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Abstract. Early action prediction aims to successfully predict the class
label of an action before it is completely performed. This is a challenging
task because the beginning stages of different actions can be very simi-
lar, with only minor subtle differences for discrimination. In this paper,
we propose a novel Expert Retrieval and Assembly (ERA) module that
retrieves and assembles a set of experts most specialized at using dis-
criminative subtle differences, to distinguish an input sample from other
highly similar samples. To encourage our model to effectively use subtle
differences for early action prediction, we push experts to discriminate
exclusively between samples that are highly similar, forcing these ex-
perts to learn to use subtle differences that exist between those samples.
Additionally, we design an effective Expert Learning Rate Optimization
method that balances the experts’ optimization and leads to better per-
formance. We evaluate our ERA module on four public action datasets
and achieve state-of-the-art performance.

Keywords: Early action prediction, expert retrieval.

1 Introduction

The goal of early action prediction is to infer an action category at the early
temporal stage, i.e., before the action is fully observed. This task is relevant
to many practical applications, such as human-robot interaction [40, 17, 28],
security surveillance [6, 23, 7] and self-driving vehicles [11, 36, 1] since a timely
response is crucial in these scenarios. For example, for enhanced safety of self-
driving vehicles, it is crucial that the actions of pedestrians can be predicted
before they are fully completed, so that the vehicle can react promptly. Such
utility of early action prediction has not gone unnoticed, and it has received a
lot of research attention recently [30, 50, 15, 53, 54].

Previous works [30, 54] show that one of the major challenges in early action
prediction lies in the subtlety of the differences between some “hard” samples
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at the very beginning temporal stages, since only limited initial observations of
the action sequences are seen and some important discriminative information in
the middle or later parts of the sequences is not observed, greatly increasing the
difficulty of making correct predictions. For instance, as shown in Fig. 1, though
the human postures and motions in the full sequences of the actions “slapping”
and “shaking hands” are quite different, their early parts are quite similar, with
only subtle differences between them.

Slapping

Shaking hands

Action progress 20% 100%60%

Fig. 1. Illustration of two actions at the
early stage, taken from NTU RGB+D
120 [32]. Only subtle differences (high-
lighted in circles) exist for discrimina-
tion between the actions “Slapping” and
“Shaking hands” at the early temporal
stages (e.g., 20%). Best viewed in colour.

To tackle early action prediction,
various types of deep networks have
been proposed [30, 53, 54], but they
still do not possess very good discrim-
ination capabilities using subtle cues.
In particular, deep networks prefer to
learn to discriminate between the easier
samples with major discriminative cues
instead of the harder ones [20]. This
can happen when we train the entire
neural network by updating all its pa-
rameters using all samples – the gradi-
ents update all the parameters to con-
tribute towards correctly classifying all
these samples, which thus can lead to
the network learning more general pat-
terns that apply to more samples, as
opposed to learning specific subtle cues
to discriminate subtle differences that may only apply to a small subset of the
data [12]. The performance drop from such sub-optimal training behaviour can
be further exacerbated on the very challenging action prediction task, where
there can be a lack of major discriminative cues at the early stages among dif-
ferent actions, and the importance of utilizing subtle differences is increased.
Although recent work [30] on early action prediction has attempted to improve
the discriminative ability on subtle cues through mining hard training samples,
they train the parameters of the entire network using all samples, still leaving
the network prone to sub-optimal performance with respect to subtle differences.

In this work, to improve the performance of deep networks on early action
prediction, we propose an Expert Retrieval and Assembly (ERA) module that
contains non-experts and experts. Unlike non-experts that contain parameters
which are shared across all samples and capture general patterns that exist in
many samples, experts are only trained on a subset of the data (according to
their keys) and contain parameters that focus on encoding subtle differences to
distinguish between highly similar samples. During the forward pass, a retrieval
mechanism retrieves the most suitable experts, which are then assembled to-
gether with the non-experts to form a combination that is able to discriminate
samples using an effective mix of general patterns and subtle differences. This re-
trieval mechanism is designed such that experts are retrieved by samples that are
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very similar, and thus, during training, the losses push the experts to learn spe-
cialized discriminative subtle cues to distinguish exclusively between these similar
samples, encouraging the acquiring of expertise in exploiting relevant subtle cues.
The proposed ERA module is flexible, and can be a plug-and-play replacement
for traditional convolutional layers.

