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Abstract

The scale of information required to inform global climate change and biodiversity

initiatives goes beyond traditional environmental monitoring and into the realms of

big data. Halting deforestation and restoring the world’s forests is key to the success

of such initiatives and there is growing recognition of the potential of large-scale

restoration in the Amazon as a “nature-based solution” for both climate change and

biodiversity loss. But our understanding of forest loss and recovery in the Amazon is

incomplete. In this thesis I use MapBiomas, a 30-m resolution annual timeseries of

Amazonian landcover from 1985 to 2020, to address knowledge gaps surrounding

secondary forests and their role in carbon accumulation and habitat provisioning.

Chapter 2 maps the extent, age, and carbon stocks of secondary forest in the

Brazilian Amazon and explores their distribution relative to key variables known to

influence secondary forest carbon accumulation. The findings show that, in 2017,

despite occupying 20% of deforested land, secondary forests had offset less than

10% of deforestation emissions. Furthermore, they were typically situated in contexts

that are less favourable for carbon accumulation. These results demonstrate that

old-growth forest loss remains the most important factor determining the carbon

balance of the Brazilian Amazon. Chapter 3 evaluates spatial and temporal trends in

forest loss and recovery across all nine Amazonian countries. The findings reveal

a strong, negative spatial relationship between old-growth forest loss and recovery

by secondary forests, showing that regions with the greatest area available for
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large-scale restoration are also those that currently have the lowest recovery. This

chapter also highlights the variation between countries; Brazil has both the highest

percentage of deforestation and the lowest percentage of secondary forest recovery.

Chapter 4 explores the co-location of old-growth and secondary forests. It finds that

while 41% and 94% of secondary forests are adjacent or connected to old-growth

forests, these values decline to 20% and 57% when considering adjacency and

connectivity with structurally intact and extensive old-growth forest. It also reveals

that secondary forests buffer over 40% of old-growth forest edges and reduce the

number of isolated old-growth fragments by ~2 million. Chapter 5 explores the impact

of deforestation, disturbance, and regeneration on habitat availability for species with

different tolerances for disturbance. It reveals that, although old-growth forest cover

has only reduced by 8.6%, there has been a 40% decline in biome-wide habitat for

disturbance-sensitive species since 1985, with 79% of the loss due to changes in

forest condition rather than extent. Overall, this thesis provides new insights into

changes in forest cover and condition in the Amazon biome and demonstrates the

power of big data for answering environmental questions at large spatial scales.
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Chapter 1

Introduction

Humanity is altering the planet at an unprecedented rate and anthropogenic climate

change is now unavoidable (Masson-Delmotte et al., 2021). In response, a number

of international agreements and initiatives have been developed to mitigate the

effects of climate change and tackle biodiversity loss (e.g. Bonn Challenge, 2011; UN

Decade on Restoration, 2019). Halting deforestation and restoring the world’s forests

is key to the success of many climate change and biodiversity targets (e.g. United

Nations, 2021). The scale of the data required to advise on the implementation of

such initiatives, to monitor the resulting actions, and hold governments accountable

for their commitments, goes beyond traditional environmental monitoring into the

realms of big data (See Section 1.3). In this thesis I demonstrate how big data can be

used to expand our understanding of environmental change across whole biomes by

exploring forest loss and recovery in the Amazon. The following chapters contribute

a new understanding of the distribution of secondary forests and their role in the

Amazonian carbon balance, as well as the first biome-wide assessment of habitat

availability for species based on their disturbance tolerance.
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1.1 Tropical forests

Concentrated in the Amazon Basin, the Congo Basin, and southeast Asia, tropical

forests occupy ~18.3 million km2 (FAO et al., 2020) and are essential to the

provisioning of numerous ecosystem services (Assessment, 2005; Malhi et al., 2014).

Tropical forests store upwards of 190 billion Mg of above-ground carbon (Saatchi

et al., 2011) and provide approximately half of the world’s terrestrial carbon sink

(Malhi, 2010; Pan et al., 2011). They are fundamental to the global carbon budget

both as a means for capturing atmospheric carbon (Chazdon et al., 2016a; Poorter

et al., 2016) and as a source of emissions when they are degraded or destroyed.

Tropical forests are also the most biodiverse and ecologically complex ecosystems

on the planet, providing habitat for two thirds of all terrestrial species (Myers et al.,

2000; Gardner et al., 2009, 2010), including over 60% of the planet’s vertebrates

(Pillay et al., 2021) and 67% of tree species (Gatti et al., 2022). However, widespread

deforestation and forest disturbance are jeopardising the existence of species that

depend upon tropical forests as habitat (Barlow et al., 2016; Giam, 2017).

1.1.1 Deforestation in tropical forests

The world’s tropical, forests are under immense anthropogenic pressure and

conversion of old-growth forest to agriculture remains the largest form of land use

change globally (Eva et al., 2012; Hansen et al., 2013). It is estimated that as much

as 5 million km2 of tropical forest has been cleared (Rainforest Foundation Norway,

2021) and human-modified landscapes now dominate much of the tropics (Gardner

et al., 2009). Tropical deforestation is driven largely by agricultural expansion and

its occurrence is therefore strongly influenced by an area’s agricultural suitability, as

determined by a suite of economic, climatic, and edaphic conditions (Carmen Vera-

Diaz et al., 2008). In Amazonia, forest conversion is primarily for pasture and soy

(Barona et al., 2010), whilst in Southeast Asia the predominant crop is oil palm (Austin

et al., 2019). Almost half of deforestation resulting from agricultural expansion can
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be attributed to crops cultivated for export to the European Union, China, and North

America (Lawson et al., 2014; Hoang et al., 2021). Other drivers of deforestation

include immigration, expansion of transport networks, and increases in industrial

logging and mining in response to global demand for commodities (Andersen, 1996;

Harding et al., 2021).

Tropical deforestation eliminates a safe, natural, and irreplaceable carbon sink that

is responsible for sequestering as much 1.3±0.4 Pg C annually (Pan et al., 2011).

It also generates 0.8–1.1 billion Mg of carbon emissions annually (Baccini et al.,

2012; Harris et al., 2012), releasing carbon stocks that have accumulated in trees

and soil over decades or centuries (Gatti et al., 2021). Across the world, tropical

deforestation represents 8-12% of all anthropogenic emissions, while deforestation

and land-use change combined contribute the majority of carbon emissions in most

tropical forest countries (Edenhofer et al., 2014; Le Quéré et al., 2016; Seymour

et al., 2016; Mitchard, 2018). These changes in the carbon balance risk tropical

regions becoming a net source of carbon emissions (Mitchard, 2018), increasing the

likelihood that global warming will exceed 1.5°C (Brienen et al., 2015; Maxwell et al.,

2019; Masson-Delmotte et al., 2021) – an important benchmark for climate change.

Deforestation also has severe impacts for biodiversity through the destruction and

fragmentation of habitat. Continued clearance of old-growth forests will lead to

irreversible biodiversity loss (Wearn et al., 2012; Moura et al., 2014). It is difficult

to assess the true impact of forest loss on biodiversity as many tropical species

remain undescribed or insufficiently documented. Furthermore, delayed biodiversity

loss due to extinction debt (Wearn et al., 2012) may be causing species declines to

be underestimated. Deforestation also impacts both biodiversity and carbon stocks

through changes in local climatic conditions and the introduction of edge effects that

alter the forest microclimate. The removal of forest cover results in reduced rainfall

(Spracklen et al., 2015, 2018) and higher temperatures (Silva et al., 2016), leading

to increased evapotranspiration and drought stress. Drought is known to affect tree
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species composition and lead to biomass reductions in old-growth forest (Phillips

et al., 2009; Esquivel-Muelbert et al., 2019).

1.1.2 Tropical secondary forests

Although deforestation is the principal environmental narrative in tropical regions, it is

not the end of the story. The abandonment of agriculture on previously deforested

land – a typical land use change in the tropics – is resulting in the expansion of

secondary forests (Aide et al., 2013; Chazdon, 2014). Defined in this thesis as

forests growing after complete old-growth forest clearance, secondary forests are an

increasingly prominent feature of human-modified tropical landscapes. Compared to

old-growth forests, secondary forests are relatively species-poor and store smaller

quantities of carbon (Gibson et al., 2011; Berenguer et al., 2014; Lennox et al., 2018).

Nonetheless, they are a vital resource in deforested landscapes (Chazdon et al.,

2009; Gardner et al., 2009; Letcher et al., 2009). When left undisturbed secondary

forests can provide many of the ecosystem services of old-growth forests and have

the potential to be an important tool for both biodiversity conservation (Barlow et al.,

2007a; Chazdon et al., 2009; Rozendaal et al., 2019) and climate change mitigation

(Martin et al., 2013; Matos et al., 2020; Heinrich et al., 2021).

In addition to reducing carbon emissions, recapturing atmospheric carbon is essential

for mitigating climate change (Edenhofer et al., 2014; Houghton et al., 2015; Griscom

et al., 2017). As such, promoting carbon sequestration through secondary forest

growth is considered an efficient and cost-effective ‘nature-based solution’ to climate

change (Griscom et al., 2017; Rogelj et al., 2018; Cook-Patton et al., 2020; Lubowski

et al., 2020). However, not all secondary forests are equal in their ability to sequester

carbon (Elias et al., 2020). The trajectory of secondary forest growth is influenced by

numerous factors, with rates of carbon accumulation ranging from 0.89 Mg (Chave

et al., 2020) to 7.6 Mg per hectare per year (Requena Suarez et al., 2019). For

example, carbon accumulation is known to be slower in regions with longer, more

18



1.1. Tropical forests

intense dry seasons, and lower annual rainfall (Poorter et al., 2016). The positioning

of secondary forests within the landscape also influences growth rates: surrounding

forest cover has positive effects on biomass recovery (Jakovac et al., 2015; Toledo

et al., 2020) and secondary forests growing in relatively intact landscapes are likely

to have considerably higher carbon accumulation potential than those in highly

deforested areas (Chazdon, 2003; Bihn et al., 2010). Studies have also found that

higher land use intensity prior to abandonment leads to slower biomass recovery

(e.g. Jakovac et al., 2015) and secondary forests growing on abandoned pasture are

known to accumulate carbon more slowly compared to those on abandoned cropland

(Fearnside et al., 1996; Jakovac et al., 2021). Nonetheless, even in regions with high

growth rates, it takes many decades for secondary forests to recovery the quantity of

biomass present in old-growth forests (Poorter et al., 2021) and frequent clearance

(Schwartz et al., 2020; Wang et al., 2020), particularly of young forests (Schwartz

et al., 2017a), undermines their value as a long-term carbon store (Poorter et al.,

2021). Protecting secondary forests from clearance is key if they are to be used to

meet climate change mitigation goals (Grassi et al., 2017).

Despite the structure and microclimate of secondary forests being very different from

old-growth forest (Guariguata et al., 2001), they do provide habitat for many species

(Lennox et al., 2018). Species richness in secondary forests increases over time

(Barlow et al., 2007a; Barlow et al., 2007b; Moura et al., 2016) but it takes upwards

of 50 years to recover the species richness of old-growth forest (Rozendaal et al.,

2019; Poorter et al., 2021) and some specialist species may never return (Moura

et al., 2013). Recent findings indicate that high surrounding old-growth forest cover is

advantageous for secondary forest growth in the early stages of succession (Toledo

et al., 2020). It is also likely that proximity to old-growth forest will also be important

later in succession, as they are essential for providing the diverse seed sources

required to establish resilient, biodiverse and high-biomass secondary forests (e.g.

Caughlin et al., 2016; Hawes et al., 2020).
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1.1.3 Disturbance in tropical forests

Forest disturbance has received increasing scientific attention in recent years as

studies have begun to reveal the scale of its impact in tropical regions (e.g. Bullock et

al., 2020; Matricardi et al., 2020). Disturbance can dramatically alter the composition

of a forest ecosystem (Moura et al., 2016), driving local biodiversity loss (Gibson et al.,

2011; Barlow et al., 2016; Withey et al., 2018; Marco et al., 2019). Disturbed forests

typically have more heterogeneous and open canopies, with dense understories that

make them unsuitable as habitat for many forest species, although some species may

eventually return if further disturbances are avoided (Mestre et al., 2013a; Mollinari

et al., 2019). Furthermore, the carbon respired or burned during forest disturbance

generates large quantities of carbon dioxide emissions, comparable to deforestation

(Pearson et al., 2017; Aragão et al., 2018; Silva Junior et al., 2020a).

Selective logging, both legal and illegal, is amongst the most widespread forms of

forest disturbance (Asner et al., 2005; Foley et al., 2007; Brancalion et al., 2018).

Even best-practice reduced-impact logging can have significant detrimental impact

on forest structure (Boltz et al., 2003; Sist et al., 2021), leaving increased canopy

openness and higher abundance of lianas (Gerwing, 2002). Fire is also a major

driver of forest disturbance (Aragão et al., 2007; Barlow et al., 2020), impacting

huge areas of forest. For example, fires relating to the 2015 El Niño event burnt

1 million ha of forest in the Santarém region of Brazil (Withey et al., 2018; Barlow

et al., 2020). Fire does not occur naturally in tropical regions, however, logging,

edge effects, and droughts can create conditions in which fire can take hold within

standing forests (Brando et al., 2012; Barlow et al., 2020), usually from anthropogenic

sources of ignition. As tropical species have not co-evolved with fire, they are

extremely vulnerable to it (Barlow et al., 2003a; Brando et al., 2012) and even a

small understorey forest fire can increase tree mortality by 50% (Barlow et al., 2003b;

Brando et al., 2014; Silva et al., 2018). Reductions in forest biomass may last

decades after a fire event (Silva et al., 2018), with potentially permanent alterations
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in forest structure (Barlow et al., 2008; Prestes et al., 2020). As global warming

exacerbates El Niño events and creates increasingly warmer and drier conditions,

the regularity, intensity, and extent of wildfires are only likely to increase (Silva et al.,

2018; Brando et al., 2020). Disturbance can also occur naturally as a result of

drought and windthrow, which are both estimated to generate large carbon losses

(e.g. Schwartz et al., 2017b). However, even these seemingly natural disturbances

may also have underlying anthropogenic causes. For example, climate change made

the probability of the 2015-16 El Niño drought four times more likely (Ribeiro et al.,

2021). As much as 17% of remaining old-growth forest in the Amazon is estimated to

have been impacted by some form of disturbance (Bullock et al., 2020), causing a

carbon loss of 0.1 Pg per year (Bullock et al., 2021).

Fragmentation, caused by deforestation and by the networks of roads and tacks

created to facilitate access for logging and mining (Arima et al., 2005), is an additional

source of forest disturbance. The expansion of forest edges exposes more forest

to increased light, heat, and wind, leading to reduced humidity and hydrological

inconsistency (Paula et al., 2015). These changes in microclimate are known as

edge effects and drastically impact the structure and functioning of the forest, causing

its carbon stock to decrease over time due to increased tree mortality and shifting

species assemblages (Laurance et al., 2002; Magnago et al., 2017). The most

severe ecological and physical edge effects occur in the first 100 m, but other impacts

have been recorded hundreds of metres into the forest (Laurance et al., 2002),

including reductions in the abundance of forest species, which have been reported

to extend 200 - 400 m from edges (Pfeifer et al., 2017). Remote sensing studies

have begun to map edge effects in tropical forests across large spatial scales (e.g.

Silva Junior et al., 2020a) and estimate that carbon losses from edge effects may

contribute an additional 36% of emissions relative to those occurring directly from

forest clearance (Silva Junior et al., 2020b). Fragmentation also reduces the size of

forest patches, with severe implications for biodiversity. Area effects are well known

drivers of species richness and population persistence (Ferraz et al., 2007). Species
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dependent on old-growth forest are more sensitive to fragment size than species able

to survive in secondary forest and forest edge habitat (Lees et al., 2006). Reduction

in fragment size also increases its accessibility to people and consequently increases

its vulnerability to additional anthropogenic pressures such as hunting (Parry et al.,

2009; Andrade Melo et al., 2015).

1.2 The Amazon

The Amazon biome is the largest remaining expanse of tropical forest in the world.

Encompassing nine South American countries, it occupies 6.5 million km2 of land and

is estimated to be storing 86 Pg of carbon (Saatchi et al., 2007). From influencing

rainfall patterns across the Americas (Spracklen et al., 2018) to regulating local

climate, the Amazon is fundamental to the provision of vital ecosystem services

across multiple scales (Malhi et al., 2014). However, it also has some of the highest

rates of forest clearance globally (Hansen et al., 2013), accounting for over 50% of all

tropical forest cover loss in the last two decades (World Resources Institute, 2020).

Forest loss in the Amazon has been concentrated mainly in the south and east

of the biome – a region known as the ‘arc of deforestation’ that was once the

world’s most active deforestation frontier (Hansen et al., 2010; Barlow et al., 2011).

Amazonian deforestation slowed dramatically from 2004 to 2012, which is largely

attributed to highly effective implementation of Brazil’s forest code and a drop in

global soybean prices. However, many of Brazil’s environmental protections have

since been dismantled – notably following the election of Jair Bolsonaro in 2018 –

leading to a rise in deforestation rates and a surge in illegal armed incursions onto

Indigenous reserves. As such, the 13,235 km2 cleared in 2021 marked a 15-year

high in Amazonian deforestation (PRODES, 2021). Deforestation is not the only

environmental disaster in the Amazon. Much of the remaining forest has suffered

disturbance (Peres et al., 2006; Tyukavina et al., 2017; Bullock et al., 2020), reducing
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its viability as habitat and generating large quantities of carbon emissions (Barlow

et al., 2016; Bullock et al., 2021). Global climate change is also causing the Amazon

to become drier and is increasing the dry season length by as much as 6.5 days

per decade in some regions (Fu et al., 2013). Longer, drier and hotter dry seasons

increase the risk of forests fires (Le Page et al., 2017), which have long lasting effects

on the forest (Silva et al., 2018; Berenguer et al., 2021).

Despite these ongoing environmental catastrophes, there is growing international

recognition of the potential of large-scale forest restoration in the Amazon as a

‘nature-based solution’ to climate change. Compared with other tropical regions,

the Amazon could be ideal for forest restoration as it has low population densities

(Cunningham et al., 2018), extensive areas of unproductive or unprofitable agricultural

systems (Garrett et al., 2017, 2021), and moderate to high carbon sequestration

rates (Requena Suarez et al., 2019).

1.3 Big data in environmental science

Increasing availability of large-scale data (big data) and the growing need to examine

and resolve major environmental problems, is driving a shift towards big science.

Although there is little consensus on what constitute big data (Graham et al., 2013;

Kitchin et al., 2016), it is generally used to refer to massive volumes of data that

cannot readily be handled by the usual tools or practises (Snijders et al., 2012).

Across academia, industry, and government, big data presents opportunities for

increasing our understanding of complex systems and optimizing decision making

(Wamba et al., 2015). However, it has only recently entered mainstream use in

ecology and environmental science. These fields have historically been dominated

by research conducted over limited spatial and temporal scales – largely due to time,

accessibility, and financial constraints preventing large-scale field data collection

(Heidorn, 2008). However, the big data revolution is changing the way we produce
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and analyse data, opening new possibilities for research and completely transforming

the scales at which we can quantify the natural world and our impact on it.

Despite being relatively new to environmental science, increasing availablity of

large datasets and long time series mean that big data has already been used

to study a range of environmental phenomena, from glacial melt (Ye et al., 2017)

and pollution (Apte et al., 2017) to flood risk (Pollard et al., 2018) and wildfires

(Dutta et al., 2016). In the environmental and geophysical sciences, sensors are the

principal source of big data. For example, the Wildlife Insights platform holds over

12 million camera trap records (Wildlife Insights, 2020), and the Landsat satellites

add ~1500 new 30-million-pixel images to their 48-year dataset daily; with every

point on earth photographed every 8 days (USGS, 2020). Citizen science is another

major source of big environmental data – eBird, the online platform for aggregating

the sightings of birdwatchers, has become one of the world’s largest biodiversity-

related datasets, with more than 100 million bird sightings contributed annually (eBird,

2021). Quantification of the natural world at these scales will provide unprecedented

insights into the patterns and predictors of complex environmental and anthropogenic

systems, paving the way for a new era of data-informed policy.

Big data presents innumerable opportunities to explain the past, describe the present,

and project the future of our planet. As a well-studied region, with an increasing

number of large, high-resolution geospatial datasets becoming available (e.g. Bullock

et al., 2020; MapBiomas, 2021), the Amazon makes an ideal case study for using big

data to explore environmental change.

1.4 Thesis objectives

In this thesis, I use big data to address four key knowledge gaps for the Amazon.

First, despite increasing dependency on secondary forest growth in climate change
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mitigation strategies, there is limited high-resolution data on their current extent,

location, temporal dynamics (i.e. longevity, clearance cycles) and their contribution to

the carbon balance. Second, Amazonian research typically focuses on the Brazilian

Amazon, failing to account for 40% of the biome. As a result, key information on

the rates of forest loss and recovery, and their associated implications for carbon

stocks, are missing for the majority of Amazonian countries and the biome as a whole.

Third, although research indicates that the benefits of forest restoration are strongly

influenced by a number of spatially variable factors, the location of secondary forests

within the landscape has not been quantified at scale. Forth, there have been no

biome-wide assessments of how deforestation and anthropogenic disturbances are

driving habitat loss. Specifically, I aim to answer the following questions.

1. What is the current extent and carbon stock of secondary forests? What is their

contribution to the tropical carbon balance? (Chapter 2 - Secondary forests offset

less than 10% of deforestation-mediated carbon emissions in the Brazilian Amazon)

2. What are the spatial patterns in the extent of forest loss and recovery in the

Amazon? How do carbon emissions and accumulation vary across the biome?

(Chapter 3 - Old-growth forest loss and secondary forest recovery across Amazonian

countries)

3. Where are secondary forests growing in relation to old-growth forests? How

do secondary forests change old-growth forest edge exposure and fragmentation?

(Chapter 4 – The proximity of secondary forests to old-growth forests reduces forest

fragmentation and buffers edges in the Amazon)

4. How have deforestation, disturbance and secondary forest growth impacted habitat

availability in the Amazon? (Chapter 5 - Deforestation and degradation drive 40%

declines in habitat availability for Amazonian species)

25



1.5. Thesis structure

1.5 Thesis structure

The four data chapters in this thesis have been written for publication. Chapter 2

is published in Global Change Biology; Chapter 3 is published in Environmental

Research Letters; Chapter 4 in is preparation for submission to Global Change

Biology; and Chapter 5 is in review for Nature. These chapters are stand-alone

pieces of work logically connected on the theme of using big data to understand

broad-scale environmental change in relation to Amazonian tropical forests. As a

result of being prepared for publication, there is overlapping information between

chapters – notably in their introductions and methodologies. However, each chapter

provides a novel contribution to the field. Inconsistencies in chapter formatting

are the result of differing requirements of the target journals. Chapter 6 provides

a summary of the thesis findings and discusses their importance for science and

future environmental policies in the Amazon region. It also highlights future research

needs. The appendices provide the supplementary material published alongside

each chapter, as well as the abstracts for other research output produced using data

created for this thesis.
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Abstract

Secondary forests are increasing in the Brazilian Amazon and have been cited

as an important mechanism for reducing net carbon emissions. However, our

understanding of the contribution of secondary forests to the Amazonian carbon

balance is incomplete, and it is unclear to what extent emissions from old-growth

deforestation have been offset by secondary forest growth. Using MapBiomas 3.1 and

recently refined IPCC carbon sequestration estimates, we mapped the age and extent

of secondary forests in the Brazilian Amazon and estimated their role in offsetting old-

growth deforestation emissions since 1985. We also assessed whether secondary

forests in the Brazilian Amazon are growing in conditions favourable for carbon

accumulation in relation to a suite of climatic, landscape, and local factors. In 2017,

the 129,361 km2 of secondary forest in the Brazilian Amazon stored 0.33±0.05 billion

Mg of above-ground carbon but had offset just 9.37% of old-growth emissions since

1985. However, we find that the majority of Brazilian secondary forests are situated

in contexts that are less favourable for carbon accumulation than the biome average.

Our results demonstrate that old-growth forest loss remains the most important

factor determining the carbon balance in the Brazilian Amazon. Understanding the

implications of these findings will be essential for improving estimates of secondary

forest carbon sequestration potential. More accurate quantification of secondary

forest carbon stocks will support the production of appropriate management proposals

that can efficiently harness the potential of secondary forests as a low-cost, nature-

based tool for mitigating climate change.
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2.1 Introduction

Tropical forests are an enormous reservoir of carbon, storing upwards of 190

billion Mg of above-ground carbon (Saatchi et al., 2011). However, this critical

carbon store is threatened by deforestation (Eva et al., 2012; Hansen et al., 2013),

which is responsible for 0.81–1.14 billion Mg of carbon emissions annually (Baccini

et al., 2012; Harris et al., 2012). The rate of global deforestation has prompted

the establishment of several international initiatives intended to reduce the rate

of forest loss and its associated consequences (e.g. Reducing emissions from

deforestation and forest degradation). The Amazon basin is the largest remaining

tropical carbon stock (Saatchi et al., 2011). However, it also has the highest rates

of forest clearance (Hansen et al., 2013), with carbon losses directly related to

deforestation estimated to be 0.16–0.67 billion Mg C yr−1 (Achard et al., 2002; Loarie

et al., 2009). Approximately 20% of old-growth forest in the Brazilian Amazon has

already been cleared, and since the dramatic slowdown in deforestation from 2004

to 2012 (27,772 km2 to 4,571 km2) the rate of forest loss has been increasing, with

2019 marking a 10-year high (PRODES, 2020).

The abandonment of agriculture on previously deforested land – a typical land use

change in the tropics – is resulting in the expansion of secondary forests (Aide

et al., 2013; Chazdon, 2014). Secondary forests, defined here as forest growing

after complete land clearance, rapidly store large quantities of carbon (Poorter

et al., 2016; Requena Suarez et al., 2019), making them a potentially important

mechanism for reducing net carbon emissions (Pan et al., 2011; Griscom et al., 2017;

Rogelj et al., 2018). Secondary forests have long been recognised as important for

offsetting deforestation emissions (Skole et al., 1994) and in recent years, promoting

secondary forest growth has been included in a number of key global policies as a

readily available and cost effective strategy for reducing net carbon emissions and

mitigating climate change. For example, the Bonn Challenge (2011) aims to restore

3.5 million km2 of forest by 2030 and is supported by the New York Declaration on
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Forests (2014) and by the UN Decade on Restoration (2019), which recognises

the need to reverse ecosystem degradation in order to achieve the UN Sustainable

Development Goals. In South America, these schemes are reinforced on a regional

scale in several countries by agreements such as Initiative 20x20 (2014), which aimed

to restore 200,000 km2 of degraded land by 2020. Within Brazil, secondary forests

are supported by the Forest Code, which mandates that properties within the Legal

Amazon hold up to 80% forest cover, of either primary and secondary vegetation.

However, whilst secondary forest is known to be increasing in the Brazilian Amazon

(Nunes et al., 2020), it is also subject to widespread clearance (Wang et al., 2020),

which undermines its effectiveness as a carbon store.

