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Abstract 

Debate continues regarding the possible role of the hippocampus across short-term and working 

memory tasks. The current study examined the possibility of a hippocampal contribution to precise, 

high-resolution cognition and conjunctive memory. We administered visual working memory tasks 

featuring a continuous response component to a well-established developmental amnesic patient 

with relatively selective bilateral hippocampal damage (Jon), and healthy controls. The patient was 

able to produce highly accurate response judgments regarding conjunctions of color and orientation 

or color and location, using simultaneous or sequential presentation of stimuli, with no evidence of 

any impairment in working memory binding, categorical accuracy or continuous precision. These 

findings indicate that hippocampal damage does not necessarily lead to deficits in high resolution 

cognitive performance, even when the damage is severe and bilateral. 
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Introduction 

A long-standing distinction has been drawn between short-term or working memory and long-term 

memory. Much of the evidence for such a distinction has been provided by neuropsychological case 

studies, showing impaired long-term memory (LTM) alongside preserved short-term memory 

(STM) (e.g. Baddeley & Warrington, 1970; Milner, 1966), or vice versa (Shallice & Warrington, 

1970; Vallar & Baddeley, 1984). However, debate continues concerning the relationship between 

temporary and long-term retention. This debate has been focused at the theoretical level, but has 

heavily drawn on the neuropsychological literature (see e.g., Baddeley, Hitch, & Allen, 2019, 2021; 

Buchsbaum & D’Esposito, 2019; Cowan, 1988; Hanley & Young, 2019; Logie, 2019; Morey, 2018; 

Morey, Rhodes, & Cowan, 2019; Shallice & Papagno, 2019). 

One issue that is relevant to this debate is the extent to which the hippocampus and broader 

medial temporal lobe (MTL) structures are involved in both WM and LTM, or only the latter (see 

Allen (2018) for a brief review). The more established view is for a separation, with the 

hippocampus playing an important role in key forms of cognition such as episodic memory, spatial 

awareness, and navigation, while not critically contributing to working memory (e.g., Eichenbaum, 

2006; Eichenbaum, Otto, & Cohen, 1994). An alternative possibility is that the hippocampus may 

contribute to any memory task, regardless of load or duration, particularly if it is recall-based. For 

example, substantial evidence has implicated an important role for the hippocampus in episodic 

LTM, particularly regarding the way in which disparate elements of an episode are associated or 

bound together to form a coherent representation (e.g., Davachi, 2006; Eichenbaum, Yonelinas, & 

Ranganath, 2007). Building on this, it has been argued that binding in working memory also has a 

key hippocampal or MTL component, with studies reporting deficits in patients with hippocampal 

and/or broader MTL damage in tasks designed to measure binding and/or associative memory over 

the short-term (e.g., Hannula et al., 2015; Olson, Page, Moore, Chatterjee, & Verfaellie, 2006; 

Pertzov et al., 2013; Zokaei et al., 2019). We would note in this context though that it is difficult to 

attribute reported deficits specifically to hippocampal or parahippocampal function, given that these 
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studies often report on adult-acquired amnesia resulting from hippocampal plus broader MTL 

damage.  Furthermore, adult-onset injury hippocampal injury with or without MTL involvement 

usually occurs in previously healthy people who had relied on a normally-organised memory circuit 

with access to both working memory and LTM operating in tandem. A very different pattern of 

hippocampal/MTL interaction can result when the injury occurs before the memory circuit has 

functionally developed, with plastic changes in the MTL cortices potentially altering the balance 

between working memory and LTM contributions during memory formation (Elward & Vargha-

Khadem, 2018). 

 Indeed, it has been suggested that apparent evidence for hippocampal involvement in WM 

in fact reflects LTM contribution to task performance (Jeneson, Mauldin, & Squire, 2010; Jeneson, 

Wixted, Hopkins, & Squire, 2012; Jeneson & Squire, 2012; Shrager, Levy, Hopkins, & Squire, 

2008). Thus, a task ostensibly designed to index WM might exceed WM capacity or temporal 

duration, forcing the participant to draw on LTM to supplement performance, thus increasing the 

chance of observing an apparent deficit in patients. This illustrates the importance of careful task 

design, and the principle noted by Atkinson & Shiffrin (R. C. Atkinson & Shiffrin, 1968; see 

Baddeley et al., 2019), that few experimental tasks are process pure and that both short-term and 

long-term storage components are likely to be simultaneously active in experiments designed to 

capture STM. In line with this, case study work with Jon, a patient with selective hippocampal 

damage, has repeatedly shown intact (and indeed often somewhat superior) performance on a range 

of tasks carefully designed to focus on working memory including measures of binding between 

shape, color, or location (Allen, Vargha-Khadem, & Baddeley, 2014; Baddeley, Allen, & Vargha-

Khadem, 2010; Baddeley, Jarrold, & Vargha-Khadem, 2011), alongside severely impaired episodic 

LTM abilities.  

