sonorant midpoints or specific locations of formant
transitions. We take a broader approach by compressing all time-varying
information that is available in the signal and using this to assess classification
accuracy. This allows us to more comprehensively investigate the hypothesis
that diachronically unstable contrasts are more vulnerable to synchronic
neutralisation at a specific snapshot in time. Accordingly, we set out the

following questions for the present study:

1. Which sonorant categories (laterals, nasals, rhotics) show the most
robust phonemic contrasts?

2. Is contrast more robust in acoustic or articulatory data?

3. How do acoustic and articulatory dynamics contribute to phonological
contrast?

4. What do these results tell us about the variable synchronic stability of

categories and the potential diachrony of palatalisation contrasts?

We test the prediction that laterals will be best classified, followed by
nasals and then rhotics, and anticipate that reduction will be more evident
word-finally. In previous work on Gaelic, Nance and Kirkham (2020) show that

laterals are more robust than nasals in formants at the sonorant steady-state,

11
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while Nance and Kirkham (forthcoming 2022) show that three initial rhotics
are well-maintained in Gaelic, despite potential neutralisation of rhotics
in word-final position. However, these studies used different methods and
different features to establish contrast, as well as focusing on a small set of
selective timepoints, so our present study uses a more holistic and comparable
method for establishing the relative robustness of three-way contrasts across

laterals, nasals and rhotics.

2. Methods

2.1. Speakers

We recorded data from twelve L1 speakers of Lewis Gaelic, all of whom
were raised in Gaelic-speaking families on the Isle of Lewis (six female, six
male). They acquired English either as simultaneous bilinguals or upon
entering the school system. The speakers were aged 21-80 and either used
Gaelic as part of their job, or had used Gaelic before retirement. All the
speakers reported using more Gaelic than English in their daily lives and
can be considered Gaelic-dominant bilinguals. Due to the fragility of Gaelic
language transmission, even in locations such as Lewis (Munro et al., 2011),
it is difficult to obtain a large sample of data from Gaelic-dominant bilingual
speakers. We recognise that the data here represent a large age range, but

the speakers are socially consistent in using more Gaelic than English.

2.2. Data recording and stimuli

Simultaneous acoustic and ultrasound tongue imaging data were recorded

in a community centre or at the speaker’s workplace. The acoustic signal

12
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was recorded using a Beyerdynamic Opus 55 headset microphone, which was
preamplified and digitized using a Sound Devices USBPre2 audio interface
at 44.1 kHz with 16-bit quantization. Simultaneous ultrasound data were
recorded using a Telemed MicrUs system, with a 64 element probe of 20
mm radius. We used a 2 MHz probe frequency, 80 mm depth, 90% field of
view and 57 scan lines, which resulted in a frame rate of ~92 Hz. The probe
was stabilised using an Articulate Instruments metal headset (Articulate
Instruments, 2008). The occlusal plane for each speaker was imaged by them
biting on a bite plate placed behind the upper incisors and pushing their
tongue up against it. Synchronization between audio and ultrasound data was
achieved using the frame-level TTL pulse emitted by the ultrasound scanner.
Data presentation and recording was handled using the Articulate Assistant
Advanced software (Articulate Instruments, 2018).

The stimuli used for this study are shown in the Appendix (Tables 8-10).
We aimed to capture laterals, nasals and rhotics in word-initial and word-final
position in three vowel contexts where possible: /i a u/. This was not always
possible due to the historical development of palatalisation in high front vowels.
For example, there are no velarised nasals in the context of /i/ in readily-known
words. The plain sonorants developed from contexts of historical lenition, and
in word-initial position they still occur in contemporary lenition contexts. For
an overview of changes in lenition (contemporary morphophonological changes
in Celtic language word-initial consonants known as ‘mutation’), see Ball and
Miiller (2009) or Nance and O Maolalaigh (2021) for Gaelic specifically. For
this reason we included the word-initial plain sonorants in short phrases that

would trigger mutation — e.g. mo nathair ‘my snake’ — where the possessive
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mo ‘my’ triggers mutation.

2.3. Data preparation

Acoustic landmarks were labelled manually in Praat using information
from the waveform and spectrogram (Boersma and Weenink, 2020). We
labelled the entire sonorant-vowel interval for all tokens, such as lateral-vowel
for word-initial tokens and vowel-lateral for word final tokens. This interval
was used for all analyses reported in this paper. We carried out post-hoc
screening of the ultrasound data and found that only seven of the twelve
speakers had consistently good images (three female, four male). As our
analysis below is premised upon comparing acoustic and articulatory data,
we only use these seven speakers for the analysis, resulting in 1165 tokens

with parallel acoustic and ultrasound data.