Our understanding of the contribution of secondary forests to the tropical carbon

balance is incomplete. First, despite studies estimating deforestation-mediated

emissions (e.g. Harris et al., 2012), it is not clear to what extent these emissions

have been offset by secondary forest growth or how this has varied over time. The

value of secondary forests as a carbon store needs to be assessed within a context

of dynamic land use, with old-growth forests still being lost and secondary forests

reconverted to agriculture. With the promotion of secondary forest growth being

suggested as an important climate change mitigation strategy (Pan et al., 2011;

Griscom et al., 2017; Rogelj et al., 2018), the need to improve our understanding

grows more pressing. Second, the trajectory and rate of secondary forest growth are

influenced by numerous climatic, landscape, and local factors, which contribute to a

ten fold difference in estimates of carbon sequestration rates across the tropics (Elias

et al., 2020). Carbon accumulation in secondary forests is strongly linked to climatic

conditions, with longer, more intense dry seasons, and lower annual rainfall known to

slow accumulation (Poorter et al., 2016). At the landscape scale, secondary forest

growth is slower when there is less old-growth forest cover to act as a seed source

(Caughlin et al., 2016; Chazdon et al., 2016a). Locally, secondary forests growing on

abandoned pasture accumulate carbon more slowly than on abandoned cropland

(Fearnside et al., 1996) and growth is slower where the number of previous swidden
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cycles, also known as slash-and-burn or shifting cultivation, is higher (Jakovac et al.,

2015). The status of the majority of secondary forests in relation to these climatic,

landscape, and local variables is not known. Establishing the location of secondary

forests will provide insights into whether they are growing in contexts that are more

or less favourable to rapid carbon accumulation.

Here we address these knowledge gaps, using the MapBiomas 3.1 landcover dataset

(1985-2017) and the Avitabile et al. (2016) pan tropical biomass map to provide

the first spatially explicit estimate of the role of secondary forests in offsetting

deforestation emissions in the Brazilian Amazon. We calculate the age, extent

and carbon stock of secondary forests and estimate the initial carbon stock of old-

growth forest, asking (1) what has been the potential role of secondary forests in

offsetting old-growth deforestation emissions since 1985? We then explore (2) how

secondary forests are distributed in relation to a broad suite of climatic, landscape,

and local factors that are known to affect carbon accumulation. Finally, as a first

step in identifying the potential for interacting effects, (3) how are these variables

correlated spatially within the existing range of secondary forests?

2.2 Methods

2.2.1 Assessing secondary forests and deforestation

We used MapBiomas to define deforestation and forest recovery. We opted to use

it over other alternatives such as TerraClass (see Wang et al., 2020) as it provides

a longer temporal series (1985-2017 rather than 2004-2014) and has undergone

an extensive two-stage validation process: first a comparative analysis with existing

land cover maps and second a visual analysis of 30,000 sample pixels. While there

is a low level of agreement (33.8%) between the secondary forest map derived

from MapBiomas and that of the most recent TerraClass product at the pixel level

(both for 2014), the two datasets broadly agree in terms of spatial distribution (see
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supplementary information). The temporal pattern of deforestation captured by

MapBiomas is also comparable to that of (PRODES, 2020, Figure A.1, ).

Table 2.1 Initial reclassification of MapBiomas schema.

MapBiomas ID MapBiomas Classification Reclassification

1 1. Forest Old-growth Forest
2 1.1. Natural Forest Old-growth Forest
3 1.1.1. Forest Formation Old-growth Forest
4 1.1.2. Savannah Formation Old-growth Forest
5 1.1.3. Mangrove Old-growth Forest
9 1.2. Forest Plantation Cropland
10 2. Non-Forest Natural Formation Other/Water
11 2.1. Wetland Other/Water
12 2.2. Grassland Formation Other/Water
32 2.3. Salt Flat Other/Water
13 2.3. Other Non-Forest Natural Formation Other/Water
14 3. Farming Cropland
15 3.1. Pasture Pasture
18 3.2. Agriculture Cropland
21 3.3. Mosaic of Agriculture and Pasture Cropland
22 4. Non-Vegetated Area Other/Water
23 4.1. Beach and Dune Other/Water
24 4.2. Urban Infrastructure Other/Water
29 4.3. Rocky Outcrop Other/Water
30 4.4. Mining Other/Water
25 4.5. Other Non-Vegetated Area Other/Water
26 5. Water Other/Water
33 5.1. River, Lake and Ocean Other/Water
31 5.2. Aquaculture Other/Water
27 6. Non-Observed NA

2.2.2 Secondary forest extent

Our study focused on the Brazilian Amazon, a 4.27 million km2 expanse covering

almost a quarter of the South American landmass and constituting 60% of the total

Amazon forest. We produced 30-m resolution annual maps of secondary forest

cover for the Brazilian Amazon from 1986 to 2017 using the MapBiomas 3.1 land

cover dataset and a change-detection algorithm (Supporting Information). We initially

reclassified the MapBiomas schema into four classes: old-growth forest, cropland,

pasture, and other (Table 2.1; Figure A.2). The secondary forest class was introduced
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during the change detection process. Pixels were classified as secondary forest

when they returned to ‘forest’ following a period being classified as ‘non forest’. We

applied a spatial filter restricting ‘forest’ to ‘non forest’ transitions to a minimum of

0.36 ha (4 contiguous pixels), unless directly adjacent to a pre-existing non forest

area of 4 or more pixels. This filter was used to limit the influence of natural canopy

opening events (e.g. small tree falls) and changes resulting from georeferencing

issues from being incorrectly recorded as anthropogenic clearances, whilst also

being small enough to capture the activities of all land use change including by small

landholders, who typically clear just 2-3 ha yr−1 (Fujisaka et al., 1996). Averaged over

the time series, this resulted in an Amazon wide reduction in calculated secondary

forest area of 0.82±0.31% (n = 32, mean±SD) compared with the same analysis

conducted without the spatial filter.

2.2.3 Secondary forest age

Using our annual maps of secondary forest extent, we calculated secondary forest

age as the number of consecutive years that a pixel was classified as secondary

forest. The first year in our time series is 1985, meaning the maximum age of

secondary forests is 32 years. We assumed all forest existing in 1985 to be old-

growth forest. As large scale deforestation began in the 1970s, this old-growth mask

included some secondary forest. However, only a proportion of the ~140,000 km2 of

the land deforested before 1985 (Fearnside, 1990) would have returned to secondary

forest (Almeida et al., 2016; Nunes et al., 2020) and much of that secondary forest is

likely to have been cleared again during our time series. As such, we believe this

old-growth forest mask is unlikely to have had major impacts on our more recent

estimates of secondary forest extent and age. Where reporting forest extent or age,

results are reported as mean ± the temporal standard deviation in order to capture

inter-annual variability.
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2.2.4 Above-ground biomass in secondary forest

Requena Suarez et al. (2019) estimate biomass accumulation rates for young (≤20

years) and old (21 to 100 years) secondary forest in tropical and subtropical ecozones

(FAO, 2012). Three of these ecozones intersect our study area: tropical rainforest

(~91.8%), tropical moist forest (~7.8%) and tropical montane forest (~0.2%). For

these ecozones, Requena Suarez et al. (2019) estimate above-ground biomass

accumulation rates (mean±95% CI) of, respectively, 5.9±0.8 Mg ha−1 yr−1, 4.4±1.3

Mg ha−1 yr−1 and 5.2±1 Mg ha−1 yr−1 for young secondary forest, and 2.3±0.3

Mg ha−1 yr−1, 1.8±0.8 Mg ha−1 yr−1 and 2.7±0.8 Mg ha−1 yr−1 for old secondary

forest. We applied these refined estimates across our map of secondary forest age

to calculate the total above-ground biomass of secondary forest in the Brazilian

Amazon.

We converted these above-ground biomass values to carbon stock by multiplying

them by the Intergovernmental Panel on Climate Change (IPCC) conversion factor of

0.47 (Eggleston et al., 2006). As this is just one estimate of carbon accumulation in

secondary forest, we explore the representativeness of the underlying plot network

in the supplementary information. Below-ground carbon may contribute an additional

25% to the total stored carbon (Luyssaert et al., 2007). However, assessing below-

ground carbon is not within the scope of this study (Powers et al., 2011).

2.2.5 Deforestation emissions

Using the change in old-growth forest extent captured by our analysis of MapBiomas,

we calculated deforestation emissions using above-ground biomass estimates

produced by Avitabile et al. (2016), which fuse the Saatchi et al. (2011) and

Baccini et al. (2012) datasets to produce a 1-km resolution pan-tropical above-

ground biomass map for the early 2000s. Much of the deforestation captured by our

algorithm occurred before the most recent datasets used by Avitabile et al. (2016).

Therefore, we infilled the biomass of areas deforested before 2010 with the mean
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above-ground biomass from the surrounding 10 km2 using the ArcGIS Pro Focal

Statistics tool. As the Avitabile et al. (2016) estimates include degraded forests, we

may be under-estimating emissions from old-growth deforestation. A further limitation

of the Avitabile et al. (2016) dataset is its 1-km resolution, which we downscaled to

match the 30-m resolution MapBiomas land cover data. We assigned above-ground

biomass values to each old-growth forest pixel using its centroid. To calculate annual

emissions, we apply an exponential decay rate of 0.49, based on the combustion

rate reported by Leeuwen et al. (2014), to extend emissions from a deforestation

event over several years. Repeated fires increase combustion completeness to

nearly 100% for cropland deforestation and up to 90% for pasture deforestation

(Morton et al., 2008). This exponential decline is a reasonable expectation as pasture

management practices often involve fire for several years after deforestation. It is also

consistent with the loss of all above-ground biomass in deforested land in longer-term

assessments (e.g. Berenguer et al., 2014). Results were similar when we assumed

all above-ground carbon was emitted in the year of deforestation (see supplementary

information).

We estimated emissions from secondary forest clearance using our map of secondary

forest above-ground biomass, calculated using the Requena Suarez et al. (2019)

accumulation rates. We convert above-ground biomass to carbon stock using a

conversion factor of 0.47 and apply an exponential decay rate of 0.49 to emissions, as

above. We report variation in secondary forest emissions using the 95% confidence

interval of estimates in Requena Suarez et al. (2019).

2.2.6 Factors mediating secondary forest recovery

Climatic

Rainfall, rainfall seasonality, and climatic water deficit have been found to be the best

climatic indicators of absolute biomass recovery potential in the Neotropics (Poorter

et al., 2016). Using these same measures, with mean annual rainfall and rainfall
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seasonality from WorldClim (variable ‘BIO12’ and ‘BIO15’, respectively; Hijmans

et al., 2005) and climatic water deficit from Chave et al. (2014), we compared the

climate of secondary forests with that of the whole Brazilian Amazon. This allowed us

to determine if secondary forests are situated in climatic contexts relatively more or

less favourable for biomass recovery than the biome average. To do so, we randomly

sampled the distribution of each climate indicator for both secondary forest and the

whole Brazilian Amazon, then used the Wilcoxon Rank Sum test to assess whether

the samples were drawn from different distributions. We repeated this process 10,000

times and recorded the mean p-value. We undertook these analyses with a variety

of sample sizes. However, results were insensitive to sample size (Table A.4), and

we report results for n = 1000.

Variation in local climate is known to influence carbon sequestration in secondary

forest (Elias et al., 2020). However, accounting for it involves a number of spatial

and temporal issues. For example, local climate is altered drastically by deforestation

(e.g. Spracklen et al., 2015, 2018), and accounting for this would require climate data

to be updated in near real-time. Moreover, there are no large-scale assessments of

the sensitivity of secondary forests to these changes.

Landscape

We calculated the proportion of the landscape within 1 km of each secondary forest

pixel that was occupied by old-growth forest, secondary forest, and total forest (either

old-growth or secondary). We created a 1-km buffer for each pixel using the Python

package Shapely and calculated the area of each forest type within the buffer using

the zonal_stats function from the Python package rasterstats. All Python packages

are freely available.

Local

For the period 1985 – 2017, the change-detection algorithm records total clearance

events as the number of times a pixel transitions from either old-growth or secondary
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forest to a non-forest class. Our two measures of prior agricultural land use (time

as cropland and time as pasture) were recorded as the number of years spent as

cropland or pasture between the most recent clearance event and the pixel returning

to ‘forest’.

2.2.7 Associations between factors influencing biomass accu-

mulation

Using Spearman’s Rank Order Correlation and a sample of secondary forest pixels

(n = 1000), we tested the association between each of the climatic, landscape, and

local variables. To enhance the dispersal of selected pixels across the Brazilian

Amazon, we used stratified sampling with replacement such that 25% of pixels were

situated in each quadrant of the Amazon biome, while within quadrant selection was

random. We repeated this process 10,000 times, recording the mean correlation

coefficient. Results were similar from a spatially unconstrained selection process

(Figure A.4). Given the large number of repeated tests (n = 104) and the relatively

large sample size (n = 1000), we used a more conservative significance threshold of

0.01 for this analysis.

2.3 Results

2.3.1 Secondary forest extent and age

We find a near continuous expansion in the extent of secondary forest from 1985

onwards (Figure 2.2a), resulting in a total of 129,361 km2 of secondary forest in the

Brazilian Amazon in 2017. When averaged across the time series, the yearly increase

in secondary forest extent was 8.61±10.96% (mean±SD; hereafter unless stated)

and in 2017 these forests accounted for approximately 3.8% of the total forest cover.

The year 2000 is the only exception to this upward trend, with a decline in secondary

forest area of 3,089 km2. We find that secondary forests were not distributed uniformly
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across the basin but were concentrated along the ‘arc of deforestation’, waterways

and major highways (e.g. Trans Amazonian highway; Figure 2.1a). Our results

show that in 2017, 111,023 km2 (85.8%) of secondary forests were less than 20

years old, with a median age of seven years. Very young secondary forests (≤ 5

years old) accounted for 42.08% (Figure 2.1c). From 1995, these very young forests

consistently represent almost half of total secondary forest extent (48.0±4.5%).

Figure 2.1: The extent, age, and carbon stock of secondary forest in the
Brazilian Amazon. (a) The spatial distribution of secondary forest (red). Inset
reveals the level of detail available with 30-m resolution data (b) The proportion of
total forest cover made up of secondary forest (c) Median secondary forest age
per 1 km2 with inset of the secondary forest age distribution (d) Total above-ground
carbon stock in secondary forests, calculated using accumulation rates estimated by
Requena Suarez et al. (2019).

2.3.2 Old-growth deforestation emissions offset by secondary

forest growth

Old-growth deforestation emissions

Between 1985 and 2017, MapBiomas detects the clearance of 512,473 km2 of old-

growth forest. We estimate that this resulted in a gross carbon loss of 3.49 billion Mg
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C, emitting the equivalent of 12.80 billion Mg CO2 Figure (2.2c).

Secondary forest sequestration

We estimate that in 2017, secondary forests in the Brazilian Amazon stored

0.33±0.05 billion Mg C, equivalent to 1.20±0.18 billion Mg CO2 (mean±95% CI;

Figure 2.1d) and more than a quarter (26.9%) of the total carbon stock was stored in

forests ≤ 10 years old. Gross secondary forest carbon sequestration increased

considerably over the time series, from 10.38±1.6 million Mg CO2 in 1986 to

66.12±9.7 million Mg CO2 in 2017 (mean±95% CI; Figure 2.2b). The accumulation

of carbon in secondary forests was slowed by clearance, with an average 6,410±2007

km2 of secondary forest cleared annually (Figure 2.2a). Of all the secondary forest

mapped during our time series, 60.6% (198,688 km2) had been cleared again by 2017,

resulting in the gross loss of 0.23±0.03 billion Mg C, equivalent to 0.83±0.12 billion

Mg CO2 in emissions (mean±95% CI). However, averaged across the time series,

secondary forests were a net carbon sink of 6.75±1 million Mg C yr−1 (mean±95%

CI).

Deforestation emissions offset

Our findings show that between 1985 and 2017, approximately 9.37% (1.20±0.18

billion Mg CO2, mean±95% CI) of old-growth deforestation emissions had been

offset by secondary forest growth, once the loss of carbon from secondary forest

clearance had been subtracted (Figure 2.2c). For much of the time series (1986

2004), old-growth deforestation emitted carbon at 16.95±4.6 times the rate of net

secondary forest sequestration. However, following the rapid decline in old-growth

deforestation after the 2004 peak, emissions dropped to 4.97±1.1 times annual

secondary forest net sequestration (2010 – 2017). When averaged across the time

series, 10.29±6.8% of old-growth emissions were offset by net secondary forest

sequestration annually (1986 – 2017). The proportion of old-growth deforestation

emissions offset by net secondary forest sequestration varied across the time series,

dropping from 8.51% in 1993 to 5.48% in 2003 and then peaking at 25.59% in 2013.
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Figure 2.2: Forest cover change and associated emissions in the Brazilian
Amazon from 1985 to 2017. (a) Net annual change in secondary forest extent
(red) with gross annual new growth (dark) and clearance (light) (b) Gross annual
emissions from old-growth clearance (medium), secondary forest clearance (light)
and secondary forest growth (dark) (c) Cumulative old-growth deforestation emissions
(solid) and net carbon balance (dashed) after offset by secondary forest emissions
(shaded).
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2.3.3 Factors influencing secondary forest carbon sequestration

Climatic

In 2017, there was an important spatial congruence between climate and secondary

forests. Most secondary forests were located in regions where annual rainfall is lower

than the biome average (secondary forest: 1945 mm, Brazilian Amazon: 2224 mm,

Figure 2.3a), and where there is greater rainfall seasonality (secondary forest: 70%,

Brazilian Amazon: 57%, Figure 2.3b) and a greater climatic water deficit (secondary

forest: 375.5 mm yr−1, Brazilian Amazon: 259 mm yr−1 Figure 2.3c). We can be

highly confident (p < 0.01) in meaningful differences between these distributions

(Wilcoxon rank sum; climatic water deficit: W = -16.71, p < 0.01, rainfall: W = -14.49,

p < 0.01, seasonality: W = 20.25, p < 0.01).

Landscape

The majority (98.9%) of secondary forests in 2017 were within 1 km of old-growth

forest, with 28.9% having more than half of the surrounding landscape (1 km radius)

occupied by old-growth forest (Figure 2.4a). Where the proportion of old-growth

forest cover in the surrounding landscape was high (≥70%), secondary forest

typically occupied the majority of the deforested area (median: 83%; Figure A.6).

Therefore, 17.2% of all secondary forests had a surrounding landscape that was

almost entirely forested (≥95% total forest cover; Figure 2.4e); despite very little

secondary forest having such high surrounding forest cover when considering old-

growth and secondary forest cover separately (2.8% and 0.2%, respectively; Figure

2.4a,c). Where the proportion of old-growth forest cover in the surrounding landscape

was very low (<10%), secondary forest typically occupied 26.0% (median) of the

deforested area (Figure A.6). Thus, secondary forests in landscapes with < 10% total

forest cover are in the minority (2.4%; Figure 2.4e). The median proportion of the

surrounding landscape occupied by each forest type was 34% for old-growth forest,

20% for secondary forest and 66% for total forest.
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Figure 2.3: The climatic context of secondary forest in the Brazilian Amazon in
2017. The distribution of (a) annual rainfall (mm yr−1), (b) rainfall seasonality
(% difference in wet and dry season rainfall) and (c) climatic water deficit (mm yr−1)
of secondary forest in the Brazilian Amazon (white, left). The distributions of all
three variables were significantly different to the distributions for the entire Brazilian
Amazon (blue, right) (p < 0.01). Medians for secondary forest (dots) and Amazon-
wide (dashed) indicated by vertical lines.
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Local

Across all secondary forests present in 2017, the median time spent as agriculture

(cropland and pasture) prior to abandonment was 4 years (Figure 2.4b). The

majority of secondary forest (85.4%, 110,522 km2) had experienced just one type

of agricultural use, with median usage times of 2 years for cropland (39.2%, 50,692

km2) and 5 years for pasture (46.3%, 59,830 km2; Figure 2.4d). For the portion of

secondary forests that had experienced multiple use types (14.6%, 18,838 km2),

median land use time was 2 years for cropland, 8 years for pasture and 12 years for

total use time. The majority (66.8%) of secondary forest in 2017 was growing on land

that had only been cleared of forest once (Figure 2.4f). However, much had been

subjected to more than one clearance event during the time series (33.2%, 42,958

km2) and thus experienced additional land use in previous cycles.

2.3.4 Associations between factors that influence biomass

accumulation

Climatic versus Landscape

All our climatic (climatic water deficit, annual rainfall and rainfall seasonality) and

landscape (old-growth forest cover, secondary forest cover, total forest cover)

variables were significantly correlated (p < 0.01; Figure A.5). These correlations

show that secondary forests set in low forest cover landscapes also tend to be in

regions with drier and more seasonal climates (Figure 2.5).

Landscape versus Local

The proportion of the surrounding landscape occupied by secondary forest was

positively correlated with all our measures of prior use (time as agriculture, time as

pasture, time as cropland). The strength of the correlation with time as pasture was

weaker than the others and statistically marginal given the sample sizes and the

number of tests (p = 0.02; Figure 2.5; Figure A.5). The number of clearance events

was positively associated with secondary forest cover (p < 0.01; Figure 2.5; Figure
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Figure 2.4: Landscape and local contexts of secondary forest in the Brazilian
Amazon in 2017. The distribution of landscape (a, c, e) and local (b, d, f)
factors known to influence carbon accumulation for secondary forest in the Brazilian
Amazon in 2017. Landscape factors: the proportion of land cover within 1 km of
a secondary forest pixel that was classified as (a) old-growth forest, (c) secondary
forest, and (e) total forest. Local factors: (b) the number of clearance cycles, and the
number of years a secondary forest pixel spent as (d) cropland or (f) pasture before
abandonment.
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A.5). These associations were reversed for old-growth forest cover and total forest

cover, which have negative correlations with all our local factors (p < 0.01; Figure 2.5;

Figure A.5). Taken together, we find longer use times and more agricultural cycles in

landscapes with lower overall forest cover and where secondary forests represent a

larger proportion of total forest cover (Figure 2.5).

Climatic versus Local

Climatic water deficit and annual rainfall were both negatively correlated with number

of clearance events, time as agriculture and time as cropland (p < 0.01; Figure

2.5; Figure A.5). Rainfall seasonality was positively correlated with these same

factors, although the association with number of clearance events was weaker. We

found similar correlations between climatic variables and time as pasture, albeit

with lower confidence in the associations (p > 0.01; Figure 2.5; Figure A.5). Taken

together, these findings show that secondary forests in regions with drier climates

also experienced a higher frequency of agricultural cycles and more prolonged use

times (p < 0.01; Figure 2.5; Figure A.5).

2.4 Discussion

Inaccurate estimates of forest age and low resolution images, leading to an

overestimation of secondary forest extent, have been two of the greatest limitations of

previous attempts to estimate secondary forest carbon stocks at large scale (Chazdon

et al., 2016a). The MapBiomas land cover data has allowed us to overcome both

of these challenges. Using annual data, we found that in 2017 secondary forests

occupied 20% of the deforested land in the Brazilian Amazon (also see Almeida et al.,

2016; Nunes et al., 2020). Crucially, if these secondary forests have followed the
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Figure 2.5: Spatial correlations between climatic, landscape, and local context
of secondary forest in the Brazilian Amazon in 2017. Mean correlation co efficient
of the spatial associations between the climatic, landscape, and local contexts of
secondary forest in the Brazilian Amazon. The tests used 10,000 iterations of
Spearman’s Rank Order Correlation on samples of secondary forest pixels (n = 1000)
and a significance (*) threshold of p < 0.01. Samples were selected such that 25% of
points were situated in each quadrant of the Amazon biome.

regrowth trajectories calculated by Requena Suarez et al. (2019), we show that by

2017 their total carbon stock had offset less than 10% of the emissions resulting from

the loss of old-growth forest (Figure 2.2c). This is much lower than the 20% offset

calculated by Houghton et al. (2000), despite secondary forests now covering an

area almost the size of England. Nonetheless, our estimate may be high, given the

climatic conditions of secondary forest compared to the network of plots on which the

carbon accumulation rates are modelled (Figure A.3). We explore these issues below,

first examining why secondary forest carbon stocks are so low, and then exploring

what climatic, landscape, and local factors indicate about the recovery potential of
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secondary forests in the Brazilian Amazon.

2.4.1 High rates of forest conversion limit secondary forest

carbon stocks

Within the Amazon, there is clear evidence that the carbon stock of secondary forests

is related to their age (Poorter et al., 2016; Lennox et al., 2018; Requena Suarez

et al., 2019; Elias et al., 2020). Recent estimates suggest a 32-year-old secondary

forest, the maximum age detectable with MapBiomas, would hold a maximum of

68.4±9.2 Mg C ha−1, which is just 59±8% of the average for old-growth forest (115.2

Mg C ha−1; Avitabile et al., 2016). Furthermore, some secondary forests recover

at much slower rates still, reaching just 34.6 Mg C ha−1 at 32 years (Elias et al.,

2020). Moreover, these maximum values are rarely attained because high rates

of secondary forest clearance (6,410 km2 yr−1) impose an age distribution that is

highly skewed towards young age classes (Figure 2.1c)(also see Chazdon et al.,

2016a). We find only 16% of secondary forests were aged between 20 and 32 years

in 2017, whereas forests less than 5 years old, which store just 12±2% of the carbon

of old-growth forest, comprised 50% of all secondary forests.

The carbon balance of secondary forests was undermined by continued clearance

(Figure 2.2a-b). Over the time series, almost as much carbon as was stored by

secondary forest in 2017 (0.33±0.05 billion Mg C), was released back into the

atmosphere through secondary forest clearance (0.25±0.4 billion Mg C, Figure 2.2b).

The ephemeral nature of secondary forests seems unlikely to change as younger

secondary forests, which constitute the majority (84%), are also more susceptible

to clearance (Schwartz et al., 2017a). Furthermore, the increasing proportion of

total forest loss accounted for by secondary forest indicates they are being cleared

preferentially (Wang et al., 2020). Protecting secondary forests from clearance is key

if they are to be used to meet climate change mitigation goals (Grassi et al., 2017).

Yet, any such policies also need to consider their contribution to swidden agriculture
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and examine whether their clearance helps to reduce old-growth forest loss (Wang

et al., 2020).

2.4.2 Could the climatic, landscape, and local context of sec-

ondary forests be affecting their carbon accumulation

potential?