One related possibility is that the hippocampus contributes to performance but only in tasks 

that require precise, high-resolution representations (Ekstrom & Yonelinas, 2020; Yonelinas, 2013). 

For example, Warren, Duff, Tranel, & Cohen (2010) found that amnesic patients with MTL damage 
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showed abnormal eye-movement patterns in a task requiring visual search for a target among 

visually similar lures following a 6s retention interval, although behavioral patterns were difficult to 

interpret due to near-chance performance levels. Building on the suggestion of a hippocampal/MTL 

role in high resolution performance, Kolarik et al. (2016) characterised a densely amnesic patient 

with severe MTL damage as having difficulty with spatial precision in memory and navigation, 

while her coarse spatial ability remained largely intact. Similarly, Koen, Borders, Petzold, & 

Yonelinas (2017) reported four MTL patients (two of whom had selective hippocampal damage) 

who were more impaired on recognition tasks that required distinguishing between two targets that 

were very similar in color or location. This might suggest a deficit in high resolution memory, 

although it should be noted that the apparent impairment was not large or clear-cut when compared 

with performance on the low-resolution version of the task.  

Rather than using categorical response tasks, other studies have taken the approach of 

measuring memory performance via continuous response tasks that require the participant to make 

precise judgments regarding features such as color, location, or orientation. For example, Pertzov et 

al. (2013) asked participants to relocate colored fractals by identifying where a probe item had 

originally been located, or to rotate a colored bar probe until it matched the original orientation of 

the bar with that color from the to-be-remembered array. Their patient group (with limbic 

encephalitis mainly affecting the MTL and hippocampus) exhibited binding errors on these tasks, 

although their overall memory precision appeared relatively intact. Similarly, Zokaei et al. (2014; 

2019) has found evidence for increased binding errors in patients with MTL pathology using color-

orientation or shape-location localization tasks. For example, Zokaei et al. (2019) found that a 

group of patients with epilepsy who had undergone anterior temporal lobectomy produced more 

swap errors (compared to controls) when locating colored fractals in space, at a rate that did not 

simply reflect item or location memory in isolation. More recently, Borders, Ranganath, & 

Yonelinas (2022) employed a task in which participants used a color wheel to identify the color of 

one of four items that was cued by location at test. They found evidence for reduced precision 
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(relative to controls) in a group of predominantly adult-acquired amnesic MTL patients, some of 

whom were reported as having hippocampal-selective damage. 

The current study explores the generality of this evidence by examining whether a patient 

with highly selective, bilteral hippocampal damage (Jon) would show impairments on two different 

continuous response tasks designed to measure binding in working memory. To date, Jon has 

always displayed excellent working memory ability, in the context of severely impaired delayed 

recall (e.g., Allen et al., 2014; Vargha-Khadem et al., 1997). However, our work with him has 

typically used tasks that require coarse, categorical recall or recognition judgments (Allen et al., 

2014; Baddeley et al., 2010; 2011), leaving open the possibility that these tasks were not 

sufficiently sensitive to detect problems in high resolution working memory that might arise due to 

his hippocampal impairment (Yonelinas, 2013). We therefore explored whether he would produce 

preserved or impaired performance on continuous response tasks that take more precise 

measurements of recall accuracy regarding different forms of visuospatial feature binding. 

Specifically, this was examined in tasks measuring color-orientation binding (Experiments 1 and 3) 

or color-location binding (Experiments 2 and 4), using both simultaneous and sequential stimulus 

presentation. 

Experiments 1 and 2: Simultaneous encoding 

The first two experiments examined recall accuracy in two different continuous response tasks 

implemented under conditions of simultaneous encoding of multi-item arrays. Experiment 1 used a 

color-orientation task adapted from Berry, Allen, Waterman, & Logie, (2019). In this task, 

participants are presented with an array of colored bars of varying orientations, followed by a test 

probe, with the task being to align the orientation of this bar with that seen during the encoding 

phase, based on its color. Experiment 2 used a color-location binding task. Here, an array of colored 

squares is presented, followed by a single color probe in a neutral location, with participants 

required to select where on screen they thought it had appeared.  
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 Each of these tasks critically requires memory for feature binding, either between color and 

orientation, or color and location. Jon has previously demonstrated entirely unimpaired performance 

on coarse categorical measures of working memory for shape-color binding (Baddeley et al., 2010) 

and binding between location and color or object (Allen et al., 2014).The current study asked 

whether he would again show intact working memory binding or if we would now see impairments 

when moving to a continuous response task that generates a more precise measure of accuracy. 

