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Abstract

We propose smooth monotone concave probabilistic regression trees for the estimation of efficiency and

productivity. In particular we modify these techniques to allow for the use of panel data which are often

encountered in practice. Probabilistic regression trees provide smooth approximations and at the same time

they exploit the versatility of standard regression trees in generating efficiently partitions of the space of the

regressors to approximate the unknown frontier. We showcase the new techniques in a large sample of Chilean

manufacturing firms.
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1 Introduction

The approximation of production functions by monotone concave yet flexible functional forms is a problem that has

received considerable attention in the literature. Despite the advances that have been made, we would prefer to use

Regression Trees (RTs) that have been proven to be reliable and fast approximations to arbitrary functional forms.

Unfortunately, RTs are neither differentiable nor non-decreasing by construction so they do not satisfy concavity

properties either. The problem can be solved if we (i) rely on probabilistic trees as we do in this paper, and (ii)

adopt flexible functional forms that are monotone concave instead of the step functions used in RTs or random

forests and other ensembles. To the best of our knowledge, using monotone concave instead of step functions in

RTs is novel. Additionally, there are other problems that might be encountered in practice. First, RTs are not

straightforward to apply with panel data. Second, the incorporation of technical inefficiency in RTs does not appear

to be straightforward.We show that in probabilistic RTs this can be overcome. Previous attempts include Esteve et

al. (2020) whose method shares some similarities with the Free Disposal Hull technique but, in contrast it overcomes

the problem of overfitting by using cross-validation. Another approach, without inefficiency however, is Blanquero

et al. (2020).

Emrouznejad and Anouze (2010) use regression trees to understand the factors determining efficiency by applying

RTs in a second stage analysis, see also Rebai et al (2019). Esteve et al. (2020) construct a RT approach that is

closest to the spirit of constructing an approximation of the production set. This RT is non-smooth, a fact that is not

necessarily a constraint but it may, sometimes be more instructive to have smooth approximations. As Esteva et al.

(2020) correctly argue, their approach “ could be interpreted as a ‘pruned’ FDH [Free Disposal Hull] or a FDH-type

out-of-sample predictor, overcoming its problem of data overfitting if the aim is to estimate the true theoretical

frontier” (Esteva et al., 2020, p. 16). In this paper, we are interested in the good approximation properties of RTs

but we would like to impose monotonicity and concavity which is critical in many applications (e.g. Kuosmanen,

2008; Kuosmanen and Johnson, 2010; Lee et al., 2013, 2010, 2019). Incorporating productivity into the model is non-

trivial in RTs; in fact, incorporating inefficiency is not straightforward either given the state of the art. Our approach

to the design of monotone concave approximations using RTs is to use probabilistic node splitting (which guarantees

smoothness of the expected value of the response variable) along with Cobb-Douglas production functions at the

nodes instead of fitting constants as in traditional RT analysis. Fitting a constant may be a poor approximation

and a Cobb-Douglas is much better as, locally, it can approximate to first order any function of interest. Globally,

by fitting different Cobb-Douglas production functions at different nodes, does not compromise concavity and

monotonicity and yields a flexible approximation (see, for example, Geweke and Petrella, 2014; Geweke and Kean,

2007, and Norets, 2010). Such approximations are of wider interest in logistics management and engineering (Chen

et al., 2021; Loyer et al., 2016), education (Masci et al., 2018), etc. Existing methods closely related to this paper

can be described as follows. Yagi, Chen, Johnson, and Kuosmanen (2020) use the StoNED approach but modify

it using a kernel function in the objective function, in the spirit of the local linear kernel estimator previously
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examined in the frontier context by Kumbhakar, Park, Simar, and Tsionas (2007). Their approach builds on earlier

work (e.g., Kuosmanen and Kortelainen, 2012) and it is called Shape Constrained Kernel-weighted Least Squares

(SCKLS). Valero-Carreras, Aparicio, and Guerrero (2021) propose support vector frontiers based on the concept

of support vector regression. Interestingly, they also show that standard FDH and DEA could be reinterpreted as

support vector regression techniques. Probabilistic RTs, introduced in this paper, are a different non-parametric

technique which approaches the problem of frontier estimation from a different angle. Relative to Yagi et al. (2020)

for example, we do not need to introduce the monotonicity and concavity restrictions explicitly. Relative to Valero-

Carreras, Aparicio, and Guerrero (2021) the incorporation of restrictions is also easier as Valero-Carreras, Aparicio,

and Guerrero (2021) introduced a specific transformation function of the input space to allow determining monotonic

non-decreasing step functions as estimator of the production functions; in a second stage, by convexification, they

were able to yield concave predictors, which are directly linked to convex production possibility sets and Data

Envelopment Analysis (DEA). This resulted in the introduction of the so-called Convexificated Support Vector

Frontiers (CSVF). The primary virtue of nonparametric methods is that they provide a principled way to estimate

marginal effects (partial derivatives or elasticities); see, for example, Coglianese et al. (2017), Fisher et al. (2017),

Schulte (2015), and Chernozhukov et al. (2018), who propose a systematic way to present heterogeneous effects (as,

more often than not, only means are reported). Closely related techniques to RTs from a Bayesian approach include

the CART and BART techniques, which are implementations of the RT idea (Chipman et al., 1998, 2010; Denison

et al., 2008). In particular, Bayesian variants of these methods like Bayesian CART and BART are quite prominent

in machine learning applications. “BART is able to detect interactions and nonlinearities in the response surface,

which (among other advantages) allows it to more readily identify heterogeneous treatment effects” (Hill, 2011, p.