We design the ERA module with a set of experts to learn different subtle
cues that exist across different actions. However, it is non-trivial to balance
the training among different experts in the ERA module, especially when the
experts might be selected by vastly different numbers of samples. For instance,
as some subtle cues may be more common, a few experts are selected more often
and might be better trained. Such unbalanced training may limit the overall
performance of our ERA module. A possible solution could be for each expert to
have its own individual learning rate, and we adjust these learning rates such that
the experts that require more training will have correspondingly higher learning
rates. However, considering the numerous experts in the ERA module, coupled
with the envisioned scenario where ERA modules replace multiple convolutional
layers in a network, the number of hyperparameters is too large for manual
tuning to be practical. Thus, we design an Expert Learning Rate Optimization
(ELRO) method that balances the training of experts within the ERA module,
improving the overall performance.

In summary, our main contributions include: (1) We propose a novel ERA
module that effectively utilizes subtle discriminative differences between similar
actions through retrieval and assembly of the most suitable experts for action
prediction. Our ERA module is a flexible plug-and-play module that can re-
place the traditional convolutional layer. (2) To balance the training among
experts and further improve performance of the ERA module on early action
prediction, we design an effective ELRO method. (3) We obtain state-of-the-art-
performance on early action prediction on four widely used datasets by replacing
convolutional layers of the baseline architectures with our ERA modules.

2 Related Work

Early Action Prediction refers to the task where only the front parts of
each sequence are observed by the model. The loss of important discriminative
information leads to a challenging scenario where subtle cues need to be properly
utilized for successful discrimination. Different approaches [30, 50, 15, 53, 22,
24, 54, 10, 25, 27, 61, 33, 26, 21, 41, 39, 2] have been proposed to address the
early action prediction problem. Li et al. [30] focused on the 3D early activity
prediction task by mining hard instances and training the model to discriminate
between them. Ke et al. [22] proposed a Latent Global Network to learn how to
transfer knowledge from full-length sequences to partially-observed sequences in
an adversarial manner. Weng et al. [54] introduced a policy-based reinforcement
learning mechanism to generate binary masks to preclude the negative category
information leading to improved recognition accuracy. Wang et al. [53] proposed
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a teacher-student network architecture to distill the global information contained
within the full action video from the teacher network to the student network.

In this work, unlike the above-mentioned methods, we explore the usage
of a dynamic model that pushes expert parameters to effectively encode subtle
differences. We propose a novel ERA module, which learns to discriminate among
similar samples using subtle cues by retrieving and assembling relevant experts
for each sample.

Action Recognition is the task where a model predicts the classes of actions
based on their full action sequences. Input data can come from different modali-
ties, such as RGB data [31, 8, 59] and skeletal data [44, 45, 4, 5, 48, 63, 34, 46, 38].
Here, we focus on early action prediction, which is important yet more challeng-
ing since the early segments of different actions can be highly similar [30, 53, 54].

Dynamic Networks refer to neural networks that adapt their parameters
or structures according to the input. A variety of different methods have been
explored, including dynamic depth [52, 51, 58], dynamic widths [37, 43], weight
generation [3, 62], dynamic routing [57, 29] and spatially dynamic [60] methods.
In general, dynamic networks can be employed for their improved computational
efficiency and representation power.

As our ERA module retrieves a different set of experts for each input sample,
it can be considered a type of dynamic module. To the best of our knowledge,
our ERA module is the first work that dynamically assigns experts to handle
subsets of similar samples during training, pushing them to gain expertise in ex-
ploiting subtle differences. This relies on our novel retrieval mechanism involving
key-query matching that retrieves experts to handle similar samples, which is
different from existing mechanisms [3, 62, 37, 43]. Moreover, we explore a novel
ELRO method to further improve performance of our dynamic ERA module.

3 Method

Subtle differences among highly similar samples are difficult to be well-learned
by deep neural networks that share all network parameters across all samples.
When tackling the challenging early action prediction task, the importance of
exploiting subtle cues is increased, as there can be a lack of major discriminative
cues at the early stages of actions, which exacerbates the performance drop from
the sub-optimal performance of deep networks using subtle cues.

Motivated by this, we design a novel ERA module with an expert-retrieval
mechanism to better exploit subtle cues. The expert-retrieval mechanism re-
trieves experts (from the Expert Banks) with relevant expertise for each input
sample, and assembles them with non-experts. By matching experts with input
samples that are highly similar to each other during training, this mechanism
allows experts to ignore distant samples, while pushing them to focus on distin-
guishing between highly similar samples by specializing in subtle differences.

Due to the uneven distribution of samples across different experts, there
might be uneven training among experts, which limits performance of our ERA
module. To mitigate this issue, an effective ELRO method is implemented during
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the training of the experts, which tunes their individual learning rates, resulting
in a more effective training of experts and improved performance.