Methods 

Participants 

Jon is a patient with developmental amnesia resulting from selective, bilateral hippocampal 

damage. He was first described by Vargha-Khadem et al. (1997) and has since been extensively 

reported (e.g., Allen et al., 2014; Baddeley et al., 2010; Baddeley, Vargha-Khadem, & Mishkin, 

2001; Duzel, Vargha-Khadem, Heinze, & Mishkin, 2001; Dzieciol et al., 2017; Hartley et al., 

2007). He was 40 years old at time of testing for Experiments 1 and 2. There were 9 control 

participants (all female), aged between 35-45 years (mean 40.22 years). Jon was tested at the 

Institute of Child Health, University College London, while the controls were recruited and tested at 

the University of Leeds. Both institutions gave ethical approval, and all participants gave informed 

consent.  

Design, Materials, and Procedure 

Each of the two tasks (Experiment 1 and Experiment 2) involved 6 practice trials followed by 60 

test trials, with memory load set at 4 across all trials in both tasks. These tasks were carried out 

within the same testing session, separated by a verbal memory task (of around 20 minutes duration) 

that is not described further here. All tasks were run using a 13” MacBook Air (resolution 1440 x 

900 pixels).  

 For Experiment 1, the orientation recall task was adapted from that employed in Berry et al. 

(Berry et al., 2019), with the task written in PsychoPy 1.84 (Peirce, 2007). Participants were 

presented with 4-item arrays of colored bars each measuring 2 x 0.3 of visual angle (1.75cm x 
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0.25cm) at different orientations (see Figure 1a). The colors of the four items on each trial were 

randomly selected from a set of eight (blue, cyan, green, orange, pink, purple, red, yellow) with the 

constraint that colors did not repeat within a trial, and orientations randomly selected so that no two 

bars within a given array were within 10 degrees of one another.  

Following a 250ms fixation screen, items were presented at a randomly selected subset of 

eight possible locations on an invisible circle (radius of 6° visual angle) around fixation. The target 

array on each trial was presented for 1000ms, followed by a blank screen 1000ms retention interval. 

The test probe (a single bar in a horizontal orientation) was then presented at the centre of the 

screen, in the color of one of the presented items on that trial. Participants used the left and right 

arrow keys to rotate the bar with the aim of matching its orientation to that encountered in the target 

array and pressed the enter key when they were happy with their response. A 10s automatic timeout 

was built into the task. 

 The color-location task in Experiment 2 was run in SuperCard and was adapted from 

previous tasks reported in the literature (Pertzov et al., 2013; Zokaei et al., 2019). Following a 

250ms fixation screen, an array of four colored squares (1x1cm each) was presented for 1000ms on 

a grey background. For each trial, these four colors were randomly drawn without repetition from a 

set of eight (black, blue, brown, green, purple, red, turquoise, and yellow), and were presented in 

randomly selected locations around the screen. Following a 1000ms blank screen delay, one of the 

colored squares from the target array was re-presented at screen centre, and participants used a 

mouse attached to the laptop to select the location in which they thought this color had appeared. 

Participants again had 10s in which to make their response. 

 Finally, the AB Reasoning test (Baddeley, 1968) was also conducted as a proxy for IQ. 

Participants were provided with the list of 64 short statements (e.g., B is preceded by A, B-A) on a 

single sheet of A4 paper and asked to indicate True or False (using a pen-stroke). The total time 

taken to complete the set was recorded via stopwatch. 

Results and Discussion 
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AB Reasoning test 

Independent group t-tests indicated no significant difference (p > .05) in the number of correct 

responses, t(8) = 1.57 (Jon = 61, Control mean = 54.6, Control SD = 3.50, Max = 64) or completion 

time, t(8) = .89, (Jon = 5.11 minutes, Control mean = 4.13, Control SD = 1.04). 

Experiment 1: Color orientation 

Performance was scored and analysed using the Mixtur package in R (Grange & Moore, 2022). 

Model-free summary statistics (absolute angular error and the resulting estimate of precision) were 

firstly obtained via Mixtur. We then used this package to apply the Zhang and Luck (Zhang & 

Luck, 2008) two-component model to the data, separating out probability of recalling the true target 

orientation from a uniform distribution indicating random guessing1. 

