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Abstract

This article aims to understand the development of diachronic asymmetries

in phonological systems by evaluating the variability stability of synchronic

contrasts. We focus on sonorant systems involving secondary palatalisation,

grounded in the claim that palatalised laterals are more common than

palatalised rhotics cross-linguistically. Our analysis reports acoustic and

articulatory data on Scottish Gaelic, a Celtic language with a large sonorant

inventory contrasting palatalised, plain and velarised phonemes across laterals,

nasals and rhotics. We summarise high-dimensional dynamic characteristics

of the acoustic spectrum and midsagittal tongue shape using a two-stage data

reduction process and use these coefficients as inputs for training a Support

Vector Machine. This trained model classifies unseen data in terms of its

phonemic identity, which reveals that rhotics are classified best word-initially

and worst word-finally, with nasals always classified better than laterals. We

find that dynamic information substantially improves acoustic classification,

but only improves articulatory classification for some sonorants. We propose

that the variable synchronic stability of palatalisation contrasts complicates

potential trajectories of diachronic change in Gaelic.
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1. Introduction1

In this article, we investigate whether diachronic and typological asymmetries2

in phonological systems are reflected in the variable stability of synchronic3

contrasts. It is widely predicted that the diachronic instability of some4

phonological contrasts is a consequence of a larger pool of synchronic variability.5

This is because such variability is hypothesised to facilitate misperception-based6

sound change (Ohala, 1981) and can also weaken the robustness of phonemic7

categories, leading to potential neutralisation over time (Bybee, 2015). But8

does the propensity of a phonological contrast towards diachronic neutralisation9

necessarily mean that it will be less robust at a given point in time? An10

assumption underpinning many theories of sound change is that we can observe11

the tendencies of diachronic change through examination of synchronic data,12

with the hypothesis that there is a tight link between the two at any point13

in time (Labov, 1994, 21). This suggests that a greater tendency towards14

diachronic neutralisation should also be evident in synchronic data. In this15

study, we examine claims about the diachronic trajectories of typologically16

unusual sound systems and whether the variable stability of synchronic17

contrasts is predictable from the attested sound changes. We also speculate18

on whether variable synchronic stability between phonological categories19

might be able to tell us something about future trajectories of sound change,20

especially in light of existing diachronic predictions.21

A particularly good case study for examining variable diachronic and22

synchronic stability is the cross-linguistic system of contrasts that fall under23
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the banner of secondary palatalisation. Previous research shows that some24

secondary palatalisation contrasts in consonants are more unstable than25

others (Kochetov, 2005; Iskarous and Kavitskaya, 2018). Palatalised rhotics, in26

particular, are cross-linguistically rare and prone to merger with non-palatalised27

rhotics (Hall, 2000), but laterals seem more robust to sound change (Iskarous28

and Kavitskaya, 2010). Word-final palatalisation contrasts are also more29

unstable than word-initial contrasts (Padgett and Ńı Chiosáin, 2018). Importantly,30

previous work shows that the robustness of palatalisation contrasts may31

vary depending on the features analysed; for example, nasals may be more32

distinctive than laterals in format transitions, but laterals have a more33

distinctive spectral shape than nasals, with rhotics being least distinct in both34

analyses (Iskarous and Kavitskaya, 2018). This suggests that palatalisation35

contrasts are multi-dimensional and temporally distributed, potentially as a36

consequence of a high number of phonological categories existing together in37

a relatively narrow phonetic space.38

The fact that some sonorant contrasts are diachronically less stable than39

others cross-linguistically makes them an ideal candidate for assessing claims40

about variable diachronic trajectories using synchronic data. In this study41

we wish to further understand why some sonorants show greater stability42

than others and, in doing so, we focus on palatalisation contrasts in Scottish43

Gaelic (Celtic), which contrasts palatalised, velarised and plain sonorants44

across laterals, rhotics and nasals. Notably, Scottish Gaelic has retained a45

larger system of sonorants in comparison to closely-related Irish and Manx.46

In this study, we take seriously the dynamic nature of sonorant contrasts,47

building upon our previous work that has focused on selective sampling of48
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a limited number of timepoints. We show that this previous research may49

underestimate the extent of contrast that is present in the Scottish Gaelic50

sonorant system; contrasts which we argue are fundamentally dynamic in51

nature. We further demonstrate this by comparison with analyses that focus52

only on a sonorant ‘steady-state’, which illustrates how some contrasts may53

be more dynamic in nature than others.54

1.1. Dynamics of secondary palatalisation55

Secondary palatalisation involves overlap between a palatal gesture and56

the consonant’s primary place of articulation, which contrasts with ‘full57

palatalisation’, where the consonant’s primary place of articulation is changed58

(Bateman, 2007, 2). Some languages, such as Russian and Scottish Gaelic,59

have extensive secondary palatalisation contrasts across the consonant system,60

such that almost every consonant has a palatalised and non-palatalised61

counterpart (see Yanushevskaya and Bunčić 2015 for description of Russian,62

and Nance and Ó Maolalaigh 2021 for description of Scottish Gaelic). For63

this reason, all consonant palatalisation pairs in Russian, Scottish Gaelic64

and other languages with this system are considered to contrast in secondary65

palatalisation even though the secondary palatalisation contrast may at times66

manifest as a change in primary place/manner.167

In terms of articulation, the most widely reported articulatory correlate68

of secondarily palatalised consonants is tongue body fronting and raising69

towards the palate accompanying the primary consonantal gesture (Kochetov,70

1For example in maide ‘stick’ /matS@/, where the orthographic ‘d’ is palatalised and

changes from alveolar to post-alveolar place of articulation.
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2002; Stoll, 2017; Bennett et al., 2018; Malmi and Lippus, 2019; Spinu et al.,71

2019). The fronting and raising gesture also frequently extends into the72

surrounding vowels (Malmi and Lippus, 2019). This tongue body fronting is73

often accompanied by tongue root advancement and pharyngeal expansion74

(Kavitskaya et al., 2009; Bennett et al., 2018), while palatographic studies75

additionally demonstrate that the tongue blade is spread across the hard76

palate to a greater extent than in non-palatalised consonants (Farnetani et al.,77

1991; Meister and Werner, 2015).78

Capturing the acoustics of palatalisation contrasts is complex given their79

multi-dimensional and dynamic nature. When the tongue body is raised and80

fronted for a palatalised consonant, this results in a larger back cavity and81

raised F2, which is particularly robust in laterals (Sproat and Fujimura, 1993;82

Nance, 2014; Kochetov et al., 2020). The vowels surrounding palatalised83

consonants also tend to show raised F2 due to an /i/-like glide in the transition84

to/from a palatalised consonant, with such articulatory dynamics being85

important to the contrast (Nı́ Chiosáin and Padgett, 2012; Kochetov, 2017;86

Nance and Kirkham, 2020; Howson, 2018; Malmi et al., 2022). F1 and87

F3 may also be lower in palatalisation contexts (Shuken, 1980; Bennett88

et al., 2018; Kochetov, 2017). The multi-dimensional nature of palatalisation89

contrasts have led others to analyse more holistic spectral features, such90

as Mel Frequency Cepstral Coefficients (MFCCs) (Spinu et al., 2012; Spinu91

and Lilley, 2016; Spinu et al., 2018) and smoothed spectra (Kochetov, 2017;92

Iskarous and Kavitskaya, 2018; Nance and Kirkham, 2020). For example,93

cepstral coefficients have been found to significantly outperform spectral94

measures in classifying palatalised fricative contrasts (Spinu and Lilley, 2016;95
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Spinu et al., 2018).96