2.4. Acoustic features

The acoustic features used in this analysis are Mel Frequency Cepstral
Coeflicients, which are highly effective at reducing the dimensionality of the
spectrum while retaining linguistically-relevant features (Davis and Mermelstein,
1980). MFCCs are directly related to characteristics of the spectrum and,
therefore, do have a physical interpretation, despite their complexity in the
higher coefficients. For example, lower MFCCs describe global aspects of
spectral shape, while increasingly higher coefficients describe increasingly
finer details in the spectrum. MFCCs have previously been shown to capture
phonemic palatalisation contrasts with a high degree of accuracy (Spinu et al.,

2012; Spinu and Lilley, 2016; Spinu et al., 2018).
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We use 6 MFCCs to summarise the acoustic spectrum, which has previously
been shown to be sufficient for capturing palatalisation contrasts (Spinu et al.,
2018). We sensitivity tested the effects of between 4 and 13 MFCCs and
found that 6 MFCCs resulted in the strongest overall classification accuracy,
although some specific models showed a small (2-4%) improvement using 8
coefficients, after which no further improvement was evident. Accordingly, for
each token, 6-element MFCC vectors were calculated across each sound file
using a 25 ms window and 10 ms frame shift, with a pre-emphasis coefficient
a = 0.97 and a lifter exponent of 0.6. MFCCs were subsequently extracted
at 11 equally spaced points across the labelled sonorant-vowel interval and
each MFCC was by-speaker normalized using z-scoring. At this stage, each
token is represented by 6 MFCC trajectories, each of which is sampled over

11 points.

2.5. Articulatory features

Splines were automatically fitted to the midsagittal ultrasound data using
AAA’s batch fit function. A paid research assistant manually checked and
corrected any obvious errors in the splines, but we did not correct minor
tracking errors. All splines were then rotated and scaled to the occlusal
plane. These data comprise 42 values in 2-dimensional x/y space. In order to
reduce the dimensionality of the tongue splines, we fitted a Discrete Cosine
Transform (DCT) to each token at 11 propotionally-spaced timepoints across
the sonorant-vowel or vowel-sonorant interval. The DCT has been used for
summarising whole acoustic spectra (Harrington, 2010; Nossair and Zahorian,
1991), formant trajectories (Watson and Harrington, 1999) and articulatory

time series (Shaw and Kawahara, 2018) and is conceptually extendable to
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spatial representations, such as the ultrasound tongue spline. To this end,
the ultrasound-DCT is conceptually comparable with MFCCs, as both sets
of features fundamentally represent the amplitudes of cosine waves fitted to
the respective signals after undergoing transformation. The DCT coefficients
have a physical interpretation, with the lower coefficients being proportional
to the mean (Cj), slope (C}) and curvature (Cy) of the tongue shape, with
higher coeflicients representing increasingly finer detail in the shape. We fit
a DCT of the form described in Harrington (2010) with m coefficients to a

signal x(n) with length N, where the m'* coefficient C,, is calculated using

(1).

iy 2n + 1)mm
o= 2 3wty cos (2507 )

where k,, = —,m =0k, =1, m#0

(1)

We illustrate DCT compression of ultrasound tongue shapes in Figure
2, which represent smoothing using different numbers of DCT coefficients
(between 2 and 10 coefficients) on a single token. We obtained the smoothed
tongue shapes using an inverse DCT, which reconstructs the input signal by

summing half-cycle cosine waves with the amplitudes of the corresponding

DCT coefficients. The figure shows us that two coefficients {Cy, C} approximates

the slope of the tongue, while using between three {Cy, C1, Cy} and five {Cp,
(1, ..., C4} produces similar tongue shapes. At 6 DCT coefficients {Cy, C1,

., Cs} the slight dip between the tongue tip and dorsum starts to appear,
which is present in the original signal. After this, we see an increasing level

of detail, but not necessarily any strikingly new information in the signal.
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Figure 2: Original midsagittal tongue shape for one token plus DCT reconstructions of the
same data using varying numbers of DCT coefficients. The tongue tip is on the right of
the image and the tongue root is on the left. The token represents a single spline taken

from a word-initial rhotic.

In order to empirically evaluate the number of DCT coefficients needed
to summarise each tongue shape, we fitted DCTs to all tongue splines (11
per token, representing 11 time-points) with different numbers of coefficients,
ranging from 2 coefficients to 10 coefficients, which gives us 9 different options
to evaluate. We then conducted an inverse DCT in order to reconstruct the
original signal from these coefficients, which essentially gives us a DCT-smoothed
version of the original signal. Following Shaw and Kawahara (2018), we
then calculate Pearson’s correlation between the original signal and the
DCT-reconstructed signal and plot these correlation values for different
numbers of DCT coefficients. Figure 3 shows that 3 coefficients yields
correlations with the original signal of r > .95 for all speakers. As shown above,

however, there are some advantages to the higher DCT coefficients, particularly
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for more complex tongue tip shapes. To this end, we ran testing using the
same classification analysis that we report later in this paper, examining the
effects of between 4-8 DCT coeflicients on classification accuracy for each
sonorant®position. Laterals and nasals did not benefit from more than 5
coefficients, but the inclusion of a 6th DCT coefficient improved word-initial
rhotic classification by almost 10%. We anticipate that this is because it
captures the subtle tongue tip shaping depicted in Figure 2. After settling on
6 DCT coefficients, we normalized each coefficient by z-scoring each speaker’s

data across all productions.

Number of DCT coefficients

Figure 3: Pearson’s correlation between the original ultrasound tongue splines and
DCT-smoothed versions using varying numbers of DCT coefficients. The solid vertical line

represents the final number of DCT coefficients used for the classification analysis.