218). Additionally, “BART also has advantages compared to alternative nonparametric or semiparametric methods

that might be used to flexibly model the assignment mechanism and the response surface. BART can handle a large

number of both continuous and discrete predictors. Moreover BART overcomes a standard barrier to widespread

implementation of new methodology because it requires far less researcher involvement, technical sophistication,

and investment of time. The method is accessible to applied researchers who may not have a strong mathematical

background and will not require days or weeks of programming to implement (particularly important given that it

is difficult to know when a more sophisticated method will actually make a difference in practice)” (Hill, 2011, p.

237). A related technique is Multiple Adaptive Regression Splines (MARS; Friedman, 1991, Friedman et al., 2000)

which also uses recursive partitioning and produces a continuous regression function estimate although its results

are hard to interpret. Usually, simple RTs, that may provide poor fits are combined through a procedure known as

boosting (Freund & Schapire, 1997; Friedman, 2001, 2002; and for a survey, see Bühlmann & Hothorn, 2007). An

additional advantage is that RTs allow the modeling of complex nonlinearities, they are insensitive to the inclusion

of irrelevant variables, and they are robust to outliers.

RTs (as well as CART and BART) provide step function approximations and, therefore, they are not smooth, a
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restriction that may be important in practice (e.g., Yagi et al., 2020; Valero-Carreras et al., 2021). In this paper,

we propose Probabilistic RTs (abbreviated as PRTs) that avoid the problem without compromising the flexibility

properties of RTs per se, and imposing global monotonicity and curvature. Unlike other approximations, PRTs are

more like mixtures of regressions (which are semi-parametric approximations) but differ in the selection of adaptive

partitioning of the space of regressors. Relative to Yagi et al. (2020) we notice that inefficiency is absent from

their model, although other approaches like StoNED can be used to obtain efficiency. Moreover, both Yagi et

al. (2020) and Valero-Carreras et al. (2021) do not focus on the problem of panel data, a problem that is often

ignored even in the RTs literature. Additionally, relative to standard RTs, our formulation, (i) allows for panel

data, (ii) it introduces technical inefficiency, and (iii) allows for smoothness as we use a probabilistic RT. Although

it is possible to modify CART and BART for panel data (e.g., Fu and Simonoff, 2015; Segal, 1992; Zhang, 1998;

De’Ath, 2002; Hajjem et al., 2011; Sela and Simonoff, 2012), it is not obvious how these approaches can yield a

smooth approximation and how they can allow for the presence of technical (in)efficiency. Therefore, our main

contributions are smooth RTs for panel data (so, we do not follows preciously suggested techniques) and RTs with

technical (in)efficiency. Both features essential in Production Economics (Gunasekaran and Kobu, 2007).

2 Regression trees

Regression Trees (RTs) are part of non-parametric regression methods (Murthy, 1998; Hastie et al., 2001) that work

in a fast and computationally efficient way to approximate functional forms like

yi = f(xi) + ei, i = 1, . . . , n, (1)

where yi is the dependent variable, xi ∈ X ⊆ RK is a vector predictor, ei is an error term, and f(·) represents an

unknown functional form to be approximated; see Breiman et al. (1984). The approximation has the general form

f(xi) =

G∑
g=1

γgI(xi; θg), (2)

where

I(xi; θg) =


1, if xt ∈ Rg(θg),

0, otherwise,
g = 1, . . . , G, (3)

where Rg(θg) denotes a subregion of X (viz. a hyperplane that is orthogonal to the axis of the predictor variables),

γgand θg are parameters, and G is the total number of subregions. Essentially, the relationship between yt and xt in

(1) is approximated by a linear regression on a set of G dummy variables. Despite the simplicity of the formulation,

RTs do not require much tuning and they are computationally fast even in large data sets. A simple tree structure
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with G = 2 leaves has the following form:

yi = β1I(xi; s0, c0) + β2 [1− I(xi; s0, c0)] + ei, (4)

where

I(xi; s0, c0) =


1, if xsi ≤ c0,

0, otherwise,
(5)

where s ∈ S = {1, . . . ,K} is an index for a variable and, of course, xsi ∈ xi. One may write (2) alternatively as

f(xi) =

G∑
g=1

γgI(xi ∈ Rg), (6)

where Rg is a subregion of the predictor space, X . Therefore, a RT fits a constant to each particular subregion.

Additionally, we can write a RT as follows.

f(xi) =

G∑
g=1

g(xi;Tg,Mg), (7)

where g(xi;Tg,Mg) is a function that assigns a predicted value based on xi, Tg is a set of splitting rules that defines

the gth tree, and Mg contains the predicted values for all nodes in tree g. The splitting rules that determine the

terminal nodes for the tree g, are partitions Pgl with g(xi;Tg,Mg) = µgl, a certain constant.