Secondary palatalisation is a good case study for testing the relationship97

between diachronic neutralisation and synchronic stability, because of well-documented98

differences between sonorant types. Palatalised rhotics involve a retracted99

and stabilised tongue body for trill production (McGowan, 1992; Recasens,100

2013), which comes into conflict with the tongue body advancement needed101

for palatalisation (Iskarous and Kavitskaya, 2018; Kochetov, 2005; Stoll,102

2017). Such biomechanical constraints may lead to a larger pool of synchronic103

variability (Ohala, 1989), with the possibility that variants become phonologised104

or contrasts are neutralised over time (Beckman et al., 1992; Bybee, 2015). For105

example, articulatory variability may lead to ambiguity in perception, which106

could advance the spread of a change further when misperceived by the listener107

(Ohala, 1981). Such explanations are explicitly pursued in previous research108

on sonorant palatalisation in terms of acoustics (Iskarous and Kavitskaya,109

2018) and articulation (Kochetov, 2005; Stoll, 2017), with the claim in both110

cases being that less robust phonemic categories are more susceptible to111

merger.112

1.2. Palatalisation in Gaelic113

Our study focuses on Scottish Gaelic, a Celtic language closely related114

to Irish and Manx.2 The Scottish Gaelic language is usually referred to115

in English by its speakers simply as ‘Gaelic’ /galIk/ and we refer to it as116

2Manx is believed to have become extinct as a first language in the 1970s, following a

long period of decline, but has subsequently undergone revival. It is taught in immersion

schooling and is transmitted in a small number of families. See Lewin (2021) for more

information on revived Manx.
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Gaelic henceforth. Together, the Celtic language sub-family consisting of117

Gaelic, Irish and Manx is known as ‘Goidelic’. The most recently available118

data (Scottish Government, 2015) show that there are approximately 57,600119

Gaelic speakers in Scotland. Traditionally, Gaelic is associated with the120

north-west Highlands and Islands of Scotland, and this is where the most121

densely concentrated populations of Gaelic speakers live. In particular, Gaelic122

is associated with the chain of islands off the north-west coast of Scotland123

known as the Outer Hebrides or Western Isles, where around 60% of the124

population reported the ability to speak Gaelic (Scottish Government, 2015).125

A map showing the concentration of Gaelic speakers in Scotland is in Figure126

1. The speakers in this study are from the Isle of Lewis, the most northerly127

island in the Outer Hebrides chain. The Goidelic languages are descended128

from Old Irish, which expanded from Ireland to Scotland and Isle of Man129

in early medieval times (McLeod, 2020). It is generally thought that Gaelic130

in Scotland had sufficiently diverged from Irish to be considered a separate131

language in approximately 1100 CE (Ó Maolalaigh, 2008).132

The Goidelic languages all have systems of contrastive secondary palatalisation133

across the entire consonant system (with a few exceptions in some consonants)134

(Broderick, 2009; Hickey, 2014; Bennett et al., 2018; Nance and Ó Maolalaigh,135

2021). In Nance and Kirkham (forthcoming 2022), we provide a historical136

overview of the development of palatalisation in rhotics and comparison to137

different Goidelic dialects. In this paper, we focus on the contrasts across138

the whole sonorant system. To summarise: the most extensive Goidelic139

palatalisation contrasts were found in Old Irish, where the system developed140

by approximately 900 CE (Greene, 1973; Hickey, 1995). At this time, Old Irish141
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Figure 1: Map showing the concentration of Gaelic speakers in Scotland according to the

most recently available figures from the 2011 National Census. Attribution: By SkateTier -

Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=31996352.

Original figure in colour, converted to greyscale here.

sonorants contrasted in place of articulation as well as palatalisation, resulting142

in four different phonemes for laterals, nasals and rhotics (Thurneysen, 1946;143

Russell, 1995; Hickey, 1995). It is thought that a three-way contrast between144

palatalised, plain and velarised sonorants developed in Middle Irish (900–1200145

9



CE) (Hickey, 1995). The Irish system has evolved since early medieval times146

in different ways in the modern Goidelic dialects. The most innovative dialect147

in this respect is Manx, where palatalisation contrasts were lost in rhotics, and148

reduced in laterals and nasals. At the other end of the scale are Hebridean149

dialects of Gaelic, including the dialect under investigation here, Lewis Gaelic.150

In Lewis and other Hebridean dialects, three lateral, three nasal and three151

rhotic phonemes are maintained.152

In comparison to many of the previous studies of palatalisation, Lewis153

Gaelic is interesting in several respects. The majority of work carried154

out previously on palatalisation has examined contexts where palatalised155

consonants are contrasted with non-palatalised consonants, such as Russian.156

In Gaelic sonorants there is instead a three-way distinction between palatalised,157

plain and velarised. The rhotic inventory, however, has been particularly158

prone to reduction across Goidelic dialects, with laterals appearing most159

robust to sound change. This is in line with the findings discussed above for160

Slavic, which show that rhotics are more susceptible to change than laterals161

(Carlton, 1990; Iskarous and Kavitskaya, 2018).162

1.3. Summary and predictions163

In the current study, we investigate the extent to which palatalisation164

contrasts are maintained, combining dynamic phonetic evidence from acoustics165

and articulation in order to examine whether phonemic distinctiveness varies166

between laterals, nasals and rhotics. We specifically build upon previous work167

in the following ways. First, previous work on the asymmetry of sonorant168

palatalisation contrasts has focused on Russian as the language with the most169

extensive system of sonorant palatalisation in the Slavic family (Kochetov,170
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2005; Stoll, 2017; Iskarous and Kavitskaya, 2018). Here, we consider Lewis171

Gaelic, as the Goidelic dialect with the most extensive system of sonorant172

palatalisation in a completely different language family. Second, previous173

work in this area has considered articulation (Kochetov, 2005; Stoll, 2017) or174

acoustics (Iskarous and Kavitskaya, 2018) respectively, but we combine both175

perspectives and use a method that allows us to subject each modality to a176

comparable classification task. Third, much previous work has focused on177

static timepoints, either sonorant midpoints or specific locations of formant178

transitions. We take a broader approach by compressing all time-varying179

information that is available in the signal and using this to assess classification180

accuracy. This allows us to more comprehensively investigate the hypothesis181

that diachronically unstable contrasts are more vulnerable to synchronic182

neutralisation at a specific snapshot in time. Accordingly, we set out the183

following questions for the present study:184

1. Which sonorant categories (laterals, nasals, rhotics) show the most185

robust phonemic contrasts?186

2. Is contrast more robust in acoustic or articulatory data?187

3. How do acoustic and articulatory dynamics contribute to phonological188

contrast?189

4. What do these results tell us about the variable synchronic stability of190

categories and the potential diachrony of palatalisation contrasts?191

We test the prediction that laterals will be best classified, followed by192

nasals and then rhotics, and anticipate that reduction will be more evident193

word-finally. In previous work on Gaelic, Nance and Kirkham (2020) show that194

laterals are more robust than nasals in formants at the sonorant steady-state,195
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while Nance and Kirkham (forthcoming 2022) show that three initial rhotics196

