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Abstract 

 

It is essential for nano- and molecular-scale applications to explore and understand the electron 

and phonon transport characteristics of molecular junctions consisting of a scattering region 

such as a molecule connected to metallic electrodes. This thesis presents a series of studies into 

the electronic and thermoelectric properties of molecular junctions using theoretical methods 

described in chapters 2 and 3. Chapter 2 presents an introduction to the density functional 

theory (DFT). It is followed by an outline of transport theory in chapter 3, based on a Green’s 

function formalism. 

Recent studies of molecular thermoelectrics help to understand how atomic-scale structural 

modifications in junctions can affect the thermopower of molecular devices. This is illustrated 

in chapter 4, where I investigate the connectivity dependence on the thermoelectric properties 

of a series of thiophenediketopyrrolopyrrole (DPP) derivative molecules. For example. I find 

that molecules with connectivitites leading to destructive quantum interference (DQI) show 

significant conductance variations upon ring rotation. This DQI also leads to enhanced Seebeck 

coefficients, which can reach 500−700 μV/K. For the molecule with constructive quantum 

interference (CQI), I find that after including the contribution to the thermal conductance from 

phonons, the full figure of merit (ZT) for the CQI molecules could reach 1.5 at room 

temperature.  

Based on the DPP molecules, Chapter 5 presents a collaborative study with experimentalists at 

Xiamen University, China, of the effect of branching alkyl chains (isopentane, 3-

methylheptane, and 9-methylnonadecane) on the geometrical changes such as pi-stacked 
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distances and backbone dihedral angles. It is demonstrated that as the alkyl chain becomes 

longer the electrical conductance decreases due to an increase in the torsional angles between 

the aromatic rings. The relationship between the conductance and the torsion angle 𝜃 follows 

approximately T(E, 𝜃)∝ cos6 𝜃. This indicates that the insulating side chain could be used to  

control single-molecule conductance, which is of significance for the design of future organic 

devices.  
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1. Introduction to molecular-scale electronics  
 

1.1. Molecular electronics   
 

Molecular electronics is a field of science that aims to explore the electronic and thermal 

transport properties of a system containing a single molecule[1] or self-assembled monolayers 

(SAM)[2] connected to nanoscale electrodes (sometimes called ‘leads’) made from different 

materials such as metals (e.g. Au, Ag, Cu, and Ni)[3][4], semiconductors (e.g. Si)[5] or carbon 

(e.g. graphene [6][7], carbon nanotube[8]). In 1965, Gordon Moore noted that every 18 months 

the number of transistors in the chip doubles, and the size of the chip decreases by a factor of 

two. That is exponentially decreased with time on a logarithmic scale, which is known as 

Moore’s Law [52].  The exponential growth continues over half a century later, then as a 

component approaches the sub-10 𝑛𝑚 length scale, this is approaching the limit of Moore’s 

Law. Therefore, the field of single-molecule electronics has the potential to offer an alternative 

to silicon-based devices by replacing the traditional semiconductor with a single molecule, 

which gives manufacturers the possibility to produce smaller, faster, and more energy-efficient 

devices.  

Single molecules as building blocks to design and fabricate molecular electronic nanoscale 

devices have been explored and developed for more than 50 years[1][9][29], since Aviram and 

Ratner proposed the first molecular rectifier [10] as an alternative to silicon chips in the 1970s. 

Over the past decades, there have been numerous experimental and theoretical developments 

in the field of molecular electronics, which have led to multidisciplinary research involving 

chemistry, engineering, and physics. Fundamentally, the field has been advancing rapidly due 

to the following potential advantages compared to the traditional complementary metal-oxide-

semiconductor (CMOS) technology. The first advantage is the potential to shrink the size of 
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electronics components to below the sub-10 nm scale, which could improve circuit integration 

and lead to energy-saving and faster performance. The second advantage is about their variety 

of functionalities due to quantum interference, such as conducting wires[11][12] 

switches[13][14][6], thermoelectric materials[15][16][17], and negative differential resistance 

devices[18][19][20]. The ability to use specific intermolecular interactions to assemble 

molecular devices is another benefit, which could result in low-cost manufacturing. As a result, 

single-molecule electronics have the potential to complement conventional silicon-based 

electronics. 

 

Figure1.1.1 Schematic of mechanically controllable break junction on a bulk substrate, 

where the top panel shows an artist’s view of the molecule located between a source and 

drain electrode[26].  

Experimentally, one of the main challenges in designing single-molecule devices is how to 

fabricate a single molecule between nanoscale electrodes to study the electronic properties 

through systems.  For that purpose, a variety of techniques have been developed to build metal-

molecule-metal junction,  including scanning tunneling microscope break junctions 

(STMBJ)[21] [22] [23], atomic force microscopes (AFM)[29], mechanically controllable break 
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junctions (MCBJ, Figure 1.1.1) [24][25][26], the use of electro-migration breakdown [27] and 

electrochemical depositions[28, 29].  

In parallel with these experimental breakthroughs, theoretical approaches have also been 

developed for calculating the electronic assembly of atomic structures such as density 

functional theory (DFT). This approach is combined with quantum transport theory for many 

of the calculations carried out in this thesis. SIESTA[30] is one program implementation of 

DFT that enables the study of finite and periodic systems[31]. By combining DFT with the 

Green’s function formalism, the transport properties of molecular devices can be predicted. 

One implementation of Green’s function formalism is the Gollum code[32], which is used 

extensively within this thesis. 

Combining experimental techniques with the above theoretical framework allows researchers 

to construct a quantitative picture for understanding transport properties and form predictions 

to guide further experimental studies. Despite the fact that the development of molecular 

electronics has greatly accelerated experimentally, there are still some difficulties to resolve 

and areas to study, such as robustness, solvent effects, and electric system noise. 
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1.2. Molecular Junctions 
 

 

Figure1.2.1 Schematic of a single-molecule junction: 𝒂𝑳 and 𝒂𝑹 are the left and right gold 

electrodes, 𝒃𝑳and 𝒃𝑹are left and right SMe anchor groups, which is connected to phenyl 

rings from both sides to the molecular backbone 𝒄, which in this example is a DPP-core.  

Molecular junctions, such as that shown in Figure 1.2.1, are sensitive to very small changes in 

their atomic configuration. One example is that anchor groups, which are responsible for the 

direct contact between the metallic electrode surfaces to the molecular unit. Practically, various 

studies have revealed the influence of different anchor groups on molecular transport, and 

highlighted the importance of their mechanical stability and its electronic transparency (i.e. 

weak or strong coupling). The most widely used anchor group in charge transport experiments 

is thiol (-S)[33], due to its strong bond to gold, silver or copper electrodes[34]. Other anchor 

groups studied to date include amines (-NH2), SMe, and pyridyl terminal groups, of which 

pyridyl has more stability and a higher probability of junction formation [35][36].  

Not only anchoring groups plays an important role in molecular transport, but also the electrode 

material has a significant effect, which could be either metallic or non-metallic. Examples of 

the former include Au[37], Ag[4], Pd and Pt [38] are the most common electrodes used.  To 

date, gold has been the electrode material mostly used, due to its noble metal character, such 

as good chemical stability, high conductivity, and easily prepared clean surfaces and tips.  

However, gold electrodes have several drawbacks, such as the mobility of surface atoms at 
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room temperature, which causes thermal fluctuations and instabilities[39]. For that, it is 

essential to find alternative materials as this might pose some advantages on how molecular 

electronics devices are implemented. Thus, developing other materials like the non-metallic 

electrodes has been attracted researchers to discover the possibility of making reliable single-

molecule electrical measurements with these kinds of electrodes such as carbon-based 

materials[40][41], graphene[42][49] and silicon [5]  These exhibit a range of fascinating 

properties including electronic properties with high charge mobility, stability, mechanical 

strength, and flexibility of their π- conjugated structure[41][42]. Recently, the possibility of 

utilising superconducting electrodes has also been considered [50], which possess their 

interference phenomena [51], which can combine with molecular-scale CQI and DQI to yield 

unique interference effects. 

Furthermore, molecular conformation[43] plays another crucial role in molecular transport, 

which has to be considered in the design of molecular junction devices due to the variety of 

configurations that molecules could adopt within a junction[17]. In practice, at the nanoscale 

device, the molecules act as an electronic circuit which is highly desirable as their small size is 

typically as small as one nanometer. In addition, the ability to be self-assembled onto surfaces 

allows the molecular units to naturally form themselves into ordered structures by non-covalent 

interactions. Furthermore, the length dependence of the electron transport through molecules 

is another important factor for defining an efficient molecular junction. The main focus of this 

thesis is to explore molecules with desirable properties such as aromatic organic compounds. 

An archetypal aromatic compound is the benzene ring, where carbon atoms are joined by 

alternating of double and single bonds, and the wave functions of the 𝜋 system are delocalised 

over the whole molecule. Among different aromatic compounds, thiophene (five-membered 

heterocyclic ring) is considered to be an attractive ring for molecular transport (described in 
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chapter 4), along with related molecules containing heteroatoms (O, N, S) that are also 

aromatic.  

In summary, anchor groups, molecular wire architectures, length dependence, and 

conformation variations are all key factors controlling electron transport and open up a wealth 

of opportunities in the chemical design of single-molecular devices. However, in electron 

transport experiments, the conductance of a molecular junction depends not only on the 

molecule itself, but also on the environment of the molecule (e.g., solvents, vacuum, or air) and 

on the contact geometry of the molecule with the electrodes, all of which lead to large sample-

to-sample fluctuations[44].  

 

1.3. Quantum interference  
 

Quantum interference (QI) plays an important role in the control of quantum transport through 

molecular-scale structures[33][45]. This phenomenon can enhance or decrease conductance 

via constructive or destructive quantum interference respectively[46]. Recently, researchers 

have been utilising and exploring the QI concept theoretically and experimentally[33][47]. As 

a simple example, QI manifests itself in the conductance of benzene rings, with meta 

connectivity leading to DQI and low conductance, whereas para connectivity leads to CQI and 

high conductance.  

By manipulating the connectivity of external electrodes to central rings of carbon-based 

molecules in single-molecule junctions, their electrical and thermoelectrical properties could 

be tuned. Therefore, QI provides new opportunities to construct molecular electronic devices 

by chemical modifications. Our focus in chapter four will be on one of these effects, namely 

DQI (explained in detail in chapter 4). This phenomenon greatly influences molecular 
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conductance, by reducing the transmission probability by orders of magnitude compared with 

junctions exhibiting constructive interference (CQI)[17] [31][45][46][48].  

 

1.4.  Thesis Outline 
 

This thesis will report theoretical simulations of electron transport at the nanoscale.  

Chapter 1 will give a brief discussion of molecular electronics. The development of theoretical 

approaches based on density functional theory (DFT), which is implemented using the SIESTA 

code, is discussed in chapters 2. This is combined with the Green’s function formalism of 

transport discussed in chapter 3. Both of these methods are used extensively to study a 

molecules in later chapters.  

Chapter 4 focuses on a theoretical study aimed at a deeper understanding of controlling QI in 

Diphenyl-diketopyrrolopyrrole (DPP) derivatives through manipulating the connectivity of 

external electrodes to their central rings, which is shown to be an effective route to tuning their 

electrical and thermoelectrical properties.  

Chapter 5 is a collaboration with experimental colleagues, and aims to investigate the 

dependence of molecular conductance on the nature of branching alkyl chains (isopentane, 3-

methylheptane, and 9-methylnonadecane). This confirms that the effect of insulating side 

chains on single-molecule conductance cannot be neglected, which is of significance for the 

design of future organic semiconducting materials.  

Finally, chapter 6 will present conclusions and suggestions for future works.  
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2. Density Functional Theory 
 

2.1. Introduction  
 

In order to investigate the electronic properties of molecular electronic devices, theoretical 

tools are needed for solving the interacting electron problem. In order to solve the interacting 

many-body Schrödinger equation, there are several theoretical methodologies that can be used 

such as molecular dynamics, wavefunction methods, and Quantum Monte Carlo. Density 

function theory (DFT) is one of the most common methodologies used by physicists and 

chemists. DFT calculates the ground-state of the organic molecules based on two major 

theorems named: the Hohenberg-Kohn Theorem(1964) and the Kohn-Sham 

Formulation[1][2]which will be fully explained in this chapter.   

The main aim of this chapter is to give a brief outline of DFT and the computational code 

‘SIESTA’(Spanish Initiative for Electronic Simulations with Thousands of Atoms)[3], which  

I have used extensively throughout my Ph.D. research to optimise molecule structures, 

calculate charge densities, binding energies, and band structures as well as generating 

Hamiltonians for the next-step charge transport calculations.  

The first part of this chapter is an introduction of the DFT methodologies with the main 

formalism as a method to find the solution of the non-relativistic many-particle, time-

independent Schrödinger equation (TISE), since the properties of a many-electron system can 

be obtained from electron density. The second part displays a brief overview of the foundations 

and numerical applications of DFT to simplify the problems and perform reliable, precise 

calculations on molecular structures, no matter how massive scale these systems are. This has 

led DFT to become one of the main tools in theoretical physics.  
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2.2. The Schrödinger Equation 
 

In general, the Hamiltonian for any given non-relativistic Schrödinger equation can be 

employed to describe all many-body systems as follows: 

 HΨ𝑖(𝑟1, 𝑟2, … , 𝑟𝑁 , �⃗⃗�1, �⃗⃗�2, … , �⃗⃗�𝑀) = 𝐸𝑖Ψ𝑖(𝑟1, 𝑟2, … , 𝑟𝑁 , �⃗⃗�1, �⃗⃗�2, … , �⃗⃗�𝑀)          (2.1) 

The variable H represents the Hamiltonian time-independent operator of a system consisting 

of N-electrons and M-nuclei, which describes the interaction of particles with each other, 

whereas 𝜓𝑖 is the wavefunction of the 𝑖𝑡ℎ state of the system and 𝐸𝑖 is the numerical value of 

the energy of the 𝑖𝑡ℎ state described by 𝜓𝑖. For such a system, the Hamiltonian operator can be 

written as [4] 

 

H = −
ℏ2

2𝑚𝑒
∑∇𝑖

2

𝑁

𝑖=1

⏞        
𝑇𝑒  ̂

−
ℏ2

2𝑚𝑛
∑∇𝑛2
𝑀

𝑛

⏞      
𝑇𝑛  ̂

 +
1

4𝜋휀𝑜
∑∑

𝑍𝑛𝑒2

|𝑟𝑖 − �⃗⃗�𝑛|

𝑀

𝑛=1

𝑁

𝑖=1

⏞              
𝑉𝑒�̂�

+
1

4𝜋휀𝑜

1

2
∑

𝑒2

|𝑟𝑖 − 𝑟𝑗|

𝑁

𝑖≠𝑗

⏞      
𝑉�̂�

+
1

4𝜋휀𝑜

1

2
∑ ∑

𝑍𝑛𝑍𝑛′𝑒2

|�⃗⃗�𝑛 − �⃗⃗�𝑛′|

𝑀

𝑛≠𝑛′

𝑀

𝑛=1

⏞                
𝑉�̂�

 

(2.2) 

 

The Hamiltonian of the many-body system is divided into five terms: 𝑇𝑒  ̂ and 𝑇�̂� represent the 

kinetic energy of electrons and nuclei respectively and 𝑉𝑒�̂� defines the attractive electrostatic 

interaction between electrons and nuclei. 𝑉�̂�  is the electron-electron interaction and 𝑉�̂�  is 

nucleon-nucleon interaction where they describe the repulsive part of the potential respectively. 

Where 𝑖 and 𝑗 represent the N-electrons while 𝑛 and 𝑛′ run over the M-nuclei in the system, 

𝑚𝑒 and 𝑚𝑛 are the mass of electron and nucleus respectively, 𝑒 and 𝑍𝑛 are the electrons and 

nuclear charge respectively. The position of the electrons and nuclei are denoted as 𝑟𝑖⃗⃗⃗  and �⃗⃗�𝑛 

respectively, and 𝛻𝑖
2 is the Laplacian operator, in Cartesian coordinates 𝛻𝑖

2 is defined as:  
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 𝛻𝑖
2 =

𝜕2

𝜕𝑥𝑖
2 +

𝜕2

𝜕𝑦𝑖
2 +

𝜕2

𝜕𝑧𝑖
2 (2.3) 

Solving the exact solution of the Schrödinger equation for a many-body system is quite 

complicated for more electrons. However, an accurate approximate solution may be found, as 

described below.  

2.3. Born-Oppenheimer approximation: 
 

Unlike the simple hydrogen atom problem, the Schrödinger equation (2.1) cannot be solved for 

more than a few electrons. For that purpose, an approach assumed to reduce this problem, due 

to the fact that the mass of the nucleons is bigger than the electron mass (at least three orders 

of magnitude larger)[5][6], this causes their velocities of motion to be much lower. Thus, the 

nuclei can be considered as a classical particle (i.e. their kinetic energy is neglected), which 

creates a fixed external potential and treat the electrons as quantum particles subject to this 

potential. This is the well-known as the Born-Oppenheimer approximation[5], with the 

assumption that the nucleon wavefunction is independent of the electron position.  

Approximately, the classical interaction term of nuclei  𝑉�̂� in Eq. 2.2 have no contribution to 

the electronic description structure. Thus, the Schrödinger equation reduces into electronic 

Hamiltonian parts:  

 
H𝑒 = −

ℏ2

2𝑚𝑒
∑𝛻𝑖

2

𝑁

𝑖=1

⏞        
𝑇𝑒

−
1

4𝜋휀𝑜
∑∑

𝑍𝑛𝑒
2

|𝑟𝑖 − �⃗⃗�𝑛|

𝑀

𝑛=1

𝑁

𝑖=1

⏞              
𝑉𝑒𝑛

+
1

4𝜋휀𝑜

1

2
∑

𝑒2

|𝑟𝑖 − 𝑟𝑗|

𝑁

𝑖≠𝑗

⏞      
𝑉𝑒

 
(2.4) 

 

Then H𝑒𝛹𝑒 = 𝐸𝑒𝛹𝑒 
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𝛹𝑒 = 𝐸𝑒𝛹𝑒 (2.5) 

where the variable 𝑉𝑒𝑥𝑡(𝑟𝑖) is the external potential due to the nuclei-electron interaction. This 

approximation allows the electron and nucleon degrees of freedom to be decoupled. Despite 

the fact that the Born-Oppenheimer approximation reduces the size of the system, solving Eq. 

2.5 remains challenging, even on a modern supercomputer. Nevertheless, solving this problem 

needs further approaches using DFT such as Hartree, Hartree-Fock, or other quantum 

mechanical methods. While Hartree-Fock captures the exchange energy, it ignores electron 

correlations, DFT theory solves this issue by expressing the physical quantities in terms of the 

ground-state density 𝜌( 𝑟 ⃗⃗⃗)[7], this was first attempted by the Hohenberg-Kohn theorem.   

2.4. Hohenberg-Kohn theorem approximation: 
 

The Hohenberg-Kohn theorem developed in 1964[1], is a fundamental building block of  DFT, 

due to the ability to determine the properties of the ground-state density 𝜌( 𝑟 ⃗⃗⃗) system. This 

corresponds to a minimum total energy functional and can be applied to a many-electron 

system that interacts with an applied external potential 𝑉𝑒𝑥𝑡( 𝑟 ⃗⃗⃗).  

 �̂� = 𝑇�̂� + 𝑉�̂� +∑∑𝑉𝑒𝑥𝑡(𝑟𝑖)

𝑀

𝑛=1

𝑁

𝑖=1

 (2.6) 

This theorem tells us that the total energy of the many-electron system is as a function of the 

density 𝜌( 𝑟 ⃗⃗⃗), which is written as the following: 

        𝐸𝐻𝐾[𝜌( 𝑟 ⃗⃗⃗)] = 𝐹𝐻𝐾[𝜌( 𝑟 )] + ∫𝑉𝑒𝑥𝑡( 𝑟 )  𝜌( 𝑟 ) 𝑑𝑟 (2.7) 

Where 
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𝐹𝐻𝐾 = 𝑇𝑖𝑛𝑡[𝜌( 𝑟 )] + 𝐸[𝜌( 𝑟 )]⏟      
=𝑧𝑒𝑟𝑜,   𝑓𝑜𝑟 

𝑛𝑜𝑛−𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑛𝑔 
𝑠𝑦𝑠𝑡𝑒𝑚

 

(2.8) 

𝐹𝐻𝐾   is the potential energies of the many-electron interaction system. This theorem relies on 

two powerful statements: 

Statement 1: For any interacting many-particle systems in external potential  𝑉𝑒𝑥𝑡( 𝑟 ⃗⃗⃗), the 

ground-state density 𝜌( 𝑟 ⃗⃗⃗) of the system is uniquely defined. This expression shows that there 

cannot be two external potentials 𝑉𝑒𝑥𝑡( 𝑟 ⃗⃗⃗) (1)  ≠  𝑉𝑒𝑥𝑡( 𝑟 ⃗⃗⃗) (2) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, which leads to the 

same ground-state density distribution. [1][4][8][9] 

Statement 2: In terms of the density  𝜌( 𝑟 ⃗⃗⃗) , we can define a global function for the 

energy 𝐸[𝜌( 𝑟 ⃗⃗⃗)]. For that, the exact ground-state energy of the system in the presence of the 

external perinatal (𝑉𝑒𝑥𝑡( 𝑟 )) is the global minimum value of this functional and the density 

𝜌( 𝑟 ⃗⃗⃗) which minimizes the functional and represents the exact ground-state density 𝜌𝐺𝑆( 𝑟 ⃗⃗⃗).  