2.6. Summarising high-dimensional dynamic information

At this point, the acoustic data are represented by 6 MFCC trajectories
sampled at 11 points in time (= 66 points), and the ultrasound spline data
are represented by 6 DCT trajectories sampled at 11 points in time (= 66

points). This already represents considerable dimensionality reduction from
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a time-varying power spectrum or time-varying ultrasound spline, but we
conducted further dimensionality reduction of the dynamic data using an
approach inspired by Nossair and Zahorian (1991). This involves fitting a
Discrete Cosine Transformation (DCT) to each of the time-varying MFCC
(acoustics) and DCT (ultrasound) coefficients discussed above, which allows
us to summarise the shape of each of those coefficient trajectories over time
(see Marin et al. 2010 for a similar approach to spectral data). This provides
a higher-level set of coefficients that encodes the shape of each time-varying
MFCC or DCT coefficient, each of which summarises some dynamic aspect
of spectral shape or tongue shape.

We empirically evaluated the number of DCT coefficients needed to
summarise each trajectory in the same way as for the ultrasound spline
fitting, which is plotted in Figure 4. We find that 3 DCT coefficients
returns correlations of r > .9 for all acoustic-MFCC trajectories and r >
.95 for ultrasound-DCT trajectories, except for the 6th coefficient in both
sets (MFCC6 and DCTS5), which are slightly below these values. However,
the MFCC/DCT trajectories are not always smooth functions of time and
we avoid seeking higher correlations as we wish to avoid overfitting to the
signal. Accordingly, we choose 3 DCT coefficients to represent both sets of
trajectories, which captures the mean, slope and curvature of each coefficient
trajectory over time. This means that each of the 6 acoustic-MFCC and 6
ultrasound-DCT dynamic trajectories is summarised by 3 DCT coefficients.
As a result, each token’s time-varying acoustic spectrum or ultrasound tongue
spline across the sonorant-vowel interval is represented by 18 (6 x 3) values.

In summary, our final inputs to our model are as follows. We have
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Figure 4: Pearson’s correlation between dynamic acoustic-MFCC trajectories and
DCT-smoothed versions using varying numbers of DCT coefficients (top) and the dynamic
ultrasound-DCT trajectories and DCT-smoothed versions using varying numbers of DCT
coefficients (bottom). The solid vertical line represents the final number of DCT coefficients
used for the classification analysis. The dashed horizontal line represents the correlation
coefficient cut-off used for selecting the number of DCT coefficients for each measure, which

was based on the first 5 dynamic MFCC/DCT trajectories.

compressed a complex power spectrum sampled at 11 points in time for each
token to 18 values. These values are a compressed representation of how the
spectrum changes over the sonorant-vowel interval. We have also compressed
time-varying ultrasound tongue splines sampled at 11 points in time for each

token to 18 values, which represents how midsagittal tongue shape changes over
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the sonorant-vowel interval. These compressed representations correlate well
with the original signals and should, therefore, capture important information

in the original signals. We now turn to the details of the classification analysis.

2.7. Classification analysis

We use support vector machines (SVMs) in order to establish how robustly
the three-way phonemic contrast can be classified for each sonorant, based
on an initial training phase mapping phonological categories to acoustic
and articulatory feature sets. SVMs are a class of supervised statistical
learning models that aim to find the hyperplane that maximally separates two
classes in N-dimensional space (Boser et al., 1992; James et al., 2013). The
hyperplane is located at the maximum margin, which is the largest difference
between data points of the two classes. Non-linear separation between classes
is typically achieved via a kernel, whereby the data are transformed into
a higher-dimensional space and linear classification is then performed in
this high-dimensional space. SVMs are a binary classification method but
multi-class classification can be achieved in various ways. The method we
use is the one-against-one technique, in which each category is compared
against one other category. This process is repeated for all combinations of
categories, with each classifier voting for one category and the category with
the highest number of votes being classified accordingly. SVMs have been
widely applied to speech data (Clarkson and Moreno, 1999; Wang et al., 2013;
Yu, 2017) and are typically reported to show good phoneme classification
accuracy on acoustic and articulatory signals. One reason for this is that
SVMs are concerned with the margins between classes, rather than the mean

and variance of each class, meaning that a larger data set is better only insofar
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as the additional data better represents the boundaries between classes.
Models were fitted using the e1071 package in R (Meyer et al., 2021). We
fitted separate models to each combination of sonorant type and position,
such as word-initial laterals, word-final laterals, word-initial nasals, etc. Each
model had phoneme as the outcome variable and the 18 dynamic acoustic
features or the 18 dynamic ultrasound features as the predictor variables. Each
feature set was randomly split into 80% training and 20% testing subsets. All
models were fitted using a radial basis function kernel, and parameter tuning
for each model was conducted on the training data only using a grid search
over a range of values for v = {107, 1075, ..., 107!} and C' = {0.1, 1, 10}, with
model performance evaluated using 10-fold cross-validation. The model with
the optimal parameters was used to predict the phonemic identity of the 20%
test data set based only on the input measurements (with separate models for
acoustic and ultrasound data). In order to mitigate against splitting a small
data set, we used Monte Carlo cross-validation (Picard and Cook, 1984; Kuhn
and Johnson, 2013), which involved running 100 iterations of the train-test
procedure for each model, using a different random train-test split each time.
We then averaged over the 100 iterations to produce a final classification

matrix and overall classification rates.> All code and data used for analyses

3In order to empirically determine the chance classification rate for a data set comparable
in size and dimensionality to the models used here, we generated simulated data with 18
numerical variables corresponding to the 18 MFCC/DCT coefficients, each of which was
populated with random values from a normal distribution A/(0, 1) and then each observation
was randomly assigned one of three phoneme labels (plain, palatalised, velarised). We then
ran the same procedure described above for the real models and found an average overall

classification rate of 31.5-36.94% on random data, depending on the same size, which is
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in this paper is available at: https://osf.io/dfe7g/.