Climatic factors

The occurrence of deforestation is strongly influenced by an area’s agricultural

suitability, which in turn is determined by a suite of economic, climatic, and edaphic

conditions (Carmen Vera-Diaz et al., 2008). This has resulted in the more seasonal

regions of the Brazilian Amazon experiencing the most extensive land use change

(Figure 2.1a, Figure A.7a-c). Consequently, in 2017, the distribution of secondary

forests within the Amazon’s climatic range was also skewed towards these drier

and more seasonal conditions (Figure 2.3), which are likely to be less favourable

for secondary forest growth (Poorter et al., 2016). Crucially, our understanding of

secondary forest growth in these drier regions is also limited – the plots underpinning

the most recent basin-wide estimates of secondary forest carbon accumulation rate

(Requena Suarez et al., 2019) are located in significantly wetter regions of the

Amazon than secondary forests generally (Figure A.3). This climatic distribution of

secondary forests means they could be more sensitive to climate change resulting

from global greenhouse gas emissions and regional changes in forest cover. On a

local scale, deforestation results in reduced rainfall (e.g. Spracklen et al., 2015, 2018)

and higher temperatures (Silva et al., 2016), leading to increased evapotranspiration

and drought stress. Over longer time scales, these changes are likely to be intensified

by global climate change, which is causing the Amazon to become drier and

increasing the dry season length – by as much as 6.5 days per decade in some

regions (Fu et al., 2013). Drought is known to affect tree species composition and lead

to biomass reductions in old-growth forest (Phillips et al., 2009; Esquivel-Muelbert

et al., 2019) and there is evidence that such changes could reduce secondary forest
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recovery rates (Elias et al., 2020). We could reasonably expect secondary forests to

be even more susceptible to these drought stresses as they may lack the deep roots

known to support old-growth forests (Nepstad et al., 1994), pioneer tree species have

lower water use efficiency (Markesteijn et al., 2011), and mortality from droughts is

linked to lower wood density (Phillips et al., 2009; Uriarte et al., 2016). Conversely,

if the slow shift towards species associated with dry environments that is seen in

old-growth forest (Esquivel-Muelbert et al., 2019) is also occurring in secondary

forests, then the latter may become more resilient to drought. However, secondary

forests are often found in regions with little surrounding old-growth forest cover (e.g.

Elias et al., 2020), and compositional changes may be limited by seed availability.

Landscape factors

Agricultural land abandonment is a complex phenomenon primarily driven by

socioeconomic factors such as migration (Benayas et al., 2007). As a result, although

Amazon-wide secondary forest covered approximately 20% of deforested land, this

figure varied greatly between regions. The greatest proportional recovery occurred

in the highly forested areas of the western Amazon, where headwater abandonment

and rural-to-urban migration are enabling secondary forest growth (Figure 2.1b)

(Parry et al., 2010). As surrounding forest cover has positive effects on biomass

recovery (Jakovac et al., 2015; Toledo et al., 2020), secondary forests growing in

these relatively intact landscapes were positioned favourably for carbon sequestration.

However, across the Brazilian Amazon, we find such forests to be in the minority: just

13% of all secondary forest was in landscapes with ≥80% old-growth forest (Figure

2.4a). Most secondary forest was found along the highly deforested agricultural

frontier, where it may suffer the negative impacts of fragmentation, isolation, and

edge effects (Ewers et al., 2005; Magnago et al., 2017). Consequently, these forests

likely have considerably lower carbon-accumulation potential than those in regions

with more intact forest landscapes (Chazdon, 2003; Bihn et al., 2010). Finally,

although surrounding forest cover is important for carbon accumulation, the role of

the type and condition of the surrounding forest requires further research. Recent
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findings indicate that high surrounding of secondary forest cover is advantageous for

forest growth in the early stages of succession (Toledo et al., 2020). However, it is

likely that proximity to old-growth forest will be more important later in succession,

as they are essential for providing the diverse seed sources required to establish

resilient, biodiverse and high-biomass secondary forests (e.g. Hawes et al., 2020).

Furthering our understanding these relationships will be key to designing effective

restoration programmes within landscapes where there is little old-growth forest

remaining.

Local factors

Incorporating measures of prior land use has previously been suggested as a

mechanism for improving the accuracy of biomass estimates in secondary forest

(Wandelli et al., 2015), as studies have found that higher land use intensity leads

to slower biomass recovery (e.g. Jakovac et al., 2015). Our assessment provides a

mixed evaluation of the favourability of local land use intensity factors for secondary

forest carbon accumulation. We find the majority (66.8%) of secondary forests in

2017 were in the favourable position of only having experienced one agricultural

cycle. However, this alone does not adequately represent land use intensity, as the

type and length of land use within a single cycle vary greatly. Secondary forests

accumulate carbon more slowly on abandoned pasture than on abandoned cropland

(Fearnside et al., 1996). We find 46.3% of secondary forests in 2017 to be growing

on land that was previously pasture and a further 14.6% on land that was pasture at

some point during the most recent land use cycle (Figure 2.4d), placing the majority

of secondary forests on unfavourable ground for carbon accumulation. Although

secondary forest pixels were on average in use for just 4 years, almost 25% had

10 or more years of use before being abandoned. Extended use periods are more

characteristic of pasture (median: 5 years), which typically had a longer use period

than cropland (median: 2 years). This short-term cropland use suggests that most of

the secondary forests growing on former cropland may be part of farm-fallow swidden

land use practises, on which secondary forests grow more quickly than on abandoned
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pasture (Wandelli et al., 2015) or mechanised croplands. These conditions are more

favourable for carbon accumulation. However, the land is an inherent component of a

cyclical agricultural system that supports local livelihoods, thus cannot be relied upon

for long-term carbon storage. The impact of land use on carbon accumulation rate

is complex, with many interacting variables determining the fate of the subsequent

forest (Guariguata et al., 2001; Jakovac et al., 2015; Martinez-Ramos et al., 2016).

Although providing some insight into the variety of secondary forest land use histories,

the MapBiomas classifications of pasture and cropland mask important details about

specific land use practises which may be key to fully understanding the influence of

local factors on secondary forest growth.

Interactions between predictors of secondary forest recovery

While each of these climatic, landscape, and local factors are important in their

own right, they do not act independently (Figure 2.5), giving rise to the possibility

that interactions between factors that may be influencing carbon accumulation in

secondary forests. Some of the variables are so influential that they may overwhelm

the effect of others; for example, higher previous land use intensity can restrict carbon

recovery even in very high forest-cover landscapes (Fernandes Neto et al., 2019).

Therefore, the longer land use periods found in high forest cover areas suggests

that the benefits of a favourable landscape context experiences by many secondary

forests could be reduced by their land use history.

Other associations between factors known to affect carbon accumulation may act

together to limit secondary forest recovery. For example, secondary forests in drier,

less favourable climatic contexts are also more likely to have lower surrounding

forest cover and a greater proportion of the landscape comprising secondary rather

than old-growth forest (Figure 2.5). These secondary forests are not only suffering

the consequence of limited water availability (Poorter et al., 2016) but may also be

subject to edge and isolation effects, reduced tree seed sources and the changes in

local climate that result from high levels of deforestation (Fu et al., 2013; Magnago
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et al., 2017; Spracklen et al., 2018). The association between these factors suggests

that the very low biomass accumulation rates found in one region in the eastern

Amazon (Elias et al., 2020) may be representative of far greater areas of Amazonia’s

secondary forests, highlighting the urgent need to expand sampling efforts.

2.4.3 Uncertainty in the role of secondary forests as a carbon

sink

While the carbon balance of undisturbed forests has been well studied (Pan et al.,

2011; Saatchi et al., 2011; Brienen et al., 2015; Hubau et al., 2020), estimates

of the rate of carbon sequestration in secondary forests remain highly variable

(Pan et al., 2011; Saatchi et al., 2011; Grace et al., 2014; Elias et al., 2020;

Heinrich et al., 2021). Requena Suarez et al. (2019) have made huge advances

in refining our understanding of secondary forest carbon accumulation. However,

there are uncertainties associated with applying their rates universally in order to

produce large-scale estimates. Chiefly, the estimates we used are based on a plot

network that, despite being the most wide-spread available, does not fully represent

conditions influencing secondary forest growth. This network is over-representing

the accumulation rates in regions that are wetter and less seasonal than the majority

of secondary forests in the Brazilian Amazon (see supplementary information). This

disparity in climate may even be greater than reported here, as we have potentially

underestimated the climatic range of secondary forests by using WorldClim data,

which may no longer be representative of true climate on the ground, given the impact

of deforestation on local climates (Spracklen et al., 2018). Many of the plots (~60%)

also began growing before 1985 (Requena Suarez et al., 2019), when large-scale

deforestation had not yet substantially reduced forest cover (Fearnside, 2005) and

before mechanised agriculture had intensified land use. Recent studies from other

regions have shown much lower carbon accumulation rates of 2.25 Mg ha−1 yr−1

in Paragominas and Santarém-Belterra (Lennox et al., 2018), 1.08 ha−1 yr−1 in

Bragança (Elias et al., 2020) or as low as 0.89 Mg ha−1 yr−1 in the Guiana Shield
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(Chave et al., 2020).

Further uncertainty is introduced by the inability to account for the different drivers

of secondary forest growth, which we show may be associated in ways that could

result in important interacting effects on carbon accumulation. Forest degradation

contributes yet more uncertainty to large-scale estimates of carbon stock. This

often unaccounted for source of carbon emissions affects 17% of the forest area

in the Amazon (Bullock et al., 2020), meaning that we are under-estimating

emissions from old-growth forests and over-estimating secondary forest carbon

stock. The intricacies of local soil variation present another source of uncertainty

when estimating secondary forest carbon stock across large regions and requires

further research before we can begin to understand its impact on secondary forest

carbon accumulation rates (Quesada et al., 2011; Quesada et al., 2012).

Some of these limitations may be overcome by improvements in LiDAR technology

and our capacity to analyse the resulting data (Almeida et al., 2019). Nevertheless,

these new remote sensing techniques cannot capture several key measures that

are essential for understanding the impact of biogeographic factors on carbon

accumulation, notably wood density (Baker et al., 2004). In order to overcome

this, investment is needed to develop a distributed secondary forest plot network that

captures the full range of factors known to affect recovery, with a design that allows

studies to assess interactions between factors, and includes local measures of soil

and other land use histories that cannot be resolved from space. Repeated samples

of the same plot will also provide advantages over chronosequence approaches,

allowing biomass responses to climatic variation to be included in models (Elias et al.,

2020).
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2.5 Conclusion

With properly implemented policy, secondary forests could provide an effective, low-

cost, nature-based tool for mitigating climate change (Crouzeilles et al., 2017) and

for reaching national and international ecosystem restoration targets (e.g. Bonn

Challenge, UN Decade for Restoration). If just 80% of Brazil’s 12 million ha

reforestation target took place in the Amazon, with the accumulation rates reported

by Requena Suarez et al. (2019), it could store as much 1.1±0.2 billion Mg C if left

undisturbed 20 years. Yet, despite a fifth of deforested land now being covered by

secondary forest, in more than 30 years, secondary forest growth has at most offset

less than 10% of deforestation emissions. Without halting old-growth forest loss, the

importance of secondary forest for the carbon balance of Amazonia is likely to remain

minimal. With 10,000 km2 of old-growth forest cleared in the Brazilian Amazon in

2019 (PRODES, 2020), this is unlikely to change in the near future. We have also

shown that there is likely to be much more geographical variation in secondary forest

recovery rates than is incorporated in current estimates. Future policies relying

on secondary forest growth will require a much better understanding of the factors

determining recovery to ensure different secondary forests are treated appropriately,

with protection focused on those of greatest long-term carbon storage potential (Gren

et al., 2016). More accurate quantification of carbon stocks and recovery rates in

secondary forests will support the production of appropriate management proposals

(Wandelli et al., 2015) and will be critical if carbon-based payments for ecosystem

services (e.g. REDD+) are to be successfully implemented. Moreover, increasing

our knowledge of secondary forests is crucial to our understanding of tropical forest

responses to environmental stressors, and the resilience of one of the world’s most

important biomes.
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Abstract

There is growing recognition of the potential of large-scale forest restoration in the

Amazon as a “nature-based solution” to climate change. However, our knowledge

of forest loss and recovery beyond Brazil is limited, and carbon emissions and

accumulation have not been estimated for the whole biome. Combining a 33-year

land cover dataset with estimates of above-ground biomass and carbon sequestration

rates, we evaluate forest loss and recovery across nine Amazonian countries and at

a local scale. We also estimate the role of secondary forests in offsetting old-growth

deforestation emissions and explore the temporal trends in forest loss and recovery.

We find secondary forests across the biome to have offset just 9.7% of carbon

emissions from old-growth deforestation, despite occupying 23.7% of deforested

land. However, these numbers varied between countries ranging from 7.7% in Brazil

to 23.8% in Guyana for carbon offsetting, and 20.1% in Brazil to 56.9% in Ecuador

for forest area recovery. We reveal a strong, negative spatial relationship between

old-growth forest loss and recovery by secondary forests, showing that regions with

the greatest potential for large-scale restoration are also those that currently have the

lowest recovery (e.g. Brazil dominates deforestation and emissions but has the lowest

recovery). In addition, a temporal analysis of the regions that were >80% deforested

in 1997 shows a continued decline in overall forest cover. Our findings identify three

important challenges: (1) incentivising large-scale restoration in highly deforested

regions, (2) protecting secondary forests without disadvantaging landowners who

depend on farm-fallow systems, and (3) preventing further deforestation. Combatting

all these successfully is essential to ensuring that the Amazon biome achieves its

potential in mitigating anthropogenic climate change.
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3.1 Introduction

Deforestation is a major and ongoing threat, with an estimated 4.2 million km2 of

global forests cleared since 1990 (FAO et al., 2020). Across the world tropical

deforestation represents around 8% of all anthropogenic emissions (Seymour et al.,

2016), while deforestation and land-use change combined contribute the majority

of carbon emissions in most tropical forest countries. However, tropical forests are

fundamental to the world’s climate crisis not only as a source of emissions, but

also as a means for capturing atmospheric carbon. Secondary forests growing on

previously deforested land are rapidly sequestering carbon and providing refuge

for many forest dependant species. While old-growth forests are undeniably more

valuable than secondary forests, both in terms of biodiversity and carbon storage

(Gibson et al., 2011; Berenguer et al., 2014), there is growing recognition of the

potential of large-scale tropical forest restoration as a “nature-based solution” to

climate change mitigation (UN Decade on Restoration, 2019) and of its importance

for meeting the ambitious emissions targets of the Paris agreement (Grassi et al.,

2021).

The Amazon biome has been recognised by researchers and policymakers alike for

its key role in future climate policy for two main reasons. First, the Amazon biome

stores an estimated 86 Pg of carbon (Saatchi et al., 2007), making it one of the world’s

largest carbon strongholds (Saatchi et al., 2011). Unchecked, deforestation could

convert much of this carbon stock into emissions (Gatti et al., 2021), significantly

accelerating climate change. The Brazilian Amazon has witnessed amongst the

highest absolute rates of deforestation in the tropics, with a notable increase in

recent years (PRODES, 2020), placing Brazil in the top 10 emitters in the world

(World Resources Institute, 2021). Second, compared with other tropical regions,

the Amazon could be ideal for forest restoration as it has low population densities

(Cunningham et al., 2018), extensive areas of unproductive or unprofitable agricultural

systems (Garrett et al., 2017, 2021), and moderate to high carbon sequestration rates
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(Requena Suarez et al., 2019). However, patterns of forest loss and recovery, and

their impact on the carbon balance have not been estimated for the whole biome. Our

understanding has previously focused on Brazil (e.g. Smith et al., 2020), which only

makes up 60% of the Amazon biome. The contribution of the other seven countries

(Bolivia, Colombia, Ecuador, Guyana, Peru, Suriname, Venezuela) and the French

overseas territory (French Guiana; henceforth included in the collective ‘countries’) is

much less well understood. With recent studies showing increasing occurrences of

deforestation hotspots outside Brazil (Kalamandeen et al., 2018), the need to expand

our knowledge beyond Brazil grows more critical. Furthermore, forest recovery also

varies greatly over space and time (Chave et al., 2020; Smith et al., 2020), making

it crucial to understand where forests are already recovering and how this recovery

differs both across political units and on finer spatial scales, so that active restoration

efforts and novel policy incentives can be targeted effectively. Despite restoration

offering a growing opportunity to mitigate anthropogenic emissions (Chazdon et al.,

2016b, 2020; Matos et al., 2020), to date, we are not aware of any analysis examining

patterns of forest loss and recovery across Amazonia at both national and subnational

level, which are the relevant scales for policy interventions promoting restoration..

Here, we combine a 33-year land cover dataset (MapBiomas Amazonia 2; 1985-

2018) with estimates of above-ground biomass (AGB; Avitabile et al., 2016) and

forest regrowth potential (Requena Suarez et al., 2019) to evaluate the distribution

of forest loss and recovery across the nine countries and nine Brazilian states that

intersect the Amazon biome. We ask three questions. (1) What is the current (2017)

extent of old-growth deforestation and forest recovery, and their associated impact

on the Amazonian carbon balance? We estimate carbon emissions from forest

loss and carbon accumulation from secondary forest growth (i.e. forest growing

on previously deforested land) across the Amazon biome and its major political

units. (2) What is the geographic relationship between old-growth deforestation and

secondary forest recovery? We examine this at the country- and state-level, and

then at a finer resolution using a ~60 km2 grid. (3) How have the rates of old-growth
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3.2. Methods

deforestation and secondary forest recovery varied over the last two decades? We

discuss our results in light of the challenges of avoiding further deforestation and

achieving large-scale forest restoration across Amazonia.

3.2 Methods

3.2.1 Old-growth and secondary forest extent

We use the MapBiomas Amazonía 2 dataset to assess deforestation and SF extent

for the Amazon Biome (Appendix B.4). By using the MapBiomas dataset we were

able to exclude forestry plantations, which is important for evaluating changes in SF

extent. We reclassify the MapBiomas schema into: forest, pasture, cropland and

other, then use a change detection algorithm to produce annual maps of the extent

of OG and SF cover across the Amazon biome (Appendix B.4). Any pixel (900 m2)

classified as ‘forest’ in the first year of the time series (1985) was considered to be

OG until it transitioned to ‘non-forest’. Pixels that transitioned from ‘non-forest’ to

‘forest’ were classified as SF. As the MapBiomas time series begins in 1985, any SF

that began growing before this date is included in our OG class (Appendix B.4). Our

method is based on the approach previously described by Smith et al. (2020).

3.2.2 Secondary forest age and residence time

We measured SF age as the number of consecutive years a pixel was classified as

SF in our annual maps of forest cover. Due to incomplete data coverage in some

regions this should be considered a “minimum” age estimate rather than a precise

measure (Appendix B.4). We measured SF residence time as the age of SF at

clearance. We conducted Kruskal-Wallis tests to determine if SF age or residence

time (for SF cleared 1997 to 2017) differs between countries and Brazilian states.

To avoid assigning significance to small effect sizes due to large samples, we used

a sample size of 100. We repeated this process 10,000 times and recorded the
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mean p-value. Brazil was excluded from the analysis in favour of its component

states to avoid pseudo-replication. Where the Kruskal-Wallis test was significant, we

conducted Dunn’s post-hoc tests to identify which pairs of countries or states had

different distributions. We do not explore the dynamics of repeated clearances or

“third-growth” forests in this study as less than 0.04% of deforested pixels had been

cleared multiple times during the study period.

3.2.3 Calculating above-ground carbon

Old-growth forest

We calculated AGB in OG using the Avitabile et al. (2016) 1-km resolution pan-

tropical AGB map, which we downscaled to match the 30-m resolution MapBiomas

land cover data. For areas deforested before 2010, prior to the most recent dataset

used by Avitabile et al. (2016), we interpolate AGB using the KNNImputer function

from the Python package sklearn, which infills missing values with the mean of a

pixel’s twenty nearest neighbours. We converted AGB to carbon stock using the

Intergovernmental Panel on Climate Change (IPCC) conversion factor of 0.47 g C

(g biomass)−1 (Eggleston et al., 2006). For the purposes of this study, we assume

above-ground carbon to be static as, although OG are accumulating carbon, it is

at a very slow rate (~1 Mg ha−1 year−1; Requena Suarez et al, 2019). Due to the

complexity of mapping the intensity of disturbance in OG over large spatial scales,

accounting for the impact of degradation on carbon stocks was beyond the scope of

this study. Therefore, we may be over-estimating carbon emissions from deforestation.

Below-ground carbon is estimated to contribute an additional 25% to tropical forest

carbon stocks (Luyssaert et al., 2007), but its assessment was also beyond the scope

of this study.

Secondary forest

We estimate SF AGB using our maps of SF age in conjunction with the Requena

Suarez et al. (2019) biomass accumulation rates for old (≥20 years) and young (<20
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years) SF. We converted AGB values to carbon stock as above (conversion factor:

0.47). Carbon accumulation rates can vary greatly in response to local climatic,

environmental, and disturbance factors (Poorter et al., 2016; Elias et al., 2020), but

to date analyses calculating local scale accumulation rates have been limited to

the Brazilian Amazon (Heinrich et al., 2021). As our study encompasses the entire

Amazon biome, we opted to use the baseline carbon accumulation rates calculated

by (Requena Suarez et al., 2019) for the FAO Ecozones (FAO, 2012). Four ecozones

intersect our study area: tropical rainforest (~61.7%), tropical moist forest (~25.6%),

tropical montane forest (~11.7%), and tropical dry forest (~1.0%).

3.2.4 Deforestation extent and emissions

Using the change in forest cover captured by our analysis of MapBiomas, we

calculated the annual extent of OG and SF deforestation and the associated carbon

emissions. For each forest type, we applied an exponential decay of 0.49 (Leeuwen

et al., 2014) to our estimate of the pixel’s above-ground carbon in order to extend

emissions from a deforestation event over several years, as is seen in long-term

assessments of AGB loss on deforested land (e.g. Berenguer et al., 2014). Above-

ground carbon was converted to carbon dioxide equivalent using the conversion

factor 3.67. For pixels classified as cropland or pasture in the first year of our time

series (1985), we calculate emissions as if the pixels were cleared in 1984. While

this means that some of the pixels are assumed to have been cleared more recently

than they actually were, the impact of this on our estimates of OG deforestation

emissions is negligible as, by the most recent year of our anaylsis (2017), more

than 99.99% of the carbon they contained is accounted for. We report variation in

SF emissions using the 95% confidence interval of estimates of Requena Suarez

et al. (2019). While some deforested timber is harvested and utilized long-term –

meaning not all above-ground carbon is transferred to the atmosphere – we believe

the impact of this on our estimate of carbon emissions to be small as: (i) our map of

old-growth above-ground carbon includes degraded forest, so much of the carbon
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loss associated with timber removal is already accounted for; (ii) timber offtake rates

are generally low (e.g. Sist et al., 2021), (iii) the efficiencies of turning natural timber

to long-lifespan products are also very low (Alice-Guier et al., 2020).

3.2.5 Relationship between deforestation and recovery

Political scale

We use the term forest area recovery to mean the percentage of the total area

of OG deforestation occupied by SF, and the term carbon recovery to mean the

percentage of total OG deforestation emissions offset by carbon accumulated in SF.

We use Akaike information criterion (AIC) model selection to find best-fit models

(Nally et al., 2018) for the relationships between the percentage of OG deforestation

(relative to original OG extent; see above) and forest area recovery, and between the

percentage of OG carbon emissions (relative to original carbon stock; see above)

and SF carbon recovery. We conducted this analysis across political units, comparing

the AIC score of five difference models: null, linear and broken-stick (up to three

segments). This analysis was conducted using the stats (R Core Team 2021) and

segmented (Muggeo, 2017) R-packages. The assumptions of the models were

checked by graphical analysis (Quinn et al., 2002).

Local scale

We repeated the above analysis at a local scale by dividing the Amazon biome into a

regular grid of ~58.9 km2 cells (65,536 pixels; pixel size: 0.0009 km2; size determined

by computational efficiency). Cells with >99% of pixels classified as ‘other’ (i.e. where

less than 1% of the cell area is capable of being forest) were excluded from the grid

level analysis. Cells with ≤0.1% deforestation were considered to have experienced

no deforestation and were excluded from the analysis. To understand how recovery

in highly deforested landscapes has changed over time, we selected cells that had

lost more than 80% of their OG cover by 1997 (Figure B.7) and calculated the change

in their percentage OG, SF and total forest cover from 1997 to 2017.
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3.2.6 Temporal trend analysis

To explore how OG deforestation, SF extent and their associated carbon emissions

have changed over time, we used the AIC model selection method described above

using AICc; a small-sample-size corrected version of AIC. We conduct this analysis

between 1997 and 2017 to avoid assigning significance to ‘trends’ that are an artifact

of SF older than 33-years being included in our OG class.

3.3 Results

3.3.1 Old-growth deforestation extent and carbon emissions

By 2017, we found that 813,944 km2 of old-growth forest (OG) in the Amazon biome

had been cleared (Table 3.1). Brazil has seen the greatest loss in OG area both

in absolute terms (689,451 km2; 3.1a) and proportional to its Amazonian extent

(17.6%; 3.1b). Two-thirds of Brazil’s nine Amazonian states have an absolute

area of deforestation exceeding that of any of the other countries (3.1a); the

deforested area in Pará state alone is more than double that of all other countries

combined (Pará: 262,869 km2; other countries: 124,493 km2; 3.1a). By 2017, OG

deforestation across the Amazon biome had resulted in the loss of 6.33 Pg C from

AGB, emitting the equivalent of 23.22 Pg CO2 (Table 3.1). Brazil contributed 79.9%

of all OG deforestation emissions (5.06 Pg C; Figure B.1). Ecuador had the greatest

percentage loss of carbon relative to its original OG above-ground carbon stock

(12.3%), but this represents just 2.2% of total emissions. The Brazilian states of Pará,

Mato Grosso and Rondônia exceed the emissions of any other individual Amazonian

country (Table 3.1).
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3.3. Results

3.3.2 Secondary forest extent, age, residence time and carbon

accumulation

In 2017, secondary forests (SF) covered 192,867 km2 of land in the Amazon biome,

accounting for approximately 3.4% of the total forest cover (Table 3.1). 71.7% of

Amazonian SF was in Brazil (138,287 km2; 3.1c), with 13.3% in Peru (25,579 km2;

3.1c), and 5.7% in Colombia (11,055 km2; 3.1c). Making up 4.1%, 3.7% and 2.5%

of each country’s total forest cover respectively (Table 3.1). The majority (78.2%)

of all SF was less than 20 years old and the median age was 8 years (Figure B.2).

Very young SF (≤5 years old) accounted for 35.9% of all cover. This skewed age

distribution was apparent in the majority of countries (Figure B.3). Guyana and

Suriname were the only countries with significantly different age distributions with

large spikes in 18 to 24-year-old SF (Dunn’s post-hoc test: P<0.05; Figure B.5a),

although this could be an artifact of poor temporal data availability in these countries

(Appendix B.2). As our time series began in 1985, the maximum detectable age

of SF is 32 years. However, the skewed distribution of forest ages suggests that

very little forest would have exceeded this maximum detectable age (Figure B.3).

Across the Amazon biome, during the period 1997-2017, the majority (70.0%) of SF

cleared was 5-years old or less and the median residence time (from the start of

SF regrowth to clearance) was just 2 years. There were no significant differences

in the distribution of residence times across countries or states (Figure B.5b). SF

present in 2017 had accumulated 0.62±0.11 Pg C, equivalent to 2.26±0.41 Pg CO2.

SF deforestation has resulted in the loss of 38.9% (391.65±94.62 Tg C) of all carbon

accumulated by SF between 1985 and 2017.

3.3.3 Spatial relationships between deforestation and recovery

In 2017, carbon accumulated in SF had offset less than 30% of OG deforestation

emissions in every Amazonian country or Brazilian state we assessed (Table 3.1).