[1][4][8][9] 

2.5. The Kohn-Sham Approach 
 

Kohn and Sham’s approach[2],[10],[11] introduced a solution by using independent particle 

equations for the non-interacting electrons system to solve the many-body problem by Kohn 

and Sham in 1965. This approach generates the same ground-state density for any given system 

of interacting particles as a self-consistent method[2][12]. Kohn and Sham assume that it is 

possible to replace the original Hamiltonian of the system with an effective Hamiltonian (𝐻𝑒𝑓𝑓) 

of the non-interacting system in an effective external potential 𝑉𝑒𝑓𝑓( 𝑟 ), which gives rise to 

the same ground-state density as the initial system. Since there is no clear procedure for 

performing the calculation, the Kohn-Sham method is considered as an ansatz, but it is 
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considerably easier to solve it than the interacting problem. The Kohn-Sham approach based 

on the Hohenberg-Kohn universal density is: 

 𝐹𝐻𝐾[𝜌( 𝑟 ⃗⃗⃗)] = 𝑇𝑖𝑛𝑡[𝜌( 𝑟 )] + 𝑉𝑒[𝜌( 𝑟 )] (2.9) 

 

Based on the Hohenberg-Kohn functional for non-interacting electrons in Eq.2.7, the ground-

state functional of the Kohn-Sham ansatz 𝐹𝐾𝑆[𝜌( 𝑟 ⃗⃗⃗)] can be written as  

 
𝐹𝐾𝑆[𝜌( 𝑟 ⃗⃗⃗)] = 𝑇𝑛𝑜𝑛[𝜌( 𝑟 )] + 𝐸𝐻𝑎𝑟𝑡[𝑛𝜌( 𝑟 )] + ∫𝑉𝑒𝑥𝑡( 𝑟 ) 𝜌( 𝑟 ) 𝑑𝑟

+ 𝐸𝑥𝑐[𝜌( 𝑟 )] 
(2.10) 

The variable 𝑇𝑛𝑜𝑛  represents the kinetic energy of the non-interacting system which is different 

from 𝑇𝑖𝑛𝑡  (for interaction system) in Eq.2.8, and 𝐸𝐻𝑎𝑟𝑡  represents the classical electrostatic 

energy or classical self-interaction energy of the electron gas which is associated with 

density𝜌( 𝑟 ).  The last term 𝐸𝑥𝑐[𝜌( 𝑟 )]  is the exchange-correlation energy functional, which 

is the difference between the kinetic energy for the interacting and non-interacting systems and 

is given by:  

 
      𝐸𝑥𝑐[𝜌( 𝑟 )] = 𝐹𝐻𝐾[𝜌( 𝑟 ) −

1

2
∫
𝜌( 𝑟1 )𝜌( 𝑟2 )

|𝑟1 − 𝑟2|
𝑑𝑟1𝑑𝑟2

⏞              
𝐸𝐻𝑎𝑟𝑡[𝜌( 𝑟 )]

− 𝑇𝑛𝑜𝑛[𝜌( 𝑟 )] 
(2.11) 

This variational equation is for a non-interacting electron system with the same 𝜌( 𝑟 ) ground-

state energy and density as the interacting electron system. In the last couple of decades, 

multiple efforts have been intensively explored into finding a better computation of 𝐸𝑥𝑐[𝜌( 𝑟 )]. 

Currently, functional can be used to explore and predict the physical characteristics of a wide 

range of solid-state systems and molecules. Therefore, we take the functional derivatives to 

construct the effective single-particle potential 𝑉𝑒𝑓𝑓( 𝑟 )  for the last three terms in Eq. 2.10 
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 𝑉𝑒𝑓𝑓( 𝑟 ) = 𝑉𝑒𝑥𝑡( 𝑟 ) +
𝜕𝐸𝐻𝑎𝑟𝑡[𝜌( 𝑟 )]

𝜕𝜌( 𝑟 )
+
𝜕𝐸𝑥𝑐[𝜌( 𝑟 )]

𝜕𝜌( 𝑟 )
 (2.12) 

Significantly, the potential 𝑉𝑒𝑓𝑓( 𝑟 ) can be used to give the Hamiltonian of the single particle 

as 

 𝐻𝐾𝑆 = 𝑇𝑛𝑜𝑛 + 𝑉𝑒𝑓𝑓 (2.13) 

By applying this Hamiltonian, the Schrödinger equation becomes 

 [𝑇𝑛𝑜𝑛 + 𝑉𝑒𝑓𝑓]𝛹𝐾𝑆 = 𝐸𝛹𝐾𝑆 (2.14) 

This expression above is named as Kohn-Sham equation.  The Kohn-Sham method 

demonstrates that a complicated many-body interaction system can be mapped onto a set of 

simple non-interacting equations precisely if the exchange-correlation functional is known. 

However, because the exchange-correlation functional is unknown, approximations must be 

made. 

2.5.1. Exchange and correlation functional 

DFT is a very reliable and proven method used in the analysis although it is still used as an 

approximation for the kinetic energy functional and the exchange-correlation functional in 

terms of the density. Additionally, DFT has been successful to reduce the quantum mechanical 

ground-state many-body problems to a self-consistent one-electron problem, by the Kohn-

Sham equation[8].  This method is formally accurate, while for practical calculations there is 

no exact form to evaluate the exchange-correlation energy  𝐸𝑥𝑐 as a function of the density. 

There are several proposed forms for the exchange and correlation, the local density 

approximation (LDA) has long been the standard choice[13]. Despite its simple nature, the 

predictions made using LDA give realistic descriptions of the atomic structure, elastic, and 

vibrational characteristics for a wide range of systems. Yet, LDA is generally not accurate 

enough to describe the energetics of chemical reactions (heats of reaction and activation energy 
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barriers), which lead to an overestimate of the binding energies of molecules and solids. As 

well, there are numerous examples where the LDA puts molecular conformations or crystal 

bulk phases in an even qualitatively wrong energetic order [14].  

Currently, Generalised gradient approximations (GGA's) have overcome such deficiencies to 

a considerable extent[8][15], giving, for example, a more realistic description of energy barriers 

in the dissociative adsorption of hydrogen on metal and semiconductor surfaces[16]. Gradient 

corrected (GGA) functional depends on the local density and the spatial variation of the density. 

Therefore, the most commonly exchange-correlation functional approximations are LDA[13] 

and GGA, which rely on the density and the local density with a complicated technique that 

involves the derivatives of density respectively. To give more information about LDA and 

GGA, the following section will briefly explain them.  

2.5.1.1. Local Density Approximation (LDA) 

The LDA approximation assumes that the exchange-correlation functional depends only on the 

local density which was introduced by Kohn and Sham’s approach[2][10], and therefore gives 

a good prediction for any system with slowly varying the local density. The formula of this 

simplest exchange-correlation approximation is  

 𝐸𝑥𝑐
𝐿𝐷𝐴[𝜌(𝑟)] = ∫𝜌(𝑟)𝐸𝑥𝑐

ℎ𝑜𝑚𝑜[𝜌(𝑟)] 𝑑(𝑟) (2.15) 

The term 𝐸𝑥𝑐
ℎ𝑜𝑚𝑜 is defined as the exchange-correlation energy of the homogeneous electron 

gas with a density 𝜌(𝑟). In order to obtain this term 𝐸𝑥𝑐
ℎ𝑜𝑚𝑜[𝜌(𝑟)] it is useful to split into the 

sum of two contributions such as: 

 𝐸𝑥𝑐
ℎ𝑜𝑚𝑜[𝜌( 𝑟 )] = 𝐸𝑥

ℎ𝑜𝑚𝑜[𝜌( 𝑟 )] + 𝐸𝑐
ℎ𝑜𝑚𝑜[𝜌( 𝑟 )] (2.16) 

Where the first term is related to the exchange part 𝐸𝑥
ℎ𝑜𝑚𝑜[𝜌(𝑟)] and the second t is related to 

the correlation energies 𝐸𝑐
ℎ𝑜𝑚𝑜[𝜌(𝑟)]. Nonetheless, LDA functional is considered accurate for 
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the homogenous system with (S and P) orbitals such as graphene, carbon nanotube, or where 

the electron density is not rapidly changing. While for atoms with (d and f) orbitals, there is an 

expected error as the LDA treats the homogenous system.    

2.5.1.2. Generalized Gradient Approximation (GGA) 

The LDA approximation is inaccurate for the real inhomogeneous system where the electron 

density is changing rapidly at point (𝑟), which means LDA is inexact for heavy atoms such as 

molecules. Therefore, it is necessary to find an alternative approximation that considers the 

gradient of the electron density to be more accurate, which is called generalized gradient 

approximation GGA. Therefore, the GGA approximation extends the LDA by involving the 

higher spatial derivatives of the total charge density (|𝛻𝜌(𝑟)|, |𝛻2 𝜌(𝑟)⃗⃗⃗⃗ |, … )   into the 

functional form of the exchange and correlation energies. 

In the GGA approximation, there is no closed-form for the exchange term of the functional, 

but it has been calculated along with the correlation contribution by using numerical methods. 

Hence, several parameterizations are used in this approximation, and in this section we discuss 

one of them, which is introduced by Perdew Burke and Ernzherhof (PBE functional form)[15], 

the correlation energy is given by: 

 𝐸𝑥𝑐
𝐺𝐺𝐴[𝜌(𝑟)] = ∫𝜌(𝑟)휀𝑥𝑐

𝐺𝐺𝐴[𝜌(𝑟), |∇𝜌(𝑟)|]𝑑(𝑟) (2.17) 

 

2.6. SIESTA 
 

SIESTA is an acronym derived from the Spanish Initiative for Electronic Simulations with 

Thousands of Atoms[3]. It is a self-consistent density functional theory technique, which uses 

norm-conserving pseudo-potentials and a Linear Combination of Atomic Orbital Basis set 

(LCAOB) to perform efficient calculations. All calculation presented in this thesis has been 
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carried out by the implementation of DFT in the SIESTA code, this code is used to demonstrate 

the electronic properties of the relaxed structures for example the charge density, the binding 

energy, and several other features. Then, the next section will describe theoretical details about 

this code and provide some of SIESTA’s components and how they are implemented within 

the code[17].   

 

2.6.1. The Pseudopotential Approximation 

Since the SIESTA code requires an approximation to make a reliable calculation, one 

approximation example is called a pseudo-potential or effective potential. This helps to solve 

the many-body Schrödinger equation by reducing the number of electrons involved in the 

simulation. The idea of this approximation concept is that electrons in the atom are split into 

two types: the first is the core electrons in which the electrons occupy the filled shells of the 

atomic orbitals and the second is the valence electrons that lie in the partially filled atomic 

shells. Therefore, the pseudopotential is constructed by attempting to replace the complicated 

effects of the motion of the non-valence electrons (core electrons) of an atom and the nucleus 

by pseudo-potential. This is based on the fact that the core electrons in most molecules do not 

participate in chemical bonding to the formation of the molecular orbitals. Thus, Fermi 

introduced this assumption in 1934[18], and there are special kinds of pseudopotentials are 

used in our calculation.  

Since only the valence electrons play a critical role in determining the majority of chemical 

characteristics. The approximation is permitted to take advantage of just treating the valence 

electrons to eliminate the core electrons due to the fast interaction with the atomic nucleus. 

Generally, the valence electrons must be included because their states overlap with the other 

valence electron states from surrounding atoms in constructing the molecular orbital. 
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2.6.2. Calculating binding energies using the counterpoise method (CP) 

Using the DFT approach to calculate the ground-state energy of different molecules and allows 

to calculate the binding energies between different parts of the system as well as optimum 

energy. However, these calculations are subject to errors using SIESTA code, due to localized 

basis sets, which are centred on the nuclei. At the point when atoms are close to each other, 

then their basis functions will overlap, which might cause artificial strengthening of the atomic 

interaction and it could give inaccurate total energy of the system. Generally, the solution of 

this type of error has been performed by the Basis Set Superposition Error correction 

(BSSE)[19] or the counterpoise correction[20].  

By assuming two molecular systems, which are labelled as system A, and system B, then the 

interaction binding energy can be expressed as  

 ∆𝐸(𝐴𝐵) = 𝐸𝐴𝐵
𝐴𝐵 − 𝐸𝐴

𝐴 − 𝐸𝐵
𝐵 (2.18) 

Where 𝐸𝐴𝐵
𝐴𝐵  is the total energy of the supersystem, 𝐸𝐴

𝐴  and 𝐸𝐵
𝐵  are the total energies of the 

isolated components. In the expression above, the superscript specifies the basis set utilised in 

each computation, i.e. A represents the basis set of system A, B represents the basis set of 

system B, and AB represents the combined basis set of systems A and B. In order to eliminate 

the numerical errors, it is useful to perform the energy calculations in the same total basis set 

of the AB system. This can be achieved in SIESTA by recalculating using the mixed basis sets 

and introducing the ghost orbitals (basis set functions that have no electrons or protons), then 

subtracting the error from the uncorrected energy to calculate the binding energy by the 

following expression 

 ∆𝐸(𝐴𝐵) = 𝐸𝐴𝐵
𝐴𝐵 − 𝐸𝐴

𝐴𝐵 − 𝐸𝐵
𝐴𝐵 (2.19) 

Where 𝐸𝐴
𝐴𝐵and 𝐸𝐵

𝐴𝐵 are the energies of system A and system B which are evaluated based on 

the supersystem. Therefore, this is a crucial concept that has been implemented in several 
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systems to produce reliable and realistic results[21][22]. The figure below shows the cartoon 

of the origin of the basis set in a counterpoise calculation.  

 

Figure2.6.1 illustrating the method to calculate the binding energy. (a) represents basis 

functions for a total system AB where atoms are shown in red and blue circles; (b) represents 

a basis function for individual system A where system B is a ghost state represented by the 

blue dashed circle; (c) represents a basis function for individual system B where system A is a 

ghost state represented by the red dashed circle. In practice, the basis set in a counterpoise 

calculation is most easily defined by setting the nuclear charge of the corresponding system to 

zero. 

2.7. Calculations in Practice 
 

The SIESTA code is used in this thesis to calculate transport calculations during several steps. 

The first step is to construct the atomic configurations of the system, and then the appropriate 

pseudopotentials for each element are required, which is distinctive for each exchange-

correlation functional. Computationally, precise calculations take a long time with a larger 

memory using, therefore it is a crucial point to choose an appropriate basis set to decrease both 

time and memory needed. A further point to ensure the accuracy of the calculation is to include 

the grid fineness and density convergence tolerances. In addition, the Pulay parameter is an 

example of the convergence controlling parameter, which accelerates or maintains the stability 

of the convergence of the charge density in SIESTA.  
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The next step is to generate the required initial charge density, assuming that there is no 

interaction between atoms. In the case that the pseudopotentials are known, the sum of charge 

densities is the total charge density. Figure 2.7.1 shows the self-consistent calculation, which 

begins by calculating the Hartree and exchange-correlation potential. Therefore, a new charge 

density is obtained by solving the Kohn-Sham equation, thus the next iteration is started and 

repeated several times until the essential convergence criteria is reached. This means that the 

Kohn and Sham ground-state orbitals and energy for given atomic configurations are achieved.  

For the case of the structure optimisation (i.e. relaxing atomic coordinates, allowing periodic 

cell shapes and volumes to change), it is described in another loop, which is controlled via the 

conjugate gradient method[23][24]. This leads to the minimum ground-state energy of the 

atoms in the system and the equilibrium lattice parameters of the systems. Finally, when this 

method of self-consistency is implemented, the Hamiltonian and the density matrices are 

computed. This is important, as they are necessary for the quantum transport calculations in 

the next chapter.  
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Figure 2.7.1 Schematic of the self-consistency process within SIESTA. 
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3. Transport theory  
 

3.1. Introduction:  
 

 Molecular electronics has been the subject of intensive research, both theoretically and 

experimentally[1][2].  One of the fundamental challenges is to understand the electronic 

transport properties of nanoscale devices, where a molecule (or sufficiently small structure) is 

bound to electrodes so that ballistic transport can occur through its energy levels. Therefore, as 

mentioned in chapter 1, the contact strength between the molecule and the metallic electrodes 

plays a significant role in determining the transport properties, due to scattering processes 

within a lead|molecule|lead framework. Thus, the Green's function formalism is the most 

widely used theoretical method for studying the scattering process in these systems. 

Section 3.2 aims to present important background information regarding Landauer formalism. 

Since the energy of electrons passing through a nanoscale device is conserved, the electric 

current flowing can be described by the Landauer formula. This provides a description of the 

properties of electronic transport, and how they are related to the transmission coefficient for 

electrons passing from one lead through the scatterer to the other lead.  The main problem in 

scattering theory is to compute the transmission and reflection amplitudes, which are described 

in section 3.3, followed by the Green’s function approach for different transport systems, which 

is presented in section 3.4 and is used to calculate the transmission coefficient 𝑇(𝐸) across the 

scattering region. As a simple example, the transmission coefficient 𝑇(𝐸) is derived in a 

molecular junction by taking a one-dimensional system where electrons with energy 𝐸 pass 

from one electrode to another. In the final section, I will illustrate generic features of resonances 

in the transmission coefficient, which are derived based on a simple tight-binding model system 
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connected to two semi-infinite one-dimensional electrodes, like the Breit-Wigner formula for 

on-resonance transmission.  

3.2. The Landauer formula 
 

The Landauer formula[3][4] is the standard theoretical model to describe the transport 

phenomena of non-interacting electrons for a scattering region in the terms of a Fermi 

distribution and a transmission coefficient of the connected electrodes.  It is assumed that the 

system consists of two ideal ballistic leads (which are connected to two electron reservoirs) 

and a scattering region as shown in Figure 3.2.1 

 

Figure 3.2.1: A generic scattering region is connected to two ballistic leads with the 

chemical potentials 𝝁𝑳  and 𝝁𝑹  respectively, where 𝒓  is the amplitude of the reflected 

wave due to an incoming wave from the left and 𝒕 is the amplitude of the transmitted 

wave. 

These reservoirs supply the system with electrons and have slightly different chemical 

potentials (𝜇𝐿- 𝜇𝑅 ˃ 0), which will drive electrons from the left to the right reservoir. When the 

temperature is equal to zero (𝑇 = 0 𝐾), in the absence of the scattering region, the current 𝛿𝐼 

in such a system due to left moving electrons in an energy interval 𝛿𝐸 is 𝛿𝐼 = 𝑒 𝜐𝑔𝛿𝑛 , where 

𝛿𝑛 =
𝜕𝑛 

 𝜕𝐸
𝛿𝐸 is the number of left-moving electrons per unit length in the energy interval 𝛿𝐸 

and 𝑣𝑔 is their group velocity. If left and right-moving electrons are emitted by the reservoirs, 

then the net current is carried by electrons in the energy range 𝛿𝐸 = 𝜇𝐿 −  𝜇𝑅 and therefore 
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 𝛿𝐼 = 𝑒 𝜐𝑔
𝜕𝑛 

 𝜕𝐸
𝛿𝐸 = 𝑒 𝜈𝑔

𝜕𝑛 

 𝜕𝐸
 (𝜇𝐿 −  𝜇𝑅) (3.2.1) 

The parameters are defined as 𝑒 is the electronic charge, 𝑣𝑔 is the group velocity and 
𝜕𝑛

𝜕𝐸
 is the 

density of states (𝐷𝑂𝑆) per unit length, which is related to the group velocity by 

 
𝜕𝑛 

 𝜕𝐸
=
𝜕𝑛 

 𝜕𝑘

𝜕𝑘 

 𝜕𝐸
=
𝜕𝑛 

 𝜕𝑘

1 

  𝜈𝑔ℏ
 (3.2.2) 

In one-dimension, where 
𝜕𝑛 

 𝜕𝑘
=

1

2𝜋
 x2 for spin, and the group velocity is  𝜈𝑔 =

1

ℏ

𝑑𝐸

𝑑𝐾
 , this 

simplifies Eq. 3.2.2 to: 

 
𝜕𝑛 

 𝜕𝐸
=

2 

  𝜈𝑔ℎ
 (3.2.3) 

Substituting Eq. 3.2.3 into Eq. 3.2.1 yields 

 𝛿𝐼 =
2𝑒 

 ℎ
 (𝜇𝐿 −  𝜇𝑅) (3.2.4) 

If 𝛿𝑉 represents the voltage corresponding to the chemical potential difference, so that 𝜇𝐿 −

 𝜇𝑅 = 𝑒𝛿𝑉, one obtains 

 𝛿𝐼 =
2𝑒2 

 ℎ
𝛿𝑉 (3.2.5) 

Equation 3.2.5 states that the conductance for a one-dimensional lead containing one open 

channel in absence of scattering region given by 

 𝐺0 =
2𝑒2 

 ℎ
 (3.2.6) 

This is roughly about 77.5 𝜇𝑆 (or 12.9 𝐾Ω resistance). On the other hand, if the system has a 

scattering region, then the reflected current is 𝑅 = |𝑟|2 and the transmitted current is reduced 

by a factor 𝑇 = |𝑡|2. Thus, the current passing through the scatterer to the right lead becomes: 

 𝛿𝐼 =
2𝑒2 

 ℎ
𝑇𝛿𝑉 (3.2.7) 
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Taking the voltage difference to the other side yields to 

 𝐺 =
𝛿𝐼 

𝛿𝑉
=
2𝑒2 

 ℎ
𝑇 (3.2.8) 

This is the well-known Landauer formula for a one-dimensional system at zero temperature, 

connecting the conductance 𝐺 to the transmission probability 𝑇, which is to be evaluated at the 

Fermi energy [16] of the reservoirs. More generally, at finite temperature, the Landauer 

formula gives the net current passing from the left electrode 𝐿 to the right electrode 𝑅 is given 

by: 

 𝐼 =
2𝑒

ℎ
∫ 𝑑𝐸 𝑇(𝐸)[𝑓𝐿(𝐸) − 𝑓𝑅(𝐸)]
∞

−∞

 (3.2.9) 

The constants coefficients of the expression above are: 𝑒 = −|𝑒| is the electronic charge, ℎ is 

Planck's constant, 𝑇(𝐸) is the transmission coefficient for an electron of energy 𝐸 passing from 

one lead to the other via the molecule, and Fermi distribution function is giving by  

  𝑓𝐿,𝑅(𝐸) =
1

𝑒

𝐸−𝜇𝐿(𝑅)
𝑘𝐵𝑇 +1

     

(3.2.10) 

Where 𝜇𝐿,𝑅  is the chemical potential of the left and the right reservoir respectively. 𝑘𝐵 =

8.62 × 10−5eV/k is Boltzmann's constant and 𝑇 is the temperature.  In the case where the 

voltage 𝑉  is applied on the left and the right reservoirs symmetrically, then the chemical 

potentials will be 𝜇𝐿 = 𝐸𝐹 + 
𝑒𝑉

2
  and 𝜇𝑅 = 𝐸𝐹 − 

𝑒𝑉

2
.  Thus, 𝐼 = 0  when 𝑓𝐿(𝐸) = 𝑓𝑅(𝐸) , 

because only the differences in the distributions contribute to the net current.  