Mean absolute error (in radians) is reported in Figure 2A for Jon and the controls, along 

with an estimate of precision (Figure 2B). For both measures, Jon’s performance is numerically 

superior to controls. However, independent group t-tests (Crawford & Howell, 1998) indicated that 

Jon’s response accuracy was not significantly different from the control group for absolute error, 

t(8) = 1.57, p > .05, or precision t(8) = 1.83, p > .05. For the modelling outcomes, Jon was again 

numerically superior to the control mean, and actually achieved a probability score for target 

retrieval of 1.0, with .0 probability of a uniform guessing response, though these rates did not 

significantly differ from those of controls, t(8) = .87, p > .05. 

Experiment 2: Color-Location 

Performance on this task was scored both in terms of mean absolute distance (in cm) from target 

location (i.e., a measure of precision of response), and a categorical correct/incorrect score. The 

latter score was calculated by classing as correct any response that fell within 1cm of the target 

location centre. 

Mean distance from target location (in cm) is reported in Figure 3A for Jon and the control 

group. Analysis indicated that Jon and the control group did not significantly differ in their 

accuracy of responding, t(8) = 1.18, p > .05. This remained the case when a control participant 
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whose response accuracy fell 2 standard deviations above the mean (see Figure 3A) was excluded 

from the analysis. However, Jon did perform significantly more accurately than controls when a 

categorical scoring measure was applied (Figure 3B), t(8) = 2.02, p < .05. 

  To summarize, Jon showed no evidence of impairment in response accuracy on tasks 

involving either color and orientation or color and location whether measured by either categorical 

or continuous responses. Indeed, in both cases, his mean response error was numerically superior 

relative to the control group, though these differences did not reach the criterion for statistical 

significance. Thus, his substantial bilateral hippocampal damage does not preclude this patient from 

responding with impressive precision in these working memory binding tasks. We also obtained 

categorical measures of target retrieval accuracy, either through modelling of target orientation 

probability vs. guessing (Experiment 1) or based on whether participants responded within the 

correct target area (Experiment 2). Here, Jon again performed very well, achieving a perfect 

probability of target orientation retrieval, and a location correct score that was significantly better 

than that of controls. 

Experiments 3 and 4: Sequential encoding 

The first two experiments established that Jon was able to respond with very high precision and 

accuracy in continuous response tasks measuring working memory binding. We followed this up by 

exploring whether the same pattern would emerge when to-be-remembered stimuli were presented 

individually in a sequence, rather than as a single-shot display. Sequential presentation reduces the 

opportunity to capitalise on holistic processing of the whole array. It also introduces challenges in 

the requirement to encode and retain each item in a sequence, including repeated updating of 

working memory content, and holding each item and protecting it from retroactive interference 

caused by subsequent items in the sequence.  

Working memory binding appears to be more vulnerable to such interference, with healthy 

participants showing reduced binding accuracy with serial relative to simultaneous presentation for 

early sequence items (Allen, Baddeley, & Hitch, 2006; Brown & Brockmole, 2010; Brown, Niven, 
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Logie, Rhodes, & Allen, 2017) and greater disruption from a to-be-ignored suffix (Ueno, Allen, 

Baddeley, Hitch, & Saito, 2011). The most recently encountered item appears to be held in a 

privileged state within the focus of attention and thus be more accessible, relative to early sequence 

items (e.g., Hitch, Allen, & Baddeley, 2020), while there is also evidence for differences in MTL 

activation between pre-recency and recency items (Lewis-Peacock, Drysdale, Oberauer, & Postle, 

2012; Öztekin, Davachi, & McElree, 2010). Sequential presentation also introduces an inherent 

serial ordering component to the task that is absent from simultaneous presentation. Furthermore, 

there is evidence for a possible hippocampal contribution to serial-order memory (Konkel, Warren, 

Duff, Tranel, & Cohen, 2008; Long & Kahana, 2019). Thus, one or a combination of these 

possibilities may serve to increase the chances of finding poorer performance in the patient relative 

to controls. This is investigated in Experiments 3 and 4. 

Method 

Participants 

Jon was 41 years old at time of testing. There were 11 control participants (2 females and 9 males, 

aged 35-46 years, mean = 41), six of whom also took part in Experiments 1 and 2.  

Design, Materials, and Procedure 

These tasks were closely based on the methods implemented in Experiments 1 and 2. The key 

difference in Experiments 3 and 4 was that items were presented one at a time, for 250ms per item, 

with a 250ms interstimulus interval separating each display. The final item was followed by a 

1000ms blank screen delay before the test cue was presented. 

