
Time-constrained Ensemble Sensing with
Heterogeneous IoT Devices in Intelligent

Transportation Systems
Xingyu Feng, Chengwen Luo*, Bo Wei, Jin Zhang, Jianqiang Li, Huihui Wang, Weitao Xu, Mun Choon Chan,

Victor C.M. Leung

Abstract—Recently we have witnessed the rise of Artificial
Intelligence of Things (AIoT) and the shift of sensing paradigm
from cloud-centric to the edge-centric, which effectively improves
the sensing capability of intelligence transportation systems.
To improve the real-time sensing performance, in this work
we propose an ensemble sensing based scheme to solve the
time-constraint synchronized inference problem and achieve
robust inference with heterogeneous IoT devices in intelligence
transportation systems. We design and implement Ensen, which
incorporates various novel techniques such as customized DNN
model design, KD-based model training, and dynamic deep
ensemble management, etc., to achieve improved accuracy and
maximize the computational resource usage of the whole sensing
group. Extensive evaluations on different types of common IoT
devices have shown that Ensen achieves a robust performance
and can be easily extended to different types of convolutional
neural networks.

Index Terms—Edge Intelligence, Ensemble Sensing, Time-
constrained, Heterogeneous IoT Device

I. INTRODUCTION

As the rapid development of artificial intelligence (AI)
and sensing technologies for Internet of Things (IoT), the
ubiquitously deployed Road Side Units (RSUs) and On board
Units (OBUs) have brought new opportunities for smarter and
more efficient Intelligent Transportation Systems (ITS) [1],
[2]. With the increasing communication capability [3]–[6] and
equipped with a sophisticated set of embedded sensors and
high-performance chips, RSUs and OBUs continuously collect
different types of sensor data from the traffic roads and provide
intelligent transportation services in real time [7]. For example,
[8] uses image data collected by multiple surveillance cameras
for vehicle identification. [9] uses radar sensors for traffic
monitoring and generate traffic accident alert, etc. These
intelligent transportation applications are critical for traffic
control and can improve the safety and security of the overall
transportation systems [10], [11].

X. Feng, C. Luo, J. Zhang, J. Li, and Victor C. M. Leung are with
College of Computer Science and Software Engineering, Shenzhen Univer-
sity, China. Email: fengxingyu2017@email.szu.edu.cn, {chengwen, jin.zhang,
lijq}@szu.edu.cn, vleung@ieee.org.

B. Wei is with Lancaster University, United Kingdom. Email:
bo.wei@lancaster.ac.uk.

H. Wang is with St. Bonaventure University, USA. Email: hwang@sbu.edu.
W. Xu is with City University of Hong Kong, Hong Kong, China. Email:

weitaoxu@cityu.edu.hk.
M. C. Chan is with National University of Singapore, Singapore. Email:

chanmc@comp.nus.edu.sg
∗ Corresponding author.

Fig. 1: Motivating scenario: collaborative inference in intelli-
gent transportation systems

Intelligent transportation services often rely on advanced
neural network models trained using large amounts of data
from users. However, full deployment of intelligent transporta-
tion services is particularly challenging due to two critical
issues: (1) High computational costs of deep neural network
(DNN) models, especially for computer vision-based tasks,
which may render it inapplicable for real-time inferences in
intelligent transportation systems, in which large amount of
devices mainly rely on low energy-consumption embedded
devices [12]. Moreover, a wide variety of RSUs and OBUs
have different hardware capabilities, and a unified DNN model
may not be able to adapt to heterogeneous low-performance
devices. (2) The training of DNN models usually requires the
collection of training data from participating users. For exam-
ple, for obstacle recognition tasks in intelligent transportation
systems, training data often exists in the form of of isolated
islands [13], where real obstacle images are collected jointly
by cameras spread throughout the traffic network, rather than
a centralized organization. Therefore, local images from all
camera nodes in the system need to be transmitted to a central
server, which greatly increases the difficulty of data acquisition
and causes severe latency and bandwidth consumption. On
the other hand, obstacle images usually contains landmark
information, and data sharing can lead to the exposure of
important private information such as travel trajectories and
resident addresses of the users. To address these challenges,
one solution is to suggest that each participant trains a private
model using local data, and the design of the local DNN model
structure is customized by its own hardware capability, so that
each devices can easily form collaborative inference groups

1

in intelligent transportation systems and provide synchronized
inference services.

Motivated by idea of ensemble sensing the recently pro-
posed concept of deep ensembles [14], [15], in this paper we
propose to achieve collaborative inference among neighboring
intelligent transportation devices through ensemble sensing to
solve the above problem. As illustrated in Figure 1, when
a RSU device Da needs to perform one inference task,
we define Da as the anchor device. Then, Da sends the
sensing task to neighboring devices to form a collaborative
inference group for better inference accuracy. In the inference
group, a private obstacle recognition model trained by local
data is available on each participating device. Each device
feeds sensing data into the local DNN model, and aggregates
their local inference results back to the anchor device Da.
Finally, Da gets the final prediction by aggregating all local
predictions. It is worth noting that the local data on different
devices are Non - Independent Identically Distributed (Non-
iid) [16], resulting in their private models to have different
classification performances for different categories of input.
For an unknown inference sample, we do not know which
device can perform better. Therefore, aggregating all local
predictions generates more robust inference results. Besides
better accuracy and robustness in the inference, such paradigm
also has multiple other benefits as well. First, by aggregating
each device’s local predictions, idle computation resources in
the sensing area can be efficiently utilized. Second, the deep
ensembles allow each device to dynamically join or leave the
group. Members provide only their own local predictions to the
inference group and are free to join and go, which is important
for intelligent transportation systems where participating users
can be mobile.

Challenges. To realize this vision, however, several chal-
lenges need to be tackled: (1) DNN models customization
for heterogeneous devices in the inference group. In practice,
devices within the vicinity in intelligent transportation systems
are often heterogeneous. For example, various vehicles shown
in Figure 1 might have different hardware capabilities. This
makes it necessary to customize DNN models for each cooper-
ating device based on its own hardware settings. In particular,
for the prevalent real-time tasks in intelligent transportation
systems, the total inference time of the group needs to be
bounded. Time constraints need to be taken into account
when designing customized DNN models for heterogeneous
devices. (2) Performance improvement for different local DNN
models. As mentioned above, each device typically has only
a small local training dataset and the model structure needs
to be customized for real-time applications, which leads to
potential performance degradation of local DNN models.
Therefore, improving the performance of each local DNN
model is essential to improve the performance of the whole
inference group. (3) Dynamic inference group management.
In intelligent transportation systems each user can be mobile
and therefore the group members in a deep ensemble needs
to be dynamically managed. In applications where malicious
devices can present and degrade the predication accuracy of
the group by voting wrong predictions, it becomes especially
important to dynamically filter out such devices to maintain

the robust predictions of the whole group.
To address the above challenges, in this paper we propose