Therefore, at zero temperature and finite voltage, the current is written by: 

                               𝐼 = (
2𝑒

ℎ
)∫  𝑑𝐸 𝑇(𝐸)

𝐸𝐹+ 
𝑒𝑉
2

𝐸𝐹− 
𝑒𝑉
2

 
    

(3.2.11) 
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Consequently, the conductance 𝐺 = 𝐼/𝑉  is calculated by averaging 𝑇(𝐸)over an energy 

window of width  (𝑘𝐵𝑇 = 25 𝑚𝑒𝑉 at room temperature) centred on the Fermi energy. 

The electrical conductance at zero voltage and the finite temperature limit is: 

 𝐺 =
𝐼

𝑉
= 𝐺0∫ 𝑑𝐸 𝑇(𝐸) (−

𝑑𝑓(𝐸)

𝑑𝐸
)
𝜇=𝐸𝐹

∞

−∞

 (3.2.12) 

𝐺0  is the quantum of conductance 𝐺0 =
2𝑒2 

 ℎ
. Since the quantity −

𝑑𝑓(𝐸)

𝑑𝐸
 is a normalised 

probability distribution of width approximately equal to 𝑘𝐵𝑇. Equation 3.2.12 is an integral of 

a thermal average of the 𝑇(𝐸) over an energy window of width 𝑘𝐵𝑇.  

Finally, the electrical conductance with the combination of two limits (i.e. zero voltage and 

zero temperature) is  

 𝐺 = 𝐺0𝑇(𝐸) (3.2.13) 

 

3.3. Scattering matrix 
 

Calculating the scattering matrix is important for understanding the transmission coefficient 

appearing in the above formulae. This can be obtained by first examining the solution to the 

time-independent Schrödinger equation for an electron in the left electrode, which in one 

dimension takes the form 

 𝜓𝑗 =
𝐴

√𝜐𝑙
𝑒𝑖𝑘𝑙𝑗 +

𝐵

√𝜐𝑙
𝑒−𝑖𝑘𝑙𝑗 (3.3.1) 

where 𝐴 and 𝐵 are the amplitudes of two ingoing and outgoing waves travelling from the left 

to the right, and 𝜐𝑙 is the group velocity in the left electrode. The current per unit energy that 

this eigenstate carries is: 
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 𝐼𝑙𝑒𝑓𝑡 = |𝐴
2| − |𝐵2| (3.3.2) 

For the right electrode, the solution of the Schrödinger equation system and the corresponding 

current per unit are given by: 

 𝜓𝑗 =
𝐶

√𝜐𝑟
𝑒𝑖𝑘𝑟𝑗 +

𝐷

√𝜐𝑟
𝑒−𝑖𝑘𝑟𝑗 (3.3.3) 

   

 𝐼𝑟𝑖𝑔ℎ𝑡 = |𝐶
2| − |𝐷2|  (3.3.4) 

   

where C and D are the amplitudes of the two ingoing and outgoing waves travelling to the right 

and left, respectively. Since the currents satisfy the relation 𝐼𝑙 = 𝐼𝑟 (This law of conservation 

of probability is satisfied by any eigenstate), one obtains 

 |𝐴2| − |𝐵2| = |𝐶2| − |𝐷2|  (3.3.5) 

 

Therefore  

 |𝐴2| + |𝐷2| = |𝐵2| + |𝐶2| 
     

(3.3.6) 

In another words, the incoming current is equal to outgoing current, so the amplitudes in the 

following wave functions for the left and the right electrode respectively are related to each 

other: 

 𝐴𝑒𝑖𝑘𝑗 + 𝐵𝑒−𝑖𝑘𝑗 
   

(3.3.7) 

   

 𝐶𝑒𝑖𝑘𝑗 + 𝐷𝑒−𝑖𝑘𝑗 
    

(3.3.8) 
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This means that there must exist a 2x2matrix connecting the incoming and the outgoing 

coefficients. This matrix is known as the scattering matrix 𝑆 (with matrix elements 𝑆𝑖𝑗) and 

satisfies: 

 [
𝐵
𝐶
] = [

𝑆11 𝑆12
𝑆21 𝑆22

] [
𝐴
𝐷
]  (3.3.9) 

 i.e.  

 𝐵 = 𝑆11𝐴 + 𝑆12𝐷 
   

(3.3.10) 

 

 
𝐶 = 𝑆21𝐴 + 𝑆22𝐷 

    

(3.3.11) 

Since 𝐵 and 𝐶 are amplitudes of incoming waves (i.e. plane waves carrying electrons moving 

towards the scatterer) and 𝐴, 𝐷 are amplitudes of outgoing waves, it is reasonable to write Eq. 

3.3.9 in the form |𝑜𝑢𝑡⟩ = 𝑆|𝑖𝑛⟩.  Since 𝑆 is independent of the amplitudes 𝐴, 𝐵, 𝐶, 𝐷, to achieve 

further insight into the physical meening of the matrix elements 𝑆𝑖𝑗, it is of interest to consider 

the following two cases 

The first case: 𝐴 = 1 and 𝐷 = 0, and we shall denote the reflected and transmitted amplitudes 

by 𝐵 = 𝑟 and 𝐶 = 𝑡. Here 𝑟 is the amplitude of the reflected wave due to an incoming wave 

from the left and 𝑡 is the amplitude of the transmitted wave, then we have  

 [
𝐵
𝐶
] = [

𝑆11
𝑆21
] 

    

(3.3.12) 

The physical meanings of the symbols 𝑆11and 𝑆21  are therefore the reflection (𝑟) and the 

transmission (𝑡) respectively, associated with an incident wave from the left.  

The second case: 𝐴 = 0 and 𝐷 = 1, then the new matrix is given by  

 [
𝐵
𝐶
] = [

𝑆12
𝑆22
] 

           

(3.3.13) 
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Hence the physical meaning of the symbols 𝑆12 and 𝑆22  is the transmission (𝑡′)  and the 

reflection (𝑟′) amplitudes respectively, associated with an incident wave from the right. In 

summary, scattering matrix S is represented by the transmission and reflection coefficients as 

follows. 

 𝑆 = (
𝑆11 𝑆12
𝑆21 𝑆22

) = (
𝑟 𝑡′

𝑡 𝑟′
) 

  

(3.3.14) 

 

From Eq. 3.3.6,  

 𝐴∗𝐴 + 𝐷∗𝐷 = 𝐵∗𝐵 + 𝐶∗𝐶 
    

(3.3.15) 

Therefore 

 (𝐴∗ 𝐷∗) (
𝐴

𝐷
) = (𝐵∗ 𝐶∗) (

𝐵

𝐶
) 

    

(3.3.16) 

Then, by substituting Eq. 3.3.16 into 3.3.14, this expressed as 

 (𝐴∗ 𝐷∗) (
𝐴

𝐷
) = (𝐴∗ 𝐷∗)𝑆†𝑆 (

𝐴

𝐷
) 

     

(3.3.17) 

Since this is satisfied for any 𝐴,𝐷,  𝑆†𝑆 is the unit matrix and we can write 

 (
𝑟∗ 𝑡∗

𝑡′
∗
𝑟′
∗) (

𝑟 𝑡′

𝑡 𝑟′
) = (

1 0
0 1

) 
      

(3.3.18) 

In terms of scattering theory the important transport properties are obtained as: 

 |𝑟2| + |𝑡2| = 1 ⇒ 𝑅 + 𝑇 = 1 
    

(3.3.19) 

 

 |𝑟′2| + |𝑡′2| = 1 ⇒ 𝑅′ + 𝑇′ = 1 
    

(3.3.20) 
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where the parameters 𝑇 and 𝑅 represent the transmission and the reflection coefficients.  

 

3.4. Green's Function 
 

This section presents an attempt to obtain the Green’s function of a system, which is an 

essential tool for reflection and transmission coefficients of different nanoscale structures. This 

will give a clear outline of the methodology used starting with Green's functions for different 

nanoscale systems. First, I will discuss the form of the Green’s function for a simple one-

dimensional discretised lattice (section 3.4.1 and 3.4.2). In the next step, I shall use Dyson’s 

equation to demonstrate how to connect Green's functions of these separable lattices to 

construct the Green's function of the entire system (section 3.4.3 and 3.4.4). 

3.4.1. Green's function of a doubly infinite chain 

In this section, I will illustrate the form of the Green's function of the doubly infinite chains 

with on-site energies (휀0) and hopping parameters (−𝛾) as shown in Figure 3.4.1. These chains 

are described a perfect crystalline chain, which is periodic in the horizontal direction of 

transport. 

Figure 3.4.1: A simple-tight binding model of a one-dimensional periodic lattice with on-

site energies 𝜺𝟎 and couplings −𝜸. 

The time-independent Schrödinger equation describing the system’s wavefunction is: 

 (𝐸 − 𝐻)|𝜓⟩ = 0 (3.4.1) 

whereas the Green's function of a system described by a Hamiltonian (𝐻) is the solution of: 
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 (𝐸 − 𝐻)𝐺 = 𝐼 (3.4.2) 

For a finite system, where 𝐻 is a finite matrix, the formal solution to this equation is given by: 

 𝐺 = (𝐸 − 𝐻)−1 (3.4.3) 

Physically, the term 𝐺  is the retarded Green's function (𝑔𝑗𝑙 ), which describes the system 

response at point 𝑗 to source 𝑙  

 (𝐸 − 𝐻)𝑔𝑗𝑙 = 𝛿𝑗𝑙 (3.4.4) 

𝛿𝑗𝑙  is named Kronecker delta, which is equal to 1 if 𝑗 = 𝑙 and zero otherwise. The Green's 

function for a doubly infinite system can be written as 

 휀0𝑔𝑗𝑙 − 𝛾𝑔𝑗+1,𝑙 − 𝛾𝑔𝑗−1,𝑙 + 𝛿𝑗𝑙 = 𝐸𝑔𝑗𝑙 (3.4.5) 

The solution can be presented simply as: 

 𝑔𝑗𝑙 = { 
𝐴𝑒𝑖𝑘𝑗                       𝑗 ≥ 𝑙

  𝐵𝑒−𝑖𝑘𝑗                   𝑗 ≤ 𝑙   
 (3.4.6) 

The parameters 𝐴 and 𝐵 are arbitrary constants and represent the amplitudes of the two waves 

coming from the left and right respectively. This solution satisfies Eq. 3.4.5 at the point 𝑗 = 𝑙, 

and then the Green's function must be continuous at the same point.  

 𝑔𝑗𝑙|𝑗=𝑙 = { 
𝐴𝑒𝑖𝑘𝑗                      𝐴 = 𝛼𝑒−𝑖𝑘𝑙

  𝐵𝑒−𝑖𝑘𝑗                   𝐵 = 𝛼𝑒𝑖𝑘𝑙   
 (3.4.7) 

Therefore, substituting Eq. 3.4.7 to Eq. 3.4.5 yields: 

 (휀0 − 𝐸)𝛼 − 𝛾𝛼𝑒
𝑖𝑘 − 𝛾𝛼𝑒𝑖𝑘 = −1 

    

(3.4.8) 

 𝛾𝛼(2𝑐𝑜𝑠𝑘 − 2𝑒𝑖𝑘) = −1 
     

(3.4.9) 

 

 

 

𝛼 =
1

2𝑖𝛾𝑠𝑖𝑛𝑘
 

    

(3.4.10) 
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 𝛼 =
1

𝑖ℏ𝜈
 

    

(3.4.11) 

where 𝜈 is the group velocity and ℏ𝜈(𝐸) = 2𝛾𝑠𝑖𝑛𝑘(𝐸). Now I combine both results from Eq. 

3.4.11 and Eq. 3.4.7 to get the Green's function for the double infinite chain[5][6] 

 𝑔𝑗𝑙
∞ =

𝑒𝑖𝑘|𝑙−𝑗|

𝑖ℏ𝜈
 (3.4.12) 

Here, 𝑔𝑗𝑙
∞ represents the retarded Green's function, which describes the two outgoing waves 

from the source j= 𝑙, as shown in Figure 3.4.1. 

3.4.2. Green's function of a semi-infinite one-dimensional chain 

In this section, the aim is to derive the Green's function of a semi-infinite chain, by considering 

the problem of a doubly infinite chain, and introducing an appropriate boundary condition in 

order to obtain the Green's function for the semi-infinite chain as shown in Figure 3.4.2 

 

Figure 3.4.2: A semi-infinite linear chain with on-site energies 𝜺𝟎 and couplings – 𝜸, which 

terminates at site P. 

This infinite chain must terminate at a given site 𝑃, which means the Green's function is 

eliminated at the site 𝑃 + 1  and all points 𝑃 + 1 ≥ 𝑃  are missing lead to the boundary 

condition 𝜓𝑃+1
𝑙 = 0. This is achieved by adding a wavefunction to the Green's function of the 
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doubly infinite Green's function. 𝑅𝑗  is the reflected wave 𝑅𝑗 = 𝐴𝑒
−𝑖𝑘𝑗 . Consequently, the 

general Green's function at 𝐺𝑃+1 is written as: 

 𝐺𝑃+1 =
𝑒𝑖𝑘(𝑃+1−𝑙)

𝑖ℏ𝜈
+ 𝐴𝑒−𝑖𝑘(𝑃+1) = 0 (3.4.13) 

This yields: 

 𝐴 = −𝑒𝑖𝑘[2(𝑃+1)−𝑙] (3.4.14) 

Hence the general retarded Green’s function of the semi-infinite linear chain is  

 𝑔𝑗𝑙 =
𝑒𝑖𝑘|𝑗−𝑙| − 𝑒−𝑖𝑘𝑗(𝑗+𝑙)𝑒𝑖𝑘(2(𝑃+1))

𝑖ℏ𝜈
 (3.4.15) 

This satisfies 𝜓𝑃+1
𝑙 = 0 and 𝜓𝑗

𝑃+1 = 0.  

𝑔𝑃+1,𝑙 =
𝑒𝑖𝑘|(𝑃+1)−𝑙|−𝑒−𝑖𝑘𝑗(𝑃+1)𝑒−𝑖𝑘𝑙

𝑖ℏ𝜈
= 0, because the absolute value will vanish as the Green’s 

function is vanished at site P.  

The Green's function terminated at point (𝑃) due to source at (𝑙) is: 

 𝑔𝑗𝑙 =
𝑒𝑖𝑘|𝑗−𝑙| − 𝑒−𝑖𝑘𝑗(𝑗+𝑙)𝑒𝑖𝑘(2(𝑃+1))

𝑖ℏ𝜈
 

    

(3.4.16) 

From the boundary condition where 𝑙 = 𝑃 therefore: 

 𝑔𝑃𝑃 =
1 − 𝑒2𝑖𝑘

𝑖2𝛾𝑠𝑖𝑛𝑘
=
𝑒𝑖𝑘(𝑒−𝑖𝑘 − 𝑒𝑖𝑘)

𝑖2𝛾𝑠𝑖𝑛𝑘
 

    

(3.4.17) 

where (𝑒−𝑖𝑘 − 𝑒𝑖𝑘) = 𝑖2𝑠𝑖𝑛𝑘 will cancel with the dominator. This shows that the Green's 

function on terminal site P is 

 𝑔𝑝,𝑝 = −
𝑒𝑖𝑘

𝛾
 

    

(3.4.18) 

which is known as the ‘surface Green's function’ of a semi-infinite chain. 
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3.4.3. One-dimensional scattering system 

In this section, the aim is to obtain the entire Green’s function for a system which includes two 

one-dimensional tight binding semi-infinite leads connected by a coupling element (-α). Both 

leads have equal on-site energy (휀𝑜) and hopping elements (−𝛾), as shown in Figure 3.4.3.   

 

Figure 3.4.3: A simple tight-binding model of a one-dimensional scattering region 

attached to one-dimensional leads. 

The Hamiltonian of this infinite system takes the form of an infinite matrix as: 

 

(

 
 
 
  

⋱  −𝛾    0
−𝛾   휀0 −𝛾
0  −𝛾  휀0

0   0  0
0   0  0
𝛼   0  0

  0      0    𝛼
  0      0    0
 0     0    0

  
  휀0 −𝛾 0   
−𝛾   휀0 −𝛾 
0 −𝛾 ⋱ )

 
 
 
= (

𝐻𝐿 𝑉𝑐

𝑉𝑐
† 𝐻𝑅

) (3.4.19) 

 

In this matrix, 𝐻L  and 𝐻R are the Hamiltonians for the left lead and right leads, and 𝑉𝑐 is the 

coupling to connect these leads. Therefore, to calculate the Green’s function of this problem, 

we cannot solve the following equation directly 

 𝐺 = (𝐸 − 𝐻)−1 (3.4.20) 

However in the case of two decoupled leads (𝛼 = 0), the t Green's function on the terminal 

sites of the two semi-infinite leads will simply be given by the decoupled Green's function 𝑔 
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 𝑔 =

(

 
 

−𝑒𝑖𝑘

𝛾
0

0
−𝑒𝑖𝑘

𝛾 )

 
 
= (

𝑔𝐿 0
0 𝑔𝑅

) (3.4.21) 

If we now switch on the interaction, the Green's function for the coupled leads of this system 

can be obtained using Dyson’s equation, which is written as: 

 𝐺 = (𝑔−1 − 𝑉)−1 (3.4.22) 

Clearly, the operator 𝑉 describing the interaction connecting the two leads will have the form: 

 

 𝑉 = (
0 𝛼
𝛼 0

) (3.4.23) 

Then, the solution of the Green's function of this system is given by solving Dyson's equation  

 𝐺 =
1

𝛾2𝑒−2𝑖𝑘 − 𝛼2
(
𝛾𝑒−𝑖𝑘 −𝛼

−𝛼 𝛾𝑒−𝑖𝑘
) (3.4.24) 

 

After finding Green's function for this system, the only remaining step is to calculate the 

transmission (𝑡) and reflection (�⃖�) amplitudes, which can be obtained by using the Fisher-Lee 

relation. This relates the scattering amplitudes of a scattering problem to Green's function of 

the problem. The Fisher-Lee relations is given by: 

 𝑟 = 𝑖ℏ𝜈𝐺0,0 − 1 
  

(3.4.25) 

 

 𝑡 = 𝑖ℏ𝜈𝐺0,𝑁+1 𝑒
𝑖𝑘 (3.4.26) 

These coefficients amplitudes correspond to particles incident from the left, and the same 

procedure could be used in order to compute these coefficients for the particles are travelling 

from the right. Based on these coefficients the probability is defined as:   
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 𝑇 = |𝑡|2 (3.4.27) 

   

 𝑅 = |𝑟|2 (3.4.28) 

Finally, by constructing the full scattering matrix and using the Landauer formula, we can 

calculate the zero-bias conductance of the system. 

3.4.4. Transport through an arbitrary scattering region 

In this section, I will derive the most general formula for the transmission probability for an 

arbitrarily shaped scattering structure. This can be found by considering a nanoscale system as 

shown in Figure 3.4.4, the system has a scattering region with sites 1 and 𝑁 is connected to the 

one-dimensional left and right electrodes. In addition, each site in the left and right electrodes 

has on-site energy (휀𝐿) and (휀𝑅) with a coupling of −𝛾𝐿 and −𝛾𝑅 respectively.  

 

Figure 3.4.4: A simple tight-binding model of a one-dimensional arbitrarily scattering 

region attached to one-dimensional leads. The left and right leads have sites labelled by 

integer 𝑗 with sites energy 휀𝐿 and 휀𝑅, and hopping elements −𝛾𝐿 and −𝛾𝑅 respectively.  

Our aim is to solve the Schrodinger equation  𝐻|𝜓⟩ = 𝐸|𝜓⟩ . Then the solution to the 

Schrodinger equation for 𝑗 = −1,−2,… ,−∞, will be labelled 𝜓𝑗 and the eigenstate in the left 

chain is: 

 𝜓𝑗 =
1

√𝑣𝐿
[𝑒𝑖𝑘𝐿𝑗 + 𝑟𝑒−𝑖𝑘𝐿𝑗] (3.4.29) 
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The solution to the Schrodinger equation for 𝑗 = 𝑁 + 1,𝑁 + 2,… ,∞, will be labelled 𝜙𝑗 and 

the eigenstate in the right chain is: 

 𝜙𝑗 =
1

√𝑣𝑅
[𝑡𝑒𝑖𝑘𝑅𝑗] (3.4.30) 

The parameters in Eq. 3.4.29 and 3.4.30  𝑟 and 𝑡 are the reflection and transmission amplitudes, 

where 𝑣𝐿and 𝑣𝑅 are the group velocity of the left and right leads respectively. The scattering 

region is labelled as 𝑓𝑗where 𝑗 = 1, 2, … . , 𝑁. Using these notations, the Schrödinger equation 

in these regions takes the form as   

For 𝑗 = −1,−2,…… ,−∞: 

 휀𝐿𝜓𝑗 − 𝛾𝐿𝜓𝑗−1 − 𝛾𝐿𝜓𝑗+1 = 𝐸𝜓𝑗   (3.4.31) 

 

For 𝑗 = 0 

 휀𝐿𝜓0 − 𝛾𝐿𝜓−1 − 𝛼𝑓1 = 𝐸𝜓0 (3.4.32) 

For scattering region:   for 𝑗 = 1 

 ∑𝐻1𝑙𝑓𝑙 − 𝛼

𝑁

𝑙=1

𝜓0 = 𝐸𝑓1 (3.4.33) 

For 𝑗 = 2,3, …… ,𝑁 − 1 

 ∑𝐻𝑗𝑙 −

𝑁

𝑙=1

𝑓𝑙 = 𝐸𝑓𝑗   (3.4.34) 

For 𝑗 = 𝑁 

 ∑𝐻𝑁𝑙 − 𝛽

𝑁

𝑙=1

∅𝑁+1 = 𝐸𝑓𝑁 (3.4.35) 



 

47 

 

Here,  𝐻𝑁𝑙 is a matrix element for Hamiltonian describing the scattering region shown in Figure 

3.4.4.                           

