

Article WPI hydrogels with a prolonged drug-release profile for antimicrobial therapy

Valentina O. Plastun ^{1,*}, Ekaterina S. Prikhozhdenko ¹, Olga I. Gusliakova ¹, Svetlana V. Raikova ^{2,3}, Timothy E. L. Douglas ^{4,5}, Olga A. Sindeeva ⁶ and Oksana A. Mayorova ^{1,7,*}

- Science Medical Center, Saratov State University, 83 Astrakhanskaya Str., 410012 Saratov, Russia; voplastun@gmail.com (V.O.P.), prikhozhdenkoes@sgu.ru (E.S.P.), olga.gusliakova17@gmail.com (O.I.G.), oksanaamayorova@gmail.com (O.A.M.)
- ² Department of microbiology, virology and immunology, Saratov State Medical University named after V. I. Razumovsky, 112 Bolshaya Kazachia st., 410012 Saratov, Russia; matiz853@yandex.ru (S.V.R.)
- ³ Saratov Hygiene Medical Research Center of the FBSI "FSC Medical and Preventive Health Risk Management Technologies", 1A Zarechnaya Str., 410022 Saratov, Russia; matiz853@yandex.ru (S.V.R.)
- ⁴ Engineering Department, Lancaster University, Gillow Av., Lancaster LA1 4YW, UK; t.douglas@lancaster.ac.uk (T.E.L.D.)
- Materials Science Institute (MSI), Lancaster University, Gillow Av., Lancaster LA1 4YW, UK; t.douglas@lancaster.ac.uk (T.E.L.D.)
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Str., 143005 Moscow, Russia; o.sindeeva@skoltech.ru (O.A.S.)
- ⁷ epartment of Botany, Chemistry and Ecology, Saratov State Vavilov Agrarian University, 1 Theater Square, 410012 Saratov, Russia; oksanaamayorova@gmail.com (O.A.M.)
- * Correspondence: voplastun@gmail.com (V.O.P.); oksanaamayorova@gmail.com (O.A.M.)

Abstract: Infectious sequelae caused by surgery are a significant problem in modern medicine due 1 to the reduce of therapy effectiveness and the patients' quality of life. Recently, new methods of 2 local antimicrobial prophylaxis of postoperative sequelae have been actively developed. They allow 3 high local concentrations of drugs to be achieved, increasing the antibiotic therapy effectiveness while reducing side effects. We have developed and characterized antimicrobial hydrogels based 5 on an inexpensive and biocompatible natural substance from the dairy industry — whey protein isolate — as matrices for drug delivery. The release of cefazolin from the pores of hydrogel structures directly depends on the amount of the loaded drug and occur in a prolonged manner for 3 days. 8 Simultaneously with the antibiotic release, hydrogel swelling and partial degradation occurs. WPI 9 hydrogels absorb solvent, doubling in size in 3 days and retaining cefazolin throughout the duration 10 of the experiment. The antimicrobial activity of cefazolin-loaded WPI hydrogels against Staphylococcus 11 aureus growth is prolonged in comparison to that of the free cefazolin. The overall cytotoxic effect of 12 cefazolin-containing WPI hydrogels is lower than that of free antibiotic. Thus, our work shows that 13 antimicrobial WPI hydrogels are suitable candidates for local antibiotic therapy of infectious surgical 14 sequelae. 15

Keywords: antimicrobial activity; hydrogel; drug release; cefazolin; whey protein isolate

16

17

1. Introduction

Reconstructive and restorative surgery is commonly accompanied by a bacterial in-18 fection, which is a serious complication and can lead to poor treatment outcomes. Severe 19 traumatic edema, circulatory disorders, accumulation of blood and fluid, damaged dead 20 tissues cause the development of various forms of wound infection [1]. In most cases, 21 infectious contaminations are accompanied by a repeated hospitalization and may require 22 an additional surgical intervention. This leads to both recovery time and positive results 23 achieving time increase after the surgery [2–5]. The classic treatment for infectious com-24 plications after surgical procedures is systemic antibiotic therapy. Since normal doses 25 of antibiotics in their systemic use may be insufficient for local bactericidal action in the 26

Citation: Plastun, V.O.;

Prikhozhdenko, E.S.; Gusliakova, O.I.; Raikova, S.V.; Douglas, T.E.L.; Sindeeva, O.A.; Mayorova, O.A. WPI hydrogels with a prolonged drug-release profile for antimicrobial therapy. *Pharmaceutics* **2022**, *1*, 0. https://doi.org/

Received: Accepted: Published:

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Submitted to *Pharmaceutics* for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). area of infection, it is necessary to increase the administered doses. Prolonged systemic 27 use of antibiotics can lead to the development of unwanted side reactions, increasing the 28 number of toxic effects [6–8]. The combination of these factors leads to the ineffectiveness of 29 antibiotic therapy. Despite the improvement of treatment methods, surgical techniques and 30 the emergence of new highly active antibiotics, the recurrence rate remains high. The use 31 of various systems for delivering antibiotics to the site of infection has become a common 32 method of it local suppression that continues to improve [9–12]. Over the years, several 33 options for silver-based [13] and iodine-based [14] antibacterial coatings have been de-34 veloped to reduce the risk of postoperative infections after implantation. However, such 35 technologies are currently not yet available on the market and/or have limitations in use, 36 such as high drug toxicity [15,16]. 37

Another promising materials for local infection suppression are hydrogels. At present, 38 their use for biological applications is being carefully studied due to their structural sim-39 ilarity to natural extracellular matrices [17]. Biocompatibility and non-toxicity are the 40 main characteristics of hydrogels for their use in regenerative medicine [18]. A hydro-41 gel coating based on hyaluronic acid and poly-D,L-lactide has recently been developed 42 [DAC® (Defensive Antibacterial Coating), Novagenit Srl, Mezzolombardo, Italy]. This 43 hydrogel is expected to be useful as an antibacterial coating for implantable devices that provides a protective barrier against bacterial adhesion [19–22]. Conducted clinical trials 45 have demonstrated its ability to reduce postoperative infectious sequelae associated with 46 implants [23,24]. Currently, the data on its safety and efficacy in use in patients is low. The 47 main disadvantage of the DAC® gel is the limited loading capacity of the hydrogel, as well 48 as the lack of *in vitro* studies of the antimicrobial activity of the gel against infection. In 49 addition, the high cost of using a single 10 mL gel syringe remains a critical factor limiting 50 its usage in medical practice. 51

The whey protein isolate (WPI) used in this work is a by-product of the processing 52 of whey used in cheese preparation [17,25]. In this regard, WPI is a cheap and available 53 product that is used as an emulsifier, gelling, foaming and water-binding agents in the food, 54 pharmaceutical, and cosmetic industries [17,25–29]. It is known that the WPI composition 55 can vary depending on the method of isolating the WPI [30,31]. The HPLC analysis of 56 the WPI composition, carried out in works [32,33], showed that the protein content in 57 lyophilized WPI powder is about 96% (70% of β -lactoglobulin, 26% of α -lactalbumin), 58 bovine serum albumin is a minor component of WPI and is about 4%. Gelation occurs due to the denaturation of the native protein β -lactoglobulin after an increase in temper-60 ature [34,35]. The main advantage of protein-based delivery systems is the non-toxicity 61 and biocompatibility of the initial components. It is known that whey protein reduces 62 the of pro-inflammatory and increases the level of anti-inflammatory cytokines, thereby 63 promoting the healing of skin wounds [36]. The ability of WPI hydrogels to withstand au-64 toclave sterilization, to provide controlled release and high bioavailability of hydrophobic drugs are primary benefits of WPI cross-linked hydrogels over other materials for local 66 suppression and prevention of postoperative infections [29,37,38]. Several important char-67 acteristics of hydrogels as potential scaffolds in regenerative surgery are strength, thermal 68 and mechanical properties. Previously, it was shown that the destruction of WPI-based 69 hydrogels occurs at temperatures above 250°C, which leads to the chemical decomposition 70 of the WPI molecules. Heating to temperatures below 250°C results in the loss of water 71 adsorbed in hydrogels without the WPI bond opening [39–41]. The mechanical properties 72 of WPI hydrogels depend on the material porosity: smaller pore sizes and a decrease in the 73 frequency of their distribution lead to an increase in the Young modulus of elasticity and, 74 as a result, an improvement in the physical characteristic the hydrogels [42]. At the same 75 time, the addition of components capable of forming additional cross-links to the hydrogel 76 leads to an increase in their physical strength [42,43]. 77

We have proposed a biocompatible long-acting hydrogel for the prevention of bacterial infections based on a natural protein preparation, whey protein isolate (WPI), with the addition of the antibacterial drug cefazolin. WPI hydrogels are able to fill wound spaces and provide higher concentrations of antibacterial drugs in comparison to systemically administered doses after surgery [20,44–46]. Histological analysis of mice muscle tissues *ex vivo* showed that subcutaneous implantation of biofilms based on whey protein *in vivo* does not cause necrosis or degradation of surrounding tissues, as well as the release of exudate in the area of interest, which confirms the non-toxicity and immunogenicity of WPI hydrogels [47].