are well-maintained in Gaelic, despite potential neutralisation of rhotics197

in word-final position. However, these studies used different methods and198

different features to establish contrast, as well as focusing on a small set of199

selective timepoints, so our present study uses a more holistic and comparable200

method for establishing the relative robustness of three-way contrasts across201

laterals, nasals and rhotics.202

2. Methods203

2.1. Speakers204

We recorded data from twelve L1 speakers of Lewis Gaelic, all of whom205

were raised in Gaelic-speaking families on the Isle of Lewis (six female, six206

male). They acquired English either as simultaneous bilinguals or upon207

entering the school system. The speakers were aged 21-80 and either used208

Gaelic as part of their job, or had used Gaelic before retirement. All the209

speakers reported using more Gaelic than English in their daily lives and210

can be considered Gaelic-dominant bilinguals. Due to the fragility of Gaelic211

language transmission, even in locations such as Lewis (Munro et al., 2011),212

it is difficult to obtain a large sample of data from Gaelic-dominant bilingual213

speakers. We recognise that the data here represent a large age range, but214

the speakers are socially consistent in using more Gaelic than English.215

2.2. Data recording and stimuli216

Simultaneous acoustic and ultrasound tongue imaging data were recorded217

in a community centre or at the speaker’s workplace. The acoustic signal218
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was recorded using a Beyerdynamic Opus 55 headset microphone, which was219

preamplified and digitized using a Sound Devices USBPre2 audio interface220

at 44.1 kHz with 16-bit quantization. Simultaneous ultrasound data were221

recorded using a Telemed MicrUs system, with a 64 element probe of 20222

mm radius. We used a 2 MHz probe frequency, 80 mm depth, 90% field of223

view and 57 scan lines, which resulted in a frame rate of ∼92 Hz. The probe224

was stabilised using an Articulate Instruments metal headset (Articulate225

Instruments, 2008). The occlusal plane for each speaker was imaged by them226

biting on a bite plate placed behind the upper incisors and pushing their227

tongue up against it. Synchronization between audio and ultrasound data was228

achieved using the frame-level TTL pulse emitted by the ultrasound scanner.229

Data presentation and recording was handled using the Articulate Assistant230

Advanced software (Articulate Instruments, 2018).231

The stimuli used for this study are shown in the Appendix (Tables 8–10).232

We aimed to capture laterals, nasals and rhotics in word-initial and word-final233

position in three vowel contexts where possible: /i a u/. This was not always234

possible due to the historical development of palatalisation in high front vowels.235

For example, there are no velarised nasals in the context of /i/ in readily-known236

words. The plain sonorants developed from contexts of historical lenition, and237

in word-initial position they still occur in contemporary lenition contexts. For238

an overview of changes in lenition (contemporary morphophonological changes239

in Celtic language word-initial consonants known as ‘mutation’), see Ball and240

Müller (2009) or Nance and Ó Maolalaigh (2021) for Gaelic specifically. For241

this reason we included the word-initial plain sonorants in short phrases that242

would trigger mutation – e.g. mo nathair ‘my snake’ – where the possessive243
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mo ‘my’ triggers mutation.244

2.3. Data preparation245

Acoustic landmarks were labelled manually in Praat using information246

from the waveform and spectrogram (Boersma and Weenink, 2020). We247

labelled the entire sonorant-vowel interval for all tokens, such as lateral-vowel248

for word-initial tokens and vowel-lateral for word final tokens. This interval249

was used for all analyses reported in this paper. We carried out post-hoc250

screening of the ultrasound data and found that only seven of the twelve251

speakers had consistently good images (three female, four male). As our252

analysis below is premised upon comparing acoustic and articulatory data,253

we only use these seven speakers for the analysis, resulting in 1165 tokens254

with parallel acoustic and ultrasound data.255

2.4. Acoustic features256

The acoustic features used in this analysis are Mel Frequency Cepstral257

Coefficients, which are highly effective at reducing the dimensionality of the258

spectrum while retaining linguistically-relevant features (Davis and Mermelstein,259

1980). MFCCs are directly related to characteristics of the spectrum and,260

therefore, do have a physical interpretation, despite their complexity in the261

higher coefficients. For example, lower MFCCs describe global aspects of262

spectral shape, while increasingly higher coefficients describe increasingly263

finer details in the spectrum. MFCCs have previously been shown to capture264

phonemic palatalisation contrasts with a high degree of accuracy (Spinu et al.,265

2012; Spinu and Lilley, 2016; Spinu et al., 2018).266
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We use 6 MFCCs to summarise the acoustic spectrum, which has previously267

been shown to be sufficient for capturing palatalisation contrasts (Spinu et al.,268

2018). We sensitivity tested the effects of between 4 and 13 MFCCs and269

found that 6 MFCCs resulted in the strongest overall classification accuracy,270

although some specific models showed a small (2-4%) improvement using 8271

coefficients, after which no further improvement was evident. Accordingly, for272

each token, 6-element MFCC vectors were calculated across each sound file273

using a 25 ms window and 10 ms frame shift, with a pre-emphasis coefficient274

α = 0.97 and a lifter exponent of 0.6. MFCCs were subsequently extracted275

at 11 equally spaced points across the labelled sonorant-vowel interval and276

each MFCC was by-speaker normalized using z-scoring. At this stage, each277

token is represented by 6 MFCC trajectories, each of which is sampled over278

11 points.279

2.5. Articulatory features280

Splines were automatically fitted to the midsagittal ultrasound data using281

AAA’s batch fit function. A paid research assistant manually checked and282

corrected any obvious errors in the splines, but we did not correct minor283

tracking errors. All splines were then rotated and scaled to the occlusal284

plane. These data comprise 42 values in 2-dimensional x/y space. In order to285

reduce the dimensionality of the tongue splines, we fitted a Discrete Cosine286

Transform (DCT) to each token at 11 propotionally-spaced timepoints across287

the sonorant-vowel or vowel-sonorant interval. The DCT has been used for288

summarising whole acoustic spectra (Harrington, 2010; Nossair and Zahorian,289

1991), formant trajectories (Watson and Harrington, 1999) and articulatory290

time series (Shaw and Kawahara, 2018) and is conceptually extendable to291
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spatial representations, such as the ultrasound tongue spline. To this end,292

the ultrasound-DCT is conceptually comparable with MFCCs, as both sets293

of features fundamentally represent the amplitudes of cosine waves fitted to294

the respective signals after undergoing transformation. The DCT coefficients295

have a physical interpretation, with the lower coefficients being proportional296

to the mean (C0), slope (C1) and curvature (C2) of the tongue shape, with297

higher coefficients representing increasingly finer detail in the shape. We fit298

a DCT of the form described in Harrington (2010) with m coefficients to a299

signal x(n) with length N , where the mth coefficient Cm is calculated using300

(1).301

Cm =
2km
N

N−1∑
n=0

x(n) cos

(
(2n+ 1)mπ

2N

)
where km =

1√
2
,m = 0; km = 1,m 6= 0

(1)

