

Diachronic phonological asymmetries and the variable stability of synchronic contrast

Sam Kirkham and Claire Nance

- Secondary palatalisation contrasts vary in diachronic stability across sonorants
- We investigate the synchronic stability of secondary palatalisation contrasts in Scottish Gaelic
- Support Vector Machines classify compact representations of acoustic and articulatory data
- Rhotics are best classified word-initially and worst word-finally
- Dynamic information is crucial to phonological contrast, but varies in magnitude across sonorants
- Variable synchronic stability of contrasts complicates potential trajectories of diachronic change

Diachronic phonological asymmetries and the variable stability of synchronic contrast

Sam Kirkham and Claire Nance

Abstract

This article aims to understand the development of diachronic asymmetries in phonological systems by evaluating the variability stability of synchronic contrasts. We focus on sonorant systems involving secondary palatalisation, grounded in the claim that palatalised laterals are more common than palatalised rhotics cross-linguistically. Our analysis reports acoustic and articulatory data on Scottish Gaelic, a Celtic language with a large sonorant inventory contrasting palatalised, plain and velarised phonemes across laterals, nasals and rhotics. We summarise high-dimensional dynamic characteristics of the acoustic spectrum and midsagittal tongue shape using a two-stage data reduction process and use these coefficients as inputs for training a Support Vector Machine. This trained model classifies unseen data in terms of its phonemic identity, which reveals that rhotics are classified best word-initially and worst word-finally, with nasals always classified better than laterals. We find that dynamic information substantially improves acoustic classification, but only improves articulatory classification for some sonorants. We propose that the variable synchronic stability of palatalisation contrasts complicates potential trajectories of diachronic change in Gaelic.

Keywords: Sound change, palatalisation, Scottish Gaelic, sonorants, synchronic variation, diachronic change, ultrasound

¹ 1. Introduction

² In this article, we investigate whether diachronic and typological asymmetries
³ in phonological systems are reflected in the variable stability of synchronic
⁴ contrasts. It is widely predicted that the diachronic instability of some
⁵ phonological contrasts is a consequence of a larger pool of synchronic variability.
⁶ This is because such variability is hypothesised to facilitate misperception-based
⁷ sound change (Ohala, 1981) and can also weaken the robustness of phonemic
⁸ categories, leading to potential neutralisation over time (Bybee, 2015). But
⁹ does the propensity of a phonological contrast towards diachronic neutralisation
¹⁰ necessarily mean that it will be less robust *at a given point in time*? An
¹¹ assumption underpinning many theories of sound change is that we can observe
¹² the tendencies of diachronic change through examination of synchronic data,
¹³ with the hypothesis that there is a tight link between the two at any point
¹⁴ in time (Labov, 1994, 21). This suggests that a greater tendency towards
¹⁵ diachronic neutralisation should also be evident in synchronic data. In this
¹⁶ study, we examine claims about the diachronic trajectories of typologically
¹⁷ unusual sound systems and whether the variable stability of synchronic
¹⁸ contrasts is predictable from the attested sound changes. We also speculate
¹⁹ on whether variable synchronic stability between phonological categories
²⁰ might be able to tell us something about future trajectories of sound change,
²¹ especially in light of existing diachronic predictions.

²² A particularly good case study for examining variable diachronic and
²³ synchronic stability is the cross-linguistic system of contrasts that fall under

24 the banner of secondary palatalisation. Previous research shows that some
25 secondary palatalisation contrasts in consonants are more unstable than
26 others (Kochetov, 2005; Iskarous and Kavitskaya, 2018). Palatalised rhotics, in
27 particular, are cross-linguistically rare and prone to merger with non-palatalised
28 rhotics (Hall, 2000), but laterals seem more robust to sound change (Iskarous
29 and Kavitskaya, 2010). Word-final palatalisation contrasts are also more
30 unstable than word-initial contrasts (Padgett and Ní Chiosáin, 2018). Importantly,
31 previous work shows that the robustness of palatalisation contrasts may
32 vary depending on the features analysed; for example, nasals may be more
33 distinctive than laterals in format transitions, but laterals have a more
34 distinctive spectral shape than nasals, with rhotics being least distinct in both
35 analyses (Iskarous and Kavitskaya, 2018). This suggests that palatalisation
36 contrasts are multi-dimensional and temporally distributed, potentially as a
37 consequence of a high number of phonological categories existing together in
38 a relatively narrow phonetic space.

39 The fact that some sonorant contrasts are diachronically less stable than
40 others cross-linguistically makes them an ideal candidate for assessing claims
41 about variable diachronic trajectories using synchronic data. In this study
42 we wish to further understand why some sonorants show greater stability
43 than others and, in doing so, we focus on palatalisation contrasts in Scottish
44 Gaelic (Celtic), which contrasts palatalised, velarised and plain sonorants
45 across laterals, rhotics and nasals. Notably, Scottish Gaelic has retained a
46 larger system of sonorants in comparison to closely-related Irish and Manx.
47 In this study, we take seriously the dynamic nature of sonorant contrasts,
48 building upon our previous work that has focused on selective sampling of

49 a limited number of timepoints. We show that this previous research may
50 underestimate the extent of contrast that is present in the Scottish Gaelic
51 sonorant system; contrasts which we argue are fundamentally dynamic in
52 nature. We further demonstrate this by comparison with analyses that focus
53 only on a sonorant ‘steady-state’, which illustrates how some contrasts may
54 be more dynamic in nature than others.

55 *1.1. Dynamics of secondary palatalisation*

56 Secondary palatalisation involves overlap between a palatal gesture and
57 the consonant’s primary place of articulation, which contrasts with ‘full
58 palatalisation’, where the consonant’s primary place of articulation is changed
59 (Bateman, 2007, 2). Some languages, such as Russian and Scottish Gaelic,
60 have extensive secondary palatalisation contrasts across the consonant system,
61 such that almost every consonant has a palatalised and non-palatalised
62 counterpart (see Yanushevskaya and Bunčić 2015 for description of Russian,
63 and Nance and Ó Maolalaigh 2021 for description of Scottish Gaelic). For
64 this reason, all consonant palatalisation pairs in Russian, Scottish Gaelic
65 and other languages with this system are considered to contrast in secondary
66 palatalisation even though the secondary palatalisation contrast may at times
67 manifest as a change in primary place/manner.¹

68 In terms of articulation, the most widely reported articulatory correlate
69 of secondarily palatalised consonants is tongue body fronting and raising
70 towards the palate accompanying the primary consonantal gesture (Kochetov,

¹For example in *maide* ‘stick’ /matʃə/, where the orthographic ‘d’ is palatalised and changes from alveolar to post-alveolar place of articulation.

⁷¹ 2002; Stoll, 2017; Bennett et al., 2018; Malmi and Lippus, 2019; Spinu et al.,
⁷² 2019). The fronting and raising gesture also frequently extends into the
⁷³ surrounding vowels (Malmi and Lippus, 2019). This tongue body fronting is
⁷⁴ often accompanied by tongue root advancement and pharyngeal expansion
⁷⁵ (Kavitskaya et al., 2009; Bennett et al., 2018), while palatographic studies
⁷⁶ additionally demonstrate that the tongue blade is spread across the hard
⁷⁷ palate to a greater extent than in non-palatalised consonants (Farnetani et al.,
⁷⁸ 1991; Meister and Werner, 2015).

⁷⁹ Capturing the acoustics of palatalisation contrasts is complex given their
⁸⁰ multi-dimensional and dynamic nature. When the tongue body is raised and
⁸¹ fronted for a palatalised consonant, this results in a larger back cavity and
⁸² raised F2, which is particularly robust in laterals (Sproat and Fujimura, 1993;
⁸³ Nance, 2014; Kochetov et al., 2020). The vowels surrounding palatalised
⁸⁴ consonants also tend to show raised F2 due to an /i/-like glide in the transition
⁸⁵ to/from a palatalised consonant, with such articulatory dynamics being
⁸⁶ important to the contrast (Ní Chiosáin and Padgett, 2012; Kochetov, 2017;
⁸⁷ Nance and Kirkham, 2020; Howson, 2018; Malmi et al., 2022). F1 and
⁸⁸ F3 may also be lower in palatalisation contexts (Shuken, 1980; Bennett
⁸⁹ et al., 2018; Kochetov, 2017). The multi-dimensional nature of palatalisation
⁹⁰ contrasts have led others to analyse more holistic spectral features, such
⁹¹ as Mel Frequency Cepstral Coefficients (MFCCs) (Spinu et al., 2012; Spinu
⁹² and Lilley, 2016; Spinu et al., 2018) and smoothed spectra (Kochetov, 2017;
⁹³ Iskarous and Kavitskaya, 2018; Nance and Kirkham, 2020). For example,
⁹⁴ cepstral coefficients have been found to significantly outperform spectral
⁹⁵ measures in classifying palatalised fricative contrasts (Spinu and Lilley, 2016;

⁹⁶ Spinu et al., 2018).

⁹⁷ Secondary palatalisation is a good case study for testing the relationship
⁹⁸ between diachronic neutralisation and synchronic stability, because of well-documented
⁹⁹ differences between sonorant types. Palatalised rhotics involve a retracted
¹⁰⁰ and stabilised tongue body for trill production (McGowan, 1992; Recasens,
¹⁰¹ 2013), which comes into conflict with the tongue body advancement needed
¹⁰² for palatalisation (Iskarous and Kavitskaya, 2018; Kochetov, 2005; Stoll,
¹⁰³ 2017). Such biomechanical constraints may lead to a larger pool of synchronic
¹⁰⁴ variability (Ohala, 1989), with the possibility that variants become phonologised
¹⁰⁵ or contrasts are neutralised over time (Beckman et al., 1992; Bybee, 2015). For
¹⁰⁶ example, articulatory variability may lead to ambiguity in perception, which
¹⁰⁷ could advance the spread of a change further when misperceived by the listener
¹⁰⁸ (Ohala, 1981). Such explanations are explicitly pursued in previous research
¹⁰⁹ on sonorant palatalisation in terms of acoustics (Iskarous and Kavitskaya,
¹¹⁰ 2018) and articulation (Kochetov, 2005; Stoll, 2017), with the claim in both
¹¹¹ cases being that less robust phonemic categories are more susceptible to
¹¹² merger.

¹¹³ *1.2. Palatalisation in Gaelic*

¹¹⁴ Our study focuses on Scottish Gaelic, a Celtic language closely related
¹¹⁵ to Irish and Manx.² The Scottish Gaelic language is usually referred to
¹¹⁶ in English by its speakers simply as ‘Gaelic’ /galik/ and we refer to it as

²Manx is believed to have become extinct as a first language in the 1970s, following a long period of decline, but has subsequently undergone revival. It is taught in immersion schooling and is transmitted in a small number of families. See Lewin (2021) for more information on revived Manx.