3. Results

3.1. Laterals

The lateral acoustic model in Table 1 shows overall classification rates
of 74.46% (initial) and 81.27% (final), which represents well above chance
classification. The classification matrix for initial laterals shows that /I'/ is
the most accurately classified at 78.59%, while /1/ is the worst at 63.54%.
Note that the majority of inaccurate classifications for /Il/ in initial and final
context are as /I¥/, suggesting some overlap in the correlates of velarised and
palatalised lateral phonemes. Classification for word-final laterals is better
than initial laterals, but word-finally /1¥/ is the most accurately classified
phoneme at 91.77%. Overall, this suggests that initial and final laterals have
broadly similar classification rates, with the palatalised and velarised phoneme
being most similarly distinct initially and the velarised phoneme being most
distinct finally.

The lateral ultrasound model in Table 2 shows overall classification rates
of 73.37% (initial) and 83.04% (final), but these statistics particularly obscure
considerable between-phoneme differences in classification, suggesting slightly
more robust lateral contrasts in the ultrasound data. In word-initial context,

/1¥/ shows rather poor classification of 59.03%, with 31.79% of productions

close to the theoretical chance level of 33.3% for three-way classification.
4Sensitivity testing and initial modelling was carried out using Lancaster University’s

High End Computing facility, after which final models were fitted locally for the publicly

available documentation.
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WORD-INITIAL WORD-FINAL
Yoo Yoo g
I¥ 76.55 &.92 14.54 91.77 129 6.94
1 2783 63.54 8.63 22.95 70.55 6.49
I 20.43 0.98 78.59 25.22 1.79 72.98

Overall: 74.46% Overall: 81.27%

Table 1: SVM classification matrix for lateral acoustic data. Values represent percentage

correct classification (rounded to 2 decimal places).

being misclassified as /I'/. Outside of this phoneme, the other phonemes are
classified better than the acoustic MFCC data. This is also true for word-final
laterals, except for /1¥/ being slightly better classified in the acoustic data
(91.77% vs 89.77%).

WORD-INITIAL WORD-FINAL
Moo yoo g
¥ 59.03 9.18 31.79 89.77 1.11 9.11
1 18.88 80.81 0.31 15.05 &81.28 3.67
I 1429 0 85.71 21.37 1.84 76.79

Overall: 73.37% Overall: 83.04%

Table 2: SVM classification matrix for lateral ultrasound data. Values represent percentage

correct classification (rounded to 2 decimal places).

In summary, the laterals data show variability in classification, but
with slightly better classification in word-final context and substantially

above-chance classification in all cases. The models show that /1¥/ and /II/
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are most often misclassified as each other and only very rarely as /1/. This
suggests that while velarised and palatalised laterals do have some distinctive
acoustic and articulatory correlates, there is a reasonable amount of overlap
in these categories, which leads to occasional misclassification. The acoustic
and articulatory data show relatively similar findings, except for substantially

poorer classification for initial /1¥/ in the ultrasound data.

3.2. Nasals

The nasal acoustic model in Table 3 shows overall classification of 86.67%
(initial) and 85.53% (final), which is higher than for laterals. Our previous
work has reported less robust distinctions between nasal phonemes in Gaelic
(Nance and Kirkham, 2020), but that analysis did not take formant transitions
or acoustic dynamics into account. Indeed, our present analysis suggests that
such dynamics are crucial to this contrast, and fitting comparable SVMs to
a single time-point at the nasal steady-state reduces classification accuracy
substantially (see Section 3.4).

We find that classification is relatively similar between positions. For
example, /n/ is the worst classified phoneme in initial (81.22%) and final
(82.32%) position, although both remain well classified. The velarised and
palatalised phonemes are classified very similarly across both positions,
suggesting a relatively high degree of distinctiveness between the acoustic
correlates of all three phonemes.

The nasal ultrasound model in Table 4 is very similar to the acoustics
model, with overall classification of 84.70% (initial) and 89.81% (final). /n/
is classified better in final position (94.68%) than in initial position (84.10%),

but classification remains high in all cases.
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WORD-INITIAL WORD-FINAL

n¥ n Elj n¥ n Qj
n¥ 87.05 6.24 6.71 86.17 0.57 13.26
n 15.02 81.22 3.76 10.52 82.32 7.16
o 9.08 0.58 90.34 996 1.64 88.40

Overall: 86.67% Overall: 85.53%

Table 3: SVM classification matrix for nasal acoustics data. Values represent percentage

correct classification (rounded to 2 decimal places).

WORD-INITIAL WORD-FINAL
¥ n o’ n¥  n o’
0¥ 8013 7.92 1195 9179 0 8.21

n 9.29 84.10 6.61 4.58 94.68 0.74
n 9.01 0.90 90.10 12.27 2.09 85.64
Overall: 84.70% Overall: 89.81%

Table 4: SVM classification matrix for nasal ultrasound data. Values represent percentage

correct classification (rounded to 2 decimal places).