Below, we first describe the early action prediction task. Then, we introduce
the ERA module and explain in detail how the expert-retrieval mechanism can
encourage experts to specialize during training. Lastly, we describe our ELRO
method.

3.1 Problem Formulation

A full-length action sequence can be represented as a set S = {st}Tt=1 containing
T frames, where st denotes the frame at the t-th time step. Following previ-
ous works [15, 22, 30], S is divided into N independent segments, with each
segment containing T

N frames. A partial sequence consists of a set of frames
P = {st}τt=1, with τ being the last frame in any one of the N segments, i.e.,
τ = i TN , i = {1, 2, ..., N}. The task of early action prediction is to predict the
class c ∈ {1, 2, ..., C} of the activity that the partial sequence P belongs to, and
different observation ratios τ

T of P are tested.

3.2 ERA Module

As shown in Fig. 2, our ERA module consists of candidate experts contained
within multiple Expert Banks and a non-expert block. Considering that convo-
lutional architectures have been shown to be effective for the early action pre-
diction task [30, 53], the experts are implemented as convolutional kernels. For
ease of notation, we describe our method in a 2D convolutional kernel setting,
even though it can be generalized to 1D, 3D or graph convolutions as well. This
ability to generalize to other types of convolutions is important, as existing early
action prediction architectures often use various types of convolutions, such as
3D convolutions [45] or graph + 2D convolutions [13].

Let an input be X ∈ RNin×Nh×Nw , where Nin, Nh and Nw represent the
channel, height and width dimensions of the input feature map. Note that here
we omit the batch dimension for simplicity. Assume that, in the backbone model,
input X is processed by a convolutional filter Wconv ∈ RNout×Nin×bh×bw , where
Nout represents the number of output channels, and bh and bw represent the
height and width of the convolutional kernel. We aim to replace Wconv with our
ERA module, for better performance on early action prediction.

Specifically, we design our ERA module to also ultimately produce weights
WERA of the same shape (Nout × Nin × bh × bw) as Wconv, which can be seen
as Nout kernels (each of shape Nin × bh × bw) that respectively produce each
of the Nout output channels. More specifically, in our ERA Module, we split
the Nout channels (and therefore also kernels) into two parts: d expert channels
and Nout − d non-expert channels, where d is a hyperparameter. To allow our
d expert channels to specialize in subtle cues, we would like each expert to be
trained on only a subset of the data, thus we introduce d Expert Banks containing
M candidate experts each, and retrieve only one expert from each Expert Bank
per sample, such that the other M −1 candidate experts in the bank are unused
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for this sample. The Nout − d non-expert kernels (collectively defined in a non-
expert block Wnonexpert ∈ R(Nout−d)×Nin×bh×bw) are shared over all samples,
and thus tend to learn general patterns. We utilize a combination of both non-
expert and expert kernels, because the usage of non-expert kernels to capture
general patterns, is complementary with our experts that specialize at capturing
subtle cues for discriminating between similar samples, and their combination
leads to improvements on early action prediction.
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Fig. 2. Schema of our ERA module. Our ERA
module contains Nout channels in total: Nout − d
non-expert channels (Top) and d expert chan-
nels (Bottom). Each expert channel retrieves its
expert from a corresponding Expert Bank that
contains M candidate experts, where each expert
Ep

i consists of parameters mp
i and a key kp

i . The
two important steps (i.e., retrieval and assembly)
are indicated with red arrows. In the retrieval
step, an expert will be retrieved from each Ex-
pert Bank through a key-query matching mech-
anism, such that d experts are retrieved across d
expert channels. In the assembly step, the d re-
trieved experts are assembled and combined with
the Nout − d non-expert kernels to produce the
output Y (with Nout channels).

1) Expert Banks To facili-
tate our intention to let each ex-
pert be trained on only a subset
of samples, we define d Expert
Banks, each containingM candi-
date experts, as shown in Fig. 2.
The M candidate experts in the
p-th Expert Bank are all poten-
tial candidates that can be re-
trieved for the corresponding p-
th expert channel.

We define the i-th expert in
the p-th Expert Bank as Ep

i ,
where Ep

i contains convolutional
kernel weights mp

i and a key kpi .
The key kpi is used for matching
with the most suitable samples,
and represents the area of exper-
tise of this expert, as it deter-
mines the samples that the ex-
pert will be retrieved for. Mean-
while, the expert kernel mp

i acts
as a specialized mechanism to
process the discriminative subtle
cues on the input features that
match the key kpi . The expert
key kpi and kernel mp

i are model
parameters that are trained in
an end-to-end manner. For each
expert Ep

i , mp
i ∈ RNin×bh×bw

and kpi ∈ RK , where K repre-
sents the dimensionality of the
key, and K << Nin × Nh × Nw

for efficiency.