3 Panel data and regression trees

Techniques that deal with RTs in the context of longitudinal (panel) data include Fu and Simonoff (2015), Segal

(1992), Zhang (1998), De’Ath (2002), Hajjem et al. (2011), Sela and Simonoff (2012). As shown in Figure 1,

ignoring the panel data structure can have detrimental consequences for RTs. Therefore, it is clear that we need

a systematic procedure to deal with the complexities arising from panel data. From the point of view of applied

studies, a widely used panel data model is

yit = αi + x′itβ + eit, i = 1, . . . , n, t = 1, . . . , T, (8)

where αis represent individual effects. The model assumes common slope coefficients, although this can be taken

into account using the more general model

yit = ηi + x′itβi + eit, i = 1, . . . , n, t = 1, . . . , T, (9)
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Figure 1: Panel data

With panel data, RTs may not perform well. In this experiment we have yit = αi +βixit + eit, eit ∼ N (0, 0.012),i = 1, . . . , n = 100 and
t = 1, . . . , T (where T = 10). The slopes and intercepts are generated from standard normal distributions and the same is the case for
each regressor, xit. In the middle panel we have panel data with common slopes and different intercepts. Both intercepts and slopes
are heterogeneous. Slopes are generated from a standard uniform distribution. In the right panel we have different intercepts but slopes
are generated from a standard normal distribution.
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where βis are vector of firm-specific slope coefficients. The eits denote, generically, error terms. When our panel

consists of a relatively few units with a large number of temporal observations, instead of (8) or (9) one can fit

separate RTs to each unit. Such cases are, however, relatively uncommon, although they may occur some times,

e.g. when clusters can be determined or defined in advance. So, when n is large and T is moderate, the alternative

procedure is to rely on the residuals, êit, from panel data models as in (8) or (9) or, perhaps, more complicated

structures like Dynamic Panel Data (DPD) models.

To impose monotonicity and concavity in stochastic frontiers, we should allow for functional forms that are

provably flexible (Geweke and Keane, 2007; Norets 2010) but frontiers should also be smooth. Yagi et al. (2020)

for example, build on StoNED to provide monotonically concave frontiers in the spirit of local estimation at a

pre-selected grid of points. Valero-Carreras et al. (2021) use a two-step procedure to obtain such frontiers using

the concept of support vector regression.

Define, for a vector z ∈ RK

Ψ(z;Rg, σ) =
1∏K

k=1 σk
·
∫
Rg

K∏
k=1

φ
(
ζk−zk
σk

)
dζ, (10)

where σ = [σ1, . . . , σK ]
′ is a vector of scale parameters, ζ ≡ [ζ1, . . . , ζK ]

′, φ(·) is any univariate density function

(for example, the standard normal, viz. φ(u) = (2π)−1/2e−u
2/2, u ∈ R) and (abusing notation slightly) Rg denotes

a partition of the space Z of zits. The zits are variables that are used in the partitioning instead of the xits, and

they could be particular points in the space of the regressors as in Yagi et al. (2020) or their lagged values (xi,t−1).

In this paper, we generate randomly (using a uniform distribution) points in the support of the xits; their number

is set to 25% of the original sample size.1

Suppose our data is D = {yit, xit}1≤i≤n,1≤t≤T . If we were to fit a RT like (2), the problem becomes

min
Θ

n∑
i=1

T∑
t=1

(
yit − ηi −

G∑
g=1

γgPit,g

)2

, (11)

where ηi is a firm effect, Θ =
[
{Rg}1≤g≤G ,β,σ

]
, and Pit,g encodes the relation between zit and Rg so that

Pit,g = Ψ(zit;Rg,σ) ≥ 0 and
∑G
g=1 Pit,g = 1 (for all i = 1, . . . , n). If we fit a monotone concave function in each

region, then we have2

min
Θ

n∑
i=1

T∑
t=1

(
yit −

G∑
g=1

{
ηi,(g) + ϕg(xit;β(g))

}
Pit,g

)2

, (12)

1We could use the xits themselves in imposing monotonicity and curvature globally. To the extent that xit and xi,t−1 are, usually,
highly correlated, this is not a restrictive assumption and facilitates the imposition of global properties of the functional form.

2The functions ϕg(xit;β(g)) can be Cobb-Douglas for simplicity as monotonicity and concavity can be easily imposed. We follow
this practice below, and we assume that all inputs and output are in log form so that ϕg(xit;β(g)) becomes, effectively, a linear function.
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where3

Θ =
[
{Rg}1≤g≤G ,β,σ

]
, (13)

β =
[
β′
(g)

]
1≤g≤G

, and we allow individual effects ηi,(g) to depend on the particular subregion. Despite the superficial

similarity of (12) with kernel-based methods in the spirit of, say, local estimation, the kernel function is part of

the regression problem and, it is not used to weight squared residuals from the regression. The distinction is

fundamental primarily because it allows smooth regression trees.

One important feature of (11) which is not present in local estimation procedures, SCKLS or CSVF , is the

following. If we define ỹ = [yit − ηi; i = 1, ..., n, t = 1, ..., T ], we set ϕg(xit;β(g)) = mg, i.e., a local constant,

m = [mg, g = 1, ..., G], and P = [Pit,g], we have the important property that the local constants can be updated by

least squares as follows:

m̂ = (P′P)−1P′ỹ, (14)

provided matrix P has full rank. 4

Conditional on G, σ and {Rg}1≤g≤G (and, therefore, given
{
Pit,(g)

}
), it is not difficult to update the parameters

η =
{
η(i,g)

}
1≤i≤n;1≤g≤G and β =

[
β(g)

]
through MCMC (see Technical Appendix A). From this representation, we

see that PRTs resemble mixtures of regressions rather than traditional non-parametric procedures (Norets, 2010).

However, although mixtures themselves are flexible in the semi-parametric sense, they are not fully non-parametric.

Therefore, we generate the partitions of the space of regressors in a way that is more faithful to the RT approach.