¹¹⁷ Gaelic henceforth. Together, the Celtic language sub-family consisting of
¹¹⁸ Gaelic, Irish and Manx is known as ‘Goidelic’. The most recently available
¹¹⁹ data (Scottish Government, 2015) show that there are approximately 57,600
¹²⁰ Gaelic speakers in Scotland. Traditionally, Gaelic is associated with the
¹²¹ north-west Highlands and Islands of Scotland, and this is where the most
¹²² densely concentrated populations of Gaelic speakers live. In particular, Gaelic
¹²³ is associated with the chain of islands off the north-west coast of Scotland
¹²⁴ known as the Outer Hebrides or Western Isles, where around 60% of the
¹²⁵ population reported the ability to speak Gaelic (Scottish Government, 2015).
¹²⁶ A map showing the concentration of Gaelic speakers in Scotland is in Figure
¹²⁷ 1. The speakers in this study are from the Isle of Lewis, the most northerly
¹²⁸ island in the Outer Hebrides chain. The Goidelic languages are descended
¹²⁹ from Old Irish, which expanded from Ireland to Scotland and Isle of Man
¹³⁰ in early medieval times (McLeod, 2020). It is generally thought that Gaelic
¹³¹ in Scotland had sufficiently diverged from Irish to be considered a separate
¹³² language in approximately 1100 CE (Ó Maolalaigh, 2008).

¹³³ The Goidelic languages all have systems of contrastive secondary palatalisation
¹³⁴ across the entire consonant system (with a few exceptions in some consonants)
¹³⁵ (Broderick, 2009; Hickey, 2014; Bennett et al., 2018; Nance and Ó Maolalaigh,
¹³⁶ 2021). In Nance and Kirkham (forthcoming 2022), we provide a historical
¹³⁷ overview of the development of palatalisation in rhotics and comparison to
¹³⁸ different Goidelic dialects. In this paper, we focus on the contrasts across
¹³⁹ the whole sonorant system. To summarise: the most extensive Goidelic
¹⁴⁰ palatalisation contrasts were found in Old Irish, where the system developed
¹⁴¹ by approximately 900 CE (Greene, 1973; Hickey, 1995). At this time, Old Irish

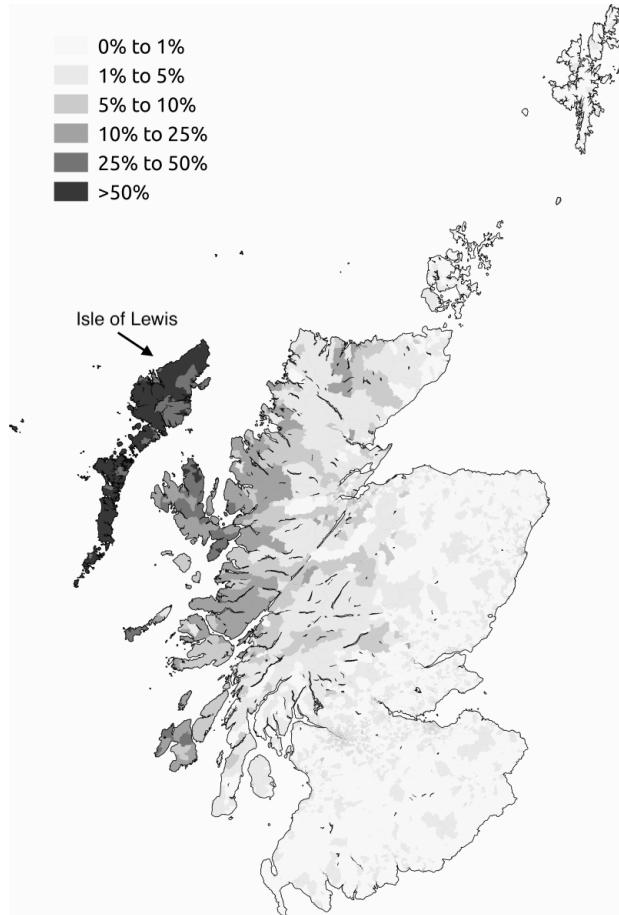


Figure 1: Map showing the concentration of Gaelic speakers in Scotland according to the most recently available figures from the 2011 National Census. Attribution: By SkateTier - Own work, CC BY-SA 3.0, <https://commons.wikimedia.org/w/index.php?curid=31996352>. Original figure in colour, converted to greyscale here.

¹⁴² sonorants contrasted in place of articulation as well as palatalisation, resulting
¹⁴³ in four different phonemes for laterals, nasals and rhotics (Thurneysen, 1946;
¹⁴⁴ Russell, 1995; Hickey, 1995). It is thought that a three-way contrast between
¹⁴⁵ palatalised, plain and velarised sonorants developed in Middle Irish (900–1200

₁₄₆ CE) (Hickey, 1995). The Irish system has evolved since early medieval times
₁₄₇ in different ways in the modern Goidelic dialects. The most innovative dialect
₁₄₈ in this respect is Manx, where palatalisation contrasts were lost in rhotics, and
₁₄₉ reduced in laterals and nasals. At the other end of the scale are Hebridean
₁₅₀ dialects of Gaelic, including the dialect under investigation here, Lewis Gaelic.
₁₅₁ In Lewis and other Hebridean dialects, three lateral, three nasal and three
₁₅₂ rhotic phonemes are maintained.

₁₅₃ In comparison to many of the previous studies of palatalisation, Lewis
₁₅₄ Gaelic is interesting in several respects. The majority of work carried
₁₅₅ out previously on palatalisation has examined contexts where palatalised
₁₅₆ consonants are contrasted with non-palatalised consonants, such as Russian.
₁₅₇ In Gaelic sonorants there is instead a three-way distinction between palatalised,
₁₅₈ plain and velarised. The rhotic inventory, however, has been particularly
₁₅₉ prone to reduction across Goidelic dialects, with laterals appearing most
₁₆₀ robust to sound change. This is in line with the findings discussed above for
₁₆₁ Slavic, which show that rhotics are more susceptible to change than laterals
₁₆₂ (Carlton, 1990; Iskarous and Kavitskaya, 2018).

₁₆₃ *1.3. Summary and predictions*

₁₆₄ In the current study, we investigate the extent to which palatalisation
₁₆₅ contrasts are maintained, combining dynamic phonetic evidence from acoustics
₁₆₆ and articulation in order to examine whether phonemic distinctiveness varies
₁₆₇ between laterals, nasals and rhotics. We specifically build upon previous work
₁₆₈ in the following ways. First, previous work on the asymmetry of sonorant
₁₆₉ palatalisation contrasts has focused on Russian as the language with the most
₁₇₀ extensive system of sonorant palatalisation in the Slavic family (Kochetov,

¹⁷¹ 2005; Stoll, 2017; Iskarous and Kavitskaya, 2018). Here, we consider Lewis
¹⁷² Gaelic, as the Goidelic dialect with the most extensive system of sonorant
¹⁷³ palatalisation in a completely different language family. Second, previous
¹⁷⁴ work in this area has considered articulation (Kochetov, 2005; Stoll, 2017) or
¹⁷⁵ acoustics (Iskarous and Kavitskaya, 2018) respectively, but we combine both
¹⁷⁶ perspectives and use a method that allows us to subject each modality to a
¹⁷⁷ comparable classification task. Third, much previous work has focused on
¹⁷⁸ static timepoints, either sonorant midpoints or specific locations of formant
¹⁷⁹ transitions. We take a broader approach by compressing all time-varying
¹⁸⁰ information that is available in the signal and using this to assess classification
¹⁸¹ accuracy. This allows us to more comprehensively investigate the hypothesis
¹⁸² that diachronically unstable contrasts are more vulnerable to synchronic
¹⁸³ neutralisation at a specific snapshot in time. Accordingly, we set out the
¹⁸⁴ following questions for the present study:

- ¹⁸⁵ 1. Which sonorant categories (laterals, nasals, rhotics) show the most
¹⁸⁶ robust phonemic contrasts?
- ¹⁸⁷ 2. Is contrast more robust in acoustic or articulatory data?
- ¹⁸⁸ 3. How do acoustic and articulatory dynamics contribute to phonological
¹⁸⁹ contrast?
- ¹⁹⁰ 4. What do these results tell us about the variable synchronic stability of
¹⁹¹ categories and the potential diachrony of palatalisation contrasts?

¹⁹² We test the prediction that laterals will be best classified, followed by
¹⁹³ nasals and then rhotics, and anticipate that reduction will be more evident
¹⁹⁴ word-finally. In previous work on Gaelic, Nance and Kirkham (2020) show that
¹⁹⁵ laterals are more robust than nasals in formants at the sonorant steady-state,

196 while Nance and Kirkham (forthcoming 2022) show that three initial rhotics
197 are well-maintained in Gaelic, despite potential neutralisation of rhotics
198 in word-final position. However, these studies used different methods and
199 different features to establish contrast, as well as focusing on a small set of
200 selective timepoints, so our present study uses a more holistic and comparable
201 method for establishing the relative robustness of three-way contrasts across
202 laterals, nasals and rhotics.

203 2. Methods

204 2.1. Speakers

205 We recorded data from twelve L1 speakers of Lewis Gaelic, all of whom
206 were raised in Gaelic-speaking families on the Isle of Lewis (six female, six
207 male). They acquired English either as simultaneous bilinguals or upon
208 entering the school system. The speakers were aged 21-80 and either used
209 Gaelic as part of their job, or had used Gaelic before retirement. All the
210 speakers reported using more Gaelic than English in their daily lives and
211 can be considered Gaelic-dominant bilinguals. Due to the fragility of Gaelic
212 language transmission, even in locations such as Lewis (Munro et al., 2011),
213 it is difficult to obtain a large sample of data from Gaelic-dominant bilingual
214 speakers. We recognise that the data here represent a large age range, but
215 the speakers are socially consistent in using more Gaelic than English.

216 2.2. Data recording and stimuli

217 Simultaneous acoustic and ultrasound tongue imaging data were recorded
218 in a community centre or at the speaker's workplace. The acoustic signal

219 was recorded using a Beyerdynamic Opus 55 headset microphone, which was
220 preamplified and digitized using a Sound Devices USBPre2 audio interface
221 at 44.1 kHz with 16-bit quantization. Simultaneous ultrasound data were
222 recorded using a Telemed MicrUs system, with a 64 element probe of 20
223 mm radius. We used a 2 MHz probe frequency, 80 mm depth, 90% field of
224 view and 57 scan lines, which resulted in a frame rate of ~92 Hz. The probe
225 was stabilised using an Articulate Instruments metal headset (Articulate
226 Instruments, 2008). The occlusal plane for each speaker was imaged by them
227 biting on a bite plate placed behind the upper incisors and pushing their
228 tongue up against it. Synchronization between audio and ultrasound data was
229 achieved using the frame-level TTL pulse emitted by the ultrasound scanner.
230 Data presentation and recording was handled using the Articulate Assistant
231 Advanced software (Articulate Instruments, 2018).