Results and Discussion 

AB Reasoning Test 

The control group’s performance on the AB Reasoning test (Baddeley, 1968) was compared against 

Jon’s as obtained in the testing session completed the previous year (see Experiment 1 and 2). 

Independent group t-tests indicated no significant difference (p > .05) in the number of correct 
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responses, t(10) = .81 (Jon = 61, Control mean = 53.27, Control SD = 9.08; Max = 64) or 

completion time, t(10) = .47, (Jon = 5.11 minutes, Control mean = 4.32, Control SD = 1.58). 

Experiment 3: Color-Orientation 

Response accuracy, precision, and modelling outcomes are displayed in Figure 4. Jon’s absolute 

error score was numerically lower (i.e. numerically better) than controls, but this difference was not 

significant, t(10) = 1.69, p > .05. His precision was significantly better than controls, t(10) = 4.23, p 

< .001. Turning to probability of target retrieval vs. uniform guessing, Jon again achieved a very 

high probability of target retrieval (.989), though this did not significantly differ from controls, t(10) 

= 1.23, p > .05. 

Response accuracy (absolute error and precision) is also reported by serial position, in 

Figure 5. Control participants showed notable recency effects, with error declining and precision 

improving towards the end of the sequence. Jon’s performance demonstrates a somewhat flatter 

curve, likely reflective of his accurate performance overall. 

 

Experiment 4: Color-Location 

Mean distance from target location (in cm) is reported in Figure 6A for Jon and the control group, 

with proportion of categorical correct responses in Figure 6B. Jon exhibited numerically lower 

absolute error and numerically higher precision relative to controls, but these differences were not 

significant (Absolute error: t(10) = .70, p > .05; Precision:  t(10) = 1.44, p > .05). Figure 7 presents 

performance by serial position for each of these measures. Both Jon and controls show some 

improvement in continuous response accuracy towards the end of the sequence, as measured by 

distance from the target. A similar pattern is apparent on the categorical outcome, though Jon does 

show improved accuracy for the first serial position.  

Summarizing Experiments 3 and 4, performance based on sequential target presentation 

resulted in a pattern of results closely resembling that found in Experiments 1 and 2 using 

simultaneous presentation. Jon achieved relatively high accuracy scores when measured using 
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resolution/precision of responses for both types of binding task, as was apparent when modelling 

probability of target orientation retrieval (Experiment 3), and categorical location scoring 

(Experiment 4).  

Overview of relative performance across primary outcome measures 

It is apparent from each of the tasks that Jon performs with relatively high accuracy across different 

performance measures, compared to controls. To summarise and further illustrate this, Figure 8 

shows the ranking of participants on the primary outcome measure used in each task. This clearly 

illustrates how Jon performs with relative high accuracy across all experiments. 

General Discussion 

We examined the ability of Jon, a patient with relatively selective hippocampal damage, to make 

precise response judgments in tasks measuring binding between color and orientation (Experiments 

1 and 3) or color and location (Experiments 2 and 4). Across all four experiments, and regardless of 

the type of binding being examined or the format of the presentation, Jon’s response accuracy was 

high, and always numerically superior to the control mean. This is further illustrated in the ranking 

of participants for each task, illustrating how Jon performs with relative high accuracy across all 

experiments.  

Previous studies examining visual working memory for features and feature binding in this 

patient have always used categorical tasks, requiring different forms of recognition or cued recall 

response in which the participant has to decide between a limited, distinct, and well-defined set of 

response options (Allen et al., 2014; Baddeley et al., 2010; 2011). In these tasks, Jon always  

performs at least as well as control participants, if not more accurately. Based on this evidence, we 

have argued against a role for the hippocampus in working memory binding. It remained a 

possibility, however, that we were measuring an intact ability to make broad categorical judgments 

while failing to detect an underlying impairment on tasks requiring a more precise response, in 

keeping with the suggestion of Yonelinas (2013) that the hippocampus supports high resolution 

cognition.  
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Here, we show for the first time that Jon is in fact able to make very precise responses in 

different types of working memory binding tasks. When tasked with retrieving color-orientation or 

color-location binding information, Jon produced a relatively low absolute error rate and high 

precision scores (where these were available, in Experiments 1 and 3). Modelling of responses in 

Experiments 1 and 3 also indicated an extremely high probability of retrieving the target orientation 

in response to a color probe, while Experiments 2 and 4 also demonstrated that Jon was very 

accurate, relative to controls, in selecting the precise categorical location in which the probe color 

had originally appeared.  