Based on the new representation we see that we can introduce technical inefficiency (uit,(g) ≥ 0) as follows.

min
Θ

n∑
i=1

T∑
t=1

(
yit −

G∑
g=1

[
ηi,(g) + ϕg(xit;β(g))− uit,(g)

]
Pit,g

)2

, (15)

Relative to standard RTs, this formulation, (i) allows for panel data, (ii) it introduces technical inefficiency, and

(iii) allows for smoothness as we use a probabilistic RT. In a sampling-theory context, the uit,(g)s can be treated

as parameters and estimated using a penalty function like, for example, the LASSO or the elastic net. A similar

approach can be followed in a Bayesian context as follows. Define the “odds ratio” ψit,(g) ≡
rit,(g)

1−rit,(g)
. In turn, we

assume that the “odds ratios” are assumed to have a half-Laplace distribution with parameter λ which is equivalent

to the LASSO:

p(ψ) ∝ e−λ|ψ|, (16)

where λ is a parameter related to the usual penalty in LASSO optimization. Although efficiency is defined only in

(0,1], the “odds ratios” are defined across the real line. Of course, the result in (14) generalized provided we define

ỹit,(g) = yit − ηi + uit,(g) and then we stack all ỹit,(g)s together (see Technical Appendix A). An efficient way to

3A more restrictive formulation for the individual effects would have been: min
Θ

∑n
i=1

∑T
t=1

(
yit − ηi −

∑G
g=1 ϕg(xit;β(g))Pit,g

)2
.

4If not, we can use the estimator m̂ = (P′P+ κI)−1P′ỹ,where κ is related to the prior precision of the m coefficients being close to
zero (Zellner, 1971, pp. 75–76).
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Figure 2: Different approximations to a Cobb-Douglas production function
Notes: The blue dots correspond to the actual points. The step-wise function corresponds to a standard RT approximation. The dotted
line corresponds to the actual Cobb-Douglas production function. The lines with squares correspond to the Probabilistic Regression Tree
approximation.
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generate partitions of the space of the regressors is to use the classical RT approach and update the probabilities

Pit,g. Our posterior analysis for this step, is summarized in Appendix A.

To make the difference between standard RTs and PRTs clear, we present in Figure 2, observations from the

Cobb-Douglas data generating process Yi = aXb
i e
vi , where a = 1, b = 1

2 , the Xis are generated from a standard

uniform distribution, the sample size is n=20, and vi ∼ i.i.d N(0.12).

4 Data and empirical results

4.1 Data

We use the data from Instituto Nacional de Estadistica which covers all Chilean manufacturing plants with more

than ten employees during 1979 - 1996. These data have been used in Levinsohn and Petrin (2003), Gandhi et al.

(2020), and Ackerberg et al. (2015). For each of the 10,927 plants in the sample, the data include gross output,

material inputs, capital stock and investments, fuels and electricity, and labor (measured in person-years, skilled as

well as unskilled) converted where necessary into real values using industry-specific price deflators. A more detailed
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description of the data is available in Levinsohn and Petrin (2003, pp. 323–325) as well as in Lee et al. (2019).

We use the four largest industries (excluding petroleum and refining). The three-digit level industries and their

ISIC codes are Metals (381), Textiles (321), Food Products (311) and Wood Products (331). The data are observed

annually and they include gross revenue (the output index), indices of labor and capital inputs, and a measure of

the intermediate inputs electricity, materials, and fuels. Quasi-fixed inputs in our setting, are capital stock, and

skilled and unskilled labor. Materials, fuels and electricity are assumed to be variable inputs.

4.2 Main empirical results

To compare with previous approaches, like Levinsohn and Petrin (2003), Gandhi et al. (2020), and Ackerberg et al.

(2015) and to create a useful benchmark, we estimate a model without PRTs using a translog production function.

In turn, we estimate the model using particle-filtering Markov Chain Monte Carlo (MCMC; see Appendix A). Our

prior for θ is

θ ∼ Nd(0, h
2Id), (17)

where Id is the identity matrix (d is the dimensionality of the parameter space) and h is a scale parameter that we

set to 10 so that the prior is proper bit diffuse. We do not impose other prior information, except for the fact that

the translog parameters are restricted to provide monotonicity and concavity at the means of the data and 50 other

randomly selected points in the support of X . We use the translog instead of the more traditional Cobb-Douglas

because of its better approximation properties. First, we compare the results from this approach (which we call

translog) and the PRT approach, in terms of elasticities and other functions of interest. In Figure 3, we present

sample distributions of posterior mean estimates of input elasticities. The translog violates monotonicity in several

cases (most prominently for materials, fuels, and skilled labor) but these conditions are satisfied by the RTs as they

anchor on Cobb-Douglas production functions at the terminal nodes. In this case, it is easy to impose monotonicity

and concavity. Before proceeding, it is useful to define technical change (TCit) as the partial derivative of the

production function with respect to time, efficiency change as ECit =
rit−ri,t−1

ri,t−1
where rit = e−uit and, finally,

productivity growth as PGit ≡ ωit = TCit + ECit. We compare our model with the translog model, as well as a

local mlinear (LL) model; see SCKLS of Yagi et al. (2020), and CSVF of Valero-Carreras et al. (2021) in Figure 3.

Inefficiency cannot be compared with Yagi et al. (2020) as in their paper they do not allow for technical inefficiency.5

From 3, the first conclusion is that the translog often violates monotonicity as some input elasticities can be

negative. Other than that, PRT, SCKLS and CVSF seem to provide similar sample distributions of input elasticities,

at least for the most part.