232 The stimuli used for this study are shown in the Appendix (Tables 8–10).
233 We aimed to capture laterals, nasals and rhotics in word-initial and word-final
234 position in three vowel contexts where possible: /i a u/. This was not always
235 possible due to the historical development of palatalisation in high front vowels.
236 For example, there are no velarised nasals in the context of /i/ in readily-known
237 words. The plain sonorants developed from contexts of historical lenition, and
238 in word-initial position they still occur in contemporary lenition contexts. For
239 an overview of changes in lenition (contemporary morphophonological changes
240 in Celtic language word-initial consonants known as ‘mutation’), see Ball and
241 Müller (2009) or Nance and Ó Maolalaigh (2021) for Gaelic specifically. For
242 this reason we included the word-initial plain sonorants in short phrases that
243 would trigger mutation – e.g. *mo nathair* ‘my snake’ – where the possessive

²⁴⁴ *mo* ‘my’ triggers mutation.

²⁴⁵ *2.3. Data preparation*

²⁴⁶ Acoustic landmarks were labelled manually in Praat using information
²⁴⁷ from the waveform and spectrogram (Boersma and Weenink, 2020). We
²⁴⁸ labelled the entire sonorant-vowel interval for all tokens, such as lateral-vowel
²⁴⁹ for word-initial tokens and vowel-lateral for word final tokens. This interval
²⁵⁰ was used for all analyses reported in this paper. We carried out post-hoc
²⁵¹ screening of the ultrasound data and found that only seven of the twelve
²⁵² speakers had consistently good images (three female, four male). As our
²⁵³ analysis below is premised upon comparing acoustic and articulatory data,
²⁵⁴ we only use these seven speakers for the analysis, resulting in 1165 tokens
²⁵⁵ with parallel acoustic and ultrasound data.

²⁵⁶ *2.4. Acoustic features*

²⁵⁷ The acoustic features used in this analysis are Mel Frequency Cepstral
²⁵⁸ Coefficients, which are highly effective at reducing the dimensionality of the
²⁵⁹ spectrum while retaining linguistically-relevant features (Davis and Mermelstein,
²⁶⁰ 1980). MFCCs are directly related to characteristics of the spectrum and,
²⁶¹ therefore, do have a physical interpretation, despite their complexity in the
²⁶² higher coefficients. For example, lower MFCCs describe global aspects of
²⁶³ spectral shape, while increasingly higher coefficients describe increasingly
²⁶⁴ finer details in the spectrum. MFCCs have previously been shown to capture
²⁶⁵ phonemic palatalisation contrasts with a high degree of accuracy (Spinu et al.,
²⁶⁶ 2012; Spinu and Lilley, 2016; Spinu et al., 2018).

267 We use 6 MFCCs to summarise the acoustic spectrum, which has previously
268 been shown to be sufficient for capturing palatalisation contrasts (Spinu et al.,
269 2018). We sensitivity tested the effects of between 4 and 13 MFCCs and
270 found that 6 MFCCs resulted in the strongest overall classification accuracy,
271 although some specific models showed a small (2-4%) improvement using 8
272 coefficients, after which no further improvement was evident. Accordingly, for
273 each token, 6-element MFCC vectors were calculated across each sound file
274 using a 25 ms window and 10 ms frame shift, with a pre-emphasis coefficient
275 $\alpha = 0.97$ and a lifter exponent of 0.6. MFCCs were subsequently extracted
276 at 11 equally spaced points across the labelled sonorant-vowel interval and
277 each MFCC was by-speaker normalized using z -scoring. At this stage, each
278 token is represented by 6 MFCC trajectories, each of which is sampled over
279 11 points.

280 *2.5. Articulatory features*

281 Splines were automatically fitted to the midsagittal ultrasound data using
282 AAA's batch fit function. A paid research assistant manually checked and
283 corrected any obvious errors in the splines, but we did not correct minor
284 tracking errors. All splines were then rotated and scaled to the occlusal
285 plane. These data comprise 42 values in 2-dimensional x/y space. In order to
286 reduce the dimensionality of the tongue splines, we fitted a Discrete Cosine
287 Transform (DCT) to each token at 11 proportionally-spaced timepoints across
288 the sonorant-vowel or vowel-sonorant interval. The DCT has been used for
289 summarising whole acoustic spectra (Harrington, 2010; Nossair and Zahorian,
290 1991), formant trajectories (Watson and Harrington, 1999) and articulatory
291 time series (Shaw and Kawahara, 2018) and is conceptually extendable to

292 spatial representations, such as the ultrasound tongue spline. To this end,
 293 the ultrasound-DCT is conceptually comparable with MFCCs, as both sets
 294 of features fundamentally represent the amplitudes of cosine waves fitted to
 295 the respective signals after undergoing transformation. The DCT coefficients
 296 have a physical interpretation, with the lower coefficients being proportional
 297 to the mean (C_0), slope (C_1) and curvature (C_2) of the tongue shape, with
 298 higher coefficients representing increasingly finer detail in the shape. We fit
 299 a DCT of the form described in Harrington (2010) with m coefficients to a
 300 signal $x(n)$ with length N , where the m^{th} coefficient C_m is calculated using
 301 (1).

$$\begin{aligned}
 C_m &= \frac{2k_m}{N} \sum_{n=0}^{N-1} x(n) \cos \left(\frac{(2n+1)m\pi}{2N} \right) \\
 \text{where } k_m &= \frac{1}{\sqrt{2}}, m = 0; k_m = 1, m \neq 0
 \end{aligned} \tag{1}$$

302 We illustrate DCT compression of ultrasound tongue shapes in Figure
 303 2, which represent smoothing using different numbers of DCT coefficients
 304 (between 2 and 10 coefficients) on a single token. We obtained the smoothed
 305 tongue shapes using an inverse DCT, which reconstructs the input signal by
 306 summing half-cycle cosine waves with the amplitudes of the corresponding
 307 DCT coefficients. The figure shows us that two coefficients $\{C_0, C_1\}$ approximates
 308 the slope of the tongue, while using between three $\{C_0, C_1, C_2\}$ and five $\{C_0,$
 309 $C_1, \dots, C_4\}$ produces similar tongue shapes. At 6 DCT coefficients $\{C_0, C_1,$
 310 $\dots, C_5\}$ the slight dip between the tongue tip and dorsum starts to appear,
 311 which is present in the original signal. After this, we see an increasing level
 312 of detail, but not necessarily any strikingly new information in the signal.

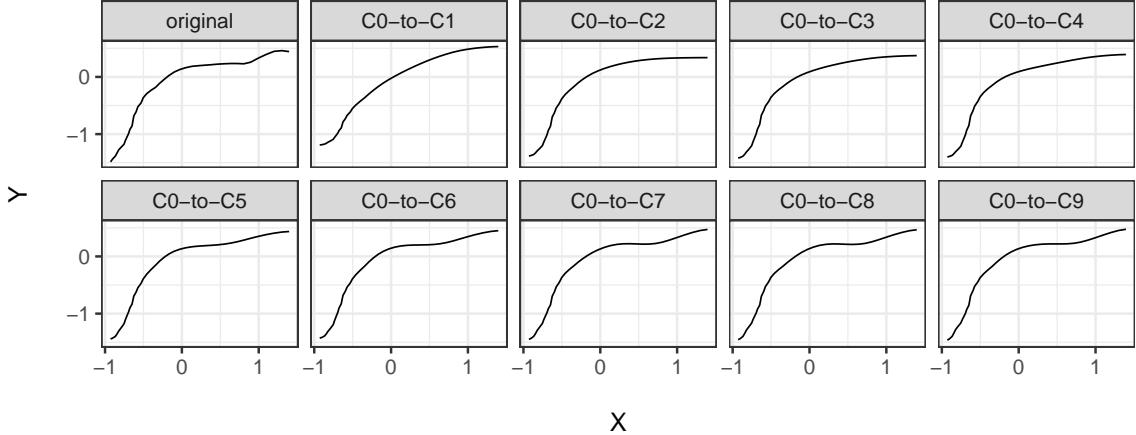


Figure 2: Original midsagittal tongue shape for one token plus DCT reconstructions of the same data using varying numbers of DCT coefficients. The tongue tip is on the right of the image and the tongue root is on the left. The token represents a single spline taken from a word-initial rhotic.

313 In order to empirically evaluate the number of DCT coefficients needed
 314 to summarise each tongue shape, we fitted DCTs to all tongue splines (11
 315 per token, representing 11 time-points) with different numbers of coefficients,
 316 ranging from 2 coefficients to 10 coefficients, which gives us 9 different options
 317 to evaluate. We then conducted an inverse DCT in order to reconstruct the
 318 original signal from these coefficients, which essentially gives us a DCT-smoothed
 319 version of the original signal. Following Shaw and Kawahara (2018), we
 320 then calculate Pearson's correlation between the original signal and the
 321 DCT-reconstructed signal and plot these correlation values for different
 322 numbers of DCT coefficients. Figure 3 shows that 3 coefficients yields
 323 correlations with the original signal of $r > .95$ for all speakers. As shown above,
 324 however, there are some advantages to the higher DCT coefficients, particularly

325 for more complex tongue tip shapes. To this end, we ran testing using the
 326 same classification analysis that we report later in this paper, examining the
 327 effects of between 4–8 DCT coefficients on classification accuracy for each
 328 sonorant*position. Laterals and nasals did not benefit from more than 5
 329 coefficients, but the inclusion of a 6th DCT coefficient improved word-initial
 330 rhotic classification by almost 10%. We anticipate that this is because it
 331 captures the subtle tongue tip shaping depicted in Figure 2. After settling on
 332 6 DCT coefficients, we normalized each coefficient by z -scoring each speaker’s
 333 data across all productions.

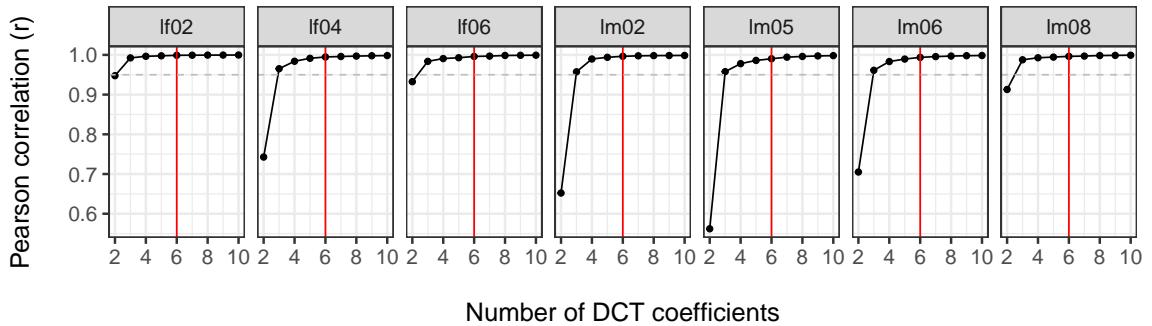


Figure 3: Pearson’s correlation between the original ultrasound tongue splines and DCT-smoothed versions using varying numbers of DCT coefficients. The solid vertical line represents the final number of DCT coefficients used for the classification analysis.