Not only did we find convergent findings across binding tasks, but also across presentation 

formats. Participants were in general somewhat less accurate with sequential compared to 

simultaneous presentation and showed reduced error and improved precision on trials where the 

probed item was drawn from the end of the sequence. These overall patterns are in line with 

findings from studies using categorical (e.g., Allen et al., 2006, 2014, 2017; A. L. Atkinson et al., 

2018; Hu, Hitch, Baddeley, Zhang, & Allen, 2014) and continuous response tasks (e.g., 

Gorgoraptis, Catalao, Bays, & Husain, 2011), and fit with the claim that bound representations are 

fragile and vulnerable to interference caused by subsequently encountered stimuli (Allen et al., 

2006; Ueno et al., 2011). However, there was no sign that Jon has relatively greater difficulty 

(compared to controls) when stimuli are presented sequentially (Experiments 3 and 4) rather than 

simultaneously (Experiments 1 and 2). Thus, Jon does not show any evidence of struggling with 

working memory binding updating or loss of early sequence items due either to retroactive 

interference or to being displaced from the focus of attention. Indeed, his profile of performance 

across serial positions, while obviously being noisier than the control mean, does not indicate 

relative impairment at any list position. These findings would also indicate, at least in Jon, the 

independence of serial-order memory from the hippocampus (cf. Long & Kahana, 2019), though 

the current tasks implemented single item probe measures and so did not explicitly require serial 

ordering. Previous working memory studies with Jon have shown good performance on serial order 
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recall tasks (Baddeley et al., 2010; 2011), but it may be worthwhile implementing high resolution 

measures in that context. 

Rather than showing any sign of impairment in retrieval accuracy, it is apparent when 

considering Jon’s performance alongside that of controls that he performs very well across various 

measures of recall accuracy (e.g., for retrieval error, see Figure 7). This is not unusual for this 

individual; in previous experimental explorations of visuospatial working memory (Allen et al., 

2014; Baddeley et al., 2010; 2011), Jon has often produced response accuracy levels that are at least 

numerically higher than those of control participants. For example, Baddeley et al., (2010) found 

that Jon was at least numerically superior to the control mean on all three recognition-based 

measures of shape-color binding (examining unitized, spatially separated, and cross-modal feature 

combinations). Similarly, in measures of color-location memory (Allen et al., 2014; Study 1), Jon’s 

recognition accuracy matched the highest achieving control participant, while his reconstruction 

performance was superior to 6 of the 7 controls (though he was clearly impaired in delayed tests 

assessing the same material). The present study replicates these patterns from categorical tasks 

using different continuous response tasks. Aside from tasks such as recall from episodic long-term 

memory (Baddeley et al., 2001), Jon is an intelligent individual and approaches tasks in a careful 

and motivated manner, as also illustrated in the present study by his relative performance on the AB 

Reasoning task. More broadly, Baddeley et al. (2011) found that Jon was more accurate than most 

controls on Raven’s matrices, digit and Corsi span, and at least some of the complex working 

memory span tasks they administered. His performance IQ (using the Wechsler revised test) has 

been found to be in the high range by Baddeley et al. (2001). Thus, for measures that do not index 

his areas of impairment, he typically always appears as a relatively high-functioning individual. To 

contextualize this profile of performance, although other patients with developmental amnesia have 

not typically been assessed on the same range of experimental measures as Jon, they typically 

exhibit a range of performance on working memory tasks that aligns with that produced by healthy 

controls, with Jon within this range (e.g., Dzieciol et al., 2017). 
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The outcomes in this study contrast with findings from MTL patients suggesting binding 

deficits using precision-based continuous response tasks (e.g., Pertzov et al., 2013; Zokaei et al., 

2019). Those studies report an increased tendency from patients for ‘swap’ errors involving 

retrieval of non-targets, with the suggestion that binding deficits are apparent when measured using 

such tasks. While our analysis focused on absolute error, precision and target retrieval probability 

for Experiments 1 and 3, additional modelling of the data from those experiments (reported in 

Supplementary Information) also indicated that Jon was not more likely than controls to make such 

swap errors and retrieve non-targets; indeed, this modelling indicated an extremely low probability 

of making such errors, that was numerically reduced compared to controls.  

The present findings also contrast with those of a recent study indicating relatively reduced 

precision on a color-location binding task in a group of nine amnesic patients (Borders et al., 2022). 