Ensen, an ensemble sensing system for intelligent transporta-
tion systems, which generates customized DNN models for
heterogeneous devices based on time constraints and hardware
settings and achieves robust collaborative inference results.
Ensen treats the inference time of the whole inference group
as a constraint since task completing time is critical in
transportation systems. To achieves this, Ensen employs a
dynamic network architecture searching algorithm to trim the
base model and search for the optimal model structure for
heterogeneous devices under the time constraint. In the model
training process, Ensen combines the knowledge distillation
(KD) method to maximize the local inference accuracy. Fi-
nally, in the ensemble inference phase, the utility of each
device is continuously evaluated during the voting process
to dynamically filter out malicious/low accuracy nodes to
ensure the robust inference performance of the group. The
contributions of this paper are summarized as follows:

• To the best of our knowledge, this paper is the first to
propose customized DNN model based ensemble sensing
scheme for heterogeneous devices in intelligent trans-
portation systems under time constraints.

• The paper proposes efficient network search algorithm
for heterogeneous devices with hardware and execution
time constraints. A KD-based training approach is applied
to efficiently improve the local accuracy and a dynamic
group management scheme is used to improve the global
inference performance.

• We design and implement the Ensen system, extensive
evaluations are conducted to evaluate the performance
of Ensen in various settings, which shows that Ensen
runs efficiently for collaborative inference among hetero-
geneous devices.

The rest of this paper is organized as follows. In Section II
we discuss the design overview of the Ensen. In Section III
we provide the details of the customized network architecture
search algorithm for heterogeneous IoT devices, and in Sec-
tion IV the KD-based training process. Section V discusses
the dynamic inference group management, and Section VI
provides the detailed evaluations. Section VII discusses the
relative work, and finally we conclude in Section IX.

II. SYSTEM OVERVIEW

The Ensen overview is shown in Figure 2. A set of n in-
telligent transportation devices D = {D1,D2, ...,Dn} within
the vicinity are formed as an ensemble group (deep ensemble)
dynamically to complete a sensing task collaboratively. Each
device Di in the deep ensemble has unique hardware capability
and local data. The Ensen deploys a deep neural network
model Mi on each device. When a device acquires the
inference task xi, it is defined as the anchor device. This device
sends the inference task to Di, which runs Mi(xi) → yi
locally. The anchor device collects all local predictions and
runs the ensemble function to generate the final inference
result. An ensemble function is G(y1, y2, ..., yn)→ y, where y
is the final prediction result output by the aggregation function

2

Fig. 2: System overview of Ensen

and treated as the agreed prediction by all members in the deep
ensemble.

To achieve the above goal, the Ensen system is designed to
have three modules as shown in Figure 2: the customized DNN
model design module, KD-based model training module, and
the dynamic ensemble group management module. To allow
heterogeneous devices to cooperate efficiently, the customized
DNN model based on the computational capability of each
device Di is firstly generated in the model design module.
The KD-based module provides efficient training of each
device’s model by integrating both the global knowledge
and local data distribution. Finally, the dynamical ensemble
group management module integrates all local predictions and
generates ensemble inference result. In the following sections
we provide the detailed design rationale of each module.

III. CUSTOMIZED DNN NETWORK DESIGN FOR
HETEROGENEOUS IOT DEVICES IN TRANSPORTATION

SYSTEMS

A. Time-constrained Synchronized Inference

In this work, we consider collaborative inference among
n co-locating IoT devices D. In collaborative inference, one
inference task needs to be participated by all members, and
due to the hardware capability differences of all devices, faster
devices always need to wait for the slower ones to complete
the overall inference process, and idle waiting inevitably
wastes computational resources. In addition, there are strict
time constraints in transportation systems, such as signal light
detection in assisted driving, where the inference time needs
to be strictly constrained within T . We take into account
the efficiency of the collaborative inference group, and use
the inference time for the same task as the constraint for
model design on each device. We define the time-constrained
synchronized inference problem as follows:
Problem 1 (Time-constrained Synchronized Inference):
Given a set of n devices D, can we design customized DNN
models Mi for each device such that for the given input
xi of device Di, the model inference time difference of all
devices is minimized and satisfies the given time constraint T ?

Since each device completes local inference around the
same time in time-constrained synchronized inference setting,
to maximize the computational resource usage of all devices,
one optimal strategy is to design customized DNN models

Fig. 3: Illustration of depth scaling of CNN models

such that all devices’ model inference time closely approaches
to T . This problem therefore can be re-written as the following
optimization problem:

min
Mi

n∑
i=1

(T − T (Mi(xi)))

s.t. ∀i∈[1,n] T (Mi(xi)) ≤ T
(1)

where T (Mi(xi)) is the inference time of model Mi on
device i for input xi.

B. Customized Model Design

To solve the above problem, in this section we propose
the deep neural network architecture search algorithm for
heterogeneous IoT devices. In conventional cloud-centric sens-
ing paradigm, a global DNN model is usually trained and
deployed on the cloud to provide the cloud-based inference
services. Though the global model is not specifically trained
to reflect each IoT device’s local data distribution, it represents
the global knowledge and provides guidance to the design
of the edge models. Inspired by the recent development of
knowledge distillation (KD) [17], in Ensen we integrate both
the global knowledge represented by the cloud model and
local data distribution to design the customized models for IoT
devices by adopting the KD-based approach. The structure of
the student model will be considered as a compressed version
of the teacher model in the cloud.

As shown in Figure 3, convolutional neural network (CNN)
typically consists of multiple stages S = {S1,S2...,Sk},
and different stages serve different functionalities for feature
extraction. Each stage Si consists of a set of neural network
layers Li = {L(1)

i ,L(2)
i ...,L(m)

i }, where each of m layers is
connected one by one and with shape (Hi,Wi, Ci), and here
Hi,Wi are spatial dimensions and Ci is the channel dimension.

The structure of the teacher model in the cloud is defined
as the basic model. To facilitate the fast design of the student
model structure, we only consider the deep compression of
the basic model. In this approach, the device only needs to
count the inference time at different depths by opening and
closing the convolutional layers until the inference time limit
is satisfied. This allows the device to obtain the student model
by searching the basic model only, without considering the
width variation within the stage, i.e. Hi, Wi. That is, with
depth scaling, the length of each stage i, i.e., the number of
neural network layers in Li is adjusted dynamically to meet

3

the inference time requirements, while the shape of each layer
in Li is kept unchanged to maintain the fast generation of the
student model.