334 *2.6. Summarising high-dimensional dynamic information*

335 At this point, the acoustic data are represented by 6 MFCC trajectories
 336 sampled at 11 points in time (= 66 points), and the ultrasound spline data
 337 are represented by 6 DCT trajectories sampled at 11 points in time (= 66
 338 points). This already represents considerable dimensionality reduction from

339 a time-varying power spectrum or time-varying ultrasound spline, but we
340 conducted further dimensionality reduction of the dynamic data using an
341 approach inspired by Nossair and Zahorian (1991). This involves fitting a
342 Discrete Cosine Transformation (DCT) to each of the time-varying MFCC
343 (acoustics) and DCT (ultrasound) coefficients discussed above, which allows
344 us to summarise the shape of each of those coefficient trajectories over time
345 (see Marin et al. 2010 for a similar approach to spectral data). This provides
346 a higher-level set of coefficients that encodes the shape of each time-varying
347 MFCC or DCT coefficient, each of which summarises some dynamic aspect
348 of spectral shape or tongue shape.

349 We empirically evaluated the number of DCT coefficients needed to
350 summarise each trajectory in the same way as for the ultrasound spline
351 fitting, which is plotted in Figure 4. We find that 3 DCT coefficients
352 returns correlations of $r > .9$ for all acoustic-MFCC trajectories and $r >$
353 $.95$ for ultrasound-DCT trajectories, except for the 6th coefficient in both
354 sets (MFCC6 and DCT5), which are slightly below these values. However,
355 the MFCC/DCT trajectories are not always smooth functions of time and
356 we avoid seeking higher correlations as we wish to avoid overfitting to the
357 signal. Accordingly, we choose 3 DCT coefficients to represent both sets of
358 trajectories, which captures the mean, slope and curvature of each coefficient
359 trajectory over time. This means that each of the 6 acoustic-MFCC and 6
360 ultrasound-DCT dynamic trajectories is summarised by 3 DCT coefficients.
361 As a result, each token's time-varying acoustic spectrum or ultrasound tongue
362 spline across the sonorant-vowel interval is represented by 18 (6×3) values.

363 In summary, our final inputs to our model are as follows. We have

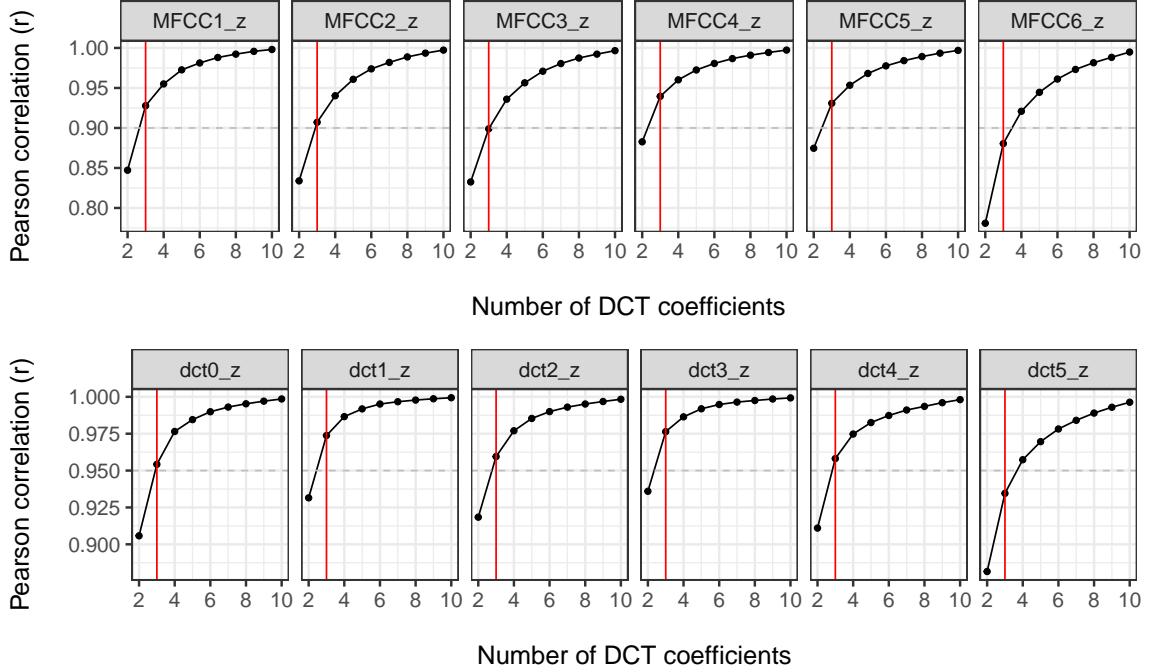


Figure 4: Pearson’s correlation between dynamic acoustic-MFCC trajectories and DCT-smoothed versions using varying numbers of DCT coefficients (top) and the dynamic ultrasound-DCT trajectories and DCT-smoothed versions using varying numbers of DCT coefficients (bottom). The solid vertical line represents the final number of DCT coefficients used for the classification analysis. The dashed horizontal line represents the correlation coefficient cut-off used for selecting the number of DCT coefficients for each measure, which was based on the first 5 dynamic MFCC/DCT trajectories.

364 compressed a complex power spectrum sampled at 11 points in time for each
 365 token to 18 values. These values are a compressed representation of how the
 366 spectrum changes over the sonorant-vowel interval. We have also compressed
 367 time-varying ultrasound tongue splines sampled at 11 points in time for each
 368 token to 18 values, which represents how midsagittal tongue shape changes over

369 the sonorant-vowel interval. These compressed representations correlate well
370 with the original signals and should, therefore, capture important information
371 in the original signals. We now turn to the details of the classification analysis.

372 *2.7. Classification analysis*

373 We use support vector machines (SVMs) in order to establish how robustly
374 the three-way phonemic contrast can be classified for each sonorant, based
375 on an initial training phase mapping phonological categories to acoustic
376 and articulatory feature sets. SVMs are a class of supervised statistical
377 learning models that aim to find the hyperplane that maximally separates two
378 classes in N -dimensional space (Boser et al., 1992; James et al., 2013). The
379 hyperplane is located at the *maximum margin*, which is the largest difference
380 between data points of the two classes. Non-linear separation between classes
381 is typically achieved via a kernel, whereby the data are transformed into
382 a higher-dimensional space and linear classification is then performed in
383 this high-dimensional space. SVMs are a binary classification method but
384 multi-class classification can be achieved in various ways. The method we
385 use is the one-against-one technique, in which each category is compared
386 against one other category. This process is repeated for all combinations of
387 categories, with each classifier voting for one category and the category with
388 the highest number of votes being classified accordingly. SVMs have been
389 widely applied to speech data (Clarkson and Moreno, 1999; Wang et al., 2013;
390 Yu, 2017) and are typically reported to show good phoneme classification
391 accuracy on acoustic and articulatory signals. One reason for this is that
392 SVMs are concerned with the margins between classes, rather than the mean
393 and variance of each class, meaning that a larger data set is better only insofar

394 as the additional data better represents the boundaries between classes.

395 Models were fitted using the e1071 package in R (Meyer et al., 2021). We
396 fitted separate models to each combination of sonorant type and position,
397 such as word-initial laterals, word-final laterals, word-initial nasals, etc. Each
398 model had phoneme as the outcome variable and the 18 dynamic acoustic
399 features or the 18 dynamic ultrasound features as the predictor variables. Each
400 feature set was randomly split into 80% training and 20% testing subsets. All
401 models were fitted using a radial basis function kernel, and parameter tuning
402 for each model was conducted on the training data only using a grid search
403 over a range of values for $\gamma = \{10^{-6}, 10^{-5}, \dots, 10^{-1}\}$ and $C = \{0.1, 1, 10\}$, with
404 model performance evaluated using 10-fold cross-validation. The model with
405 the optimal parameters was used to predict the phonemic identity of the 20%
406 test data set based only on the input measurements (with separate models for
407 acoustic and ultrasound data). In order to mitigate against splitting a small
408 data set, we used Monte Carlo cross-validation (Picard and Cook, 1984; Kuhn
409 and Johnson, 2013), which involved running 100 iterations of the train-test
410 procedure for each model, using a different random train-test split each time.
411 We then averaged over the 100 iterations to produce a final classification
412 matrix and overall classification rates.³ All code and data used for analyses

³In order to empirically determine the chance classification rate for a data set comparable in size and dimensionality to the models used here, we generated simulated data with 18 numerical variables corresponding to the 18 MFCC/DCT coefficients, each of which was populated with random values from a normal distribution $\mathcal{N}(0, 1)$ and then each observation was randomly assigned one of three phoneme labels (plain, palatalised, velarised). We then ran the same procedure described above for the real models and found an average overall classification rate of 31.5-36.94% on random data, depending on the same size, which is

⁴¹³ in this paper is available at: <https://osf.io/dfe7g/>.⁴

⁴¹⁴ **3. Results**

⁴¹⁵ *3.1. L laterals*

⁴¹⁶ The lateral acoustic model in Table 1 shows overall classification rates
⁴¹⁷ of 74.46% (initial) and 81.27% (final), which represents well above chance
⁴¹⁸ classification. The classification matrix for initial laterals shows that /l^j/ is
⁴¹⁹ the most accurately classified at 78.59%, while /l/ is the worst at 63.54%.
⁴²⁰ Note that the majority of inaccurate classifications for /l^j/ in initial and final
⁴²¹ context are as /l^y/, suggesting some overlap in the correlates of velarised and
⁴²² palatalised lateral phonemes. Classification for word-final laterals is better
⁴²³ than initial laterals, but word-finally /l^y/ is the most accurately classified
⁴²⁴ phoneme at 91.77%. Overall, this suggests that initial and final laterals have
⁴²⁵ broadly similar classification rates, with the palatalised and velarised phoneme
⁴²⁶ being most similarly distinct initially and the velarised phoneme being most
⁴²⁷ distinct finally.

⁴²⁸ The lateral ultrasound model in Table 2 shows overall classification rates
⁴²⁹ of 73.37% (initial) and 83.04% (final), but these statistics particularly obscure
⁴³⁰ considerable between-phoneme differences in classification, suggesting slightly
⁴³¹ more robust lateral contrasts in the ultrasound data. In word-initial context,
⁴³² /l^y/ shows rather poor classification of 59.03%, with 31.79% of productions

close to the theoretical chance level of 33.3% for three-way classification.

⁴Sensitivity testing and initial modelling was carried out using Lancaster University's High End Computing facility, after which final models were fitted locally for the publicly available documentation.