Overall, nasals show better classification than laterals in acoustics and
articulation. Word-final phonemes are slightly better classified than word-initial
phonemes in articulation, but this is only a small difference. This stands in
contrast to our previous research, where we found weak distinctions between
nasal phonemes. We propose that our current model classifies nasals very
effectively due to the incorporation of dynamic information across the nasal

and adjacent vowel, suggesting that cues to the three-way contrast in nasals
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is highly dynamic. We pursue this idea further in Section 3.4.

3.3. Rhotics

The rhotic acoustics model in Table 5 shows overall classification of 91.14%
(initial) and 73.19% (final). This means that rhotics show the best average
classification accuracy in initial position but the worst in final position across
all sonorant types in acoustics. We find very robust maintenance of initial
rhotic contrasts, with /r¥/ at 92.99%, /r/ at 90.16% and /1r'/ at 89.20. In
particular, /r/ is hardly ever misclassified as /r'/ (0.08%), which is impressive
given that these results represent the average of 100 model runs, meaning that
there was near-zero confusion between /r/ and /r!/. In contrast, word-final
rhotics show the poorest classification of any models, with classifications of
Jr¥) = 75.14%, /r/ = 63.28% and /r’/ = 78.41%. These misclassifications
are still substantially above chance classification, but it suggests that the
word-final categories have less robust phonetic correlates than word-initial

categories, which leads to poorer classification accuracies.

WORD-INITIAL WORD-FINAL

oo o oo o
Y9299 595 1.06 7514 441 2045
r 976 90.16 008 1355 63.28 23.17
voo787 292 8920 1411 7.48 7841

Overall: 91.14% Overall: 73.19%

Table 5: SVM classification matrix for rhotic acoustic data. Values represent percentage

correct classification (rounded to 2 decimal places).
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The rhotic ultrasound model in Table 6 shows overall classification of
85.07% (initial) and 65.65% (final), showing the same patterning between
initial and final context but with slightly poorer performance than in acoustics.
Accordingly, every phoneme is classified slightly worse than the acoustics
model in both positions, except for word-final /r/, which is near identical
between the two modalities. Interestingly, the robustness of word-initial
classification is evidenced in the fact that /1’/ is never misclassified as /r/
and /r/ is never misclassified as /1r'/, suggesting a categorical distinction
between these phonemes in articulatory dynamics. This suggests that the
palatalisation gesture in initial rhotics is highly distinct from the articulation
of the plain rhotic. In contrast, there are varying degrees of confusion between
palatalised and velarised rhotics, although these categories are still fairly well

classified.

WORD-INITIAL WORD-FINAL

r¥ r ) r¥ r r’

[a] [al [al n

r¥ 84.12 13.75 2.14 58.42 6.20 35.38

r 12.00 88.00 O 15.28 63.80 20.92
1m"j 1840 0 81.60 21.77 4.80 73.43
Overall: 85.07% Overall: 65.65%

Table 6: SVM classification matrix for rhotic ultrasound data. Values represent percentage

correct classification (rounded to 2 decimal places).

Overall, the most striking result for the rhotics is that while classification
is the best of all models for initial rhotics, it is the lowest for final rhotics.

The acoustic data for initial rhotics also outperform the ultrasound data in
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classification accuracy. This suggests that there exist clear correlates of the
three-way contrast for initial rhotics, especially in acoustics, but much weaker

phonetic correlates for the contrast in final rhotics.

3.4. Comparison between dynamic models and sonorant steady-state

Finally, we compare the models in the above sections with models fitted
to the midpoint of the sonorant steady-state, which was defined in Nance
and Kirkham (2020) as a labelled interval that captures relatively static
formant values during an unambiguously lateral, nasal or rhotic phase. The
steady-state model structure was the same as for the dynamic models, but
as there is only one time-point, there are only 6 MFCCs for the acoustics
and 6 DCTs summarising the ultrasound tongue shape, with no additional
dynamic information. Table 7 shows the average classification accuracy for
each model, with comparison between steady-state and dynamic models. To
re-cap, these values represent the average classifications over 100 Monte Carlo
cross-validation train-test iterations.

Table 7 shows that the dynamic models produce higher average classification
accuracies in all cases, with the exception of the initial laterals acoustics
model, where the dynamic model is 2.53% worse. However, the magnitude of
the difference between steady-state and dynamic models is highly variable
between sonorants. In acoustics, the impact of dynamics on classification
is largest for nasals (24.81% higher in initial, 34.26% higher in final) and
is higher than 10% for all models except initial laterals. In the ultrasound
data, the differences are generally smaller, with negligible differences for
laterals, final nasals and initial rhotics, but with substantial improvement for

initial nasals (12.67%) and final rhotics (24.69%) when dynamic information
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modality sonorant position steady-state dynamic difference

acoustics lateral initial 76.99 74.46 —2.53
final 62.28 81.27 18.99
nasal initial 61.86 86.67 24.81
final 51.27 85.53 34.26
rhotic initial 78.84 91.14 12.30
final 51.33 73.19 21.86
articulation lateral initial 68.58 73.37 4.79
final 76.04 83.04 7.00
nasal initial 72.03 84.70 12.67
final 86.81 89.81 3.00
rhotic initial 76.24 85.07 8.83
final 40.96 65.65 24.69

Table 7: SVM average classification accuracies (%) for models fitted to the sonorant
steady-state (steady-state) and the whole sonorant-vowel interval (dynamic). The ‘difference’
column represents the dynamic model accuracy minus the steady-state model accuracy,
with positive values indicating % improvement for the dynamic model over the steady-state

model and negative values indicating better relative performance on the steady-state model.

is included.