Across the Amazon biome as a whole just 9.7±1.8% of carbon emissions had been
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3.3. Results

Figure 3.1: OG deforestation, SF extent and SF carbon recovery in Amazonian
countries and Brazilian states in 2017. The (a) area of OG deforestation, (c) area
of SFs, and (e) SF carbon stock for Amazonian countries (dark) and Brazilian states
(light) in 2017. Proportional values (right) are measured as (b) the percentage of
original OG forest extent (measured as the total area capable of supporting forest)
that has been deforested, (d) the percentage of deforested land occupied by SF, and
(f) the percentage of OG deforestation emissions offset by carbon sequestration in
SFs. Countries and states are ordered by the area of the Amazon they contain.
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3.3. Results

Figure 3.2: Proportional recovery of SF in the Amazon biome in 2017.The
relationship between SF recovery, measured as the percentage of cleared land
occupied by SF and deforestation as a percentage of total land within the Amazon
basin (a,b). The relationship between emissions offset by SF carbon accumulation
and deforestation emissions as a percentage of original above-ground carbon (c, d).
For (a, c) Amazonian countries (.) and Brazilian states (o); and (b, d) the Amazon
basin gridded at ~59.8 km2. The best-fit models (where AICc ≥ 2) are shown in red:
generalised linear model for panel (a); and broken stick for panels (b-d). Brazil was
excluded from the calculation of the best-fit models for panels (a) and (c) in favour of
its component states. Note the y-axis is different on panel (c).
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3.3. Results

offset, despite 23.7% of deforested land being occupied by SF. Forest area recovery

(defined here as the percentage of deforested land occupied by SF) varied across

countries and Brazilian states. Brazil had the lowest forest area recovery (20.1%)

of any Amazon country, while Ecuador and Amapá state had the greatest forest

area recovery, with SF occupying 56.9% and 69.1% of deforested land, respectively

(Figure 3.2a). Carbon recovery (defined here as the percentage of emissions from

OG deforestation offset by carbon accumulation in SF) also varied greatly between

countries, with the lowest in Brazil (7.7%) and the highest in Guyana (23.8%; Figure

3.2c).

Across countries and states, there were significant negative relationships between

deforestation and recovery, which followed linear or L-shaped trends (Figure 3.2a,c;

Table B.3; see Methods). As such, countries or states with a high percentage loss

of OG typically have a low forest area recovery, while those which have lost less

OG have a higher forest area recovery (Figure 3.2a). For example, Ecuador, which

was 12.7% deforested in 2017, had the greatest forest area recovery (56.9%), while

Brazil, which was 17.6% deforested, had the lowest forest area recovery (20.1%;

Figure 3.2a). The extremes are more accentuated across Brazilian states: Tocantins

had 82.9% OG deforestation and just 18.5% forest area recovery, while Amapá had

4.0% OG deforestation and 69.1% forest area recovery (Figure 3.2a). These spatial

patterns of loss and recovery were even more pronounced for losses and gains of

above-ground carbon stocks (Figure 3.2c).

These relationships between OG deforestation and SF recovery (and their resulting

carbon balance) were also spatially linked at a local scale. A gridded analysis

revealed strong negative, non-linear relationships that were well described by broken-

stick regression with two segments (Figure 3.2b,d; Table B.4). Of the cells that had

experienced some OG deforestation (>0.01% forest loss), the majority (62.8%) were

characterised by low deforestation (<50% forest loss) with high forest area recovery

(≥50% of deforested area), and just 1.1% of cells exhibit both high deforestation
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3.3. Results

Figure 3.3: Temporal changes in forest cover in highly deforested Amazonian
landscapes. The change in (a) old-growth forest, (b) secondary forest, and (c) total
forest cover in highly deforested Amazonian landscapes from 1997 to 2017. The
Amazon biome was gridded at ~58.9 km2, and each line represents a grid cell where
old-growth deforestation was ≥80% in 1997. Change in forest cover is measured as
the difference in the percentage of a grid cell occupied by each forest type compared
to its percentage cover in 1997. The median change across all the highly deforested
cells is shown in red.
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3.3. Results

Figure 3.4: Old-growth deforestation, secondary forest recovery, carbon
emissions and carbon accumulation in the Amazon biome in 2017. The spatial
distribution of (a) old-growth deforestation, (b) secondary forest recovery, (e) carbon
emissions from old-growth deforestation and (f) carbon accumulation in secondary
forest for the Amazon biome in 2017. Values were calculated over a regular grid of
~59.8 km2 cells. Old-growth deforestation is measured as the percentage of the cell
area cleared of forest. Secondary forest recovery is measured as the percentage of
deforested land occupied by secondary forest. Old-growth deforestation emissions
are measured as the percentage of the original old-growth above-ground carbon lost
to deforestation. Carbon recovery is measured as secondary forest carbon stock as
a percentage of old-growth deforestation emissions. The distribution of cell values for
each variable is shown in panels c, d, g, and h, respectively, which also define the
colours used in panels a, b, e and f.

(≥50%) and high forest area recovery (≥50%; Figure 3.2b; Figure 3.4c-d). Moreover,

cells with very high deforestation in 1997 (≥80%; n=1919) typically did not show

increased recovery over time (1997-2017; Figure 3.3) with a median change in total

forest cover of -1.0%. Over half (56.2%) of these cells saw further decline in total

forest cover, while those that did increase (n=843) only did so by an average of

4.6% (median). Finally, any small increases in secondary forest cover were more

than offset by the continues loss of old-growth forest. These trends were even more

pronounced for carbon, with high carbon recovery only occurring in cells with the

smallest losses from OG deforestation (Figure 3.2d; Figure 3.4g-h). Mapping these

data revealed clear patterns in the distribution of the percentage of both OG loss
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3.3. Results

and SF recovery (Figure 3.4). As expected, the highest levels of OG deforestation

were concentrated in the south and east, forming the well-characterised ‘arc of

deforestation’ (Figure 3.4). This contrasted with the spatial patterns for SF, where

recovery of extent and carbon stocks was highest in areas of low deforestation or low

carbon losses (Figure 3.4e-f).

3.3.4 Temporal trends in deforestation and recovery

The annual trend in OG deforestation between 1997 and 2017 was best described by

a broken-stick regression with three segments (Table B.1); the most recent of which

(2009-2017) showed an increase in the annual rate of deforestation from a low of

9,918 km2 in 2013 to 11,899 km2 in 2017 (Figure 3.5a). This reversed the previous

trend in which annual OG loss declined by more than half from 29,806 km2 in 2002.

We found no temporal trend in the area of new SF from 1997 to 2017, which was

on average 22,882±2,247 km2 per year (mean±SD; Figure 3.5c). In contrast, the

extent of SF deforestation has increased over time, from 15,775 km2 in 1997 to

17,750 km2 in 2017, and is well described by a linear trend (Figure 3.5c; Table B.1).

However, there was no temporal trend in the net change in SF area (Table B.1), which

fluctuated between plus 10,263 km2 and minus 1,961 km2 with a mean of plus 5490

km2.

OG deforestation emissions decreased from 0.82 Pg CO2 in 2004, to a low of 0.40

Pg CO2 in 2010, before increasing to 0.56 Pg CO2 in 2017 (Figure 3.5b); best

described by a broken-stick model with two segments (Table B.2). Annual carbon

accumulation from the expansion and growth of SF increased from 1997 to 2017

and is well described by a linear trend (Table B.2). It was typically 2.42±0.3 times

(mean±sd) the carbon emitted by SF deforestation each year (Figure 3.5d), which

was best described by a broken stick model with two segments. SF net annual

carbon accumulation increased linearly from 65.91 Tg CO2 in 1997 to 103.91 Tg CO2

in 2017 (Figure 3.5d, Table B.2). The trend in annual OG deforestation emissions
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3.4. Discussion

offset by net annual secondary forest carbon accumulation (i.e. carbon recovery) was

described by a broken stick regression with three segments (Table B.2). It remained

below 15% until 2007, then peaked at 26.1% in 2013 before declining again.

3.4 Discussion

We conduct the first comparison of forest loss and recovery across national and

sub-national political boundaries in Amazonia, analysing its impact on the carbon

balance and exploring recent temporal trends. We found that, across the biome, SF

offset just 9.7% of carbon emissions from OG deforestation despite occupying 23.7%

of deforested land. We also reveal a strong, negative spatial relationship between

OG deforestation extent and recovery by SF, with high recovery unlikely where a

greater percentage of OG has been cleared, even decades after deforestation. These

findings show there are clear barriers to recovery in landscapes that have been highly

deforested, likely reflecting both biophysical limitations and socio-economic drivers

(Curtis et al., 2018; Crouzeilles et al., 2020). Interestingly, the lack of increase in

forest cover in highly deforested landscapes suggests Amazonian forest-agriculture

dynamics are very different from those in the Brazilian Atlantic forest, where distance

to closest forest was an important predictor of natural regeneration from 1995-2016

(Crouzeilles et al., 2020). Building upon recent work in the Brazilian Amazon (Nunes

et al., 2020; Silva Junior et al., 2020b; Smith et al., 2020), we use the newly expanded

MapBiomas land cover dataset to look beyond changes in Brazil and examine trends

across the entire Amazon biome.

By providing measures of OG deforestation and SF recovery specific to each

Amazonian country, our study reveals high variation across political boundaries.

Some countries, such as Ecuador, demonstrate much greater levels of recovery than

the Amazon biome as a whole, while in other countries and Brazilian states recovery

is much lower. As expected, we find that Brazil is dominating Amazonian deforestation
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3.4. Discussion

Figure 3.5: Annual change and temporal trends in forest cover and carbon
emissions in the Amazon biome from 1997 to 2017. (a) The annual change
in the extent of old-growth deforestation and (b) its associated carbon emissions.
(c) The annual change in secondary forest extent comprising new secondary
forest growth (dark), secondary forest clearance (white) and the net change in
secondary forest extent (red line). (d) The annual carbon balance of secondary
forests, comprising carbon accumulation from new and existing secondary forests
(dark), carbon emissions from secondary forest clearance (white) and net change
in secondary forest carbon (red). (e) The annual balance of forest extent with old-
growth deforestation (blue), net change in secondary forest extent (red) and the
net change in total forest cover (dark blue line). (f) The annual balance in carbon
emissions with old-growth deforestation emissions (blue), net change in secondary
forest carbon (red) and the net carbon emissions from old-growth deforestation after
offset by secondary forest carbon accumulation (dark blue line). The best-fit models
(where AICc ≥ 2) for temporal trends are shown in grey: broken stick for old-growth
deforestation extent and emissions, secondary forest gross carbon emissions, and
net emissions from forest cover change; and generalised linear model for secondary
forest clearance, carbon accumulation and net carbon emissions, and the net change
in total forest cover.
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and emissions (85.4%; 79.9%), but its dominance also goes beyond that expected

by the portion of the Amazon biome it contains. For example, Pará state alone has

contributed more deforestation than that of all other Amazonian countries combined.

Furthermore, Brazil has the lowest forest area recovery, with just 20.1% of deforested

land occupied by SF, compared to 23.7% for the Amazon biome as a whole and a

range of 28.8 - 56.9% amongst the other countries. These trends were even more

marked when we analysed the percentage of carbon emissions resulting from OG

deforestation that have been offset by SF carbon accumulation. Despite growing

awareness of deforestation in other Amazonian countries (Kalamandeen et al., 2018),

these findings make it clear that combating land-use change in Brazil remains

fundamental to efforts to mitigate global climate change. However, the Brazilian

Amazon’s high deforestation rates – including the recent uptick in deforestation that

was not covered by the time series we analysed (PRODES, 2020) – and its low

percentage of restoration also suggest that there are major institutional and social

barriers to overcome (Arima et al., 2014). These are exacerbated by issues of

governance, with the current Brazilian administration being accused of encouraging

deforestation by weakening policies, undermining forest monitoring, cutting resources

for environmental law enforcement (Barlow et al., 2020; Vale et al., 2021) and

censoring scientific publications (Escobar, 2021).

Our findings show that OG deforestation emissions are outstripping SF carbon

accumulation across the Amazon biome, with less than a third of emissions offset

in every country or state we assess and less than 10% for the biome as a whole.

These findings confirm the need to prioritise halting deforestation and to preserve

remaining OG. However, it is widely accepted that in order to mitigate climate change

reducing emissions is not enough, and we must also recapture carbon from the

atmosphere (Edenhofer et al., 2014; Houghton et al., 2015; Griscom et al., 2017),

with SF growth suggested as an efficient and cost-effective method to do so (Rogelj

et al., 2018; Lubowski et al., 2020). Our analysis provides some important insights

into the challenges of large-scale forest restoration.

74



3.4. Discussion

First, the negative relationship between OG deforestation and forest area recovery

demonstrates the difficulty of increasing SF cover in low-OG cover landscapes,

despite them having the greatest potential for large-scale recovery of forest cover.

The scale of the challenge is clear from our assessment of landscapes with ≥80%

deforestation in 1997; which show no evidence of forest recovery over time. Many of

these highly-deforested landscapes were in Brazil (see S.I. map), showing that the

National Vegetation Protection Law (and the previous Forest Code) has not helped

enhance forest cover in these regions. These findings highlight the importance of

new incentives and targeted policy interventions for increasing SF in low-OG cover

landscapes. Policies must be targeted locally and regionally as well as nationally, and

could build on some of the ambitious state-level plans for achieving carbon neutrality,

such as Pará’s State Plan for the Amazon Now (Plano Estadual Amazônia Agora,

Decree nº 941, 03/08/2020). Although SF growth rates may be lower in these highly

deforested regions than those proposed by Requena Suarez et al. (2019) (e.g. Elias

et al., 2020; Heinrich et al., 2021), restoration in these regions could also delivers

important co-benefits, such as regulating local temperatures and stream flows as

well as providing habitat for a number of species (Lennox et al., 2018) including

some of the most threatened in the Amazon such as the Critically Endangered Belém

curassow (Crax [fasciolata] pinima), black-winged trumpeter (Psophia obscura), and

the Kaapori capuchin (Cebus kaapori). Furthermore, assisted natural regeneration

could help encourage forest recovery where natural regeneration is limited by a

lack of seed dispersal from adjacent forests or the intensity of previous land uses

(Chazdon et al., 2020; Shono et al., 2020; Jakovac et al., 2021).

Second, the young SF age and low carbon offsets found across the biome highlight

the importance of addressing the high turnover rates and low residence times of

SF (Jakovac et al., 2017; Schwartz et al., 2020), which result in the loss of huge

quantities of carbon annually (Tyukavina et al., 2017; Smith et al., 2020; Wang et al.,

2020). Implementing and enforcing policies to protect SF from deforestation could

substantially increase their effectiveness as long-term carbon stores (Chazdon et al.,
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2016b). For example, following the accumulation rates reported by Requena Suarez

et al. (2019), preserving the 2017 extent of SF (192,867 km2) would result in the

accumulation of 3.3±0.5 Pg C by 2050. However, any such policy needs to be

carefully implemented as the use of forests as fallows is crucial for the livelihoods of

many Amazonian smallholders and traditional peoples (Porro et al., 2015) and some

SF clearance may buffer against further OG loss (Wang et al., 2020). Furthermore,

the temporal consistency of the net increase in SF indicates that it is less sensitive to

socio-economic events than OG deforestation, suggesting that instigating change

may be difficult.

This study used three up-to-date resources to quantify forest cover dynamics and

their resulting effects on carbon balance (Methods). Yet important uncertainties

remain. First, while this study focuses on emissions from deforestation, it is important

to note that forest degradation, which affects up to 17% of forest cover (Bullock et al.,

2020), is also resulting in huge losses of carbon from OG (Bullock et al., 2021).

As our biomass map was from the early 2000s, the carbon emissions from OG

deforestation reported in this study may be over-estimated as some of the above-

ground carbon will have already been lost to prior disturbance. Recent advances

in assessing forest disturbance (e.g. Matricardi et al., 2020; Qin et al., 2021) are

restricted to the Brazilian Amazon, but demonstrate the importance – and complexity

(Silva Junior et al., 2020b) - of estimating it across decadal time-scales. Second, we

used above-ground biomass accumulation rates from Requena Suarez et al. (2019)

to estimate the SF carbon accumulation. However, this is likely to over-estimate

recovery in the more deforested and drier regions of the ‘arc of deforestation’ (e.g.

Elias et al., 2020; Heinrich et al., 2021). As such, Brazil’s contribution to carbon

recovery may be over-estimated in our analysis, increasing its contribution to net

carbon emissions.

Although our analysis shows a pan-Amazonian uptick in deforestation in recent years,

it also helps highlight moments in space and time that can be used to guide more
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positive actions. For example, the huge reduction in Brazilian OG deforestation

from an all-time high in 2004 to an all-time low in 2012 is a demonstration of what

can be achieved with well-implemented policy (Boucher et al., 2013; PRODES,

2020; Saraiva et al., 2020). Furthermore, although instigating change in Brazil will

be key to restoration efforts within the Amazon biome, an understanding of what

is enabling other countries to achieve greater levels of recovery could also help

guide policy interventions across the Amazon biome (Latawiec et al., 2014). For

example, the high levels of recovery in Ecuador and Amapá demonstrates that there

are contexts where recovery is occurring, and there may be valuable lessons to be

learned from previous and ongoing success. However, future research needs to go

beyond mapping forest cover change and examine the socio-economic conditions

which are key to restoration success (Grau et al., 2003; Aide et al., 2013; Rudel et al.,

2016). Quantifying the role of policy as driver of the relationships outlined in this

study would be a valuable next step and should be a priority for future research in

this field. Finally, the strong negative patterns of recovery found consistently across

geographic scales show that the regions with the greatest potential for large-scale

restoration are also those that currently have the least amount of recovery. The new

challenge facing policy makers is how to incentivise large-scale restoration in these

regions in order to break this trend. Doing so successfully is essential to ensuring

that the Amazon biome achieves its potential in mitigating anthropogenic climate

change.
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Abstract

Restoration of tropical forests is crucial for climate change mitigation and offers

co-benefits for biodiversity. However, secondary forest position within the landscape

could influence the strength of these benefits. Research has shown carbon and

biodiversity recovery in secondary forests is enhanced by proximity to old-growth

forests. But old-growth forests may also benefit from secondary forests in return

through buffering of edge effects and reduced fragmentation. To date there has been

no biome wide assessment of secondary forest location relative to old-growth forests.

We mapped Amazonian secondary forests and explored their proximity to old-growth

forests of different conditions. We also calculated the extent to which secondary

forests buffer old-growth forest edges and the influence of secondary forests on

fragmentation. In 2020, 41.2% of Amazonian secondary forests were directly adjacent

to old-growth forest and 94.1% was in a fragment connected to old growth; however,

adjacency and connectedness fell to 20.1% and 57.4%, respectively, when only

considering structurally-intact old-growth forest. Secondary forests buffered 43.1%

of old-growth forest edges, reduced the total number of old-growth fragments by 2

million, and doubled the median amount of old-growth forest in a contiguous fragment.

Our results reveal the importance of understanding spatial context when examining

the potential benefits of forest restoration. A greater understanding of the benefits of

locating secondary forests next to old-growth forests could support the development

of more effective climate change mitigation and conservation strategies.
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4.1 Introduction

Restoring forests, especially on deforested land in the moist tropics, has a key role

to play in achieving global climate change mitigation objectives (Cook-Patton et al.,

2020; Strassburg et al., 2020; Poorter et al., 2021). Although tropical secondary

forests store less carbon than old-growth forests, they rapidly remove carbon dioxide

from the atmosphere with estimates ranging from 0.89 Mg (Chave et al., 2020) to

7.6 Mg of carbon per hectare per year (Requena Suarez et al., 2019). Restoration

in tropical regions also offers important co-benefits for the provisioning of other

ecosystem services (Matos et al., 2020), including the preservation of biodiversity

(Lennox et al., 2018), improving water quality (Chavarria et al., 2021), and regulating

water flow (Buytaert et al., 2007; Meerveld et al., 2021).

Understanding where secondary forests exist at present, their temporal dynamics

under current policies and practices, and the potential benefits of sustaining or

increasing their extent is fundamental to the success of large-scale restoration

(Hobbs et al., 2014). These questions have been addressed in increasing detail in

recent years, with studies revealing that secondary forests are growing on as much

as 20% of deforested land in the Amazon (Smith et al., 2021) and that safeguarding

existing secondary forests in Brazil could achieve as much as 5.5% of the national

emissions reduction target (Heinrich et al., 2021). However, secondary forests are

often short lived and are typically cleared within the first 5 years (Schwartz et al.,

2017a; Reid et al., 2019; Smith et al., 2020), which limits their usefulness as a

long-term carbon store (Chazdon et al., 2016a). Other studies have refined our

understanding of secondary forest growth rates, showing that they vary considerably

based on climatic conditions (Poorter et al., 2016; Elias et al., 2020) and previous land

use (Jakovac et al., 2015; Cook-Patton et al., 2020). Nonetheless, most studies agree

that if secondary forests are maintained long-term, they have the potential to store

large quantities of carbon and provide habitat for a diverse range of species. With the

potential benefits of forest restoration well-established, we must now determine how
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future restoration efforts can maximise environmental benefits, especially in terms

of forest location (Brancalion et al., 2019). Understanding the current position of

secondary forests at the landscape scale, specifically in relation to old-growth forests,

could be instrumental in achieving this goal.

4.1.1 Influence of proximity to old-growth forests on secondary

forest recovery

The position of secondary forests within the wider landscape influences growth rates

and biodiversity (Figure 4.1). Landscape context dictates the diversity of source

communities and plays a critical role in determining community recovery (Chazdon

et al., 2009; Arasa-Gisbert et al., 2021). Low surrounding forest cover has been linked

to sharp declines in biodiversity and it has been suggested that landscapes with more

than 50% forest cover are required for successful conservation of forest dwelling

species in the tropics (Arroyo-Rodriguez et al., 2020; Arasa-Gisbert et al., 2021).

Surrounding forest cover also has positive effects on biomass recovery (Martinez-

Ramos et al., 2016; Toledo et al., 2020) and secondary forests growing in relatively

intact landscapes are likely to have higher carbon accumulation potential than those

in highly deforested landscapes (Chazdon, 2003; Bihn et al., 2010). Recent findings

indicate that proximity to old-growth forest is advantageous throughout succession,

supporting greater forest growth and 30% more species diversity in the early stages

(Jakovac et al., 2015; Toledo et al., 2020), as well as providing the diverse seed

sources required to establish resilient, biodiverse and high-biomass secondary forests

later (Hawes et al., 2020).

The quality of surrounding old-growth forest may also be important for species

recruitment in secondary forests. Structural disturbance events (e.g. forest fires,

selective logging) alter the composition of old-growth forests, leaving the area in a

forested but degraded state, which renders it unsuitable as habitat for many forest

species (Mestre et al., 2013b; Barlow et al., 2016; Moura et al., 2016). Species
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occupancy in old-growth forests is also impacted by fragmentation. Smaller fragments

will not hold many of the large vertebrates that could support the movement of

large-seeded plant species into adjacent secondary forests (Laurance et al., 2002;

Lees et al., 2006) and connectivity to extensive areas of old-growth forest is a key

determinant of species richness in secondary forests (Mayhew et al., 2019). These

relationships indicate that secondary forests may benefit considerably from proximity

to large areas of structurally-intact old-growth, whereas development of secondary

forests in landscapes with highly fragmented old-growth forest cover or extensive

forest disturbance is likely to be limited by lack of seed sources (Matos et al., 2020).

4.1.2 Benefits of secondary forest cover for old-growth forest

Secondary forests could provide additional environmental benefits if they help

buffer old-growth forests against edge effects (Figure 4.1). Edge effects are a

well-documented phenomenon that drastically impact the structure and functioning

of a forest through changes in microclimate, leading to reduced carbon stock and

altered species assemblages (see review by Laurance et al., 2002). Field studies

have demonstrated that the ecological and physical impacts of edge-effects extend

hundreds of metres into the forest (Laurance et al., 2002), while remote sensing

studies have revealed their substantial impact on carbon emissions across large

spatial scales (Silva Junior et al., 2020a). However, these impacts may be mitigated by

secondary forest growth adjacent to old-growth forest edges. Secondary forest buffers

may significantly reduce edge-related tree mortality (Mesquita et al., 1999), faunal

edge avoidance (Stouffer et al., 1995) and the intensity of changes in microclimate

(Didham et al., 1999). However, the benefits of secondary forest buffers are likely to

be influenced by the temporal relationship between edge exposure and regeneration.

As much as 90% of edge-induced carbon loss occurs within five years of exposure

(Silva Junior et al., 2020a), but it takes time for secondary forests to reach a level of

structural maturity at which they may begin to offer protection from abiotic changes or

offer habitat to core-forest species (Laurance et al., 2002). Nonetheless, landscape-
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wide increases in the occupancy and abundance of specialist species have been

found following regeneration by secondary forests (Rocha et al., 2018).

Secondary forests may also benefit old-growth forests by increasing fragment

connectivity (Figure 4.1; Newmark et al., 2017). Even small breaks in forest cover

can present impassable barriers to some species (Lees et al., 2009) and fragment

isolation has been found to explain more variation in species composition than

either forest type or forest age (Mayhew et al., 2019). By connecting old-growth

forest fragments, secondary forests could mitigate isolation effects by supporting the

movement of animals between old-growth forest fragments, even if the secondary

forest is not necessarily habitat for those species (Newmark et al., 2017).

Figure 4.1: Conceptual diagram of the benefits of secondary forest proximity
to old-growth. [1] Senzen et. al, Ecology (2007) [2] Pfeifer et. al, Nature (2017)
[3] Magnago et. al, Functional Ecology (2016) [4] Schwartz et. al, Ecological
Applications (2017) [5] Silva Junior et. al Science Advances (2020) [6] Laurance et al.
Conservation Biology (2002) [7] Mesquita et al. Biological Conservation (1999) [8]
Stouffer & Bierregaard Ecology (1995) [9] Didham & Lawton Biotropica (1999) [10]
Cramer et al, Biological Conservation (2007) [11] Martínez-Ramos et al. Biotropica
(2016) [12] Mayhew et al, Biotropica (2019)

While previous studies have demonstrated trends in the location of secondary forests
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relative to old-growth forests at the landscape level (Schwartz et al., 2017a; Smith

et al., 2020, 2021), to date there has been no large-scale analysis directly addressing

this issue. Here, we make the first biome-wide assessment of the location of

secondary forests in relation to old-growth forests. We do this for the Amazon,

the world’s largest remaining expanse of tropical forest and a region of critical

importance in mitigating climate change. We explore the positioning of secondary

forests within the landscape, asking (1) Where are secondary forests located in

relation to old-growth forests of different quality? (2) To what extent do secondary

forests buffer old-growth forest edges? And (3) how do secondary forests affect the

fragmentation of old-growth forests? We investigate the exposure time of old-growth

forest edges, as well as the age of secondary forests acting as buffers or connecting

fragments, to provide insights into the potential benefits of their proximity. Enhancing

our understanding of the spatial and temporal relationships between old-growth

edges and secondary forests would help to refine our estimates of edge-related

carbon emissions and habitat loss and could aid in the design of effective restoration

programmes.