We illustrate DCT compression of ultrasound tongue shapes in Figure302

2, which represent smoothing using different numbers of DCT coefficients303

(between 2 and 10 coefficients) on a single token. We obtained the smoothed304

tongue shapes using an inverse DCT, which reconstructs the input signal by305

summing half-cycle cosine waves with the amplitudes of the corresponding306

DCT coefficients. The figure shows us that two coefficients {C0, C1} approximates307

the slope of the tongue, while using between three {C0, C1, C2} and five {C0,308

C1, ..., C4} produces similar tongue shapes. At 6 DCT coefficients {C0, C1,309

..., C5} the slight dip between the tongue tip and dorsum starts to appear,310

which is present in the original signal. After this, we see an increasing level311

of detail, but not necessarily any strikingly new information in the signal.312
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C0−to−C5 C0−to−C6 C0−to−C7 C0−to−C8 C0−to−C9
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Figure 2: Original midsagittal tongue shape for one token plus DCT reconstructions of the

same data using varying numbers of DCT coefficients. The tongue tip is on the right of

the image and the tongue root is on the left. The token represents a single spline taken

from a word-initial rhotic.

In order to empirically evaluate the number of DCT coefficients needed313

to summarise each tongue shape, we fitted DCTs to all tongue splines (11314

per token, representing 11 time-points) with different numbers of coefficients,315

ranging from 2 coefficients to 10 coefficients, which gives us 9 different options316

to evaluate. We then conducted an inverse DCT in order to reconstruct the317

original signal from these coefficients, which essentially gives us a DCT-smoothed318

version of the original signal. Following Shaw and Kawahara (2018), we319

then calculate Pearson’s correlation between the original signal and the320

DCT-reconstructed signal and plot these correlation values for different321

numbers of DCT coefficients. Figure 3 shows that 3 coefficients yields322

correlations with the original signal of r > .95 for all speakers. As shown above,323

however, there are some advantages to the higher DCT coefficients, particularly324
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for more complex tongue tip shapes. To this end, we ran testing using the325

same classification analysis that we report later in this paper, examining the326

effects of between 4–8 DCT coefficients on classification accuracy for each327

sonorant*position. Laterals and nasals did not benefit from more than 5328

coefficients, but the inclusion of a 6th DCT coefficient improved word-initial329

rhotic classification by almost 10%. We anticipate that this is because it330

captures the subtle tongue tip shaping depicted in Figure 2. After settling on331

6 DCT coefficients, we normalized each coefficient by z-scoring each speaker’s332

data across all productions.333
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Figure 3: Pearson’s correlation between the original ultrasound tongue splines and

DCT-smoothed versions using varying numbers of DCT coefficients. The solid vertical line

represents the final number of DCT coefficients used for the classification analysis.

2.6. Summarising high-dimensional dynamic information334

At this point, the acoustic data are represented by 6 MFCC trajectories335

sampled at 11 points in time (= 66 points), and the ultrasound spline data336

are represented by 6 DCT trajectories sampled at 11 points in time (= 66337

points). This already represents considerable dimensionality reduction from338
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a time-varying power spectrum or time-varying ultrasound spline, but we339

conducted further dimensionality reduction of the dynamic data using an340

approach inspired by Nossair and Zahorian (1991). This involves fitting a341

Discrete Cosine Transformation (DCT) to each of the time-varying MFCC342

(acoustics) and DCT (ultrasound) coefficients discussed above, which allows343

us to summarise the shape of each of those coefficient trajectories over time344

(see Marin et al. 2010 for a similar approach to spectral data). This provides345

a higher-level set of coefficients that encodes the shape of each time-varying346

MFCC or DCT coefficient, each of which summarises some dynamic aspect347

of spectral shape or tongue shape.348

We empirically evaluated the number of DCT coefficients needed to349

summarise each trajectory in the same way as for the ultrasound spline350

fitting, which is plotted in Figure 4. We find that 3 DCT coefficients351

returns correlations of r > .9 for all acoustic-MFCC trajectories and r >352

.95 for ultrasound-DCT trajectories, except for the 6th coefficient in both353

sets (MFCC6 and DCT5), which are slightly below these values. However,354

the MFCC/DCT trajectories are not always smooth functions of time and355

we avoid seeking higher correlations as we wish to avoid overfitting to the356

signal. Accordingly, we choose 3 DCT coefficients to represent both sets of357

trajectories, which captures the mean, slope and curvature of each coefficient358

trajectory over time. This means that each of the 6 acoustic-MFCC and 6359

ultrasound-DCT dynamic trajectories is summarised by 3 DCT coefficients.360

As a result, each token’s time-varying acoustic spectrum or ultrasound tongue361

spline across the sonorant-vowel interval is represented by 18 (6× 3) values.362

In summary, our final inputs to our model are as follows. We have363
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Figure 4: Pearson’s correlation between dynamic acoustic-MFCC trajectories and

DCT-smoothed versions using varying numbers of DCT coefficients (top) and the dynamic

ultrasound-DCT trajectories and DCT-smoothed versions using varying numbers of DCT

coefficients (bottom). The solid vertical line represents the final number of DCT coefficients

used for the classification analysis. The dashed horizontal line represents the correlation

coefficient cut-off used for selecting the number of DCT coefficients for each measure, which

was based on the first 5 dynamic MFCC/DCT trajectories.

compressed a complex power spectrum sampled at 11 points in time for each364

token to 18 values. These values are a compressed representation of how the365

spectrum changes over the sonorant-vowel interval. We have also compressed366

time-varying ultrasound tongue splines sampled at 11 points in time for each367

token to 18 values, which represents how midsagittal tongue shape changes over368
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the sonorant-vowel interval. These compressed representations correlate well369

with the original signals and should, therefore, capture important information370

in the original signals. We now turn to the details of the classification analysis.371

2.7. Classification analysis372

We use support vector machines (SVMs) in order to establish how robustly373

the three-way phonemic contrast can be classified for each sonorant, based374

on an initial training phase mapping phonological categories to acoustic375

and articulatory feature sets. SVMs are a class of supervised statistical376

learning models that aim to find the hyperplane that maximally separates two377

classes in N -dimensional space (Boser et al., 1992; James et al., 2013). The378

hyperplane is located at the maximum margin, which is the largest difference379

between data points of the two classes. Non-linear separation between classes380

is typically achieved via a kernel, whereby the data are transformed into381

a higher-dimensional space and linear classification is then performed in382

this high-dimensional space. SVMs are a binary classification method but383

multi-class classification can be achieved in various ways. The method we384

use is the one-against-one technique, in which each category is compared385

against one other category. This process is repeated for all combinations of386

categories, with each classifier voting for one category and the category with387

the highest number of votes being classified accordingly. SVMs have been388

widely applied to speech data (Clarkson and Moreno, 1999; Wang et al., 2013;389

Yu, 2017) and are typically reported to show good phoneme classification390

accuracy on acoustic and articulatory signals. One reason for this is that391

SVMs are concerned with the margins between classes, rather than the mean392

and variance of each class, meaning that a larger data set is better only insofar393
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as the additional data better represents the boundaries between classes.394