In the present research, we studied the kinetics of release of an antibacterial drug, the effect of a solvent on the swelling capacity and degradation of hydrogels with different antibiotic concentrations *in vitro*. Quantitative evaluation of the antibacterial effect of free cefazolin and hydrogels with different antibiotic concentrations, contained in the pores of WPI, was carried out by two different methods against *Staphylococcus aureus* using flow cytometry and fluorescence spectroscopy. The effect of antibacterial WPI hydrogel disks on the overall survival and proliferation of L929 fibroblast cells was studied in comparison with a solution of this antibiotic.

2. Materials and Methods

2.1. Materials

Eagle's Minimum Essential Medium (1X), Fetal Bovine Serum were obtained from 97 Gibco (Paisley, UK). AlamarBlue (Cell Viability Reagent) was obtained from Invitro-gen 98 (Waltham, MS, USA). Sodium chloride (Ph. Eur., pure, pharma grade) was obtained 99 from PanReac AppliChem (Darmstadt, Germany). Propidium iodide (PI) and Syto 9 100 were purchaised from Thermo Fisher Scientific (Eugene, USA). DAPI and Calcein AM 101 was purchased from Sigma Aldrich (Steinheim, Germany). WPI (BiPRO, Davisco Foods 102 Int., Inc., Eden Prairie, MN, USA) with 97.7% protein and 75% β -lactoglobulin in dry 103 matter (according to the specification) was used without further purification as described 104 previously [29,30,33]. Cefazolin (powder for the preparation of a solution for intravenous 105 and intramuscular administration) was purchased from PJSC Krasnfarma (Krasnoyarsk, 106 Russia) and used without prior purification. Mueller-Hinton Agar No. 2 was obtained from 107 HiMedia Laboratories (Germany). Other reagents used in the investigation were purchased 108 from Sigma-Aldrich (Steinheim, Germany). Millipore Milli Q water (18.2 M Ω cm⁻¹) was 109 used as an aqueous medium during all sets of experiments. 110

2.2. Fabrication of WPI-based hydrogels

WPI-based hydrogels were prepared by thermo-induced curing. At the first stage, a stock solution containing 40% WPI was prepared. To do this, dry WPI powder was dissolved in deionized water, thoroughly mixed, and left for 8–12 h for foam to settle. Then the solution was poured into four 2 mL Safe-Lock Tubes, sodium cefazolinate powder was added to three samples at the rate of 0.0 (control), 0.5, 5, and 10 mg per 1 mL of WPI solutions, respectively. Next, all solutions in the tubes were heated for 15 min in an oven at 90°C to solidify the samples. The hardened and cooled samples were removed from the tubes, cut into disks 1 mm thick, 9 mm in diameter, weighed, and autoclaved.

2.3. Water swelling and cefazolin release of WPI-based hydrogel samples

The swelling character of the hydrogel samples was studied in saline (0.9% NaCl). To measure the swelling, after autoclaving, hydrogel samples with known weight were placed in 2 mL Eppendorf tubes, containing 1 mL of saline, and incubated at 37°C under constant stirring (300 rpm) from 15 min to 144 h (6 days). Swollen gels were periodically (0.5, 1, 3, 6, and up to 144 h) removed, blotted on dry filter paper to remove excess water and immediately weighed. Then, the mass increase (MI) was calculated as:

$$MI(\%) = ((M_t - M_0)/M_0) \cdot 100\%$$

where M_t is the weight of the hydrogel at a certain time, M_0 is the initial hydrogel use weight.

120

111

For the cefazolin release an aliquot of each incubated WPI hydrogel sample was selected, and the optical density of the solutions was measured using CLARIOstar Plus microplate reader (BMG Labtech, Germany) and Greiner UV-STAR® MICROPLATE (Greiner Bio-One, Kremsmünster, Austria) in 250–650 nm range (1 nm step). Optical density of 281 nm line (absorbance maximum of cefazolin) was used in calibration and release amount estimation. Calibration trendline was calculated using the linear fit of 281-nm line mean values at different concentrations. All experiments were carried out with n = 5.

2.4. Scanning Electron Microscopy

For Scanning Electron Microscopy (SEM) imaging, hydrogel samples were preliminarily freeze-dried 24 h after the cooling period. Freeze-dried disks of the WPI hydrogel were fixed on Si substrate by double-sided electrically conductive carbon tape, and then the samples were sputtered with gold in vacuum. Then SEM measurements were performed with a MIRA II LMU (TESCAN) microscope at an operating voltage of 30 kV. All measurements were performed at the Educational and Scientific Institute of Nanostructures and Biosystems of the Saratov State University.

2.5. In Vitro Study

2.5.1. Bacterial tests

For this study, Staphylococcus aureus ATCC 29213, received from Saratov State Medical 140 University Microbiology, virology, and immunology department collection, was taken as a 141 test culture. The antimicrobial activity study was carried out by standard methods [48]. To 142 assess the prolonged inhibition of bacterial growth on the surface of a solid medium, the 143 agar diffusion method was used. 90 mm Mueller-Hinton agar plates were inoculated with 144 S. aureus suspension $(1.5 \times 10^8 \text{ CFU/mL})$ and left to absorb for 15 min. WPI-based hydrogel 145 samples with cefazolin, control WPI samples, and control paper disks with cefazolin were 146 placed on the agar surface and incubated at 37°C. Microbial growth inhibition zones were 147 recorded every 24 h, and all samples were transferred to fresh agar plates. 148

In parallel, the antibacterial effect of cefazolin-containing hydrogels in liquid medium was studied. Each hydrogel sample was placed in 16 mm glass tube with Mueller-Hinton nutrient broth (1 sample per 1 mL), inoculated with *S. aureus* suspension (resulting amount of bacteria 5×10^5 CFU/mL). All tubes were incubated at 37°C, each 24 optical densities of broths was measured using DEN-1B densitometer (Biosan, Latvia). Then, the samples were replaced in fresh tubes with inoculated broth and all procedures were repeated for up to 72 h. All experiments were carried out with n = 5.

Identifying live and dead bacteria were performed using the standard protocol [49]. Inter-After incubation with hydrogels, *S. aureus* suspensions were carefully prepared by washingcentrifugation in saline for three times. After the final washing stage, cell pellets were resuspended in 1 mL of saline and incubated with 1 μ L Syto 9 (5 mM/mL) and 20 μ L of propidium iodide (1 mg/mL) at room temperature in the dark for 15 min. Syto 9 and PI were used to visualize live and dead bacteria, respectively.

2.5.2. Cell culturing

Mouse fibroblasts (L929 cell line) were used for toxicity tests. L929 were cultured in Eagle's Minimum Essential Medium supplemented with a 10% fetal bovine serum without any antibiotics (complete growth media) in a humidified incubator containing 5% CO₂ at 37°C. The subculturing procedure was carried out according to ATCC protocol.

Cells were seeded in 48-well plates at the density 25 000 cells per well. The following ¹⁶⁷ day, the excised hydrogel disks were added to wells after renewing the media. Subsequently, ¹⁶⁸ the cells were incubated (Innova CO-170, New Brunswick Scientific, Enfield, CT, USA) at ¹⁶⁹ 37°C for 48 h, together with the added materials. In the last step, the hydrogel disks and ¹⁷⁰ media were removed from the wells and discarded, 300 μ L of the fresh media was added to ¹⁷¹ each well with following adding of 30 μ L of AlamarBlue. Cells with and the intensity was ¹⁷² measured using an ultraviolet-visible spectrometer Synergy H1 Multi-Mode Reader (BioTek ¹⁷³

130

___.

Instruments, Inc., USA). The experiment showed the capability of metabolically active cells 174 to convert the AlamarBlue reagent into a fluorescent and colorimetric indicator [50]. To 175 establish the irreversibility of the effect of hydrogels and cefazolin on L929, all disks were 176 discarded, and the culture medium was replaced with a new one without antibiotics after 177 48 h of incubation. All experiments were carried out with n = 4.