4.2 Methods

4.2.1 Mapping forest cover

We assessed old-growth and secondary forest cover in the Amazon biome using the

MapBiomas Amazonia Collection 3.0 dataset (MapBiomas, 2021), which provides

annual 30-m resolution land cover maps from 1985 to 2020. We reduced the

MapBiomas schema to two classes (forest and non-forest) and then applied a change

detection algorithm to identify which forest pixels were secondary forests. Following

the method of Smith et al. (2021), any pixel (900 m2) in the ‘forest’ class in the first

year of the time series (1985) was considered old-growth forest until it transitioned

to ‘non-forest’. Pixels that transitioned from ‘non-forest’ to ‘forest’ were labelled as

84



4.2. Methods

secondary forest.

As the MapBiomas time series begins in 1985, any secondary forest that began

growing before this date is classified as old-growth forest and the maximum age of

secondary forests detectable with this method is 34 years. As such, our method may

be overestimating old-growth forest extent and underestimating secondary forest

extent. However, we believe the impact of this on our results to be small as secondary

forests typically have low residence times and high turnover rates (Schwartz et al.,

2020; Smith et al., 2020), so it is unlikely that much of the pre-1985 secondary forest

remains in 2020. Furthermore, as the earliest reliable satellite imagery covering the

whole Amazon is from 1985, MapBiomas provides the best available map of historic

forest cover.

4.2.2 Assessing old-growth forest quality

We created 3 classes of old-growth forest quality based on structural disturbance

and fragment size: (1) any old-growth forest, (2) structurally-intact old-growth forest,

and (3) extensive (> 50 km2) structurally-intact old-growth forest. These classes are

intended primarily as a proxy for the availability of faunal seed dispersers and seed

rain diversity.

Bullock et al. (2020) provide a spatially explicit dataset of degradation from 1995 to

2017. They defined degradation as a natural or anthropogenic disturbance that does

not change a pixel’s land cover category – including fire, windthrow, selective logging,

and damage to standing forests during expansion of roads or development. We

resampled the condensed Bullock et al. (2020) dataset to align with MapBiomas, then

identified structurally-intact old-growth forest as those pixels that had not experienced

a disturbance event in the last ten years (relative to 2020). We selected a ten-year

threshold as forests recover over time (Rutishauser et al., 2015; Silva et al., 2018)

and some species may eventually be able to return if further disturbances are avoided

(Mestre et al., 2013b; Mollinari et al., 2019). While the Bullock et al. (2020) dataset is
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the most recent map of forest degradation currently available for the Amazon, there

are two limitations to its use in this study that may mean we are underestimating the

extent of structural disturbance. First, it does not extend to our study year (2020)

so we cannot account for the three most recent years of structural disturbance.

Second, Bullock et al. (2020) conducted their analysis for the Amazon EcoRegion

as defined by Olson et al. (2001) meaning a small proportion of our study area (the

RAISG-defined Amazon biome ) is not included.

We measured the size of forest fragments in our 2020 land cover map as the number

of contiguous pixels classified as each forest type. Fragment size was calculated

using the Accounting tool from the Guidos Toolbox software. We applied 8-way

connectivity and identified ‘extensive’ forest as those fragments over 50 km2.

4.2.3 Assessing the proximity of secondary forests to old-growth

forests

Distance to nearest old-growth forest

We calculated the distance between secondary forests and their closest old-growth

forest fragment. We did so by applying the Guidos Toolbox Distance tool to a binary

map of old-growth forest cover to calculate the Euclidean distance from every pixel to

the nearest old-growth forest edge. We repeated this analysis for the three classes

of old-growth forest cover defined above: any, structurally-intact, and extensive

structurally-intact.

Landscape context

We measured the landscape context of secondary forests as the proportion of the

surrounding landscape that was occupied by each old-growth forest class. This

analysis was conducted using the Guidos Toolbox Landscape Mosaic tool for a 0.99

km radius, the nearest value to 1 km available for 30 m pixels. For each secondary

forest pixel, this tool provided the percentage of the surrounding landscape that was

86



4.2. Methods

occupied by old-growth forest to the nearest 10%.

Identifying old-growth forest edges

To map old-growth forest edges, we calculated the Euclidean distance from every old-

growth pixel to the nearest old-growth forest edge using the Guidos Toolbox Distance

tool. Any pixel within 120 m of an edge was marked as edge forest. The most intense

edges effects occur within 100 m of an edge (Laurance et al., 2002), 120 m is the

closest distance measurable using 30-m resolution pixels. We repeated this analysis

for all forest cover (old-growth and secondary forest combined). Any old-growth forest

pixels that were no longer in the edge zone after the inclusion of secondary forests

were identified as buffered edges, while those that remained in the edge zone were

considered exposed edges. We conducted this analysis for every year in the time

series to produce annual maps of forest edge exposure (1986-2020). From these

annual maps we calculated the age of old-growth forest edges in 2020 and the total

time they had been exposed or buffered. Edges present in 1985 were excluded from

the analysis as we could not determine their age or duration of exposure. Excluding

these edges also serves to remove natural edges from our analysis.

4.2.4 Measuring changes to connectivity

We measure the influence of secondary forests on old-growth forests connectivity

by calulating the change in the number of isolated fragments and the fragment

size. First, we used the Guidos Toolbox Accounting tool to identify individual old-

growth forest fragments and determined their area. To measure the change in

fragmentation, we then repeated this analysis for three secondary forest age groups:

all secondary forest, secondary forests >5 years old, and secondary forests >15

years old. Fragments consisting of only secondary forest were excluded.
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4.3 Results

4.3.1 Proximity of secondary forests to old-growth forests

In 2020, there were 189,451 km2 of secondary forests in the Amazon biome (Figure

4.2); comprising over 5.3 million fragments that ranged in size from 4,500 m2 (the

smallest area detectable by our analysis) to 125 km2. 41.2% of all secondary forest

(78,059 km2) was directly adjacent to an old-growth forest (measured as secondary

forest pixels occurring next to an old-growth pixel), while 94.1% of secondary forest

was within a fragment connected to an old-growth forest fragment. These figures

were slightly lower for structurally-intact old-growth forests, with 33.2% of secondary

forest directly adjacent and 92.6% within a connected fragment. However, the area

of secondary forest directly adjacent to extensive structurally intact old-growth forest

(20.1%) was less than half that directly adjacent to any old growth forest. The amount

of secondary forest within a fragment connected to extensive structurally-intact old-

growth forest (57.4%) was also much smaller. The median (inter-quartile range; IQR)

distance from a secondary forest pixel to old-growth forest of each condition group

was 30 m (30-120), 60 m (30-210), and 1,110 m (30-8010) for old-growth forest,

structurally-intact old-growth forest, and extensive structurally-intact old-growth forest,

respectively (Figure 4.2).

Across the biome, less than half of secondary forests were within 1 km of extensive

structurally-intact old-growth forest (48.9%; 92,674 km2), but the majority were

within 1 km for any old-growth forest or structurally-intact old-growth forest (98.6%

and 96.8% respectively; Figure 4.2)). Less than half of secondary forest pixels

had a surrounding landscape (0.99 km radius) of >50% old-growth forest (45.5%;

85,759 km2) and 21.7% (40,907 km2) had <10% surrounding old-growth forest cover.

Restricting the analysis to structurally-intact old-growth forest, 33.0% (62,604 km2)

of secondary forests had >50% surrounding old-growth forest cover, while 30.8%

(58,271 km2) had <10% surrounding old-growth forest cover. With further restriction to
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Figure 4.2: The distance from secondary forests to old-growth forests in the
Amazon biome in 2020. The distance from secondary forests to old-growth forests in
the Amazon biome in 2020. The distance from the centre of a secondary forest pixel
to the centre of the nearest pixel of (a) any old-growth forest, (b) structurally-intact
old-growth forest, and (c) extensive (>50 km2) structurally-intact old-growth forest.
The cumulative proportion of all secondary forests is indicated by the red line. For
each old-growth forests class, the secondary forests pixels more than 960 m from an
old-growth forest are group into the final bar.
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extensive structurally-intact old-growth forest, only 23.0% (43,545 km2) of secondary

forests had >50% surrounding old-growth forest cover, and 63.2% (119,666 km2) had

<10% surrounding old-growth forest cover.

4.3.2 Old-growth forest edges buffered by secondary forests

In 2020, 6.4% (348,903 km2) of old-growth forest in the Amazon biome was within

120 m of an anthropogenic edge created after 1985. However, 41.1% (143,392 km2)

of these old-growth edges were buffered by secondary forests of any age (Figure

4.3). To buffer all old-growth edges would require a further 182,773 km2 of secondary

forest, in addition to the 141,189 km2 already acting as a buffer. The extent of

buffering reduced to 32.2% (112,448 km2) when restricted to secondary forests more

than 5 years old, and 22.9% (79,902 km2) for secondary forests more than 15 years

old. Secondary forests acting as a buffer for old-growth forest edges were older than

those not acting as a buffer (median (IQR); buffering: 11 years (4-21) not-buffering: 5

years (2-12)). Old-growth forest edges present in 2020 had a median (IQR) exposure

time of 6 years (2-14) and 36.9% of edges had never been buffered by secondary

forest (Figure 4.3).

Of the 681,027 km2 of old-growth forest edges created during our time series (1986-

2020), almost half (48.8%) had been deforested prior to 2020 and the median (IQR)

age at which an edge was cleared was 4 years (2-9). 7.3% of edges were buffered

by secondary forest when they were cleared and buffered edges were typically older

at clearance compared to exposed edges (median (IQR); buffered: 9 years (6-15);

exposed: 4 years, (1-8)). The age of old-growth forest edges present in 2020 was

evenly distributed (median (IQR): 19 years (8-27)), but buffered edges were typically

older (median (IQR): 23 years, (15-29)) than exposed edges (median (IQR): 14 years

(4-24)). Old-growth forests within 120 m of a 1-year-old edge (i.e. an edge created in

2020) accounted for almost double any other annual age class (1-year-old edges:

25,769 km2; older edges: 6,472-15,114 km2).
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Figure 4.3: The distribution age and exposure time of old-growth forest edges in
the Amazon in 2020. (a) The area of old-growth forest within 120 m of anthropogenic
edges created between 1986 and 2020, for edges adjacent to non-forest landcover
(exposed; dark blue) and edges buffered by secondary forests (light blue). (b) The
area of old-growth edge forest with different durations of exposure (total time in years
that a pixel was part of an expose edge).

4.3.3 Old-growth forest fragmentation

In 2020, there were 3.3 million old-growth forest fragments in the Amazon biome

(Figure 4.5), with a median (IQR) fragment size of 4,500 m2 (1,800 - 13,500; Figure

4.4). Allowing any secondary forest to act as a bridge between old-growth fragments

reduced the total to 1.3 million fragments (excluding those that were comprised

of only secondary forests; Figure 4.5) and almost doubled median (IQR) fragment

area (8,100 m2, 3,600 - 26,100; the area of old-growth forest within a mixed-forest
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fragments) and reduced the area of old-growth forest in small fragments (<50 km2)

by 31.2% (77,456 km2; Figure 4.4). When applying a minimum age (of either 5 or 15

years) for secondary forest bridges, the effect of secondary forest on fragmentation

was reduced but still pronounced (Figure 4.4).

Figure 4.4: Old-growth forest fragmentation in the Amazon in 2020. The (a) total
number and (b) size distribution of old-growth forest fragments for old-growth forest
cover only (OG) and when including bridges of secondary forest (SF) of different ages
(≥15 years old, ≥5 years, and all ages). For old-growth forest fragments connected
by secondary forest bridges, size was measured as the total area of old-growth forest
within the mixed-forest fragment. Fragments consisting of only secondary forest were
excluded. The total number of fragments and the median area for each group are
annotated. The error bars show the full range of fragment sizes, with the maximum
fragment size for each group ~137,000 km2.

4.4 Discussion

We conduct the first biome-wide assessment of the location of secondary forests in

relation to old-growth forests. We expand upon recent works that have produced
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Figure 4.5: A comparison of old-growth forest fragmentation with and without
connectivity by secondary forests across the Amazon biome in 2020. The
number of old-growth forest fragments in the Amazon when considering (a) only
old-growth forest and (b) when allowing secondary forest to connected fragments.
Data is presented across a ~56.2 km2 grid. Fragment count was calculated as the
number of fragments intersecting each grid cell and fragment size is the median size
of fragments intersecting each cell.

high-resolution maps of secondary forest extent (Nunes et al., 2020; Silva Junior

et al., 2020b; Smith et al., 2020, 2021), to explore their position within the landscape

and how this could be influencing the environmental benefits of forest recovery

across the biome. In 2020, most secondary forests were positioned favourably for

beneficial effects from proximity to old-growth forests. The position of secondary

forests may also provide important benefits to old-growth forests: they substantially

reduce the number of isolated old-growth forest fragments, and buffer more than

half of old-growth forest edges. These findings show that secondary forests are a

valuable feature of human-modified landscapes, potentially exerting an influence that

goes far beyond their immediate extent.

4.4.1 Conserving old-growth forest extent and integrity could

support secondary forest succession

In 2020, almost half the total area of Amazonian secondary forest was growing directly

adjacent to old-growth forest, which, all else being equal, is the best location for fast

biomass recovery and formation of diverse ecosystems (Jakovac et al., 2015; Mayhew

et al., 2019). Recent findings indicate that surrounding forest cover is advantageous
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for secondary forest development in the early stages of succession (Toledo et al.,

2020). It is likely that proximity to old-growth forest will also be important later in

succession, as they provide the diverse seed sources required to establish resilient,

biodiverse, and high-biomass secondary forests (Martinez-Ramos et al., 2016; Hawes

et al., 2020). However, structural disturbance and small patch area reduce the

quality of old-growth forest fragments: when old-growth forest condition was taken

into account secondary forest adjacency declined by as much as 64%. These

findings highlight an additional, hitherto unaddressed, benefit of preventing further

deforestation and disturbance of old-growth forest: enabling more secondary forests

to achieve higher species richness and rates of carbon sequestration. However,

further research is needed as we do not currently have a sufficient understanding

of the influence of the type and condition of surrounding forest on secondary forest

succession. As old-growth forests become increasingly fragmented (Montibeller

et al., 2020; Fischer et al., 2021) and structural disturbance continues to spread

(Bullock et al., 2020; Matricardi et al., 2020), furthering our understanding of these

relationships will be integral to designing effective restoration programmes, especially

in landscapes where little old-growth forest remains (Crouzeilles et al., 2019).

4.4.2 The benefits of secondary forest growth for old-growth

forest condition

The close proximity of the majority of secondary forests to old-growth forests indicates

they could have a substantial role as buffers to edge effects: 43.1% of old-growth

edges were buffered by secondary forests. However, there is scope for improvement,

as over half (56.9%) of all old-growth forest edges are not buffered. Carbon losses

at exposed forest edges are rapid, with declines of over 20% within 1 year of edge

creation (Silva Junior et al., 2020a). Based on the edge exposure times found in this

study and the 15-year carbon decay curve reported by Silva Junior et al. (2020a) for

old-growth forest within 120 m of an edge, as much as 33.4% of the carbon stock in

old-growth forest edges (≤15 years old) may have already been lost – a substantial
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figure considering old-growth forest edges represent an area larger than the United

Kingdom. The role of secondary forests as buffers is also relevant for biodiversity

conservation. Changes in microclimate and structure at forest edges (Laurance et al.,

2002) mean that for many species, the amount of habitat available in landscapes

with highly fragmented forest is considerably smaller than the total forest cover. Our

findings show that across the biome 6.4% of remaining old-growth forest cover is

within 120 m of an edge, meaning core-forest species may have lost as much as

348,903 km2 of habitat in addition to that already lost to widespread deforestation.

Secondary forest buffers may be mitigating the microclimatic changes along almost

half of old-growth forest edges, potentially increasing habitat availability for some

species.

The potential benefits of secondary forests as buffers for old-growth forest edges are

numerous, but we do not currently have a thorough understanding of these processes.

Some studies have indicated responses such as reduced edge-related tree mortality

(Mesquita et al., 1999), but considerably more research is needed to quantify the

mechanisms through which such responses occur. With 63% of edges in 2020 having

been buffered at some point, one important question is whether secondary forest

buffering simply prevents further degradation or enables old-growth forest edges to

recover some of their ecological integrity, such as leaf area (e.g. Almeida et al., 2019).

Equally, the increase in height, leaf area, and canopy complexity of secondary forests

during succession (Peña-Claros, 2003; Feldpausch et al., 2005) suggests that the

age of a secondary forest would strongly influence its effectiveness as a buffer. Given

the proportion of buffered edges drops from 41% to 22% when restricting buffers to

secondary forests ≥ 15-years-old, the impacts of an age-related relationship would

not be insubstantial. The effectiveness of a secondary forest buffer could also vary

with its width, which may be important in determining its mitigation of the penetration

of different edge effects into the old-growth forest (Laurance et al., 2002). However,

we lack data to demonstrate the form of these relationships and if any thresholds

could be used to guide management. A more comprehensive understanding of how
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secondary forests influence old-growth forest edges could help improve estimates

of carbon emissions and guide conservation planning for some of the world’s most

vulnerable species.

4.4.3 Secondary forests reduce old-growth forest fragmentation

In addition to their role as edge buffers, the considerable reduction in old-growth

fragment isolation resulting from secondary forest bridges further demonstrates

the value of secondary forests beyond the ~190,000 km2 of additional forest cover

they provide. These secondary forest bridges could act as corridors for those

species able to move through them, linking together valuable habitat remnants in

highly fragmented landscapes, restoring genetic diversity, and alleviating the risk of

extinction in fragments that are too small to support long-term viable populations

(Metzger et al., 2009; Newmark et al., 2017). Connectivity within landscapes and

between protected areas is receiving increasing attention in global policy (Juffe-

Bignoli et al., 2018; Ward et al., 2020), However, there are still many unknowns to be

answered before we can rigorously quantify the benefits of these effects. Research

is needed into the parameters of what makes a viable forest bridge for different

species groups. For example, species differ in their ability to move through secondary

forests of different ages (Powell et al., 2013, 2015a). Our analysis highlights the

importance of understanding these details, as there were an additional ~400,000

isolated fragments of old-growth forest when we restricted viable bridges to secondary

forests ≥ 5 years old. Furthermore, the length and width of a secondary forest may

also be critical to determining its suitability as a bridge. Width is important as edge

effects will be altering the abiotic conditions (Laurance et al., 2002), especially in very

narrow bridges that may suffer from additive edge effects (Porensky et al., 2013).

Length is important as some species that can disperse through secondary forest, but

cannot use it as their permanent habitat, may have maximum dispersal distances that

they will not move beyond (Paim et al., 2015). Research is especially needed into the

role of secondary forest permanence and configuration in mitigating fragmentation

96



4.4. Discussion

effects on species of conservation concern.

4.4.4 Improving the accuracy of methods used to record spatial

and temporal shifts in secondary forests

In satellite imagery, pixels at the intersection of different land cover types may

contain a mixture of land covers and hence are liable to temporal variations in

classification. Our method of identifying secondary forests through change detection

means that if a mixed-pixel was misclassified as a deforestation event, it would

subsequently be classed as secondary forest by our algorithm if it appeared to

‘return’ to a forested state in future years. As such, some of our adjacent secondary

forest pixels may actually contain exposed old-growth forest edge. As a result, we may

be overestimating the extent of secondary forest and its role in buffering edges. The

surge in buffered edges in 1998 and 2016 also suggests that some misclassification

may have occurred due to fires and drought during the 1997-1998 and 2015-2016

El Niño events. However, the MapBiomas dataset undergoes a rigorous validation

process (MapBiomas, 2021) and so the impact of such misclassifications on our

results is likely to be limited. As more advanced biomass products become available

(e.g. GEDI), it may be possible to further reduce misclassifications of this kind in

future, by validating new secondary forest growth against high-resolution biomass

estimates. Future large-scale studies should endeavour to combine historic land

cover data with newly available remote sensing technologies to reduce uncertainties

in land cover maps.

4.4.5 Implementation challenges

Expanding forest restoration is essential for achieving to global targets on climate

change mitigation and biodiversity conservation. The longevity of those restoration

efforts is, however, key to unlocking the additional benefits considered in this study.

Unfortunately, with Amazonian deforestation on the rise (PRODES, 2021; Smith et al.,
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2021) and trends of low residence time and high turnover rates for secondary forests

(Nunes et al., 2020; Schwartz et al., 2020; Smith et al., 2020), even just maintaining

the existing extent of secondary forests will be a major challenge. Nonetheless, the

preservation and expansion of secondary forest must remain a priority in order to

realise the important benefits it can provide.

If secondary forest are going to help avoid the rapid decay of carbon at old-growth

forest edges (Silva Junior et al., 2020a) they need to establish soon after deforestation,

at the newest edges. Unfortunately, this is likely to be difficult to achieve in practice,

as new edges are created in regions of active deforestation where forest loss rather

than land abandonment dominate. Furthermore, regions of active deforestation are

characterised by corruption and inadequate land tenure arrangements (Geist et al.,

2002); the opposite of what is required for encouraging restoration. Yet in regions

where deforestation has been stopped, and governance is reinstated, incentivising

natural regeneration along edges would be a sensible strategy (Chazdon et al.,

2016b), and a potential double win for conservation.

Connectivity between forest fragments is important for maintaining habitats that are

sufficiently large to support viable long-term populations (Michalski et al., 2007) and

connection to extensive old-growth forests has been shown to strongly influence

the species that inhabit a fragment (Mayhew et al., 2019). Using restoration

efforts to increase landscape connectivity could therefore offer major benefits for

biodiversity. However, identifying where to increase functional connectivity between

forest fragments is not a simple task and the criteria used for planning has a

considerable influence on which areas are proposed for restoration (Sousa Miranda

et al., 2021). Our ability to estimate the benefits of different connectivity scenarios is

also inhibited by a lack of empirical data on movement behaviour in tropical species,

although it is noteworthy that at least one of Amazonia’s critically endangered species,

the Ka’apor capuchin monkey (Cebus kaapori), is able to use secondary forest

(De Oliveira et al., 2014). Furthermore, planning must also take future climate into
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account: areas offering suitable habitat are likely to shift (Chen et al., 2011) meaning

the most beneficial fragment networks now may be of less value later.

An additional challenge is determining the landscapes in which to focus restoration

efforts to gain the greatest return on investment. Natural, spontaneous regeneration

is more likely in landscapes that have suffered little deforestation (Crouzeilles et al.,

2019), and greater surrounding old-growth forest cover offers a greater diversity of

seed sources that will enable biomass and species richness to recover more rapidly

(Martinez-Ramos et al., 2016; Hawes et al., 2020; Toledo et al., 2020). Conversely,

highly deforested landscapes tend to have lower carbon accumulation in regenerating

forests (Chazdon, 2003; Bihn et al., 2010) and reduced species diversity (Arasa-

Gisbert et al., 2021). Yet, the remaining old-growth forest could benefit greatly from

edge-buffering, which may preserve irreplaceable carbon stocks and habitats (Gibson

et al., 2011). Species in highly deforested landscapes could also gain much from

the reconnection of remnant old-growth forest habitats through secondary forest

bridges (Newmark et al., 2017). This is especially true for endemic species in regions

such as Belém, where the little forest that remains is highly fragmented (Chapter

5). Further complication is introduced by the fact that highly deforested landscapes

have historically displayed limited recovery even decades after clearance (Smith

et al., 2021) and have more variation in restoration success (Crouzeilles et al., 2019),

meaning restoration in these landscapes is likely to entail a greater financial cost.

4.5 Conclusion

In a bid to reach net-zero emissions, many ambitious global forest restoration targets

have been set (e.g. Bonn Challenge, 2011). However, while forest restoration benefits

both carbon and biodiversity (Lennox et al., 2018), how these benefits are influenced

by spatial context has yet to be fully quantified. Improving our understanding of

the mechanisms driving variation in forest recovery at the landscape scale and
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the potential benefits of secondary forest as buffers will enable us to refine current

estimates of forest carbon stocks and emissions. Forest restoration is undoubtedly

a valuable conservation tool (Chazdon et al., 2016b; Chazdon et al., 2019) and is

already providing substantial benefits to deforested landscapes across the tropics.

However, a systematic approach is needed to maximise the benefits of expanding

secondary forest cover, whilst minimising the cost of achieving restoration targets

(Crouzeilles et al., 2020). Future policies must be applied at a landscape scale,

aligning restoration with old-growth forest edges and increasing fragment connectivity.

Doing so could generate important co-benefits by both increasing recovery rates

in regenerating secondary forests and improving conservation of biodiversity and

carbon stocks in remaining old-growth forest.
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Abstract

As the largest remaining expanse of tropical rainforest on Earth, the Amazon is of

critical importance for biodiversity conservation (Pillay et al., 2021; Cazzolla Gatti

et al., 2022). However, it is also undergoing widespread deforestation (PRODES,

2021; Smith et al., 2021) and much of the remaining forest has been subject to

disturbance events (Bullock et al., 2020; Matricardi et al., 2020). It is well-documented

that both deforestation and disturbance have severe consequences for biodiversity,

with the latter rendering standing forests unsuitable as habitat for many species

(Barlow et al., 2016). Yet, while the impacts of deforestation are closely monitored,

the role of forest disturbance as a driver of habitat loss has not been assessed

at large-spatial scales. Here we show that the combined impact of deforestation

and disturbance has reduced potential habitat by 40% for disturbance-sensitive bird

species, despite the Amazon retaining 83% of its forest extent. 79% of this loss was

due to changes in forest condition. The situation in some regions is critical: despite

retaining more than half its forest cover, the Belém Area of Endemism could have

just 9% of its habitat remaining for disturbance-sensitive bird species. Our results

provide the first biome-wide assessment of habitat loss for forest-dwelling Amazonian

species, highlighting the critical importance of monitoring forest condition and the

urgent need to protect the remaining areas of high-quality forest.
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5.1. Background, Results and Interpretation

5.1 Background, Results and Interpretation

Deforestation of old-growth forest is often the metric used to assess the degree of

human-impact on tropical landscapes. Yet doing so results in a focus on changing

forest quantity, while ignoring the quality of the forest that remains. Disturbances such

as logging, fire, and edge effects significantly alter forest condition without changing

the land cover type, but still drive local biodiversity loss (Gibson et al., 2011; Barlow

et al., 2016; Marco et al., 2019) and generate carbon dioxide emissions (Pearson

et al., 2017; Silva Junior et al., 2020a). By not explicitly including forest condition, the

2021 United Nations Declaration on Forests and Land Use from COP26 in Glasgow

may fail to properly safeguard the world’s most carbon-rich and biodiverse regions.

While relationships between forest disturbance and carbon loss are increasingly well

studied (Maxwell et al., 2019), impacts on biodiversity are less well understood and

have been poorly assessed at the large spatial scales required to inform conservation

policy and practise.

Disturbance and other anthropogenic pressures are particularly damaging for the

hyper-diverse biota of the humid tropics (Betts et al., 2019), which account for around

60% of the world’s terrestrial species (Pillay et al., 2021). Tropical forest species

are especially sensitive to disturbance (Betts et al., 2019) and many species are

unable to persist in human-modified forests, including old-growth forests disturbed by

human actions and secondary forests growing on previously cleared land (Gibson

et al., 2011; Pfeifer et al., 2017). Changes in forest condition can be as important as

deforestation in driving biodiversity loss (Barlow et al., 2016). Consequently, national

commitments and international declarations relating solely to forest extent provide an

imprecise measure of habitat availability, as they do not account for the sensitivity of

tropical forests species’ to edge effects (Pfeifer et al., 2017), structural disturbance

such as from logging or fires (Barlow et al., 2006), species’ ability to use secondary

forests at different stages of recovery (Lennox et al., 2018) or the minimum habitat

area required to avoid anthropogenic pressures associated with accessibility (e.g.
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hunting; Parry et al., 2009; Andrade Melo et al., 2015).