To solve the optimization problem set in Equation (1), our
task therefore is to use teacher model as the reference and
use depth scaling to search for network model Mi for device
i such that the inference time of Mi closely approaches to
T . The workflow of customized model design in Ensen is
illustrated in Algorithm 1. The teacher model MT is used as
the reference model and each device’s model is compressed
fromMT . In each round the model inference time T (Mi(xi))
is tested, and model compression process continues if the
model inference time exceeds the time constraint T . Each
pruning process is only for one convolutional layer within a
particular stage, and to ensure that each pruning selection is
the current best. We refer to the heuristic that layers with
smaller average weight contributes less to the final inference
performance [18], in each depth-scaling round the layer with
minimum average weight is pruned and model is updated with
smaller size using pruneMinAWLayer() method. The AWj,k is
calculated by finding the average weight of the k-th layer in
the j-th stage. We count the average weights after each cut and
retrain the model after completing a cut to ensure that each
decision is the current best. Since the pruned model incurs less
floating point operations per second (FLOPS), the inference
time reduces accordingly. And this process continues until the
model inference time becomes smaller than T . At this point,
the IoT device acquires a student model whose inference time
meets the time constraint and maintains the compatibility for
the KD process. However, one extreme case is that when the
model has been compressed to the smallest form while still
cannot meet the inference time limit, and in this case the device
will not be used in the group to ensure the efficiency of the
whole group.

Algorithm 1: Depth Scaling based Model Design
Input: The teacher model MT , time constraint T
Output: Customized student model Mi for device i
Data: Testing input xi of device i

1 Mi ←MT

2 while T (Mi(xi)) > T do
3 for j=1 : number of stages do
4 for k=1 : number of layers do

5 AWj,k =
∑Hj

a=1

∑Wj
b=1

∑Cj
c=1 |wa,b,c|

(Hj×Wj×Cj)

6 end
7 end
8 Mi ← pruneMinAWLayer(Mi)
9 end

IV. KNOWLEDGE DISTILLATION BASED DNN MODEL
TRAINING

In this section, we detail the training process of the custom
DNN model generated in the previous step. Since the models
might be compressed due to the hardware constraint of each
device, the performance of the local DNN model might
degrade. In Ensen, we use knowledge distillation as the model
training approach to effectively improve the classification

accuracy for each IoT device, and thus improve the final
classification accuracy for the whole inference group.

The overall training process of KD in Ensen is depicted
in Figure 4. Three different distillation losses are integrated,
i.e., the attention distillation losses, logits distillation losses,
and cross entropy distillation losses, to ensure the convergence
of the student model and improve its final classification
performance.

A. Imitating Intermediate Behaviors : Attention Distillation

In convolutional neural networks (CNN), different stages in
the network plays different roles in the feature extraction. The
model on the device Mi is customized by cropping the con-
volutional layers within the stages, so using the teacher model
to repair each stage is necessary to improve the performance.
we first propose to use the attention distillation loss to allow
student models to learn the in-network intermediate behavior
from the teacher model. As illustrated in Figure 4, between
each stage Si and Sj , we introduce an attention map as a
representation of the behavior of the previous stage. Assume
that the output 3D tensor from the stage Si is R ∈ RCi×I×Q,
where Ci is the number of feature planes (channel dimensions),
and I and Q are the spatial dimensions of the feature plane.
We use a mapping function F : RCi×I×Q → RI×Q to map
the 3D tensor to a 2D attention map. We refer to the attention
map construction approach in [19] to construct the attention
map for stage i as:

Ai = F(R) =
Ci∑
i=1

|Ri|2 (2)

where |Ri|2 refers to the power two dot product of 2D
tensor Ri, and F(R) therefore superimposes the result of dot
products of all channels and flattens the 3D tensor R to a
2D spatial attention map Ai. The generated attention maps
provide efficient summary of the behaviors of all stages in
the network. For the cropped stages in the student model,
this learning approach helps to repair the performance of
the crippled stages. The attention distillation computes the
distance between the attention maps of all stages of the
student models and the teacher model. To form an overall
representation of the attention maps of both the student models
and teacher model, we concatenate the attention map of all
stages in the student model as AS = [AS

1 AS
2 · · · AS

n], here
AS

i represents the attention map of the i-th stage of student
model. And similarly, the teacher’s concatenated attention
map is expressed as AT = [AT

1 ,AT
2 , · · · ,AT

n]. We perform
L2 normalization on AS and AT and calculate the attention
distillation loss function as:

LOSSat =
n∑

i=1

∥ A
S
i

∥AS
i ∥2
− AT

i

∥AT
i ∥2
∥p (3)

where n is the number of stages, and p is the norm type, which
is set to p = 2 in this work. LOSSat therefore is used as one
loss function in the training process to train the intermediate
behavior of stages in the student model. The smaller the
LOSSat, the closer the expression of stages between the
student model and the teacher model.

4

Fig. 4: KD-based model training in Ensen

B. Imitating Overall Behaviors : Logits Distillation

Logits knowledge distillation aims to promote the global
knowledge transfer from the teacher model to the student mod-
els. Neural networks usually use softmax layers to generate
class prediction probabilities. In traditional training approaches
(known as hard target [20]), the probability of negative classes
are usually treated as uniformly distributed. Different from the
traditional training process, Logits knowledge distillation takes
this as a soft target [20]. That is, Logits knowledge distillation
incorporates the negative class probability distributions. There-
fore, Logits knowledge distillation allows more information to
be learned in the student model in the training process than the
traditional hard target method, and improves the performance
of the student model.

Inspired by [20], in Ensen we use a specific temperature T ′

to soften the softmax output and make the output probability
smoother to further amplify the information carried by the
negative classes:

qi =
e

zi
T ′∑c

i=1e
zi
T ′

(4)

where qi is the probability of the i-th class in the softened
softmax output, zi is its Logits value, c is the total number
of classes, and T ′ is the temperature. The higher the T ′, the
smoother the output probability distribution of the softmax is,
and as a result the information carried by the negative classes
will be relatively amplified.

In Logits knowledge distillation, we introduce another loss
function between the softened softmax output of the teacher
model and student models to allow student models to learn the
overall behavior of the teacher model. To measure the simi-
larity of two probability distributions, we use KL (Kullback-
Leibler Divergence) [21] to calculate distance, and therefore
the Logits knowledge distillation loss function is defined as:

LOSSKL =

c∑
i=1

(qTi)
T ′

log(
(qTi)

T ′

qSi
) (5)

where qTi is the probability value of the i-th class in the
softened softmax output of the teacher model, and qSi is the
respective output of the student model.