2) Expert Retrieval We now
show how we can retrieve the most suitable expert from each Expert Bank for
input X, taking the p-th Expert Bank as an example. As shown in Fig. 2, we
first extract a compact and meaningful representation from the input feature
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map X. The query mapping function fp maps the input feature map X to a
lower-dimensional query qp ∈ RK as follows:

qp = fp(X). (1)

This step transforms the feature map X into a query (vector) qp of the
dimensionality K.

Next, conditioned on qp, we retrieve the most suitable expert from the p-th
Expert Bank for discriminating subtle cues within the feature map X. Recall
that each expert Ep

i holds a key kpi which represents its area of expertise, while qp

is the representation of the feature mapX. The degree of suitability of the expert
Ep

i on the feature map X can thus be obtained by calculating the matching score
between kpi and qp. We calculate the matching score spi for each expert Ep

i using
dot product between the query qp and the key kpi as:

spi = qp⊤kpi , i = {1, 2, ...,M}. (2)

Ip = Argmaxi({spi }
M
i=1), (3)

where Argmaxi returns the index i belonging to the largest element in the set
{spi }Mi=1, and the returned index Ip represents the index of the retrieved expert.
We take the highest matching score (spIp) within the set, as it will come from
the key kpIp representing an area of expertise that matches the query qp the best.
Thus, the corresponding expert Ep

Ip is the most suitable expert to be applied to
the feature map X, and is retrieved from the p-th Expert Bank in this step.

It is worth mentioning that, using this key-query mechanism, the input fea-
ture maps that are highly similar (i.e., with similar q values) will tend to have
high matching scores with the same key and retrieve the same expert. Crucially,
this leads to the experts having to discriminate between highly similar input
samples, pushing each expert to specialize in exploiting subtle cues for distin-
guishing between those similar samples to tackle early action prediction.

Above, we only show the operations on the p-th Expert Bank, but the same
process is conducted for all d banks to retrieve d experts, which is shown in
Fig. 2. Notably, this process (Eq. 1, 2, 3) across d Expert Banks can be done in
parallel, so it is efficient.

3) Expert Assembly We assemble the retrieved expert kernels from all d
Expert Banks (i.e., {mp

Ip}dp=1) to form an expert block Wexpert as follows:

Wexpert = Concat({mp
Ip}dp=1), (4)

where Wexpert ∈ Rd×Nin×bh×bw is composed of the parameters of the d ex-
perts that have the highest matching scores in the d banks, and Concat denotes
concatenation along the channel dimension. These retrieved experts will be spe-
cialized in capturing multiple subtle cues in X, that distinguish between the true
class of X and other similar classes for tackling early action prediction.
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Finally, to form the full convolutional block WERA, we further assemble the
non-expert block Wnonexpert and the expert block Wexpert (shown in Fig. 2) as:

WERA = Concat(Wnonexpert,Wexpert). (5)

The final assembled block WERA will be applied to the feature map in a
similar manner to a traditional convolutional kernel Wconv. Notably, as WERA

can directly replace Wconv, our ERA module is a plug-and-play module that can
replace the basic convolutional layer.

To apply the ERA module to other types of convolutions that are used in
early action prediction architectures, only minor changes need to be made. For
1D and 3D convolutions, we change the shape of mp

i and Wnonexpert according to
the corresponding 1D or 3D kernel. As for graph convolutions, since many graph
convolutions (as used in [45]) are implemented based on traditional convolutions
with additional parameters and steps to account for adjacency information, thus
we can also implement our method by replacing the contained convolutional
kernel with our ERA module in these scenarios.
4) Analysis of specialization of experts Next, we analyze how our ERA
module allows experts to specialize in subtle cues through the expert-retrieval
mechanism during training. This justification is rather important, as it explains
why the retrieval of the most suitable d experts leads to better discrimination
of subtle differences and tackles the sub-optimal training behaviour of the deep
neural networks. We approach this by analyzing the differences between the
gradients that update experts and non-experts during backpropagation.

Usually, the aggregated gradients ḡ of a loss L w.r.t a model parameter w is
computed by averaging over the entire batch with batch size B:

ḡ =
1

B

B∑
j=1

∂Lj

∂w
. (6)

The non-expert parameters are updated using ḡ in Eq. 6, which trains the
non-expert parameters to contribute towards classifying all samples, resulting
in the learning of general patterns that apply to more samples, as opposed to
subtle differences that occur only in a small subset of the data. If all parameters
in a network are non-experts, this results in the network having sub-optimal
performance with respect to subtle cues [20] and leads to worse performance on
early action prediction.