2.6. Confocal Laser Scanning Microscopy (CLSM)

To perform live/dead analysis of S. aureus, a suspension of 600 μ L was added to 180 µ-Slide 4 Well Glass Bottom (Ibidi, Germany) after staining and was studied with an Leica 181 TCS SP8 X inverted confocal microscope (Leica Microsystems, Germany) equipped with 182 diode (405 nm) and argon pulsed laser sources. S. aureus samples were visualized with a 183 488 nm laser line of argon laser source focused through $20 \times / 0.70$ N.A. objective. Emission 184 detection ranges were 500-520 nm (green, Syto 9, live bacteria) and 650-725 nm (red, PI, 185 dead bacteria). 186

L929 cells were seeded to NuncTM Lab-TekTM II Chambered Coverglass (4 wells) at the 187 density of 100 000 cells per well. The following day, the excised hydrogel disks were added 188 to wells after renewing the media. Subsequently, the cells were incubated at 37°C for 48 h 189 together with the added materials.

For morphological analysis of cells after incubation, a stock solution based on com-191 plete growth media containing DAPI ($10 \ \mu g/mL$) and Nile Red ($5 \ \mu g/mL$) was prepared. 192 Preliminary, Nile Red solution in DMSO was prepared at concentration of 1 mg/mL. 193

Before staining, hydrogel disks were removed from wells, the media from each well 194 was aspirated. Cells' layer was carefully washed twice with DPBS. For staining, 500 µL of 195 stock solution was added to each well and cells were incubated for 20 min in a humidified 196 incubator containing 5% CO_2 at 37°C. Subsequently, the staining solution was aspirated off 197 and each well was washed twice with DPBS. Then, new complete media was added to the 198 wells. 199

CLSM images of stained L929 cells were obtained with Leica TCS SP8 X. DAPI was 200 visualized with 405 nm excitation, 420–495 nm emission detection range (blue channel), 201 Nile Red was visualized with excitation using 514 nm laser line of argon source, 540–620 nm 202 emission detection range (red channel). Laser sources were focused through $20 \times /0.70$ N.A. 203

2.7. Flow cytometry

Live and dead bacteria were counted and evaluated using the imaging flow cytometer 205 Amnis ImageStream X Mk II (Luminex, USA). Fluorescent dyes were excited by a 488 nm 206 and 561 nm laser at 100 mW power. Flow cytometry data were processed using IDEAS 207 software (Luminex, USA). 208

2.8. Statistical Analysis

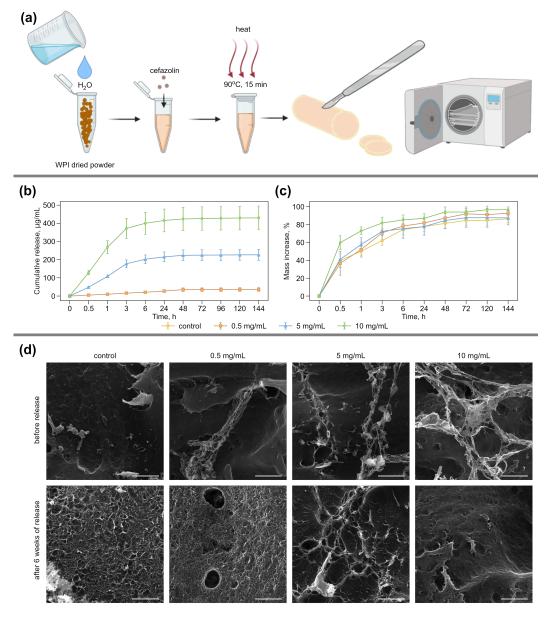
The statistical data on the WPI hydrogels' swelling both with and without cefazolin, 210 the cefazolin release, average growth inhibition zone sizes of *S. aureus*, and the cytotoxic activity of the hydrogels were calculated using Microsoft Excel. Means and standard 212 deviations were obtained from 5 independent experiments in each case. 213

3. Results and discussion

3.1. Preparation and Characterization of Antibacterial WPI Hydrogels

WPI hydrogels containing the antibacterial drug cefazolin at various concentrations 216 (0; 0.5; 5; 10 mg/mL) were prepared by heat treatment of 2 mL of an aqueous solution 217 of WPI (40 mg/mL) with the addition of the required amount of antibiotic [51]. In the 218 present studies, WPI with a known composition was used. According to the manufacturer's 219 specification, WPI contained β -lactoglobulin (75.7 \pm 1.4%), α -lactalbumin (14.7 \pm 0.1%) and 220 <4% BSA (BiPRO, Davisco Foods Int., Inc., Eden Prairie, MN, USA). It is known that heat 221 treatment of a WPI solution above 60°C promotes the gelation process due to protein denat-222 uration and the formation of new disulfide bonds with the formation of a three-dimensional 223

5 of 15


179

204

211

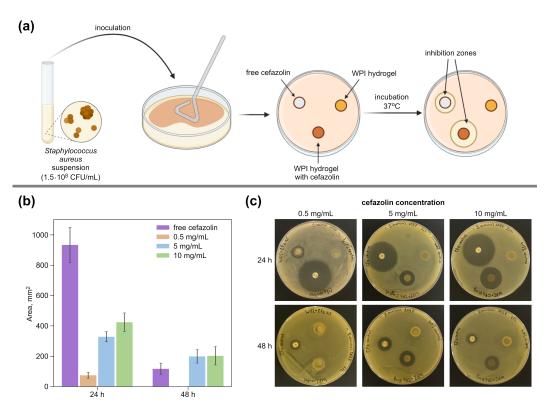
209

214

Figure 1. (a) The principal scheme for the formation of WPI-based hydrogels containing the cefazolin. Control WPI hydrogels were prepared similarly without the addition of antibiotics. **(b)** The cefazolin cumulative release profile from WPI hydrogel disks incubated in saline at 37°C for 144 h. Error bars show cumulative standard deviation calculated from 5 measurements for a sample in each treatment stage. **(c)** Mass increase (swelling profile) of WPI hydrogels containing cefazolin incubated in saline at 37°C. Error bars show standard deviation, calculated from 5 measurements for a sample in each treatment stage. **(d)** Morphological analysis of WPI hydrogels with cefazolin. The scale bar for SEM images of transverse-sections is 5 μm.

network [52–55]. To remove unwanted biofilms on the surface of the formed hydrogels, which can provoke additional bacterial contamination, all samples were additionally sterilized by autoclaving at 121°C for 15 min (Figure 1 a). In medical practice, cefazolin is most often used as an antibiotic against a wide range of bacteria [56–58]. Hence, this antibiotic was used for our research. 228

The main advantage of hydrogels prepared by solution heat treatment is their loading capacity. The addition of cefazolin into the initial solution before polymerization makes it possible to obtain hydrogels containing a known amount of the drug without loss. The incorporation of cefazolin molecules into the pores of the hydrogel occurs during the formation of disulfide bonds and the formation of a three-dimensional hydrogel structure [59,60]. ²³³ It was previously shown that the addition of small molecule drugs to the WPI solution does ²³⁴ not affect the nature of protein binding during formation of hydrogel porous structure [51]. ²³⁵


Our study was aimed at studying the release rate of cefazolin from hydrogels. The release of cefazolin from WPI hydrogels (Figure 1 b) was carried out in saline at 37°C for 144 h (6 d). As can be seen from the graph, the diffusion of low molecular weight cefazolin from the pores of the hydrogel begins from the first minutes after the disk is immersed in the solution and occurs within 72 h. The maximum amount of cefazolin released from hydrogels is observed 6 h after immersion in an aqueous solution. After 96 h, antibiotic release has stopped for all samples of WPI hydrogels with different levels of cefazolin. 220

The cefazolin release from WPI hydrogels occurs under the action of solvent diffusion 243 and directly depends on their swelling degree [61]. The swelling capacity of hydrogels 244 depends on its elasticity and the ability to stretch polymer chains and, thus, increase 245 the hydrogel mass by moisture absorption [35]. A swelling test was performed on WPI hydrogels with various cefazolin contents (0; 0.5; 5; 10 mg/mL) in saline at 37°C for 144 h 247 (6 d) simultaneously with the cefazolin release test (Figure 1 c). All WPI hydrogels showed a 50% mass increase (MI, %) after 30 min of incubation. After 48 h, the increase in the mass 249 was about 2 times, the absorbed solvent amount in the gel structure remained unchanged until the end of the experiment. The MI values for all samples were within the statistical 251 error, indicating that there is no covalent bond between the antibiotic and the protein, 252 which reduces the degree of swelling [62,63]. 253