C. Final Knowledge Distillation

The attention distillation and Logits distillation allow the
student models to imitate both the intermediate behavior and
the overall behavior of the teacher model. To allow student
models to also be able to learn on its own, in Ensen we
incorporate the the cross entropy loss (LOSSCE) produced
by the hard predictions and true label of the student models
[22] as the third loss function. Finally, the three loss functions
are combined to constitute the final loss function in the model
training process as:

LOSS = α · LOSSCE + β · LOSSKL + γ · LOSSat (6)

where α, β, and γ are the weights of three loss functions
respectively, and referring to [23] in Ensen these weights
are empirically set to α = 0.7, β = 0.15, γ = 0.15. The
effectiveness of the knowledge distillation process is validated
in the evaluation section later.

V. DYNAMIC VOTING PROCESS

With the customized model design and KD-based training,
each IoT device acquires a tailored built DNN model which
is able to perform inferences locally on the device and meet
the time constraints. A deep ensemble is then formed with
neighboring devices to enable collaborative inferences. When
a device collects an inference sample, it will send the sample
to other devices around it and become an anchor node who
aggregates all the local predictions and generates the final
predictions. To enable efficient collaboration, two main issues
need to be addressed: (1) Local prediction aggregation. The
prediction results generated by all participating devices need
to be efficiently aggregated to generate final inference results
with high-accuracy. (2) Dynamic deep ensemble management.
Group members need to be dynamically profiled and members
with noisy predictions need to be filtered out to maintain
robustness of the whole group performance.

A. Efficient Local Prediction Result Aggregation

In each round of prediction, each devices i runs the local
model Mi with local input xi captured by device’s sensors
onboard and generates a local vote, i.e., the prediction yi.
The anchor node hence collects the local prediction vector
y = [y1, y2, ..., yn] with n devices in the deep ensemble. The

5

aggregation function G takes the local prediction vector and
maps to the final ensemble prediction result. One simplest
form of the aggregation function is to output the label with
maximum occurrence in y, that is:

G(y) = argmax
y

|{yi|yi ∈ y, yi = y}| (7)

where |{yi|yi ∈ y, yi = y}| returns the cardinality, or number
of occurrence of the vote y in y. However, such simple
aggregation suffers from several limitations. First, such aggre-
gation generates group prediction label that only represents the
final classification result and does not include the probability
suggestions for other classes. Second, the aggregation treats
all devices equally, however in practice some devices might
be more robust and generate better quality of predictions
than others. Therefore, to address the first limitation, it is
a better option to refer to the logits output of all devices.
Since the softmax layer of the model includes the predicted
probabilities for all classes, the anchor device instead collects
the softmax layer information of all participating, and averages
the predicted probabilities of all classes using the following
aggregation function:

G′(y) = argmax
yj

∑N
i=1 qi,j
N

; (8)

where N is total number of label classes, qi,j represents
the softmax value of the j-th class reported by device i. In
this way, the anchor device combines the average prediction
probability of all devices for each class to get the final softmax
layer, and output the final predict label with the maximum
combined softmax value.

However, the above two vote aggregating approaches still
do not address the second limitation, that is, the classification
capabilities of heterogeneous devices are usually different,
but they are treated equally in the aggregation process. The
difference of classification capability is mainly due to two
reasons. One is that the local data distribution in the training
of each device’s model is different, and the second is that the
computational power of different devices are usually different,
which is reflected in the different customized DNN models
designed for each device. As a result, it is essential to assign
different voting weights to different local predictions based
on the capabilities of the device, so that members with more
capabilities can play a greater role in the voting and improve
the final performance of the system. To estimate such ‘capabil-
ity’, usually the average classification accuracy of the model
is used as a direct metric. However, in Ensen the distribution
of training data of different IoT devices can be unbalanced,
resulting in an unbalanced performance of different devices to
classify different classes of data. Therefore, as a fine-grained
estimation the performance of each device on each class of
input, we pre-estimate the confidence with a testing input
dataset. And the confidence is measured using the F1-score
on the testing input:

ci,j =
2 ∗ Precisioni,j ∗Recalli,j
Precisioni,j +Recalli,j

(9)

where ci,j is the confidence of the device i on label class j, and
Precisioni,j and Recalli,j are precision and recall of class j

on device i for the testing input dataset. Note that this process
needs to be measured only once at the offline stage and does
not incur additional computation burden in the online inference
stage. Finally, the aggregation based on the probabilities of
each label class in the softmax layer is determined as:

G′′(y) = argmax
yj

∑N
i=1 ci,j · qi,j

N
(10)

where the final aggregation function G′′ incorporates both the
difference in the devices and generates probabilities for all
label classes.

B. Dynamic Deep Ensemble Management

The votes of different devices in the deep ensemble provide
different opinions of different devices to the same sensing
target, and in the voting stage weighted approach is taken
to reflect the expected contribution of each device on the
inference result as discussed in the previous section. However,
this proactive voting approach may pose security concerns. In
some extreme cases, the participating devices can be malicious
and deliberately votes random predictions to degrade the
overall performance of the ensemble group. Especially for
real-time tasks in traffic systems, malicious intrusions may
lead to serious consequences. As a result, in the voting process
the contribution of each device should be profiled over time
and used as a factor for dynamic ensemble group management.

To profile the real-time performance of all devices, in
Ensen the anchor node maintains a sliding window with size
K × n, where K is the length of the window and n is the
number of devices in the ensemble group. In t-th inference
round, the participating device i uploads the Softmaxi and
the corresponding local prediction yi. The window value for
device i at time t is set to W (i, t) = 1 if yi = G′′(y)
as calculated in Equation (10), otherwise W (i, t) = 0. The
window value is set in this way so that if W (i, t) = 1 the
device’s local inference matches with the final aggregated
result and the device is a positive contributor at this round.
We use Pi,t+1 as the participating probability of device i at
t+ 1 round, and it is defined as:

Pi,t+1 =



ϵ
t∑

j=t−K

W (i, j)=0

2(1−ϵ)
K W (i, j)+ϵ 0 <

t∑
j=t−K

W (i, j)≤ K
2

1, K
2 <

t∑
j=t−K

W (i, j)≤K

(11)

At t+1 round, the device participates the ensemble inference
process with the probability Pi,t+1. When

∑t
j=t−K W (i, j) =

0, the Pi,t+1 is set to a minimum value ϵ (which is set to 0.1
in Ensen) to avoid being permanently filtered out from the
system, otherwise the probability increases as the contribution
of the device in the current window improves. In this way,
the participating probability of each device is dynamically
changed based on its recent performance, and the robustness
of the group inference further improves. The evaluation of the
dynamic deep ensemble management scheme is detailed in
Section VI.