Models were fitted using the e1071 package in R (Meyer et al., 2021). We395

fitted separate models to each combination of sonorant type and position,396

such as word-initial laterals, word-final laterals, word-initial nasals, etc. Each397

model had phoneme as the outcome variable and the 18 dynamic acoustic398

features or the 18 dynamic ultrasound features as the predictor variables. Each399

feature set was randomly split into 80% training and 20% testing subsets. All400

models were fitted using a radial basis function kernel, and parameter tuning401

for each model was conducted on the training data only using a grid search402

over a range of values for γ = {10−6, 10−5, ..., 10−1} and C = {0.1, 1, 10}, with403

model performance evaluated using 10-fold cross-validation. The model with404

the optimal parameters was used to predict the phonemic identity of the 20%405

test data set based only on the input measurements (with separate models for406

acoustic and ultrasound data). In order to mitigate against splitting a small407

data set, we used Monte Carlo cross-validation (Picard and Cook, 1984; Kuhn408

and Johnson, 2013), which involved running 100 iterations of the train-test409

procedure for each model, using a different random train-test split each time.410

We then averaged over the 100 iterations to produce a final classification411

matrix and overall classification rates.3 All code and data used for analyses412

3In order to empirically determine the chance classification rate for a data set comparable

in size and dimensionality to the models used here, we generated simulated data with 18

numerical variables corresponding to the 18 MFCC/DCT coefficients, each of which was

populated with random values from a normal distribution N (0, 1) and then each observation

was randomly assigned one of three phoneme labels (plain, palatalised, velarised). We then

ran the same procedure described above for the real models and found an average overall

classification rate of 31.5-36.94% on random data, depending on the same size, which is
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in this paper is available at: https://osf.io/dfe7g/.4413

3. Results414

3.1. Laterals415

The lateral acoustic model in Table 1 shows overall classification rates416

of 74.46% (initial) and 81.27% (final), which represents well above chance417

classification. The classification matrix for initial laterals shows that /l”j/ is418

the most accurately classified at 78.59%, while /l/ is the worst at 63.54%.419

Note that the majority of inaccurate classifications for /l”j/ in initial and final420

context are as /l”G/, suggesting some overlap in the correlates of velarised and421

palatalised lateral phonemes. Classification for word-final laterals is better422

than initial laterals, but word-finally /l”G/ is the most accurately classified423

phoneme at 91.77%. Overall, this suggests that initial and final laterals have424

broadly similar classification rates, with the palatalised and velarised phoneme425

being most similarly distinct initially and the velarised phoneme being most426

distinct finally.427

The lateral ultrasound model in Table 2 shows overall classification rates428

of 73.37% (initial) and 83.04% (final), but these statistics particularly obscure429

considerable between-phoneme differences in classification, suggesting slightly430

more robust lateral contrasts in the ultrasound data. In word-initial context,431

/l”G/ shows rather poor classification of 59.03%, with 31.79% of productions432

close to the theoretical chance level of 33.3̇% for three-way classification.
4Sensitivity testing and initial modelling was carried out using Lancaster University’s

High End Computing facility, after which final models were fitted locally for the publicly

available documentation.
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word-initial word-final

l”G l l”j l”G l l”j

l”G 76.55 8.92 14.54 91.77 1.29 6.94

l 27.83 63.54 8.63 22.95 70.55 6.49

l”j 20.43 0.98 78.59 25.22 1.79 72.98

Overall: 74.46% Overall: 81.27%

Table 1: SVM classification matrix for lateral acoustic data. Values represent percentage

correct classification (rounded to 2 decimal places).

being misclassified as /l”j/. Outside of this phoneme, the other phonemes are433

classified better than the acoustic MFCC data. This is also true for word-final434

laterals, except for /l”G/ being slightly better classified in the acoustic data435

(91.77% vs 89.77%).436

word-initial word-final

l”G l l”j l”G l l”j

l”G 59.03 9.18 31.79 89.77 1.11 9.11

l 18.88 80.81 0.31 15.05 81.28 3.67

l”j 14.29 0 85.71 21.37 1.84 76.79

Overall: 73.37% Overall: 83.04%

Table 2: SVM classification matrix for lateral ultrasound data. Values represent percentage

correct classification (rounded to 2 decimal places).

In summary, the laterals data show variability in classification, but437

with slightly better classification in word-final context and substantially438

above-chance classification in all cases. The models show that /l”G/ and /l”j/439
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are most often misclassified as each other and only very rarely as /l/. This440

suggests that while velarised and palatalised laterals do have some distinctive441

acoustic and articulatory correlates, there is a reasonable amount of overlap442

in these categories, which leads to occasional misclassification. The acoustic443

and articulatory data show relatively similar findings, except for substantially444

poorer classification for initial /l”G/ in the ultrasound data.445

3.2. Nasals446

The nasal acoustic model in Table 3 shows overall classification of 86.67%447

(initial) and 85.53% (final), which is higher than for laterals. Our previous448

work has reported less robust distinctions between nasal phonemes in Gaelic449

(Nance and Kirkham, 2020), but that analysis did not take formant transitions450

or acoustic dynamics into account. Indeed, our present analysis suggests that451

such dynamics are crucial to this contrast, and fitting comparable SVMs to452

a single time-point at the nasal steady-state reduces classification accuracy453

substantially (see Section 3.4).454

We find that classification is relatively similar between positions. For455

example, /n/ is the worst classified phoneme in initial (81.22%) and final456

(82.32%) position, although both remain well classified. The velarised and457

palatalised phonemes are classified very similarly across both positions,458

suggesting a relatively high degree of distinctiveness between the acoustic459

correlates of all three phonemes.460

The nasal ultrasound model in Table 4 is very similar to the acoustics461

model, with overall classification of 84.70% (initial) and 89.81% (final). /n/462

is classified better in final position (94.68%) than in initial position (84.10%),463

but classification remains high in all cases.464
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word-initial word-final

n”G n n”j n”G n n”j

n”G 87.05 6.24 6.71 86.17 0.57 13.26

n 15.02 81.22 3.76 10.52 82.32 7.16

n”j 9.08 0.58 90.34 9.96 1.64 88.40

Overall: 86.67% Overall: 85.53%

Table 3: SVM classification matrix for nasal acoustics data. Values represent percentage

correct classification (rounded to 2 decimal places).

word-initial word-final

n”G n n”j n”G n n”j

n”G 80.13 7.92 11.95 91.79 0 8.21

n 9.29 84.10 6.61 4.58 94.68 0.74

n”j 9.01 0.90 90.10 12.27 2.09 85.64

Overall: 84.70% Overall: 89.81%

Table 4: SVM classification matrix for nasal ultrasound data. Values represent percentage

correct classification (rounded to 2 decimal places).