In parallel with the processes of swelling and cefazolin release from the hydrogel 254 pores, a partial degradation of the hydrogels occurs. This was shown on SEM images 255 6 weeks after incubation of WPI hydrogel disks with cefazolin in saline at room temperature 256 (Figure 1 d). Long-term storage of hydrogels in physiological saline at room temperature 257 leads to their slight degradation. For samples with the lowest content of antibiotic (0 258 and 0.5 mg/mL), the formation of a porous structure of the hydrogel surface is observed 259 compared to the surface of the same native hydrogels prior saline incubation. This indicates 260 a partial degradation of the upper layer of the hydrogel disks. For hydrogels with high 261 concentrations of cefazolin (10 mg/mL), surface damage is insignificant. It is known that 262 WPI is a natural component with biocompatibility and biodegradation properties [64,65], 263 which is confirmed by SEM imaging data. Sustained release over several days, moisture 264 retention and biodegradability are the necessary qualities of hydrogels for use in the 265 prevention and treatment of postoperative infection as a drug delivery system. 266

3.2. Antibacterial effect

The antibacterial activity of WPI-based hydrogels against opportunistic bacteria S. aureus was investigated by the disk diffusion method on a solid nutrient medium (Figure 2 a). 269 Each of the hydrogel samples with cefazolin (0.5, 5 or 10 mg/mL), the control hydrogel sample without antibiotic, and control paper disk with free cefazolin were placed on an 271 experimental agar plate inoculated with S. aureus suspension (0.5 McFarland). Then, the 272 experimental plates were incubated at 37°C for 24 h. After that, bacterial growth inhibi-273 tion zones were measured on each plate and the samples were transferred to fresh agar, inoculated with S. aureus. The experiment was repeated for up to 72 h. As it can be seen on 275 Figure 2 b, c, all cefazolin-containing hydrogels retain antimicrobial activity after the prepa-276 ration procedure. After 48 h of the experiment, the samples containing 5 and 10 mg/mL of 277 cefazolin still retained ability to inhibit bacterial growth. The difference between growth 278 inhibition areas of these samples is insignificant, that corresponds with its release profiles 279 (Figure 1 b). WPI gel samples with cefazolin do not show such a sharp decrease in activity 280 as the free antibiotic control samples, which confirms their ability to have a prolonged 281 antimicrobial effect. 282

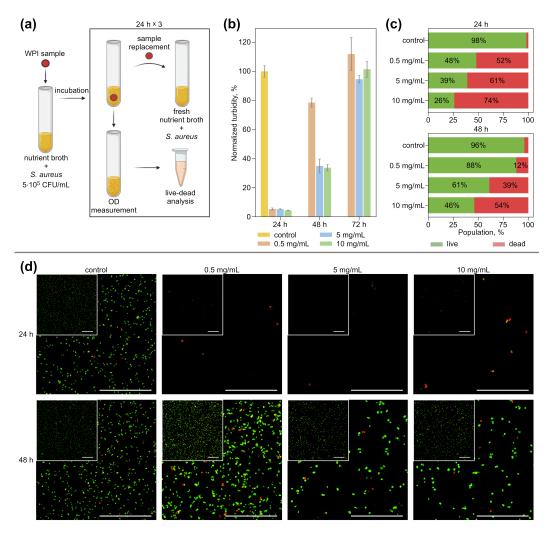


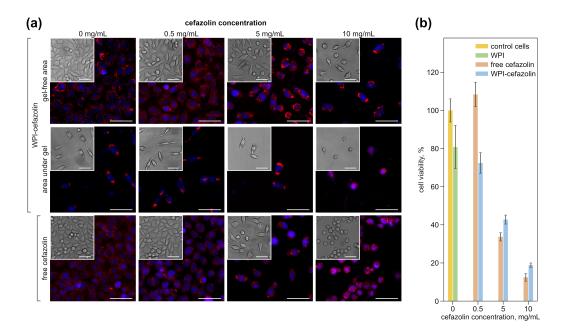
Figure 2. (a) The principal scheme of the experiment to study the antibacterial activity of WPI-based hydrogels with different cefazolin concentrations on dense nutrient media against *S. aureus*. **(b)** Average growth inhibition zone sizes and **(c)** visualization of *S. aureus* bacterial strains during study of an antimicrobial action of WPI-based hydrogels containing cefazolin, cefazolin standard disk (control), WPI-hydrogel (0 mg/mL of cefazolin) by agar diffusion method. Values are presented as means \pm standard deviations (n = 5).

In the next series of experiments, the ability of WPI-based hydrogels with cefazolin to inhibit the S. aureus growth in a liquid nutrient medium was studied (Figure 3). Hydrogel 284 samples with an antibiotic in three studied concentrations and control hydrogel samples were placed in a nutrient broth, inoculated with *S. aureus*, and incubated at 37°C (Figure 3 a). 286 Each 24 h, the turbidity of the nutrient broth was measured to determine the amount of 287 CFU. Then the aliquots of nutrient broth from these tubes were taken for visualization 288 via life-dead analysis. Samples from the tubes where bacterial growth was not detected 289 or was lower than control, were transferred to the tubes with fresh nutrient broth with 290 S. aureus and incubated again. The experiment lasted 72 h. After the first 24 h, all hydrogel 291 samples with cefazolin inhibited S. aureus growth (Figure 3 b). Hydrogels containing 5 and 292 10 mg/mL of cefazolin kept this effect up to 48 h of the experiment. 293

Live-dead analysis by flow cytometry showed (Figure 3 c) that the use of hydrogels at 294 any concentration provided more than 50% dead cells in the population in the first 24 h. 295 Dead cells are understood as objects with a predominance of the PI signal over Syto 9. 296 As noted in [66–68], the population of cells simultaneously positive for PI and Syto 9 (or 297 any other fluorescent dye characterizing cell viability) has been considered as injured or 298 sublethal. It means, the membrane of bacterial cells of this population is already disturbed 299 significantly at the time of measurements. A cell population with a strong predominance of 300 PI over Syto 9 demonstrates significant membrane damage, due to which a large amount of 301 PI was able to penetrate into the bacterial cell. 302

Figure 3 b shows the total number of bacteria present in the measured sample, while Figure 3 c shows the percentage composition of live and dead cells in the populations. As can be seen in Figure 3 b, c, hydrogels with 5 and 10 mg/mL cefazolin not only provide a significant reduction in the number of bacteria in the sample, but also damage more

Figure 3. (a) The principal experiment scheme to study the antibacterial activity of WPI-based hydrogels with cefazolin in liquid media. (b) Total number of bacteria in nutrient broth compared with control (c) live-dead analysis of experimental bacterial suspension by flow cytometry. (d) CLSM images of bacterial suspensions after incubation with cefazolin-containing hydrogel samples. Green color indicates live bacteria (Syto 9), red color indicated dead ones (PI). The scale bar in all images is 50 μm.


than 60% of the bacterial cells in this reduced amount. Also, the use of a hydrogel with an antibiotic at a concentration of 10 mg/mL provides damage to more than 50% of the bacterial population even after 48 h of sample use. This indicates a high antimicrobial efficacy of the developed hydrogels. 310

CLSM images of bacterial suspensions incubated with test samples with cefazolin and control suspension are shown (Figure 3 d) to visualize the antibacterial effect of hydrogels. The images confirm a substantial reduction in the number of bacteria in the suspension when incubated with hydrogels containing antibiotics (the volumes of the studied samples of bacterial suspensions were always chosen to be the same). The red staining of bacteria is due to severe membrane damage and gives an idea of the ratio of bacterial subpopulations.

Thus, WPI hydrogels containing cefazolin in concentrations 5 and 10 mg/mL can inhibit the growth of *S. aureus* in liquid nutrient media during 48 h. 318

3.3. Impact of hydrogels with cefazolin on eukaryotic cells

The free antibiotic, as well as antibiotic-containing WPI hydrogels, have different ³²⁰ effects on the morphology of a fibroblast cell line (L929) as was demonstrated with CLSM. ³²¹

Figure 4. (a) CLSM images of L929 incubated with free and immobilized cefazolin (0, 0.5, 5, 10 mg/mL) for 48 h. For immobilized cefazolin, gel-free areas and areas under gel are specified. Blue color indicates nuclei (DAPI), red indicates lipid components on membrane and inside the cell (Nile red). Images inserted to the left upper corner are brightfield images. Scale bars are 50 μ m. **(b)** Viability of the L929 cell line incubated with free and immobilized in WPI disks cefazolin (0, 0.5, 5, 10 mg/mL) for 48 h.