6

Fig. 5: Heterogeneous devices
used in the evaluation

Fig. 6: Efficiency of the pro-
posed customized model de-
sign approach

VI. EVALUATIONS

In this section, we will provide the detailed evaluations on
the respective modules and the overall performance of the
Ensen system.

Experimental Settings. To evaluate the performance of the
Ensen system, we implemented the system on 7 different types
of common IoT devices, including 1 raspberry Pi, 1 Jetson
TX2 development board, 4 different models of smartphones,
and one tablet as shown in Figure 5. The detailed specification
of 7 devices are listed in the Table I. These devices are with
different hardware capabilities and are used as heterogeneous
devices to evaluate the performance of Ensen. Although the
Ensen is not limited to any specific type of deep neural
networks, in Ensen we use the popular VGG-16 [24] as the
reference teacher model to guide the design of the students
models for IoT devices. VGG-16 consists of 5 stages, and
each stage can have up to 3 convolutional layers. In the
customized model design, the Algorithm 1 is used to generate
the customized student models based on the original VGG-16
model. We use pytorch [25] to implement the DNN models and
use Open Neural Network Exchange (ONNX) [26] to export
the models to different embedded platforms.

Dataset. We use CINIC-10 [27] as the data set for evalu-
ation. CINIC-10 is a popular data set for image recognition
and is an augmented extension of the CIFAR-10. It includes
all images from the CIFAR-10 (60,000 images, 32x32 RGB
pixels) and a selection of ImageNet database images (210,000
images downsampled to 32x32 resolution). In total 270,000
images are included in the CINIC-10 dataset. 90,000 uniformly
distributed images are randomly selected from the CINIC-10
as the training dataset for the teacher model. 150,000 other
images are randomly distributed to the 7 devices. On each
device, the total number of images is different, the number of
images in each class is also different, forming a non-i.i.d local
data distribution. Among the rest images, 10,000 are used to
measure the accuracy of the trained models, and the last 20,000
are used as the testing dataset to evaluate the performances of
the whole system.

A. Efficiency of Customized Model Design

The efficiency of the model design affects the overall
ensemble sensing performance. In the evaluation, we use the
VGG-16 as the teacher model and applies the depth-scaling
based model design algorithm as described in Algorithm 1 for
model search for each heterogeneous device. To compare the

TABLE I: Specifications of the devices used in the evaluation

Device ID Device Name Abbreviation Specifications
1 Raspberry Pi 4b R1 Broadcom

BCM2711
2 Huawei P30 P1 Kirin 980
3 Mi 9 P2 Snapdragon 855
4 OPPO Reno Ace P3 Snapdragon 855P
5 Huawei Mate30 P4 Kirin 990
6 Huawei Mate Pad

Pro
T1 Kirin 990

7 Jetson TX2 J1 NVIDIA Denver 2

efficiency of the algorithm, we compare two different model
search algorithms:

– Random Scaling (RS) [28]. In this approach, at each
round a random convolutional layer is dropped from the
current model to reduce the inference time and to meet
the time constraint.

– Sequential Scaling (SS) [18]. At each round, the con-
volutional layer from each stage is dropped one-by-one
sequentially from the last stage to the first stage.

Figure 6 shows the performance of the Ensen in the cus-
tomized model design. In the experiment, we set the time
constraint to be 0 to monitor all three model search processes.
As shown in the figure, at round 0, all three processes have the
same accuracy since they all start with the same teacher model.
With a time constraint 0, all three model search algorithms
take 8 rounds to stop to converge to the minimum network
architecture, i.e., leaving only one layer in each stage of the
original VGG-16 model. This is expected since no model
can reach time constraint 0 and hence all model searching
process will stop at the simplest network model. However, it
can be observed that at each intermediate round, the Ensen
model design algorithm all has the highest accuracy, which
indicates that at each round the generated model of Ensen has
better performance than RP and SP. This result indicates that
the model design algorithm is efficient in making customized
models for IoT devices.

Figure 7 shows the model inference time changes as the
model evolves in the pruning process. For each inference
task, we require each device to perform model inference for
an input of one image. At round 0, all 7 devices have the
original version of the VGG-16 model. As a result, it takes the
longest time to complete an inference task for all devices. For
Raspberry Pi, the inference time of 150ms is longest among
all devices due to the limited computation power available on
Pi, and the Jetson TX2 board completes task fastest at around
40ms. It can be seen that the slowest device completes a task
requiring almost 4 times the time of the fastest device, which
means that if both of them use the same DNN model in the
ensemble sensing device, in around 75% of the time the fastest
device will be waiting for the slowest device to complete
and the computational resources are significantly wasted. As
shown in Figure 7, as the pruning round goes on, the inference
time of all devices decreases accordingly, and at round 8 all
devices’ model reduce to the simplest form with one layer per
stage. If we set the time constraint to be 35ms, the 7 devices
(R1, P1, P2, P3, P4, T1, J1) will stop at round 8, 7, 6, 6,
5, 4, 2, respectively following Algorithm 1, resulting in the
respective inference time of 35ms, 34.4ms, 34.8ms, 34.1ms,

7

Fig. 7: Inference time
changes with different
customized models

Fig. 8: Efficiency of KD-
based training approach in
Ensen

Fig. 9: Confidence distribu-
tion of each predicting class
fro all devices

Fig. 10: Efficiency with dif-
ferent local prediction aggre-
gation functions

34ms, 33.2ms, and 34.5ms. With the customized model, each
device completes the inference task around the same time,
resulting in little wastage on the computational resources and
efficient cooperation in the ensemble sensing.

B. Efficiency of KD-based Model Training

As discussed in Section IV, in Ensen we integrate different
loss functions in the knowledge distillation process, which
allows the students models in the IoT devices to be able
to efficiently learn from the global model and also adapt to
their local data distribution. Figure 8 shows the comparison
between the conventional training approach where only local
data is used in the training, and the KD-based approach where
the proposed loss integration in Section IV is adopted. The
figure shows the accuracy comparison of all models for the 7
devices. It can be seen that the KD-based approach efficiently
improves the accuracy of all devices, with an average increase
of 4.02% in the classification accuracy. This results shows that
the KD-based approach effectively improves the classification
performance in the edge-centric sensing paradigm where both
global knowledge and local data is available, and can be
efficiently used in Ensen to improve the overall performance.