WORD-INITIAL			WORD-FINAL			
l^y	l	l^j	l^y	l	l^j	
l^y	76.55	8.92	14.54	91.77	1.29	6.94
l	27.83	63.54	8.63	22.95	70.55	6.49
l^j	20.43	0.98	78.59	25.22	1.79	72.98

Overall: 74.46% Overall: 81.27%

Table 1: SVM classification matrix for lateral acoustic data. Values represent percentage correct classification (rounded to 2 decimal places).

433 being misclassified as $/\text{l}^j/$. Outside of this phoneme, the other phonemes are
 434 classified better than the acoustic MFCC data. This is also true for word-final
 435 laterals, except for $/\text{l}^y/$ being slightly better classified in the acoustic data
 436 (91.77% vs 89.77%).

WORD-INITIAL			WORD-FINAL			
l^y	l	l^j	l^y	l	l^j	
l^y	59.03	9.18	31.79	89.77	1.11	9.11
l	18.88	80.81	0.31	15.05	81.28	3.67
l^j	14.29	0	85.71	21.37	1.84	76.79

Overall: 73.37% Overall: 83.04%

Table 2: SVM classification matrix for lateral ultrasound data. Values represent percentage correct classification (rounded to 2 decimal places).

437 In summary, the laterals data show variability in classification, but
 438 with slightly better classification in word-final context and substantially
 439 above-chance classification in all cases. The models show that $/\text{l}^y/$ and $/\text{l}^j/$

440 are most often misclassified as each other and only very rarely as /l/. This
441 suggests that while velarised and palatalised laterals do have some distinctive
442 acoustic and articulatory correlates, there is a reasonable amount of overlap
443 in these categories, which leads to occasional misclassification. The acoustic
444 and articulatory data show relatively similar findings, except for substantially
445 poorer classification for initial /l^v/ in the ultrasound data.

446 *3.2. Nasals*

447 The nasal acoustic model in Table 3 shows overall classification of 86.67%
448 (initial) and 85.53% (final), which is higher than for laterals. Our previous
449 work has reported less robust distinctions between nasal phonemes in Gaelic
450 (Nance and Kirkham, 2020), but that analysis did not take formant transitions
451 or acoustic dynamics into account. Indeed, our present analysis suggests that
452 such dynamics are crucial to this contrast, and fitting comparable SVMs to
453 a single time-point at the nasal steady-state reduces classification accuracy
454 substantially (see Section 3.4).

455 We find that classification is relatively similar between positions. For
456 example, /n/ is the worst classified phoneme in initial (81.22%) and final
457 (82.32%) position, although both remain well classified. The velarised and
458 palatalised phonemes are classified very similarly across both positions,
459 suggesting a relatively high degree of distinctiveness between the acoustic
460 correlates of all three phonemes.

461 The nasal ultrasound model in Table 4 is very similar to the acoustics
462 model, with overall classification of 84.70% (initial) and 89.81% (final). /n/
463 is classified better in final position (94.68%) than in initial position (84.10%),
464 but classification remains high in all cases.

WORD-INITIAL			WORD-FINAL				
	\underline{n}^y	n	\underline{n}^j		\underline{n}^y		
\underline{n}^y	87.05	6.24	6.71	\underline{n}^y	86.17	0.57	13.26
n	15.02	81.22	3.76	10.52	82.32	7.16	
\underline{n}^j	9.08	0.58	90.34	9.96	1.64	88.40	

Overall: 86.67% Overall: 85.53%

Table 3: SVM classification matrix for nasal acoustics data. Values represent percentage correct classification (rounded to 2 decimal places).

WORD-INITIAL			WORD-FINAL				
	\underline{n}^y	n	\underline{n}^j		\underline{n}^y		
\underline{n}^y	80.13	7.92	11.95	\underline{n}^y	91.79	0	8.21
n	9.29	84.10	6.61	4.58	94.68	0.74	
\underline{n}^j	9.01	0.90	90.10	12.27	2.09	85.64	

Overall: 84.70% Overall: 89.81%

Table 4: SVM classification matrix for nasal ultrasound data. Values represent percentage correct classification (rounded to 2 decimal places).

465 Overall, nasals show better classification than laterals in acoustics and
 466 articulation. Word-final phonemes are slightly better classified than word-initial
 467 phonemes in articulation, but this is only a small difference. This stands in
 468 contrast to our previous research, where we found weak distinctions between
 469 nasal phonemes. We propose that our current model classifies nasals very
 470 effectively due to the incorporation of dynamic information across the nasal
 471 and adjacent vowel, suggesting that cues to the three-way contrast in nasals

472 is highly dynamic. We pursue this idea further in Section 3.4.

473 *3.3. Rhotics*

474 The rhotic acoustics model in Table 5 shows overall classification of 91.14%
 475 (initial) and 73.19% (final). This means that rhotics show the best average
 476 classification accuracy in initial position but the worst in final position across
 477 all sonorant types in acoustics. We find very robust maintenance of initial
 478 rhotic contrasts, with $/\text{r}^y/$ at 92.99%, $/\text{r}/$ at 90.16% and $/\text{r}^j/$ at 89.20. In
 479 particular, $/\text{r}/$ is hardly ever misclassified as $/\text{r}^j/$ (0.08%), which is impressive
 480 given that these results represent the average of 100 model runs, meaning that
 481 there was near-zero confusion between $/\text{r}/$ and $/\text{r}^j/$. In contrast, word-final
 482 rhotics show the poorest classification of any models, with classifications of
 483 $/\text{r}^y/ = 75.14\%$, $/\text{r}/ = 63.28\%$ and $/\text{r}^j/ = 78.41\%$. These misclassifications
 484 are still substantially above chance classification, but it suggests that the
 485 word-final categories have less robust phonetic correlates than word-initial
 486 categories, which leads to poorer classification accuracies.

WORD-INITIAL			WORD-FINAL				
	r^y	r	r^j		r^y	r	r^j
r^y	92.99	5.95	1.06		75.14	4.41	20.45
r	9.76	90.16	0.08		13.55	63.28	23.17
r^j	7.87	2.92	89.20		14.11	7.48	78.41
Overall: 91.14%				Overall: 73.19%			

Table 5: SVM classification matrix for rhotic acoustic data. Values represent percentage correct classification (rounded to 2 decimal places).

487 The rhotic ultrasound model in Table 6 shows overall classification of
488 85.07% (initial) and 65.65% (final), showing the same patterning between
489 initial and final context but with slightly poorer performance than in acoustics.
490 Accordingly, every phoneme is classified slightly worse than the acoustics
491 model in both positions, except for word-final /r/, which is near identical
492 between the two modalities. Interestingly, the robustness of word-initial
493 classification is evidenced in the fact that /r^j/ is never misclassified as /r/
494 and /r/ is never misclassified as /r^j/, suggesting a categorical distinction
495 between these phonemes in articulatory dynamics. This suggests that the
496 palatalisation gesture in initial rhotics is highly distinct from the articulation
497 of the plain rhotic. In contrast, there are varying degrees of confusion between
498 palatalised and velarised rhotics, although these categories are still fairly well
499 classified.

WORD-INITIAL			WORD-FINAL		
\bar{r}_n^y	r	\bar{r}_n^j	\bar{r}_n^y	r	\bar{r}_n^j
84.12	13.75	2.14	58.42	6.20	35.38
12.00	88.00	0	15.28	63.80	20.92
18.40	0	81.60	21.77	4.80	73.43

Table 6: SVM classification matrix for rhotic ultrasound data. Values represent percentage correct classification (rounded to 2 decimal places).

500 Overall, the most striking result for the rhotics is that while classification
501 is the best of all models for initial rhotics, it is the lowest for final rhotics.
502 The acoustic data for initial rhotics also outperform the ultrasound data in

503 classification accuracy. This suggests that there exist clear correlates of the
504 three-way contrast for initial rhotics, especially in acoustics, but much weaker
505 phonetic correlates for the contrast in final rhotics.

506 *3.4. Comparison between dynamic models and sonorant steady-state*

507 Finally, we compare the models in the above sections with models fitted
508 to the midpoint of the sonorant steady-state, which was defined in Nance
509 and Kirkham (2020) as a labelled interval that captures relatively static
510 formant values during an unambiguously lateral, nasal or rhotic phase. The
511 steady-state model structure was the same as for the dynamic models, but
512 as there is only one time-point, there are only 6 MFCCs for the acoustics
513 and 6 DCTs summarising the ultrasound tongue shape, with no additional
514 dynamic information. Table 7 shows the average classification accuracy for
515 each model, with comparison between steady-state and dynamic models. To
516 re-cap, these values represent the average classifications over 100 Monte Carlo
517 cross-validation train-test iterations.

518 Table 7 shows that the dynamic models produce higher average classification
519 accuracies in all cases, with the exception of the initial laterals acoustics
520 model, where the dynamic model is 2.53% worse. However, the magnitude of
521 the difference between steady-state and dynamic models is highly variable
522 between sonorants. In acoustics, the impact of dynamics on classification
523 is largest for nasals (24.81% higher in initial, 34.26% higher in final) and
524 is higher than 10% for all models except initial laterals. In the ultrasound
525 data, the differences are generally smaller, with negligible differences for
526 laterals, final nasals and initial rhotics, but with substantial improvement for
527 initial nasals (12.67%) and final rhotics (24.69%) when dynamic information

modality	sonorant	position	steady-state	dynamic	difference
acoustics	lateral	initial	76.99	74.46	-2.53
		final	62.28	81.27	18.99
	nasal	initial	61.86	86.67	24.81
		final	51.27	85.53	34.26
	rhotic	initial	78.84	91.14	12.30
		final	51.33	73.19	21.86
articulation	lateral	initial	68.58	73.37	4.79
		final	76.04	83.04	7.00
	nasal	initial	72.03	84.70	12.67
		final	86.81	89.81	3.00
	rhotic	initial	76.24	85.07	8.83
		final	40.96	65.65	24.69

Table 7: SVM average classification accuracies (%) for models fitted to the sonorant steady-state (steady-state) and the whole sonorant-vowel interval (dynamic). The ‘difference’ column represents the dynamic model accuracy minus the steady-state model accuracy, with positive values indicating % improvement for the dynamic model over the steady-state model and negative values indicating better relative performance on the steady-state model.

528 is included.

529 Overall, this comparative analysis suggests that the contrastive correlates
 530 of phonological palatalisation take on a particularly dynamic quality for all
 531 sonorants in acoustics, except for initial laterals, and also take on a dynamic
 532 quality for initial nasals and final rhotics in the articulatory data. There
 533 are fewer dynamic cues to contrast in the ultrasound data, compared with

534 acoustics, with many sonorants not benefitting from the addition of dynamic
535 articulatory information beyond a single theoretically-informed time-point at
536 the sonorant steady-state.