Figure 4 a shows both fluorescent and bright field images of cells after 48 h of incubation 322 with free and immobilized in hydrogels cefazolin. Cell nuclei are blue (DAPI), lipids located 323 on the membrane and inside the cell are red (Nile red). Cells cultured without free antibiotic 324 and with an empty WPI disk are flattened and have a well-defined rounded nucleus, which 325 corresponds to the normal cell state. With an increase in the concentration of cefazolin used, 326 both in free form and encapsulated in hydrogels, the number of cells decreases in the view 327 field compared to the control, since cefazolin inhibits the proliferation of epithelial-like 328 cells [69]. At the minimum concentration of the antibiotic, the cells retain their elongated 329 shape. There is a trend towards a decline in the intensity of Nile Red staining (a lipophilic 330 dye) of cell membranes with increasing concentration of antibiotic both in free form and 331 encapsulated in hydrogels. Staining of intracellular lipid structures (lipid drops) remains 332 intense. This effect may be associated with the influence of the cefazolin on the antioxidant 333 system of a cells, which leads to an increase in reactive oxygen species inside the cells, 334 which in turn causes lipid peroxidation in membranes [70]. However, when incubated with 335 free cefazolin at a concentration of 10 mg/mL, all cells in the view field become rounded, 336 detaching from the substrate, which indirectly indicates the negative effect of the antibiotic. 337 In the case of using a hydrogel with cefazolin in a similar concentration, some of the cells 338 remain spread and attached to the substrate. Thus, it can be concluded that the cytotoxicity 339 of the antibiotic is reduced when it is encapsulated into a hydrogel. Microscopy of cells 340 incubated with hydrogel disks revealed two regions differing in cell density (Figure 4 a). In 341 the area located under the disk, the cell density was significantly lower than in the area 342 free from the hydrogel. This effect is most likely associated with mechanical disruption 343 of the cell layer due to the free floating of the disk in a liquid medium (see Materials and 344 Methods). We consider this result as an example of successful localization of the active 345 substance action, which is so necessary for the local delivery of antibiotics in the treatment 346 of soft-tissue infection, osteomyelitis and suppression of post-surgical infections [71].

To study the effect of the antibiotic-containing hydrogels on the viability of eukaryotic ³⁴⁸ epithelial-like cells, a hydrogel and free cefazolin cytotoxicity assay was performed on ³⁴⁹ L929 cells using Alamar Blue, which measures the metabolic activity of cells (Figure 4 b). 350 Cultivation of L929 cells for 48 h in the presence of WPI hydrogel disks without and with 351 minimal antibiotic (WPI-hydrogel, 0.5 mg/mL WPI-Cefazolin) showed that the samples had 352 little cytotoxic effect on the cell line. Cytotoxicity of not more than 20% was previously noted 353 for both WPI hydrogels [51] and WPI micro- and nanoemulsions [72]. The low cytotoxicity 354 may be associated with a decrease in the pH of the medium during the degradation of 355 hydrogel disks in the culture medium. It is known that whey proteins have an acidic 356 pH [73,74]. Thus, WPI molecules can be released into culture medium during prolonged 357 incubation and lead to its acidification. Carla R. Kruse et al. showed that a slightly acidic 358 environment (pH 6.5) leads to a minor decrease in fibroblast viability (down to about 359 80%) [75]. The percentage of cell viability decreased with a rise in the amount of antibiotic 360 in the hydrogel disk. So for hydrogels with 5 mg/mL cefazolin, cell survival was 43%. For 361 hydrogels with 10 mg/mL cefazolin, the cytotoxic effect was more pronounced, the survival 362 was less than 20%. The use of free cefazolin at high concentrations (5 and 10 mg/mL) demonstrates a greater cytotoxic effect compared to the hydrogel encapsulated form. 364

An experiment was also carried out to determine whether the effects of hydrogels 365 without and with antibiotics are reversible or not. For this purpose, all disks were discarded, 366 and the culture medium was replaced with a new one without antibiotic after 48 h of L929 cells incubation with hydrogel samples and free antibiotic. Cell survival was measured 368 again with Alamar Blue after another 48 h. The fluorescence intensity of resorufin is directly proportional to the number of viable cells. Thus, the change in fluorescence intensity 370 measured after 48 and 96 hours of incubation is able to assess the trend of increasing or 371 decreasing the number of living cells in the sample after removal of the hydrogel disk 372 samples and free antibiotic (see Supplementary Materials, Figure S1). Thus, the number 373 of cells in the wells increases significantly, where L929 was incubated with hydrogels 374 without and with antibiotics at concentrations of 0.5 and 5 mg/mL. This trend indicates 375 the resumption of normal proliferation. According to our hypothesis, in the case of using 376 pure hydrogels and hydrogels with a low concentration of cefazolin, the main effect is the 377 acidification of the culture medium due to the partial release of WPI molecules. pH 6.5 378 is the limiting factor for cell multiplication [76]. A decrease in extracellular pH leads to a 379 decrease in intracellular pH [77]. But protein synthesis inside the cell requires a normal or 380 slightly alkaline pH [78]. Therefore, cell cycle progression was inhibited during incubation 381 with empty hydrogel or hydrogel containing low cefazolin concentration. However, when the source of acidification of the culture medium was removed, the cells resumed normal 383 division.

The data for the case of incubation with hydrogel containing cefazolin at a concen-385 tration of 5 mg/mL look interesting (see Supplementary Materials, Figure S1). According to the increase in fluorescence intensity at 96 h, it can be concluded that a part of the cell 387 population was preserved as viable, which returned to normal proliferation after removal of the disk. This cannot be said for cases of incubation with a hydrogel containing a 389 high concentration of cefazolin (10 mg/mL) or free antibiotic at concentrations of 5 and 390 10 mg/mL. The fluorescence intensity at 96 h for these samples drops significantly, indicat-391 ing even more cell death compared to 48 h. Thus, the effect of the hydrogel with cefazolin 392 10 mg/mL and free antibiotic 5 and 10 mg/mL is irreversible. In summary, despite the 393 slight cytotoxicity of the hydrogels themselves, the use of hydrogels with encapsulated 394 cefazolin at a concentration of 5 mg/mL can ensure the preservation of viable eukaryotic 395 cells, in contrast to the use of free cefazolin at this concentration. 396

4. Conclusions

Hydrogels based on whey protein isolate with antibacterial properties have been obtained. The technique for drug loading into this type of hydrogel is simple, without loss of the drug. WPI-based hydrogels have a prolonged release profile of the loaded substance; a significant amount of the released drug was detected up to 48 h of the experiment. Cefazolin retains antimicrobial activity during the hydrogel preparation procedure. The

422

423

435

amount of released antibiotic is high enough to suppress bacterial growth for 48 h for the hydrogel samples containing 5 and 10 mg/mL of cefazolin. The antibacterial effect is manifested both in the liquid medium and on the surface of nutrient agar. The use of WPI-based hydrogels as carriers of antibiotics makes it possible to reduce their overall cytotoxicity against normal healthy cells. In this regard, it seems promising to use WPI hydrogels with prolonged release of the drug as a material for coating implants and manufacturing other medical devices with antibacterial properties.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/41010.3390/pharmaceutics1010000/s1, Figure S1: Viability of L929 cell line incubated with hydrogel411disks empty and containing cefazolin at concentration 0.5 mg/mL, 5 mg/mL, 10 mg/mL and free412antibiotic at the same concentrations for 48 and 96 h.413

Author Contributions: Conceptualization, V.O.P., O.I.G. and O.A.M.; methodology, V.O.P, O.I.G.,5.V.R., O.A.S. and O.A.M.; validation, V.O.P. and O.I.G.; formal analysis, V.O.P., E.S.P. and O.I.G.;investigation, V.O.P., E.S.P., O.I.G. and O.A.M.; resources, S.V.R.; data curation, V.O.P., E.S.P., O.I.G.and O.A.M.; writing—original draft preparation, V.O.P., E.S.P., O.I.G. and O.A.M.; writing—reviewand editing, S.V.R, T.E.L.D. and O.A.S.; visualization, V.O.P., E.S.P. and O.I.G.; supervision, O.A.M.;project administration, V.O.P. and O.A.M.; funding acquisition, O.A.M. All authors have read andagreed to the published version of the manuscript.