The case of the right lead for 𝑗 = 𝑁 + 1 

 휀𝑅𝜙𝑁+1 − 𝛽𝑓𝑁 − 𝛾𝑅𝜙𝑁+2 = 𝐸𝜙𝑁+1 (3.4.36) 

For 𝑗 ≥ 𝑁 + 2,…… ,∞ 

 휀𝑅𝜙𝑗 − 𝛾𝑅𝜙𝑗−1 − 𝛾𝑅𝜙𝑗+1 = 𝐸𝜙𝑗   (3.4.37) 

Substituting Eq. 3.4.29 into Eq. 3.4.31 and Eq. 3.4.32 yields (the dispersion relation in the left 

lead)  

 

𝐸(𝑘) = 휀𝐿 − 2𝛾𝐿 cos 𝑘𝐿 

and 

𝛼𝑓1 = 𝛾𝐿𝜓1 

(3.4.38) 

Similarly, substituting Eq. 3.4.37 into Eq. 3.4.34 and Eq. 3.4.35 yields (the dispersion relation 

in the right lead) 

 

𝐸(𝑘) = 휀𝑅 − 2𝛾𝑅 cos 𝑘𝑅 

and 

𝛽𝑓𝑁 = 𝛾𝑅𝜙𝑁 

(3.4.39) 

The key parameters in Eq. 3.4.38 and Eq. 3.4.39 are  𝐸(𝑘) tells that the eigenstates in the left 

and right leads are not equal (i.e. non-symmetric junction), where 𝑓1and 𝑓𝑁  represent the 

relation between the wave function on the inside of the scattering region to the wave function 

on the outside (i.e. 𝜓1  and 𝜙𝑁 ). 𝛾𝐿  and 𝛾𝑅are the hopping elements for the left and right 

electrodes respectively. Note that Eq. 3.4.33 and Eq. 3.4.35 can be written as the 
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form (𝐸 − ℎ) |𝑓⟩ = |𝑆⟩, where ℎ is the 𝑁 ×𝑁 Hamiltonian of the scattering region and |𝑓⟩, |𝑆⟩ 

will take the form 

|𝑓⟩ =

[
 
 
 
 
 
𝑓1.
.
𝑓𝑗
.
.
𝑓𝑁]
 
 
 
 
 

     ,  |𝑆⟩ =

[
 
 
 
 
−𝛼𝜓0
0.
.
0

−𝛽∅𝑁+1]
 
 
 
 

      , ℎ = [
ℎ11 ⋯ ℎ1𝑁
⋮ ⋱ ⋮
ℎ𝑁1 ⋯ ℎ𝑁𝑁

] 

Then multiplying  (𝐸 − ℎ) |𝑓⟩ = |𝑆⟩ by the inverse matrix (𝐸 − ℎ)−1 yields |𝑓⟩ = 𝑔|𝑆⟩, and 

takes the form  

 

[
 
 
 
 
 
𝑓1.
.
𝑓𝑗
.
.
𝑓𝑁]
 
 
 
 
 

= [

𝑔11 ⋯ 𝑔1𝑁
⋮ ⋱ ⋮
𝑔𝑁1 ⋯ 𝑔𝑁𝑁

]

[
 
 
 
 
−𝛼𝜓0
0.
.
0

−𝛽∅𝑁+1]
 
 
 
 

 

⟹ (
𝑓1
𝑓𝑁
) = (

𝑔11 𝑔1𝑁
𝑔𝑁1 𝑔𝑁𝑁

) (
−𝛼𝜓0
−𝛽∅𝑁+1

) 

⟹ (
𝑓1
𝑓𝑁
) = �̃� (

−𝛼𝜓0
−𝛽∅𝑁+1

) 

 

(3.4.40) 

This yields, 

 [�̃�]−1 (
𝑓1
𝑓𝑁
) = (

−𝛼𝜓0
−𝛽∅𝑁+1

) (3.4.41) 

where [�̃�]−1the inverse of the 2 × 2 sub matrix of the Green’s function is 

 [�̃�]−1 = (
𝑔11 𝑔1𝑁
𝑔𝑁1 𝑔𝑁𝑁

)
−1

=
1

𝑑
(
𝑔𝑁𝑁 −𝑔1𝑁
−𝑔𝑁1 𝑔11

) (3.4.42) 

where  𝑑 = 𝑑𝑒𝑡�̃� = 𝑔11𝑔22 − 𝑔1𝑁𝑔𝑁𝑁. It is worth mentioning that, Eq. 3.4.38 and Eq. 3.4.39 

relate the inside 𝑓1and 𝑓𝑁to the outside 𝜓1 and 𝜙𝑁, this yields 𝜓1 =
𝛼

𝛾𝐿
𝑓1and 𝜙𝑁 =

𝛽

𝛾𝑅
𝑓1. Our 

task is to solve these for (
𝑓1
𝑓𝑁
) and (

𝜓1
𝜙𝑁
). To achieve this we need 𝜓1to 𝜓0 and 𝜙𝑁 to 𝜙𝑁+1. 

Therefore, it takes the following form  
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𝜓1 =

1

√𝑣𝐿
[2𝑖 sin 𝑘𝐿] + 𝜓0𝑒

−𝑖𝑘𝐿  

∅𝑁 = ∅𝑁+1𝑒
−𝑖𝑘𝑅 

(3.4.43) 

Hence 

 

(
−𝛼𝜓0
−𝛽∅𝑁+1

) = (
Σ𝐿 0
0 Σ𝑅

) (
𝑓1
𝑓𝑁
) + (

𝛼𝑒𝑖𝑘𝐿[2𝑖 sin 𝑘𝐿]

√𝑣𝐿
0

) 

⟹ (
−𝛼𝜓0
−𝛽∅𝑁+1

) = (
Σ𝐿𝑓1
Σ𝑅𝑓𝑁

) + (
𝛼𝑒𝑖𝑘𝐿[2𝑖 sin 𝑘𝐿]

√𝑣𝐿
0

) 

(3.4.44) 

Where the self- energies to the left and right leads are Σ𝐿 =
−𝛼2𝑒𝑖𝑘𝐿

√𝑣𝐿
 and Σ𝑅 =

−𝛽2𝑒𝑖𝑘𝑅

√𝑣𝑅
, 

respectively. Then, substituting the self- energies into 3.4.41, this yields 

 

([�̃�]−1 − Σ) (
𝑓1
𝑓𝑁
) =  (

𝛼𝑒𝑖𝑘𝐿[2𝑖 sin 𝑘𝐿]

√𝑣𝐿
0

) 

⟹ Σ = (
Σ𝐿 0
0 Σ𝑅

) 

(3.4.45) 

Where Σ is 2 × 2 matrix of the self-energies to the left and right leads. 

 (
𝑓1
𝑓𝑁
) = 𝐺 (

𝛼𝑒𝑖𝑘𝐿[2𝑖 sin 𝑘𝐿]

√𝑣𝐿
0

) ; 𝐺 = ([�̃�]−1 − Σ)−1; 𝐺 = (
𝐺11 𝐺1𝑁
𝐺𝑁1 𝐺𝑁𝑁

) (3.4.46) 

   

Hence  

𝑓𝑁 = 𝐺𝑁1
𝛼𝑒𝑖𝑘𝐿[2𝑖 sin 𝑘𝐿]

√𝑣𝐿
 

𝜙𝑁 =
𝛽

𝛾𝑅
𝑓1 = 𝐺𝑁1

𝛼𝛽𝑒𝑖𝑘𝐿[2𝑖 sin𝑘𝐿]

𝛾𝑅√𝑣𝐿
    

                    

(3.4.47) 

Since 𝜙𝑁 =
1

√𝑣𝑅
[𝑡𝑒𝑖𝑘𝑅𝑁], then the transmission (t) could be obtained as:  
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 𝑡 = 𝐺𝑁1  
𝛼𝛽𝑒𝑖𝑘𝐿[2𝑖 sin 𝑘𝐿]

𝛾𝑅√𝑣𝐿
× √𝑣𝑅𝑒

−𝑖𝑘𝑅𝑁 
  

(3.4.48) 

Since ℏ𝑣𝑅 = 2𝛾𝑅𝑠𝑖𝑛𝑘𝑅and  ℏ𝑣𝐿 = 2𝛾𝐿𝑠𝑖𝑛𝑘𝐿, this yields 

 𝑡 = 𝑖𝐺𝑁1𝛼𝛽𝑒
𝑖𝑘𝐿√

2𝑠𝑖𝑛𝑘𝐿
𝛾𝐿

√
2𝑠𝑖𝑛𝑘𝑅
𝛾𝑅

𝑒−𝑖𝑘𝑅𝑁 
  

(3.4.49) 

 

The transmission probability is 𝑇(𝐸) = |𝑡|2 which could be written as: 

 𝑇 = |𝑡|2 = 4 [
𝛼2 sin 𝑘𝐿
𝛾𝐿

] [
𝛽2 sin 𝑘𝑅
𝛾𝑅

] |𝐺𝑁1|
2 (3.4.50) 

   

Equivalently in term of 𝑔 

𝑇 = |𝑡|2 = 4 [
𝛼2 sin 𝑘𝐿
𝛾𝐿

]
⏟      

Γ𝐿

|
𝑔𝑁1
∆
|
2

⏟  
𝑀𝐿

[
𝛽2 sin 𝑘𝑅
𝛾𝑅

]
⏟      

Γ𝑅

                           

(3.4.51) 

The term ∆ is giving by:  

∆= 1 − 𝑔11Σ𝐿 − 𝑔𝑁𝑁Σ𝑅 + Σ𝐿Σ𝑅(𝑔11𝑔𝑁𝑁 − 𝑔1𝑁𝑔𝑁1) 

The expression above is the most general solution to calculate the transmission probability for 

any scattering region connected to identical electrodes. Γ𝐿 is a property of the left lead; Γ𝑅 is a 

property of the right lead; 𝑀𝐿 is determined by both the molecule and the electrodes. The 

completely general technique for calculating Green’s function and a scattering S matrix and 

transport coefficient of a finite superlattice connected to crystalline semi-infinite leads can be 

found in [16] 
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3.5. The transmission curve features 
 

The main feature of electron transport through single molecules is quantum interference, which 

is a fundamental quantum phenomenon. Multiple paths for transferring electrons across the 

junction exist in certain molecules, and these channels can lead to a few key features we might 

expect to see in the more complicated transport curves of real systems such as resonances or 

anti-resonances. Thus, a deep understanding of the transmission can be achieved by looking at 

the properties of these resonances. This section aims to briefly discuss different kinds of 

resonances, for instance: Breit-Wigner resonances[7], anti-resonances [8][9], and Fano 

resonances due to quantum interference [10].  

 

3.5.1. Breit-Wigner resonance  

The Breit-Wigner formula is the simplest feature to understand the behaviour of resonance in 

the transmission coefficient 𝑇(𝐸), which is named a Lorentzian peak. This occurs when the 

energy of the incident electron resonates with an energy level of the isolated system. For 

isolated system contains N sites as shown in Figure 3.5.1, the Schrödinger equation is  𝐻|𝜓𝑛⟩ =

𝐸𝑛|𝜓𝑛⟩ , where the eigenstates |𝜓𝑛⟩  satisfy such properties: the completeness condition 

∑ |𝜓𝑛⟩⟨𝜓𝑛| = 𝐼
𝑁
𝑛=1  and ⟨𝜓𝑛|𝜓𝑚⟩ = 𝛿𝑛𝑚.  

 

 Figure 3.5.1: A simple model of an arbitrarily scattering region of System N sites.  
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To perform such an equation of Green’s function, it was necessary to start from Eq. 3.4.20 

using the completeness condition as follows  

 𝑔 = (𝐸 − 𝐻)−1 =∑(𝐸 − 𝐻)−1|𝜓𝑛⟩⟨𝜓𝑛|

𝑁

𝑛=1

 (3.5.1) 

 

Then, using the fact that the function of 𝐻 acting on an eigenvector yields the same function of 

the corresponding eigenvalue, thus Eq. 3.5.1 becomes 

 𝑔 = (𝐸 − 𝐻)−1 =∑
|𝜓𝑛⟩⟨𝜓𝑛|

𝐸 − 𝐸𝑛

𝑁

𝑛=1

 (3.5.2) 

 

If 𝐸 ≈ 𝜆, where 𝜆 is a nondegenerate eigenvalue of the Hamiltonian, the Green’s function is 

approximately 

 𝑔(𝐸) =
|𝜓𝜆⟩⟨𝜓𝜆|

𝐸 − 𝜆
= (

𝑔11 ⋯ 𝑔1𝑁
⋮ : ⋮
𝑔𝑁1 ⋯ 𝑔𝑁𝑁

)  (3.5.3) 

where |𝜓𝜆⟩ is the corresponding eigenstates written as 

 |𝜓𝜆⟩ =

(

 

𝜓1
𝜆

𝜓2
𝜆

⋮
𝜓𝑁
𝜆)

  (3.5.4) 

Then we can obtain the elements of Green’s function as below 

 

𝑔11 =
|𝜓1

𝜆|
2

𝐸 − 𝜆
   ;  𝑔𝑁𝑁 =

|𝜓𝑁
𝜆 |
2

𝐸 − 𝜆
  

𝑔1𝑁 =
𝜓1𝜓𝑁

∗

𝐸 − 𝜆
   ;  𝑔𝑁1 =

𝜓𝑁𝜓1
∗

𝐸 − 𝜆
    

 

(3.5.5) 
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 Form Eq. 3.4.51 the term ∆ is  ∆= 1 − 𝑔11Σ𝐿 − 𝑔𝑁𝑁Σ𝑅 + Σ𝐿Σ𝑅(𝑔11𝑔𝑁𝑁 − 𝑔1𝑁𝑔𝑁1). So, we 

have 𝑔11𝑔𝑁𝑁 = 𝑔1𝑁𝑔𝑁1, this leads to ∆= 1 − 𝑔11Σ𝐿 − 𝑔𝑁𝑁Σ𝑅. Therefore, it is assumed that  

𝑔11Σ𝐿 − 𝑔𝑁𝑁Σ𝑅 =
𝜓1
2Σ𝐿−𝜓𝑁

2 Σ𝑅

𝐸−𝜆
  thus 

 ∆= 1 −
𝜓1
2Σ𝐿

𝐸 − 𝜆
−
𝜓𝑁
2Σ𝑅

𝐸 − 𝜆
  (3.5.6) 

By substituting Eq. 3.5.6 in terms in Eq. 3.4.51 yields 

 

𝑇 = 4Γ𝐿Γ𝑅 [
𝜓1
2 𝜓𝑁

2

(𝐸 − 𝜆)2
]

1

|1 −
𝜓1
2Σ𝐿

𝐸 − 𝜆
−
𝜓𝑁
2Σ𝑅

𝐸 − 𝜆
|
2 

𝑇 =
4(Γ𝐿𝜓1

2)(Γ𝑅𝜓𝑁
2 )

|(𝐸 − 𝜆) − 𝜓1
2Σ𝐿 − 𝜓𝑁

2Σ𝑅|2
 

𝑇 =
4Γ𝐿Γ𝑅

(𝐸 − 𝜆 − 𝜎𝐿 − 𝜎𝑅)2 + (Γ𝐿+Γ𝑅)2
 

(3.5.7) 

Where Γ𝐿 and Γ𝑅  correspond to the real and imaginary parts of the self-energy Σ𝐿 = 𝜎𝐿 −

𝑖Γ𝐿;Σ𝑅 = 𝜎𝑅 − 𝑖Γ𝑅, and the key parameters in Eq.3.5.7 are giving by 

 
• Γ𝐿 is related to the left lead  

Γ𝐿 =
𝛼2

𝛾𝐿
sin 𝑘𝐿 |𝜓1|

2,       𝜎𝐿 = −
𝛼2

𝛾𝐿
cos 𝑘𝐿 |𝜓1|

2 

• Γ𝑅 is related to the right lead  

Γ𝑅 =
𝛽2

𝛾𝑅
sin 𝑘𝑅 |𝜓1|

2 , 𝜎𝑅 = −
𝛽2

𝛾𝑅
cos 𝑘𝑅 |𝜓𝑁|

2 

Therefore, the transmission coefficient is given by 

 𝑇(𝐸) =  
4Γ𝐿Γ𝑅

(𝐸 − 휀𝑛)2 + (Γ𝐿 + Γ𝑅)2
 (3.5.8) 

where Γ𝐿and Γ𝑅 represent the coupling of the molecular orbital to the electrode, 𝐸 represents 

the energy of an electron passing through the molecular system. The term 휀𝑛 is given by (휀𝑛 =
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𝜆 − 𝜎)  where 𝜆 is defined by the eigen-energy of the molecular orbital shifted slightly by the 

real part of the self-energy (𝜎 = 𝜎𝐿 − 𝜎𝑅) which is the coupling of the orbitals to the electrodes.  

A number of factors in this formula influence the transmission coefficient as the following: 

1. If Γ𝐿=Γ𝑅 then 𝑇(𝐸) = 1  on-resonance will be at the maximum 1. 

2. If Γ = Γ𝐿 + Γ𝑅 this width of the resonances is much less than the level spacing of the 

isolated molecule then the Breit-Wigner formula is valid.  

3. If ΓL ≪ Γ𝑅  then the transmission coefficient on-resonance is approximately equal to 

(4Γ𝐿)/ ΓR, that leads to 𝑇(𝐸) ≪ 1. 

3.5.2. Anti-resonances 

 An anti-resonance is another important feature in the transmission probability. It appears when 

the energy of the incident electron 𝐸 coincides with the eigenenergy 𝐸𝑛   of one of the two 

electrodes as a simple example shown in Figure 3.5.2. The destructive interference occurs 

between propagating waves at the nodal point. 

 

Figure 3.5.2: A simple tight-binding model of anti-resonance, when two semi-finite one-

dimensional chains are coupled to the scattering region.  

Two one-dimensional semi-infinite crystalline chains with site energies 휀0  and hopping 

elements−𝛾 are coupled to two non-interacting scatting regions with site energies 휀1 and 휀2by 

the hopping parameter – 𝛼. The curve in the Figure 3.5.3 shows the analytical transmission 

probability for this system.  
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Figure 3.5.3: Transmission coefficient for the system described in Figure 3.5.2, (휀0 = 0, 

휀1,2 = −0.5, 𝛾 = −2 and 𝛼 = −0.1). 

3.5.3. Fano resonance 

Fano-resonance is a type of resonant scattering phenomenon, due to the interference between 

scattering with a discrete state (i.e. a side group), which is weakly coupled within a continuum 

state, and this produces an asymmetric peak. This Fano-resonance feature occurs when a side 

group is connected to the central backbone by a weak coupling (α), which is considered to be 

weaker than the coupling to the open system Γ𝐿and Γ𝑅 as shown in Figure 3.5.4. It is worth 

remembering that, the width of a Fano-resonance becomes narrow by varying the (α) coupling.  

 

Figure 3.5.4: A simple tight-binding model of Fano-resonance, when two semi-finite one-

dimensional chains are coupled to the scattering region of site energy 𝜺𝟏by hopping bond 

𝚪𝑳and 𝚪𝑹. Then the scattering region is coupled to the extra energy level 𝜺𝟐 by the hopping 

bond –𝜶. 
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Thereafter, the transmission coefficient can be calculated by using the following formula 

 𝑇(𝐸) =  
4Γ𝐿Γ𝑅

(𝐸 − 휀𝑛)2 + (Γ𝐿 + Γ𝑅)2
 (3.5.9) 

 

Here 휀𝑛 = 휀1 +
𝛼2

𝐸−𝜀2
, from the dominator, if 𝐸 − 휀𝑛 = 0, then there are two solutions: the first 

is when 𝐸 = 휀1 , then the Breit-Wigner occurs. The second one is when  𝐸 = 휀2 , the 휀𝑛 in 

Eq.3.5.9 diverges and the electron transmission will be destroyed, this produces an anti-

resonance as shown in Figure 3.5.5, which by the superposition of quantum mechanics if there 

are two states combined then a Fano resonance curve will occur[11][12]. Fano resonances have 

been demonstrated to be tuneable via the molecular side groups[10], gate voltages[13] and to 

give interesting thermoelectric properties[14].  

 

Figure 3.5.5: Transmission coefficient for the system describes in Figure 3.5.4, (휀0 = 0, 

휀1 = −0.5, 휀2 = 0.8, 𝛾 = −2 Γ𝐿,𝑅 = −0.1, and 𝛼 = −0.3). 
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3.6. Magic Number theory 
 

In molecular electronic transport, theoretical analysis plays a significant role in understanding 

their generic behaviour, which is potentially common to all molecules. An example in section 

3.5 is on-resonance constructive interference which is captured by the Breit-Wigner formula, 

which occurs when the energy 𝐸 of an electron passing through a molecule is close to an energy 

level of the molecule. At voltages and temperatures encountered in real experiments, 𝐸 is close 

to the Fermi energy 𝐸𝐹 of the electrodes. Typically, 𝐸𝐹 is usually located within the HOMO-

LUMO (H-L) gap, where the Breit-Wigner formula is not valid. Instead, transport takes place 

via off-resonance, phase-coherent co-tunnelling. In this case, there is a useful conceptual 

approach which is recently developed in ref [16] known as mid-gap theory or alternatively 

magic number theory (because this theory is simple and seems like magic which can predict 

the conductance ratio). This leads to a magic ratio rule (MRR), which is an exact formula for 

conductance ratios of tight-binding representations of molecules that are weakly coupled to 

electrodes when the Fermi energy 𝐸𝐹 of electrodes is located at the centre of the H-L gap [16]. 