In contrast, in our ERA module, not all experts are selected by each sample,
as each expert is only retrieved for its most suitable samples. When backprop-
agating using the loss L on experts, the aggregated gradient ḡpi for the expert
kernel weights mp

i thus becomes:

ḡpi =
1

|N (kpi )|
∑

j∈N (kp
i )

∂Lj

∂mp
i

, (7)

where N (kpi ) denotes the set of samples in the batch that select expert Ep
i (with

key kpi and kernel mp
i ), i.e., N (kpi ) = {j s.t Ipj = i}Bj=1, where Ipj refers to the
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index of the selected expert in the p-th Expert Bank (Ip) for the j-th sample in
the batch. The samples in N (kpi ) are likely to be very similar, with only some
subtle differences, due to their close proximity to kpi in the feature space.

If we train the expert Ep
i using the gradient ḡpi as in Eq. 7, the expert is

only updated using samples that are closer to this expert’s area of expertise, i.e.,
samples which are in N (kpi ). Thus, as compared to ḡ, much more emphasis is
placed on learning to distinguish between these similar samples in N (kpi ) only,
which pushes the expert to learn to exploit subtle differences in these samples, as
opposed to general patterns that generally hold across all data.

3.3 Expert Learning Rate Optimization

Experts in our ERA modules, together with all other network parameters, are
end-to-end trainable using backpropagation. However, due to the uneven dis-
tribution of samples across experts, some experts might be selected by more
samples and be better trained than others, possibly causing imbalanced training
that limits the performance of our ERA module. To mitigate this effect, we de-
sign an Expert Learning Rate Optimization (ELRO) method that optimizes the
training among experts, leading to improved early action prediction accuracy.
For ease of notation, in this section, we only use one ERA module, although this
method can also work for multiple ERA modules. We introduce a set of expert
learning rates β = {βp

i }i∈{1..M},p∈{1..d} as additional parameters, where each
element βp

i is a scalar that balances the training of a corresponding expert Ep
i

during backpropagation. Instead of using manual tuning to adjust the large set
of β, we update β using a meta-learning approach in an end-to-end manner.

The core idea of meta-learning [9, 47] is about “learning-to-learn”, which in
our case is learning to optimize the learning rates β for improved training of
experts. This meta-optimization of β is conducted over two steps. Firstly, we
simulate training on a training set while using the current βp

i values to balance
updates for each expert Ep

i respectively, to obtain a virtually updated interim
model. Next, we evaluate the performance of this interim model on a validation
set, and the gradients of these validation losses will provide feedback on how we
can adjust β to a more optimized β′ (which improves training of experts, and
results in better performance on unseen validation samples). Finally, we then use
the meta-optimized β′ values for balancing expert updates during actual model
training, which yields improvements in performance.

An illustration of our proposed ELRO method is shown in Fig 3. Specifically,
in each iteration, we draw two batches of training data that are non-overlapping,
which we call training samples Dtrain and validation samples Dval. Then, the
following three steps are employed to update the model parameters.

(1) Virtual Training. We simulate the training on Dtrain by virtually updat-
ing all the model parameters other than β as follows:

ŵ = w − α∇wL(w, E ;Dtrain), (8)

Êp
i = Ep

i − βp
i ∇Ep

i
L(w, E ;Dtrain), i = {1, ..,M}, p = {1, .., d}, (9)
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Fig. 3. Illustration of the Expert Learning Rate Optimization method. Two indepen-
dent batches are sampled: training samples Dtrain and validation samples Dval. For-
ward propagation paths are in black, while backpropagation paths are in red. The entire
method consists of three phases: (1) Virtual Training, (2) Meta-Expert Optimization
and (3) Model Training. At the Virtual Training step, all non-β model parameters are
virtually updated using Dtrain. At the Meta-Expert Optimization step, expert learn-
ing rate parameters β are dynamically updated using the gradients from validation loss
Lval. At the Model Training step, all non-β parameters are updated using Dtrain with
updated β′. Best viewed in color.

where w represents the non-expert parameters, E represents the set of experts
{Ep

i }i∈{1..M},p∈{1..d}, α is the learning rate (which is a fixed hyperparameter),
and L refers to the supervised loss for the early action prediction task. Note that
here the update of each expert Ep

i (which includes key kpi and kernel weights
mp

i ) is scaled by βp
i .