C. Efficiency of Local Prediction Aggregation

To evaluate the impact of local prediction aggregation, we
study the final aggregation performance using three aggre-
gation functions G, G′, and G′′ proposed in Section V. The
aggregation functions are proposed with the assumption that
different devices have different confidences in each predicting
class. To validate the assumption, we first study the confidence
distribution of each device on each predicting class. Figure 9
shows the confidence of each class for all 7 devices. It can
be seen from the figure that, for devices with more sophisti-
cate customized student models due to higher computational
capabilities such as the Jetson TX2, the confidence for all
classes are generally higher than those with less sophisticate
customized model such as Raspberry Pi. However, due to
the imbalanced local data distribution, some device with
lower overall accuracy can perform better on some specific
predicting classes. For example, R1 has lower overall accuracy
than P3, but for class 1, R1 has higher confidence than that of
P3. This results validate our assumption and show confidence
based local prediction aggregation is important to provide fine-
grained assessment to the weight of each local prediction. And
in the real application scenarios such as transportation systems,

the devices can be mobile, and they might join or leave the
group frequently. In order to simulate the changing dynamics
of the group members, We divide the 7 devices to the following
three ensemble groups to compare the performance of different
aggregation functions:

– Group 1. R1, P1, P2
– Group 2. R1, P1, P2, P3, P4
– Group 3. R1, P1, P2, P3, P4, T1, J1
Figure 10 shows the impact of three different aggregation

functions in the ensemble inference process. As shown in
the figure, as the group size becomes bigger, the accuracy
of final aggregated predictions improves from 79.53% to
83.76% accordingly, and this shows the positive impact of
local prediction aggregation in the ensemble sensing. It also
shows that Ensen allows devices to leave or join groups at any
time, but typically, the accuracy of ensemble sensing increases
as the number of members involved in sensing increases.
Within each group, the performance of G′′ which integrates
the confidence of each class of each device all outperforms
the other two and achieves the highest accuracy. For Group
3 with G′′, the final accuracy reaches 83.76%, resulting in
an increase of 9.19% in the average accuracy comparing to
the case without ensemble sensing. The result shows that the
ensemble sensing proposed in this work efficiently improve
the overall accuracy of classifications.

D. Efficiency of Dynamic Deep Ensemble Management

To evaluate the dynamic deep ensemble management, we
add two malicious devices into the group and test whether
these devices can be detected and filtered out from the
ensemble group. Both of these two devices have only 10%
classification accuracy. The window size K is set to 10 in
the evaluation. As shown in Figure 11, each of 9 devices
can have either state 0 (indicating the local prediction is not
aggregated by the anchor node) or state 1 (indicating the
local prediction is used in aggregation). In the first 10 rounds,
all devices’ local predictions are aggregated. However, after
round 10, the probability of Device 8 (D8) and Device 9
(D9) being aggregated significantly reduces, indicating that
the ensemble group has detected their abnormal behavior and
lower the impact of these devices. After round 50, we reset
Device 9 with normal DNN models, and we can observe that
after that the participating probability of Device 9 increases
accordingly and become a normal participant in the group. The
result indicates that the deep ensemble management scheme

8

Fig. 11: Dynamic deep en-
semble evolvement

Fig. 12: Final classification
performance for VGG-16

Fig. 13: Efficiency of model
design for ResNet

Fig. 14: Final classification
performance for ResNet

proposed in Ensen works well and dynamically adapts to
the performance of each individual member in the group to
achieve a robust performance of the whole group.

E. Comparison with Cloud-centric and Non-ensemble Method

Although the edge-centric approach provides many ben-
efits including privacy protection, low network latency and
better real-time performances, etc., it is still important to
understand the final performance of the proposed ensemble
sensing approach comparing with the conventional cloud-
centric approach, where all local data is uploaded to the cloud
to train the global teacher model, and all the inference is
done remotely on the cloud without time constraint. Figure 12
shows the comparison between Ensen and the conventional
cloud-centric scheme for the above three ensemble group
settings. As can be seen from the figure, although the accuracy
of Ensen slightly decreases compared with the cloud-centric
scheme, both approaches achieve comparable performances
with an average of 2.8% differences in the accuracy, while
Ensen also enjoys numerous other benefits due to the adoption
of the edge-centric scheme. In comparison to the average
accuracy without ensemble sensing, where all inferences are
done locally on the IoT devices without aggregation, Ensen
achieves an accuracy gain of 9.19%.

F. Generalization to other CNN Models

The Ensen can be extended to different types of convo-
lutional neural networks. Figure 13 and Figure 14 show the
efficiency of Ensen for the ResNet [29], another type of
popular CNN model. It can be observed that similar results are
achieved on ResNet, while the total round number increases
due to more complex architecture of ResNet. Overall, using
ResNet the final aggregated accuracy is comparable to the
cloud-centric approach, and reaches 78.25%, 82.15%, and
83.7% for Group 1, Group 2, and Group 3 respectively,
resulting an accuracy gain of 10.11% compared with average
accuracy without aggregating local predictions.

VII. RELATED WORK

A. DNN Model Compression

The computational intensive DNN model execution has
been a well-known problem that hinders the deployment of
DNN models on hardware constrained IoT devices in edge
computing [30]–[32]. To address this problem, various opti-
mization techniques have been proposed to fit DNN models

into low-cost embedded devices. Model compression [33] has
attracted a stream of studies which aim to reduce the size
and computation of common DNN models. In the literature,
various techniques have been used for model compression,
such as network pruning [34], quantization [35], Low-rank fac-
torization [36], etc. Different from model compression, another
approach which gains attention in the literature recently aims
to build new smaller networks from existing models based on
“teacher-student network” [20]. This paper follows this line
of research, however, a different approach is taken to design
customized models based on the computational power of the
device and the time constraint. We propose and integrate new
loss functions into the training process of the tailor-design
model, and this inherently helps the student models to reduce
the accuracy loss due to compression.

B. Ensemble Learning

Different from federated learning [37], ensemble learning
improves the predictive performance of a single model by
training multiple models and combining their predictions [38].
Ensemble learning has been widely used, such as Boosting
[39], Stacking [40], Bagging [39], etc. In recent years, re-
searchers have tried to use ensemble methods in deep learning
scenarios, such as speech recognition [41], automatic optic
cup and disc segmentation [42], remote sensing scenes [43],
and so on. [14] proposed a framework for implementing
DNNs on edge devices by allowing multiple users to form
a deep ensemble. Our work is inspired by the concept of
ensemble learning, however, to solve the challenges of time-
constrained synchronized inference, multiple novel techniques
have been proposed in Ensen to achieve robust ensemble
sensing performance.

In summary, although this work shares some common
concepts with model compression and ensemble learning, we
mainly focus on different perspective, i.e., the imbalanced
distribution of local data distribution and propose an ensemble
sensing scheme for heterogeneous IoT devices. The proposed
Ensen system is unique in terms that a customized model
design approach is used to solve the time-constrained syn-
chronized inference problem, and various novel techniques in
modle training and sensing group management have been in-
tegrated to achieve a robust performance of ensemble sensing
using heterogeneous IoT devices under time constraint.