Overall, this comparative analysis suggests that the contrastive correlates
of phonological palatalisation take on a particularly dynamic quality for all
sonorants in acoustics, except for initial laterals, and also take on a dynamic
quality for initial nasals and final rhotics in the articulatory data. There

are fewer dynamic cues to contrast in the ultrasound data, compared with
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acoustics, with many sonorants not benefitting from the addition of dynamic
articulatory information beyond a single theoretically-informed time-point at

the sonorant steady-state.

3.5. Summary of results

We conducted classification analyses on the three-way contrast in laterals,
rhotics and nasals in Scottish Gaelic, with separate models for word position
and acoustic/articulatory data. We use classification accuracy as a proxy for
the relative stability of each three-way contrast. In word-initial position, we
find that rhotics are best classified, followed by nasals, and then laterals. This
overall pattern is observed in both the acoustic and articulatory data, with the
acoustic data always showing better overall classification rates. In word-final
position, nasals are classified best, followed by laterals, and then rhotics. This
overall pattern is observed in both the acoustic and articulatory data, with
the articulatory data showing slightly better classification for final laterals
and nasals, but not for rhotics. Finally, we show that incorporating dynamic
information about the entire sonorant-vowel sequence improves classification
accuracy by between 12.30% and 34.26% in the acoustic data, except for initial
laterals, which are slightly worse when dynamics are included. However, the
articulatory data show less overall improvement, with only initial nasals and
final rhotics showing improvement of over 10% when dynamics are included.
In the following section, we discuss the implications of these results for the
role of dynamics in contrast maintenance and the stability of palatalisation

contrasts.
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4. Discussion

4.1. Variable stability of synchronic contrasts

A consistent finding in this study is that nasals have higher classification
accuracy than laterals. We did not predict this based on the previous
Gaelic research, but there are good reasons to believe this result, the most
obvious of which is the inclusion of dynamic information in our models.
Formant transitions are well known to be a strong cue to place of articulation,
particularly for nasals (Malécot, 1956; Wright, 2004), which is due to the
weakening of the upper formants due to nasal anti-formants in the spectrum.
Indeed, Iskarous and Kavitskaya (2018) find nasals to be more distinctive
than laterals in formant transitions. The inclusion of dynamic information for
nasals is, therefore, a plausible reason for why we find better acoustic contrast
in nasals than laterals, in contrast to Nance and Kirkham (2020), where we
only analysed formants at the sonorant steady-state. This is supported by
our finding that laterals are classified better than nasals in our steady-state
models, but that nasal classification drastically improves when we incorporate
dynamic information across the sonorant-vowel interval. From this, we can
conclude that the three-way nasal contrast in Gaelic is fundamentally dynamic
in nature and likely more so than for laterals or rhotics, due to the relevant
cues to contrast being more temporally distributed for nasals.

We predicted that rhotics would show the weakest classifications, based on
previous research (Kochetov, 2005; Stoll, 2017; Iskarous and Kavitskaya, 2018).
This is true word-finally, but certainly not word-initially, which is in line with
our previous work on Gaelic. In Nance and Kirkham (forthcoming 2022) we

report strong evidence of contrast in initial rhotics based on low-dimensional
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phonetic information, such as formant frequencies, so it is unsurprising that
we also find good classification for rhotics when we take even more information
into account. We do find, however, that final rhotics are classified comparably
worse than any other sonorant, which supports the tendency towards contrast
neutralisation in final rhotics. It is well-known that codas contain weaker
acoustic cues for place of articulation than onsets (Ohala, 1990; Wright, 2004).
Gaelic is unusual in having an overall VC structure, similar to Irish (Hammond
et al., 2014; Ni Chioséin et al., 2012), but, despite this, the proposal that
acoustic cues are weaker in syllable-final position remains and is backed up
by perceptual research. For example, Kochetov (2002) and Ni Chiosain and
Padgett (2012) both find that listeners are less likely to distinguish palatalised
and non-palatalised pairs in VC contexts compared with CV contexts. This
factor may explain the tendency for initial rhotics to show more robust
distinctions than final rhotics, but this logic does not appear to extend to
laterals or nasals, which show similar classification between positions and
sometimes slightly better classification in final position.

We now briefly comment on how our model compares with human listeners;
in other words, can Gaelic speakers accurately perceive phonemic identity
from similar acoustic information to what we analyse here? Listeners can
distinguish palatalised and non-palatalised consonants with high accuracy
(Kochetov, 2002; Ni Chiosain and Padgett, 2012; Spinu et al., 2012), even
when they do not speak a language with palatalisation contrasts. Babel
and Johnson (2010) found that American English listeners performed no
differently from Russian listeners at a fast-paced AX discrimination task

comparing word-initial Russian palatalised and non-palatalised consonants,
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although Hacking et al. (2016) show that L2 English learners have greater
difficulty producing the Russian contrast word-finally. Our rhotics results
are in line with the above research showing better perceptual discrimination
between palatalised and non-palatalised consonants in CV contexts compared
with VC contexts. In summary, we consider our machine classification to be

comparable to the discrimination capabilities of a human listener.