(2) Meta-Expert Optimization. In this step, we evaluate the performance of
the virtually updated model (consisting of ŵ and Ê) on Dval. The gradients w.r.t
each expert learning rate βp

i provide feedback on how βp
i should be tuned for

the virtually updated model to generalize better to unseen samples, as follows:

βp
i
′ = βp

i − α∇βp
i
L(ŵ, Ê ;Dval), i = {1, ..,M}, p = {1, .., d}. (10)

Only β is updated in this step, and other parameters (ŵ and Ê) remain fixed.
Note that ∇βp

i
takes gradients with respect to βp

i as used in Eq. 9. This means

that, by tuning βp
i in Eq. 10, the newly updated expert learning rate βp

i
′ can

provide better training for expert Ep
i if Eq. 9 is performed again.

(3) Model Training. After we obtain the set of meta-optimized expert learn-
ing rates β′ = {βp

i
′}i∈{1..M},p∈{1..d}, we can perform actual model training by

updating model parameters E and w on Dtrain as:

w′ = w − α∇wL(w, E ;Dtrain), (11)

Ep
i
′ = Ep

i − βp
i
′∇Ep

i
L(w, E ;Dtrain), i = {1, ..,M}, p = {1, .., d}, (12)

In this step, the meta-optimized β′ balances the training of experts such that
performance on unseen samples is improved. This concludes one iteration of
ELRO, where we have obtained updated parameters w′, E ′ and β′. An outline
of this algorithm is shown in the Supplementary Material.
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3.4 Loss function

We train our model using a cross-entropy loss LCE on the early action prediction
task. Furthermore, we find that applying an additional similarity loss Ls brings
some improvements in practice, where the similarity loss Ls penalizes experts
that get too close to each other, which encourages experts to be more diverse.
Specifically, we implement Ls on all ERA modules within our network, using
a negative pairwise mean-squared loss among expert kernels in each Expert
Bank, i.e., using one ERA module as an example, Ls =

∑d
p=1

∑M
i=1

∑
j ̸=i ||m

p
i −

mp
j ||2. Overall, our loss L is then given by L = LCE − γsLs, where γs is a

hyperparameter that weights the relative significance of losses.

4 Experiments

To validate effectiveness of our ERA module for early action prediction, we con-
duct extensive experiments on both skeletal and RGB datasets. We experiment
on the NTU RGB+D 60 (NTU60) [42], NTU RGB+D 120 (NTU120) [42] and
SYSU [14] datasets for skeletal data, and the UCF-101 (UCF101) dataset [49]
for RGB data. Besides, we also evaluate our ERA module for action recognition
task on NTU60 and NTU120 (with results provided in Supplementary).

4.1 Implementation Details

Network Architecture. Following the previous works [30, 53], we use 2s-
AGCN [45] and 3D ResNeXt-101 [13] as the backbone networks for skeletal
and RGB datasets, respectively. As mentioned above, since the ERA module
serves as a plug-and-play replacement for the conventional convolutional mod-
ule, we uniformly replace 25% of convolutional layers with our ERA module in
the backbone networks. Network hyperparameters Nin, Nout, bh, bw at each layer
follow the original settings in the backbone networks. Also, in each ERA mod-
ule, d = 0.2Nout, i.e. 80% of the convolutional kernels are non-expert kernels and
the other 20% are expert kernels, and M = 5. Compared to the backbone net-
work, our ERA-Net only introduces approximately 20% additional parameters
yet achieves significant performance gain.

For the mapping function fp in Eq. 1, we first conduct average pooling across
the spatial and temporal dimensions of the feature map before a linear layer is
used to downsample to the dimensionality K, where K is set to 64.

Training. We perform experiments on Nvidia RTX 3090 GPU. For skeletal
datasets, NTU60, NTU120 and SYSU, we follow [45] and set the initial learning
rate α as 0.1, which then gradually decays to 0.001. The batch size B is 64.
For RGB dataset UCF101, we follow the same experimental settings as [53].
Network parameters θ and expert learning rates β are updated using L defined
in Sec. 3.4. γs is set to 0.1. Each βp

i is initialized to α, and constrained to non-
negative values. To allow end-to-end training of the retrieved experts in Eqn. 3,
Gumbel-Softmax [19] gradients are computed during backpropagation for the
Argmax operation, with temperature τ set to 1.
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Table 1. Performance comparison (%) of Early Action Prediction on NTU60 and
SYSU. We follow the evaluation setting of [30, 54, 39] and [53] respectively. Even
without ELRO, we can attain state-of-the-art performance. With ELRO, our method
obtains further improvements.