VIII. LIMITATIONS AND FUTURE WORK

9

The Ensen proposes an ensemble sensing approach towards
collaborative sensing. Customized DNN models are designed
for heterogeneous devices for time-constrained collaboration.
Knowledge distillation is used to train the models to improve
the performance, and finally ensemble groups of neighboring
devices are dynamically form to perform the sensing tasks
together. Due to the model deployment process and the
collaborative approach, additional communication costs are
inevitably incurred. For example, the anchor nodes need to
collect the local predictions and send the final inference results
to other devices.

Despite the above limitations, Ensen still has multiple
advantages and efficiently improves the overall group per-
formance, which makes it an effective approach and can
be applied to several practical application scenarios, such
as intelligent transportation systems. Some future extensions
are possible to further improve the system performance, e.g.,
model compression optimization. When designing models for
devices, other efficient methods can be incorporated. For
example, pruning the width of the convolutional layers or using
other techniques such as quantization to further optimize the
model design.

IX. CONCLUSIONS

In this work, we propose Ensen, a collaborative inference
system using heterogeneous IoT devices in intelligence trans-
portation systems. Ensen incorporates various novel techniques
such as customized DNN model design, KD-based model
training, dynamic deep ensemble management, etc., to achieve
efficient ensemble sensing under time constraints. Extensive
evaluations show that Ensen works for different types on
common IoT devices and achieve improved performances
compared with conventional approaches.

ACKNOWLEDGMENTS

This work is supported by National Natural Science Foun-
dation of China (61972263, 62073225), Natural Science Foun-
dation of Guangdong Province (2019A1515011608), and the
Stable Support Plan for Higher Education Institutions in
Shenzhen (20200810113310001).

REFERENCES

[1] H. Song, R. Srinivasan, T. Sookoor, and S. Jeschke, Smart cities:
foundations, principles, and applications. John Wiley & Sons, 2017.

[2] H. Song, D. B. Rawat, S. Jeschke, and C. Brecher, Cyber-physical
systems: foundations, principles and applications. Morgan Kaufmann,
2016.

[3] Y. Sun, H. Song, A. J. Jara, and R. Bie, “Internet of things and big data
analytics for smart and connected communities,” IEEE access, vol. 4,
pp. 766–773, 2016.

[4] C. Chen, L. Liu, T. Qiu, K. Yang, F. Gong, and H. Song, “Asgr:
An artificial spider-web-based geographic routing in heterogeneous
vehicular networks,” IEEE Transactions on Intelligent Transportation
Systems, vol. 20, no. 5, pp. 1604–1620, 2018.

[5] D. Jiang, L. Huo, Z. Lv, H. Song, and W. Qin, “A joint multi-criteria
utility-based network selection approach for vehicle-to-infrastructure
networking,” IEEE Transactions on Intelligent Transportation Systems,
vol. 19, no. 10, pp. 3305–3319, 2018.

[6] J. Yang, Y. Han, Y. Wang, B. Jiang, Z. Lv, and H. Song, “Optimization
of real-time traffic network assignment based on iot data using dbn and
clustering model in smart city,” Future Generation Computer Systems,
vol. 108, pp. 976–986, 2020.

[7] Y. Sun, X. Yu, R. Bie, and H. Song, “Discovering time-dependent
shortest path on traffic graph for drivers towards green driving,” Journal
of Network and Computer Applications, vol. 83, pp. 204–212, 2017.

[8] Z. Xiong, M. Li, Y. Ma, and X. Wu, “Vehicle re-identification with image
processing and car-following model using multiple surveillance cameras
from urban arterials,” IEEE Transactions on Intelligent Transportation
Systems, 2020.

[9] W. Y. Choi, S.-H. Lee, and C. C. Chung, “On-road object collision point
estimation by radar sensor data fusion,” IEEE Transactions on Intelligent
Transportation Systems, 2021.

[10] C. Chen, C. Wang, T. Qiu, Z. Xu, and H. Song, “A robust active safety
enhancement strategy with learning mechanism in vehicular networks,”
IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 12,
pp. 5160–5176, 2019.

[11] W. Li, H. Song, and F. Zeng, “Policy-based secure and trustworthy
sensing for internet of things in smart cities,” IEEE Internet of Things
Journal, vol. 5, no. 2, pp. 716–723, 2017.

[12] K. Qian, T. Koike, T. Nakamura, B. Schuller, and Y. Yamamoto,
“Learning multimodal representations for drowsiness detection,” IEEE
Transactions on Intelligent Transportation Systems, 2021.

[13] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[14] N. Shlezinger, E. Farhan, H. Morgenstern, and Y. C. Eldar, “Collabora-
tive inference via ensembles on the edge,” in ICASSP 2021-2021 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2021, pp. 8478–8482.

[15] H. Zhu, Y. Li, R. Li, J. Li, Z. You, and H. Song, “Sedmdroid: An
enhanced stacking ensemble framework for android malware detection,”
IEEE Transactions on Network Science and Engineering, vol. 8, no. 2,
pp. 984 – 994, 2021.

[16] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[17] W. Park, D. Kim, Y. Lu, and M. Cho, “Relational knowledge distilla-
tion,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 3967–3976.

[18] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.

[19] N. Komodakis and S. Zagoruyko, “Paying more attention to attention:
improving the performance of convolutional neural networks via atten-
tion transfer,” in International Conference on Learning Representations
(ICLR), 2017.

[20] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[21] T. Van Erven and P. Harremos, “Rényi divergence and kullback-leibler
divergence,” IEEE Transactions on Information Theory (TIT), vol. 60,
no. 7, pp. 3797–3820, 2014.

[22] Z. Zhang and M. R. Sabuncu, “Generalized cross entropy loss for
training deep neural networks with noisy labels,” in 32nd Conference
on Neural Information Processing Systems (NeurIPS), 2018.

[23] D. Walawalkar, Z. Shen, and M. Savvides, “Online ensemble model
compression using knowledge distillation,” in European Conference on
Computer Vision (ECCV). Springer, 2020, pp. 18–35.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[25] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
Neural Information Processing Systems (NeurIPS), vol. 32, pp. 8026–
8037, 2019.

[26] “Open neural network exchange (onnx),” https://onnx.ai/.
[27] L. N. Darlow, E. J. Crowley, A. Antoniou, and A. J. Storkey, “Cinic-10

is not imagenet or cifar-10,” arXiv preprint arXiv:1810.03505, 2018.
[28] S. Anwar and W. Sung, “Coarse pruning of convolutional neural

networks with random masks,” 2016.
[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016, pp. 770–778.