537 *3.5. Summary of results*

538 We conducted classification analyses on the three-way contrast in laterals,
539 rhotics and nasals in Scottish Gaelic, with separate models for word position
540 and acoustic/articulatory data. We use classification accuracy as a proxy for
541 the relative stability of each three-way contrast. In word-initial position, we
542 find that rhotics are best classified, followed by nasals, and then laterals. This
543 overall pattern is observed in both the acoustic and articulatory data, with the
544 acoustic data always showing better overall classification rates. In word-final
545 position, nasals are classified best, followed by laterals, and then rhotics. This
546 overall pattern is observed in both the acoustic and articulatory data, with
547 the articulatory data showing slightly better classification for final laterals
548 and nasals, but not for rhotics. Finally, we show that incorporating dynamic
549 information about the entire sonorant-vowel sequence improves classification
550 accuracy by between 12.30% and 34.26% in the acoustic data, except for initial
551 laterals, which are slightly worse when dynamics are included. However, the
552 articulatory data show less overall improvement, with only initial nasals and
553 final rhotics showing improvement of over 10% when dynamics are included.
554 In the following section, we discuss the implications of these results for the
555 role of dynamics in contrast maintenance and the stability of palatalisation
556 contrasts.

557 **4. Discussion**

558 *4.1. Variable stability of synchronic contrasts*

559 A consistent finding in this study is that nasals have higher classification
560 accuracy than laterals. We did not predict this based on the previous
561 Gaelic research, but there are good reasons to believe this result, the most
562 obvious of which is the inclusion of dynamic information in our models.
563 Formant transitions are well known to be a strong cue to place of articulation,
564 particularly for nasals (Malécot, 1956; Wright, 2004), which is due to the
565 weakening of the upper formants due to nasal anti-formants in the spectrum.
566 Indeed, Iskarous and Kavitskaya (2018) find nasals to be more distinctive
567 than laterals in formant transitions. The inclusion of dynamic information for
568 nasals is, therefore, a plausible reason for why we find better acoustic contrast
569 in nasals than laterals, in contrast to Nance and Kirkham (2020), where we
570 only analysed formants at the sonorant steady-state. This is supported by
571 our finding that laterals are classified better than nasals in our steady-state
572 models, but that nasal classification drastically improves when we incorporate
573 dynamic information across the sonorant-vowel interval. From this, we can
574 conclude that the three-way nasal contrast in Gaelic is fundamentally dynamic
575 in nature and likely more so than for laterals or rhotics, due to the relevant
576 cues to contrast being more temporally distributed for nasals.

577 We predicted that rhotics would show the weakest classifications, based on
578 previous research (Kochetov, 2005; Stoll, 2017; Iskarous and Kavitskaya, 2018).
579 This is true word-finally, but certainly not word-initially, which is in line with
580 our previous work on Gaelic. In Nance and Kirkham (forthcoming 2022) we
581 report strong evidence of contrast in initial rhotics based on low-dimensional

582 phonetic information, such as formant frequencies, so it is unsurprising that
583 we also find good classification for rhotics when we take even more information
584 into account. We do find, however, that final rhotics are classified comparably
585 worse than any other sonorant, which supports the tendency towards contrast
586 neutralisation in final rhotics. It is well-known that codas contain weaker
587 acoustic cues for place of articulation than onsets (Ohala, 1990; Wright, 2004).
588 Gaelic is unusual in having an overall VC structure, similar to Irish (Hammond
589 et al., 2014; Ní Chiosáin et al., 2012), but, despite this, the proposal that
590 acoustic cues are weaker in syllable-final position remains and is backed up
591 by perceptual research. For example, Kochetov (2002) and Ní Chiosáin and
592 Padgett (2012) both find that listeners are less likely to distinguish palatalised
593 and non-palatalised pairs in VC contexts compared with CV contexts. This
594 factor may explain the tendency for initial rhotics to show more robust
595 distinctions than final rhotics, but this logic does not appear to extend to
596 laterals or nasals, which show similar classification between positions and
597 sometimes slightly better classification in final position.

598 We now briefly comment on how our model compares with human listeners;
599 in other words, can Gaelic speakers accurately perceive phonemic identity
600 from similar acoustic information to what we analyse here? Listeners can
601 distinguish palatalised and non-palatalised consonants with high accuracy
602 (Kochetov, 2002; Ní Chiosáin and Padgett, 2012; Spinu et al., 2012), even
603 when they do not speak a language with palatalisation contrasts. Babel
604 and Johnson (2010) found that American English listeners performed no
605 differently from Russian listeners at a fast-paced AX discrimination task
606 comparing word-initial Russian palatalised and non-palatalised consonants,

607 although Hacking et al. (2016) show that L2 English learners have greater
608 difficulty producing the Russian contrast word-finally. Our rhotics results
609 are in line with the above research showing better perceptual discrimination
610 between palatalised and non-palatalised consonants in CV contexts compared
611 with VC contexts. In summary, we consider our machine classification to be
612 comparable to the discrimination capabilities of a human listener.

613 *4.2. The dynamic nature of palatalisation contrasts*

614 A major finding of this study is the extent to which the incorporation of
615 dynamic information improves acoustic classification. This was particularly
616 true of nasals, but, surprisingly, we find little difference between the steady-state
617 and dynamic models for initial laterals. It could be the case that the sonorant
618 steady-state is where the primary cues for such contrasts exist in laterals.
619 However, we also find other insensitivities to model adjustments in the initial
620 laterals data. For example, during sensitivity testing we found that increasing
621 or decreasing the number of coefficients had the least effect on initial laterals. It
622 may be that the acoustic and articulatory data used here provides an adequate
623 representation for this context, with reasonable accuracies of 73–75%, but
624 that the highly audible contrast we perceive for initial laterals has other
625 acoustic and articulatory correlates that are not well captured in this study.

626 Despite the strong contribution of dynamics to acoustic classification,
627 we find this to a much lesser degree with the articulatory data. This may
628 be a consequence of dynamic non-linearity in acoustic-articulatory relations
629 (Stevens, 1989; Strycharczuk and Scobbie, 2017; Gorman and Kirkham, 2020),
630 whereby articulatory variation in some parts of the vocal tract does not
631 produce proportionate change in the acoustic output, at least in terms of

632 the parameters measured here. Another explanation could be the nature
633 of the acoustic and articulatory representations used in this study. For
634 instance, MFCCs capture rich details of the acoustic spectrum, whereas
635 the midsagittal tongue shape obtained by ultrasound imaging is already a
636 very sparse representation of the three-dimensional oral tract. Furthermore,
637 it is possible that the the lesser contribution of dynamics to articulatory
638 classification may be a consequence of our focus on global change in midsagittal
639 tongue shape. It may be the case that other aspects of articulatory timing,
640 such as the relative timing of coronal, palatalisation and velarisation gestures,
641 represent stronger articulatory cues to contrast than overall change in tongue
642 shape. We plan to explore this further in future research, with the aim of
643 better understanding the articulatory dynamics of palatalisation contrasts.

644 Finally, we must highlight some caveats for interpreting the comparison
645 between steady-state and dynamic models. First, the inputs to each model
646 necessarily differ in dimensionality (6 for steady-state, 18 for dynamic). While
647 this is an obvious consequence of incorporating time-varying information into
648 the dynamic model, a larger number of parameters increases the possibility
649 of overfitting and producing overly optimistic classification rates, so it would
650 be valuable to further evaluate the effects of parameter space size on a much
651 larger data set. We also cannot discount the possibility that the dynamic
652 model is picking up on vowel cues that correspond to lexical items, rather than
653 the phonetic correlates of deep phonological structure. In other words, by
654 incorporating information from the sonorant and the adjacent vowel, we could
655 be identifying mostly word-specific information. In part, this is unavoidable,
656 as Gaelic has relatively few true minimal triplets for these contrasts, but

657 it would be worthwhile testing on languages where such contrasts have a
658 higher functional load, such as Russian. Finally, our analysis demonstrates
659 the extent to which dynamic information contributes towards classification
660 accuracy, but does not tell us the precise nature of this dynamic information.
661 In future research, we plan to examine the temporal dynamics of the lingual
662 gestures involved in Gaelic palatalisation contrasts.

663 *4.3. The diachronic typology of palatalisation contrasts*

664 We made the prediction that sonorants with a greater propensity towards
665 diachronic phonological loss across a language family would show synchronically
666 weaker contrasts. This was grounded in the principle that processes of
667 diachronic change can be inferred from synchronic snapshots (Labov, 1994).
668 In our case, the diachronic predictions suggested that laterals should have the
669 highest classification rates and rhotics the lowest classification rates, given
670 that lateral contrasts are best-maintained across the Goidelic language family
671 and rhotics the least well-maintained. Our results only support the diachronic
672 predictions when we focus solely on the sonorant steady-state, which is a
673 partial and insufficient representation of palatalisation contrasts. When we
674 take into account the dynamics of how the palatalisation gesture unfolds over
675 time, we instead find a different set of results that interact strongly with word
676 position. To re-cap, rhotics are best classified in initial position and worst in
677 word-final position, with nasals being relatively well classified in all contexts,
678 and laterals always being classified less accurately than nasals.

679 The word-final rhotic synchronic data, however, do pattern with diachronic
680 trends towards neutralisation across Goidelic. Cross-linguistically, it has
681 been shown that large rhotic inventories are subject to simplification, with

682 palatalised rhotics particularly susceptible to loss (Hall, 2000). We anticipate
683 that competing biomechanical demands on palatalised rhotics can lead to
684 partial masking of the palatalisation gesture, especially in word-final position.
685 For instance, Stoll (2017) reports more variable gestural timing in palatalised
686 rhotics compared with laterals, which may also lead to greater overlap between
687 rhotic categories. Given sufficient exposure, this increased overlap is likely to
688 cause instances of misperception and subsequent recategorisation of a listener's
689 phonological system, leading them to produce smaller distinctions between
690 rhotic phonemes (Ohala, 1981, 1989). Moreover, if the reduced variants
691 become recognised as acceptable by other community members, possibly due
692 to the low functional load of the contrast, this is likely to accelerate the
693 long-term progression of contrast neutralisation (Beckman et al., 1992; Bybee,
694 2015).

695 Nasals are especially interesting in this case as Goidelic diachronic data
696 suggests they are retained more frequently than large rhotic systems, but less
697 frequently than large lateral systems. In Slavic, on the other hand, palatalised
698 nasals are very frequently maintained cross-linguistically, more so than laterals
699 and rhotics (Carlton, 1990; Iskarous and Kavitskaya, 2010). Our data pattern
700 more closely with the reported typology of Slavic sonorant development, with
701 nasal phonemes produced more distinctively than laterals and final rhotics.
702 This is surprising in light of previous research, some of which has suggested
703 only a two-way contrast in Gaelic nasals (Ladefoged et al., 1998; Nance and
704 Kirkham, 2020), but it may be the case that the Gaelic contrast has been
705 maintained by temporally distributing the phonetic cues to contrast across
706 the sonorant-vowel interval, which has not previously been investigated as

707 thoroughly. We are unable to claim whether this is a novel development
708 in Gaelic, but previous research on Slavic has also shown that nasals may
709 sometimes show more robust contrasts than laterals in formant transitions
710 (Iskarous and Kavitskaya, 2018), so it is likely that a similar pattern recurs in
711 our data.