Funding: This research was funded by the Russian Science Foundation grant number 21-75-10042.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

 Data Availability Statement: Data underlying the results presented in this paper are not publicly
 424

 available at this time but may be obtained from the authors upon reasonable request.
 424

Acknowledgments: The authors thank Viktor Galushka (Saratov State University, Russia) for scan-
ning electron microscopy measurements that were performed using the equipment of the "Educational
and Scientific Institute of Nanostructures and Biosystems" of the Saratov State University.426
427

The authors would like to thank the department of microbiology, virology and immunology (Saratov State Medical University, Russia) for providing space to conduct microbiological experiments. 430

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.432
433

References

- Berríos-Torres, S.I.; Umscheid, C.A.; Bratzler, D.W.; Leas, B.; Stone, E.C.; Kelz, R.R.; Reinke, C.E.; Morgan, S.; Solomkin, J.S.; Mazuski, J.E.; et al. Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017.
 JAMA Surgery 2017, 152, 784. doi:10.1001/jamasurg.2017.0904.
- Kapadia, B.H.; McElroy, M.J.; Issa, K.; Johnson, A.J.; Bozic, K.J.; Mont, M.A. The Economic Impact of Periprosthetic Infections Following Total Knee Arthroplasty at a Specialized Tertiary-Care Center. *The Journal of Arthroplasty* 2014, 29, 929–932. doi:10.1016/j.arth.2013.09.017.
- de Lissovoy, G.; Fraeman, K.; Hutchins, V.; Murphy, D.; Song, D.; Vaughn, B.B. Surgical site infection: Incidence and impact on hospital utilization and treatment costs. *American Journal of Infection Control* 2009, 37, 387–397. doi:10.1016/j.ajic.2008.12.010.
- Patel, H.; Khoury, H.; Girgenti, D.; Welner, S.; Yu, H. Burden of Surgical Site Infections Associated with Select Spine Operations and Involvement of Staphylococcus aureus. *Surgical Infections* 2017, *18*, 461–473. doi:10.1089/sur.2016.186.
- Bonnevialle, P.; Bonnomet, F.; Philippe, R.; Loubignac, F.; Rubens-Duval, B.; Talbi, A.; Le Gall, C.; Adam, P. Early surgical site infection in adult appendicular skeleton trauma surgery: A multicenter prospective series. *Orthopaedics & Traumatology: Surgery* & Research 2012, 98, 684–689. doi:10.1016/j.otsr.2012.08.002.
- Allison, M.G.; Heil, E.L.; Hayes, B.D. Appropriate Antibiotic Therapy. *Emergency Medicine Clinics of North America* 2017, 35, 25–42. doi:10.1016/j.emc.2016.08.003.
- Rao, N.; Ziran, B.H.; Lipsky, B.A. Treating Osteomyelitis: Antibiotics and Surgery. *Plastic and Reconstructive Surgery* 2011, 451 127, 1775–187S. doi:10.1097/PRS.0b013e3182001fof.
- Hussein, K.; Bitterman, R.; Shofty, B.; Paul, M.; Neuberger, A. Management of post-neurosurgical meningitis: narrative review. *Clinical Microbiology and Infection* 2017, 23, 621–628. doi:10.1016/j.cmi.2017.05.013.

- Chen, A.F.; Parvizi, J. Antibiotic-Loaded Bone Cement and Periprosthetic Joint Infection. *Journal of Long-Term Effects of Medical Implants* 2014, 24, 89–97. doi:10.1615/JLongTermEffMedImplants.2013010238.
- Simon, D.; Kumar, K.; Sivadasan, S.; Varma, H.; Balan, A. Hydroxyapatite carriers as drug eluting agents—An In Vitro analysis. *Indian Journal of Dental Research* 2020, *31*, 481. doi:10.4103/ijdr.IJDR_357_19.
- van Vugt, T.A.G.; Arts, J.J.; Geurts, J.A.P. Antibiotic-Loaded Polymethylmethacrylate Beads and Spacers in Treatment of Orthopedic Infections and the Role of Biofilm Formation. *Frontiers in Microbiology* 2019, 10. doi:10.3389/fmicb.2019.01626.
- Mordovina, E.A.; Plastun, V.O.; Abdurashitov, A.S.; Proshin, P.I.; Raikova, S.V.; Bratashov, D.N.; Inozemtseva, O.A.; Goryacheva,
 I.Y.; Sukhorukov, G.B.; Sindeeva, O.A. "Smart" Polylactic Acid Films with Ceftriaxone Loaded Microchamber Arrays for
 Personalized Antibiotic Therapy. *Pharmaceutics* 2021, 14, 42. doi:10.3390/pharmaceutics14010042.
- Hettwer, W.H.; Horstmann, P.F.; Hovgaard, T.B.; Grum-Scwensen, T.A.; Petersen, M.M. Low Infection Rate after Tumor Hip Arthroplasty for Metastatic Bone Disease in a Cohort Treated with Extended Antibiotic Prophylaxis. *Advances in Orthopedics* 2015, 2015, 1–6. doi:10.1155/2015/428986.
- Azab, M.; Allen, M.; Daniels, J. Evaluation of a silver-impregnated coating to inhibit colonization of orthopaedic implants by biofilm forming methicillin-resistant Staphylococcus pseudintermedius. *Veterinary and Comparative Orthopaedics and Traumatology* 2016, 29, 347–350. doi:10.3415/VCOT-15-08-0134.
- Wyatt, M.C.; Foxall-Smith, M.; Roberton, A.; Beswick, A.; Kieser, D.C.; Whitehouse, M.R. The use of silver coating in hip megaprostheses: a systematic review. *HIP International* 2019, 29, 7–20. doi:10.1177/1120700018811070.
- Romanò, C.L.; Scarponi, S.; Gallazzi, E.; Romanò, D.; Drago, L. Antibacterial coating of implants in orthopaedics and trauma: a classification proposal in an evolving panorama. *Journal of Orthopaedic Surgery and Research* 2015, 10, 157. doi:10.1186/s13018-015-0294-5.
- Ostojić, S.; Pavlović, M.; Živić, M.; Filipović, Z.; Gorjanović, S.; Hranisavljević, S.; Dojčinović, M. Processing of whey from dairy industry waste. *Environmental Chemistry Letters* 2005, *3*, 29–32. doi:10.1007/s10311-005-0108-9.
- Douglas, T.E.L.; Keppler, J.K.; Vandrovcová, M.; Plencner, M.; Beranová, J.; Feuereisen, M.; Parakhonskiy, B.V.; Svenskaya, Y.;
 Atkin, V.; Ivanova, A.; et al. Enhancement of Biomimetic Enzymatic Mineralization of Gellan Gum Polysaccharide Hydrogels by
 Plant-Derived Gallotannins. International Journal of Molecular Sciences 2020, 21, 2315. doi:10.3390/ijms21072315.
- Pitarresi, G.; Palumbo, F.S.; Calascibetta, F.; Fiorica, C.; Di Stefano, M.; Giammona, G. Medicated hydrogels of hyaluronic acid derivatives for use in orthopedic field. *International Journal of Pharmaceutics* 2013, 449, 84–94. doi:10.1016/j.ijpharm.2013.03.059.
- Overstreet, D.; McLaren, A.; Calara, F.; Vernon, B.; McLemore, R. Local Gentamicin Delivery From Resorbable Viscous Hydrogels Is Therapeutically Effective. *Clinical Orthopaedics & Related Research* 2015, 473, 337–347. doi:10.1007/s11999-014-3935-9.
- Drago, L.; Boot, W.; Dimas, K.; Malizos, K.; Hänsch, G.M.; Stuyck, J.; Gawlitta, D.; Romanò, C.L. Does Implant Coating With Antibacterial-Loaded Hydrogel Reduce Bacterial Colonization and Biofilm Formation in Vitro? *Clinical Orthopaedics & Related Research* 2014, 472, 3311–3323. doi:10.1007/s11999-014-3558-1.
- Gaetano, G.; Giuseppe, P.; Salvatore, P.F.; Susanna, M.; Sara, S.; Luca, R.C. Hyaluronic-Based Antibacterial Hydrogel Coating for Implantable Biomaterials in Orthopedics and Trauma: From Basic Research to Clinical Applications. In *Hydrogels*; InTech, 2018.
 doi:10.5772/intechopen.73203.
- Romanò, C.L.; Malizos, K.; Capuano, N.; Mezzoprete, R.; D'Arienzo, M.; Der, C.V.; Scarponi, S.; Drago, L. Does an Antibiotic Loaded Hydrogel Coating Reduce Early Post-Surgical Infection After Joint Arthroplasty? *Journal of Bone and Joint Infection* 2016, 1, 34–41. doi:10.7150/jbji.15986.
- 24. Aicale, R.; Oliva, F.; Maffulli, N.; Maffulli, N. Defensive Antibacterial Coating (DAC®) for prevention of infection in ACL reconstruction: a feasibility study. *Muscle Ligaments and Tendons Journal* **2020**, *10*, 151. doi:10.32098/mltj.01.2020.22.
- Zhu, D.; Damodaran, S.; Lucey, J.A. Physicochemical and Emulsifying Properties of Whey Protein Isolate (WPI)–Dextran Conjugates Produced in Aqueous Solution. *Journal of Agricultural and Food Chemistry* 2010, *58*, 2988–2994. doi:10.1021/jf903643p.
- de Castro, R.J.S.; Domingues, M.A.F.; Ohara, A.; Okuro, P.K.; dos Santos, J.G.; Brexó, R.P.; Sato, H.H. Whey protein as a key component in food systems: Physicochemical properties, production technologies and applications. *Food Structure* 2017, 14, 17–29. doi:10.1016/j.foostr.2017.05.004.
- Llamas-Unzueta, R.; Suárez, M.; Fernández, A.; Díaz, R.; Montes-Morán, M.A.; Menéndez, J.A. Whey-Derived Porous Carbon Scaffolds for Bone Tissue Engineering. *Biomedicines* 2021, 9, 1091. doi:10.3390/biomedicines9091091.
- 28. Gunasekaran, S.; Ko, S.; Xiao, L. Use of whey proteins for encapsulation and controlled delivery applications. *Journal of Food Engineering* 2007, *83*, 31–40. doi:10.1016/j.jfoodeng.2006.11.001.
- Douglas, T.E.; Vandrovcová, M.; Kročilová, N.; Keppler, J.K.; Zárubová, J.; Skirtach, A.G.; Bačáková, L. Application of whey protein isolate in bone regeneration: Effects on growth and osteogenic differentiation of bone-forming cells. *Journal of Dairy Science* 2018, 101, 28–36. doi:10.3168/jds.2017-13119.
- Prazeres, A.R.; Carvalho, F.; Rivas, J. Cheese whey management: A review. Journal of Environmental Management 2012, 110, 48–68. doi:10.1016/j.jenvman.2012.05.018.
- Dziadek, M.; Douglas, T.E.; Dziadek, K.; Zagrajczuk, B.; Serafim, A.; Stancu, I.C.; Cholewa-Kowalska, K. Novel whey protein isolate-based highly porous scaffolds modified with therapeutic ion-releasing bioactive glasses. *Materials Letters* 2020, 261, 127115.
 doi:10.1016/j.matlet.2019.127115.