Here we undertake a heuristic exercise to estimate the extent of habitat that is

potentially available for forest-dwelling bird species across Amazonia, the world’s

largest tropical forest. Given the lack of comprehensive data describing species’

actual distributions and their sensitivity to disturbance, we base our estimates of

habitat extent on six response groups that represent broad groups of bird species with

similar habitat preferences. The response groups range from disturbance-tolerant

to disturbance-sensitive, developing plausible response types using site-specific

studies and expert knowledge of Amazonian birds, the best-studied taxonomic group

in terms of distribution and disturbance sensitivity (see Methods). To map forest

cover and deforestation (defined here as the complete removal of forest cover),

we obtained annual land cover data from MapBiomas (1985 – 2020; MapBiomas,

2021) and masked out wetlands using a combination of data sources (Hess et al.,

2015; Gumbricht et al., 2017). We quantified forest condition in four ways. (i) We

applied a change-detection method to the MapBiomas dataset to identify and age

secondary forests (Smith et al., 2021). (ii) Structural disturbances (defined as natural

or anthropogenic disturbance that does not change a pixel’s land cover category,

including fire, windthrow, and selective logging) were identified using Bullock et al.

(2020). (iii) Old-growth forests subject to edge effects were mapped using the Guidos

Distance tool (Soille et al., 2009). (iv) The area of habitat available within individual

forest fragments was calculated using the Guidos Accounting tool (Soille et al., 2009).

Species within the most disturbance-tolerant response group would be able to use

all available forests with a minimum habitat area of 0.01 km2. In contrast, species

within the most disturbance-sensitive group would avoid all secondary forest, forest

within 300 m of an edge, forest that experienced structural disturbance in the last

20 years, and also required a minimum habitat area of 50 km2 (see methods). We

report habitat loss as the area of potential habitat for each response group in 2020

relative to total extent of old-growth forest in 1985.
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We found that in 2020, the Amazon biome contained 5.1 million km2 of terra firma

forest (old-growth forests: 4,976,600 km2; secondary forests: 169,677 km2). For

the most-disturbance tolerant response group, which can use almost any forest,

habitat has decreased by 8.5% (477,541 km2) since 1985. However, estimates

of potential habitat loss increased sharply with increasing disturbance sensitivity.

The most disturbance-sensitive group has lost 39.8% of its potential habitat since

1985, with 79% of this loss due to changes in forest condition rather than extent

(Figure 5.1). These results were insensitive to major changes in response group

parameters (see Methods; Figure C.1). The reduction in potential habitat for the most

disturbance-sensitive groups (Figure 5.1) emphasises the importance of avoiding

further deforestation and disturbance across the basin and protecting wilderness

areas (Marco et al., 2019).

Figure 5.1: Estimated habitat availability for disturbance response groups in
the Amazon biome. (a) The area of habitat available for each disturbance response
group across the Amazon biome in 2020. The percentage change relative to total
forest extent in 1985 is shown within each bar; loss from disturbance is shown
in brackets. (b) The individual and combined drivers of habitat loss for the most
disturbance sensitive response group compared to total forest extent in 1985. Drivers
that are too small to be displayed are annotated below. See supplementary material
for response group definitions.
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5.1. Background, Results and Interpretation

Figure 5.2: Spatial distribution of estimated habitat availability for disturbance
response groups in the Amazon biome. (a-f) The spatial distribution of habitat
available to six disturbance response groups across the Amazon biome in 2020;
measured as the percentage of a ~60 km2 grid cell that is habitat. Groups increase
in sensitivity to disturbance from (a) the least sensitive to (f) the most sensitive. See
supplementary material for response group definitions.

Amazonia’s many large rivers act as barriers to dispersal and have driven allopatric

speciation (Smith et al., 2014) and the development of distinct areas of endemism

over the last 5 million years – especially for vertebrates such as birds and primates

(Ribas et al., 2012). To explore how the potential habitat available to each response

group varies across these biogeographic provinces, we calculated habitat extent

within the ten widely accepted major areas of endemism (Borges et al., 2012, Figure

5.3a). Potential habitat declined with increasing disturbance sensitivity across all

areas of endemism, but the degree of change was far greater in the south and east

of the Amazon (the Rondônia, Tapajós, Xingu and Belém areas of endemism; Figure

5.3b). The importance of considering habitat availability is exemplified by the Belém

Area of Endemism where extensive forest disturbance has left just 14,833 km2 of

potential habitat for the most disturbance-sensitive group (9.1% of its 1985 extent),

despite the region containing 110,420 km2 of forest in 2020 (67.5% of its 1985 extent).

Our assessment of potential habitat is validated by the Critically Endangered status

of some of the region’s vertebrates that are restricted to a few remaining areas of

the eastern Amazon, such as the Black-winged Trumpeter Psophia obscura, Belém
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Curassow Crax pinima, and the Kaapori Capuchin Cebus kaapori. The dramatic loss

of potential habitat in the south and east contrast with the six areas of endemism in

the north and west, which have all retained enough high-quality, old-growth forests

to have >75% of their 1985 habitat remaining for the most disturbance-sensitive

response group.

Figure 5.3: Estimated habitat availability for disturbance response groups in
areas of endemism in the Amazon biome. (a) A map of areas of endemism in the
Amazon biome and (b) the proportion of habitat remaining in each area of endemism
in 2020 relative to the 1985 forest extent, for six response groups with increasing
sensitivity to disturbance. See supplementary material for response group definitions.
Lines are to aid interpretation only and do not represent continuous data.

We explored the unique and combined contribution of different factors in reducing

potential habitat for the most disturbance-sensitive group (Figure 5.1). Across the

biome, deforestation alone (i.e. without associated edge effects) reduced potential

habitat by 8.4% between 1985 and 2020. This was exceeded by the unique

contribution of structural disturbances, which led to a reduction of 13.6%, over

60% more than has been lost to deforestation. The role of structural disturbances

in reducing potential habitat increased to 18% when including areas that also

experienced other forms of disturbance (combined contribution). The combined

contribution of structural disturbance caused the largest reduction in potential habitat

across all areas of endemism, except for Belém and Xingu where it was exceeded

by edge effects and deforestation, respectively. Edge effects were responsible for

the third-largest biome-wide reduction in potential habitat (unique: 5.8%; combined:

14.5%), comparable with deforestation itself. Excepting Xingu, habitat loss from

107



5.1. Background, Results and Interpretation

the combined contribution of edge effects exceeded deforestation in every area of

endemism, with the greatest disparity in the least deforested north and east regions.

Forest type (old-growth, young/old secondary) had less impact on potential habitat,

reducing it by 0.12% alone or by an additional 2.8% in combination with other factors.

This modest biome-wide contribution is unsurprising as secondary forests represent

a small proportion of total forest cover in the Amazon (young secondary forests:

2.1%; old secondary forests: 1.1% Smith et al., 2021).

Protected areas are an important tool for safeguarding forests (Gray et al., 2016).

Crucially, they also represent one of the best opportunities to retain the high-quality

forest cover that is essential for many species (Watson et al., 2018). However, laws

governing private lands – such as the Native Vegetation Protection Law in Brazil

(Federal Law no. 12,651/2012) – focus only on forest extent, and do not consider

forest condition (Barlow et al., 2016). To explore the importance of protected areas

across the biome, we calculated the extent of potential habitat falling within the

boundaries of protected areas listed in the World Database on Protected Areas. We

find that almost half (49.5%) of existing forest cover in the Amazon biome is within a

protected area, leaving up to 2.6 million km2 with elevated risks of future clearance

or disturbance (Geldmann et al., 2019). Protected areas are already a critical last

refuge for the most disturbance-sensitive response group in areas of endemism in the

south and east of the biome, where they hold between 70% and 84% of the group’s

potential habitat (Figure 5.4). For the most disturbance-sensitive group, 28% of

potential habitat loss across the biome has occurred inside protected areas. This will

likely increase as unprotected forests dwindle and buffer zones are eroded (Curran

et al., 2004). An insight into this future can already be seen in the highly deforested

areas of endemism in south-east Amazonia, which exhibit the highest relative losses

of potential habitat from inside protected areas. Importantly, protected areas are

not immune to deforestation and disturbance, which could have occurred before

the protected area was established and, in some cases, may still be ongoing either

legally (i.e. in sustainable use zones) or illegally (Geldmann et al., 2019).
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Improved estimates of habitat availability could be used to revise species’ threat

status. The IUCN classifies a species as Critically Endangered when more than 80%

of its habitat is lost in 10 years or three generations. Furthermore, evidence-based

conservation interventions will be more effective if they are informed by real data

on species occurrences and threats. Our results can help this by revealing priority

areas for research and conservation: for example, we estimate there are 3,483 km2

of high-quality habitat outside of protected areas in the Belém Area of Endemism.

The recent rediscovery of the Belém Curassow Crax pinima in the eastern Amazon

(Alteff et al., 2019), and the proximity of these sightings to our estimates of remaining

habitat (Figure C.2), shows the importance of scaling up biodiversity assessments in

the last remaining patches of high-quality habitat.

Figure 5.4: Estimated habitat availability for the most disturbance-sensitive
response group inside and outside of protected areas in the Amazon biome.
(a) Habitat inside (dark blue) and outside (light blue) protected areas in 2020 for
the most disturbance-sensitive response group. The (b) absolute and (c) relative
(to 1985 forest extent) area of habitat loss and habitat remaining in 2020 inside and
outside protected areas in the whole Amazon biome and each area of endemism.
Total values are shown by each bar, with the values for inside protected areas shown
in brackets. See methods for response group definition.

Our results highlight four key points for conservation policy and practice. First, the

remaining forests that provide habitat for the most disturbance-sensitive species

need urgent protection. Many of the measures required to achieve this are well
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known (Nobre et al., 2021) and include supporting the autonomy and land rights of

indigenous peoples, creation of new protected areas, renewed investment in existing

protected areas, and avoiding damaging infrastructure. Second, novel policies and

interventions are needed to prevent structural disturbances, such as illegal logging

(Brancalion et al., 2018) and forest fires (Barlow et al., 2020), as these are by far

the most important drivers of habitat loss for disturbance-sensitive species across

the Amazon. Third, restoration efforts, many of which are aimed at sequestering

carbon dioxide, should be located strategically to buffer old-growth forests against

edge effects. This would help to mitigate one of the leading drivers of habitat loss,

particularly in the most deforested regions of the Amazon (Figure 5.2), which have

the largest amount of land available for restoration (Smith et al., 2021). Finally, action

must be taken now. World leaders may have committed to “no new deforestation by

2030”, but significant habitat loss can occur over a short period of time, especially

when disturbance and deforestation are considered together, and the rate of change

for disturbances such as fire could worsen under climate change (Brando et al.,

2020).

5.2 Materials and Methods

5.2.1 Study Area

The Amazon biome spans 6.7 million km2 and is the largest remaining expanse of

tropical forest on earth. This study focuses on upland terra firma forests (92% of total

forest cover), as wetland forests are quite different structurally and in their species

assemblages. Any pixels classified as wetland by Hess et al. (2015) or Gumbricht

et al. (2017) are excluded from our forest classes.
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5.2.2 Assessing deforestation

We assessed deforestation in the Amazon biome using the MapBiomas Amazonia

Collection 3.0 dataset (MapBiomas, 2021), comparing old-growth forest extent in

1985 and 2020 to calculate the total loss of old-growth forest. As large-scale

deforestation in the Amazon began in the 1970s, our approach underestimates

long-term old-growth deforestation. Previous estimates suggest that ~140,000 km2

of forest in the Brazilian Amazon may have been cleared prior to 1985 (Fearnside,

1990). However, as the earliest reliable satellite imagery covering the whole Amazon

is from 1985, MapBiomas (2021) provides the best available map of historic forest

cover. Secondary forests that began growing after 1985 were excluded from the

old-growth forest mask using the change detection algorithm outlined below.

5.2.3 Assessing forest condition and configuration

Old-growth forest vs secondary forest

Secondary forests are defined in this study as forest growing on previously cleared

land. Although secondary forests may rapidly come to resemble old-growth forest

– especially in terms of spectral reflectance in satellite imagery – they remain

structurally very different for many years, particularly in earlier stages of succession

(Guariguata et al., 2001). Species richness in secondary forests increases over

time (Lennox et al., 2018), but although some forest species can make use of older

secondary forest (Barlow et al., 2007a; Barlow et al., 2007b; Moura et al., 2016;

Lennox et al., 2018), the composition remains very different from old-growth forest

and many specialist species avoid secondary forests altogether (Moura et al., 2013).

Forest type is therefore a critical factor in determining a forest’s suitability as habitat.

In this study we used three forest classes: old-growth, old secondary (>15 years),

and young secondary ( ≤15 years). To create masks of these classes, we applied a

change detection algorithm to the MapBiomas Amazonia Collection 3.0 dataset
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(MapBiomas, 2021) to produce annual maps of the extent of old-growth and

secondary forest cover from 1985 to 2020, following the method of Smith et al.

(2021). Any pixel (900 m2) in the ‘forest’ class in the first year of the time series

(1985) was considered old-growth forest until it transitioned to ‘non-forest’ (any land

cover class in the MapBiomas schema that is not a natural forest formation). Pixels

that transitioned from ‘non-forest’ to ‘forest’ were labelled as secondary forest. We

then measured secondary forest age as the number of consecutive years a pixel was

classified as secondary forest. As the MapBiomas time series begins in 1985, any

secondary forest that began growing before this date is included in our old-growth

forest class and the maximum age of secondary forest detectable with this method

is 34 years. However, the low residence time and high turnover rate of secondary

forests means we are unlikely to have substantially underestimated secondary forest

extent (Smith et al., 2020).

Edge effects

Fragmentation introduces edge effects that drastically alter the microclimate of the

forest by exposing it to increased wind, light, and temperature, whilst also reducing

humidity and hydrological consistency. The most severe impacts occur within the first

100 m, but others can penetrate hundreds of metres into the forest (Laurance et al.,

2002). These changes render forest edges unsuitable as habitat for many species,

reducing the abundance of forest core species 200 - 400 m from edges (Pfeifer et al.,

2017).

To identify anthropogenic forest edges (natural edges such as those along a river are

considered undisturbed), we calculated the Euclidean distance from every old-growth

pixel to the nearest old-growth forest edge using the Guidos Toolbox Distance tool

(Soille et al., 2009). We then created as mask of pixels that were within 60m and

300m of an edge. Pixels that were classified as edge forest in both 1985 and 2020

were considered natural edges and were excluded from the masks.
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Structural disturbance

Structural disturbance from events such as forest fires or selective logging can

dramatically alter the composition of a forest ecosystem (Moura et al., 2016) and

only a small proportion of the affected areas are subsequently deforested (Bullock

et al., 2020). The resulting forests take decades to recover (Rutishauser et al., 2015;

Silva et al., 2018), and their more heterogeneous and open canopies and dense

understories make them unsuitable as habitat for many forest species. However, even

some of the more disturbance-sensitive species may eventually be able to return if

further disturbances are avoided (Mestre et al., 2013a; Mollinari et al., 2019).

Bullock et al. (2020) provides a spatially explicit dataset of degradation and

natural disturbance from 1995 to 2017. They defined degradation as a natural

or anthropogenic disturbance that does not change a pixel’s land cover category –

including fire, windthrow, selective logging, and damage to standing forests during

expansion of roads or development. We use this dataset as our pan-Amazonian

measure of structural disturbance and create three classes: undisturbed, disturbed

more than 20 years ago, and disturbed more than 10 years ago (relative to 2020).

We resampled the condensed Bullock et al. (2020) dataset to align with MapBiomas

(2021).

The Bullock et al. (2020) dataset is the most recent map of forest degradation

currently available for the Amazon and we found it to be very effective at capturing

the well-studied burn scar from the 2015/2016 forest fires in the Santarém region

(Figure C.3). However, there are two limitations to its use in this study that mean we

may be underestimating potential habitat loss resulting from structural disturbance.

First, it does not extend to our study year (2020) so we cannot account for the three

most recent years of structural disturbance. Second, Bullock et al. (2020) conducted

their analysis for the Amazon EcoRegion as defined by Olson et al. (2001) meaning

a small proportion of our study area (the RAISG-defined Amazon biome) is not

included. We also recognise that the Bullock et al. (2020) dataset includes natural
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disturbances. Although this study is primarily concerned with identifying habitat loss

resulting from anthropogenic interference, we consider the inclusion of disturbances

classed as natural by Bullock et al. (2020) to be acceptable as the change in canopy

openness would still render the forest unsuitable as habitat for the relevant response

groups. Furthermore, many of these natural disturbances occurred along river edges,

which are naturally more open and dynamic, and will have been masked out by our

wetlands layer. It is also possible that some of these “natural” disturbances could

also have underlying anthropogenic causes. For example, climate change made the

probability of the 2015-16 El Niño drought four times more likely (Ribeiro et al., 2021)

providing a direct link between anthropogenic actions and excess tree mortality seen

during climate extremes (Berenguer et al., 2021).

Area effects

Area effects are well known drivers of species richness and population persistence

across the world and in the Amazon (Ferraz et al., 2007). Species dependent on

old-growth forest are more sensitive to fragment size than species able to survive in

secondary forest and forest edge habitat (Lees et al., 2006). The size of a habitat

fragment is also indicative of its accessibility to people and so can act as a proxy for

other anthropogenic pressures such as hunting, which is predominantly carried out

on foot with a range of ~5.4 km (Parry et al., 2009; Andrade Melo et al., 2015).

To account for area effects, we masked out forest pixels that did not meet the habitat

criteria for forest type, minimum distance from edge, and structural disturbance, then

used the Guidos Toolbox Accounting tool to calculate the size of the remaining habitat

fragments. We masked out habitat fragments below the minimum size threshold for

each response group. It is important to note that this provides a measure of remaining

habitat within a forest fragment once the other habitat criteria have been met and

is not the total size of the forest fragment. Due to the computational complexity

of assessing fragment isolation, we also assumed that species in all groups are

not capable of moving between habitat fragments and therefore a small habitat
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fragment cannot be supplemented by proximity to a larger fragment. This decision is

also supported by the finding that area effects are more important and consistent

predictors of patch occupancy of birds than isolation effects (Ferraz et al., 2007). The

principle aim of our area thresholds is to explore the short-term habitat availability for

our response groups, and we are not projecting future survival, source-sink dynamics,

nor considering minimum viable populations.

5.2.4 Disturbance response groups

We assess the impact of deforestation and disturbance (including anthropogenic

pressures such as hunting that do not immediately alter forest structure) on habitat

availability across the Amazon biome for six disturbance response groups (see below).

These hypothetical groups are based on site-specific studies and expert knowledge

of real habitat preferences seen in Amazonian birds. Expert opinion was guided by

co-authors AL and JB; both have worked on disturbance impacts on Amazonian birds

for over two decades, and AL is a member of the IUCN Species Survival Commission

Bird Red List Authority (IUCN, 2020). We use birds as a proxy for other fauna, as

they are the best-known taxon in terms of species-level responses to disturbance,

and their biogeography is also relatively well known. Our results are likely to reflect

other vertebrates that align with areas of endemism (e.g. primates; Paim et al., 2015),

but may be less accurate for plants which have different biogeographical patterns

(Nobre et al., 2021).

It is important to recognise that these response groups are a heuristic exercise,

intended to be a proxy for broader species responses to disturbance. We use

response groups as there are three major limitations in our current understanding of

species distributions and species-specific responses to disturbance for the >1400

Amazonian bird species. First, insufficient data means that range estimates for

species with few recent recorded sightings are highly uncertain. For example,

the range estimate for the Critically Endangered Black-winged Trumpeter Psophia
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obscura is based on its historical range, covering the entire Belém Area of Endemism

(BirdLife International, 2022) and not its current range, which is limited to just a few

locations (Figure C.2). Second, in terms of species-specific responses, studies on

Amazonian birds tend to focus on responses to a specific disturbance in a single

location and biogeographic region, and at a single time point, but species can

response idiosyncratically to disturbances across different regions (Moura et al.,

2016). Third, there is the difficulty of collecting sufficient data on the habitat

preferences of the rarest species, which are rare precisely because of their sensitivity

to disturbance (Banks-Leite et al., 2014). Taken together, there is insufficient data to

develop a comprehensive assessment of species’ present-day distributions and their

responses to disturbance across the biome.

We define suitable habitat for each response group based on four variables that

describe forest condition: forest type, minimum distance from edge, structural

disturbance, and habitat fragment size. These response groups range from

disturbance-tolerant species that can inhabit any forest to highly disturbance-sensitive

species.

Group 1

The most disturbance-tolerant group. This response group represents species that

can use both old-growth and secondary forests of any age. They do not avoid forest

edges or areas with structural disturbance and require a minimum habitat fragment

of 0.01 km2. This group is representative for species such as the Coraya Wren

(Pheugopedius coraya) and Moustached Wren (Pheugopedius genibarbis) which

are common in variably-aged secondary forests (Barlow et al., 2007b; Moura et al.,

2013) and use some of the smallest habitat fragments (Stouffer et al., 1995; Lees

et al., 2008).
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Group 2

This group represents species that can use old-growth forests and secondary forests

that are >15 years old. They do not avoid forest edges or areas with structural

disturbance, but do require a minimum habitat fragment of 0.1 km2. This group is

representative of species such as the Forest Elaenia (Myiopagis gaimardii) and the

Wedge-billed Woodcreeper (Glyphorynchus spirurus) – for example, the latter uses

all old-growth forests including once-burned sites (Barlow et al., 2004), as well as

edges (Powell et al., 2015b), and inhabits older secondary forests (Barlow et al.,

2007b), but avoids the youngest secondary forests (Moura et al., 2013; Powell et al.,

2015b).

Group 3

This group represents species that can only use old-growth forests. They do not

avoid forest edges or areas with structural disturbance and require a minimum habitat

fragment of 0.5 km2. This group is representative of species such as the Amazonian

Barred-Woodcreeper (Dendrocolaptes certhia) and the Bright-rumped Attila (Attila

spadiceus). Both species are found in older secondary forests (Barlow et al., 2007b;

Moura et al., 2013) and most fragments of over 50 ha (Lees et al., 2009).

Group 4

This group represents species that can only use old-growth forests. They avoid

secondary forests of any age, forest within 60 m of an edge and areas where

structural disturbance has occurred in the last 10 years (after 2010). They require

a minimum habitat fragment of 0.5 km2. This group is representative of species

such as the Pará Foliage-gleaner (Automolus paraensis) and the Chestnut-belted

Gnateater (Conopophaga aurita). The latter was never recorded in secondary forest

in the study of Barlow et al. (2007b), was sensitive to the isolation of fragments 1-100

ha in size (Stouffer et al., 1995) and was only encountered in old-growth forests

without a recent history of disturbance (Moura et al., 2013). The Pará Foliage-gleaner
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avoids habitat patches of under 50 ha (Lees et al., 2009) and forests subject to any

disturbance (Moura et al., 2016).

Group 5

This group also represents species that can only use old-growth forests, avoid

secondary forests of any age and areas where structural disturbance has occurred

in the last 10 years (after 2010). In addition, they avoid forest within 300 m of an

edge and require a minimum habitat fragment of 1 km2. This group is representative

of species such as the Ringed Antpipit (Corythopis torquatus) and the Striated

Antthrush (Chamaeza nobilis). The former disappeared from fragments of under

100 ha (Stratford et al., 1999) and is absent from secondary forests and recently

disturbed old-growth forests (Moura et al., 2013). The latter is very uncommon

seemingly everywhere and has only been recorded from large intact habitat blocks

around Alta Floresta (Lees et al., 2009).

Group 6

This is the most disturbance-sensitive group. It represents species that can only

use old-growth forests and avoids secondary forests of any age, forest within 300

m of an edge, and areas where structural disturbance has occurred in the last 20

years (after 2000). They require a minimum habitat fragment of 50 km2. This group

is representative of species such as trumpeters (Psophia spp), which are unable

to persist in regions with low forest cover, such that the last record of Black-winged

Trumpeter (Psophia obscura) in the Belém metropolitan area was 1922, with an

estimated date of extirpation of 1935 (Moura et al., 2014). Similarly, a large-scale

ecological survey showed it to be restricted to large undisturbed forests remnants

(Moura et al., 2016).

For response group 6, we varied the value of each forest condition parameter and

found the results to be insensitive to major changes (Figure C.1). Reducing minimum

fragment size, distance to edge, and time since structural disturbance by 50%

118



5.2. Materials and Methods

reduced habitat loss by 0.7%, 4.8%, and 2.5%; respectively. Increasing these

parameters by 50% increased habitat loss by 0.4%, 2.5% and 2%. Allowing any

forest type reduces habitat loss by 3.1%. Parameters were varied individually, with

the other three held constant at the value used for group 6.

5.2.5 Areas of endemism

Amazonia’s many large rivers act as barriers to dispersal for many organisms and

have led to speciation and the development of distinct areas of endemism over the

last 5 million years (Ribas et al., 2012). Furthermore, the spatially heterogeneous rate

of deforestation and disturbance across the Amazon means that different endemism

zones face different levels of threat. As such, species within the same habitat

response group may have very different habitat availability depending on how their

range is restricted by endemism. We explore this phenomenon across ten widely

recognised areas of endemism: Belém, Guiana, Imeri, Inambari, Jau, Napo, Pantepui,

Rondônia, Tapajós, Xingu (Borges et al., 2012).

5.2.6 Protected areas

To explore how much of the habitat available to the most disturbance-sensitive

response group is within protected areas, we used data from the World Database

on Protected Areas (IUCN et al., 2021), which is the most comprehensive global

database of marine and terrestrial protected areas. We used the February 2021

version to the dataset and restricted our use to protected areas that were instated in

or before 2020.
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Conclusion

In this thesis I used big data, in the form of large-scale and long-term remote sensing

data, to derive new insights on a globally relevant environmental issue. Changing

forest cover offered an interesting case study for doing so as it presents both

problem and solution. Forest loss is contributing to two of the greatest environmental

challenges of our time, climate change and biodiversity loss, while forest regeneration

offers one of our greatest hopes for mitigating these catastrophes through nature-

based solutions. This balance of forest loss and restoration is crucial to the future

of the Amazon, where deforestation is once again on the rise, but secondary forest

growth also has huge potential environmental benefits.

6.1 Thesis Summary

6.1.1 Secondary forests in the Brazilian Amazon (Chapter 2)

Motivating Questions: What is the current extent and carbon stock of secondary

forests? What is their contribution to the tropical carbon balance?
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Chapter 2 delivers high-resolution, spatially explicit estimates of secondary forest

extent and accumulated carbon in the Brazilian Amazon. Using the MapBiomas Brazil

Collection 3 dataset (MapBiomas, 2019), I mapped the extent and age of secondary

forests, then combined these maps with estimates of carbon accumulation rates from

Requena Suarez et al. (2019) to calculate secondary forest carbon stock. I found

that in 2017 secondary forests occupied 20% of deforested land within the Brazilian

Amazon, representing 4% of total forest cover. They had accumulated 0.33±0.05

billion Mg of above-ground carbon and offset 9.37% of emissions from deforestation.