Estimates of returns to scale, reported in panel (a) of Figure 4 differ widely between the translog and RTs.

For the translog, they range between 0.4 and 1.6 while for PRTs they range from 0.8 to 1.1. Productivity growth
5See Kuosmanen (2008) and Kuosmanen and Kortelainen (2012) on how inefficiency can be estimated in a second stage using

distributional assumptions. Here, we opt for a single stage which is, necessarily, quite different.
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Figure 3: Input elasticities
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(reported in panel (b)) is also overstated by the translog (averages nearly 3% and ranges between zero and 7%).

For PRTs, productivity growth averages close to zero and ranges from about –1% to 2%. Efficiency change ans

technical change (reported in panels (c) and (d)) do not seem to be markedly different. Efficiency change averages

close to zero and ranges roughly from –4% to 4%. Technical change (see panel (d)) averages close to 2% for the

translog (close to zero for PRT, LL and CVSF) and ranges between –2% and 7% which is, of course, substantial,

it indicates also substantial heterogeneity among different plants but it hard to believe in virew of the different

evidence provided by PRT, LL, and CVSF. Finally, in panel (e) we report sample distributions of posterior mean

estimates of inefficiency. PRTs provide an average close to 25% (ranging from about 10% to 40% with confidence

0.95) while the translog provides an average close to 15% and ranges roughly between 5% and 25%.

To examine the relationship between efficiency and productivity, we estimate a second-stage panel vector au-

toregression (PVAR) of the form

log uit = ρu0,i + ρuu log ui,t−1 + ρuω logωi,t−1 + vit,u,

logωit = ρω0,i + ρωu log ui,t−1 + ρωω logωi,t−1 + vit,ω,
(18)

where vit,u and vit,ω are error terms, and ωit = PGit. Parameters ρu0,i and ρω0,i represent fixed effects and the

model in (18) is estimated using the system generalized method of moments (GMM) technique.

Posterior moments related to selected parameters of interest, including persistence of inefficiency and produc-

tivity are reported in Table 1. In general, both productivity and inefficiency are highly persistent (viz. they exhibit
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Figure 4: Distributions of other functions of interest
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Table 1: Posterior moments of selected parameters

PRT translog CVSF
ρωω 0.772

(0.044)
0.885
(0.055)

0.770
(0.032)

ρuu 0.817
(0.023)

0.913
(0.044)

0.744
(0.013)

ρωu 0.051
(0.012)

0.030
(0.022)

0.144
(0.032)

ρuω 0.085
(0.022)

0.132
(0.144)

0.023
(0.030)

Table 2: Rank correlation coefficients of technical change estimates

translog PRT SCKLS CVSF
translog 1.000 0.032 0.035 0.029

PRT 1.000 0.618 0.545

LL 1.000 0.747

CVSF 1.000

path dependence, Tsekouras et al., 2016, 2017) and there is significant cross-dependence between them according

to RTs. The translog does not allow for significant cross-dependence as parameters ρωu and ρuω seem to be “sta-

tistically insignificant”. Moreover, and perhaps because of this shortcoming of the translog, persistence parameters

are overstated. From these results, it turns out that although PRTs and CSVF deliver similar estimates of input

elasticities, inefficiency, technical change etc., there are also some important differences, otherwise the results in 1

would be approximately the same for PRT and CVSF.

From the rank correlation coefficients reported in Table 2, we see that although the methods provide positively

correlated estimates of technical change, the correlations do not seem to be large enough.

In Table 3 we present marginal effects in the form of elasticities derived from the production function, along

with corresponding results obtained from the translog functional form.

In Table 3, the mean values of EC and PG under PRT have opposite values comparing to that under CSVF.6 The

reason is that PRT and CSVF have different approximation properties at least in finite samples. As we mentioned

earlier, Valero-Carreras, Aparicio, and Guerrero (2021) introduced a second stage to impose convexification. The

two-stage approach depends on the behavior of the first stage, particularly in finite samples.

As the results from the PRT and the translog are quite different, it is reasonable to inquire as to which model
6The author is grateful to an anonymous referee for raisin this point.
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Table 3: Marginal effects
Notes: Reported are sample means with standard deviations in parentheses. PRT stands for probability regression trees, LL stands for local
linear estimation as in Yagi et al. (2020) and CVSF is the method of Vallelo-Carreras et al. (2021). TC is technical change, EC is efficiency
change and PG=EC+TC is productivity change. Technical change is denoted by uit. Regular fonts represent elasticities from the regression
tree model. Italics represent results from the translog specification. Finally, ωit represents productivity growth (PGit).

inputs
translog PRT LL CSVF

Materials 0.187
(0.072)

0.358
(0.024)

0.348
(0.022)

0.351
(0.015)

Fuels 0.077
(0.147)

0.077
(0.012)

0.073
(0.011)

0.087
(0.013)

Electricity 0.165
(0.068)

0.068
(0.005)

0.072
(0.015)

0.066
(0.009)

Capital 0.093
(0.021)

0.217
(0.014)

0.216
(0.012)

0.213
(0.015)

Skilled labor 0.229
(0.109)

0.102
(0.012)

0.094
(0.011)

0.102
(0.010)

Unskilled labor 0.249
(0.087)

0.155
(0.015)

0.141
(0.021)

0.150
(0.017)

TC 0.025
(0.014)

-0.0007
(0.019)

0.0034
(0.014)