I shall demonstrate the MRR for graphene-like aromatic molecules such as Benzene, which has 

6-membered atoms. This means that 𝐸𝐹of the gold electrode lies between the H-L gap, in this 

case, 𝑥  can be neglected and Δ  is equal to 1 in Eq. 3.4.50, Then the transmission is 𝑇 =

4Γ𝐿Γ𝑅|𝑔𝑁1|
2 . Considering Γ𝐿Γ𝑅  to be random variable labelled as R, then the electrical 

conductance 𝐺𝑖𝑗 of molecule A with connectivity 𝑖, 𝑗 can be written as: 

 𝐺𝑖𝑗 = 𝑅[𝑔𝑖𝑗(𝐸𝐹)]
2
 (3.6.1) 

where 𝑔𝑖𝑗(𝐸𝐹) is the Green’s function of the isolated central region. All information on the 

electrode shape and the coupling between the anchor and the gold electrodes are ignored since 

our focus here is to find the Green’s function of the core. By taking the logarithm of Eq. 3.6.1, 

this yields  
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 𝑙𝑜𝑔𝐺𝑖𝑗 = 𝑙𝑜𝑔𝑅 + 𝑙𝑜𝑔 [𝑔𝑖𝑗(𝐸𝐹)]
2
 (3.6.2) 

The equation above shows the most probable value of logarithmic conductance from the 

probability disruption is the most probable value of the constant random value 𝑙𝑜𝑔𝑅 plus the 

non-random of  [𝑔𝑖𝑗(𝐸𝐹)]
2

. According to several random measurements the statistical 

properties of 𝑅  do not depend on connectivity, then the electrical conductance 𝐺𝑖′𝑗′  of a 

molecule B with connectivity 𝑖′, 𝑗′ is 

 𝑙𝑜𝑔𝐺𝑖′𝑗′ = 𝑙𝑜𝑔𝑅 + 𝑙𝑜𝑔 [𝑔𝑖′𝑗′(𝐸𝐹)]
2
 (3.6.3) 

Subtracting equations 3.6.2 and 3.6.3, the most-probable conductance yields  

 𝑙𝑜𝑔𝐺𝑖𝑗 −  𝑙𝑜𝑔𝐺𝑖′𝑗′ = 𝑙𝑜𝑔 [𝑔𝑖𝑗(𝐸𝐹)]
2
− 𝑙𝑜𝑔 [𝑔𝑖′𝑗′(𝐸𝐹)]

2
 (3.6.4) 

Using the fact that 𝑙𝑜𝑔𝐺𝑖𝑗 −  𝑙𝑜𝑔𝐺𝑖′𝑗′ = 𝑙𝑜𝑔
𝐺𝑖𝑗

𝐺𝑖′𝑗′
. Consequently, the most probable 

conductance of molecule core corresponding to different connectivity to the electrode given by  

 

𝐺𝑖𝑗

𝐺𝑖′𝑗′
 =

[𝑔𝑖𝑗(𝐸𝐹)]
2

[𝑔𝑖′𝑗′(𝐸𝐹)]
2 (3.6.5) 

This universal concept states that the most-probable conductance ratio of two molecules is 

equal to the square of the ratio of their magic integers corresponding to different connectivities. 

As this ratio does not dependent on details of the electrodes or anchor groups (i.e. how the 

molecule is coupled to the electrodes) then the constant 𝑅 is cancelled, this helps to get rid of 

inherent errors from the DFT calculation. Now find the Hamiltonian in a unit of 𝛾  relative to 

휀 to demonstrate 𝑔𝑖𝑗 which the Green’s function of the isolated molecule is [16].  

𝑔𝑖𝑗 = (𝐸𝐼 − ℎ)
−1 

To obtain the M-table for a given lattice, first construct the connectivity table 𝐶 = −ℎ, which 

tells us how the atoms 𝑖 and 𝑗 are connected by placing a (1) when two sites are connected and 
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zero otherwise. Then the corresponding M-table can be defined to be the transpose of the 

cofactor matrix of C-table multiplying by the determinant 𝑑 (Note that 𝑀𝐶 = 𝐼, where 𝐼is the 

unit matrix). In the case of H-L gap transport  𝐸𝐹 = 0, then the magic number table for benzene 

is going to be 𝑀(𝐸𝐹) = (𝐸𝐼 − ℎ)
−1 = 𝐶−1. For these bipartite lattices, zero-energy M-table 

M(0) is block off-diagonal of the form 

𝑀 = (0 �̅�𝑡

�̅� 0
) 

where (�̅� = det(𝐶) × [𝐶̅𝑡]−1) is a table of integers. The presence of the zero in the above 

expression means that magic number theory predicts that when odd-numbered sites are 

connected to odd-numbered sites or even-numbered sites are connected to even-numbered sites 

(ie for meta connectivities), the conductance is zero. 

 

Figure 3.6.1. Example of bipartite lattices. (a) represents benzene; (b-c) are the C-table and 

the M-tables of magic integers for benzene.  

In the diagram above, I consider a ring of N sites such as benzene molecule, labelled by 

integers, which increase sequentially in a clockwise direction, then by applying Eq. 3.6.5 the 

mid-gap conductance for connectivities 𝐺1,2and 𝐺1,4 in Figure 3.6.1 are predicted to satisfy   
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𝐺1,2
𝐺1,4

=
12

(−1)2
= 1 

In other words, magic ratio theory predicts that ortho and para connectivities yield the same 

conductances. Magic ratio theory is a theory of transport through the pi system of polyaromatic 

hydrocarbons and therefore deviation from the results would indicate that transport through the 

sigma system is non-negligible, or some other unexpected feature is present in the experiment. 

 

Figure 3.6.2. Example of bipartite lattices. (a) represents Naphthalene; (b-c) are the C-table 

and the M-tables of magic integers for Naphthalene.  

Another example of applying the magic ratio theory to a bipartite lattice (a naphthalene core) 

consisting of ten atoms labelled by integers, which increase sequentially in a clockwise 

direction. To apply this theory, two connectivities are required, thus 𝐺9,6 and 𝐺7,2are chosen as 

shown in Figure 3.6.2.   

𝐺9,6
𝐺7,2

=
(−2)2

12
= 2 
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From the magic number tables above, the theory of a conductance ratio can be gained; para 

conductance is high (odd-numbered sites are connected to even-numbered sites), whereas meta 

conductance (odd-numbered sites are connected to odd-numbered sites or even-numbered sites 

are connected to even-numbered sites) is low (i.e. zero). 

3.7. Green function and frontier molecular orbitals 
 

Figure 3.7.1 shows the molecular orbitals (MOs) of the highest occupied molecular orbital 

(HOMO) and lowest unoccupied molecular orbital (LUMO) for the naphthalene molecule [16]. 

MOs are obtained by solving the Schrodinger equation, this basic theory method relates MOs 

of isolated molecules to the flow of electricity. Those orbitals create paths in different 

molecular orbitals, the green function from the source to the drain will be proportional to 

(𝛹𝐻(𝑟𝑖)𝛹
𝐻(𝑟𝑗))

2
 for HOMO and will be proportional to (𝛹𝐻(𝑟𝑖)𝛹

𝐻(𝑟𝑗))
2
for LUMO level 

[16].   

 

Figure 3.7.1: Frontier molecular orbitals. (a) A lattice representation and frontier molecular 

orbitals of Naphthalene; (b) HOMO wave function for Naphthalene; (c) LUMO wave function 

for Naphthalene. 
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This “intra-orbital QI” helps to understand the relationship between the molecular orbitals and 

quantum interference, which tells us directly the transmission properties, through the ratio of 

two conductances corresponding to different connectives. Figure 3.7.1 shows that there are 

only two possibilities: if both HOMO and LUMO have different colours, or if both HOMO and 

LUMO have the same colours, then it will be destructive QI (DQI). While, if one of them has 

a different colour, and the other in the same colours, it will be constructive QI (CQI)[16].  

For example, in Figure 3.7.1, the HOMO product 𝛹𝐻(𝑟7)𝛹
𝐻(𝑟2) (i.e. −*−) is positive, where 

the LUMO product 𝛹𝐿(𝑟7)𝛹
𝐿(𝑟2) (i.e. −*+) is negative, then this connectivity is constructive 

QI and the electrical conductance will be high and depends on the amplitude of the wave 

function on the source and drain.  This result was predicted by MRR theory in section 3.6. 

Despite the fact that these theories are simple, quantitative agreement with experiment has been 

obtained [18].   

 

3.8. Thermoelectricity 
 

Thermoelectricity is a basis of a couple of interesting devices that can be used in a very wide 

range of applications such as a thermoelectric cooler and energy harvesting. In particular, the 

creation of high-performance thermoelectric materials for the conversion of waste heat into 

electricity via the Seebeck effect. The high thermoelectric efficiency of these nanoelectronic 

devices for power generation is characterised by the dimensionless figure of merit 𝑍𝑇. 

 In this section, I will present a brief overview of the Seebeck coefficient, which can be defined 

as the voltage difference Δ𝑉 generated due to the temperature difference Δ𝑇 of two electrodes, 

where they are connected to hot and cold reservoirs respectively.  This leads to an electric 

current 𝐼 and heat current 𝑄 ̇ passing through a device. Therefore, the linear response analytic 
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formula for current and heat is derived through thermoelectric coefficients such as 

thermopower (Seebeck coefficient (𝑆)), electrical conductance (𝐺), thermal conductivity due 

to both the electrons (𝑘𝑒) and phonons (𝑘𝑝ℎ) and the figure of merit (𝑍𝑇). These thermal 

properties are correlated to my calculation in the following chapters. 

3.8.1. The sign of Seebeck coefficient (S) 

A thermoelectric device creates a voltage when there is a different temperature between two 

reservoirs as shown in Figure 3.8.1. The two reservoirs are labelled L and R, with their voltages 

and temperatures 𝑉𝐿 , 𝑇𝐿  and 𝑉𝑅 , 𝑇𝑅.  Define as Δ𝑉 = 𝑉𝐿 − 𝑉𝑅 and Δ𝑇 = 𝑇𝐿 − 𝑇𝑅, the chemical 

potentials are 𝜇𝐿 = 𝐸𝐹 +  𝑒𝑉𝐿 and 𝜇𝑅 = 𝐸𝐹 −  𝑒𝑉𝑅, where 𝑒 = −|𝑒|electronic charge and their 

difference is 𝛥𝜇 = −|𝑒|𝛥𝑉.  Therefore, steady-state particle current 𝐽1 is defined as the number 

of electrons per unit of time leaving reservoir L and entering reservoir R through the scattering 

region. Where the steady-state particle current 𝐽2 is defined as the number of electrons per unit 

time leaving reservoir R and entering reservoir L through the scattering region. 
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Figure 3.8.1: A Schematic of different Seebeck signs. (a) is the equilibrium condition case; 

(b) and (c) are the cases when the system is HOMO-dominated (i.e. positive Seebeck 

coefficient) and LUMO-dominated (i.e. negative Seebeck coefficient) transport respectively.  

 

Practically, the net particle current in the first case will be 𝐽 = 𝐽1 − 𝐽2 with an electrical current 

equal to 𝐼 = 𝑒𝐽. Then, the Seebeck coefficient is given by 𝑆 = −(
𝛥𝑉

𝛥𝑇
)
𝐼=0

. In order to obtain 

the Seebeck sign, it is easier to start from the equilibrium condition at 𝛥𝑉 = 0 and 𝛥𝑇 = 0 as 

shown in Figure 3.8.1a. Consider if the temperature 𝑇𝐿 of the left reservoir is increased where 

the population of higher-energy electrons in reservoir L is higher than that of reservoir R. This 

means that the higher-energy electrons can be easier to pass from reservoir L to reservoir R 

than lower-energy electrons, thus 𝐽1 will increase where LUMO-dominated transport happens. 

In addition, to achieve steady state then we should have the steady-state condition 𝐽 = 0, where 

𝜇𝑅 must be increased, for that 𝐽2increases, which demonstrates that if 𝑇𝐿 > 𝑇𝑅 then 𝜇𝑅 > 𝜇𝐿. 

Hence if 𝛥𝑇 >  0, 𝛥𝜇 <  0, 𝛥𝑉 >  0 and 𝑆 <  0. This occurs due to the position of the Fermi 

energy when it is in the HOMO-LUMO gap of a single molecule and located closer to the 

LUMO because the electron transmission coefficient is an increasing function of electron 

energy. Moreover, it can also occur when the Fermi energy is in the bandgap of a 

semiconductor and near to the conduction band. Conversely, higher-energy electrons find it 

more difficult to move from reservoir L to reservoir R than lower-energy electrons in the case 

where the Fermi energy is closer to the HOMO or the valence band. Thus, if 𝑇𝐿 is increased 

relative to 𝑇𝑅, this leads to that 𝐽1will be decreased and  𝑆 > 0. 
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3.8.2. Expressions for thermoelectric transport coefficients 

This section builds on the arguments in the previous section (3.2), using the expression of the 

Landauer formula in Eq. 3.2.9, the electron current and heat current expression due to the 

electrons are expressed as 

 𝐼 =
2𝑒

ℎ
∫ 𝑑𝐸 𝑇(𝐸)[𝑓𝐿(𝐸) − 𝑓𝑅(𝐸)]
∞

−∞

 (3.8.1) 

 Similarly, the heat energy per unit of time (i.e. the energy in excess of the fermi-energy) 

 �̇� =
2

ℎ
∫ 𝑑𝐸 (𝐸 − 𝐸𝐹)
+∞

−∞

[𝑓𝐿(𝐸) − 𝑓𝑅(𝐸)] 𝑇(𝐸) (3.8.2) 

As mentioned in Eq. 3.2.10, the Fermi distribution function can be considered as  

 𝑓𝐿(𝐸) = 𝑓(𝑥𝐿)  (3.8.3) 

Where  

 
𝑓(𝑥𝐿) =

1

𝑒𝑥𝐿+1
;  𝑥𝐿 =

𝐸−𝐸𝐹
𝐿

𝑘𝐵𝑇𝐿
   

(3.8.4) 

Similarly to the Fermi energy 𝐸𝐹
𝑅and the temperature of the right reservoir. This step helps to 

use the Taylor expansion for an analytical function at a point as follows  

 𝑓(𝑥) = 𝑓(𝑎) +
𝑑𝑓(𝑎)

𝑑𝑎
(𝑥 − 𝑎) + ⋯ (3.8.5) 

In the case where (𝑥 − 𝑎) is small, a reasonable approximation involves retaining only the first 

two terms. Thus, if the left and right Fermi-Dirac distribution functions do not differ too much 

this means (𝑥𝑅 − 𝑥𝐿) is small, then employing Taylor expansion yields  

 𝑓(𝑥𝑅) ≈ 𝑓(𝑥𝐿) +
𝑑𝑓(𝑥𝐿)

𝑑𝑥𝐿
 (𝑥𝑅 − 𝑥𝐿) (3.8.6) 

 The second term in the above expression is  
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𝑑𝑓(𝑥𝐿)

𝑑𝑥𝐿
=
𝑑𝑓𝐿(𝐸)

𝑑𝐸

𝑑𝐸

𝑑𝑥𝐿
= 𝑘𝐵𝑇𝐿

𝑑𝑓𝐿(𝐸)

𝑑𝐸
 

   

(3.8.7) 

Moreover,  

 

               𝑥𝑅 − 𝑥𝐿 ≈
𝜕𝑥𝐿
𝜕𝑇𝐿

(𝑇𝑅 − 𝑇𝐿) +
𝜕𝑥𝐿

𝜕𝐸𝐹
𝐿
(𝐸𝐹

𝑅 − 𝐸𝐹
𝐿)

= −
𝐸 − 𝐸𝐹

𝐿

𝑘𝐵𝑇𝐿
2
(𝑇𝑅 − 𝑇𝐿) −

1

𝑘𝐵𝑇𝐿
(𝐸𝐹

𝑅 − 𝐸𝐹
𝐿) 

        

(3.8.8) 

Consequently 

 𝑓𝑅(𝐸) − 𝑓𝐿(𝐸) = [−
𝑑𝑓𝐿(𝐸)

𝑑𝐸
] [
𝐸 − 𝐸𝐹

𝐿

𝑇𝑅
(𝑇𝑅 − 𝑇𝐿) + (𝐸𝐹

𝑅 − 𝐸𝐹
𝐿)] (3.8.9) 

The last term (𝐸𝐹
𝑅 − 𝐸𝐹

𝐿) = 𝑞(𝑉𝑅 − 𝑉𝐿)  where 𝑞  is  𝑒 = −|𝑒| , and 𝑉𝑅 − 𝑉𝐿 is the voltage 

difference between the left and right reservoirs. 

Combining Eq. 3.8.1 and Eq. 3.8.9, where the left and right Fermi distributions are only slightly 

different then the total current yields 

 𝐼 =
2𝑒

ℎ
∫ 𝑑𝐸 [−

𝑑𝑓𝐿(𝐸)

𝑑𝐸
] 𝑇(𝐸) [

𝐸 − 𝐸𝐹
𝐿

𝑇𝐿
(𝑇𝑅 − 𝑇𝐿) + (𝐸𝐹

𝑅 − 𝐸𝐹
𝐿)]

+∞

−∞

 
  

(3.8.10) 

  

Similarly, from Eq. 3.8.2 and Eq. 3.8.9 the total heat energy per unit of time yields 

 

�̇� =
2

ℎ
∫ 𝑑𝐸 [−

𝑑𝑓𝐿(𝐸)

𝑑𝐸
] 𝑇(𝐸)

+∞

−∞

× [
(𝐸 − 𝐸𝐹

𝐿)2

𝑇𝐿
(𝑇𝑅 − 𝑇𝐿) + (𝐸 − 𝐸𝐹

𝐿)(𝐸𝐹
𝑅 − 𝐸𝐹

𝐿)] 

      

(3.8.11) 

 

Therefore, for the small different voltages and temperatures and to linear respond regime (i.e. 

first-order) Eq. 3.8.10 and 3.8.11 can be written as a matrix expression   
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 (
𝐼
�̇�
) =

2

ℎ
(
𝑒2𝐿0

𝑒

𝑇
𝐿1

𝑒𝐿1  
1

𝑇
𝐿2

)(
𝑉𝑅 − 𝑉𝐿
𝑇𝑅 − 𝑇𝐿

) 
      

(3.8.12) 

where  

 𝐿𝑛 = ∫ 𝑑𝐸(𝐸 − 𝐸𝐹)
𝑛

+∞

−∞

[−
𝑑𝑓(𝐸)

𝑑𝐸
] 𝑇(𝐸) 

      

(3.8.13) 

 

In the above expression, the term 𝐸𝐹 is the average Fermi energy of the two reservoirs, and the 

function 𝑓(𝐸) =  [𝑒
𝐸−𝜇𝐿(𝑅)

𝑘𝐵𝑇 + 1]

−1

, 𝑇 is the average temperature of two reservoirs. Since 

the electrical conductance is defined to be the ratio 𝐺 = 𝐼/Δ𝑉, then at Δ𝑇 = 0 [15] 

 𝐺 = 𝐺0𝐿0 
  

(3.8.14) 

where 𝐺0 is the quantum of conductance, as discussed in section 3.2 in Eq. 3.2.12. 

In the case of Δ𝐼 = 0, Seebeck coefficient is defined to be the ratio 𝑆 = −(
Δ𝑉

Δ𝑇
)
𝐼=0

 

 𝑆 =
𝐿1
𝑒𝑇𝐿0

 
      

(3.8.15) 

Again 𝑒 = −|𝑒|.  

Alternatively, matrix expression in Eq. 3.8.12 can be rearranged into 

 (
𝐼
�̇�
) = (

𝐺 𝐺𝑆
𝐺𝑆𝑇 𝐾

) (
Δ𝑉
Δ𝑇
) 

       

(3.8.16) 

 

 (
Δ𝑉
�̇�
) = (

1/𝐺 −𝑆
Π 𝑘𝑒

) (
𝐼
Δ𝑇
) 

     

(3.8.17) 
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Where Π is called the Peltier coefficient, which describes the heat flux from an electrical 

current this is important for cooling at the nanoscale. In addition, the thermal conductance due 

to electrons is given by  

 𝑘𝑒 = 𝐾𝑒 − 𝐺𝑆
2𝑇 

     

(3.8.18) 

  

where 𝐾𝑒 = 2𝐿2/ℎ. Setting Δ𝑇 = 0 in Eq. 3.8.17 this gives 

 Π = ST 
  

(3.8.19) 

Thus 

 
Π =

L1
𝑒𝐿0

    

(3.8.20) 

and 

 𝑘𝑒 =
2

ℎ𝑇
(𝐿2 −

(𝐿1)
2

𝐿0
) 

   

(3.8.21) 

 

As a result of these quantities, the electric contribution to a thermoelectric figure of merit is 

given by[16] 

 𝑍𝑇𝑒 =
𝑆2𝐺𝑇

𝑘𝑒
=

(𝐿1)
2

𝐿0𝐿2 − (𝐿1)2
 

    

(3.8.22) 

𝑍𝑇𝑒  describes the property of electrons only. It is convenient to consider the case of low-

temperature limit, then the transmission spectrum various approximately linearly with energy 

(𝐸) on the scale of   𝑘𝐵𝑇 leads to 
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𝐿0 ≈ 𝑇(𝐸𝐹)  

𝐿1 ≈ (𝑒𝑇)
2𝛼 (

𝑑𝑇(𝐸)

𝑑𝐸
)
𝐸=𝐸𝐹

 

𝐿2 ≈ (𝑒𝑇)
2𝛼𝑇(𝐸𝐹)  

    

(3.8.23) 

where 𝛼 is the Lorentz number that is equal to 𝛼 = 2.44 × 10−8 𝑊. 𝛺. 𝐾−2. Therefore, from 

the expressions above, the electrical conductance, Seebeck coefficient, and thermal 

conductance due to electrons at this limit will take the following forms 

 𝐺(𝐸𝐹) ≈ (
2𝑒2

ℎ
)𝑇(𝐸𝐹) (3.8.24) 

 

 𝑆(𝐸𝐹) ≈ 𝑒𝑇𝛼 (
𝑑𝑙𝑛 [𝑇(𝐸)]

𝑑𝐸
)
𝐸=𝐸𝐹

 (3.8.25) 

 

 𝑘𝑒 ≈ 𝛼𝑇𝐺 
    

(3.8.26) 

Eq. 3.8.26 is well-known as the Wiedemann–Franz law, this indicates that thermal conductance 

is proportional to the electrical conductance when 𝑇(𝐸𝐹) varies slowly with Fermi energy on 

the scale of 𝑘𝐵𝑇. Moreover, if the function 𝑇(𝐸) in Eq. 3.8.25 is an increasing function of 𝐸, 

then the term (
𝑑𝑙𝑛 [𝑇(𝐸)]

𝑑𝐸
)
𝐸=𝐸𝐹

> 0  leading to  𝑆 < 0 . This also illustrates that the Seebeck 

coefficient 𝑆 can be enhanced by increasing the slope of transmission spectra 𝑇(𝐸).  Based on 

the Wiedemann–Franz law, thermal conductance equation yields 𝑍𝑇𝑒 =
𝑆2

𝛼
. in order to achieve 

𝑍𝑇𝑒 > 1, the Seebeck coefficient should be taken the value 𝑆2 > 𝛼 , which is satisfy 𝑆 >

150 𝜇𝑉𝐾−1 [16].  