- Serfert, Y.; Lamprecht, C.; Tan, C.P.; Keppler, J.; Appel, E.; Rossier-Miranda, F.; Schroen, K.; Boom, R.; Gorb, S.; Selhuber-Unkel, C.;
 et al. Characterisation and use of β-lactoglobulin fibrils for microencapsulation of lipophilic ingredients and oxidative stability
 thereof. *Journal of Food Engineering* 2014, 143, 53–61. doi:10.1016/j.jfoodeng.2014.06.026.
- Keppler, J.K.; Martin, D.; Garamus, V.M.; Berton-Carabin, C.; Nipoti, E.; Coenye, T.; Schwarz, K. Functionality of whey proteins covalently modified by allyl isothiocyanate. Part 1 physicochemical and antibacterial properties of native and modified whey proteins at pH 2 to 7. *Food Hydrocolloids* 2017, *65*, 130–143. doi:10.1016/j.foodhyd.2016.11.016.
- 34. Rabe, R.; Hempel, U.; Martocq, L.; Keppler, J.K.; Aveyard, J.; Douglas, T.E.L. Dairy-Inspired Coatings for Bone Implants from Whey Protein Isolate-Derived Self-Assembled Fibrils. *International Journal of Molecular Sciences* **2020**, *21*, 5544. doi:10.3390/ijms21155544.
- Ozel, B.; Cikrikci, S.; Aydin, O.; Oztop, M.H. Polysaccharide blended whey protein isolate-(WPI) hydrogels: A physicochemical and controlled release study. *Food Hydrocolloids* 2017, 71, 35–46. doi:10.1016/j.foodhyd.2017.04.031.
- Abdel-Salam, B.K.A.H. Modulatory Effect of Whey Proteins in Some Cytokines Involved in Wound Healing in Male Diabetic Albino Rats. Inflammation 2014, 37, 1616–1622. doi:10.1007/s10753-014-9888-z.
- Wijayanti, H.B.; Bansal, N.; Deeth, H.C. Stability of Whey Proteins during Thermal Processing: A Review. Comprehensive Reviews in Food Science and Food Safety 2014, 13, 1235–1251. doi:10.1111/1541-4337.12105.
- Carson, M.; Keppler, J.K.; Brackman, G.; Dawood, D.; Vandrovcova, M.; Fawzy El-Sayed, K.; Coenye, T.; Schwarz, K.; Clarke,
 S.A.; Skirtach, A.G.; et al. Whey Protein Complexes with Green Tea Polyphenols: Antimicrobial, Osteoblast-Stimulatory, and
 Antioxidant Activities. *Cells Tissues Organs* 2018, 206, 106–118. doi:10.1159/000494732.
- Gomide, R.A.C.; Oliveira, A.C.S.; Luvizaro, L.B.; Yoshida, M.I.; Oliveira, C.R.; Borges, S.V. Biopolymeric films based on whey protein isolate/lignin microparticles for waste recovery. *Journal of Food Process Engineering* 2021, 44. doi:10.1111/jfpe.13596.
- Azevedo, V.M.; Dias, M.V.; Borges, S.V.; Costa, A.L.R.; Silva, E.K.; Medeiros, É.A.A.; Soares, N.d.F.F. Development of whey protein isolate bio-nanocomposites: Effect of montmorillonite and citric acid on structural, thermal, morphological and mechanical properties. *Food Hydrocolloids* 2015, 48, 179–188. doi:10.1016/j.foodhyd.2015.02.014.
- Dziadek, M.; Charuza, K.; Kudlackova, R.; Aveyard, J.; D'Sa, R.; Serafim, A.; Stancu, I.C.; Iovu, H.; Kerns, J.G.; Allinson, S.; et al. Modification of heat-induced whey protein isolate hydrogel with highly bioactive glass particles results in promising biomaterial for bone tissue engineering. *Materials & Design* 2021, 205, 109749. doi:10.1016/j.matdes.2021.109749.
- Killion, J.A.; Kehoe, S.; Geever, L.M.; Devine, D.M.; Sheehan, E.; Boyd, D.; Higginbotham, C.L. Hydrogel/bioactive glass composites for bone regeneration applications: Synthesis and characterisation. *Materials Science and Engineering: C* 2013, 538 33, 4203–4212. doi:10.1016/j.msec.2013.06.013.
- Li, Y.; Jiang, Y.; Liu, F.; Ren, F.; Zhao, G.; Leng, X. Fabrication and characterization of TiO2/whey protein isolate nanocomposite film. *Food Hydrocolloids* 2011, 25, 1098–1104. doi:10.1016/j.foodhyd.2010.10.006.
- 44. Giano, M.C.; Ibrahim, Z.; Medina, S.H.; Sarhane, K.A.; Christensen, J.M.; Yamada, Y.; Brandacher, G.; Schneider, J.P. Injectable bioadhesive hydrogels with innate antibacterial properties. *Nature Communications* **2014**, *5*, 4095. doi:10.1038/ncomms5095.
- Lei, H.; Fan, D. Conductive, adaptive, multifunctional hydrogel combined with electrical stimulation for deep wound repair. *Chemical Engineering Journal* 2021, 421, 129578. doi:10.1016/j.cej.2021.129578.
- 46. Overstreet, D.J.; Badha, V.S.; Heffernan, J.M.; Childers, E.P.; Moore, R.C.; Vernon, B.L.; McLaren, A.C. Temperature-responsive PNDJ hydrogels provide high and sustained antimicrobial concentrations in surgical sites. *Drug Delivery and Translational Research* 2019, 9, 802–815. doi:10.1007/s13346-019-00630-5.
- 47. Rouabhia, M.; Gilbert, V.; Wang, H.; Subirade, M. In vivo evaluation of whey protein-based biofilms as scaffolds for cutaneous cell cultures and biomedical applications. *Biomedical Materials* 2007, 2, S38–S44. doi:10.1088/1748-6041/2/1/S06.
- Waitz, J.A. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; National Committee for Clinical Laboratory Standards, 1990.
- 49. LIVE/DEAD BacLight Bacterial Viability Kit Protocol. https://www.thermofisher.com/ru/ru/home/references/protocols/celland-tissue-analysis/protocols/live-dead-baclight-bacterial-viability-protocol.html.
- 50. Back, S.A.; Khan, R.; Gan, X.; Rosenberg, P.A.; Volpe, J.J. A new Alamar Blue viability assay to rapidly quantify oligodendrocyte death. *Journal of Neuroscience Methods* **1999**, *91*, 47–54. doi:10.1016/S0165-0270(99)00062-X.
- Mayorova, O.A.; Jolly, B.C.N.; Verkhovskii, R.A.; Plastun, V.O.; Sindeeva, O.A.; Douglas, T.E.L. pH-Sensitive Dairy-Derived Hydrogels with a Prolonged Drug Release Profile for Cancer Treatment. *Materials* 2021, 14, 749. doi:10.3390/ma14040749.
- 52. Dziadek, M.; Kudlackova, R.; Zima, A.; Slosarczyk, A.; Ziabka, M.; Jelen, P.; Shkarina, S.; Cecilia, A.; Zuber, M.; Baumbach, T.; et al. Novel multicomponent organic–inorganic WPI/gelatin/CaP hydrogel composites for bone tissue engineering. *Journal of Biomedical Materials Research Part A* 2019, 107, 2479–2491. doi:10.1002/jbm.a.36754.
- Platania, V.; Douglas, T.E.; Zubko, M.K.; Ward, D.; Pietryga, K.; Chatzinikolaidou, M. Phloroglucinol-enhanced whey protein isolate hydrogels with antimicrobial activity for tissue engineering. *Materials Science and Engineering: C* 2021, 129, 112412.
 doi:10.1016/j.msec.2021.112412.
- Rowlands, A.S.; George, P.A.; Cooper-White, J.J. Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. *American Journal of Physiology-Cell Physiology* 2008, 295, C1037–C1044. doi:10.1152/ajpcell.67.2008.
- Hajebi, S.; Mohammadi Nasr, S.; Rabiee, N.; Bagherzadeh, M.; Ahmadi, S.; Rabiee, M.; Tahriri, M.; Tayebi, L.; Hamblin, M.R.
 Bioresorbable composite polymeric materials for tissue engineering applications. *International Journal of Polymeric Materials and Polymeric Biomaterials* 2021, 70, 926–940. doi:10.1080/00914037.2020.1765365.