Overall, nasals show better classification than laterals in acoustics and465

articulation. Word-final phonemes are slightly better classified than word-initial466

phonemes in articulation, but this is only a small difference. This stands in467

contrast to our previous research, where we found weak distinctions between468

nasal phonemes. We propose that our current model classifies nasals very469

effectively due to the incorporation of dynamic information across the nasal470

and adjacent vowel, suggesting that cues to the three-way contrast in nasals471
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is highly dynamic. We pursue this idea further in Section 3.4.472

3.3. Rhotics473

The rhotic acoustics model in Table 5 shows overall classification of 91.14%474

(initial) and 73.19% (final). This means that rhotics show the best average475

classification accuracy in initial position but the worst in final position across476

all sonorant types in acoustics. We find very robust maintenance of initial477

rhotic contrasts, with /r”G/ at 92.99%, /r/ at 90.16% and /r”j/ at 89.20. In478

particular, /r/ is hardly ever misclassified as /r”j/ (0.08%), which is impressive479

given that these results represent the average of 100 model runs, meaning that480

there was near-zero confusion between /r/ and /r”j/. In contrast, word-final481

rhotics show the poorest classification of any models, with classifications of482

/r”G/ = 75.14%, /r/ = 63.28% and /r”j/ = 78.41%. These misclassifications483

are still substantially above chance classification, but it suggests that the484

word-final categories have less robust phonetic correlates than word-initial485

categories, which leads to poorer classification accuracies.486

word-initial word-final

r”G r r”j r”G r r”j

r”G 92.99 5.95 1.06 75.14 4.41 20.45

r 9.76 90.16 0.08 13.55 63.28 23.17

r”j 7.87 2.92 89.20 14.11 7.48 78.41

Overall: 91.14% Overall: 73.19%

Table 5: SVM classification matrix for rhotic acoustic data. Values represent percentage

correct classification (rounded to 2 decimal places).
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The rhotic ultrasound model in Table 6 shows overall classification of487

85.07% (initial) and 65.65% (final), showing the same patterning between488

initial and final context but with slightly poorer performance than in acoustics.489

Accordingly, every phoneme is classified slightly worse than the acoustics490

model in both positions, except for word-final /r/, which is near identical491

between the two modalities. Interestingly, the robustness of word-initial492

classification is evidenced in the fact that /r”j/ is never misclassified as /r/493

and /r/ is never misclassified as /r”j/, suggesting a categorical distinction494

between these phonemes in articulatory dynamics. This suggests that the495

palatalisation gesture in initial rhotics is highly distinct from the articulation496

of the plain rhotic. In contrast, there are varying degrees of confusion between497

palatalised and velarised rhotics, although these categories are still fairly well498

classified.499

word-initial word-final

r”G r r”j r”G r r”j

r”G 84.12 13.75 2.14 58.42 6.20 35.38

r 12.00 88.00 0 15.28 63.80 20.92

r”j 18.40 0 81.60 21.77 4.80 73.43

Overall: 85.07% Overall: 65.65%

Table 6: SVM classification matrix for rhotic ultrasound data. Values represent percentage

correct classification (rounded to 2 decimal places).

Overall, the most striking result for the rhotics is that while classification500

is the best of all models for initial rhotics, it is the lowest for final rhotics.501

The acoustic data for initial rhotics also outperform the ultrasound data in502
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classification accuracy. This suggests that there exist clear correlates of the503

three-way contrast for initial rhotics, especially in acoustics, but much weaker504

phonetic correlates for the contrast in final rhotics.505

3.4. Comparison between dynamic models and sonorant steady-state506

Finally, we compare the models in the above sections with models fitted507

to the midpoint of the sonorant steady-state, which was defined in Nance508

and Kirkham (2020) as a labelled interval that captures relatively static509

formant values during an unambiguously lateral, nasal or rhotic phase. The510

steady-state model structure was the same as for the dynamic models, but511

as there is only one time-point, there are only 6 MFCCs for the acoustics512

and 6 DCTs summarising the ultrasound tongue shape, with no additional513

dynamic information. Table 7 shows the average classification accuracy for514

each model, with comparison between steady-state and dynamic models. To515

re-cap, these values represent the average classifications over 100 Monte Carlo516

cross-validation train-test iterations.517

Table 7 shows that the dynamic models produce higher average classification518

accuracies in all cases, with the exception of the initial laterals acoustics519

model, where the dynamic model is 2.53% worse. However, the magnitude of520

the difference between steady-state and dynamic models is highly variable521

between sonorants. In acoustics, the impact of dynamics on classification522

is largest for nasals (24.81% higher in initial, 34.26% higher in final) and523

is higher than 10% for all models except initial laterals. In the ultrasound524

data, the differences are generally smaller, with negligible differences for525

laterals, final nasals and initial rhotics, but with substantial improvement for526

initial nasals (12.67%) and final rhotics (24.69%) when dynamic information527
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modality sonorant position steady-state dynamic difference

acoustics lateral initial 76.99 74.46 −2.53

final 62.28 81.27 18.99

nasal initial 61.86 86.67 24.81

final 51.27 85.53 34.26

rhotic initial 78.84 91.14 12.30

final 51.33 73.19 21.86

articulation lateral initial 68.58 73.37 4.79

final 76.04 83.04 7.00

nasal initial 72.03 84.70 12.67

final 86.81 89.81 3.00

rhotic initial 76.24 85.07 8.83

final 40.96 65.65 24.69

Table 7: SVM average classification accuracies (%) for models fitted to the sonorant

steady-state (steady-state) and the whole sonorant-vowel interval (dynamic). The ‘difference’

column represents the dynamic model accuracy minus the steady-state model accuracy,

with positive values indicating % improvement for the dynamic model over the steady-state

model and negative values indicating better relative performance on the steady-state model.

is included.528

Overall, this comparative analysis suggests that the contrastive correlates529

of phonological palatalisation take on a particularly dynamic quality for all530

sonorants in acoustics, except for initial laterals, and also take on a dynamic531

quality for initial nasals and final rhotics in the articulatory data. There532

are fewer dynamic cues to contrast in the ultrasound data, compared with533
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acoustics, with many sonorants not benefitting from the addition of dynamic534

articulatory information beyond a single theoretically-informed time-point at535

the sonorant steady-state.536

3.5. Summary of results537

We conducted classification analyses on the three-way contrast in laterals,538

rhotics and nasals in Scottish Gaelic, with separate models for word position539

and acoustic/articulatory data. We use classification accuracy as a proxy for540

the relative stability of each three-way contrast. In word-initial position, we541

find that rhotics are best classified, followed by nasals, and then laterals. This542

overall pattern is observed in both the acoustic and articulatory data, with the543

acoustic data always showing better overall classification rates. In word-final544

position, nasals are classified best, followed by laterals, and then rhotics. This545

overall pattern is observed in both the acoustic and articulatory data, with546

the articulatory data showing slightly better classification for final laterals547

and nasals, but not for rhotics. Finally, we show that incorporating dynamic548

information about the entire sonorant-vowel sequence improves classification549

accuracy by between 12.30% and 34.26% in the acoustic data, except for initial550

laterals, which are slightly worse when dynamics are included. However, the551

articulatory data show less overall improvement, with only initial nasals and552

final rhotics showing improvement of over 10% when dynamics are included.553

In the following section, we discuss the implications of these results for the554

role of dynamics in contrast maintenance and the stability of palatalisation555

contrasts.556
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4. Discussion557