 

70 

 

It is worth mentioning that, all the previous calculations are in absence of the phonon 

contribution to thermal transport, as in Eq. 3.8.22 𝑍𝑇𝑒  is large when 𝑘𝑒value is small, this 

means that the thermal conductance due to the phonons 𝑘𝑝ℎ is the dominant contribution. This 

is another major challenge feature in designing in the thermoelectric material, which is 

controlled by the full figure of merit 𝑍𝑇,  

 𝑍𝑇 =
𝑍𝑇𝑒

1 + (𝑘𝑝ℎ/𝑘𝑒)
 

  

(3.8.27) 

Therefore, the total 𝑍𝑇 relies on not only the thermal conductance due to the electrons, but also 

on the thermal conductance due to the phonon. It is a crucial point to calculate 𝑘𝑝ℎthrough a 

molecular junction, which is obtained by solving the phonon transmission coefficient 𝑇𝑝ℎ(𝜔), 

where 𝜔 is the frequency that carries an energy ℏ𝜔.[17]  

 𝑘𝑝ℎ(𝑇) =
1

2𝜋
∫ ℏ𝜔𝑇𝑝𝑘(𝜔)
∞

0

𝜕𝑓𝐵𝐸(𝜔, 𝑇)

𝜕𝑇
𝑑𝜔 

      

(3.8.28) 

  

Since, 𝑓𝐵𝐸(𝜔, 𝑇) = (𝑒
ℏ𝜔

𝑘𝐵𝑇 − 1)
−1

 is the Bose-Einstein distribution function, ℏ is reduced 

Plancks constant and 𝑘𝐵 = 8.6 × 10
−5𝑒𝑉/𝐾 is Boltzmann’s constant. Substituting Eq. 3.8.27 

into Eq. 3.8.22, the thermoelectric figure of merit yields  

 𝑍𝑇 =
𝑆2𝐺𝑇

𝑘𝑒 + 𝑘𝑝ℎ
 (3.8.29) 

Techniques for computing 𝑇𝑝𝑘(𝜔)  in nanoscale structures were developed several years 

ago[19] and were recently generalised to yield phonon thermal conductances in molecular-

scale junctions [20][21][22]. 
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4.  Conformation and Quantum-Interference-Enhanced 

Thermoelectric Properties of Diphenyl 

Diketopyrrolopyrrole Derivatives. 
 

 

In this chapter, I study the connectivity dependence of the thermoelectric properties of a series 

of thiophenediketopyrrolopyrrole (DPP) derivative molecules using density functional theory 

and tight-binding modelling, combined with quantum transport theory. I find a significant 

dependence of electrical conductance on the connectivity of the two thiophene rings attached 

to the DPP core. Furthermore, I find that DQI connectivity leads to enhanced Seebeck 

coefficients, which can reach 500~700 µ𝑉/𝐾. After including the contribution to the thermal 

conductance from phonons, the full figure of merit 𝑍𝑇 for the CQI molecules could reach 1.5 

at room temperature. 

The results presented in this chapter were published in R. Almughathawi, S. Hou, Q. Wu, Z. 

Liu, W. Hong, and C. Lambert, “Conformation and Quantum-Interference-Enhanced 

Thermoelectric Properties of Diphenyl Diketopyrrolopyrrole Derivatives,” ACS Sensors, vol. 

6, no. 2, pp. 470–476, 2021 
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4.1. Introduction  
 

The foundational experiments of Nongjian Tao[1] and subsequent work exploring charge 

transport through single molecules connected to two metallic electrodes[2][3][4] have led to 

the design of molecular-scale components such as switches[4][5][6], rectifiers[7] and highly 

conjugated molecular wires[8]. A more recent goal of this research is the design of 

thermoelectric materials[9] or devices[10] based on single molecules or self-assembled 

monolayers[11], which can convert heat into electricity and contribute to the global challenge 

of green energy harvesting.  Such organic materials and devices are potentially lightweight, 

flexible, environmentally friendly and cost-effective[12][13]. Diphenyl diketopyrrolopyrrole 

discovered by Farnum et al. in 1974[14] has unique properties, such as good conjugation, 

strong electron-withdrawing ability, thermal stability and photostability, and high-fluorescence 

quantum efficiency[15][16]. It is widely used as a building block for organic molecules, both 

for fundamental studies of electronic properties and for industrial applications as dyes and 

pigments[15][17]. Furthermore, the diketopyrrolopyrrole (DPP)-based molecule could be 

placed between aromatic rings such as the five-membered heterocycle thiophene,[18] which 

creates the possibility of tuning their transport properties. In this work,  stimulated by 

measurements of thermoelectricity in bulk DPP-based films, which show that a thermoelectric 

figure of merit of 𝑍𝑇 = 0.25  could be achieved,[19]  we examine how room-temperature 

quantum interference in DPP cores influences their charge and heat transport properties and 

assess whether or not DPP derivatives are potential thermoelectric materials at the nanoscale. 

Figure 4.1a shows the series of molecules of interest. DPP1, DPP2 and DPP3 contain thiophene 

rings with different connectivities, corresponding to inequivalent positions of the sulphur atoms 

of the thiophenes. Furthermore, each molecule is found to have two stable geometries labelled 

a or b, corresponding to different orientations of the thiophene rings relative to the DPP core. 
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In what follows, we shall show that the Seebeck coefficients of DPP2 and DPP3 could reach 

500 − 700 µV/K. After including the contribution of phonons to the thermal conductance, the 

full 𝑍𝑇s for molecules DPP1-a and -b reach 1.5 at room temperature and could increase to 2 

when the temperature increases to 400𝐾. By exploring the effect of charge-transfer doping 

using tetracyanoquinodimethane (TCNQ), which is a well-known electron acceptor[20][21], 

we found that TCNQ can be used to change the signs of the Seebeck coefficients. 

 

Figure 4.1. Charge transport properties of diketopyrrolopyrrole (DPP) derivative isomers 

attached to gold electrodes via -SMe anchor groups. (a) Models of the gold/molecule/gold 

sandwich junctions. The colours assigned to the atoms are as follows: grey for carbon, yellow 

for sulphur, red for oxygen, blue for nitrogen, white for hydrogen, and orange for gold electrode 

atoms.  (b) DFT-based transmission spectra against Fermi energy (𝐸𝐹). DPP1-a, -b (blue solid 

and dashed curves) exhibit constructive quantum interference (CQI) while DPP2-a, -b (red 

a b 

DPP3-a 

DPP3-b 

DPP2-b 

DPP2-a 

DPP1-a 

DPP1-b 
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solid and dashed curves) and DPP3-a, -b (yellow solid and dashed curves) display destructive 

quantum interference (DQI). 

 

4.2. Results and Discussion 
 

We systematically investigated the electrical and thermoelectrical properties of gold/ 

thiophene-diketopyrrolopyrrole (DPP) /gold hybrid junctions (Figure 4.1a) using quantum 

transport theory combined with the mean-field Hamiltonian of each geometry obtained from 

tight-binding binding models of each molecule. The optimized geometry and ground-state 

Hamiltonian and overlap matrix elements of each structure were self-consistently obtained 

using the SIESTA[22] implementation of density functional theory (DFT). SIESTA employs 

norm-conserving pseudopotentials to account for the core electrons and linear combinations of 

atomic orbitals to construct the valence states. The generalized gradient approximation (GGA) 

of the exchange and correlation functional is used with the Perdew−Burke−Ernzerhof 

parametrization (PBE)[23] a double-ζ polarized (DZP) basis set, a real-space grid defined with 

an equivalent energy cutoff of 200 Ry. The geometry optimization for each structure is 

performed to the forces smaller than 10 meV/Å. After that, the mean-field Hamiltonian 

obtained from the converged DFT calculation or a tight-binding Hamiltonian (using single 

orbital energy site per atom with Hückel parameterization) was combined with our homemade 

implementation Gollum[24] to calculate the phase-coherent, elastic scattering properties of 

each system consisting of left gold (source) and right gold (drain) leads and the scattering 

region (molecules DPP1, DPP2, and DPP3). The transmission coefficient 𝑇(𝐸) for electrons 

of energy 𝐸 (passing from the source to the drain) is calculated via the following relation: 
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 𝑇(𝐸) = 𝑇𝑟𝑎𝑐𝑒 (Γ𝑅(𝐸)𝐺
𝑅(𝐸)Γ𝐿(𝐸)𝐺

𝑅†(𝐸)) (4.20) 

In this expression, Γ𝐿,𝑅(𝐸) = 𝑖 (𝛴𝐿,𝑅(𝐸) − 𝛴𝐿,𝑅
†(𝐸)) describes the level broadening due to the 

coupling between left (L) and right (R) electrodes and the central scattering region, 𝛴𝐿,𝑅(𝐸) 

are the retarded self-energies associated with this coupling and 𝐺𝑅(𝐸) = (𝐸𝑆 − 𝐻 − 𝛴𝐿 −

𝛴𝑅)
−1 is the retarded Green’s function, where 𝐻 is the Hamiltonian and 𝑆 is overlap matrix. As 

discussed in chapter 3, using the transmission coefficient 𝑇(𝐸), the electrical conductance G, 

the Seebeck coefficient 𝑆, and electronic thermal conductance 𝜅𝑒 and the electronic figure of 

merit 𝑍𝑇𝑒 can be calculated through the following formula: 

 𝐺 = 𝐺0 𝐿0 (4.2) 

 𝑆 = −
𝐿1

|𝑒|𝑇𝐿0
 (4.3) 

 𝜅𝑒 = −2
𝐿0𝐿2 − 𝐿1

2

ℎ𝑇𝐿0
 (4.4) 

  𝑍𝑇𝑒 =
𝐿1
2

𝐿0𝐿2−𝐿1
2 (4.5) 

   In the linear response limit the quantity 𝐿𝑛(T, 𝐸𝐹)  is given by  

  𝐿𝑛(T, 𝐸𝐹) = ∫ 𝑑𝐸(𝐸 −
+∞

−∞
𝐸𝐹)

𝑛 T(E) (−
𝜕𝑓(𝐸)

𝜕𝐸
) (4.6) 

where 𝐺0 = 2𝑒
2/ℎ is conductance quantum, 𝑒 is the charge of an electron; ℎ is the Planck’s 

constant;  𝐸𝐹 is the Fermi energy; 𝑓(𝐸)  =  (1 +  𝑒𝑥𝑝((𝐸 − 𝐸𝐹)/𝑘𝐵𝑇))
−1 is the Fermi−Dirac 

distribution function, 𝑇  is the temperature, and 𝑘𝐵 =  8.6 × 10
−5 eV/K   is Boltzmann’s 

constant. The electronic figure of merit ignores 𝑘𝑝ℎ due to phonons, whereas the figure of merit 

𝑍𝑇  experimentally is defined by  𝑍𝑇 = 𝑆2𝐺𝑇/(𝑘𝑒 + 𝑘𝑝ℎ) , which includes the thermal 

conductance due to both phonons and electrons in the denominator. In order to calculate the 

vibrational modes of a system, I use the harmonic approximation method to construct the 

3𝑛 × 3𝑛 dynamical matrix 𝐷. From the ground state of the relaxed 𝑥, 𝑦, 𝑧 coordinates of the 
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system, each atom will be moved in six-direction from the equilibrium position to calculate the 

energy difference and the forces as the following. 

 To calculate the thermal conductance 𝑘𝑝ℎ  due to phonons, the force constant matrix, 𝐾 , is 

obtained by finite differences: 

  𝐾𝑖𝛼,𝑗𝛽 =
𝜕2𝐸

𝜕𝑟𝑖𝛼𝜕𝑟𝑗𝛽
= −

𝐹𝑗𝛽(𝑄𝑖𝛼)−𝐹𝑗𝛽(−𝑄𝑖𝛼)

2𝑄𝑖𝛼
 (4.7) 

where 𝐸  is the total energy and 𝑟𝑖𝛼(𝑟𝑗𝛽)  is the displacement of atom 𝑖(𝑗)  in the coordinate 

direction 𝛼(𝛽). The geometry is relaxed until the force of each atom is equal to 0.01 𝑒𝑉 Å−1. 

By shifting each atom (𝑖) with 𝑄𝑖𝛼 =  0.01 A
° in the direction 𝛼 = 𝑥, 𝑦, 𝑧 the forces on atom 

along 𝛽 = 𝑥, 𝑦, 𝑧 direction, where 𝐹𝑗𝛽(𝑄𝑖𝛼) is calculated. Thus, the dynamical matrix 𝐷 can be 

obtained by 𝐾𝑖𝛼,𝑗𝛽/√𝑚𝑖𝑚𝑗  , where 𝑚𝑖 𝑚𝑗   are the masses of atom 𝑖  and atom 𝑗 . Then the 

dynamical matrix is used to compute the transmission probability of phonons using the Gollum 

transport code with Eq.1. The corresponding phonon thermal conductance is given by 

  𝑘𝑝ℎ(𝑇) = ∫
ℏ𝜔

2𝜋
𝑇𝑝ℎ(

∞

0
𝜔)

𝜕𝑓𝐵𝐸(𝜔,𝑇)

𝜕𝑇
𝑑𝜔 (4.8) 

The variable 𝜕𝑓𝐵𝐸(𝜔, 𝑇) = 1/[𝑒
(
ℏ𝜔

𝐾𝐵𝑇
)
− 1] is the Bose–Einstein distribution. 

The DPP derivative isomers are defined through their connectivity and orientation of the 

thiophene rings shown in Figure 4.1a. Figure 4.1b displays that both DPP1-a and DPP1-b 

exhibit constructive quantum interference (CQI) signalled by the absence of a dip in their 

transmission functions 𝑇(𝐸)  within the HOMO−LUMO gap resulting in high electrical 

conductance, whereas both isomers of DPP2 and DPP3 exhibit destructive quantum 

interference (DQI) signalled by the presence of such a dip leading to lower electrical 

conductance. In all cases, charge transport is mainly LUMO-dominated.  More specifically, the 

transmission functions of molecules DPP1-a and DPP1-b shown by the blue solid and dashed 
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curves are rather similar. In contrast, the different isomers of molecules possess significantly 

different transmission functions. Near their transmission minima, the transmission coefficients 

of DPP2-a and DPP3-a (red and orange solid curves) are 2 to 3 orders of magnitude higher 

than those of DPP2-b and DPP3-b (red and orange dashed curves).  

 

Figure 4.2.1. DFT-based transmission functions for DPP2-a and DPP2-b connected to the 

gold via SMe-anchor groups. (a) DPP2-based molecular structures; (b) Transmission 

coefficients as a function of Fermi-energy for DPP2-a (red solid curve), DPP2-b' (black dotted 

curve), which is the rotated geometry obtained from DPP2-a and DPP2-b (red dashed curve). 

 

To understand the conductance difference between DPP2/3-a and DPP2/3-b, we further 

checked the geometries. More specifically, the result in Figure 4.2.1 shows that after relaxation, 

the geometries of DPP2-a and DPP2-b have different angles contact between the linker and the 

electrode. (Note: Initial structure of b is obtained by rotating linker and electrode (indicated by 

the green shaded regions) relative to the DPP-core through 180° around the axis based on a 

geometry) Therefore, to test if this could cause the difference in their transmission coefficients 

DPP2-a 

DPP2-b' 

DPP2-b 

a b 
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(shown as red solid and dashed curves respectively), the transmission coefficient of geometry 

DPP2-b' (black dotted curve) is shown.  DPP2-b' is the initial structure of and DPP2-b without 

further relaxation.  Since DPP2-b' and DPP2-b possess similar transmission coefficients, this 

shows that the 180° rotation is the main difference between DPP2-a and DPP2-b. Other 

geometry changes due to further relaxation, which lead to slight differences between DPP2-b 

and DPP2-b’ have a negligible effect. The corresponding frontier orbitals of the individual gas-

phase molecules are shown in table 4.2.1. Similar to the result in Figure 4.2.1, we tested the 

geometries of DPP3- a and DPP3-b in the same way which are displayed in Figure 4.2.2. 

 

Figure 4.2.2. DFT-based transmission functions for DPP3-a, b connected to the gold via 

SMe-anchor. (a) DPP3 based molecular structures; (b) Transmission coefficients as a function 

of Fermi-energy for DPP3-a (solid curve), DPP3-b' (black dotted curve) and DPP3-b (dashed 

curve). 

These features in transmission functions could be further interpreted from the perspective of 

the quantum interference between the molecular orbitals. From the molecular orbitals (MOs) 

of the gas-phase molecules DPP1, -2, and -3, Table 4.2.1 shows that the frontier molecular 

a b 

DPP3-b' 

DPP3-b 

DPP3-a 
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orbitals of DPP1-a, -b are delocalized across the molecule, while for DPP2-a, -b and DPP3-a, 

-b, the LUMO is localized on the DPP core. Consequently, the LUMO of these molecules will 

not contribute significantly to the transmission function. Furthermore, from the phases of the 

MOs on the terminal groups, it is clear that the LUMO+1 and HOMO will interfere 

destructively according to orbital product rule[27][28]. In contrast, the delocalized LUMO of 

DPP1 interferes constructively with the HOMO, which leads to the higher transmission around 

Fermi energy. As indicated by the arrows in Tables 4.2.2 and 4.2.3, the LUMOs of DPP2-a and 

DPP3-a have a larger weight on the terminal groups than those of DPP2-b and DPP3-b, which 

contributes to the higher transmission coefficient within the HOMO−LUMO gap of DPP2-a, 

3-a compared with DPP2-b, 3-b, shown in Figure 4.1. 

Table 4.2.1. Molecular orbitals of DPP-isomers with different connectivities, along with 

their MO energies 
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The red arrows in tables 4.2.1 show that the LUMO of DPP2-a and DPP3-a have a significant 

weight on the carbon atoms of the terminal phenyl ring, which bond to the SMe anchor groups, 

whereas the corresponding weights of the LUMOs of DPP2-b and DPP3-b on these atoms are 

negligible. Consequently the LUMOs of DPP2-a and DPP3-a contribute to transport, whereas 

the LUMOs of DPP2-b and DPP3-b do not. Furthermore, this delocalization means there is a 

π-conjugated pathway between the rings. 

It is interesting to note that quantum interference is sensitive to the dihedral angle between the 

central core and the neighbouring thiophenes. To demonstrate this effect, we performed 

calculations, in which the two electrode−anchor−phenyl−thiophene substructures are rotated 

through a dihedral angle, 𝜃, as indicated in the Figure 4.2.3. Taking DPP2 as an example, panels 

b and c of Figures 4.2.3 show the total energy against 𝜃 and the corresponding transmission 

spectra arising for different values of  𝜃. The two configurations (0° (DPP2-b) and 180° (DPP2-

a)) have lower energies. The former is a global minimum, and the latter is a local minimum. 

By increasing 𝜃 from 0° (DPP2-b) to 180° (DPP2-a), the destructive quantum interference dip 

first moves to the right and then moves back. Therefore, the quantum interference pattern is 

indeed sensitive to rotations, with the mid-gap transmission decreasing by almost 4 orders of 

magnitude at the most energetically unfavorable angles. Rotation-angle sensitivities of this 

kind have been reported for other molecules in the literature, examples of which can be found 

in refs [25]and [26].  
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Figure 4.2.3: DFT-based transmission functions for DPP2-a, b connected to the gold via 

SMe-anchor at different dihedral angles. (a) For DPP-2, this shows the dihedral angle θ, 

which is varied from 0° to 180°; (b) Total energy versus θ; (c) Transmission coefficients as a 

function of energy for DPP2-b molecule at various dihedral angles θ, which is rotated from 

both left and right at the same time.  

The difference between transmission functions of molecules exhibiting CQI or DQI is mainly 

attributed to the connectivity of the thiophene rings. In order to illustrate the dependence of the 

connectivity on transmission coefficients, it is helpful to understand the properties of central 

cores formed from thiophene rings alone. Panels a and c of Figures 4.2.4  show the transmission 

functions of cores formed from thiophene monomers and thiophene dimers with different 

connectivities. The transmission functions of molecules S2, S2′, S3, S3′ in Figure 4.2.4 b,d (red 

and yellow curves) exhibit DQI signalled by the presence of a dip in the 𝑇(𝐸)  within the 

HOMO−LUMO gap, whereas those of molecules S1 and S′ in Figure 4.2.4 b,d (blue curves) 

exhibit CQI, signalled by the absence of such a dip. The qualitative features of this connectivity 

𝜃 

𝜃 

a 

c b 
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dependence is captured by a simple tight-binding models (TBM), in which the π orbitals are 

assigned nearest-neighbour couplings only. The Hamiltonian of the simple tight-binding model 

describes a single orbital per atom with nearest-neighbour couplings 𝛾 = −1. All site energies 

are set to zero, except the site energies of sulphurs.  