I also explored the spatial variation in climatic, landscape, and local factors that may

impede secondary forest carbon sequestration. My findings revealed that secondary

forests were typically located in areas that are unfavourable for carbon accumulation,

making it likely that my estimate of carbon emissions offset by secondary forest growth

is optimistic. Overall, this chapter contributes a new understanding of the extent,

location, and dynamics of secondary forests in Brazil and their relative importance

for the region’s carbon balance. This chapter is published in Global Change Biology

(Smith et al., 2020) and was shortlisted for the MapBiomas Award.

6.1.2 Forest loss and recovery in the Amazon (Chapter 3)

Motivating Questions: What are the spatial patterns in the extent of forest loss and

recovery in the Amazon? How do carbon emissions and accumulation vary across

the biome?

Chapter 3 expands the dataset I created in Chapter 2 to incorporate all Amazonian

countries. It explores the geographic distribution of forest cover and carbon stocks

across the Amazon biome, exploring how forest loss and recovery differ across

political boundaries and at a local scale. Using the method developed for Chapter

2, I combined the 33-year MapBiomas Amazonia Collection 2 land cover dataset

(MapBiomas, 2021) with estimates of above-ground biomass (Avitabile et al., 2016)

and secondary forest carbon accumulation rates (Requena Suarez et al., 2019).
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I found that Brazil has contributed disproportionally to old-growth forest loss, with

Pará State alone responsible for more deforestation than the other eight countries

combined. The analysis also revealed a negative spatial relationship between old-

growth forest loss and recovery by secondary forests, both in terms of forest extent

and carbon stock, showing that regions with the greatest potential for large-scale

restoration are also those with the lowest forest cover recovery. I also found that

highly deforested landscapes are not regaining forest cover, even after 20 years.

Overall, this chapter contributes a new understanding of changing Amazonian forest

cover and the first biome-wide estimates of carbon accumulation and emissions at

this spatial resolution (30 m). This chapter is published in Environmental Research

Letters (Smith et al., 2021).

6.1.3 Secondary forest position within the landscape (Chapter 4)

Motivating Questions: Where are secondary forests growing in relation to old-

growth forests in the Amazon? To what extent do secondary forests buffer old-growth

forests edge?

Chapter 4 updated the forest cover data produced in Chapter 3 to examine the spatial

context of secondary forest growth in relation to remaining old-growth forests in 2020.

I used annual maps of forest cover to establish the extent and age of old-growth

forest edges and to quantify the proximity of secondary forests to these edges. My

results revealed that although 94.1% secondary forests are part of a fragment that is

connected to old-growth forest, less than half of secondary forests (48.9%) are within

1 km of a structurally intact old-growth forest fragment of more than 50 km2. I also

found that ~350,000 km2 of old-growth forests were within 120 m of an anthropogenic

edge, with secondary forests potentially buffering edge effects for less than half of

these edges (41.1%). However, allowing secondary forests bridges reduced the

total number of isolated old-growth forest fragments by up to 2 million. Overall, this

chapter contributes the first quantification of secondary forest proximity to old-growth
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forests for the entire Amazon biome and demonstrates the importance of accounting

for spatial context when examining the potential benefits of forest restoration. This

chapter is in preparation for submission to Global Change Biology.

6.1.4 Habitat loss in the Amazon biome (Chapter 5)

Motivating Questions: How have deforestation, disturbance, and secondary forest

growth impacted habitat availability in the Amazon?

Chapter 5 explores the implications of the findings of Chapter 4 from the perspective

of habitat loss. To look beyond binary measures of forest cover, I combined maps of

forest extent with data on forest degradation from Bullock et al. (2020), to highlight the

perilous state of habitat availability in the Amazon. I found that the habitat available

for disturbance-sensitive species has fallen by 40% since 1985, with 79% of this

loss due to changes in forest condition rather than extent. Furthermore, I found that

species endemism compounds these habitat losses. In the Belém area of endemism,

fragmentation, edge-effects, and structural disturbance may have reduced habitat

for disturbance-sensitive species by 91%, despite the region retaining 67% of its

forest cover. Overall, this chapter contributes the first biome-wide estimates of

habitat availability for Amazonian species based on their tolerance to disturbance and

demonstrates the critical importance of monitoring forest condition as well as extent.

This chapter is in preparation for submission to Nature Ecology and Evolution.

6.2 Key messages

As a whole, this thesis demonstrates the power of using big data to address

environmental questions over large spatial scales. By combining very large datasets

with high-performance computing, I have quantified spatial and temporal relationships

between forest loss and recovery on a continental scale, whilst maintaining a
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resolution that can detect local scale change. More specifically, I address changing

forest cover in the Amazon, with a particular focus on the role of secondary forests

in offseting carbon emissions and providing refuge for biodiversity. While each data

chapter focuses on a different aspect of this wider topic, there are four important

messages that are consistent across all chapters.

Halting deforestation and degradation must be prioritised.

Deforestation in the world’s tropical regions is without doubt one of the greatest

environmental catastrophises of the last century. In the Amazon, over ~800,000 km2

of old-growth forest has already been cleared (Smith et al., 2021), but the implications

of deforestation reach beyond its immediate extent, by way of edge effects (Magnago

et al., 2015, 2017), fragmentation (Fischer et al., 2021), and exposure to additional

sources of degradation (Bullock et al., 2020; Matricardi et al., 2020). Together,

deforestation and forest degradation cause huge disruption to tropical ecosystems

(Barlow et al., 2016) and generate large quantities of carbon emissions (Qin et al.,

2021). Although secondary forests may mitigate some of these impacts, the findings

of this thesis highlight several important reasons why preventing further forest loss

and degradation must remain the priority.

First, although secondary forests are increasing in extent (Smith et al., 2020, 2021),

the rate at which they accumulate carbon (Requena Suarez et al., 2019; Elias et al.,

2020, 2022) and the time frame over which they recuperate ecosystem composition

(Poorter et al., 2021), means they cannot keep pace with the loss of intact old-growth

forest that the Amazon is currently experiencing (Matricardi et al., 2020; Smith et al.,

2020, 2021). Chapter 3 shows that to date, they have offset just 9.7% of carbon

emissions from deforestation (Smith et al., 2021), a figure that would almost halve if

also considering emissions from forest degradation (Bullock et al., 2021). Second,

old-growth forests are key to supporting recovery in secondary forests (Chazdon

et al., 2009; Arroyo-Rodriguez et al., 2020; Arasa-Gisbert et al., 2021). Old-growth

forests are critical seed sources (Hawes et al., 2020) and connection to old-growth

124



6.2. Key messages

forests may be fundamental to the recovery of community composition (Mayhew

et al., 2019). High surrounding forest cover has been shown to be important in

the early stages of succession (Toledo et al., 2020), which is particularly prevalent

given that 35.9% of secondary forests are currently ≤5 years old (Smith et al.,

2021). Third, secondary forests do not provide habitat for all species (Barlow et al.,

2007a). Chapter 5 reveals a 40% decline in habitat for species relying on extensive

areas of structural-intact old-growth forests. Recovery by secondary forests cannot

replace these old-growth forest habitats (Gibson et al., 2011) and preventing further

deforestation and degradation is the only way to secure the future of these vulnerable

species.

Although Amazonian deforestation rates are currently on the rise (PRODES, 2021),

looking at the history of forest loss in the biome shows us that bringing an end to large-

scale deforestation is not an impossibility. Through a combination of well-enforced

policy and favourable economic conditions (Boucher et al., 2013; Tacconi et al., 2019;

Heilmayr et al., 2020), Brazil was able to reduce its rate of deforestation by 79% in less

than a decade (2004-2012; PRODES, 2021). As a result, we already have a viable

pathway for ending forest loss in the Amazon, if those with the power to generate

change take action. World leaders recently committed to “no new deforestation by

2030” (United Nations, 2021), it is critical that they make good on that promise.

Secondary forests are not reaching their full potential for carbon accumulation

or biodiversity preservation.

Secondary forests have the potential to help mitigate both carbon emissions and

biodiversity loss (Chazdon et al., 2009, 2016a; Lennox et al., 2018; Cook-Patton

et al., 2020). However, a defining theme of my thesis is that the location of existing

secondary forests is far from optimal maximizing carbon storage or biodiversity

conservation. Foremost, Chapters 2 and 3 demonstrate that secondary forests are

threatened by clearance (Schwartz et al., 2020; Smith et al., 2020; Wang et al.,

2020; Smith et al., 2021). This ephemerality undermines their ability to act as a
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long-term carbon store and interrupts succession, preventing them from developing

into complex and resilient ecosystems (Chazdon, 2014). There is also a growing body

of research showing that secondary forest recovery trajectories vary considerably

due to differences in climate, previous land use, and landscape context (Jakovac

et al., 2015; Poorter et al., 2016; Mayhew et al., 2019; Elias et al., 2020, 2022). In

exploring the location of secondary forests across the biome and within landscapes,

this thesis shows that many secondary forests are aligned with conditions that are

less favourable for recovery (Smith et al., 2020, Chapter 4). Chapter 2 shows that

secondary forests are typically located in drier, more seasonable regions, as well as

on land that has previously been intensely cultivated (Smith et al., 2020). Both climate

and land use intensity are well-studied drivers of reduced recovery in secondary

forests (Jakovac et al., 2015; Poorter et al., 2016; Elias et al., 2020; Jakovac et al.,

2021; Elias et al., 2022). However, Chapter 4 reveals that 40% of secondary forests

are growing directly adjacent to old-growth forests, the benefits of which may help

compensate for the negative impacts of other unfavourable biophysical and socio-

economic factors (Mayhew et al., 2019).

It is clear from the findings of this thesis that the environmental benefits of secondary

forests could be enhanced. Data-informed policies that strategically target restoration

efforts could ensure secondary forests are of maximum benefit to tropical landscapes

and global environmental goals. For example, encouraging regeneration adjacent to

old-growth forests, particularly on the 56.9% of old-growth edges that are currently

exposed to open land use (Chapter 4), could be a double win for the environment by

enhancing secondary forest recovery rates and protecting old-growth forests from

further degradation. It is also clear from the findings of Chapter 3, that secondary

forests are not recovering in highly deforested landscapes (Smith et al., 2021). New

interventions – such as tree islands or enrichment planting (Alves et al., 2022) –

specifically targeting these regions could help to initiate restoration in areas that have

the greatest available space. Finally, inclusion of secondary forests in monitoring

programmes and improved definitions of what consitutes a secondary forest would
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be important first steps in securing their longevity. Permanence is critical to the

success of any restoration efforts. Future research projecting the outcomes of

different approaches to promoting secondary forest recovery will be essential for

planning effective policy interventions.

Further research is essential to achieving maximum environmental benefits

from forest regeneration.

Maximising the environmental benefits of regeneration depends on our ability to

identify where secondary forest growth will be most effective. In this thesis I have

explored the distribution of existing secondary forests in relation to factors that are

linked to variation in recovery rates (Chapter 4; Smith et al., 2020). However, there

are critical gaps in our understanding of the processes that drive this variation. For

example, although we know that surrounding old-growth forest cover influences

secondary forest recovery (Mayhew et al., 2019; Arroyo-Rodriguez et al., 2020;

Arasa-Gisbert et al., 2021), we do not know how this is affected by the condition

of the surround forest. Chapter 4 demonstrates the scale at which this may be

influencing recovery success: while 98.6% of secondary forests are within 1 km

of any old-growth forest, this drops to just 48.9% for extensive structurally-intact

old-growth forest. We also do not know how different drivers of secondary forest

recovery rate might interact (Crouzeilles et al., 2021; Prieto et al., 2021). Chapter

2 finds correlations between many of the climatic, landscape, and local factors that

were explored (Smith et al., 2020). The influence of some variables may overwhelm

the effect of others – intense prior land use restricts carbon recovery even in high

forest-cover landscapes (Fernandes Neto et al., 2019) – but others may be additive.

We also have very limited research on the benefits secondary forests may provide to

old-growth forest through buffering of edge effects and reduction in fragmentation.

Secondary forest may be buffering as much as 41.1% of old-growth forest edges

(Chapter 4). But there are many unknowns, including the age at which secondary

forests become viable buffers and whether buffers facilitate recovery in the adjacent

old-growth forest. In Chapter 4, introducing an age threshold of ≥15 years reduced
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edge buffering by 56%.

The governance of secondary forests is notoriously challenging yet doing so

successfully is essential to ensuring that they achieve their full potential for

carbon sequestration and biodiversity conservation. If we can fully understand the

mechanism driving variation in secondary forest recovery, we can develop restoration

strategies that achieve the greatest environmental gain from the limited space and

funds that are available for restoration. This thesis demonstrates that while much

of the ecological data is already available, many questions remain. Furthermore, in

practice, selecting areas for restoration is fraught with additional social and economic

complexities, such as land ownership, food security, and the importance of forests

fallows for traditional peoples. Effective policy will also need to incorporate these

social and economic variables in order to balance the needs of people and nature.

Field data is fundamental to the success of big data analysis.

Advances in big data and increasing access to high-performance computing is

enabling unprecedented environmental analysis, transforming the scale at which we

can study the natural world. This thesis offers a perfect example of how the rapidly

changing big data landscape can transform research over a relatively short time

frame. The release of the MapBiomas Brazil dataset (MapBiomas, 2019) expanded

this thesis from what was initially intended to be a small-scale analysis of secondary

forest dynamics, into an assessment of all secondary forests in the Brazilian Amazon

(Smith et al., 2020). The subsequent release of the Amazon-wide MapBiomas

collections (MapBiomas, 2021) in the following years expanded this again, enabling

high-resolution, biome-wide analyses of changing forest cover for the first time (Smith

et al., 2021). However, it is important to remember that in the context of this thesis,

big data is a tool to amplify findings initially provided by field studies. Thus, while

the expansion of the study area was facilitated by the availability of big data, many

of the findings are underpinned by traditional field data and almost all the future

research requirements highlighted in this thesis require studies to be conducted in
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the field. Therefore, although big data presents exciting new possibilities for research,

collection of field data is still intrinsic to the study of ecological processes and the

impact of human activity upon them.

6.3 Limitations and uncertainties

While the datasets and methods that underpin this thesis were the best available at

the time of writing, there are limitations that are important to note. Here I provide

an overview of the three key sources of uncertainty for my thesis as a whole – the

implications of these for my findings are detailed in the relevant data chapters.

First, across all four data chapters, I have relied on the MapBiomas (2019, 2021)

datasets to map changing forest cover. MapBiomas is built from the Landsat archive

and is the first edge-to-edge map of annual land cover in the Amazon. Although

MapBiomas is ground-breaking in its spatial and temporal resolution, it is not without

limitations. As a tropical region, the Amazon has exceptionally high cloud cover for

much of the year, which renders many Landsat images useless. This is particularly

prevalent in the northeast of the biome, where a chronic lack of cloud-free images

reduces the accuracy of the land cover classifications, as documented on the

MapBiomas website. The main implication of this inaccuracy is that my estimates

of secondary forest cover and secondary forest age in these areas may not truly

represent historic changes in land cover.

Second, my estimates of secondary forest carbon stocks are based upon a single

model for carbon sequestration from Requena Suarez et al. (2019). While the chosen

model made huge advances in refining our understanding of secondary forest carbon

accumulation, there are uncertainties associated with having applied it universally

across all secondary forests. These uncertainties are discussed in detail in Chapter

2, but primarily arise from the huge variation in carbon accumulation estimates for
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Amazonian secondary forests (Elias et al., 2020; Heinrich et al., 2021; Elias et al.,

2022) and the fact that the underlying field plot network has a location bias towards

regions where climatic conditions are favourable for rapid carbon accumulation (Smith

et al., 2020). As such I may be over estimating carbon stocks within secondary forests

and therefore their role in offsetting carbon emissions from deforestation. Future

studies may improve upon this by making use of soon to be available datasets

from new satellites such as the NASA GEDI mission (Hancock et al., 2019) or the

European Space Agency Biomass mission (Quegan et al., 2019).

Finally, many tropical species are insufficiently documented and more still have yet

to be identified. Our limited knowledge of the behaviour and ranges of Amazonian

species, also limits the extent to which the value of secondary forests for biodiversity

can be extrapolated across large areas. For example, estimates of habitat availability

in Chapter 5, are based on expert knowledge, rather than upon empirical data

on habitat preferences of individual species. With substantial declines in habitat

predicted for species world-wide (Powers et al., 2019), identifying habitat loss is key

to enabling targeted, knowledge-based conservation solutions. Therefore, refining

our understanding of Amazonian species and the specifics of their habitat loss across

different landscapes should remain a research priority.

6.4 Final remarks

In this thesis I used big data to further our understanding of changing forest cover in

the Amazon, a globally important biome. I address key knowledge gaps surrounding

the extent, distribution, and dynamics of secondary forest, as well as the spatial

and temporal relationships between old-growth forest loss and secondary forest

expansion. My findings demonstrate that secondary forests are not mitigating the

impacts of forest loss and that bringing an end to deforestation remains critical for

reaching net zero carbon emissions and preserving biodiversity. However, I also
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show that secondary forests could play an important role in future if we can increase

their permanence withing the landscape and encourage further regeneration where

secondary forests can act as a buffer for old-growth edges or increase connectivity

between forest fragments. Two important next steps are to implement policy to

maximise the benefits of existing secondary forest and to identify where to encourage

regeneration in order to achieve the highest returns on investment. This thesis is

testament to the advances that are possible with open-access, big datasets such

as MapBiomas (2021). As new datasets become available, big data analysis will

become an increasingly important tool for environmental science and we can expect

exciting new research across a range of fields in the near future.
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A.1 MapBiomas

A.1.1 Background

This study makes use of land cover data produced by MapBiomas (MapBiomas,

2019), a multi-institutional initiative that used the Landsat archive to produce 30-m

resolution annual land cover maps for Brazil from 1985 to 2017, applying automatic

classification processes. These maps are the highest spatial and temporal resolution

time series of land cover that is currently available for the Brazilian Amazon. The

data are open-access and can be downloaded from Google Earth Engine using the

MapBiomas Toolkit. This study uses MapBiomas version 3.1. A full description of the

MapBiomas project can be found at: http://mapbiomas.org.

A.1.2 MapBiomas vs TerraClass

The TerraClass Project was created in 2008 to map land use and land cover within

the deforested areas of the Brazilian Legal Amazon (Almeida et al., 2016). The

most recent report (2014) estimates 158,072 km2 of secondary forest, 36% more

than the 116,587 km2 found by our approach using MapBiomas data for the same

year. Generally, the two maps follow the same overall spatial pattern, however, the

TerraClass patches are typically much larger and just 33.8% of the pixels classified as

secondary forest by our study were also marked as secondary forest by TerraClass.

These disparities may largely be due to methodological differences. Although it is

the same resolution as our map (30-m), by only analysing pixels within the PRODES

deforestation mask (Almeida et al., 2016), TerraClass is limited to secondary forest

growing in deforested areas of more than 6.25 ha, which is the minimum clearance

detected by PRODES. TerraClass also records secondary forest that began growing

before 1985. However, as abandoned land begins to resemble primary forest in

satellite images after just a few years, it is unlikely that the visual inspection method

used in TerraClass is catching much of this pre-1985 regeneration. Additionally,
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as largescale deforestation did not begin until the 1970s it is unlikely that there

are significant amount of secondary forest lying outside our time series, with some

estimating there was as little as 30,000 km2 by 1980 (e.g. Aguiar et al., 2016) of which

some would have been cleared again since then and identified by our algorithm.

A.1.3 MapBiomas Vs PRODES

Figure A.1: Comparison of the extent of old-growth deforestation reported
by PRODES and MapBiomas. The annual extent of old-growth deforestation as
identified by PRODES (red) and MapBiomas (blue). Due to methodological difference,
notably the size threshold for clearance (our analysis: 0.36 ha, PRODES: 6.25 ha),
there are undoubtedly differences in the spatial distribution between the old-growth
forest masks of the two datasets. However, the temporal trends are comparable.
The deforestation mask provided by our analysis is considered to be more accurate
as the clearance threshold is small enough to capture the activities of all land use
change including that carried out by small landholders, who typically clear just 2 - 3
ha yr−1, which is liable to be missed by the larger PRODES threshold.
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A.2 Data processing

A.2.1 Water masking

Following reclassification, a temporal filter was applied to create a uniform water

mask to be used across the time series. The land cover data were analysed in

three-year increments such that if a pixel remained as water for a single year before

returning to the previous year’s land cover type, the middle year was reclassified

to match the others. For example, if a pixel follows the trajectory Forest – Water –

Forest it becomes Forest – Forest – Forest. MapBiomas applies similar rules during

its classification process (MapBiomas, 2019). We then applied the maximum extent

of water across the time series.

A.2.2 Change detection

Change detection was conducted at the pixel level to produce a comprehensive

history of change for the entire Brazilian Amazon at 30-m resolution. Following

reclassification, pixels were given the arbitrary value 0, 1, 4 or 9, representing

water/other, cropland, pasture and old-growth forest, respectively. Transitions were

calculated by subtracting the classification value of the current year from that of the

same pixel in the previous year, generating a unique value for each possible transition

(Table A.2).

The transition values were used to calculate the following disturbance variables for

each pixel: age, time as cropland, time as pasture and number of clearance events.

For the first year in the time series a standard value is assigned to each variable

based on land cover type (Table A.1). These standard values assume that all forest

in the first year is old-growth forest, that all non-forest pixels have only undergone

one clearance event and that the land cover in each pixel is 1-year-old.

For subsequent years, the disturbance variables are calculated using the transition

135



Appendix A

value of the current year and the disturbance variables from the previous year (Table

A.3). MapBiomas does not separate secondary forest in its classification, thus, at

this stage, secondary forest is introduced as an additional land cover class (4). Any

pixel classified as ‘forest’ that has undergone a clearance event is marked by the

algorithm as ‘secondary forest’.

Figure A.2: Landcover in the Brazilian Amazon in 2017. A map of the extent of
old-growth forest (dark green), secondary forest (light green), pasture (brown) and
cropland (yellow) in the Brazilian Amazon in 2017 produced from the MapBiomas
dataset. The inset demonstrates the detail available from 30-m resolution data.

Table A.1 Values assigned to pixel disturbance variables in first year of time series.

Current Classification Land Cover
Time as
Cropland

Time as
Pasture

No. of
Clearance Events

Age

Forest 3 0 0 0 0
Pasture 2 0 1 1 0

Cropland 1 1 0 1 0
Water/Other 0 N/A N/A N/A N/A
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Table A.2 Possible land cover transitions.

Transition Value From To

-9 Water/Other Old-growth forest
-8 Cropland Old-growth forest
-5 Pasture Old-growth forest
-4 Water/Other Pasture
-3 Cropland Pasture
-1 Water/Other Cropland
0 No Change
1 Cropland Water/Other
3 Pasture Cropland
4 Pasture Water/Other
5 Old-growth forest Pasture
8 Old-growth forest Cropland
9 Old-growth forest Water/Other

Table A.3 Pixel disturbance variable calculations.

Transition Value
Land
Cover

Time as
Cropland

Time as
Pasture

No. of
Clearance Events

Age

-8 (C to OG) 4 n n n 1
-5 (P to OG) 4 n n n 1
-3 (C to P) 2 n n+1 n 1

0 (OG to OG) n n n n n+1
0 (SF to SF) 4 n n n n+1

0 (C to C) n n+1 n n n+1
0 (P to P) n n n+1 n n+1
3 (P to C) 1 n+1 n n 1

5 (OG to P) 2 0 1 n+1 1
5 (SF to P) 2 0 1 n+1 1
8 (OG to C) 1 1 0 n+1 1
8 (OG to C) 1 1 0 n+1 1

n = value from the previous year Transition Value: OG=Old-Growth Forest,
C=Cropland, P=Pasture, SF=Secondary Forest
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A.3 Representativeness of the secondary forest plot

network

A.3.1 Methodology

Rainfall, rainfall seasonality and climatic water deficit have been found to be the best

climatic indicators of absolute biomass recovery potential in the Neotropics (Poorter

et al., 2016). Using these same measures, with mean annual rainfall and rainfall

seasonality from WorldClim (variable ‘BIO12’ and ‘BIO15’, respectively; Hijmans et

al., 2005) and climatic water deficit from Chave et al. (2014), we tested whether the

secondary forest plot network used by Requena Suarez et al. (2019) is representative

of secondary forest climatic contexts within the Brazilian Amazon. To do so, we took

a random sample equal to the number of forest plots (n = 30) from each climatic

variable’s distribution across all secondary forests. We then used the Wilcoxon

Rank Sum test to assess the evidence that the sample and the plot network values

were drawn from different distributions. We repeated this process 10,000 times

and recorded the mean p value. The procedure allowed us to test whether the plot

network climate was significantly different from the expected climate for a sample of

cardinality equal to the number of plots.

A.3.2 Results

The Brazilian secondary forest plot network (Requena Suarez et al., 2019) is not

evenly distributed, with plots concentrated in the far east and near Manaus. Climatic

water deficit and annual rainfall are both more favourable for forest growth at the plot

network sites than for secondary forests generally. The former are lower (plot network

median: 249.0 mm yr−1; secondary forest median: 375.5 mm yr−1; Wilcoxon rank

sum: W = 2.35, p = 0.035; Figure 2.3c) and the latter higher (plot network median:

2236 mm yr−1; secondary forest median: 1945 mm yr−1; Wilcoxon rank sum: W =

2.82, p = 0.019; Figure 2.3a). There is less confidence in the difference in rainfall
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seasonality (plot network: 60%; secondary forest: 70%; Wilcoxon rank sum: W =

2.01, p = 0.057; Figure 2.3b).

Figure A.3: Comparison of the climatic distributions of secondary forest in
the Brazilian Amazon and the secondary forest plot network. The (a) annual
rainfall (mm yr−1), (b) rainfall seasonality (% difference in wet and dry season rainfall)
and (c) climatic water deficit (mm yr−1) of secondary forests in the Brazilian Amazon
(blue) in comparison to the Brazilian plot network (red) used by Requena Suarez
et al. (2019) to estimate secondary forest carbon accumulation rates. Box plots show
median, quartiles and standard deviation (estimated as 1.5*Inter Quartile Range).
Climatic water deficit of the plot network is significantly less than for secondary forest
and annual rainfall was significantly greater (p < 0.05). The difference in rainfall
seasonality is not significant (p > 0.05). Annual rainfall and rainfall seasonality were
obtained from WorldClim (BIO12; BIO15) and climatic water deficit from Chave et al.
(2014)
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A.4 Associations between factors influencing biomass

accumulation

Figure A.4: Correlations between climatic, landscape and local context of
secondary forest in the Brazilian Amazon in 2017. Mean correlation co efficient
(a) and significance (b) of the spatial associations between the climatic, landscape
and local contexts of secondary forest in the Brazilian Amazon. This was tested using
10,000 iterations of Spearman’s Rank Order Correlation on samples of secondary
forest pixels (n = 1000) and a significance threshold of p < 0.01 (blue). Samples were
selected randomly across entire Brazilian Amazon.
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Figure A.5: Significance of correlations between climatic, landscape and local
context of secondary forest in the Brazilian Amazon in 2017. Mean significance
of the spatial associations between the climatic, landscape and local contexts of
secondary forest in the Brazilian Amazon. This was tested using 10,000 iterations
of Spearman’s Rank Order Correlation on samples of secondary forest pixels (n =
1000) and a significance threshold of p < 0.01 (blue). Samples were elected such
that 25% of points were situated in each quadrant of the Amazon biome.