712 In summary, we find a more complex relationship between diachronic
713 predictions and the variable stability of synchronic contrasts than we initially
714 predicted. We believe, however, that the sociolinguistic context of Gaelic is
715 highly informative in understanding these results. Gaelic is a minoritised
716 language that is currently undergoing intense revitalisation. Minority languages
717 often experience structural simplification (Dorian, 1981; Jones, 1998), but
718 we note that speakers of Gaelic often have high levels of metalinguistic
719 awareness about the language's phonology (Nance et al., 2016). All of the
720 speakers in our study worked in Gaelic-essential jobs and, therefore, represent
721 highly professional speakers of the language. The strong investment of such
722 speakers in maintaining Scottish Gaelic also increases the likelihood of them
723 learning to produce traditionally-reported contrasts in the language, which
724 are often acquired through education. This sociolinguistic context, therefore,
725 may represent one of the contributing mechanisms for the preservation of
726 structures that would otherwise be likely to undergo loss in more typical cases
727 of community transmission (Nance and Kirkham, forthcoming 2022). It is
728 clear from this that identifying potential future paths of sound change in the
729 Gaelic sonorant system will also require detailed attention to the changing
730 sociolinguistics dynamics of Gaelic.

731 **5. Conclusion**

732 This study has examined the variable synchronic stability of palatalisation
733 contrasts in light of claims that such contrasts are prone to diachronic
734 simplification, reduction or loss. The cross-linguistic diachronic evidence
735 suggested that laterals would show the most robust contrasts and rhotics
736 the least robust contrasts. We do indeed find that rhotics are most poorly
737 classified word-finally, which may reflect the diachronic trend towards contrast
738 reduction, but we find the opposite pattern word-initially, where rhotic
739 contrasts are highly robust. This demonstrates that some contrasts in Gaelic
740 are robustly maintained despite intense pressures towards diachronic reduction.
741 We do not find evidence to support the claim that laterals show more robust
742 contrast than nasals, with both sonorants being well-classified, but with nasals
743 showing better classification once dynamic information is taken into account.
744 Accordingly, we find that synchronic speech production data bears a complex
745 relationship with long-term patterns of diachronic change reported across
746 the Goidelic languages, and it is likely that a fuller consideration of how
747 phonological dynamics interact with changing sociolinguistic contexts will
748 further illuminate the potential paths of sound change in Gaelic. Overall,
749 we find evidence of weaker contrast in predictably unstable sonorants, but
750 elsewhere we find that contrast is often more robust than previously anticipated,
751 with the phonetic correlates of phonological structure located firmly in the
752 temporal dynamics of the speech signal.

753 **Acknowledgements**

754 We are very grateful to Marianne Pouplier and two anonymous reviewers
755 for their constructive comments on this article. Thanks also to Lois Fairclough
756 for manual correction of the ultrasound data. This study was conducted with
757 the assistance of two grants from the Faculty of Arts and Social Sciences
758 at Lancaster University. We also acknowledge the use of the High End
759 Computing facility at Lancaster University.

760 **Appendix**

761 Articulate Instruments, 2008. Ultrasound stabilisation headset: Users manual
762 revision 1.5. Articulate Instruments, Edinburgh.

763 Articulate Instruments (Ed.), 2018. Articulate Assistant Advanced version
764 2.17. Articulate Instruments, Edinburgh.

765 Babel, M., Johnson, K., 2010. Accessing psycho-acoustic perception and
766 language-specific perception with speech sounds. *Laboratory Phonology*:
767 *Journal of the Association for Laboratory Phonology* 1 (1), 179–205.

768 Ball, M., Müller, N. (Eds.), 2009. *The Celtic languages*, 2nd Edition.
769 Routledge, London.

770 Bateman, N., 2007. A crosslinguistic investigation of palatalization. Ph.D.
771 thesis, University of California San Diego, San Diego.

772 Beckman, M., De Jong, K., Jun, S.-A., Lee, S.-H., 1992. The interaction of
773 coarticulation and prosody in sound change. *Language and Speech* 35 (1),
774 45–58.

775 Bennett, R., Ní Chiosáin, M., Padgett, J., McGuire, G., 2018. An ultrasound
776 study of Connemara Irish palatalization and velarization. *Journal of the*
777 *International Phonetic Association*, 1–44.

778 Boersma, P., Weenink, D., 2020. Praat: doing phonetics by computer. Version
779 6.1.16, retrieved 6 June 2020 from <http://www.praat.org/>.

780 Boser, B. E., Guyon, I. M., Vapnik, V. N., 1992. A training algorithm for
781 optimal margin classifiers. *COLT '92: Proceedings of the fifth annual*
782 *workshop on Computational learning theory* (144–152).

783 Broderick, G., 2009. Manx. In: Ball, M., Müller, N. (Eds.), *The Celtic*
784 *languages*. Routledge, London, pp. 305–356.

785 Bybee, J., 2015. Articulatory processing and frequency of use in sound change.
786 In: Honeybone, P., Salmons, J. (Eds.), *The Oxford Handbook of Historical*
787 *Phonology*. Oxford University Press, pp. 467–484.

788 Carlton, T., 1990. Introduction to the phonological history of the Slavic
789 *languages*. Slavica, Bloomington.

790 Clarkson, P., Moreno, P., 1999. On the use of support vector machines for
791 phonetic classification. *IEEE International Conference on Acoustics, Speech,*
792 *and Signal Processing* 2, 585–588.

793 Davis, S. W., Mermelstein, P., 1980. Comparison of parametric representations
794 for monosyllabic word recognition in continuously spoken sentences. *IEEE*
795 *Transactions on Acoustics, Speech, and Signal Processing* 28 (4), 357–366.

796 Dorian, N., 1981. Language death: The life cycle of a Scottish Gaelic dialect.

797 University of Pennsylvania Press, Philadelphia.

798 Farnetani, E., Provaglio, A., Ní Chasiade, A., Faely, G., Recasens, D.,

799 Fontdevila, J., Pallarues, M. D., 1991. A study of the production and

800 coarticulatory characteristics of palatal and palatalized consonants. In:

801 ESPRIT II: Research Action No. 3279, Progress Report. Consiglio Nazionale

802 delle Ricerche.

803 Gorman, E., Kirkham, S., 2020. Dynamic acoustic-articulatory relations in

804 back vowel fronting: Examining the effects of coda consonants in two

805 dialects of British English. *Journal of the Acoustical Society of America*

806 148 (2), 724–733.

807 Greene, D., 1973. The growth of palatalisation in Irish. *Transactions of the*

808 *Philological Society* 72, 127–136.

809 Hacking, J. F., Smith, B. L., Nissen, S. L., Allen, H., 2016. Russian palatalized

810 and unpalatalized coda consonants: An electropalatographic and acoustic

811 analysis of native speaker and L2 learner productions. *Journal of Phonetics*

812 54, 98–108.

813 Hall, T., 2000. Typological generalisations concerning secondary palatalization.

814 *Lingua* 110, 1–25.

815 Hammond, M., Warner, N., Davis, A., Carnie, A., Archangeli, D., Fisher, M.,

816 2014. Vowel insertion in Scottish Gaelic. *Phonology* 31 (1), 123 – 153.

817 Harrington, J., 2010. Acoustic phonetics. In: Hardcastle, W. J., Laver, J.,

818 Gibbon, F. E. (Eds.), *The Handbook of Phonetic Sciences*, 2nd Edition.

819 Wiley-Blackwell, Chichester, pp. 81–129.

820 Hickey, R., 1995. Sound change and typological shift: Initial mutation in

821 Celtic. In: Frisiak, J. (Ed.), *Linguistic typology and reconstruction*. Mouton,

822 Berlin, pp. 133–182.

823 Hickey, R., 2014. *The sound structure of Modern Irish*. Mouton de Gruyter,

824 Berlin.

825 Howson, P., 2018. Rhotics and palatalization: An acoustic examination of

826 Upper and Lower Sorbian. *Phonetica* 75, 132–150.

827 Iskarous, K., Kavitskaya, D., 2010. The interaction between contrast, prosody,

828 and coarticulation in structuring phonetic variability. *Journal of Phonetics*

829 38, 625–639.

830 Iskarous, K., Kavitskaya, D., 2018. Sound change and the structure

831 of synchronic variability: Phonetic and phonological factors in Slavic

832 palatalization. *Language* 94 (1), 43–83.

833 James, G., Witten, D., Hastie, T., Tibshirani, R., 2013. *An Introduction to*

834 *Statistical Learning with Applications in R*. Springer, New York.

835 Jones, M., 1998. *Language obsolescence and revitalization: Linguistic change*

836 *in two sociolinguistically contrasting Welsh communities*. Clarendon Press,

837 Oxford.

838 Kavitskaya, D., Iskarous, K., Noiray, A., Proctor, M., 2009. Trills and

839 palatalization: Consequences for sound change. In: Proceedings of the
840 formal approaches to Slavic linguistics. Yale University, pp. 97–110.

841 Kochetov, A., 2002. Production, perception, and emergent phonotactic
842 patterns: A case of contrastive palatalization. Ph.D. thesis, University
843 of Toronto, Toronto.

844 Kochetov, A., 2005. Phonetic sources of phonological assymmetries: Russian
845 laterals and rhotics. In: Gurski, C. (Ed.), Proceedings of the 2005 annual
846 conference of the Canadian Linguistic Association. University of Western
847 Ontario, London, Ontario.

848 Kochetov, A., 2017. Acoustics of Russian voiceless sibilant fricatives. *Journal
849 of the International Phonetic Association* 47 (3), 321–348.

850 Kochetov, A., Petersen, J. H., Arsenault, P., 2020. Acoustics of Kalasha
851 laterals. *Journal of the Acoustical Society of America* 147, 3012–3027.

852 Kuhn, M., Johnson, K., 2013. Applied Predictive Modeling. Springer, New
853 York, NY.

854 Labov, W., 1994. Principles of linguistic change: Internal factors. Blackwell,
855 Oxford.

856 Ladefoged, P., Ladefoged, J., Turk, A., Hind, K., Skilton, S. J., 1998.
857 Phonetic structures of Scottish Gaelic. *Journal of the International Phonetic
858 Association* 28 (1), 1–41.

859 Lewin, C., 2021. Continuity and hybridity in language revival: The case of
860 Manx. *Language in Society*, 1–29.

861 Malécot, A., 1956. Acoustic cues for nasal consonants: An experimental study
862 involving a tape-splicing technique. *Language* 32 (2), 274–284.

863 Malmi, A., Lippus, P., 2019. Keele asend eesti palatalisatsioonis / the position
864 of the tongue in Estonian palatalization. *Eesti ja Soome-Ugri Keeleteaduse*
865 *Ajakiri* 10 (1), 105–128.