 

Figure 4.2.4. Comparison of DFT and tight-binding model-based transmission functions 

for three different connectivities of monomer and dimer thiophene rings. (a) Junctions 

formed from thiophene monomers S1, S2, and S3 with different connectivities. (b) 

Corresponding DFT-based transmission coefficients. (c) Junctions formed from thiophene 

dimers S1′, S2′, and S3′ with the connectivities corresponding to those of molecules DPP1-a, 

DPP2-a, and DPP3-a in Figure 4.1a. (d) The corresponding DFT-based transmission 

coefficients. (e) Tight-binding model (TBM) consisting of a five-membered ring attached to 

two semi-infinite one-dimensional chains through weak couplings 𝛼 = 𝛽 = 0.1. The on-site 

energies of the molecule (red dots) and the leads (blue dots) are 휀 and  휀0, respectively. In the 

simplest model considered here, these are all set to zero except for those sites occupied by 

sulphur, which are assigned an on-site energy 𝜖𝑠. For S1, S2, and S3, the sulphur sites are 4, 1, 

and 2, respectively, and the leads are connected to sites 3 and 5. The hopping integrals between 

nearest neighbour atoms are set to −𝛾 = −𝛾𝐿 = −𝛾𝑅 = −1. (f) TBM transmission functions 

for S1 and S2, obtained with a sulphur on-site energy of 𝜖𝑠 = −2.  By symmetry, the 

transmission function of S3 is identical to that of S2. (g) TBM transmission functions for two 

d c 
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S3 

S2 

S3′ 

S2′ 

S1′ 
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thiophene rings with sites (10, 6) and (1, 7) connected to one-dimensional leads, respectively. 

The TB lattices associated with each curve are indicated by blue red and yellow arrows and 

correspond to the connections to the cores of S1′ to S3′ shown in panel c. For each connectivity, 

the on-site energies of both sulphurs have the same value (𝜖𝑠 = −2). (h) As for panel g, except 

the on-site energies of both sulphurs of S2′ are changed to 𝜖𝑠 = −1.2, to account for the fact 

that their environments differ from those of S1′. This moves the curves closer to DFT results 

shown in panel d.    

 

The values used for the site energies of the sulphurs in the tight-binding model of Figure 4.2.4 

f,h are guided by our DFT calculations. Comparisons between the two approaches show that a 

TBM with only a single free parameter (i.e. the sulphur site energy, 𝜖𝑠) can capture the main 

qualitative features of the much more demanding DFT simulations. To illustrate the role of this 

parameter, Figure 4.2.5 shows how the TBM transmission coefficients would change if other 

nonoptimal values of 𝜖𝑠 are chosen. Results are shown for a series of on-site energies of the 

sulphurs, ranging from 𝜖𝑠 = −0.4 to 𝜖𝑠 = −2 and reveal that the transmission dip moves to 

lower energies as 𝜖𝑠 becomes more negative. 
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Figure 4.2.5. Tight-binding model-based transmission functions for different 

connectivities. (a) A tight binding model consisting of a five-membered ring attached to two 

semi-infinite one-dimensional chains through weak couplings 𝛼 = 𝛽 = 0.1 . All on-site 

energies of the molecule (red dots) and the leads (blue dots) are set to zero, except those for 

sulphurs. The hopping integrals between two nearest-neighbour atoms are set to −𝛾 = −𝛾𝐿 =

−𝛾𝑅 = −1 . (b, c) Transmission functions for one thiophene ring with sites 3 and 5 are 

connected to leads. For each connectivity, several on-site energy values (-0.4, -0.8, -1.2, -1.6, -

2) are chosen for the sulphurs in the thiophene rings and the corresponding transmission curves 

are plotted. (d-f) Transmission functions for two thiophene rings when sites (10, 6) and (1, 7) 

are connected to leads respectively. 
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Starting from the DFT-based transmission functions, we evaluated thermoelectric properties of 

the above molecules according to Eq. 4.2 - 4.5, including their electrical conductances, 𝐺; their 

Seebeck coefficients, 𝑆; electronic thermal conductances, 𝜅𝑒, and electronic figure of merit, 

ZT𝑒. These are shown in Figure 4.2.7 The Mott formula 𝑆 ∝ −
𝜕𝑙𝑛𝑇(𝐸)

𝜕𝐸
|𝐸=𝐸𝐹  indicates that a 

large Seebeck coefficient can be obtained if the Fermi energy (𝐸𝐹) happens to coincide with a 

steep slope of electron transmission coefficient, 𝑇(𝐸)[29][30]. As a consequence, the Seebeck 

coefficient is higher for molecules exhibiting DQI (red yellow curves) as shown in Figure 

4.2.7b. We find that the Seebeck coefficients for DQI molecules DPP2-a,-b and DPP3-a,-b 

could reach 400 − 700 µ𝑉/𝐾. Figure 4.2.7c shows 𝜅𝑒 due to the electrons obtained from the 

electron transmission functions. The heat transport due to electrons for the CQI in Figure 4.2.7c 

(blue curve) has a shape similar to CQI of the electrical conductance in Figure 4.2.7a, reflecting 

the Wiedemann−Franz law. The thermal conductance due to electrons for DPP1-a,-b is in the 

range between 1and 40 𝑝𝑊/𝐾, which is comparable with typical thermal conductances due to 

phonons, ~10 𝑝𝑊/𝐾. The molecules exhibiting DQI possess substantially lower values of 𝜅𝑒. 

Consequently, their high ZT𝑒 do not lead to high values of the full 𝑍𝑇.  

In comparison, Figure 4.2.8 shows the effect of temperature (𝑇)  on the thermoelectric 

performance of thiophene-DPP derivatives and reveals that ZT𝑒(𝑇) increases with temperature 

up to a maximum value, before decreasing at higher temperatures. As mentioned above, 

ZT𝑒(𝑇) only includes the thermal conductance 𝜅𝑒.  

 

 

 



 

89 

 

 

 

Figure 4.2.7. Thermoelectric properties of the thiophene-DPP isomers as the function of 

the Fermi energy at room temperature 300 K. (a) Electrical conductance 𝐺(𝐸𝐹); (b) Seebeck 

coefficients𝑆(𝐸𝐹);  (c) Thermal conductance 𝜅𝑒(𝐸𝐹); (d) Electronic figure of merit ZT𝑒(𝐸𝐹). 
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Figure 4.2.8. Thermoelectric properties of the molecules as a function of temperature at 

𝑬𝑭 = 𝟎  eV. (a) Electrical conductance, 𝐺(𝑇) ; (b) Seebeck coefficient, 𝑆(𝑇) ; (c) thermal 

conductance, 𝜅𝑒; (d) electronic figure of merit, ZT𝑒(𝑇). 

When the thermal conductance due to the phonons 𝜅𝑝ℎ  is included[31], the full 𝑍𝑇 =

𝑆2𝐺𝑇/(𝜅𝑒 + 𝜅𝑝ℎ)  [32] and only this is physically relevant. In order to compute 𝜅𝑝ℎ  to the 

thermal conductance, we calculate the transmission coefficient of phonon 𝑇𝑝ℎ(ℏ𝜔)  as a 

function of their frequency 𝜔, according to Eq. 4.7-4.8. Since the highest 𝑍𝑇 occurs when 𝜅𝑝ℎ 

is less than or comparable with 𝜅𝑒, we focus initially on the highest conductance molecule 

DPP1-a, with its phonon transmission coefficient and thermal conductance due to the phonons 

being presented in Figures 4.2.9a,b. The phononic thermal conductances are found to be 16.9 

b 

d c 
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and 8 pW/K for DPP2-a and DPP2-b, respectively in Figure 4.2.10. For DPP1-a Figure 4.2.9c 

shows the room-temperature full 𝑍𝑇 versus the Fermi energy and demonstrates a high room-

temperature  𝑍𝑇~1.5 is achievable. Figure 4.2.9d shows the temperature dependence of 𝑍𝑇 for 

all molecules and reveals that the 𝑍𝑇 of DPP1 can reach ~2 when the temperature increases to 

400𝐾. 

 

Figure 4.2.9. Thermoelectric properties of the molecules. (a) Phonon transmission function 

for DPP1-a; (b) phononic contribution to the thermal conductance for DPP1-a; (c) full 𝑍𝑇 as a 

function of Fermi energy at room temperature 300 𝐾 for molecules shown in Figure 1a; (d) 

full 𝑍𝑇 as a function of temperature for molecules shown in Figure 4.1a. 
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Figure 4.2.10. Thermoelectric properties of the molecules DPP2-a,b. (a) Phonon 

transmission function; (b) phononic contribution to the thermal conductance; (c) full 𝑍𝑇 as a 

function of Fermi energy at room temperature 300 𝐾; (d) full 𝑍𝑇 as a function of temperature. 

 

However, the molecules exhibiting DQI show quite low values of the full 𝑍𝑇, because k𝑝ℎ 

dominates the electronic contribution. DPP2-/3-b have the lowest electrical conductances and 

the highest Seebeck coefficients. The electronic figure of merit is 𝑍𝑇𝑒 = 𝐺𝑆
2𝑇/𝜅𝑒 , and 

therefore, if phonons are neglected and provided the Wiedemann−Franz law is valid (i.e., 
𝐺

𝜅𝑒
= 

constant), the molecules with the highest 𝑆 will have the highest 𝑍𝑇𝑒.  However, this means 
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that the low-𝐺 molecules have low values of 𝜅𝑒 and therefore after including the phonons the 

percentage increase in thermal conductance is greatest for low-𝐺  molecules. This is why 

molecules with high 𝑍𝑇𝑒 have a low 𝑍𝑇 . More quantitatively, the thermal conductance due to 

phonons is of order 𝜅𝑝ℎ = 8𝑝𝑊/𝐾,  whereas for the low-𝐺 molecules DPP2-b and DPP3-b, 

𝜅𝑒 ≈ 10
−4𝑝𝑊/𝐾 . Consequently, phonons dominate their thermal conductance and their full 

𝑍𝑇 is low. For the CQI molecules DPP1-a/-b where  𝜅𝑝ℎ = 11𝑝𝑊/𝐾 and 𝜅𝑒 = 32𝑝𝑊/𝐾,  the 

full 𝑍𝑇 is higher, because phonons have a much smaller effect on the thermal conductance. 

Figure 4.2.11 shows that a similar temperature dependence is obtained if the Fermi energy 

deviates from the DFT-predicted value by  −0.1 eV.  

 

Figure 4.2.11.  Thermoelectric properties of the molecules as a function of temperature 

for DPP- derivatives. (a-e) the electrical conductance 𝐺, Seebeck coefficients 𝑆(𝑇), thermal 
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conductance 𝜅𝑒, electronic figure of merit ZT𝑒(𝑇) and full 𝑍𝑇 as a function of temperature at 

Fermi-energy 𝐸𝐹 = −0.1 respectivly.  

 

Starting from the above molecular junctions, we consider the possibility of tuning their 

electrical and thermoelectrical properties, by doping with TCNQ[21][33] to form charge-

transfer complexes. Our aim is to investigate the influence of the presence of TCNQ acceptor 

molecule on the transmission coefficient of the DPP derivatives in Figure 4.1a. As an example, 

we chose DPP1, because the undoped molecule has the highest 𝑇. Starting from this high value, 

the aim is to determine if it is possible to increase ZT even further. DPP1-a and DPP1-b have 

the same central core and will bind to TCNQ in the manner. The results in Figure 4.2.12b show 

that TCNQ gains electrons from the backbone, which induces negative gating on the backbone 

DPP1-b. Consequently, spin polarized transport is observed due to the charge transfer from the 

DPP1-b to TCNQ. In addition, the two Fano-resonances are generated due to the weak coupling 

between the acceptor and donor, so that the acceptor behaves like a pendant group[34][35]. 

Then, if we replaced sulphur atom with oxygen, there is no significant difference in the 

behaviour of the transmission coefficient as shown in Figure 4.2.13. For the DPP1-b+TCNQ 

complex, we computed the thermoelectric properties, the electrical conductance, the Seebeck 

coefficient and the full 𝑍𝑇 by using an estimated 𝑘𝑝ℎ value equal to 10 𝑝𝑊 𝐾−1. In the range 

between the two vertical dashed lines in Figure 4.2.12d, the Seebeck coefficients are positive, 

which indicates that the sign is tuned by TCNQ doping. The full 𝑍𝑇 is around 0.1 which is 

suppressed compared to the undoped junction. 
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Figure 4.2.12. DFT-based transmission functions for DPP1-b+TCNQ. (a) Configuration of 

the system containing a single molecule DPP1 with TCNQ; (b) transmission coefficients 

against Fermi energy, 𝐸𝐹 (blue curve, the transmission functions of DPP1-b; red and yellow 

curves, spin up and spin down transmission functions of the donor-acceptor charge-transfer 

complex, respectively; (c) Electrical conductance 𝐺 ; (d) Seebeck coefficients, 𝑆 ; (e) room-

temperature 𝑍𝑇 versus Fermi energy.  
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Figure 4.2.13. DFT-based transmission functions of Difuranyl-DPP with TCNQ.  (a,b)  an 

example of an optimized configuration of the system containing a single molecule Difuranyl-

DPP (F-DPP) with TCNQ; (b) transmission coefficients against Fermi energy, 𝐸𝐹 (blue curve, 

the transmission functions of F-DPP, red and yellow curves, spin up and spin down 

transmission functions of the donor-acceptor charge-transfer complex, respectively.   

4.3. Conclusion 
 

On the basis of density functional theory and the quantum transport theory, the electron 

transport properties have been investigated for thiophene-DPP derivatives (DPP1, DPP2, and 

DPP3). This work illustrates that varying the position of the sulphur atom in thiophene rings 

has a significant influence on their electrical and thermoelectric properties. It is further verified 

by studying the connectivity of the two-thiophene-ring systems in the absence of DPP core. In 

addition, the rotation of the flanked rings could cause huge variations in the conductance when 

inserting the DPP core into the two-thiophene system. Furthermore, DQI molecules 2 and 3 

systems show high Seebeck coefficients, which could reach 500 − 700 µV/𝐾. After including 

the contribution from phonons to the thermal conductance, we found that, due to the presence 

of CQI, the full 𝑍𝑇 of DPP1 reaches 1.5 at room temperature and could increase to 2 when 

F-DPP 

a b 
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temperature elevates to 400 K . Finally, we demonstrated that the Seebeck could be further 

tuned by introducing a TCNQ dopant which could gain electrons from DPP, leading to the sign 

change for the Seebeck coefficients even though DPP is a stronger acceptor. These results 

suggest that DPP derivatives are versatile materials for thermoelectric functions, whose 

performance can be tuned by varying their connectivity to electrodes, changing the positions 

of sulphur atoms and varying the orientation of their thiophene rings to obtain different isomers. 
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4.4. Appendix: Supplementary calculations based on thiophene 

monomers and thiophene dimers 

 

Based on the relaxed thiophene monomer and thiophene dimers shown in Figure 4.2.4a-c, I 

perform molecular orbitals plots of the HOMOs and LUMOs as shown in table 4.4.1 and table 

4.4.2 to further investigate their details in single molecule junction. Then, I will present 

theoretical calculation using DFT to compute the ground-state energy to calculate the optimum 

binding distance in section 4.4.2. 

4.4.1. Molecular orbitals of thiophene monomer  

 

Table 4.4.1. Molecular orbitals of thiophene monomer, along with their MO energies 

 

Table 4.4.1. Shows the frontier orbital of thiophene monomer, where are delocalized on the 

structure. Based on the discussion in chapter 3 for the Green’s function and frontier molecular 

orbitals, from the HOMO and LUMO orbitals it is clear that para connection to the thiophene 

ring leads to CQI. Therefore, DPP1-a,b have the higher electrical conductance than others.  
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4.4.2. Binding energy of thiophenes  

 

The next step is to understand how the thiophene monomer and thiophene dimer attach to the 

surface of the gold electrodes by modelling STM-Break junction measurements. This allows 

to calculate the optimum binding distance for geometries S1 and S1′as shown in Figure 4.2.4a 

and 4.2.4c between two gold surfaces, which is forming a ‘pyramidal’ tip (111), in this 

calculation the gold leads consist of 3 layers of 25 atoms. I used SIESTA and the counterpoise 

method, which removes basis set superposition errors (BSSE) as it discussed in chapter 2. 

Therefore, I evaluate the binding distance 𝑑 where 𝑑 is defined as the distance between the 

gold surface and carbon atom (Au-C) and between the gold surface and sulphur atom (Au-

SMe) at the closest point. Thiophene-molecule is defined as monomer A and the gold 

electrodes as monomer B. The energy of individual molecule is then calculated in a fixed basis, 

which is achieved through the use of ghost atoms in SIESTA. Thus, the binding energy is then 

calculated using Eq. 2.18, where the minimum binding energy for (Au-C) occurs at distance 𝑑 

is 2𝐴° with a binding energy of approximately -3.1 eV and the minimum binding energy for 

(Au-SMe) occurs at distance 𝑑 is 2.6𝐴° with a binding energy of approximately -0.41 eV as 

shown in Figure 4.4.1 -4.4.2 respectively.  
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Figure 4.4.1. DFT-based binding energies as a function of the distance 𝑨°. (a) Orientation 

of the molecular with respect to the gold lead; (b) Binding energies as a function of the distance 

𝑑. 
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Figure 4.4.2. DFT-based binding energies as a function of the distance 𝑨°. (a) Orientation 

of the molecular with respect to the gold lead; (b) Binding energies as a function of the distance 

𝑑. 
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4.4.3. Molecular orbitals of thiophene dimers with different connectivities 

 

Table 4.4.2. Molecular orbitals of thiophene dimers with different connectivities, along 

with their MO energies 
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5. Single-Molecule Charge Transport Modulation Induced 

by Steric Effects of Side Alkyl Chains 
 

In this chapter, the dependence of intra-molecular conductance on the nature of branching alkyl 

chains is investigated, through a combination of the scanning tunneling microscope break 

junction (STM-BJ) technique carried out by collaborators in Xiamen university and density 

functional theory. Three thiophene-flanked diketopyrrolopyrrole (DPP) derivatives with 

different branching alkyl chains (isopentane, 3-methylheptane, and 9-methylnonadecane) are 

used with phenylthiomethyl groups as anchor. This chapter shows that as the alkyl chain 

becomes longer, the DPP molecular conductance is decreased. Both theoretical simulations and 

1H NMR spectra at the single-molecule level demonstrate that the planarity of the DPPs is 

directly reduced after introducing longer branching alkyl chains, which leads to the reduced 

conductance. This chapter indicates that the insulating side chain could be used as gate controls 

of single-molecule conductance, which is of significance for the design of future organic 

semiconducting molecules. The results presented in this chapter were published in W. Jiang et 

al., “Single‐Molecule Charge Transport Modulation Induced by Steric Effects of Side Alkyl 

Chains,” ChemPhysChem, 2021. 

This work is a collaborative study between (Chinese Academy of Sciences, Lancaster 

University, and Xiamen University). 
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5.1. Introduction  
 

The electronic properties of the conjugated molecules play an essential role for organic 

electronics, which are governed by the electronic structures of the conjugated frameworks and 

the intermolecular interactions[1][2][3]. It is known that the pendant alkyl chains attached to 

the conjugated backbone not only improve the solubility, but also influence the 

intermolecular/inter-chain orderly packing,[4][5][6][7][8] and may also lead to the changes of 

electronic structure of the conjugated backbone[9][10]. However, it remains challenging to 

distinguish the contribution of the side-chain on the intramolecular charge transport and the 

intermolecular packing. For that, the charge transport through the single-molecule 

diketopyrrolopyrrole (DPP) junctions[11][12][13][14] provides a unique opportunity to study 

the role of the side-chain on the intramolecular charge transport from the single-molecule level. 

In the charge transport investigations through the single-molecule junctions, the conjugated 

molecules typically possess alkyl chains as soluble groups attached to the periphery of 

conjugated cores to have solubility for the processing and characterization 

[15][16][17][18][19][18][20][21][22][23] In some cases, studies suggested that the side-chains 

attached to the rigid oligo-phenylene-ethynylene (OPE) building blocks lead to no significant 

changes in the electronic structure of the conjugated backbone, and thus alkyl chains are 

replaced by methyl groups in most of the combined theoretical investigations[24][25]. 

However, the role of the side-chains on the conformation control of the conjugated frameworks 

remained unexplored. Our previous studies had suggested that the backbone planarity and 

rigidity were improved when we replaced one bulky branching alkyl chain in the 

diketopyrrolopyrrole (DPP)-based polymers with one linear alkyl chain in each DPP unit[9]. 
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Thus the experimental investigations of DPP-based conjugated molecules may offer new 

insight into the side chain effects on intramolecular charge transport in π-conjugated molecules.  

This chapter aims to show single-molecule conductance studies of three 

diketopyrrolopyrrole (DPP)-based conjugated molecules DPP-1/4, DPP-2/6, and DPP-8/12 

with the STM-BJ technique[26], and investigate the side chain effects on their intramolecular 

charge transport (Figure 5.2.1). Compounds DPP-1/4, DPP-2/6, and DPP-8/12 possess the 

same conjugated skeleton and the same anchoring groups (-SCH3), but they bear different side 

alkyl chains, with isopentane (1/4), 3-methylheptane (2/6) and 9-methylnonadecane (8/12) 

linked to the DPP units in DPP-1/4, DPP-2/6, and DPP-8/12, respectively. It is noted that these 

alkyl chains are widely utilized in the construction of DPP-based organic and polymeric 

semiconductors[27][28][29]. The results reveal that the single-molecule conductance of DPP-

1/4, DPP-2/6, and DPP-8/12 decreases in the following order: DPP-1/4 > DPP-2/6 > DPP-

8/12, by increasing the length and bulkiness of alkyl chains. Theoretical studies in combination 

with 1H NMR data reveal that the effect of pendant alkyl chains on the conjugated backbone 

conformation (and planarity), and thus the single-molecule conductance of DPP-1/4, DPP-2/6, 

and DPP-8/12 cannot be neglected. The calculations show that the torsional angles among the 

conjugated units of DPP-1/4, DPP-2/6, and DPP-8/12, and the respective transmission spectra 

are varied by changing the side alkyl chains, which correlates with the single-molecule 

conductance studies. Therefore, the insulating side alkyl chains can be used to manipulate the 

single-molecule conductance, offering potential applications in single molecular electronic 

devices.  
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5.2. Molecular structures: 

 

Figure 5.2.1. Molecular structures. (a) Schematic of STM-BJ junction; (b) chemical 

structures of DPP-1/4, DPP-2/6, and DPP-8/12 respectively. 