However, their predominantly adult-onset sample was relatively heterogeneous with a mix of 

unilateral and bilateral patients, and 3/9 patients having hippocampal-selective damage as indicated 

by MRI. This patient group also demonstrated a substantial performance range; although a subset of 

the sample exhibited a large reduction in the proportion of responses categorised as being close to 

the target item, at least the same number of patients achieved performance levels that were 

approximately equivalent to the control group mean. This variability in patient profile and 

performance across the amnesic group, along with the different paradigms used, makes drawing 

clear links between this and our study quite challenging. We would suggest that one useful step 

forward in resolving such apparent conflicting findings might be for research groups to compare 

relevant patients on a shared suite of tasks, perhaps adopting an approach of adversarial 

collaboration (Cowan et al., 2020).  

This would also help in confirming whether any apparent variability in patterns of deficit 

might be attributed to methodological differences between studies. For example, Borders et al. 

(2022) required precise memory for color (cued via location), whereas the current study required 

precise memory for orientation or location when memory was cued via color. Presentation duration 
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also slightly varied across methods; Borders et al. (2022) allowed the equivalent of 100ms per item 

in their simultaneous 4-item displays, compared with 250ms per item in simultaneous and 

sequential displays in the current study. Although such differences are unlikely to offer a root cause 

for the apparent disparate findings observed, it would be useful establish how patient groups fare 

using uniform sets of procedures. 

On a similar note, existing studies in this area have sometimes found clearer deficits at 

slightly extended intervals (i.e., 4-5s or more, compared to shorter delays of around 1s) either in 

categorical (e.g., Braun et al., 2008; Jeneson et al., 2012; Olson et al., 2006) or continuous response 

tasks (Zokaei et al., 2019). The present study limited the retention interval to 1s, in line with the 

interval durations that are often examined in healthy individuals (Hitch et al., 2020). A previous 

examination of Jon’s memory in response tasks over time courses of up to 10s yielded no evidence 

of any deficit across this time span, in contrast to impairment in a surprise follow-up test 

administered several minutes later (Allen et al., 2014). However, that study implemented 

categorical response tasks that were not necessarily able to detect any changes in memory 

resolution/precision. Thus, a further possibility for future work to explore is that memory precision 

following hippocampal damage might be intact at short delays but abnormally decline over the time 

course of several seconds. However, longer delays may increase reliance on the possible 

contribution of LTM. Indeed, it may prove insightful to systematically control and manipulate 

contributions from LTM to working memory precision. If patients such as Jon have to rely solely on 

otherwise intact working memory in the absence of long-term memory influence, this should be 

detectable in the form of differential profiles relative to controls in tasks that vary in the extent to 

which LTM can enhance or inhibit performance. 

As noted by Squire and Wixted (2011), once a threshold of hippocampal atrophy is reached 

(perhaps around 40%), the hippocampus can effectively become non-functional. It remains to be 

seen if this might apply in Jon’s case, in the context of working memory performance. It is 

established that Jon has around 50% bilateral hippocampal volume reduction (Dzieciol et al., 2017; 
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Gadian et al., 2000), severe enough to render his delayed recall ability in episodic memory tasks to 

be non-functional, in contrast to his apparently intact working memory. On the one hand, Maguire 

et al. (2001, 2010) suggested that bilateral activation in his residual hippocampal tissue, along with 

hippocampal-cortical connectivity that differed to healthy controls, may enable some functionality 

in his autobiographical memory and future thinking ability. However, a subsequent fMRI study by 

Mullally et al. (2014) indicated that Jon engaged several brain regions similar to controls when 

performing a scene construction task, but (unlike controls) exhibited no activity changes in his 

remnant hippocampal tissue. Moreover, there is no current evidence that an analogous combination 

of residual hippocampal activity and altered cortical interactivity might also serve to support 

working memory.  

It is of course also important to note the early developmental onset of Jon’s impairment. 

Processes of neural compensation and reorganization due to early plasticity might serve to support 

independence from the hippocampus at least for certain kinds of memory operation in patients such 

as Jon with developmentally acquired hippocampal atrophy and amnesia. Indeed, Vargha-Khadem 

et al., (2003) found that performance on some verbal tasks drawn from established 

neuropsychological tests (e.g., immediate story recall from the Wechsler Memory Scale (Wechsler, 

1945; 1997); were more likely to be spared in early compared to later acquired developmental 

amnesia. It would be important to establish whether the same kind of pattern is apparent across a 

range of additional measures, including those implemented in the present study, and compare with 

patients who have experienced hippocampal damage later in life. Along these lines, Finke, Bruehl, 

Duzel, Heekeren, & Ploner (2013) (see also Braun et al., 2008) examined memory performance for 

color-location associations assessed over 5s delays in epilepsy patients with unilateral hippocampal 

damage following right MTL resection. They found an associative impairment in patients whose 

epilepsy had been caused by a benign brain tumor, but not in patients who had focal hippocampal 

sclerosis. Finke et al. argued that intact memory function in the latter group was supported by 

recruitment of the contralateral hippocampus and a network of distributed neocortical regions and 
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suggested this may reflect the possible developmental onset of hippocampal pathology in this 

group. However, given the group studied by Finke et al. consisted of epilepsy patients with 

unilateral (rather than bilateral) damage, drawing firm conclusions in terms of hippocampal 

specificity is not straightforward. 