- Radisavljevic, A.; Stojanovic, D.B.; Perisic, S.; Djokic, V.; Radojevic, V.; Rajilic-Stojanovic, M.; Uskokovic, P.S. Cefazolin-loaded polycaprolactone fibers produced via different electrospinning methods: Characterization, drug release and antibacterial effect. *European Journal of Pharmaceutical Sciences* 2018, 124, 26–36. doi:10.1016/j.ejps.2018.08.023.
- 57. Traub, W.H.; Leonhard, B. Heat stability of the antimicrobial activity of sixty-two antibacterial agents. *Journal of Antimicrobial Chemotherapy* 1995, 35, 149–154. doi:10.1093/jac/35.1.149.
- Thamthaweechok, N.; Tiengrim, S.; Thamlikitkul, V. Heat Stability of Antibiotics Commonly Used in Food Animals and Agriculture in Thailand. *Journal of Medical Association of Thailand* 2018, 101, 863–867.
- Timaeva, O.; Pashkin, I.; Mulakov, S.; Kuzmicheva, G.; Konarev, P.; Terekhova, R.; Sadovskaya, N.; Czakkel, O.; Prevost, S.
 Synthesis and physico-chemical properties of poly(N-vinyl pyrrolidone)-based hydrogels with titania nanoparticles. *Journal of Materials Science* 2020, 55, 3005–3021. doi:10.1007/s10853-019-04230-z.
- 60. Anastasova, E.I.; Ivanovski, V.; Fakhardo, A.F.; Lepeshkin, A.I.; Omar, S.; Drozdov, A.S.; Vinogradov, V.V. A pure magnetite hydrogel: synthesis, properties and possible applications. *Soft Matter* **2017**, *13*, 8651–8660. doi:10.1039/C7SM01702B.
- Barros, W. Solvent self-diffusion dependence on the swelling degree of a hydrogel. *Physical Review E* 2019, 99, 052501.
 total doi:10.1103/PhysRevE.99.052501.
- Hellebois, T.; Gaiani, C.; Cambier, S.; Noo, A.; Soukoulis, C. Exploration of the co-structuring and stabilising role of flaxseed gum in whey protein isolate based cryo-hydrogels. *Carbohydrate Polymers* 2022, 289, 119424. doi:10.1016/j.carbpol.2022.119424.
- Mohammadian, M.; Salami, M.; Emam-Djomeh, Z. Characterization of hydrogels formed by non-toxic chemical crosslinking of mixed nanofibrillated/heat-denatured whey proteins. *Journal of the Iranian Chemical Society* 2019, 16, 2731–2741.
 doi:10.1007/s13738-019-01733-z.
- de Oliveira, A.C.S.; Ugucioni, J.C.; da Rocha, R.A.; Borges, S.V. Development of whey protein isolate/polyaniline smart packaging: Morphological, structural, thermal, and electrical properties. *Journal of Applied Polymer Science* 2019, 136, 47316.
 doi:10.1002/app.47316.
- Gupta, D.; Kocot, M.; Tryba, A.M.; Serafim, A.; Stancu, I.C.; Jaegermann, Z.; Pamuła, E.; Reilly, G.C.; Douglas, T.E. Novel naturally derived whey protein isolate and aragonite biocomposite hydrogels have potential for bone regeneration. *Materials & Design* 2020, 188, 108408. doi:10.1016/j.matdes.2019.108408.
- Jo, A.; Ding, T.; Ahn, J. Synergistic antimicrobial activity of bacteriophages and antibiotics against Staphylococcus aureus. *Food* Science and Biotechnology 2016, 25, 935–940. doi:10.1007/s10068-016-0153-0.
- Li, J.; Ahn, J.; Liu, D.; Chen, S.; Ye, X.; Ding, T. Evaluation of Ultrasound-Induced Damage to Escherichia coli and Staphylococcus aureus by Flow Cytometry and Transmission Electron Microscopy. *Applied and Environmental Microbiology* 2016, *82*, 1828–1837.
 doi:10.1128/AEM.03080-15.
- Sun, Z.; Wang, X.; Zhang, X.; Wu, H.; Zou, Y.; Li, P.; Sun, C.; Xu, W.; Liu, F.; Wang, D. Class III bacteriocin Helveticin-M causes sublethal damage on target cells through impairment of cell wall and membrane. *Journal of Industrial Microbiology and Biotechnology* 2018, 45, 213–227. doi:10.1007/s10295-018-2008-6.
- 69. Duewelhenke, N.; Krut, O.; Eysel, P. Influence on Mitochondria and Cytotoxicity of Different Antibiotics Administered in High Concentrations on Primary Human Osteoblasts and Cell Lines. *Antimicrobial Agents and Chemotherapy* 2007, 51, 54–63.
 604 605 doi:10.1128/AAC00729-05.
- Savcı, A.; Koçpınar, E.F.; Budak, H.; Çiftci, M.; Şişecioğlu, M. The Effects of Amoxicillin, Cefazolin, and Gentamicin Antibiotics on the Antioxidant System in Mouse Heart Tissues. Protein & Peptide Letters 2020, 27, 614–622. doi:10.2174/0929866526666191112125949.
- Park, E.S.; Maniar, M.; Shah, J.C. Biodegradable polyanhydride devices of cefazolin sodium, bupivacaine, and taxol for local drug delivery: preparation, and kinetics and mechanism of in vitro release. *Journal of Controlled Release* 1998, 52, 179–189. doi:10.1016/S0168-3659(97)00223-X.
- Yu, H.; Huang, Q. Investigation of the cytotoxicity of food-grade nanoemulsions in Caco-2 cell monolayers and HepG2 cells.
 Food Chemistry 2013, 141, 29–33. doi:10.1016/j.foodchem.2013.03.009.
- Carvalho, F.; Prazeres, A.R.; Rivas, J. Cheese whey wastewater: Characterization and treatment. *Science of The Total Environment* 2013, 445-446, 385–396. doi:10.1016/j.scitotenv.2012.12.038.
- Yadav, J.S.S.; Yan, S.; Pilli, S.; Kumar, L.; Tyagi, R.; Surampalli, R. Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. *Biotechnology Advances* 2015, 33, 756–774.
 doi:10.1016/j.biotechadv.2015.07.002.
- 75. Kruse, C.R.; Singh, M.; Targosinski, S.; Sinha, I.; Sørensen, J.A.; Eriksson, E.; Nuutila, K. The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: In vitro and in vivo study. *Wound Repair and Regeneration* 2017, 25, 260–269. doi:10.1111/wrr.12526.
- 76. Akatov, V.; Lezhnev, E.; Vexler, A.; Kublik, L. Low pH value of pericellular medium as a factor limiting cell proliferation in dense cultures. *Experimental Cell Research* 1985, 160, 412–418. doi:10.1016/0014-4827(85)90188-0.
- Fellenz, M.P.; Gerweck, L.E. Influence of Extracellular pH on Intracellular pH and Cell Energy Status: Relationship to Hyperthermic Sensitivity. *Radiation Research* 1988, 116, 305. doi:10.2307/3577466.
- Flinck, M.; Kramer, S.H.; Pedersen, S.F. Roles of pH in control of cell proliferation. Acta Physiologica 2018, 223, e13068. 626 doi:10.1111/apha.13068.