4.2. The dynamic nature of palatalisation contrasts

A major finding of this study is the extent to which the incorporation of
dynamic information improves acoustic classification. This was particularly
true of nasals, but, surprisingly, we find little difference between the steady-state
and dynamic models for initial laterals. It could be the case that the sonorant
steady-state is where the primary cues for such contrasts exist in laterals.
However, we also find other insensitivities to model adjustments in the initial
laterals data. For example, during sensitivity testing we found that increasing
or decreasing the number of coefficients had the least effect on initial laterals. It
may be that the acoustic and articulatory data used here provides an adequate
representation for this context, with reasonable accuracies of 73-75%, but
that the highly audible contrast we perceive for initial laterals has other
acoustic and articulatory correlates that are not well captured in this study.

Despite the strong contribution of dynamics to acoustic classification,
we find this to a much lesser degree with the articulatory data. This may
be a consequence of dynamic non-linearity in acoustic-articulatory relations
(Stevens, 1989; Strycharczuk and Scobbie, 2017; Gorman and Kirkham, 2020),
whereby articulatory variation in some parts of the vocal tract does not

produce proportionate change in the acoustic output, at least in terms of
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the parameters measured here. Another explanation could be the nature
of the acoustic and articulatory representations used in this study. For
instance, MFCCs capture rich details of the acoustic spectrum, whereas
the midsagittal tongue shape obtained by ultrasound imaging is already a
very sparse representation of the three-dimensional oral tract. Furthermore,
it is possible that the the lesser contribution of dynamics to articulatory
classification may be a consequence of our focus on global change in midsagittal
tongue shape. It may be the case that other aspects of articulatory timing,
such as the relative timing of coronal, palatalisation and velarisation gestures,
represent stronger articulatory cues to contrast than overall change in tongue
shape. We plan to explore this further in future research, with the aim of
better understanding the articulatory dynamics of palatalisation contrasts.
Finally, we must highlight some caveats for interpreting the comparison
between steady-state and dynamic models. First, the inputs to each model
necessarily differ in dimensionality (6 for steady-state, 18 for dynamic). While
this is an obvious consequence of incorporating time-varying information into
the dynamic model, a larger number of parameters increases the possibility
of overfitting and producing overly optimistic classification rates, so it would
be valuable to further evaluate the effects of parameter space size on a much
larger data set. We also cannot discount the possibility that the dynamic
model is picking up on vowel cues that correspond to lexical items, rather than
the phonetic correlates of deep phonological structure. In other words, by
incorporating information from the sonorant and the adjacent vowel, we could
be identifying mostly word-specific information. In part, this is unavoidable,

as Gaelic has relatively few true minimal triplets for these contrasts, but
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it would be worthwhile testing on languages where such contrasts have a
higher functional load, such as Russian. Finally, our analysis demonstrates
the extent to which dynamic information contributes towards classification
accuracy, but does not tell us the precise nature of this dynamic information.
In future research, we plan to examine the temporal dynamics of the lingual

gestures involved in Gaelic palatalisation contrasts.

4.8. The diachronic typology of palatalisation contrasts

We made the prediction that sonorants with a greater propensity towards
diachronic phonological loss across a language family would show synchronically
weaker contrasts. This was grounded in the principle that processes of
diachronic change can be inferred from synchronic snapshots (Labov, 1994).
In our case, the diachronic predictions suggested that laterals should have the
highest classification rates and rhotics the lowest classification rates, given
that lateral contrasts are best-maintained across the Goidelic language family
and rhotics the least well-maintained. Our results only support the diachronic
predictions when we focus solely on the sonorant steady-state, which is a
partial and insufficient representation of palatalisation contrasts. When we
take into account the dynamics of how the palatalisation gesture unfolds over
time, we instead find a different set of results that interact strongly with word
position. To re-cap, rhotics are best classified in initial position and worst in
word-final position, with nasals being relatively well classified in all contexts,
and laterals always being classified less accurately than nasals.

The word-final rhotic synchronic data, however, do pattern with diachronic
trends towards neutralisation across Goidelic. Cross-linguistically, it has

been shown that large rhotic inventories are subject to simplification, with
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palatalised rhotics particularly susceptible to loss (Hall, 2000). We anticipate
that competing biomechanical demands on palatalised rhotics can lead to
partial masking of the palatalisation gesture, especially in word-final position.
For instance, Stoll (2017) reports more variable gestural timing in palatalised
rhotics compared with laterals, which may also lead to greater overlap between
rhotic categories. Given sufficient exposure, this increased overlap is likely to
cause instances of misperception and subsequent recategorisation of a listener’s
phonological system, leading them to produce smaller distinctions between
rhotic phonemes (Ohala, 1981, 1989). Moreover, if the reduced variants
become recognised as acceptable by other community members, possibly due
to the low functional load of the contrast, this is likely to accelerate the
long-term progression of contrast neutralisation (Beckman et al., 1992; Bybee,
2015).