Methods
Observation Ratios on NTU60 Observation Ratios on SYSU

20% 40% 60% 80% 100% AUC 20% 40% 60% 80% 100% AUC

Jain et al. [18] 7.07 18.98 44.55 63.84 71.09 37.38 31.61 53.37 68.71 73.96 75.53 57.23
Ke et al. [21] 8.34 26.97 56.78 75.13 80.43 45.63 26.76 52.86 72.32 79.40 80.71 58.89
Kong et al. [26] - - - - - - 51.75 58.83 67.17 73.83 74.67 61.33
Ma et al. [35] - - - - - - 57.08 71.25 75.42 77.50 76.67 67.85
Weng et al. [54] 35.56 54.63 67.08 72.91 75.53 57.51 - - - - - -
Aliakbarian et al.[41] 27.41 59.26 72.43 78.10 79.09 59.98 56.11 71.01 78.39 80.31 78.50 69.12
Hu et al. [16] - - - - - - 56.67 75.42 80.42 82.50 79.58 71.25
Wang et al. [53] 35.85 58.45 73.86 80.06 82.01 60.97 63.33 75.00 81.67 86.25 87.92 74.31
Pang et al. [39] 33.30 56.94 74.50 80.51 81.54 61.07 - - - - - -
Tran et al. [50] 24.60 57.70 76.90 85.70 88.10 62.80 - - - - - -
Ke et al. [22] 32.12 63.82 77.02 82.45 83.19 64.22 58.81 74.21 82.18 84.42 83.14 72.55
HARD-Net [30] 42.39 72.24 82.99 86.75 87.54 70.56 - - - - - -

Baseline 38.09 66.36 78.67 83.29 84.10 66.43 60.71 73.04 77.81 83.88 84.32 72.20
ERA-Net w/o ELRO 43.94 73.23 84.53 87.61 87.97 71.62 63.50 80.82 82.70 86.33 87.10 75.78
ERA-Net 53.98 74.34 85.03 88.35 88.45 73.87 65.30 81.27 85.67 89.17 89.38 77.73

4.2 Experiments on Early Action Prediction

NTU60 dataset [42] has been widely used for 3D action recognition and early
action prediction. It is a large dataset that contains more than 56 thousand skele-
tal sequences from 60 activity classes. All human skeletons in the dataset contain
3D coordinates of 25 body joints. As noted in [30], this dataset is challenging
for the 3D early action prediction task due to the presence of many classes with
very similar starting sequences. We follow the evaluation protocol of [30].

We first compare the proposed ERA-Net with the state-of-the-art approaches
on NTU60. The results over different observation ratios are shown in Table 1. Our
full method is employed in the ERA-Net setting. In ERA-Net w/o ELRO, we
use ERA modules but do not implement β to train experts using the proposed
ELRO algorithm, instead we train using a single backpropagation step that
updates all model parameters at each iteration. We also provide the Baseline
setting for comparison, where the backbone is used without ERA modules.

We report the prediction accuracy at each observation ratio. Furthermore, we
use the Area Under Curve (AUC) metric in our experiments, following previous
works [30, 54, 39]. The AUC measures the average precision over all observation
ratios and broadly summarizes each model’s performance into a single metric.
On NTU60, we achieve more than a 3 point improvement against existing state-
of-the art method [30], suggesting that the ERA module effectively increases the
discriminative capabilities on the early action prediction task.

One crucial observation is that ERA-Net outperforms existing methods more
significantly when the observation ratio is low. For example, when the observa-
tion ratio is 20%, ERA-Net improves over state-of-the-art [30] by more than
11%, which further demonstrates that the ERA module is especially effective in



ERA for Early Action Prediction 13

Table 2. Performance comparison (%) of Early Action Prediction on NTU120 and
UCF101. As no prior works report NTU120 early action prediction results, we compare
our method to the baseline. For UCF101, we follow the evaluation setting of [53].

Methods
Observation Ratios on NTU120 Observation Ratios on UCF101

20% 40% 60% 80% 100% AUC 10% 30% 50% 70% 90% AUC

MSRNN [16] - - - - - - 68.01 88.71 89.25 89.92 90.23 80.89
Wu et al. [55] - - - - - - 80.24 84.55 86.28 87.53 88.24 80.57
Wu et al. [56] - - - - - - 82.36 88.97 91.32 92.41 93.02 84.66
Wang et al. [53] - - - - - - 83.32 88.92 90.85 91.28 91.31 89.64

Baseline 23.14 32.49 59.07 75.61 81.18 50.03 82.88 89.02 89.64 91.12 91.96 89.30
ERA-Net w/o ELRO 29.60 43.45 65.14 78.03 82.01 55.52 86.99 91.49 93.63 94.24 94.40 92.51
ERA-Net 31.73 45.67 67.08 78.84 82.43 57.02 89.14 92.39 94.29 95.45 95.72 93.64

picking up subtle cues to tackle hard samples (where samples are more similar
at the earlier stages).