-0.0043
(0.019)

EC 0.066
(0.013)

0.010
(0.008)

— -0.0037
(0.0075)

PG 0.031
(0.010)

0.0003
(0.009)

— -0.0002
(0.0108)

uit 0.149
(0.042)

0.238
(0.065)

— 0.232
(0.069)
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Table 4: Cross-validation RMSEs

method RMSE
translog 0.336

PRT 0.025

LL 0.027

CVSF 0.029

is “best”. We use the criterion of marginal likelihood and Bayes factor (also known as posterior odds ratio when

the prior odds for the two models are 1:1) to answer this question. The marginal likelihood is standard output of

sequential Monte Carlo (Andrieu et al., 2010) so it is not difficult to compute Bayes factors (Kass and Raftery,

1995; DiCiccio et al., 1997; O’Hagan, 1995).7

We use as estimation sample the 50% of available observations in each sector, and we re-estimate the model

1,000 times corresponding to different estimation samples. The distribution of Bayes factors in favor of RT and

against the translog is reported in Figure 5. In addition, we consider different priors as described in Appendix B.

The results are reported in Figure 5. For the most part, Bayes factors exceed 100 which is a conventional benchmark

for “decisive evidence” in favor of a given model. As Bayes factors range up to roughly 1200, there is overwhelming

evidence in favor of RTs and against the translog. Of course, this cannot be attributed to the fact that the translog

violates the monotonicity restrictions in several instances, as imposing restrictions cannot improve the fit of the

translog (which is also heavily underparametrized relative to RTs).

As there are no Bayesian versions of SCKLS or LL and CVSF it is not possible to use Bayes factors for model

comparison or model selection. We can use, however, (tenfold, say) cross-validation root mean-squared errors

(RMSEs) to compare the different models. To allow comparison we shut down inefficiency in translog, PRT, and

CVSF and we focus on comparing RMSEs of predicted dependent variables. The tenfold cross-validation RMSEs

are reported in Table 4 and they are based on the posterior mean estimates for both the translog and the PRT.

The smallest RMSE is attained by PRTs, followed by SCKLS and CVSF. So, the evidence in Tables 1, 2 and 4

suggests that sampling distributions of functions of interest are somewhat similar for PRT, LL and VSCF, there

are, nevertheless, important differences as well. The differences can be attributed to the different sub-division of

the regressor space implied by PRTs and the way convexification is obtained in CVSF relative to both PRTs but

primarily LL. A further comparison of the methods is left for future research along with the fact that SCKLS should

be modified appropriately to allow for technical inefficiency.

To examine how PRTs achieve smoothness and satisfy the properties of monotonicity and concavity, we provide

some examples in Figure 6.
7For a model with parameters θ,data D, likelihood L(θ;D) and prior p(θ), the marginal likelihood is M(D) =

∫
L(θ;D)p(θ) dθ,

i.e., the integrating constant of the posterior. For two models, say “1” and “2” (estimated with the same data with possibly different
parameters and, therefore, likelihood functions and priors) the Bayes factor in favor of model “1” and against model “2” is B1:2 =

M1(D)
M2(D)

.
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Figure 5: Bayes factors
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Notes: The broken vertical line corresponds to 100. Shown are 50 densities corresponding to 50 representative different priors as described in
Appendix B.
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Figure 6: Aspects of production function
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Notes: For visual clarity all variables are normalized in the unit interval. In different panels, we present the production function in terms of two
variables when all other variables all fixed at their average values. The third imaginary axis represents output so, the plots are surfaces that
show that inputs must be used in tandem to produce more output.
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Figure 7: Regression Tree for the production function
Notes: x1 through x6 correspond to the inputs (capital, unskilled labor, skilled labor, materials, fuels, electricity) scaled in the unit interval,
and x7 is inefficiency (u) in original units.

0.21589 0.34776 0.33772 0.56062 0.45932 0.34055 0.62977 0.46778

x2 < 0.513045   

x3 < 0.39491   x1 < 0.725075   

x4 < 0.761538   x1 < 0.885923   x7 < 0.133504   x1 < 0.814233   

  x2 >= 0.513045

  x3 >= 0.39491   x1 >= 0.725075

  x4 >= 0.761538   x1 >= 0.885923   x7 >= 0.133504   x1 >= 0.814233

The PRT is shown in Figure 7.8 This visualization shows that unskilled labor and capital are critical in

determining the partition of the input space, and the final nodes are determined by inefficiency and productivity.

Specifically, the final partition depends mostly on relatively inefficient and less productive plants versus their better

counterparts. Inefficiency values around 10% or 25% seem to be critical along with productivity levels around

0.65%.

Concluding remarks

We have proposed a probabilistic regression tree (RT) approach to nonparametric smooth and monotone concave

approximation to production functions. We combine the RT approach with Markov Chain Monte Carlo methods

which allow computationally efficient sub-divisions of the regressor space. If we abstract from productivity and

inefficiency, the model is a reasonable parametrization for the application of RTs in panel data which is a persistent

problem in the literature.
8More detailed results are presented in Online Appendix C.
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In terms of future research, there are at least four directions in which the current approach can be generalized.