866 Malmi, A., Lippus, P., Meister, E., 2022. Spectral and temporal properties of
867 Estonian palatalization. *Journal of the International Phonetic Association*,
868 1–26.

869 Marin, S., Pouplier, M., Harrington, J., 2010. Acoustic consequences
870 of articulatory variability during productions of /t/ and /k/ and its
871 implications for speech error research. *Journal of the Acoustical Society of*
872 *America* 127 (1), 445–461.

873 McGowan, R., 1992. Tongue-tip trills and vocal-tract wall compliance. *Journal*
874 *of the Acoustical Society of America* 91 (5), 2903–2910.

875 McLeod, W., 2020. *Gaelic in Scotland: Policies, movements and ideologies*.
876 Edinburgh University Press, Edinburgh.

877 Meister, E., Werner, S., 2015. Comparing palatography patterns of Estonian
878 consonants over time. In: *Proceedings of the 18th International Congress*
879 *of the Phonetic Sciences*. Glasgow.

880 Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., 2021.
881 e1071: Misc Functions of the Department of Statistics, Probability Theory
882 Group (Formerly: E1071), TU Wien. R package version 1.7-8.
883 URL <https://CRAN.R-project.org/package=e1071>

884 Munro, G., Taylor, I., Armstrong, T., 2011. The state of Gaelic in Shawbost:
885 Language attitudes and abilities in Shawbost. Bòrd na Gàidhlig, Inverness.

886 Nance, C., 2014. Phonetic variation in Scottish Gaelic laterals. *Journal of*
887 *Phonetics* 47, 1–17.

888 Nance, C., Kirkham, S., 2020. The acoustics of three-way lateral and nasal
889 palatalisation contrasts in Scottish Gaelic. *Journal of the Acoustical Society*
890 *of America* 147 (4), 2858–2872.

891 Nance, C., Kirkham, S., forthcoming 2022. Phonetic typology and articulatory
892 constraints: The realisation of secondary articulations in Scottish Gaelic
893 rhotics. *Language*.

894 Nance, C., McLeod, W., O'Rourke, B., Dunmore, S., 2016. Identity, accent
895 aim, and motivation in second language users: New Scottish Gaelic speakers'
896 use of phonetic variation. *Journal of Sociolinguistics* 20 (2), 164–191.

897 Nance, C., Ó Maolalaigh, R., 2021. Scottish Gaelic. *Journal of the*
898 *International Phonetic Association* 51 (2), 261–275.

899 Ní Chiosáin, M., Padgett, J., 2012. An acoustic and perceptual study of
900 Connemara Irish palatalization. *Journal of the International Phonetic*
901 *Association* 42 (2), 171 – 191.

902 Ní Chiosáin, M., Welby, P., Espesser, R., 2012. Is the syllabification of Irish a
903 typological exception? *Speech Communication* 54, 68–91.

904 Nossair, Z. B., Zahorian, S. A., 1991. Dynamic spectral shape features as

905 acoustic correlates for initial stop consonants. *Journal of the Acoustical*
906 Society of America 89 (6), 2978–2991.

907 Ó Maolalaigh, R., 2008. The Scottishisation of Gaelic: A reassessment of
908 the language and orthography of the Gaelic notes in the Book of Deer. In:
909 Forsyth, K. (Ed.), *Studies on the Book of Deer*. Four Courts Press, Dublin,
910 pp. 179–275.

911 Ohala, J., 1981. The listener as a source of sound change. In: Masek, C.,
912 Hendrick, R., Miller, M. F. (Eds.), *Papers from the parasession on language*
913 and behaviour, University of Chicago. University of Chicago, Chicago, pp.
914 178–203.

915 Ohala, J., 1989. Sound change is drawn from a pool of synchronic variation.
916 In: Breivik, L. E., Jahr, E. H. (Eds.), *Language Change: Contributions to*
917 *the study of its causes*. Mouton de Gruyter, Berlin, pp. 173–198.

918 Ohala, J. J., 1990. The phonetics and phonology of aspects of assimilation.
919 In: Kingston, J., Beckman, M. (Eds.), *Papers in Laboratory Phonology*
920 I: Between the grammar and the physics of speech. Cambridge University
921 Press, Cambridge, pp. 258–275.

922 Padgett, J., Ní Chiosáin, M., 2018. The perception of a secondary
923 palatalization contrast: A preliminary comparison of Russian and Irish.
924 In: Bennett, R., Angeles, A., Brasoveanu, A., Buckley, D., Kalivoda, N.,
925 Kawahara, S., McGuire, G., Padgett, J. (Eds.), *Hana-bana: A Festschrift*
926 for Junko Itô and Armin Mester. Department of Linguistics, University of
927 California, Santa Cruz, Santa Cruz, CA, pp. 1–14.

928 Picard, R. R., Cook, R. D., 1984. Cross-validation of regression models.

929 Journal of the American Statistical Association 79 (387), 575–583.

930 Recasens, D., 2013. Coarticulation in Catalan dark [l] and the alveolar trill:

931 General implications for sound change. Language and Speech 56 (1), 45–68.

932 Russell, P., 1995. Introduction to the Celtic languages. Longman, London.

933 Scottish Government, 2015. Scotland's Census 2011: Gaelic report (part 1).

934 National Records of Scotland, Edinburgh.

935 Shaw, J. A., Kawahara, S., 2018. Assessing surface phonological specification

936 through simulation and classification of phonetic trajectories. Phonology

937 35 (3), 481–522.

938 Shuken, C., 1980. An instrumental investigation of some Scottish Gaelic

939 consonants. Ph.D. thesis, University of Edinburgh, Edinburgh.

940 Spinu, L., Kochetov, A., Lilley, J., 2018. Acoustic classification of Russian

941 plain and palatalized sibilant fricatives: Spectral vs. cepstral measures.

942 Speech Communication 100, 41–45.

943 Spinu, L., Lilley, J., 2016. A comparison of cepstral coefficients and spectral

944 moments in the classification of Romanian fricatives. Journal of Phonetics

945 57, 40–58.

946 Spinu, L., Percival, M., Kochetov, A., 2019. Articulatory characteristics

947 of secondary palatalization in Romanian fricatives. In: Proceedings of

948 Interspeech 2019. Graz, Austria, pp. 3307–3311.

949 Spinu, L., Vogel, I., Bunnell, T., 2012. Palatalization in Romanian—Acoustic
950 properties and perception. *Journal of Phonetics* 40, 54–66.

951 Sproat, R., Fujimura, O., 1993. Allophonic variation in English /l/ and its
952 implications for phonetic implementation. *Journal of Phonetics* 21, 291–311.

953 Stevens, K., 1989. On the quantal nature of speech. *Journal of Phonetics*
954 17 (1-2), 3–45.

955 Stoll, T., 2017. Articulatory analysis of palatalised rhotics
956 in Russian: Implications for sound change. Ph.D. thesis,
957 Ludwig-Maximilians-Universität München, Munich.

958 Strycharczuk, P., Scobbie, J. M., 2017. Fronting of Southern British English
959 high-back vowels in articulation and acoustics. *Journal of the Acoustical
960 Society of America* 142 (1), 322–331.

961 Thurneysen, R., 1946. A grammar of Old Irish. Dublin Institute for Advanced
962 Studies, Dublin.

963 Wang, J., Green, J. R., Samal, A., Yunusova, Y., 2013. Articulatory
964 distinctiveness of vowels and consonants: A data-driven approach. *Journal
965 of Speech, Language, and Hearing Research* 56, 1539–1551.

966 Watson, C. I., Harrington, J., 1999. Acoustic evidence for dynamic formant
967 trajectories in Australian English vowels. *Journal of the Acoustical Society
968 of America* 106 (1), 458–468.

969 Wright, R., 2004. A review of perceptual cues and cue robustness. In:

970 Hayes, B., Kirchner, R., Steriade, D. (Eds.), *Phonetically-Based Phonology*.
971 Cambridge University Press, Cambridge, pp. 34–57.

972 Yanushevskaya, I., Bunčić, 2015. Russian. *Journal of the International*
973 *Phonetic Association* 45 (2), 221–228.

974 Yu, K. M., 2017. The role of time in phonetic spaces: Temporal resolution in
975 Cantonese tone perception. *Journal of Phonetics* 65, 126–144.

Gaelic	Phoneme	Word position	Vowel context	English
latha	l ^y	initial	a	day
lùib	l ^y	initial	u	bend
càl	l ^y	final	a	cabbage
cùl	l ^y	final	u	back
mo litir	l	initial	i	my letter
mo leannan	l	initial	a	my darling
air an latha	l	initial	a	on the day
ann an Liurbost	l	initial	u	in Leurbost
mil	l	final	i	honey
dil	l	final	i	gravel
fuil	l	final	u	blood
càil	l	final	a	anything
dàil	l	final	a	delay
sùil	l	final	a	eye
litir	l ^j	initial	i	letter
linnean	l ^j	initial	i	centuries
leabaidh	l ^j	initial	a	bed
Liurbost	l ^j	initial	u	Leurbost
till	l ^j	final	i	return (verb)
caill	l ^j	final	a	lose (verb)
saill	l ^j	final	a	salt (verb)
puill	l ^j	final	u	ponds
ùill	l ^j	final	u	oil (verb)

Table 8: Lateral word list used in this study.

Gaelic	Phoneme	Word position	Vowel context	English
nathair	n ^y	initial	a	snake
nuadh	n ^y	initial	u	new
ceann	n ^y	final	a	head
sunn	n ^y	final	u	blast
mo nighean	n	initial	i	my daughter
mo nathair	n	initial	a	my snake
mo nupair	n	initial	u	my spanner
fion	n	final	i	wine
glan	n	final	a	clean (verb)
dùn	n	final	u	fort
nighean	n ^j	initial	i	daughter
neach	n ^j	initial	a	person
niucleasach	n ^j	initial	u	nuclear
cinn	n ^j	final	i	heads
tàin	n ^j	final	i	cattle
guin	n ^j	final	i	arrow

Table 9: Nasal word list used in this study.

Gaelic	Phoneme	Word position	Vowel context	English
rionnag	r ^y	initial	i	star
rabaid	r ^y	initial	a	rabbit
rudan	r ^y	initial	u	things
piorr	r ^y	final	i	pierce
as fheàrr	r ^y	final	a	best
cùrr	r ^y	final	u	corner
mo rionnag	r	initial	i	my star
mo rabaid	r	initial	a	my rabbit
riubh	r	initial	u	to you
fior	r	final	i	really
sìor	r	final	i	eternal
far	r	final	a	where
cur	r	final	u	put
ri	r ^j	initial	i	to
fir	r ^j	final	i	men
sir	r ^j	final	i	ask
gàir	r ^j	final	a	laugh
bàir	r ^j	final	a	goal
muir	r ^j	final	u	sea

Table 10: Rhotic word list used in this study.