SYSU dataset [14] is also commonly used for 3D action recognition and early
action prediction. The dataset contains 480 skeletal sequences belonging to 12
action classes performed by 40 subjects. The human skeletons in this dataset
contain 3D coordinates of 20 joints. We follow evaluation protocol of [53]. Com-
parisons against state-of-the-art methods are displayed in Table 1, where ERA-
Net outperforms the current state-of-the-art [53] by about 3 points.

NTU120 dataset [32] is an extension of NTU60. It is currently the largest
RGB+D dataset for 3D action analysis with more than 114k skeletal sequences
and contains 120 activity classes. This dataset is challenging for the early action
prediction task, containing many classes that are hard to classify without observ-
ing the full sequences. Comparisons are displayed in Table 2, where ERA-Net
outperforms the baseline by about 7 points on the AUC metric. We also observe
very large improvements at lower observation ratios, demonstrating the efficacy
of our method for early action prediction.

UCF101 dataset [49] is a popular dataset containing 13,320 video clips of 101
classes of human activities. It is a commonly used dataset for action prediction
from RGB videos. Comparisons against state-of-the-art action prediction meth-
ods are shown in Table 2, where ERA-Net outperforms current state-of-the-art
methods [56, 55, 53] by 4 or more AUC points, showing that ERA provides gains
for early action prediction on RGB video datasets as well.

4.3 Ablation Study

Impact of number of experts. We evaluate the ratio of experts and non-
experts in Table 3(a). As performance peaks at 20 : 80, we set d = 0.2Nout,
which allows for encoding of the most effective mix of general patterns and
subtle cues within the layer.

Impact of size of Expert Banks (M). We evaluate the size of Expert Banks
in Table 3(b). We find that the performance increases moderately when M is
increased from 2 to 5, and remains stable when we further increase it. We argue
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Table 3. Ablation studies conducted on NTU60. (a) Evaluation of ratios between
number of experts and non-experts; (b) evaluation of size of Expert Banks M ; (c)
evaluation of the percentage (%) of convolutional layers replaced by ERA modules;
(d) evaluation of the value of similarity loss weight γs; (e) evaluation of our dynamic
retrieval mechanism against alternative static designs.

(a) (b) (c) (d) (e)
Expert:Non-expert AUC M AUC % of ERA modules AUC γs AUC Method AUC

0:100 66.43 1 66.43 0 66.43 0.05 72.92 Extra-Channel 67.55
20:80 73.87 2 71.55 25 73.87 0.1 73.87 Expert-Avg 68.02
60:40 71.22 5 73.87 50 73.79 0.2 73.85 ERA-Net 73.87
100:0 70.12 10 73.86 100 73.81 0.3 73.76

that this is because the representation capacity by setting M = 5 is sufficient to
capture the subtle cues present in the dataset.
Impact of number of ERA modules. We ablate the decision of replacing
25% of convolutional layers with ERA modules in Table 3(c). We find that,
above 25%, the performance does not increase further. This suggests that, at
25%, there is already sufficient representation capacity to handle the encoding
of subtle cues.
Impact of similarity loss weight (γs). We conduct ablation studies on the
impact of γs in Table 3(d). γs = 0.1 performs the best. This because, when γs
is set too low, the experts are not as diverse, and when it is set too high, the
experts may lose focus on the main objective.
Impact of dynamic retrieval mechanism. We evaluate our dynamic design
by comparing our ERA module against other alternative static designs in Ta-
ble 3(e). Expert-Avg averages the outputs of all experts within the Expert
Bank (i.e. all experts are used for each input sample, without dynamic expert
selection), while Extra-Channel adds extra channels to the traditional con-
volutional layer. Notably, these alternative static designs use the same number
of parameters as our ERA-Net. We find that our dynamic retrieval mechanism
provides significant improvement over these alternatives.

5 Conclusion

In this paper, we have proposed a novel plug-and-play ERA module for early ac-
tion prediction. To encourage the experts to effectively use subtle differences for
early action prediction, we push them to discriminate exclusively among similar
samples. An Expert Learning Rate Optimization algorithm is further proposed
to balance the training among numerous experts, which improves performance.
Our method obtains state-of-the-art performance on four popular datasets.
Acknowledgement This work is supported by National Research Foundation, Sin-
gapore under its AI Singapore Programme (AISG Award No: AISG-100E-2020-065),
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