First, one can allow easily for endogeneity (e.g. Soytas et al., 2019) in the variable inputs using a systems approach

consisting of the first order conditions for cost minimization, which is an alternative to the control function approach

as it can handle more one variable input. This will involve, most likely, a separation between variable and quasi-

fixed inputs. At the same time, the Bayesian approach allows for measurement error in the variable inputs, unlike

the control function approach. Second, introduction of productivity as a dynamic latent variable is not difficult

and brings the model closer to the spirit of previous studies (Olley and Pakes, 1996; Levinsohn and Petrin, 2003;

Ackerberg et al., 2015; Gandhi et al., 2020). Third, inefficiency can be parametrized in terms of environmental

variables and one can even allow for dynamic inefficiency, in the spirit of first-order Markov processes used in the

literature for productivity. Fourth, further model comparison can be performed using marginal likelihoods and

Bayes factors provided we can give a Bayesian interpretation to SCKLS and CSVF.

Geweke, J., and Petrella, L. (2014). Likelihood-based inference for regular functions with fractional polynomial

approximations. Journal of Econometrics 183 (1), 22–30.

Appendix A. Posterior analysis
Let us define Θ as in (13), θ denotes all other structural parameters of the model. We treat the uit,(g)s as

parameters and we place a Laplace prior on the absolute “odds ratios” ψit,(g) =
rit,(g)

1−rit,(g)
where rit,(g) = e−uit,(g) .The

prior on the tree structure is specified along the lines suggested in Chipman et al. (1998) and Chipman et al. (2010).

The posterior distribution of the model is as follows.

p(Θ, u, η, u|Y ) ∝ σ−nT
ε exp

{
− 1

2σ2
ε

∑n
i=1

∑T
t=1

[
yit − ηo −

∑G
g=1

(
ηi,(g) + {ϕg(xit;β(g) − uit,(g)}

)
Pit,(g)

]2}
·

p(Θ, σ, η, u),

(A.1)

where p(Θ, σ, η, u) ∝ p(Θ)p(σ)p(η)p(u) (viz., we assume prior independence) where the prior p(σε) ∝ σ−1
ε and the

prior p(Θ) is defined as proceed. Moreover, u =
[
uit,(g)

]
and η =

[
ηi,(g)

]
. Notice that we have introduced an overall

intercept ηo so that the individual effects ηi,(g) can be reasonably assumed to have zero prior means. The prior on

the u parameters is given by a Laplace distribution on the “odds ratios”:

p(ψit,(g)) ∝ e−λ|ψit,(g)|, (A.2)

where ψit,(g) = e
−uit,(g)

1−e−uit,(g)
as in (16). For the individual effects we follow a similar approach as we want to exploit

properties of the LASSO:

p(ηi,(g)) ∝ e−λη|ηi,(g)|, (A.3)
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where λ and λη are unknown parameters whose priors are standard exponential. Updating β(g), uit,(g), ηi,(g) is

performed using the fast MCMC technique of Durmus et al. (2017). Updating σε is straightforward as

Q
σ2
ε

∣∣∣∣Θ, η, u, Y ∼ χ2
nT , (A.4)

where

Q =

n∑
i=1

T∑
t=1

[
yit −

G∑
g=1

(
ηi,(g) + {ϕg(xit;β(g) − uit,(g)}

)
Pit,(g)

]2
. (A.5)

An important part of our MCMC is that the σ parameters in (10) are updated as well. Each element, say σg

of σ = [σg, 1 ≤ g ≤ G] is given the following improper prior:

p(σg) ∝ σ−1
g e−q̄/(2σ

2
g), 1 ≤ g ≤ G, (A.6)

where q̄ ≥ 0 is a prior parameter that we set to q̄ = 10−4 (for the prior, see Zellner, 1971, p. 371, equation

A.37b). After reparametrizing to σg = eξg (ξg ∈ R,1 ≤ g ≤ G), the ξgs can be treated as unconstrained parameters

in MCMC; otherwise in a non-Bayesian context one would have to select σ by computationally expensive cross-

validation techniques.

Implementation of the regressor sub-division, is the most critical, uses a standard RT approach as implemented

in Akhoury et al. (2020). Of course, there are other probabilistic alternatives to build RTs (e.g. Linero and Yang,

2018). For RTs, the steps and calculations are performed on values of a single response variable. 9

MCMC is implemented using 150,000 iterations the first 50,000 of which are discarded in the burn-in phase to

mitigate possible start up effects. Convergence and numerical performance of MCMC is monitored using Geweke’s

(1992) diagnostics.

Next, we describe our approach to tree construction and sub-division of the regressor space in more detail. Let

g(X,Tj ,mj) denote a single tree model with Tj standing for the tree structure associated with the jth binary tree

and mj = [µj1, . . . , µjbj ]
′ is the vector of terminal node parameters associated with Tj and bj are the leaves of the

jth tree. In standard BART, the mjs consist of fixed parameters so that the RT is a step function approximation.

We approximate a function using

f(X) =

N∑
j=1

g(X,Tj ,mj). (A.7)

Binary trees have the form {X ∈ Ajg} or {X /∈ Ajg}. The sets Ajg are defined by selecting particular columns

of X, say X.j (1 ≤ j ≤ K) so these rules have the form {X.j ≥ c} or {X.j ≥ c} for some threshold value c. The
9See the bartMachine package in R, the BayesTree package (Linear and Yang, 2020) as well as https://github.

com/theodds/SoftBART.
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function g has the following form:

g(X,Tj ,mj) = ϕ(X;βjg), if X ∈ Ajg, (A.8)

where ϕ(X;βjg) is a Cobb-Douglas functional form with parameters βjg. In standard BART (Chipman et al., 2010),

we have instead

g(X,Tj ,mj) = µjg, if X ∈ Ajg, (A.9)

where µjg is a constant.