4.1. Variable stability of synchronic contrasts558

A consistent finding in this study is that nasals have higher classification559

accuracy than laterals. We did not predict this based on the previous560

Gaelic research, but there are good reasons to believe this result, the most561

obvious of which is the inclusion of dynamic information in our models.562

Formant transitions are well known to be a strong cue to place of articulation,563

particularly for nasals (Malécot, 1956; Wright, 2004), which is due to the564

weakening of the upper formants due to nasal anti-formants in the spectrum.565

Indeed, Iskarous and Kavitskaya (2018) find nasals to be more distinctive566

than laterals in formant transitions. The inclusion of dynamic information for567

nasals is, therefore, a plausible reason for why we find better acoustic contrast568

in nasals than laterals, in contrast to Nance and Kirkham (2020), where we569

only analysed formants at the sonorant steady-state. This is supported by570

our finding that laterals are classified better than nasals in our steady-state571

models, but that nasal classification drastically improves when we incorporate572

dynamic information across the sonorant-vowel interval. From this, we can573

conclude that the three-way nasal contrast in Gaelic is fundamentally dynamic574

in nature and likely more so than for laterals or rhotics, due to the relevant575

cues to contrast being more temporally distributed for nasals.576

We predicted that rhotics would show the weakest classifications, based on577

previous research (Kochetov, 2005; Stoll, 2017; Iskarous and Kavitskaya, 2018).578

This is true word-finally, but certainly not word-initially, which is in line with579

our previous work on Gaelic. In Nance and Kirkham (forthcoming 2022) we580

report strong evidence of contrast in initial rhotics based on low-dimensional581
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phonetic information, such as formant frequencies, so it is unsurprising that582

we also find good classification for rhotics when we take even more information583

into account. We do find, however, that final rhotics are classified comparably584

worse than any other sonorant, which supports the tendency towards contrast585

neutralisation in final rhotics. It is well-known that codas contain weaker586

acoustic cues for place of articulation than onsets (Ohala, 1990; Wright, 2004).587

Gaelic is unusual in having an overall VC structure, similar to Irish (Hammond588

et al., 2014; Nı́ Chiosáin et al., 2012), but, despite this, the proposal that589

acoustic cues are weaker in syllable-final position remains and is backed up590

by perceptual research. For example, Kochetov (2002) and Nı́ Chiosáin and591

Padgett (2012) both find that listeners are less likely to distinguish palatalised592

and non-palatalised pairs in VC contexts compared with CV contexts. This593

factor may explain the tendency for initial rhotics to show more robust594

distinctions than final rhotics, but this logic does not appear to extend to595

laterals or nasals, which show similar classification between positions and596

sometimes slightly better classification in final position.597

We now briefly comment on how our model compares with human listeners;598

in other words, can Gaelic speakers accurately perceive phonemic identity599

from similar acoustic information to what we analyse here? Listeners can600

distinguish palatalised and non-palatalised consonants with high accuracy601

(Kochetov, 2002; Nı́ Chiosáin and Padgett, 2012; Spinu et al., 2012), even602

when they do not speak a language with palatalisation contrasts. Babel603

and Johnson (2010) found that American English listeners performed no604

differently from Russian listeners at a fast-paced AX discrimination task605

comparing word-initial Russian palatalised and non-palatalised consonants,606
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although Hacking et al. (2016) show that L2 English learners have greater607

difficulty producing the Russian contrast word-finally. Our rhotics results608

are in line with the above research showing better perceptual discrimination609

between palatalised and non-palatalised consonants in CV contexts compared610

with VC contexts. In summary, we consider our machine classification to be611

comparable to the discrimination capabilities of a human listener.612

4.2. The dynamic nature of palatalisation contrasts613

A major finding of this study is the extent to which the incorporation of614

dynamic information improves acoustic classification. This was particularly615

true of nasals, but, surprisingly, we find little difference between the steady-state616

and dynamic models for initial laterals. It could be the case that the sonorant617

steady-state is where the primary cues for such contrasts exist in laterals.618

However, we also find other insensitivities to model adjustments in the initial619

laterals data. For example, during sensitivity testing we found that increasing620

or decreasing the number of coefficients had the least effect on initial laterals. It621

may be that the acoustic and articulatory data used here provides an adequate622

representation for this context, with reasonable accuracies of 73–75%, but623

that the highly audible contrast we perceive for initial laterals has other624

acoustic and articulatory correlates that are not well captured in this study.625

Despite the strong contribution of dynamics to acoustic classification,626

we find this to a much lesser degree with the articulatory data. This may627

be a consequence of dynamic non-linearity in acoustic-articulatory relations628

(Stevens, 1989; Strycharczuk and Scobbie, 2017; Gorman and Kirkham, 2020),629

whereby articulatory variation in some parts of the vocal tract does not630

produce proportionate change in the acoustic output, at least in terms of631
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the parameters measured here. Another explanation could be the nature632

of the acoustic and articulatory representations used in this study. For633

instance, MFCCs capture rich details of the acoustic spectrum, whereas634

the midsagittal tongue shape obtained by ultrasound imaging is already a635

very sparse representation of the three-dimensional oral tract. Furthermore,636

it is possible that the the lesser contribution of dynamics to articulatory637

classification may be a consequence of our focus on global change in midsagittal638

tongue shape. It may be the case that other aspects of articulatory timing,639

such as the relative timing of coronal, palatalisation and velarisation gestures,640

represent stronger articulatory cues to contrast than overall change in tongue641

shape. We plan to explore this further in future research, with the aim of642

better understanding the articulatory dynamics of palatalisation contrasts.643

Finally, we must highlight some caveats for interpreting the comparison644

between steady-state and dynamic models. First, the inputs to each model645

necessarily differ in dimensionality (6 for steady-state, 18 for dynamic). While646

this is an obvious consequence of incorporating time-varying information into647

the dynamic model, a larger number of parameters increases the possibility648

of overfitting and producing overly optimistic classification rates, so it would649

be valuable to further evaluate the effects of parameter space size on a much650

larger data set. We also cannot discount the possibility that the dynamic651

model is picking up on vowel cues that correspond to lexical items, rather than652

the phonetic correlates of deep phonological structure. In other words, by653

incorporating information from the sonorant and the adjacent vowel, we could654

be identifying mostly word-specific information. In part, this is unavoidable,655

as Gaelic has relatively few true minimal triplets for these contrasts, but656
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it would be worthwhile testing on languages where such contrasts have a657

higher functional load, such as Russian. Finally, our analysis demonstrates658

the extent to which dynamic information contributes towards classification659

accuracy, but does not tell us the precise nature of this dynamic information.660