In Jon’s case, his substantial focal hippocampal damage is bilateral, symmetrical, and severe 

in nature. We would suggest that cortical plasiticity cannot compensate for hippocampal specificity, 

and secondly that working memory is not hippocampal-specific. Instead, one possibility is that the 

perirhinal, entorhinal, and parahippocampal cortices subserve the binding of information in the 

short term (see Miyashita, 2019). These areas may encode and bind information and act as gateways 

into the hippocampus for pattern consolidation and subsequent retrieval from episodic long-term 

memory. In the presence of early acquired bilateral hippocampal damage, this role of the perirhinal, 

entorhinal, and parahippocampal cortices may become exaggerated because of plastic changes, 

depending on the degree of hippocampal damage and the integrity of the cortices (Chareyron et al., 

2021).   

Our findings demonstrate that high-resolution working memory binding can be functionally 

independent of the hippocampus and unaffected by substantial and selective early hippocampal 

atrophy. This pattern of intact performance is apparent across multiple measures of performance on 

two different feature binding response tasks, using either simultaneous or sequential presentation. It 

remains for future work to establish the boundary conditions for any hippocampal-critical working 

memory functioning, either in terms of task features (such as memory load, duration, presentation 

format or response mode) or individual differences in patient profile (e.g., lesion selectivity or age 

of onset). 
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Footnote 

1. We report the two-component model, rather than the three-component model of Bays et al. 

(Bays, Catalao, & Husain, 2009), for two reasons. Firstly, simulations by Grange and Moore 

(2022) indicate the two-component model can provide good parameter outcomes using 50 

trials. Secondly, given Jon’s strong performance overall, and very high probability of 

retrieving the target, it was extremely unlikely for him to produce inflated swap errors as 

measured by the three-component approach. Nevertheless, we report the three-component 

outcomes in Supplementary Information for Experiments 1 and 3. 
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Figure legends 

 

Figure 1. Schematic illustration of trial procedure. A. Orientation task (Experiment 1).  B. Location 

task (Experiment 2). Images are not to scale, and objects in varying shades of gray represent 

colored stimuli. 

 

Figure 2. A. Mean absolute error (radians) of recall in the simultaneous orientation task 

(Experiment 1) for Jon and controls; B. Precision score; C. Probability of recalling target 

orientation; D. Probability of a uniform guessing pattern. Individual control participants are shown 

in light grey, and error bar shows standard deviation (SD). Higher scores represent better 

performance in panels B and C, and worse performance in A and D. 

 

Figure 3. A. Mean recall distance from target in the simultaneous location task (Experiment 2) for 

Jon and controls; B. Mean proportion of responses scored as categorically correct. Individual 

control participants are shown in light grey, and error bars show SD. Higher scores represent worse 

performance in panel A, and better performance in panel B. 

 

Figure 4. A. Mean absolute error in the sequential orientation task (Experiment 3) for Jon and 

controls; B. Precision score; C. Probability of recalling target orientation; D. Probability of uniform 

guessing. Individual control participants are shown in light grey, and error bars show SD. 

 

Figure 5. A. Mean absolute error in the sequential orientation task (Experiment 3) for Jon and 

controls, by serial position; B. Precision score. Error bars show standard deviation.  
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Figure 6. A. Mean distance from target location in the sequential location task (Experiment 4) for 

Jon and controls; B. Mean proportion of responses scored as categorically correct. Individual 

control participants are shown in light grey, and error bars show SD.  

 

Figure 7. A. Mean distance from target by serial position in the sequential location task (Experiment 

4) for Jon and controls and reaction time; B. Mean proportion of responses scored as categorically 

correct. Error bars show SD.  

 

Figure 8. Ranking of performance from Jon (in black) and individual control participants (in light 

grey) on the primary outcome measure. A. Absolute error in Experiment 1 (simultaneous 

orientation); B. Distance in Experiment 2 (simultaneous location); C. Absolute error in Experiment 

3 (sequential orientation); D. Distance in Experiment 4 (sequential location). In all panels, lower 

values indicate better performance. 
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