A.5 Emissions from deforestation and secondary

forest clearance

When we assumed all above-ground carbon was emitted in the year of deforestation,

we estimate that old-growth clearance resulted in a gross carbon loss of 3.71 billion

Mg C, emitting the equivalent of 13.63 billion Mg CO2, with approximately 8.79%

of these emissions offset by secondary forest growth. Gross loss of carbon from

secondary forest clearance with this same assumption is 0.25±0.04 billion Mg C,

equivalent to 0.91±0.14 billion Mg CO2 (mean±95% CI).
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A.6 Factors influencing secondary forest carbon

sequestration

Table A.4 Sample size analysis for secondary forest and entire Brazilian Amazon
climate comparison.

Climatic Variable n W p-value

Climatic Water Deficit 100 -16.712762 4.97E-43

Climatic Water Deficit 1000 -16.693106 4.98E-45

Climatic Water Deficit 10000 -16.695283 2.64E-42

Climatic Water Deficit 500 -16.693944 3.37E-46

Climatic Water Deficit 5000 -16.711775 7.10E-45

Rainfall Seasonality 100 20.2465559 1.48E-70

Rainfall Seasonality 1000 20.2495723 4.49E-69

Rainfall Seasonality 10000 20.2487432 7.96E-72

Rainfall Seasonality 500 20.2462727 1.80E-69

Rainfall Seasonality 5000 20.2559599 4.42E-70

Annual Rainfall 100 -14.504375 2.33E-32

Annual Rainfall 1000 -14.472156 3.54E-31

Annual Rainfall 10000 -14.493542 8.66E-32

Annual Rainfall 500 -14.465979 1.24E-33

Annual Rainfall 5000 -14.482788 1.59E-31

n = sample size; W = Wilcoxon Rank-Sum test statistic
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Figure A.6: Landscape configuration of secondary forest in the Brazilian
Amazon. The proportion of the landscape (1 km radius) surrounding secondary forest
pixels (900 m2) that is occupied by old-growth and secondary forest. Lighter colour
represents a greater area of secondary forest with a given landscape configuration.

Figure A.7: Climatic, landscape and local contexts of secondary forest in the
Brazilian Amazon in 2017. Maps of secondary forest in relation to (a, b, c) climatic,
(d, e, f) landscape and (g, h, i, j) local factors known to influence carbon accumulation
rate. Maps show the median value for secondary forest pixels (0.009 km2) in a 1 km2

grid of the Amazon biome. Climatic: (a) annual rainfall, (b) rainfall seasonality and
(c) climatic water deficit. Landscape: proportion of the land cover within 1 km2 of
a secondary forest pixel as (d) old-growth forest, (e) secondary forest and (f) total
forest. Local: (g) the number of clearance cycles, the number of years a secondary
forest pixel spent as (h) cropland or (i) pasture prior to abandonment, and (j) the total
time in use prior to abandonment.
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B.1 Old growth deforestation emissions

Figure B.1: Carbon loss from old-growth deforestation in Amazonian countries
and Brazilian States in Amazonian countries and Brazilian states in 2017. The
(a) carbon lost from old-growth deforestation and (b) the proportion of original old-
growth forest carbon stock lost to deforestation for Amazonian countries (dark) and
Brazilian states (light) in 2017. Countries and states are ordered by the area of the
Amazon they contain.

B.2 Secondary forest age and residence time

B.2.1 Secondary forest age

The age distribution of secondary forest in the majority of Amazon countries is highly

skewed towards young forests (Figure B.3). Bolivia, Guyana and Suriname are the

exceptions. Bolivia shows a largely bimodal distribution, with fewer mid-age forests

than either young or old. While Guyana and Suriname, both exhibit a skew towards

old forests and large spikes in 31-year-old and 18 to 22-year-old secondary forests

respectively. While all Brazilian states show a skew toward younger secondary

forest, Acre, Amapa and Tocantins all exhibit similar large spikes in 16-year-old

secondary forest (Figure B.4). Kruskal-Wallis tests indicated significant differences in

the distribution of secondary forest age between countries and states (Kruskal–Wallis

Chi square = 174.4, P < 0.01, df = 16), but post-hoc Dunn’s test reveal that Guyana

and Suriname are the only political units with significantly different age distributions
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(Figure B.5). The anomalous distributions of Guyana, Suriname and the three

Brazilian States are likely due to these regions having persistently limited cloud-free

Landsat image cover over much of the time series (see MapBiomas data availability

Figure B.2: Secondary forest age in the Amazon Biome. (a) Spatial variation in
median secondary forest age across the Amazon, plotted on an ~60 km2 grid. Cells
which have experienced no deforestation are shown in grey and those where < 1% of
the cell is capable of supporting forest are omitted. (b) The distribution in secondary
forest age for all secondary forest in the Amazon.
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layer).

B.2.2 Secondary forest residency time

Across the Amazon, the majority (70.03%) of secondary forest cleared since 1997

was 5 years old or less at clearance and the median residency time was just 2 years.

This skew towards the clearance of young forests is seen in every Amazonian country,

with median residency time ranging from 2 years in Brazil and French Guiana, to

5 years in Ecuador and Suriname. While Kruskal-Wallis tests indicated significant

differences in the distribution of secondary forest age between countries and states

(Kruskal–Wallis Chi square = 48.2, P < 0.01, df = 16), post-hoc Dunn’s test reveal

that there are no significant differences between political units (Figure B.5).
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Figure B.3: The age distribution of secondary forest in Amazonian
countries.The distribution of secondary forest age in (a) Bolivia, (b) Brazil, (c)
Colombia, (d) Ecuador, (e) French Guiana, (f) Guyana, (g) Peru, (h) Suriname and
(i) Venezuela
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Figure B.4: The age distribution of secondary forest in Brazilian States. The
distribution of secondary forest age in (a) Acre, (b) Amapa, (c) Amazonas, (d)
Maranhao, (e) Mato Grosso, (f) Para, (g) Rondonia, (h) Roraima and (i) Tocantins
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Figure B.5: Differences in secondary forest age and residence time across
political units in the Amazon. The significance of post-hoc Dunn’s test for
differences in (a) secondary forest age and (b) secondary forest residence time
between Amazonian countries and Brazilian states.
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B.3 Temporal trends in deforestation and recovery

Table B.1 Best-fit models (∆AICc ≤ 2; in bold) for the temporal trends in changes in
old-growth and secondary forest cover in the Amazon biome.

Mi AICc ∆iAICc Wi P

Area of old-growth
deforestation

NON-LINEAR (2) 116.77 0.00 0.98 –
LINEAR 126.94 10.17 0.01 0.99
NON-LINEAR (3) 127.92 11.15 0.00 1.00
NON-LINEAR (1) 130.03 13.26 0.00 1.00
NULL 146.27 29.50 0.00 1.00

Area of secondary forest
deforestation

LINEAR 80.53 0.00 0.45 –
NON-LINEAR (1) 84.81 4.28 0.05 0.89
NULL 85.62 5.08 0.04 0.93
NON-LINEAR (2) 91.49 10.95 0.00 1.00
NON-LINEAR (3)* – – – –

Area of new
secondary forest

NULL 98.28 0.00 0.38 –
LINEAR 98.72 0.45 0.30 0.56
NON-LINEAR (1) 104.66 6.38 0.02 0.96
NON-LINEAR (2) 112.70 14.42 0.00 1.00
NON-LINEAR (3) 118.75 20.47 0.00 1.00

Net change in
secondary forest area

NULL 107.80 0.00 0.64 –
LINEAR 110.43 2.64 0.17 0.79
NON-LINEAR (1) 115.90 8.10 0.01 0.98
NON-LINEAR (2) 123.81 16.02 0.00 1.00
NON-LINEAR (3) 133.18 25.39 0.00 1.00

Net change in
forest cover

LINEAR 137.24 0.00 0.22 –
NON-LINEAR (2) 135.51 -1.73 0.52 0.30
NON-LINEAR (1) 140.33 3.09 0.05 0.82
NON-LINEAR (3) 146.14 8.90 0.00 0.99
NULL 149.67 12.43 0.00 1.00

Mi = model; ∆i (AIC) = [AICi – min(AIC)]; Wi = the rounded Akaike weights
P = the normalised probability that the best-fit model is preferred to Mi

∗ = did not converge
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Table B.2 Best-fit models (∆AICc ≤ 2; in bold) for the temporal trends in changes in
old-growth and secondary forest emissions in the Amazon biome.

Mi AICc ∆iAICc Wi P

Old-growth deforestation
emissions

NON-LINEAR (2) 256.15 0.00 0.73 –
NON-LINEAR (1) 260.03 3.87 0.11 0.87
LINEAR 260.53 4.38 0.08 0.90
NON-LINEAR (3) 264.01 7.86 0.01 0.98
NULL 268.82 12.67 0.00 1.00

Secondary forest
deforestation emissions

NON-LINEAR (2) 125.02 0.00 0.81 –
NON-LINEAR (1) 127.95 2.93 0.19 0.81
LINEAR 156.02 31.00 0.00 1.00
NULL 180.61 55.59 0.00 1.00
NON-LINEAR (3)* – – – –

Secondary forest carbon
accumulation

LINEAR 166.68 0.00 0.33 0.50
NON-LINEAR (1) 171.89 5.21 0.02 0.93
NULL 204.44 37.75 0.00 1.00
NON-LINEAR (2)* – – – –
NON-LINEAR (3)* – – – –

Net secondary forest
emissions

LINEAR 164.29 0.00 0.26 –
NON-LINEAR (1) 164.80 0.51 0.20 0.56
NON-LINEAR (2) 173.25 8.96 0.00 0.99
NULL 180.76 16.47 0.00 1.00
NON-LINEAR (3)* – – – –

Net emissions from changes
in forest cover

NON-LINEAR (2) 256.11 0.00 0.77 –
LINEAR 260.20 4.09 0.10 0.89
NON-LINEAR (1) 260.64 4.53 0.08 0.91
NON-LINEAR (3) 263.28 7.17 0.02 0.97
NULL 271.23 15.12 0.00 1.00

Mi = model; ∆i (AIC) = [AICi – min(AIC)]; Wi = the rounded Akaike weights
P = the normalised probability that the best-fit model is preferred to Mi

∗ = did not converge

B.4 Data processing

We opted to use the MapBiomas dataset over other alternatives due to its high-

resolution (30 m), longer temporal series (1985–2018) and extensive validation

process (MapBiomas, 2021) (MapBiomas, 2020). The geographic limit of Map-

Biomas Amazonía is defined by Red Amazónica de Información Socioambiental

152



Appendix B

Figure B.6: Temporal trends in old-growth deforestation and secondary forest
recovery. (a) Deforestation measured as the percentage of remaining old-growth
forest cleared annually (bars) and the percentage of original old-growth forest cleared
(points). The temporal trend in cumulative deforestation (line) is well-described by
a broken-stick regression with two segments. (b) Forest area recovery measured
as the percentage of the area deforested each year offset by the net change in
secondary forest extent that year (bars) and the percentage of the total deforested
area offset by the total secondary forest extent (points). The temporal trend in
forest area recovery (line) is well-described by a broken-stick regression with three
segments. (c) Carbon recovery measured as the percentage of annual old-growth
deforestation emissions offset by the net carbon balance of secondary forest that year
(bars) and the percentage of cumulative old-growth deforestation emissions offset by
the total accumulated carbon for all secondary forest (points). The temporal trend in
cumulative carbon recovery (line) is well-described by a broken-stick regression with
two segments.
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Table B.3 Best-fit models (∆AICc ≤ 2; in bold) for the relationship between
deforestation and recovery across Amazonian countries.

Mi AICc ∆iAICc Wi P

Forest Area

LINEAR 143.69 0.00 0.38 –
NON-LINEAR (1) 144.95 1.27 0.20 0.65
NULL 148.85 5.16 0.03 0.93
NON-LINEAR (2) 154.90 11.22 0.00 1.00

Carbon Emissions

NON-LINEAR (1) 104.02 0.00 0.96 –
LINEAR 111.22 7.21 0.03 0.97
NON-LINEAR (2) 113.09 9.08 0.01 0.99
NULL 116.15 12.14 0.00 1.00

Mi = model; ∆i (AIC) = [AICi – min(AIC)]; Wi = the rounded Akaike weights
P = the normalised probability that the best-fit model is preferred to Mi

∗ = did not converge

Table B.4 Best-fit models (∆AICc ≤ 2; in bold) for the relationship between
deforestation and recovery across the Amazon biome.

Mi AICc ∆iAICc Wi P

Forest Area

NON-LINEAR (2) 704100 0.00 1.00 –
NON-LINEAR (1) 704591 490.21 0.00 1.00
LINEAR 711351 7250.95 0.00 1.00
NULL 753395 49294.99 0.00 1.00

Carbon Emissions

NON-LINEAR (2) 638038 0.00 1.00 –
NON-LINEAR (1) 638313 274.24 0.00 1.00
LINEAR 641272 3233.39 0.00 1.00
NULL 657814 19775.82 0.00 1.00

Mi = model; ∆i (AIC) = [AICi – min(AIC)]; Wi = the rounded Akaike weights
P = the normalised probability that the best-fit model is preferred to Mi

∗ = did not converge

Georreferenciada (RAISG) and incorporates six biomes (Amazonia, Andes, Cerrado,

Chaco-Chiquitano, Panantal, Tucumano-Boliviano). For this study we use the

RAISG defined ‘Amazonia’ biome. This dataset is freely available to download:

https://amazonia.mapbiomas.ord/downloads/. We conduct our analysis for 2017 as

the MapBiomas filtering method means the land cover classification is likely to be

more accurate than for 2018. We simplify the MapBiomas schema by reclassifying it

into four broader classes: forest, pasture, cropland and other (Table B.5).
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Table B.5 Reclassification of MapBiomas schema.

MapBiomas ID MapBiomas Classification Reclassification

1 1. Forest Old-growth Forest
2 1.1. Natural Forest Old-growth Forest
3 1.1.1. Forest Formation Old-growth Forest
4 1.1.2. Open Forest Old-growth Forest
5 1.1.3. Mangrove Old-growth Forest
6 1.1.4 Flooded Forest Old-growth Forest
9 1.2. Forest Plantation Cropland
10 2. Non-Forest Natural Formation Other/Water
11 2.1. Wetland Other/Water
12 2.2. Grassland Formation Other/Water
13 2.4. Other Non-Forest Natural Formation Other/Water
14 3. Agriculture Cropland
15 3.1. Pasture Pasture
16 3.1.1 Pasture in Natural Fields Pasture
17 3.1.2 Other Pastures Pasture
18 3.2. Agriculture Cropland
19 3.2.1 Annual Perennial Use Cropland
20 3.2.1 Semi-Perennial Use Cropland
28 3.2.3 Mixed Crop Cropland
21 3.3. Mosaic of Agriculture and Pasture Cropland
22 4. Non-Vegetated Area Other/Water
23 4.1. Beach and Dune Other/Water
24 4.2. Urban Infrastructure Other/Water
29 4.3. Rocky Outcrop Other/Water
30 4.4. Mining Other/Water
25 4.5. Other Non-Vegetated Area Other/Water
26 5. Water Other/Water
33 5.1. River, Lake and Ocean Other/Water
31 5.2. Aquaculture Other/Water
34 5.3 Glacier Other/Water
27 6. Non-Observed NA
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B.4.1 Water masking

Following reclassification, a temporal filter was applied to create a uniform water

mask to be used across the time series. The land cover data were analysed in

three-year increments such that if a pixel remained as water for a single year before

returning to the previous year’s land cover type, the middle year was reclassified

to match the others. For example, if a pixel follows the trajectory Forest – Water –

Forest it becomes Forest – Forest – Forest. MapBiomas applies similar rules during

its classification process. We then applied the maximum extent of water across the

time series.

B.4.2 Change detection

Change detection was conducted at the pixel level to produce a comprehensive

history of change for the entire Amazon Biome at 30-m resolution. Following

reclassification, pixels were given the arbitrary value 0, 1, 4 or 9, representing

water/other, cropland, pasture and old-growth forest, respectively. Transitions were

calculated by subtracting the classification value of the current year from that of the

same pixel in the previous year, generating a unique value for each possible transition

(Table B.6). MapBiomas does not separate secondary forest in its classification,

thus, at this stage, secondary forest is introduced as an additional land cover class.

Any pixel which transitions from ‘non-forest’ to ‘forest’ is marked by the algorithm

as secondary forest. For the first year in the time series, we assuming all forest is

old-growth forest.

B.5 Highly deforested landscapes in 1997
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Table B.6 Possible land cover transitions.

Transition Value From To

-9 Water/Other Old-growth forest
-8 Cropland Old-growth forest
-5 Pasture Old-growth forest
-4 Water/Other Pasture
-3 Cropland Pasture
-1 Water/Other Cropland
0 No Change
1 Cropland Water/Other
3 Pasture Cropland
4 Pasture Water/Other
5 Old-growth forest Pasture
8 Old-growth forest Cropland
9 Old-growth forest Water/Other

Figure B.7: Highly deforested landscapes in the Amazon biome in 1997. The
Amazon biome gridded at ~60 km2. Cells with ≥ 80% old-growth deforestation in
1997 are shown in red. The Amazon biome is shown in grey.
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Figure C.1: Sensitivity of estimated habitat extent to forest condition
parameters. The percentage of habitat loss for the most disturbance-sensitive
response group (selected parameters shows in red) when varying requirements
for the (a) minimum habitat fragment size, (b) minimum distance from edge, (c)
minimum time since structural disturbance, and (d) type of forest that can be inhabited.
Parameters were varied individually, with the other three held constant at the value
used for the most disturbance-sensitive response (fragment size: 50 km2, distance
from edge: 300 m, time since structural disturbance: 20 years, forest type: old-growth
only). See methods for interpretation.
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Appendix C

Figure C.2: Locations of recent sightings of two highly threatened bird species
in the Belém Area of Endemism in relation to estimated habitat for the most
disturbance-sensitive response group. The recorded locations of two Critically
Endangered species – Crax pinima (triangle) and Psophia obscura (circle) – in
relation to forest cover meeting the requirements of our most disturbance-sensitive
response group. Locations of bird sighting were extracted from eBird (Sullivan et al.,
2014) and Alteff et al. (2019). To protect these critically endangered species, the
precise sighting locations are obscured. eBird sightings are georeferenced to the
start points of submitted checklists, and as such are only approximate indicators of
the location of the sighting.
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Figure C.3: Comparison of mapped structural disturbance and burn scars
in the Santarém region. The Bullock et al. (2020) map of structural disturbance
occurring in 2015 and 2016 (orange) is very effective at capturing the well-studied
2015/2016 El Niño burn scar (blue) in the Santarém region of Para, Brazil. Burn scar
data from Withey et al. (2018).

161



Appendix D

Associated publications

162



Appendix D

Assessing the growth and climate sensitivity of secondary forests

in highly deforested Amazonian landscapes

Authors

Elias F., Ferreira J., Lennox G.D., Berenguer E.B., Ferreira S., Schwartz G., de

Oliveira Melo L., Reis Junior D.N., Nascimento R.O., Nascimento Ferreira F., Espírito-

Santo F.D.B., Smith C.C., Barlow J.

Abstract

Tropical forests hold 30% of Earth’s terrestrial carbon and at least 60% of its terrestrial

biodiversity, but forest loss and degradation are jeopardizing these ecosystems.

Although the regrowth of secondary forests has the potential to offset some of the

losses of carbon and biodiversity, it remains unclear if secondary regeneration will

be affected by climate changes such as higher temperatures and more frequent

extreme droughts. We used a data set of 10 repeated forest inventories spanning

two decades (1999–2017) to investigate carbon and tree species recovery and how

climate and landscape context influence carbon dynamics in an older secondary

forest located in one of the oldest post-Columbian agricultural frontiers in the Brazilian

Amazon. Carbon accumulation averaged 1.08 Mg ha−1 yr−1, and species richness

was effectively constant over the studied period. Moreover, we provide evidence

that secondary forests are vulnerable to drought stress: Carbon balance and growth

rates were lower in drier periods. This contrasts with drought responses in primary

forests, where changes in carbon dynamics are driven by increased stem mortality.

These results highlight an important climate change–vegetation feedback, whereby

the increasing dry-season lengths being observed across parts of Amazonia may

reduce the effectiveness of secondary forests in sequestering carbon and mitigating

climate change. In addition, the current rate of forest regrowth in this region was low

compared with previous pan-tropical and Amazonian assessments—our secondary

forests reached just 41.1% of the average carbon and 56% of the tree diversity in the

nearest primary forests—suggesting that these areas are unlikely to return to their

original levels on politically meaningful time scales.
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Tracking the impacts of El Niño drought and fire in human-

modified Amazonian forests.
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C.A., Palmeira A.F., Quesada C.A., Rossi L.C., Marina Moraes de Seixas M., Smith

C.C., Withey K., Barlow J.

Abstract

With humanity facing an unprecedented climate crisis, the conservation of tropical

forests has never been so important – their vast terrestrial carbon stocks can be

turned into emissions by climatic and human disturbances. However, the duration of

these effects is poorly understood, and it is unclear whether impacts are amplified

in forests with a history of previous human disturbance. Here, we focus on the

Amazonian epicenter of the 2015–16 El Niño, a region that encompasses 1.2% of the

Brazilian Amazon. We quantify, at high temporal resolution, the impacts of an extreme

El Niño (EN) drought and extensive forest fires on plant mortality and carbon loss in

undisturbed and human-modified forests. Mortality remained higher than pre-El Niño

levels for 36 mo in EN-drought–affected forests and for 30 mo in EN-fire–affected

forests. In EN-fire–affected forests, human disturbance significantly increased plant

mortality. Our investigation of the ecological and physiological predictors of tree

mortality showed that trees with lower wood density, bark thickness and leaf nitrogen

content, as well as those that experienced greater fire intensity, were more vulnerable.

Across the region, the 2015–16 El Niño led to the death of an estimated 2.5 ± 0.3

billion stems, resulting in emissions of 495 ± 94 Tg CO2. Three years after the El

Niño, plant growth and recruitment had offset only 37% of emissions. Our results

show that limiting forest disturbance will not only help maintain carbon stocks, but

will also maximize the resistance of Amazonian forests if fires do occur.
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Abstract

Deforestation, the complete removal of an area’s forest cover; and forest degradation,

the significant loss of forest structure, functions, and processes; are the result of the

interaction between various direct drivers, often operating in tandem. By 2018, the

Amazon biome had lost approximately 870,000 km2 of its original forest cover, mainly

due to agricultural expansion. Other direct drivers of forest loss include the opening

of new roads, construction of hydroelectric dams, exploitation of minerals and oil,

and urbanization. Impacts of deforestation range from local to global, including

local changes in landscape configuration, climate, and biodiversity; regional impacts

on hydrological cycles; and global increase of greenhouse gas emissions. Of the

remaining Amazonian forests, 17% are degraded, corresponding to approximately

1,036,080 km2. Various anthropogenic drivers, including understory fires, edge

effects, selective logging, hunting, and climate change can cause forest degradation.

Degraded forests have significantly different structure, microclimate, and biodiversity

as compared to undisturbed ones. These forests tend to have higher tree mortality,

lower carbon stocks, more canopy gaps, higher temperatures, lower humidity, higher

wind exposure, and exhibit compositional and functional shifts in both fauna and

flora. Degraded forests can come to resemble their undisturbed counterparts, but this

depends on the type, duration, intensity, and frequency of the disturbance event. In

some cases, this may prohibit the return to a historic baseline. Avoiding further loss

and degradation of Amazonian forests is crucial to ensure they continue to provide

valuable and life-supporting ecosystem services.
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tion from secondary forests in the eastern Amazon.
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Abstract

Secondary forests (SFs) growing on cleared land could be a low-cost climate

change mitigation strategy due to their potential to sequester CO2. However, given

widespread changes in climate and land-use in the Amazon in the past 20 years, it is

not clear whether current rates of carbon uptake by SFs reflect estimates based on

dividing the carbon stock by the estimated age of the forest. Differences between

methodological approaches could lead to important discrepancies in estimates

of carbon accumulation. Furthermore, we know little about how carbon uptake

rates of secondary forests vary across some of the most deforested regions of the

Amazon, where reforestation actions are most needed. Here, we compare the rates

of carbon accumulation estimated over the lifetime of a stand (by stand age) with

the contemporary rates estimated by recensus data, based on 28 permanent SFs

plots distributed across four regions. Then, we compare how carbon uptakes rates

vary across regions and how they compare to previous studies. The average rates of

contemporary (1.23±0.57 Mg C ha−1 yr−1) and lifetime (1.14±0.63 Mg C ha−1 yr−1)

carbon accumulation were strongly correlated (r=0.78) and similar between regions.

Overall, our carbon accumulation rates were much lower than other estimates of

Amazonian SFs, which suggests that regions with the greatest opportunities for large-

scale implementation of SFs have some of the slowest rates of carbon accumulation.

Contrary to predictions from chronosequence analysis, the lack of difference between

lifetime and contemporary rates of carbon accumulation suggests forests are

maintaining a consistent rate of growth in the first decades after abandonment.

These results, combined with the high rates of ongoing environmental change,

highlight the importance of continuing to monitor the rate of carbon accumulation in

secondary forests. This is necessary to support the implementation and monitoring

of large-scale passive restoration in the highly-deforested Amazon.
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Abstract

Human activities pose a major threat to tropical forest biodiversity and ecosystem

services. Although the impacts of deforestation are well studied, multiple land-use

and land-cover transitions (LUCTs) occur in tropical landscapes, and we do not

know how LUCTs differ in their rates or impacts on key ecosystem components.

Here, we quantified the impacts of 18 LUCTs on three ecosystem components

(biodiversity, carbon, soil), based on 18 variables collected from 310 sites in the

Brazilian Amazon. Across all LUCTs, biodiversity was the most affected ecosystem

component, followed by carbon stocks, but the magnitude of change differed widely

among LUCTs and individual variables. Forest clearance for pasture was the most

prevalent and high-impact transition, but we also identified other LUCTs with high

impact but lower prevalence (e.g., forest to agriculture). Our study demonstrates the

importance of considering multiple ecosystem components and LUCTs to understand

the consequences of human activities in tropical landscapes.
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Improving our understanding of fire impacts on tropical forest

biodiversity

Authors
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J., Smith, C.C.

Abstract

Deforestation and human disturbances, such as forest fires, threaten Amazonian

biodiversity. Efforts to understand their impacts at scale are important, but remain

challenging. Nonetheless, we are concerned that some of the approaches of Feng et

al. 2021 (the authors, hereafter) confuse instead of clarify fire impacts. To improve

future analysis, we outline six key limitations and considerations.
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