In future research, we plan to examine the temporal dynamics of the lingual661

gestures involved in Gaelic palatalisation contrasts.662

4.3. The diachronic typology of palatalisation contrasts663

We made the prediction that sonorants with a greater propensity towards664

diachronic phonological loss across a language family would show synchronically665

weaker contrasts. This was grounded in the principle that processes of666

diachronic change can be inferred from synchronic snapshots (Labov, 1994).667

In our case, the diachronic predictions suggested that laterals should have the668

highest classification rates and rhotics the lowest classification rates, given669

that lateral contrasts are best-maintained across the Goidelic language family670

and rhotics the least well-maintained. Our results only support the diachronic671

predictions when we focus solely on the sonorant steady-state, which is a672

partial and insufficient representation of palatalisation contrasts. When we673

take into account the dynamics of how the palatalisation gesture unfolds over674

time, we instead find a different set of results that interact strongly with word675

position. To re-cap, rhotics are best classified in initial position and worst in676

word-final position, with nasals being relatively well classified in all contexts,677

and laterals always being classified less accurately than nasals.678

The word-final rhotic synchronic data, however, do pattern with diachronic679

trends towards neutralisation across Goidelic. Cross-linguistically, it has680

been shown that large rhotic inventories are subject to simplification, with681
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palatalised rhotics particularly susceptible to loss (Hall, 2000). We anticipate682

that competing biomechanical demands on palatalised rhotics can lead to683

partial masking of the palatalisation gesture, especially in word-final position.684

For instance, Stoll (2017) reports more variable gestural timing in palatalised685

rhotics compared with laterals, which may also lead to greater overlap between686

rhotic categories. Given sufficient exposure, this increased overlap is likely to687

cause instances of misperception and subsequent recategorisation of a listener’s688

phonological system, leading them to produce smaller distinctions between689

rhotic phonemes (Ohala, 1981, 1989). Moreover, if the reduced variants690

become recognised as acceptable by other community members, possibly due691

to the low functional load of the contrast, this is likely to accelerate the692

long-term progression of contrast neutralisation (Beckman et al., 1992; Bybee,693

2015).694

Nasals are especially interesting in this case as Goidelic diachronic data695

suggests they are retained more frequently than large rhotic systems, but less696

frequently than large lateral systems. In Slavic, on the other hand, palatalised697

nasals are very frequently maintained cross-linguistically, more so than laterals698

and rhotics (Carlton, 1990; Iskarous and Kavitskaya, 2010). Our data pattern699

more closely with the reported typology of Slavic sonorant development, with700

nasal phonemes produced more distinctively than laterals and final rhotics.701

This is surprising in light of previous research, some of which has suggested702

only a two-way contrast in Gaelic nasals (Ladefoged et al., 1998; Nance and703

Kirkham, 2020), but it may be the case that the Gaelic contrast has been704

maintained by temporally distributing the phonetic cues to contrast across705

the sonorant-vowel interval, which has not previously been investigated as706
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thoroughly. We are unable to claim whether this is a novel development707

in Gaelic, but previous research on Slavic has also shown that nasals may708

sometimes show more robust contrasts than laterals in formant transitions709

(Iskarous and Kavitskaya, 2018), so it is likely that a similar pattern recurs in710

our data.711

In summary, we find a more complex relationship between diachronic712

predictions and the variable stability of synchronic contrasts than we initially713

predicted. We believe, however, that the sociolinguistic context of Gaelic is714

highly informative in understanding these results. Gaelic is a minoritised715

language that is currently undergoing intense revitalisation. Minority languages716

often experience structural simplification (Dorian, 1981; Jones, 1998), but717

we note that speakers of Gaelic often have high levels of metalinguistic718

awareness about the language’s phonology (Nance et al., 2016). All of the719

speakers in our study worked in Gaelic-essential jobs and, therefore, represent720

highly professional speakers of the language. The strong investment of such721

speakers in maintaining Scottish Gaelic also increases the likelihood of them722

learning to produce traditionally-reported contrasts in the language, which723

are often acquired through education. This sociolinguistic context, therefore,724

may represent one of the contributing mechanisms for the preservation of725

structures that would otherwise be likely to undergo loss in more typical cases726

of community transmission (Nance and Kirkham, forthcoming 2022). It is727

clear from this that identifying potential future paths of sound change in the728

Gaelic sonorant system will also require detailed attention to the changing729

sociolinguistics dynamics of Gaelic.730
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5. Conclusion731

This study has examined the variable synchronic stability of palatalisation732

contrasts in light of claims that such contrasts are prone to diachronic733

simplification, reduction or loss. The cross-linguistic diachronic evidence734

suggested that laterals would show the most robust contrasts and rhotics735

the least robust contrasts. We do indeed find that rhotics are most poorly736

classified word-finally, which may reflect the diachronic trend towards contrast737

reduction, but we find the opposite pattern word-initially, where rhotic738

contrasts are highly robust. This demonstrates that some contrasts in Gaelic739

are robustly maintained despite intense pressures towards diachronic reduction.740

We do not find evidence to support the claim that laterals show more robust741

contrast than nasals, with both sonorants being well-classified, but with nasals742

showing better classification once dynamic information is taken into account.743

Accordingly, we find that synchronic speech production data bears a complex744

relationship with long-term patterns of diachronic change reported across745

the Goidelic languages, and it is likely that a fuller consideration of how746

phonological dynamics interact with changing sociolinguistic contexts will747

further illuminate the potential paths of sound change in Gaelic. Overall,748

we find evidence of weaker contrast in predictably unstable sonorants, but749

elsewhere we find that contrast is often more robust than previously anticipated,750

with the phonetic correlates of phonological structure located firmly in the751

temporal dynamics of the speech signal.752
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Gaelic Phoneme Word position Vowel context English

latha l”G initial a day

lùib l”G initial u bend

càl l”G final a cabbage

cùl l”G final u back

mo litir l initial i my letter

mo leannan l initial a my darling

air an latha l initial a on the day

ann an Liurbost l initial u in Leurbost

mil l final i honey

dil l final i gravel

fuil l final u blood

càil l final a anything

dàil l final a delay

sùil l final a eye

litir l”j initial i letter

linnean l”j initial i centuries

leabaidh l”j initial a bed

Liurbost l”j initial u Leurbost

till l”j final i return (verb)

caill l”j final a lose (verb)

saill l”j final a salt (verb)

puill l”j final u ponds

ùill l”j final u oil (verb)

Table 8: Lateral word list used in this study.
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Gaelic Phoneme Word position Vowel context English

nathair n”G initial a snake

nuadh n”G initial u new

ceann n”G final a head

sunn n”G final u blast

mo nighean n initial i my daughter

mo nathair n initial a my snake

mo nupair n initial u my spanner

f̀ıon n final i wine

glan n final a clean (verb)

dùn n final u fort

nighean n”j inital i daughter

neach n”j initial a person

niucleasach n”j initial u nuclear

cinn n”j final i heads

tàin n”j final i cattle

guin n”j final i arrow

Table 9: Nasal word list used in this study.
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Gaelic Phoneme Word position Vowel context English

rionnag rG initial i star

rabaid rG initial a rabbit

rudan rG initial u things

piorr rG final i pierce

as fheàrr rG final a best

cùrr rG final u corner

mo rionnag r initial i my star

mo rabaid r initial a my rabbit

riubh r initial u to you

f̀ıor r final i really

s̀ıor r final i eternal

far r final a where

cur r final u put

ri rj initial i to

fir rj final i men

sir rj final i ask

gàir rj final a laugh

bàir rj final a goal

muir rj final u sea

Table 10: Rhotic word list used in this study.
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