 

5.3. Results and Discussion 

In this study, single molecule charge transport in a series of the three DPP molecules, DPP-

1/4, DPP-2/6, and DPP-8/12. The two phenylthiomethyl groups in DPP-1/4, DPP-2/6, and 

DPP-8/12 were used as the anchoring groups to connect the respective molecules with the gold 

electrodes to form single-molecule junctions.  The only difference between these molecules is 

the side alkyl chains. The STM-BJ experimental measurement shows the conductance-

displacement curves were recorded shown in Figure 5.3.1a, it can be seen that an obvious 

plateau appears ranging from 10-3 G0 to 10-5 G0 for DPP-1/4, DPP-2/6, and DPP-8/12.  The 
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molecular conductances were obtained by constructed 1D conductance histograms as shown 

Figure 5.3.1b of DPP-1/4, DPP-2/6 and DPP-8/12, which are estimated to be 10-3.55 G0, 10-3.96 

G0, and 10-4.33 G0 respectively. 

 

Figure 5.3.1. The comparison of the conductance of DPP-1/4 (blue), DPP-2/6 (purple) and 

DPP-8/12 (orange). (a) Typical individual conductance-displacement curves; (b) 1-D 

conductance histograms. 

Figure 5.3.1 shows that the molecular conductances of DPP-1/4, DPP-2/6 and DPP-8/12 are 

dependent on the structures of the side alkyl chains; the molecular conductance decreases 

gradually by increasing the lengths of alkyl chains. We assume that the different alkyl chains 

in DPP-1/4, DPP-2/6 and DPP-8/12 may affect the conformations of the conjugated 

backbones. Theoretical calculations were carried out at the level of density functional theory 

in order to understand the effect of side alkyl chains on molecular conductance. We first 

obtained the fully optimized gas-phase molecules and then built the junctions with molecules 

attached to two pyramidal-shaped electrodes via SMe anchor groups. In common with 

calculations presented in chapter 4, the optimized geometry and ground-state Hamiltonian and 

overlap matrix elements of each structure was self-consistently obtained using SIESTA[30]. 
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The generalized gradient approximation (GGA) of the exchange and correlation functional is 

used with the Perdew-Burke-Ernzerhof parameterization (PBE)[31] a double-ζ polarized 

(DZP) basis set, a real-space grid defined with an equivalent energy cut-off of 200 Ry. The 

geometry optimization for each structure is performed to the forces smaller than 10 meV/Ang. 

We know the solvent effect would be an important factor which could induce the geometrical 

changes of the backbone in realistic single-molecule conductance measurements. However, 

considering the heavy computational expenses, we carried out the investigation in the 

energetics and the effect of series of manual torsion angles in the backbone for the gas-phase 

molecules[32]. 

After the re-optimization of junctions, The mean-field Hamiltonian obtained from the 

converged DFT calculation or a tight-binding Hamiltonian (using single orbital energy site per 

atom with Hückel parameterisation) was combined with our home-made implementation of the 

non-equilibrium Green’s function method, GOLLUM[33] to calculate the phase-coherent, 

elastic scattering properties of the each system consisting of left gold (source) and right gold 

(drain) leads and the scattering region (molecule DPP, DPP-1/4, DPP-2/6, DPP-8 and DPP-

8/12). The transmission coefficient 𝑇(𝐸) for electrons of energy 𝐸 (passing from the source to 

the drain) is calculated via Eq. 4.1 in chapter 4. 

With DPP-8/12 as an example, the theoretical calculations afforded two stable 

conformers A and B (in which the intramolecular S---O interactions are observable where the 

left and the right sulphur-oxygen distances are 3.2𝐴° and 2.9𝐴° respectively, see Figure 5.3.2a) 

in terms of the positions of the side alkyl chains relative to the conjugated backbone. Between 

the two conformers, which show different dihedral angles between the conjugated units, 

conformer B is most stable. In conformer B, the dihedral angles between the central DPP core 
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and the left flanking thiophene is 37.3o, and that between the central DPP core and the right 

flanking thiophene is 23.1o. It is obvious that the conjugated backbone of DPP-8/12 is twisted.  

 

Figure 5.3.2 (a) Conformations of DPP-8/12 (S---O) in terms of the positions of the alkyl 

side chains relative to the backbone. Conformer A expanded into the nearby space. The 

dihedral angle between the left thiophene and DPP-core is 25° and between the right thiophene 

and the core is 18°. B is more compact and more energetically stable compared to conformer 

A by 0.62 eV. In this case, the dihedral angles between the left and right thiophenes and the 

DPP-backbone are 37.3° and 23.1° respectively. (b) Junction formation of the thiophene-DPP 

core connected to the gold via -SMe with various torsional angles from 0° to 60° between the 

two planes of left/right flanking thiophene and the rest part of molecule (more conformations 

shown in Figure 5.3.4). (c) The corresponding transmission functions for molecule DPP-CH3 

displayed in panel b. The blue curve stands for transmission function of the coplanar 
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conformation (0° dihedral angle, top panel of 5.3.2b), while the other coloured curves represent 

those of the conformations with torsional angles up to angle 60° (bottom panel of 5.3.2b, see 

more conformations in Figure 5.3.4). 

 

From the respective transmission coefficients, conformer A of DPP-8/12, which is more planar 

than conformer B, is predicted to possess a higher molecular conductance than conformer B 

shown in Figure 5.3.3. Moreover, further calculations were performed with conformer B in 

which the two branching alkyl chains were replaced by two methyl groups and the dihedral 

angles between the central DPP core and flanking thiophenes were manually changed as shown 

in Figure 5.3.2 b-c. The results show that the molecular conductance decreased gradually by 

increasing the dihedral angles. The Fermi energy of the system is difficult to be predicted due 

to the complicated experimental environment, such as the shape of the electrodes and the effect 

of solvents. However, it is believed that the Fermi energy is located somewhere in the HOMO-

LUMO gap. The transmission functions in the whole HOMO-LUMO gap show a decreasing 

trend. The relationship between the transmission function around middle point of HOMO-

LUMO gap and the torsion angle 𝜃 follows approximately T(E, 𝜃)∝ cos6 𝜃 which is not the 

expected cos8 𝜃 due to several other effects present in the system, e.g. the electrostatic effects 

between S of thiophene, O of DPP core and H of phenyl ring in ref [19][34]. (see more details 

in Figure 5.3.5) 
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Figure 5.3.3. DFT-based transmission functions for A and B conformers of DPP-8/12. 

Corresponding transmission coefficients against energy relative to the Fermi energy EF 

predicted by DFT. 

 

Figure 5.3.4. Models of single-molecule junctions with various thiophene-ring rotation, 

this rotation (indicated by the green shaded regions) angles relative to the rest part of the whole 

molecule from 10𝑜 to 60𝑜(indicated by the dashed red line). 
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Figure 5.3.5. Transmission functions of molecular junctions with various thiophene-ring 

rotation angles 𝜽 (shown in Figure 5.3.4) against cos8 𝜃, cos6 𝜃 and cos4 𝜃 at energy points 

around the middle of HOMO-LUMO gap, e.g. -0.4, -0.46, -0.5, -0.55, -0.6, -0.7. E is the energy 

relative to the Fermi energy predicted by DFT. 𝜃  is the dihedral angle of the flanking 

thiophenes relative to the rest part of the whole molecule (indicated by the dashed red lines in 

Figure 5.3.4).  

 

Similarly, theoretical calculations were performed for DPP-1/4 and DPP-2/6, and for 

comparison, the calculation was also extended to DPP-CH3 in which the alkyl chains are 

replaced by –CH3 groups. Table 5.3.1 lists the dihedral angles between the central DPP core 

and the left/right flanking thiophenes. For DPP-1/4 and DPP-CH3 in which the alkyl chains 

are short, the conjugated units are almost coplanar. By elongating the alkyl chains as in DPP-

2/6 and PP-8/12 the dihedral angles become large and thus the conjugated backbones are 

nonplanar. 
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Table 5.3.1. The calculated dihedral angles of DPP and flanked thiophenes caused by the 

presence of alkyl side chains. 

Compounds Torsional angle (o) 

Left flanking 

thiophene/DPP 

Right flanking 

thiophene/DPP 

DPP-1/4 0.5 4.2 

DPP-2/6 19.7 32.9 

DPP-8/12 37.3 23.1 

DPP-CH3 3.2 1.1 

 

Therefore, it is expected that DPP-1/4, DPP-2/6 and DPP-8/12 show different molecular 

conductances because of the different conformations of their conjugated backbones. Based on 

their most stable conformers, the respective transmission coefficients were calculated for DPP-

1/4, DPP-2/6 and DPP-8/12 as well as DPP-CH3. The calculation results were shown in Figure 

5.3.6, the molecular conductances of DPP-CH3, DPP-1/4, DPP-2/6 and DPP-8/12 increase in 

the following order: DPP-8/12 < DPP-2/6 < DPP-1/4 < DPP-CH3. The calculations agree well 

with the molecular conductances measured experimentally as mentioned above. In short, as the 

lengths of side alkyl chains increase, the conjugated backbones become nonplanar with 

enlarging the dihedral angles, leading to the dropping of molecular conductance.   
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Figure 5.3.6. DFT-based transmission functions for DPPs (S---O) with three different 

alkyl side chains. (a) Optimised junction of the single molecules named as DPP-CH3, DPP-

1/4, DPP-2/6 and DPP-8/12, respectively; (b) Corresponding transmission coefficients against 

Fermi energy EF. 

 

The behaviour in Figure 5.3.6 is confirmed by STM-BJ technique measurements which has 

been carried out in Xiaman University. The molecular conductances of DPP-1/4, DPP-2/6 and 

DPP-8/12 are estimated to be 10-3.55 G0, 10-3.96 G0, and 10-4.33 G0 respectively. 

Alternatively, DPP-8/12 can also adopt stable conformers such as A' and B' shown in Figure 

5.3.8 in which short interatomic contact exists between the oxygen atoms of the central DPP 

core and the hydrogen atoms of the flanking thiophenes (i.e. intramolecular H---O interactions 

are observable)[35][36][37]. Conformer B' in which the alkyl chains are close to the conjugated 

backbone is more stable in energy than A', but its backbone becomes more twisted. 
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Figure 5.3.8. Conformations of DPP-8/12 in terms of different positions alkyl side chains 

relative to the DPP core where A’ is sticking out into space with the left side of dihedral angle 

between the thiophenes and DPP-core is 8° and the right side is 8.9°, B' is stacked with the 

DPP-backbone of the molecule space and more energetically stable compared to conformer A' 

by 0.55 eV with the left side of dihedral angle between the thiophenes and DPP-core is 19.7° 

and the right side is 12.1°. 

 

 

In comparison, the optimized geometry of the analogue molecule in which the alkyl chains are 

replaced by the methyl groups is more planar. Further calculations of transmission coefficients 

show that conformer B' has a low molecular conductance as shown in Figure 5.3.9  

Subsequently, we performed calculations by keeping the backbone conformation of B' and 

substituting the long alkyl chains with -CH3 groups. 
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Figure 5.3.9. DFT-based transmission functions for A’ and B’ conformers of DPP-8/12. 

Corresponding transmission coefficients against energy relative to the Fermi energy EF 

predicted by DFT.  

It is clear when the long alkyl chains are removed, while retaining the same conformation, the 

electrical conductance does not change (red and yellow curves in Figure 5.3.10), which reveals 

that the alkyl chains make no direct contribution to molecular conductance. 

 

Figure 5.3.10. (a) Models of single-molecule junctions with DPP molecules (O-H) in different 

geometrical changes, (Top panel: rather planar DPP-CH3 molecule after geometrical 
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optimization. Middle panel: molecule with a twisted backbone induced by the alkyl side chains 

(DPP-8/12), Bottom panel: molecule DPP-CH3' with replaced methyl group for the long alkyl 

chains and the backbone unchanged based on the structure in Middle panel. (b) Transmission 

spectra in units of quantum conductance 𝐺0 =77 µs against Fermi energy EF relative to the 

predicted value 𝐸𝐹
𝐷𝐹𝑇 by DFT. 

These calculations show i) the conformation of conjugated backbones of these DPP molecules 

is affected by the structures of side alkyl chains, and the dihedral angles among the conjugated 

units are enlarged by elongating the alkyl chains, and ii) consequently the effect of alkyl chains 

on the molecular conductance cannot be neglected for these DPP molecules and the molecular 

conductance becomes low by increasing the lengths of side alkyl chains. Mayor and their 

coworkers previously reported single-molecule junction towards biphenyl systems with 

controlled torsion angles[38]. But, the alkyl chains were used as the bridging chains to connect 

biphenyl molecules at 2,2’-positions, which are different from the side alkyl chains discussed 

in this work. 

5.4. Conclusion 
 

In this chapter, with colleagues from Xiamen University, I investigated the changes in intra-

molecular conductance induced by varying the branching alkyl chains through a combination 

of the STM-BJ technique and DFT simulations. Three thiophene-flanked DPP derivatives with 

different branching alkyl chains of isopentane, 3-methylheptane, and 9-methylnonadecane 

were used, and phenylthiomethyl groups were used as anchors. The STM-BJ results show that 

as the alkyl chain becomes larger, the resulting molecular conductance is decreased. Both 

theoretical simulations and 1H NMR spectra demonstrate that the planarity of the DPPs is 

directly reduced after introducing longer branching alkyl chains, causing reduced conductance. 

This work demonstrates that insulating side chains’ effect on single-molecule conductance 

cannot be neglected, and should be considered for the design of future organic semiconducting 
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materials. The calculated torsional angles increase in the following order: DPP-1/4 < DPP-2/6 

< DPP-8/12 
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6. Conclusions and Future works 
 

6.1. Conclusions 
 

The electric properties of different molecular devices have been studied in this thesis using 

density functional theory and the Green’s function scattering formalism as well as a simple 

tight binding methods (TBMs), which are presented in chapter 2 and 3 respectively.  

In chapter 4, I demonstrated that manipulating the connectivity of external electrodes to central 

rings of carbon-based molecules in single molecule junctions is an effective route to tune their 

electrical and thermoelectrical properties based on a series of thiophenediketopyrrolopyrrole 

(DPP) derivative molecules. I found that for connectivities corresponding to constructive 

quantum interference (CQI), different isomers obtained by rotating the thiophene rings possess 

the same electrical conductance, while those corresponding to destructive quantum interference 

(DQI) show huge conductance variations upon ring rotations. Furthermore, this DQI 

connectivity leads to enhanced Seebeck coefficients, which can reach 500−700 μV/K. For the 

CQI, it is found that after including the contribution to the thermal conductance from phonons, 

the full figure of merit (ZT) could reach 1.5 at room temperature. In additions, as the thiophene 

rings are widely used in molecular electronics, I presented the electrical conductance tunning 

of thiophene monomer and thiophene dimer attached to gold electrodes to further understand 

the DPP series, and showed some theoretical analysis methods adopted in this project such as 

magic number theory and tight-binding method.  

In the chapter 5, I focused on the side-chain effects on intramolecular charge transport in π-

conjugated DPP-molecule. The possibility of tuning the electrical conductance within 

branching alkyl chains, it was investigated by placing with different branching alkyl chains 

called DPP-1/4, DPP-2/6, and DPP-8/12. I showed that as the alkyl chain becomes longer the 
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electrical conductance decreased due to the torsional angles between the aromatic rings 

increased. Furthermore, the relationship between the transmission function around middle 

point of HOMO-LUMO gap and the torsion angle 𝜃  was calculated, which follows 

approximately T(E, 𝜃)∝ cos6 𝜃 which is not the expected cos8 𝜃 due to several other effects 

present in the system, e.g. the electrostatic effects between S of thiophene, O of DPP core and 

H of phenyl ring.  

 

6.2. Future works 
 

In this thesis, I investigated the electrical conductance of different kinds of molecules attached 

to gold electrodes. For future studies, there are some aspects deserve further attention, 

including the connectivity dependence of quantum transport through Diphenyl-DPP molecule 

with different aromatic rings [1]. In particular, I would be interest to examine how results 

change when SMe is replaced  by other anchor groups such as amino (NH2), direct carbon-

gold (C), and thiol (S)[2][3] bonds to electrodes.  

The electron-transport characteristics of single-molecular junctions can be strongly influenced 

by intermolecular gating due to the presence of neighbouring molecules and the corresponding 

packing density. In recent years, progress in self-assembly techniques has made it possible to 

design molecular devices. To develop advanced molecular thermoelectric device, it is of great 

importance to explore heat transport by intermolecular gating on the self-assembled monolayer 

(SAM). To develop advanced organic molecular thermoelectric devices, intermolecular gating 

is one of the major factors to affect the charge transport between adjacent molecules. It worth 

to investigate how Seebeck coefficient of single-molecule junction could be covered by a self-

assembled monolayers (SAMs) of diketopyrrolopyrrole (DPP) derivatives and study the 
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influence of interactions with neighbouring molecules, which depend on the packing density 

of the SAMs. It would also be interesting to examine the effect of more heterocycle thiophene 

rings in the molecular core. In practice, different alkyl chains could also be introduced to 

investigate their effect.  

  One aspect would be of interest to study the non-classical behaviour of cycloparaphenylene 

(CPP), which consists of several 6-membered phenyl rings linked by covalent bonds, it is 

donated CPPn, n is the number of phenyl rings.  Currently, the calculation of the electrical 

conductance of CPP6 is ongoing and should deliver a complete theory based on DFT, TBM 

and the magic-number theory. For future calculations, it is worth investigating several 

macrocycles with increasing the number of phenyl rings (CPPn) and making them more 

practical by introducing an anchor group.  

Looking forward, the field of molecular electronics still leaves important questions 

unanswered.  One such question is how chemical modifications of molecules and electrodes 

can lead to huge changes in their electrical properties. Additionally, it would be useful to study 

the effect of alternative electrode materials for molecular electronics, such as graphene[4], 

silicene[5][6], platinum, palladium[7], or even superconducting electrodes[8][9], which 

introduce their own novel interference effects. These would be of great value for future research 

and the development of exotic and unprecedented molecular-scale devices. For example, 

Graphene provides remarkable properties and numerous potential applications Such as sensing 

application[10]. It avoids the complexity of metal molecule interfaces, and has a wide 

electrochemical potential window, low electrical resistance, and well-defined redox peaks, 

which can lead to increased sensitivity[11]. Furthermore, the high thermal conductivity of 

graphene makes this material very attractive to manage heat and dissipate it in high density 

devices. Other recent topics of interest in nanoelectronics include the study of hybrid systems 



 

131 

 

containing superconducting (S) and ferromagnetic (F) materials of their relevance for 

spintronics applications. Spintronic devices incorporate spin-polarized currents and magnetic 

fields, both of which act to inhibit superconducting transport[9].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

132 

 

 

Bibliography 
 

[1] C. J. Lambert, Quantum Transport in Nanostructures and Molecules. IOP Publishing, 

2021. 

[2] F. Chen, X. Li, J. Hihath, Z. Huang, and N. Tao, “Effect of anchoring groups on single-

molecule conductance: Comparative study of thiol-, amine-, and carboxylic-acid-

terminated molecules,” J. Am. Chem. Soc., vol. 128, no. 49, pp. 15874–15881, 2006. 

[3] R. Frisenda et al., “Electrical properties and mechanical stability of anchoring groups 

for single-molecule electronics,” Beilstein J. Nanotechnol., vol. 6, no. 1, pp. 1558–1567, 

2015. 

[4] S. Bailey, D. Visontai, C. J. Lambert, M. R. Bryce, H. Frampton, and D. Chappell, “A 

study of planar anchor groups for graphene-based single-molecule electronics,” J. 

Chem. Phys., vol. 140, no. 5, 2014. 

[5] J. P. Small, K. M. Perez, and P. Kim, “Modulation of thermoelectric power of individual 

carbon nanotubes,” Phys. Rev. Lett., vol. 91, no. 25, pp. 256801, 2003. 

[6] Q. Wu, H. Sadeghi, V. M. Garcı́a-Suárez, J. Ferrer, and C. J. Lambert, 

“Thermoelectricity in vertical graphene-C60-graphene architectures,” Sci. Rep., vol. 7, 

pp. 11680, 2017. 

[7] V. M. García-Suárez, A. R. Rocha, S. W. Bailey, C. J. Lambert, S. Sanvito, and J. Ferrer, 

“Single-channel conductance of H 2 molecules attached to platinum or palladium 

electrodes,” Phys. Rev. B, vol. 72, no. 4, pp. 45437, 2005. 

[8] CJ Lambert, R Raimondi, V Sweeney, AF Volkov, “Boundary conditions for 



 

133 

 

quasiclassical equations in the theory of superconductivity,” Physi. Rev. B 55 (9), 6015, 

1997. 

[9] M. Eschrig, A. Cottet, W. Belzig, and J. Linder, “General boundary conditions for 

quasiclassical theory of superconductivity in the diffusive limit: Application to strongly 

spin-polarized systems,” New J. Phys., vol. 17, no. 8, 2015. 

[10] M. Pykal, P. Jurečka, F. Karlický, and M. Otyepka, “Modelling of graphene 

functionalization,” Phys. Chem. Chem. Phys., vol. 18, no. 9, pp. 6351–6372, 2016. 

[11] M. S. Artiles, C. S. Rout, and T. S. Fisher, "Graphene-based hybrid materials and 

devices for biosensing,” Advanced Drug Delivery Reviews., vol. 63, no. 14-15, pp. 1352-

1360, 2011. 

 

 

 