Nasals are especially interesting in this case as Goidelic diachronic data
suggests they are retained more frequently than large rhotic systems, but less
frequently than large lateral systems. In Slavic, on the other hand, palatalised
nasals are very frequently maintained cross-linguistically, more so than laterals
and rhotics (Carlton, 1990; Iskarous and Kavitskaya, 2010). Our data pattern
more closely with the reported typology of Slavic sonorant development, with
nasal phonemes produced more distinctively than laterals and final rhotics.
This is surprising in light of previous research, some of which has suggested
only a two-way contrast in Gaelic nasals (Ladefoged et al., 1998; Nance and
Kirkham, 2020), but it may be the case that the Gaelic contrast has been
maintained by temporally distributing the phonetic cues to contrast across

the sonorant-vowel interval, which has not previously been investigated as
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thoroughly. We are unable to claim whether this is a novel development
in Gaelic, but previous research on Slavic has also shown that nasals may
sometimes show more robust contrasts than laterals in formant transitions
(Iskarous and Kavitskaya, 2018), so it is likely that a similar pattern recurs in
our data.

In summary, we find a more complex relationship between diachronic
predictions and the variable stability of synchronic contrasts than we initially
predicted. We believe, however, that the sociolinguistic context of Gaelic is
highly informative in understanding these results. Gaelic is a minoritised
language that is currently undergoing intense revitalisation. Minority languages
often experience structural simplification (Dorian, 1981; Jones, 1998), but
we note that speakers of Gaelic often have high levels of metalinguistic
awareness about the language’s phonology (Nance et al., 2016). All of the
speakers in our study worked in Gaelic-essential jobs and, therefore, represent
highly professional speakers of the language. The strong investment of such
speakers in maintaining Scottish Gaelic also increases the likelihood of them
learning to produce traditionally-reported contrasts in the language, which
are often acquired through education. This sociolinguistic context, therefore,
may represent one of the contributing mechanisms for the preservation of
structures that would otherwise be likely to undergo loss in more typical cases
of community transmission (Nance and Kirkham, forthcoming 2022). It is
clear from this that identifying potential future paths of sound change in the
Gaelic sonorant system will also require detailed attention to the changing

sociolinguistics dynamics of Gaelic.
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5. Conclusion

This study has examined the variable synchronic stability of palatalisation
contrasts in light of claims that such contrasts are prone to diachronic
simplification, reduction or loss. The cross-linguistic diachronic evidence
suggested that laterals would show the most robust contrasts and rhotics
the least robust contrasts. We do indeed find that rhotics are most poorly
classified word-finally, which may reflect the diachronic trend towards contrast
reduction, but we find the opposite pattern word-initially, where rhotic
contrasts are highly robust. This demonstrates that some contrasts in Gaelic
are robustly maintained despite intense pressures towards diachronic reduction.
We do not find evidence to support the claim that laterals show more robust
contrast than nasals, with both sonorants being well-classified, but with nasals
showing better classification once dynamic information is taken into account.
Accordingly, we find that synchronic speech production data bears a complex
relationship with long-term patterns of diachronic change reported across
the Goidelic languages, and it is likely that a fuller consideration of how
phonological dynamics interact with changing sociolinguistic contexts will
further illuminate the potential paths of sound change in Gaelic. Overall,
we find evidence of weaker contrast in predictably unstable sonorants, but
elsewhere we find that contrast is often more robust than previously anticipated,
with the phonetic correlates of phonological structure located firmly in the

temporal dynamics of the speech signal.
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Gaelic Phoneme  Word position  Vowel context  English
latha I¥ initial a day

luib I¥ initial u bend

cal I¥ final a cabbage
cul I¥ final u back

mo litir 1 initial i my letter
mo leannan 1 initial a my darling
air an latha 1 initial a on the day
ann an Liurbost 1 initial u in Leurbost
mil 1 final i honey

dil 1 final i gravel

fuil 1 final u blood

cail 1 final a anything
dail 1 final a delay

suil 1 final a eye

litir L initial i letter
linnean L initial i centuries
leabaidh L initial a bed
Liurbost L initial u Leurbost
till L final i return (verb)
caill L final a lose (verb)
saill L final a salt (verb)
puill L final u ponds

uill L final u oil (verb)

Table 8: Lateral word list used in this study.
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Gaelic Phoneme  Word position  Vowel context  English
nathair n¥ initial a snake
nuadh nY¥ initial u new

ceann n¥ final a head

sunn n¥ final u blast

mo nighean n initial i my daughter
mo nathair n initial a my snake
mo nupair n initial u my spanner
fion n final i wine

glan n final a clean (verb)
dun n final u fort
nighean ) inital i daughter
neach n) initial a person
niucleasach initial u nuclear
cinn ) final i heads

tain ) final i cattle

guin n) final i arrow

Table 9: Nasal word list used in this study.
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Gaelic Phoneme  Word position  Vowel context  English
rionnag r¥ initial i star
rabaid r¥ initial a rabbit
rudan ¥ initial u things
piorr Y final i pierce
as fhearr r¥ final a best
curr ¥ final u corner
mo rionnag T initial i my star
mo rabaid T initial a my rabbit
riubh r initial u to you
fior r final i really
sior T final i eternal
far r final a where
cur r final u put

ri 1) initial i to

fir 1) final i men

sir 1) final i ask

gAir 1) final a laugh
bair 1) final a goal
muir 1) final u sea

Table 10: Rhotic word list used in this study.
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