[30] X. Zhou, X. Yang, J. Ma, I. Kevin, and K. Wang, “Energy efficient smart
routing based on link correlation mining for wireless edge computing
in iot,” IEEE Internet of Things Journal, 2021.

[31] X. Zhou, X. Xu, W. Liang, Z. Zeng, and Z. Yan, “Deep-learning-
enhanced multitarget detection for end–edge–cloud surveillance in smart
iot,” IEEE Internet of Things Journal, vol. 8, no. 16, pp. 12 588–12 596,
2021.

10

[32] S. Chen, Y. Tao, D. Yu, F. Li, and B. Gong, “Distributed learning
dynamics of multi-armed bandits for edge intelligence,” Journal of
Systems Architecture, vol. 114, p. 101919, 2021.

[33] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, “Amc: Automl for
model compression and acceleration on mobile devices,” in Proceedings
of the European conference on computer vision (ECCV), 2018, pp. 784–
800.

[34] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and con-
nections for efficient neural networks,” arXiv preprint arXiv:1506.02626,
2015.

[35] R. Gong, X. Liu, S. Jiang, T. Li, P. Hu, J. Lin, F. Yu, and J. Yan, “Dif-
ferentiable soft quantization: Bridging full-precision and low-bit neural
networks,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 2019, pp. 4852–4861.

[36] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramab-
hadran, “Low-rank matrix factorization for deep neural network training
with high-dimensional output targets,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2013,
pp. 6655–6659.

[37] X. Zhou, W. Liang, J. She, Z. Yan, I. Kevin, and K. Wang, “Two-
layer federated learning with heterogeneous model aggregation for
6g supported internet of vehicles,” IEEE Transactions on Vehicular
Technology, vol. 70, no. 6, pp. 5308–5317, 2021.

[38] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, vol. 8, no. 4,
p. e1249, 2018.

[39] R. E. Schapire, “The strength of weak learnability,” Machine learning,
vol. 5, no. 2, pp. 197–227, 1990.

[40] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp.
123–140, 1996.

[41] L. Deng and J. C. Platt, “Ensemble deep learning for speech recog-
nition,” in Fifteenth Annual Conference of the International Speech
Communication Association (ISCA), 2014.

[42] J. Zilly, J. M. Buhmann, and D. Mahapatra, “Glaucoma detection using
entropy sampling and ensemble learning for automatic optic cup and disc
segmentation,” Computerized Medical Imaging and Graphics (CMIG),
vol. 55, pp. 28–41, 2017.

[43] S. Akodad, S. Vilfroy, L. Bombrun, C. C. Cavalcante, C. Germain, and
Y. Berthoumieu, “An ensemble learning approach for the classification of
remote sensing scenes based on covariance pooling of cnn features,” in
2019 27th European Signal Processing Conference (EUSIPCO). IEEE,
2019, pp. 1–5.

Xingyu Feng is currently pursuing the Ph.D. degree
in the School of Computer and software, Shenzhen
University. He received the M.E. degree from Shen-
zhen University in 2020 and the B.S. degree from
Jiangxi University of Finance and Economics in
2017. His primary research interests mainly include
Internet of Things, mobile edge computing and deep
learning.

Chengwen Luo received the PhD degree from the
School of Computing, National University of Singa-
pore (NUS), Singapore. He is currently an associate
professor in the College of Computer Science and
Software Engineering, Shenzhen University (SZU),
China. His research interests include mobile and
pervasive computing and security aspects of Internet
of Things.

Bo Wei has been an assistant professor in the School
of Computing and Communications at Lancaster
University. He was a Postdoctoral research assistant
in University of Oxford. He obtained his PhD degree
in Computer Science and Engineering in 2015 from
the University of New South Wales, Australia. His
research interests are Mobile Computing, Internet of
Things, and Wireless Sensor Networks.

Jin Zhang currently is an associate researcher Col-
lege of Computer Science and Software Engineering,
Shenzhen University. Jin worked in CSE, UNSW
and CSIRO as a research engineer and PhD schol-
arship holder from 2013-2017. During this period,
Jin obtained his PhD degree as well. Jin combined
AI, machine learning technology with IoT devices
i.e. commercial WiFi laptop or router for smart IoT
sensing.

Jianqiang Li received his B.S and Ph.D. Degree
from South China University of Technology in 2003
and 2008. He is currently a professor in the College
of Computer Science and Software Engineering,
Shenzhen University. His major research interests
include embedded systems and Internet of Things.

Huihui Wang received the Ph.D. degree in elec-
trical engineering from the University of Virginia,
Charlottesville, VA, USA, in 2013. She is an As-
sociate Professor at St. Bonaventure University, St.
Bonaventure, NY, USA and a Program Director at
National Science Foundation, Alexandria, VA, USA.
She has authored or coauthored over 50 papers. Her
current research interests are cyber physical systems,
Internet of Things, and engineering education. Dr.
Wang was the Vice Chair of IEEE JAX Section, a
member and the Program Chair of ECE Division of

ASEE, as well as a member of Florida Engineering Society (FES), and the
Treasurer of the Florida Engineers in Education (FEE) practice section of
FES. She is also a member of ASME. She has served as a Technical Program
Committee Chair/member as well as a Reviewer for international conferences
and journals. She is an active panelist of NSF, NASA, and fellowships.

Weitao Xu is an Assistant Professor at the De-
partment of Computer Science at City University
of Hong Kong. He obtained his PhD degree from
the University of Queensland in 2017. His research
generally focuses on IoT such as smart sensing, IoT
security, IoT+AI, and wireless networks.

Mun Choon Chan graduated with a BS in Com-
puter and Electrical Engineering from Purdue Uni-
versity and Ph.D. from Columbia University. He
was a Member of Technical Staff in the Networking
Research Laboratory, Bell Labs, Lucent Technolo-
gies before joining NUS. He is currently Professor
in the Department of Computer Science, School of
Computing, National University of Singapore.

Victor C. M. Leung (Life Fellow, IEEE) is currently
a Distinguished Professor of computer science and
software engineering at Shenzhen University, China.
He is also an Emeritus Professor of electrical and
computer engineering and the Director of the Labo-
ratory for Wireless Networks and Mobile Systems,
University of British Columbia (UBC), Canada. His
research interests include wireless networks and
mobile systems. He has published widely in these
areas. He is serving on the editorial boards of the
IEEE TRANSACTIONS ON GREEN COMMUNI-

CATIONS AND NETWORKING, IEEE TRANSACTIONS ON CLOUD
COMPUTING, IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL
SYSTEMS, IEEE Network, and several other journals. He is a fellow of the
Royal Society of Canada (Academy of Science), the Canadian Academy of
Engineering, and the Engineering Institute of Canada.

11