In the interest of generality we consider a model with multiple dependent variables. We write the jth equation

as

fj(X) =

G∑
g=1

gjg(X,Tjg,mjg), (A.10)

where gjg(·) denotes an equation-specific Cobb-Douglas function with arguments Tjg and mjg(1 ≤ g ≤ G). We

write the entire system as

Y = f(X) + ξ, (A.11)

where Y denotes all observations on the dependent variables, X is the matrix of observations on the predictors and

ξ is the error term. As the errors are correlated, we use the reparametrization (Carriero et al., 2019; Huber et al.,

2020):

ξ = εA′
o, (A.12)

where Ao is a lower triangular matrix with ones on the main diagonal, so that Σ = AoHA
′
o where H is a diagonal

matrix and ε are normal errors with zero means and the same diagonal covariance matrices H. This construction

permits equation-by-equation estimation as the errors are now independent. The jth equation (j > 1) can now be

written as

y.j =

G∑
g=1

gjg(X,Tjg,mjg) +

j−1∑
l=1

ajlξ.l + ε.j , (A.13)

where y.j , ξ.l, ε.j refer to the jth or lth column of Y , ξ or ε, and ajl is the (j, l)th elements of Ao. The formulation

in (A.13) is a standard BART except for the fact that we have the additional term
∑j−1
l=1 ajlξ.l which is just a

parametric regression part.

For each equation j, the joint prior is

p
(
(Tj1,mj1), . . . , (TjN ,mjN ), cj , σ

2
j , (βjk), Ao

)
∝

p ((Tj1,mj1), . . . , (TjN ,mjN )) · p
(
cj , σ

2
j , (βjk), Ao

)
.

(A.14)
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Following Chipman et al. (2010) we assume

p ((Tj1,mj1), . . . , (TjN ,mjN )) =
∏N
k=1 p(mjk|Tjk)p(Tjk),

p(mjg|Tjg) =
∏bq
q=1 p(βjk,q|Tjk),

(A.15)

where we introduce the prior p(βjg,q|Tjk) instead of p(µjg,q|Tjk). This prior allows for explicit integration of mjg

out of the posterior of the trees. Our prior on the tree structure is specified as in Chipman et al. (1998, 2010).

Specifically, we use a stochastic process that consists of three steps to grow trees. Let s = 0 be the first iteration

of this tree generating process. We start with a tree that contains a single terminal node, which is denoted by ηjg

(for each equation j and g = 1, . . . , G). The process works as follows.

1. We split the terminal node ηjg with probability

psplit(ηjg,T
(s)
jg ) = α(1 + d)−δ, α ∈ (0, 1), δ ≥ 0, d ∈ {0, 1, 2, . . .} , (A.16)

where d is the depth of the tree, and α, δ are prior parameters (we set α = 0.95 and δ= 2. This implies that that

the probability that a given node is non-terminal decreases quadratically if the trees become more complicated (i.e.

for increasing values of d).

2. If the current node is split, we choose a splitting variable X.j with probability 1
K . As we need to determine

a threshold for this variable, we assume that the threshold is uniformly distributed in the range of X.j .10

3. Once we obtain all terminal nodes (i.e. there are no nodes to split further), we denote the new tree by T
(s+1)
jg

and return to step 2.

On the terminal node parameters βjg,q we place a flat prior subject to non-negativity restrictions. For the free

parameters in matrix Ao we use a standard normal prior. We sample all quantities related to the trees (i.e. Tjg

and mjg for all j, k) using the algorithm in Chipman et al. (2010). Specifically, we consider candidate tree, say

T c
jg from a proposal distribution q(Tjg,T c

jg) and we accept the proposal using the Metropolis-Hastings acceptance

probability

min
{
1,

p(Rjg|X,T c
jg,mj)p(T

c
jg)q(T

c
jg,Tjg)

p(Rjg|X,Tjg,mj)p(Tjg)q(Tjg,T c
jg)

}
. (A.17)

The proposal distribution q(Tjg,T c
jg) is constructed as in Chipman et al. (1998). In the first step we grow the

tree by splitting a node. This step is chosen with probability 0.25. The second step combines two non-terminal

nodes into one terminal node. This step is chosen with probability 0.25. The third step interchanges splitting rules

between two terminal nodes with probability 0.4. The fourth step changes the splitting rule of a single non-terminal

node with probability 0.1.
10For this reason, all observed variables are scaled in the unit interval.
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Appendix B. Prior sensitivity analysis
Our main interest is in examining sensitivity to the prior in (17) which we reformulate here as follows.

θ ∼ Nd(a, h
2Id), (B.1)

where a ∈ Rd denotes the prior mean which has been set to zero in (17). We vary h between 1 and 100 using a

uniform distribution, and we choose the different elements of a using uniform distributions in the interval [−10, 10].

For the LASSO parameters λ and λη we assume they vary in the interval [0.1, 10] and for q̄ in (A.6) we assume

that it ranges between 10−7 and 10. We perform this exercise 1,000 times to obtain 1,000 different priors and we

re-estimate the model, re-computing posterior moments of parameters and functions of interest. In Figure B.1 we

present the distributions of (median) change in posterior means for θ, {ωit} and {uit} in panel (a), and returns

to scale, technical change and efficiency change in panel (b). In both cases, differences in posterior means due to

different priors seem small enough implying that the model is reasonably robust with respect to the priors.

Figure B.1: Prior sensitivity
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